WO2003030311A2 - Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon - Google Patents

Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon Download PDF

Info

Publication number
WO2003030311A2
WO2003030311A2 PCT/US2002/030667 US0230667W WO03030311A2 WO 2003030311 A2 WO2003030311 A2 WO 2003030311A2 US 0230667 W US0230667 W US 0230667W WO 03030311 A2 WO03030311 A2 WO 03030311A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
etalon
wavelength
transmission
detector
Prior art date
Application number
PCT/US2002/030667
Other languages
French (fr)
Other versions
WO2003030311A3 (en
Inventor
Randy Dean May
Original Assignee
Spectra Sensors, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spectra Sensors, Inc. filed Critical Spectra Sensors, Inc.
Priority to AU2002362396A priority Critical patent/AU2002362396A1/en
Priority to EP02800371A priority patent/EP1436864A4/en
Publication of WO2003030311A2 publication Critical patent/WO2003030311A2/en
Publication of WO2003030311A3 publication Critical patent/WO2003030311A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1303Stabilisation of laser output parameters, e.g. frequency or amplitude by using a passive reference, e.g. absorption cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the invention generally relates to dense wavelength division multiplexers (DWDM) and in particular to a technique for locking transmission wavelengths of individual lasers of the DWDM.
  • DWDM dense wavelength division multiplexers
  • a DWDM is a device for simultaneously transmitting a set of discrete information channels over a single fiber optic transmission line.
  • a conventional fiber optic transmission line is capable of reliably transmitting signals within a bandwidth of 1280 to 1625 nanometers (nm), the "low loss" region for silica fiber.
  • the International Telecommunications Union ITU
  • ITU International Telecommunications Union
  • One example of a transmission band is the ITU "C" band, which extends 40 nm from 1525 nm to 1565 nm.
  • specific transmission channel protocols of 40, 80, or 160 discrete channels are defined and, for each protocol, the ITU has defined a grid of transmission wavelengths, with each line corresponding to an acceptable transmission wavelength.
  • the protocols have been defined to ensure that all DWDM transmission and reception equipment are fabricated to operate at the same wavelengths.
  • the corresponding ITU grid has 40 lines with channel spacing of 0.8 nm; for the 80-channel protocol, the corresponding ITU grid has 80 lines with channel spacing of 0.4 nm; and so forth. Additional protocols have been proposed, including 320 channel and 640 channel protocols. Maximum theoretical transmission frequencies for the various ITU protocols are as follows: 100GHz for the 40 channel protocol; 50GHz for the 80 channel protocol; 25GHz for the 160 channel protocol; 12.5GHz for the 320 channel protocol; and 6.25GHz for the 640 channel protocol. Closer channel spacing necessitates a lower modulation rate since channel spacing must be larger than the modulation frequency.
  • High frequency modulation requires suitable optic fibers, as well as appropriate transmission and receiving equipment.
  • Current state-of-the-art DWDMs typically employ a 40 channel ITU protocol but transmit at 2.5 GHz, well below the theoretical maximum.
  • Other exemplary ITU transmission bands are the S- and L- bands.
  • a conventional DWDM employs a set of the individual distributed feedback (DFB) lasers, with one DFB laser per channel and with the DFB configured to transmit.
  • FIG. 1 illustrates ne ,__ n _,
  • a DWDM 100 having forty individual DFB lasers 102 for transmitting optical signals via a single optic fiber 104.
  • An optical multiplexer 106 couples signals received from the individual DFBs via a set of intermediate optic fibers 107 into output optic fiber 104.
  • Each DFB laser transmits at a different wavelength of the 40-channel ITU C band. This enables forty separate channels of information to be transmitted via the single optical fiber 104 to a de-multiplexer (not shown) provided at the far end of the optical fiber.
  • each individual DFB must be tuned to a single ITU transmission channel wavelength.
  • a DFB laser can be tuned only within a narrow wavelength band, typically about 2 nm in width.
  • the typical DFB can only be tuned to one of a few adjacent lines out of the total of 40 lines of the ITU grid.
  • each individual DFB laser is manually calibrated at the factory to emit at a corresponding one of the ITU transmission lines. This is achieved by adjusting the laser operating temperature and current to obtain the desired wavelength.
  • the laser is then, in some implementations, locked to the target wavelength by routing the output beam from each DFB laser through a corresponding manually tunable etalon.
  • the etalons are not shown in FIG. 1.
  • a manually tunable etalon is an optical device that produces a periodically-varying transmission spectrum as a function of laser wavelength. By tilting the etalon relative to the DFB laser beam path, a transmission peak of the etalon can be made coincident with the target ITU channel.
  • the wavelength of an etalon transmission peak is calibrated to one of the ITU transmission lines by manually adjusting the angle of the etalon while monitoring the wavelength output from the etalon using an optical wavelength analyzer.
  • the angle of the etalon is adjusted until the output wavelength is properly aligned with one of the ITU transmission lines, then the etalon is mounted in place in an attempt to lock the output wavelength of etalon to the selected ITU transmission line. This is a difficult and time-consuming process requiring skilled technicians resulting in the alignment of the etalon transmission peaks with several ITU transmission lines. In addition, if transmission over a certain range of ITU transmission lines is desired, multiple tunable lasers are required to ensure adequate coverage. Such an ne ,__ n _,
  • DWDM may then be used for transmitting signals over a fiber optic line, such as for transmitting digital data over computer networks or for transmitting television signals from a television network to one of its affiliates.
  • a single DWDM must be provided for use with each fiber optic line employed for DWDM transmissions and hence a single customer installation, such as a television broadcast center, may require large numbers of DWDMs. If one of the DFB lasers within a DWDM drifts from its corresponding ITU transmission line or otherwise malfunctions, the entire DWDM typically needs to be replaced to permit the malfunctioning DWDM to be returned to the factory to be re-calibrated or otherwise fixed. As a result, the cost of maintaining a set of DWDMs is often substantial.
  • some DWDMs are provided with an additional widely tunable laser (WTL), which can be tuned separately to any one of the ITU grid lines.
  • WTL widely tunable laser
  • the single WTL can be tuned to the . corresponding transmission wavelength of the DFB to thereby permit the DWDM to continue to operate.
  • Additional WTLs can be supplied with a DWDM to accommodate the failure of two or more DFB channels, and such "sparing" is a major advantage a WTL over a DFB.
  • conventional WTLs cannot simply and accurately be tuned to any target ITU channel at a customer installation and must be calibrated at the factory for operation at a specific channel.
  • each DFB laser can only be tuned within a narrow range of about 2 nm, each DFB laser can only be calibrated to one of a few adjacent ITU transmission wavelength lines. It is sometimes desirable to configure the DWDM to use many lasers for transmitting at a single ITU transmission line to provide more bandwidth on that channel. When using DFB lasers, no more than two or three of the lasers can be calibrated to a single ITU transmission line. Hence, in some DWDMs, WTLs are used exclusively instead of DFB lasers, thus permitting any of the lasers to be manually calibrated at the customers installation to transmit on any of the ITU transmission lines.
  • WTLs remedies many of the problems associated with using DFB lasers, WTLs are difficult and expensive to fabricate and initially calibrate, and are susceptible to wavelength drift requiring frequent recalibration at the customers installation by trained technicians and hence necessitating high overall installation and maintenance costs.
  • the senior parent patent applications involve, inter alia, techniques for calibrating a transmission WTL of a DWDM using an etalon and a gas cell having acetylene, hydrogen cyanide or carbon dioxide.
  • the absolute transmission wavelengths of the WTL are calibrated by routing an output beam from the WTL through the etalon and through the gas cell while varying tuning parameters of the WTL to thereby generate an etalon spectrum and a gas absorption spectrum both as functions of the tuning parameters.
  • the etalon and gas absorption spectra are compared, along with input reference information specifying gas abso ⁇ tion as a function of absolute wavelength, to determine the absolute transmission wavelength for the WTL as a function of the tuning parameters.
  • the WTL is then tuned to align the transmission wavelength of the WTL to an ITU transmission grid line.
  • a wavelength mapper is provided for manually connecting to a WTL to tune the WTL to a selected ITU transmission gridline.
  • the wavelength mapper is permanently attached to the WTL along with a wavelength locker to lock the WTL to an ITU transmission gridline. Insofar as wavelength locking is concerned, the parent applications describe a wavelength locker employing a temperature-controlled etalon.
  • tuning parameters are applied to the laser to tune the laser to a selected transmission wavelength, such as an ITU channel wavelength.
  • a temperature offset is applied to the etalon of the wavelength locker to vary the wavelengths of the transmission peaks of the etalon until one of the transmission peaks is precisely aligned with the selected wavelength. Any drift of the laser from the etalon transmission peak is detected and the tuning parameters applied to the laser are automatically adjusted to compensate for the drift. The temperature of the etalon is precisely maintained so that the etalon transmission peak does not drift from the selected wavelength.
  • the main output beam of the laser remains locked on the absolute wavelength of the selected transmission channel despite possible variations in the output characteristics of the laser.
  • the system can be recalibrated using the known absolute wavelengths of the gas abso ⁇ tion chamber to ensure that the transmission peak of the etalon has not drifted from the absolute wavelength of the selected transmission channel.
  • the wavelength locker should be highly miniaturized and configured so as to consume relatively little power.
  • the wavelength locker also should be sufficiently durable to operate reliably over a ten- or twenty-year lifetime.
  • the wavelength locker should be designed so as to work in combination with any of a wide variety of ITU transmission protocols and fiber optic transmission rates, both existing and proposed and to allow rapid switching between ITU grid lines.
  • the wavelength locker should be designed so as to be sufficiently inexpensive for practical use. Difficulties arise in each of these areas.
  • Each WTL for use in a DWDM is typically provided in a miniature "butterfly" package for mounting to a circuit board also containing microcontrollers and other components.
  • the circuit boards are mounted in a parallel array within the DWDM with, typically, one board per ITU channel.
  • a forty ITU channel DWDM employs forty circuit boards; an eighty ITU channel DWDM employs eighty circuit boards.
  • Current state- of-the-art WTLs typically draw about ten watts of power, thus requiring 400 watts of power or more for the a forty channel DWDM and correspondingly more power for 80 or 160 channel DWDMs.
  • a significant portion of the power is consumed by thermoelectric (TE) coolers provided for controlling the temperature of the semiconductor laser of the WTL. With the WTLs already consuming considerable power, it is particularly important that the wavelength locker be configured so as to minimize power consumption, particularly the temperature-controlled etalon.
  • TE thermoelectric
  • Minimizing power consumption typically requires that the etalon be configured to provide numerous closely-spaced transmission peaks (i.e. to have a narrow free spectral range) such that relatively little heating or cooling is required to expand or contract the etalon or change its index of refraction sufficiently enough to align one of the transmission lines of the etalon with a selected ITU grid line.
  • Using numerous closely spaced peaks increases the risk that the wavelength locker will lock the transmission wavelength of the WTL to the wrong wavelength.
  • the etalon typically must be configured to have a very short optical axis, thereby making it more difficult to fabricate and align.
  • the temperature-controlled etalon and other components of the wavelength locker should be configured to work with any of a variety of ITU channel protocols, such as 40 to 640 channels, and with any of a variety of transmission frequencies, such as from 2.5 GHz to 100 GHz.
  • the wavelength locker is sufficiently miniaturized to mount inside the butterfly package of the WTL to minimize overall circuit board space.
  • the invention of the parent application was directed to providing just such an improved wavelength locker. Briefly, to lock a WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by a detector. Another portion of the beam is routed directly to a laser wavelength detector via a beam splitter inte ⁇ osed between the laser and the etalon. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam. In this arrangement, the wavelength-locking controller operates to control the WTL in a feedback loop to lock the laser to the etalon line.
  • the wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon.
  • the etalon is a silicon etalon configured to have finesse of about 20 and to provide a free spectral range of about 8 GHz. With these parameters, the system is able to lock the wavelength of the WTL to within a precision of about 0.2 GHz.
  • the etalon is first calibrated during manufacture to determine a "set point" operating temperature sufficient to align transmission peaks of the etalon with desired ITU grid lines.
  • the etalon is thereafter mounted within a WTL and the etalon is adjusted to the set point temperature so as to align transmission peaks of the etalon with the desired ITU grid lines to permit wavelength locking.
  • This later technique allows for rapid switching between channels and obviates the need for a gas cell within the WTL.
  • a beam splitter is employed to split the laser beam into two beams—one to the laser wavelength detector and another to the etalon.
  • the beam splitter causes amplitude variations in the two beams, which are out of phase from one another making it more difficult to lock the laser to one of the ITU channels. Accordingly, it would be desirable to provide an alternative configuration permitting easier wavelength locking, and it is to this end that aspects of the present CEP are directed.
  • optical frequency chi ⁇ occurs when a current source used to modulate the transmission laser causes dynamic changes in the index of refraction of a laser junction or other optical transmitter.
  • a dynamic change in the index of refraction in turn causes a dynamic change in the actual transmission frequency of an optical pulse transmitted into the optic fiber.
  • the time average of the optical transmission may indicate that a leading edge of an optical pulse has a slightly different frequency than the trailing edge of the pulse.
  • the initial frequency differential between the leading and trailing edges of the pulse may be slight, chromatic dispersion inherent in optic fibers causes the leading and trailing edges to propagate at different speeds resulting in potentially significant distortion of the optical pulse, particularly over long haul optic fiber transmission systems.
  • the distortion limits either the maximum frequency of signal transmission modulation or the maximum distance at which signals can be reliably transmitted.
  • a system and method for use in locking a laser to a transmission wavelength using a tunable etalon.
  • the system includes a laser for providing an output beam along an optical path and a laser wavelength detector, positioned along an initial linear portion of the optical path of the laser, for capturing a first portion of the output beam of the laser to detect a transmission wavelength of the laser.
  • the system also includes an etalon positioned for simultaneously receiving a second portion of the output beam of the laser and for splitting the second portion into a series of transmission lines.
  • An etalon wavelength detector is provided for detecting the etalon transmission lines.
  • the laser wavelength detector By positioning the laser wavelength detector along the initial linear portion of the optical path of the laser, the laser wavelength detector directly receives a portion of the output beam from the laser and hence the amplitude of the beam as a function of wavelength is unaffected, as might otherwise occur with the detector positioned off-axis and a beam splitter employed to reflect a portion of the laser beam to the detector.
  • the system also includes a control unit for setting the transmission wavelength of the output beam of the laser to a selected wavelength and for tuning the etalon to align a selected etalon transmission line to the selected wavelength.
  • the wavelength-locking control unit thereafter detects any drift of the transmission wavelength of the laser from the selected etalon transmission line and adjusts the laser to compensate for any drift, such that the output beam of the laser is locked to the selected transmission wavelength so long as the selected etalon transmission line remains at the selected wavelength.
  • the laser, laser wavelength detector, etalon and etalon wavelength detector are all positioned along a common axis, with the laser wavelength detector inte ⁇ osed between the laser and the etalon.
  • the laser wavelength detector is offset slightly from the common axis to permit most of the laser beam to pass directly to the etalon while capturing a smaller portion of the beam for use in detecting the wavelength of the laser.
  • the laser wavelength detector is configured as an annular detector permitting a center portion of the laser beam to pass directly to the etalon while outer portions of the beam are captured by the detector. In either case, the laser wavelength detector preferably captures 30% of the beam of the laser, permitting the etalon to capture the remaining 70%. Also, preferably, the laser wavelength detector is positioned at an angle of 5 to 10 degrees to the initial linear portion of the optical path of the laser such that any light reflected from the detector is not reflected directly back into the laser. In alternative embodiment, the laser wavelength detector is mounted directly on-axis with the laser beam, but the etalon and etalon detector are positioned off-axis.
  • a mirror is mounted between the laser and the laser wavelength detector for reflecting about 70% of the laser beam to the etalon, permitting the remaining 30% to pass directly to the laser wavelength detector.
  • the laser wavelength detector receives a portion of the laser beam directly from the laser, such that phase characteristics of the laser beam are not affected by intervening reflective or transmissive optical components.
  • a system and method for filtering chi ⁇ from optical signals transmitted by a laser through an optic fiber.
  • the system includes a laser for providing an output beam, with the laser controlled to transmit at a frequency selected from a group of channel frequencies having fixed wavelength spacing, an optic fiber for transmitting the output beam, and an etalon mounted between the laser and the optic fiber.
  • the etalon has a free spectral range (FSR) equal to the fixed wavelength spacing and is tuned so that fringes produced by the etalon are aligned with the transmission channels.
  • the etalon provides has a finesse so that the width of the fringe is approximately 1 GHz.
  • the laser is configured to transmit signals at any one of eighty equally-spaced C-Band ITU channel frequencies.
  • the etalon has an FSR of about 50 and a finesse of about 25-50. With these parameters, the spacing of the etalon fringes exactly matches the spacing of the ITU channels.
  • the etalon is tuned to align its fringes with the C-band ITU channels. Thus, regardless of the particular ITU channel employed to transmit signals, the etalon filters chi ⁇ from the transmitted signals. For denser ITU channel grids, an etalon with a smaller FSR can be used to provide more closely spaced fringes to filter chi ⁇ from any of the more densely spaced ITU channels.
  • FIG. 1 illustrates a DWDM configured in accordance with the prior art.
  • FIG. 2 illustrates a DWDM along with a wavelength mapper provided in accordance with a first exemplary embodiment of the invention, with the wavelength mapper provided for automatically determining the transmission wavelengths of the lasers of the DWDM as a function of tuning parameters of the lasers.
  • FIG. 3 illustrates the wavelength mapper of FIG. 2.
  • FIG. 4 illustrates a method performed by the wavelength mapper of FIG. 3.
  • FIG. 5 illustrates an exemplary etalon transmission spectrum detected by the method of FIG. 4, scaled as a function of a laser voltage tuning parameter.
  • FIG. 6 illustrates an exemplary gas abso ⁇ tion spectrum detected by the method of FIG.4, also scaled as a function of the laser voltage tuning parameter.
  • FIG.7 illustrates an input reference gas abso ⁇ tion spectrum.
  • FIG. 8 illustrates an individual DWDM laser along with a wavelength locker provided in accordance with a second exemplary embodiment of the invention, with the wavelength locker provided for automatically locking the wavelength of the laser to a selected ITU transmission wavelength by using a temperature-controlled etalon in a feedback loop.
  • FIG. 9 illustrates a general method for locking the transmission wavelength of a WTL of a DWDM to fixed wavelength using a wavelength locker such as the device of FIG. 8.
  • FIG. 10 graphically illustrates a laser transmission beam and a set of etalon transmission lines adjusted using the method of FIG.9.
  • FIG. 11 illustrates a first exemplary embodiment of a WTL circuit card for use in a DWDM wherein the card has a laser mounted within a butterfly package and a wavelength locker having a temperature-controlled etalon for use in locking the laser to an ITU channel wavelength using the method of FIG. 9.
  • FIG. 12 is a perspective view of the temperature-controlled etalon of the wavelength locker of FIG. 11.
  • FIG. 13 illustrates a second exemplary embodiment of the WTL circuit card wherein, in addition to the wavelength locker, the card also has a wavelength mapper with a gas abso ⁇ tion chamber for use in mapping the laser to determine absolute transmission wavelengths of the laser prior to wavelength locking.
  • FIG. 14 illustrates a third exemplary embodiment of the WTL circuit card wherein etalon of the wavelength locker is mounted within the gas abso ⁇ tion chamber of the wavelength mapper.
  • FIG. 15 illustrates a fourth exemplary embodiment of the WTL circuit card wherein an etalon chamber is mounted within the butterfly package along with the laser for use in wavelength locking the laser.
  • FIG. 16 illustrates a fifth exemplary embodiment of the WTL circuit card wherein a combined etalon gas abso ⁇ tion chamber is mounted within the butterfly package along with the laser for use in wavelength mapping and wavelength locking the laser.
  • FIG. 17 illustrates a method for tuning an etalon to adjust the spacing and alignment of its FSR to match a predetermined ITU Grid Line spacing.
  • FIG. 18 illustrates an etalon calibration unit for use in accordance with the method enumerated in FIG. 17.
  • FIG. 19 illustrates a sixth exemplary embodiment of the WTL circuit card wherein a pre-tuned etalon module is mounted within the butterfly package along with the laser for use in wavelength locking the laser.
  • FIG. 20 illustrates an in-line arrangement of optical components for use in a wavelength locker, configured in accordance with yet another embodiment of the invention wherein a reference laser wavelength detector is slightly off-set from an optical axis of the laser.
  • FIG. 21 illustrates the off-set reference laser wavelength detector of FIG. 20, for an example wherein the detector is round.
  • FIG. 22 illustrates the reference laser wavelength detector of FIG. 20, for an example wherein the detector is not off-set from the axis of the laser beam but is instead annular.
  • FIG. 23 is a graph illustrating signals received by a reference laser wavelength detector and an etalon detector for a non-in-line arrangement wherein a beam splitter is inte ⁇ osed between the laser and the detectors (as in FIG. 11).
  • FIG. 24 is a graph illustrating signals received by the reference laser wavelength detector and etalon detector for the in-line arrangement of FIG. 20 wherein no beam splitter is inte ⁇ osed between the laser and the detector.
  • FIG. 25 illustrates the in-line arrangement of optical components of FIG. 20 wherein the laser wavelength detector and the etalon are both mounted at an angle to reduce reflections.
  • FIG. 26 illustrates an exemplary packaging arrangement for the optical components of FIG.20 employing a pair of parallel substrates.
  • FIG. 27 illustrates another exemplary packaging arrangement for the optical components of FIG.20 employing a single substrate.
  • FIG. 28 illustrates an off-axis arrangement of optical components for use in a wavelength locker, wherein the etalon is mounted pe ⁇ endicular to the optical axis of the laser.
  • FIG. 29 illustrates another off-axis arrangement of optical components for use in a wavelength locker, but wherein the laser reference detector is mounted pe ⁇ endicular to the optical axis of the laser.
  • FIG. 30 illustrates a DWDM and an etalon chi ⁇ filter configured in accordance with yet another embodiment of the invention.
  • FIG. 31 is a graph illustrating the alignment of etalon fringes and ITU channels.
  • FIG. 32 is a graph illustrating an optical signal output form a DWDM being filtered by the etalon chi ⁇ filter of FIG. 30.
  • FIG.33 illustrates internal components of the etalon chi ⁇ filter of FIG. 30.
  • FIG. 2 illustrates a DWDM 200 having forty individual WTLs 202 for transmitting optical signals on forty ITU C-band channels via a single optic fiber (not shown).
  • an optic fiber output from a selected WTL is connected via a fiber optic line 203 to the input of wavelength mapper 204 (which may be either integrated into a fixed machine or in a hand-held, portable unit) configured for automatically determining the transmission wavelength of the WTL as a function of WTL tuning parameters, such as a WTL control voltage or current, output from the wavelength mapper to the selected WTL of DWDM via a control line 205.
  • wavelength mapper 204 which may be either integrated into a fixed machine or in a hand-held, portable unit
  • WTL tuning parameters such as a WTL control voltage or current
  • each individual WTL of the DWDM must be precisely tuned to a single ITU transmission channel wavelength.
  • a separate voltage level is associated with each ITU wavelength.
  • the wavelength mapper operates to determine the resulting transmission wavelength for each WTL for values of the control voltage throughout an entire voltage tuning range. This process is performed sequentially for each of the forty WTLs to generate a separate wavelength vs. voltage map for each WTL.
  • any particular WTL can be tuned to any selected transmission wavelength merely by accessing the corresponding wavelength vs. voltage map to determine the appropriate control voltage.
  • the WTLs are set to selected ITU C-band, S-band, or L-band channels, but can be set to any selected wavelength. Wavelength mapping is performed when a new WTL laser is fabricated and its tuning parameters must be determined, and when an installed WTL must be accurately tuned to another ITU channel in the field by field service personnel.
  • FIG. 3 illustrates pertinent internal components of wavelength mapper 204.
  • the wavelength mapper receives an input optical beam from one of the WTLs of the DWDM (FIG. 2) via optic fiber 20.
  • the input beam is collimated using a collimator 207 then split using a splitter 208, with one portion of the beam being routed through a gas cell 210 and another portion being routed through an etalon 212.
  • the gas cell contains gas having a known abso ⁇ tion spectrum with numerous abso ⁇ tion lines in the optical bandwidth in which the laser is to be tuned.
  • acetylene is appropriate (H 13 C N is also appropriate for C-bands), with carbon dioxide being suitable for the L-band.
  • the etalon is configured to provide numerous transmission maxima within the optical bandwidth in which the laser is to be tuned.
  • the etalon as with all etalons, provides transmission lines (or fringe peaks) equally spaced in terms of wavenumbers. (A wavenumber is 10,000 / (wavelength in microns) and thereby can easily be converted to wavelength or frequency).
  • the etalon is preferably configured to provide at least five hundred transmission peaks in the C-band.
  • a first optical detector 214 detects a beam emergent from the gas cell and a second optical detector 216 detects a beam emergent from the etalon.
  • Signals detected by the detectors are routed into a microcontroller 218 for processing therein.
  • the microcontroller is also connected to the DWDM via control line 205 to control the selected WTL of the DWDM to scan through the entire ITU C-band.
  • the microcontroller varies the voltage or current input to the WTL throughout an entire input range to thereby vary the transmission wavelength of the WTL throughout the entire ITU C-band.
  • the two optical detectors both receive an entire spectrum of optical signals covering the entire ITU C-band.
  • the detector coupled to the etalon detects an etalon spectrum having etalon transmission lines therein.
  • the detector coupled to the gas cell detects a gas abso ⁇ tion spectrum having gas abso ⁇ tion lines therein.
  • the microcontroller also inputs a reference gas abso ⁇ tion spectrum for the gas contained within the gas cell wherein the reference abso ⁇ tion spectrum specifies the absolute wavenumber, wavelength or frequency for each of the abso ⁇ tion lines of the gas.
  • the microcontroller processes the detected etalon and gas abso ⁇ tion spectra in combination with the reference gas spectrum to determine the transmission wavelengths of the WTL as a function of the voltage or current tuning parameter applied to the WTL to thereby map the wavelengths of the WTL.
  • the wavelength map is stored for subsequent use in setting the WTL to transmit at any selected wavelength, such as at one of the ITU C-band channels.
  • the wavelength mapper routes an output beam of the laser through the etalon and through the gas call while tuning the laser through a complete range of tuning parameters to generate an etalon transmission spectrum and gas abso ⁇ tion spectrum.
  • the wavelength mapper incrementally increases the voltage from 0.0 to 40.0 volts by voltage increments of .0000610352 volts to generate etalon and gas abso ⁇ tion spectra each with 65536 data points.
  • the etalon and gas abso ⁇ tion spectra are detected at step 306 and stored in separate data arrays by the wavelength mapper.
  • a section of an exemplary etalon spectrum ' 302 for an etalon having a peak spacing of about 6.6 gigahertz (GHz) is shown in FIG. 5.
  • GHz gigahertz
  • an etalon with a peak spacing of about 8 GHz is used.
  • a section of an exemplary gas abso ⁇ tion spectrum 304 for acetylene is shown in FIG. 6. Both spectra, are scaled by voltage.
  • the wavelength mapper also stores the corresponding data point number in a data array.
  • the detected etalon and gas abso ⁇ tion spectra are both recorded as functions of voltage, not wavelength or frequency, which is as yet unknown.
  • the wavelength mapper then processes the detected etalon spectrum at step 308 to identify and locate transmission peaks therein.
  • the peaks are located by determining first and second derivatives of the etalon spectrum as a function of data point and by applying polynomial fitting in the local peak areas in accordance with conventional techniques. The location of each peak is specified by its corresponding fractional data point number. Note that the peaks are not equally spaced in terms of the data points. Rather, the peaks are generally non-linearly distributed among the data points.
  • the wavelength mapper sequentially assigns relative wavenumbers to each of the transmission peaks beginning with 1 and proceeding to the last detected peak. In the example of FIG.
  • the relative wavenumbers generated by this process are stored in the etalon spectrum data array at the fractional data point corresponding to the voltage peak, and inte ⁇ olated to the integer point numbers surrounding the peak. For example, if the 403rd transmission peak is found at data point 50788.56 out of the 65536 data points, then relative wavenumber 403 is assigned to fractional data point 50788.56. Relative wavenumbers for integer data points 50788 and 50789 are obtained by inte ⁇ olation and stored in the etalon data array.
  • relative wavenumbers 404 is stored in association with fractional data point 50823.17.
  • Fractional relative wavenumbers for the adjacent integer points 50823 and 50824 are assigned by inte ⁇ olation.
  • the relative wavenumbers can be assigned to the transmission peaks of the etalon spectrum sequentially because the peaks are generated by an optical etalon which, by virtue of its optical properties, produces peaks substantially equally spaced in wavenumber.
  • the peaks are not equally spaced as a function of the data points or as a function of laser input voltage, the peaks are nevertheless equally spaced as a function of relative wavenumber, and sequential wavenumbers can be reliably assigned.
  • the wavenumbers are referred to herein as relative wavenumbers because the absolute wavenumber (and hence the absolute wavelength or wavelength) is not yet known.
  • step 308 relative wavenumbers have been assigned only to those integer data points in the etalon spectrum array that correspond to the closest etalon transmission peak.
  • data point 50789 may be assigned a relative wavenumber of 6471.5600; data point 50790 may be assigned a relative wavenumber of 6471.5625; and so on.
  • inte ⁇ olation is preformed to assign fractional relative wavenumbers to each remaining value in the etalon spectrum data array.
  • the fractional wavenumbers are not necessarily evenly distributed between integer wavenumbers. Rather, as a result of the inte ⁇ olation, the fractional wavenumbers may be assigned non-linearly.
  • each integer data point of the etalon array has a relative wavenumber associated therewith. The relative wavenumbers are stored along with the corresponding voltage values in the etalon spectrum data array to thereby provide a relative wavenumber for each data point.
  • the relative wavenumbers generated for each data point of the etalon array are used to re-scale the gas spectrum data array.
  • the relative wavenumber of each data point of the etalon spectrum array is assigned to the corresponding data point of the detected gas abso ⁇ tion spectrum array.
  • a relative wavenumber scale exists both for the etalon transmission spectrum and the gas abso ⁇ tion spectrum.
  • the relative wavenumber scale is not linear because of the non-linear tuning properties of the laser.
  • the wavelength mapper inputs a reference gas abso ⁇ tion intensity spectrum for the gas of the gas cell, wherein the reference spectrum is scaled according to absolute wavenumber, rather than relative wavenumber.
  • FIG. 7 illustrates a portion of an exemplary reference gas intensity spectrum 322 for acetylene. This spectrum is generated synthetically using the know frequencies and intensities of the reference gas, which are known to high accuracy through published laboratory measurements and verification by the National Institute of Standards and Technology (NIST).
  • the reference spectrum is input as a data array of equal size to the modified gas abso ⁇ tion data array, e.g. 65536 data points.
  • the wavelength mapper autocorrelates the intensity pattern of the modified detected gas abso ⁇ tion spectrum, which is a function of relative wavenumber, with the intensity pattern of the input reference spectrum, which is a function of absolute wavenumber, to determine any offset therebetween.
  • An appropriate autocorrelation technique, modified as needed, may be found in "Correlation-based Technique for Automated Tunable Diode Laser Scan Stabilization", Randy May, Rev. Scz. Instrum. 63 (5), May 1992.
  • the etalon transmission peak spacing (the etalon "free spectral range", or FSR) is more precisely determined from the known gas spectrum line positions, and the wavenumber mapping process is repeated to improve accuracy.
  • the wavelength mapper stores the modified detected gas intensity spectrum generated at step 312 and the reference gas intensity spectrum input at step 318.
  • the two spectra are similar but are offset from one another.
  • autocorrelation is performed to determine the shift of the spectra with respect to one another until the spectra are aligned, thus permitting the amount of shift or offset to be determined.
  • the offset represents the offset between the relative wavenumbers and their corresponding absolute wavenumbers.
  • the relative wavenumbers of the various arrays are adjusted using the offset to convert the relative wavenumbers to absolute wavenumbers. Once the absolute wavenumbers are known, an absolute wavelength or frequency is assigned at step 326 to each of the control voltage values stored in the etalon spectrum array.
  • any laser can be used with the invention so long as an appropriate gas abso ⁇ tion reference is available and the laser is tunable via a set of input tuning parameters, such as various combinations of input analog or digital signals.
  • the laser is simply scanned through a range of tuning parameters sufficient to enable determination of the absolute output wavelength of the laser as a function of any combination of the tuning parameters.
  • the resulting wavelength vs. tuning parameters map is therefore a multi-dimensional map having a unique wavelength for each combination of tuning parameters.
  • first tuning parameter For some lasers tunable with two parameters, it may be sufficient to set a first tuning parameter to a single constant value while varying a second tuning parameter, then set the second tuning parameter to a single constant value while varying the first tuning parameter. In other cases, it may be necessary to tune the laser through every possible combination of the two parameters to account for non-linear effects. For any given laser, routine experimentation can be performed to determine the specific manner with which the tuning parameters are to be varied.
  • wavelength mapper that operates to generate a map of wavelength vs. tuning parameters for a laser, particularly one in a DWDM.
  • a wavelength locker is described which automatically sets the laser to a selected wavelength by using a wavelength map, and then locks the laser wavelength using an etalon transmission peak that has been temperature or voltage tuned to the selected ITU channel.
  • FIG. 8 illustrates pertinent internal components of a first example of a wavelength locker 400 for use with a WTL 401.
  • the wavelength locker receives the output from WTL
  • the laser beam input to the wavelength locker is ne ,__ n _,
  • a second splitter 404 splits the beam in two with one portion routed through a gas cell 408 and the other portion reflected from a mirror 409 and then routed through an etalon 410.
  • Separate detectors 416 and 418 record the transmission spectra of the gas cell and the etalon as with the wavelength mapper.
  • a microcontroller 420 varies control parameters input to the WTL along a control line 422 to generate a spectrum having both etalon transmission peaks and gas abso ⁇ tion lines. The recorded spectra are fed into the microcontroller for processing to generate a wavelength vs. WTL tuning parameter map using the techniques described above. Once the wavelength vs.
  • the microcontroller controls looks up the WTL tuning parameter corresponding to a selected wavelength, such as an ITU channel wavelength, then applies the WTL tuning parameter along control signal along line 422 to tune the WTL to the selected transmission wavelength. Additionally, the microcontroller adjusts a temperature control set point to the etalon via a control line 424 to vary the wavelengths of the transmission peaks of the etalon until one of the transmission peaks, as detected by detector 416, is precisely aligned with the selected output wavelength. The microcontroller then locks the output wavelength of the WTL to the selected wavelength by monitoring the etalon transmission peak that is aligned with the selected wavelength.
  • a selected wavelength such as an ITU channel wavelength
  • the micro-controller detects any drift of the laser output wavelength as detected by detector 418 and adjusts the tuning parameters applied to the WTL via control line 422 to compensate for the drift.
  • a negative feedback loop is provided which keeps the main output beam locked on a selected transmission channel despite possible variations in the output characteristics of the WTL.
  • gas cell 408 and etalon 410 are integrated into a single device or are provided along a common optical path with a single detector to detect the etalon and the gas abso ⁇ tion spectra simultaneously.
  • the resulting spectra has both etalon peaks and gas abso ⁇ tion lines, the etalon peaks and the gas abso ⁇ tion lines do not significantly interfere with one another and hence the wavelength mapping process performed above can be performed.
  • the etalon peaks represent about 30% changes in transmission, whereas the gas lines represent only about 1% using second harmonic detection.
  • the gas lines represent a very small perturbation to the etalon spectrum and do not interfere with the etalon wavenumber locking procedure, but are strong enough to permit the autocorrelation procedure without significant errors.
  • the general wavelength locking method of the invention is summarized in FIG. 9.
  • the general method may be performed by the wavelength locker of FIG. 8, by the wavelength lockers of FIGS. 11 - 16 to be described below, or by any other suitable device.
  • a laser such as a WTL 401 of FIG. 8 is tuned to a selected transmission wavelength.
  • the laser may be set, for example, to the absolute wavelength of one of the channels of the 40-channel ITU C-band transmission protocol.
  • Step 502 is illustrated by FIG. 10, which shows a laser beam 501 being adjusted to move its center wavelength from some initial transmission wavelength 503 to the selected ITU channel wavelength 505.
  • tuning is achieved by first performing the wavelength mapping technique described above to map the absolute transmission wavelengths of the laser as a function of tuning parameters to thereby determine the appropriate tuning parameters to apply to the laser to set the laser to the absolute wavelength of the selected transmission channel.
  • any other suitable tuning technique can be used instead to tune the laser to a selected transmission wavelength.
  • the laser begins transmitting information signals along an output optic fiber at the selected transmission wavelength.
  • the information signals may include, for example, data, audio or video signals.
  • a portion of the output beam of the laser is split off at step 504 and routed through an etalon (such as etalon 510 of FIG. 8), which splits the beam into a set of interference lines or fringes.
  • a microcontroller connected to the etalon adjusts the etalon to align one of the transmission lines with the transmission wavelength of the laser.
  • Step 506 is illustrated in FIG. 10, which shows a set of etalon transmission lines or fringes 507 being adjusted until the center wavelength 509 of one of the etalon transmission peaks is aligned with the wavelength of the laser at the selected ITU channel wavelength 505.
  • the portion of the beam split off from the main output beam of the laser can be split again, as shown in FIG. 8, into two separate beams, one passing through the etalon to a first detector and the other passing to a second detector, either directly or through a gas abso ⁇ tion chamber.
  • the microcontroller receives signals from both detectors and adjusts the temperature of the etalon until a transmission peak of the etalon is obtained with the desired ITU channel (wavelength). This technique suffices to place the etalon transmission line at the absolute wavelength of the selected ITU transmission channel since the laser has already been set, at step 500, to transmit at the selected absolute wavelength and insufficient time has elapsed for the wavelength of the laser to drift from that absolute wavelength.
  • both the laser and the etalon have been adjusted to emit beams at the ITU channel wavelength and therefore both the first and second detectors receive signals at the same wavelength.
  • any wavelength drift between the beams detected by the first and second detectors is identified and the laser is automatically adjusted by the microcontroller to compensate for the drift.
  • the tuning parameters applied to the laser are adjusted as needed to lengthen or shorten the transmission wavelength of the laser to keep the transmission wavelength of the laser, as detected by the second detector, aligned with the transmission line of the etalon, as detected by the first detector. In this manner, the laser is kept locked on the absolute wavelength of the selected ITU channel. Routine wavelength locking feedback techniques may be employed to ensure reliable wavelength locking.
  • any drift in the temperature of the etalon is detected and the temperature of the etalon is automatically adjusted by the microcontroller to compensate for the drift.
  • Temperature detectors are mounted to the etalon and routine feedback techniques are employed to keep the temperature of the etalon fixed.
  • the wavelength-locking technique of FIG. 9 is effective, in part, because the etalon is more stable than the laser and hence it can be assumed that any short-term drift is caused by a variation in the output wavelength of the laser and not by drift in the transmission wavelengths of the etalon. Eventually, the transmission lines of the etalon may begin to drift despite the precise temperature control of the etalon. Hence, periodically, the system is recalibrated at step 510 by using the wavelength mapper to again tune the laser to the absolute wavelength of the selected transmission channel.
  • wavelength • mapping employs a gas abso ⁇ tion chamber providing abso ⁇ tion lines at known absolute wavelengths that remain fixed despite changes in temperature, pressure etc. After re- calibration, the steps of FIG.
  • Recalibration may be performed, for example, once every week or month depending upon the needs of the specific system. In this regard, routine experiments are performed prior to installation of the system to determine the stability of the transmission lines of the etalon and then the system is re-calibrated as often as needed to ensure that no significant drift occurs in the etalon.
  • the system may be implemented with both the wavelength locker and wavelength mapper such that recalibration can be performed as frequently as needed.
  • an external mapper such as the wavelength mapper described above is employed.
  • FIG. 11 illustrates a WTL circuit board card 600 for insertion into a DWDM chassis.
  • a WTL card 600 typically, one card is provided per transmission channel of the DWDM.
  • a forty channel DWDM includes forty of the circuit cards, mounted in parallel.
  • WTL card 600 has a transmission laser mounted within a conventional butterfly package 602 for transmitting a modulated output beam via an output optic fiber 604.
  • the output beam of the fiber 604 is merged with beams from other WTL cards of the DWDM via a multiplexer for eventual transmission via a single optic fiber to a remote DWDM receiver.
  • Digital signals to be transmitted via the output beam and control signals specifying the transmission wavelength to be used are received by a WTL controller 606, which tunes the laser of butterfly package 602 to the transmission wavelength and then controls a signal modulator of the butterfly package to modulate the signal on the output beam.
  • the WTL employs a wavelength map stored in an internal memory (not separately shown), which specifies the tuning parameters (i.e. the control voltage) to apply to the laser to achieve the selected transmission wavelength.
  • the wavelength map is initially generated by a portable wavelength mapper of the type described above and transferred to the WTL controller memory.
  • the WTL controller accesses the stored wavelength map to lookup the tuning parameters based on the input transmission wavelength.
  • the WTL controller directly receives the appropriate tuning parameters via the input control signal and hence need not store the wavelength map.
  • the butterfly package and its internal components can be entirely conventional and will not be described in detail herein.
  • the butterfly package is shown in block diagram form with a single input control line from the WTL controller and a single input power line from a power supply 608.
  • the butterfly package has numerous pins for receiving control signals from the controller and power from the power supply.
  • the power supply also supplies power to the two microcontrollers of the circuit card.
  • a portion of the output beam from the laser is split from optic fiber 604 by a splitter 610 onto another optic fiber 611, then split again by splitter 612 onto optic fibers 614 and 616.
  • Fiber 616 is coupled to a collimator 618, which directs a collimated beam through a temperature-controlled etalon 620 mounted within a sealed chamber 622. The etalon splits the beam into a set of transmission lines or fringes that are detected by a detector 624.
  • Fiber 618 is coupled directly to a second detector 626.
  • a wavelength-locking controller 628 receives signals from the two detectors and, using the method described above, adjusts the etalon to align one of the transmission lines to have the same wavelength as the output beam, then controls the laser (via controller 606) in a feedback loop to lock the laser to the etalon line.
  • the wavelength- locking controller controls an amount of current applied to resistive heating elements coupled to the etalon so as to adjust the temperature of the etalon and thereby adjust its length and index of refraction and hence adjust the wavelength maxima where transmission lines or fringes are generated by the etalon.
  • the wavelength-locking controller thereafter keeps the temperature of the etalon fixed so that the wavelength of the transmission line of the etalon does not drift.
  • the wavelength-locking controller transmits control signals to the WTL controller, which cause the WTL controller to increase or decrease the control voltage applied to the laser of the butterfly package so as to adjust the wavelength of the output beam of the laser.
  • the control signals provided by the wavelength-locking controller override those previously received by the WTL controller.
  • the components of the circuit card is recalibrated using the portable wavelength mapper to provide a new wavelength map for storage within the WTL controller or to provide new control signals so that any drift in the etalon can be compensated.
  • Etalon 620 is shown in FIG. 12.
  • the etalon is a rectangular block formed of silicon and having an optical axis length of about 5.36 mm and a cross-section of about 3 mm by 3 mm and anti-reflection coatings on both faces providing up to 90% reflection at the desired wavelength range.
  • the etalon thereby accommodates a beam width (shown in phantom lines and identified by reference numeral 630) of up to 3 mm.
  • the laser beam to be passed through the etalon be collimated to have a width of about 1 mm such that, if the side edges of etalon are not precisely formed, edges of the beam will not be affected.
  • the etalon has finesse in the range of 15 to 30 and preferably about 20 and provides a free spectral range in the range of 6 to 12 and preferably about 8GHz.
  • Finesse relates to the precision of the individual transmission lines 507 (FIG. 10) generated by the etalon and depends primarily on the reflection coatings, and beam quality. If the finesse is too poor then it is difficult to achieve precise wavelength locking.
  • Free spectral range relates to the wavelength spacing between adjacent transmission lines and depends primarily on the length of the etalon and its index of refraction. If the free spectral range is too great, then it may be necessary to heat or cool the etalon substantially to adjust one of the transmission lines until it is aligned with the selected transmission wavelength and hence power consumption is not minimized.
  • the etalon may need to be heated by an amount that will place the temperature of the etalon outside of an acceptable operational temperature range of the entire device, such as above a mandated maximum temperature of 75 degrees C for the entire circuit card. If the free spectral range is too small then there is a risk that the wavelength locker may lock the transmission wavelength of the laser to the wrong etalon transmission line, i.e. frequency hopping may occur.
  • the finesse of 20 and the free spectral range of 100GHz for the 40 channel protocol; 50GHz for the 80 channel protocol; 25GHz for the 160 channel protocol; 12.5GHz for the 320 channel protocol; and 6.25GHz for the 640 channel protocol are preferred parameters because, with these parameters, the etalon can be used to lock the wavelength of the laser to within a precision of about 0.2 GHz with minimal risk of frequency hopping and with minimal power consumption while permitting the etalon to operate at over 75 degrees C.
  • the wavelength locker can be used with all ITU transmission protocols from 40 channels up to 1000 channels or more and can be used with all ITU transmission rates from 2.5 GHz to 100 GHz.
  • the etalon may also be configured to have other specific combinations of parameters depending upon the needs of particular systems.
  • the etalon can alternatively be made of other materials such as sapphire or indium phosphide, with the etalon configured as needed to achieve a desired finesse and free spectral range.
  • resistive heating elements 632 and 634 made of nickel chromium are vapor deposited or mounted on opposing sides of the etalon.
  • Each resistive heating element has a pair of gold contacts 636 on opposing ends thereof for coupling to electrical leads (not shown) from the wavelength-locking controller 628 (FIG. 11).
  • numerous heating techniques may be inco ⁇ orated into the current invention such that devices provided heating are coupled to the etalon.
  • the etalon is selectively heated by the wavelength-locking controller by applying current through the resistive leads by an amount sufficient to expand or contract the optical axis of the etalon to change its index of refraction and to align one of the transmission lines of the etalon with the selected ITU channel.
  • any C-band ITU channel can be accommodated by adjusting the temperature of the etalon in the range of approximately 72 ⁇ 2 degrees C.
  • No TE cooler or other cooling components are required. Rather, cooling is achieved by allowing the etalon to slowly lose heat to the ambient environment.
  • a reflective micro-electrical mechanical system (MEMS) membrane may be mounted to an end of the etalon and coupled to the wavelength-locking controller to permit the controller to adjust an optical reflecting path of the etalon to thereby adjust the wavelengths of the transmission lines of the etalon.
  • MEMS micro-electrical mechanical system
  • the etalon is mounted within an airtight chamber (622 of FIG. 11) and is affixed to a base of the chamber by a bonding material 638 having insulating microspheres.
  • the chamber may be filled with air or any other gas that provides a relatively low thermal conductivity and is substantially non-reactive and therefore does not corrode the etalon and its components.
  • Another suitable gas is krypton gas. Air is preferred in the embodiment of FIG. 12 as it provides adequate thermal conductivity and is inexpensive to use.
  • heat loss via conduction into the base of the chamber is minimized. This is particularly important because heat loss to the chamber base could result in a temperature gradient within the etalon, i.e. the bottom of the etalon could be cooler that the top. Any temperature gradient within the etalon decreases the finesse of the etalon and thereby can make it more difficult to precisely align a transmission line of the etalon with a selected ITU channel.
  • a preferred bonding material is described in United States Patent 4,888,634 to Lai, et al., issued December 19, 1989 and entitled "High Thermal Resistance Bonding Material And Semiconductor Structures Using Same", which is inco ⁇ orated by reference herein.
  • the bonding material of United States Patent 4,888,634 includes a binder and a high thermal resistance material in the form of sieved particles of generally uniform size.
  • the binder is silicone, epoxy or polyimide and the high thermal resistance material is formed of glass microspheres, glass beads, ceramic microspheres, or ceramic beads.
  • a uniform temperature in the etalon is also facilitated by ensuring that the resistive heating elements cover a substantial portion of the opposing sides of the etalon.
  • the heating elements are offset slightly from top and bottom edges of the etalon to ensure proper and uniform contact with the etalon even if the edges of the etalon are not precisely formed.
  • FIGS. 11 - 12 illustrates one exemplary embodiment of the WTL circuit card of the invention.
  • FIGS. 13 ⁇ 16 The embodiments of FIGS. 13 - 16 are similar to that of FIGS. 11 and 12 and only pertinent difference will be described.
  • FIG. 13 illustrates a WTL circuit card 700 that includes both wavelength-locking components and wavelength-mapping components.
  • the wavelength-mapping components include a gas abso ⁇ tion chamber 750 containing a gas of known abso ⁇ tion characteristics such as acetylene, hydrogen cyanide or carbon dioxide.
  • the gas abso ⁇ tion chamber is mounted between optic fiber 718 and detector 726.
  • a collimator 751 is provided at the end of fiber 718 for collimating a beam received from fiber 718 and directing the beam passed through the gas abso ⁇ tion chamber. Hence, a portion of the output beam of the laser of butterfly package 702 is passed through the gas abso ⁇ tion chamber.
  • a wavelength- mapping controller 752 receives signals from both detector 726 and detector 724 and, using the wavelength-mapping techniques described above, maps the absolute transmission wavelengths of the laser by determining the laser tuning parameters associated with each absolute transmission wavelength of the laser, at least within a tuning range of interest, for storage within the WTL controller 706. Thereafter, upon receipt of a control signal specifying an ITU channel for transmission, the WTL controller looks up the tuning parameters and controls the laser to transmit signals on the ITU channel.
  • the wavelength- locking controller 728 operates to keep the laser locked on the ITU channel. Periodically, wavelength-mapping is performed to recalibrate the system. By providing wavelength- mapping components along with wavelength-locking components, re-calibration can be performed as often as desired.
  • detector 726 is used to detect the gas abso ⁇ tion spectrum for wavelength-mapping pu ⁇ oses and also to detect the laser beam for wavelength-locking pu ⁇ oses.
  • wavelength mapping the wavelength of the laser is tuned through its full range of tuning parameters to generate the gas abso ⁇ tion spectrum.
  • the wavelength of the laser remains substantially fixed, subject only to minor drift, which is compensated for by the wavelength-locking components.
  • the gas of the gas abso ⁇ tion chamber may absorb a portion of the light of the laser beam at the wavelength the laser is being locked to. This is not typically a problem because the gas only absorbs a portion of the beam, leaving a sufficient portion for detection to permit wavelength locking.
  • three detectors may be provided: one for the etalon, one for the gas abso ⁇ tion chamber, and one for directly receiving a portion of the output beam of the laser, so that wavelength locking may be performed without using the beam passed through the gas abso ⁇ tion chamber.
  • FIG. 14 illustrates another WTL circuit card 800 having both wavelength locking components and wavelength mapping components, but wherein an etalon 820 is mounted within a gas abso ⁇ tion chamber 850 such that separate chambers need not be provided for the etalon and the abso ⁇ tion chamber.
  • the gas abso ⁇ tion chamber contains acetylene, with the acetylene acting both as an abso ⁇ tive gas for wavelength-mapping pu ⁇ oses and as an insulating gas for the pu ⁇ oses of reducing heat loss from the etalon.
  • the WTL circuit card is operated in the same manner as the circuit card of FIG. 13 to provide both wavelength- mapping and wavelength-locking. By mounting the etalon within the gas abso ⁇ tion chamber, overall device size can be reduced.
  • FIG. 15 illustrates a WTL circuit card 900 having wavelength locking components wherein the etalon 920 and its sealed chamber 922 are mounted inside the butterfly package 902.
  • Conventional butterfly packages typically have sufficient unoccupied interior volume to accommodate an etalon of the size described above. If needed, the butterfly package can be made larger to accommodate the etalon chamber. If so, the conventional pin out arrangement of the butterfly package is preferably retained so that the modified butterfly package can be used in conventional WTL circuit cards without further circuit card modification. Also, depending upon the specific implementation, it may be possible to mount the etalon directly in the butterfly package without an etalon chamber.
  • an etalon chamber to enclose the etalon, however, is preferred as it permits more precise control of the temperature of the etalon and reduces the risk that heat from the etalon might affect the functioning of the laser. In any case, by mounting the etalon inside the butterfly package, overall device size is further reduced.
  • FIG. 16 illustrates another WTL circuit card 1000 wherein an etalon chamber 1022 is mounted within the butterfly package 1002, but wherein the etalon chamber also contains acetylene so as to function as a gas abso ⁇ tion chamber as well.
  • the WTL circuit card is operated in the same manner as the circuit card of FIG. 14 to provide both wavelength- mapping and wavelength-locking.
  • FIG. 17 a technique that provides for a single calibration for a laser package is summarized in FIG. 17.
  • the general method may be performed by an etalon calibration unit, such as the one illustrated in FIG. 18, to be described below, or by any other suitable device.
  • the etalon to be calibrated in the calibration unit is later integrated into a laser package, such as the one illustrated in FIG. 19.
  • a module containing an etalon (such as etalon 620 of FIG. 12) and a detector is mounted within an etalon calibration unit FIG. 18.
  • the etalon calibration unit 1200 includes a calibration laser 1204, a gas cell 1212 (or any other suitable device for comparing the transmission wavelengths of the calibration laser detected by the detector on the module with a known wavelength spacing), and a microcontroller 1216 coupled to leads on the module.
  • the calibration laser transmits a beam through the etalon and through the gas cell while varying the wavelength of the laser beam.
  • a resulting etalon transmission line spectrum and a resulting gas abso ⁇ tion line spectrum are detected for processing by the microcontroller.
  • the microcontroller compares the spacing between adjacent transmission peaks of the etalon spectrum with the spacing between known abso ⁇ tion lines of the gas abso ⁇ tion spectrum to determine the absolute wavelength spacing of the transmission peaks.
  • the spacing is compared to a desired predetermined ITU grid line spacing (such as the 40 channel C-band spacing), and if the spacing does not closely match the desired grid line spacing, the microcontroller applies heat to the etalon at step 1112 to adjust the temperature of the etalon until the transmission peak spacing approximately matches the desired ITU grid line spacing.
  • step 1116 the etalon is either discarded or is manually tilted within its package to approximate the desired spacing and steps 1100 - 1112 are repeated.
  • Manual tilting of the etalon at step 1116 typically requires that the etalon be removed from the etalon package by severing whatever adhesive or other bonding material was used to mount the etalon within the etalon package and then re-mounting the etalon at a slightly different angle using additional adhesives or bonding materials.
  • the amount of heat applied to the etalon is slightly adjusted to shift the etalon transmission peaks until they align with the nearest ITU grid line. Note that the slight adjustment of the temperature is not sufficient to change the spacing of the etalon peaks beyond the desired tolerances, only the wavelengths of the peaks. (Other suitable tuning techniques can be used instead to tune the laser to a selected transmission wavelength). The resulting temperature of the etalon is recorded as the "etalon set point temperature.” Then, at step 1124 the etalon module is removed from the calibration package and is eventually mounted within a laser such as a
  • the microcontroller of the WTL is then programmed with the etalon set point temperature to permit the etalon to be quickly adjusted to align the transmission peaks of the etalon with selected ITU lines. Thereafter, if needed, the calibration of the etalon can be verified by using the wavelength mapper described above.
  • the DWDM employs a 160 channel protocol and the desired spacing between ITU grid lines is 25 GHz with an allowable variation in the etalon peak spacing of ⁇ 0.008 GHz, although each individual etalon peak may be within ⁇ 0.625
  • a 1.71999 mm at 50 °C thick silicon etalon 1201 mounted on a module 1203 iss placed within the etalon calibration unit 1200. If the initial spacing of the etalon peaks detected at step 1108 is not equal to 25 GHz ⁇ 0.008 GHz, then the temperature of the etalon is adjusted (usually ⁇ 20 °C which adjusts the FSR by ⁇ 0.025 GHz) until the peaks are spaced at 25 GHz ⁇ 0.008 GHz.
  • the microcontroller detects that the FSR falls outside of the range of 25 GHz ⁇ 0.025 GHz, then the etalon is discarded or is manually tilted by approximately 3 degrees or less to allow the FSR to align with the ITU grid lines. Fine tuning of the temperature of the etalon is adjusted slightly (usually ⁇ 0.5 °C) so that the etalon transmission peaks line up with the nearest ITU grid lines. For a 50 GHz spacing, a 2.066 mm at 50 °C thick fused silica etalon may be utilized.
  • This arrangement provides for more rapid switching by the laser between ITU channels as every etalon transmission peak remains associated with one of the ITU channels and the tuning parameters of the laser need only be accordingly adjusted. Furthermore, periodic recalibration of the laser is not required if the etalon is maintained at the predetermined temperature and the laser does not exhibit large amounts of hysterisis.
  • FIG. 19 illustrates a WTL circuit card 1300 wherein an etalon 1201 is mounted within a module 1203 separate from a laser 1304 that is mounted within a butterfly package 1308. Unlike the previously described WTL circuit card embodiments, no gas cell is required within the WTL. Also, rather than diverting light from the front laser facet, the etalon is mounted opposite the main output of the laser and receives light from the rear laser facet. A wavelength-locking controller of the WTL is programmed with the etalon set point temperature and then WTL is operated in the same manner as the circuit card of FIG. 15 to provide wavelength-locking.
  • FIGS. 20 - 29 illustrate various alternative embodiments of the wavelength lockers of FIG. 11 and FIG. 15 that provide wavelength locking but not wavelength mapping, i.e. the wavelength lockers lack a reference gas chamber for use in mapping the complete set of tuning parameters of the laser but include an etalon for use in locking the laser to a selected transmission wavelength once the appropriate tuning parameters are known. More specifically, the various embodiments of FIGS. 20 - 29 employ an arrangement of optical components configured so as to simplify wavelength locking.
  • FIG. 20 shows pertinent portions of a wavelength locker 1400 having a WTL laser 1402 for transmitting a laser beam 1403 via a rear facet 1405 through an etalon 1404 and to an etalon fringe detector 1406.
  • a laser reference wavelength detector 1408 is inte ⁇ osed between the laser and etalon to capture a portion of the laser beam.
  • Laser reference wavelength detector 1408 is slightly offset from an optical path of the laser beam to permit most of the light emitted from the rear facet of the laser to reach the etalon.
  • the laser reference wavelength detector 1408 however captures a small portion of the light for use in detecting a reference wavelength of the laser.
  • the wavelength locker employs the method of FIG.
  • FIG. 20 shows only pertinent selected components of the wavelength locker. Other components that may be needed, such as control circuitry, heating elements, thermistors, collimators, and the like, are illustrated in subsequent figures.
  • FIG. 20 illustrates an optical arrangement wherein the various components are mounted substantially in-line, i.e. the components are positioned along a common axis so as to provide a compact arrangement permitting installation in small butterfly or DIP packages. Also, by positioning laser wavelength detector 1408 directly in the path of the laser beam, rather than off-axis, ease of wavelength locking is achieved, as will be explained in detail below.
  • Detector 1408 is preferably a round detector, as shown in FIG. 21, sized and positioned to capture about 30% of the light of beam 1403, permitting 70% to enter the etalon. In an alternative arrangement, shown in FIG.
  • the detector is aligned on-axis with beam 1403 but has an annular shape sized to capture an outer perimeter portion of the beam while permitting a center portion to pass directly to the etalon. Again, preferably, the detector captures about 30% of the light. The amount of light the detector captures need not be set to exactly 30% but in general can be set to any value sufficient to capture enough light to permit the detector operate. Other appropriate values are, for example, in the range of 20 - 40%. In both arrangements, detector 1408 receives light directly from the laser and rather than via a beam splitter as in the arrangement of FIG. 11.
  • FIGS. 23 and 24 illustrate the magnitude of a laser signal as a function of wavelength as detected by a reference laser detector and an etalon detector for an off-axis arrangement (as in the arrangement of FIG. 11) and for an on-axis detector (as in the arrangement of FIG. 20).
  • the dashed line 1418 of FIG. 23 is the signal detected by the laser reference detector.
  • the solid line 1414 is the signal detected by the etalon detector, which includes various fringes.
  • a beam splitter is used to split the laser beam into two separate beams— one to the laser wavelength detector and the other to the etalon detector.
  • the beam splitter causes the amplitude of the reference signal (dashed line 1418) to vary as a function of wavelength.
  • the beam splitter also causes the amplitude of the peaks of the fringes (solid line 1414) to vary as a function of wavelength.
  • the amplitude variation in the reference signal and the etalon signal are out of phase because the beam splitter includes both transmissive and reflective components.
  • Wavelength locking is achieved by detecting the wavelength at which one side of a fringe achieves a reference magnitude equal to half of the average fringe magnitude (1422 in FIG. 24) and then adjusting the laser in a feedback loop so as to prevent the laser from drifting. This is referred to as side locking (or slope locking) and is typically easier than attempting to detect the top of the fringe. So long as the ratio of the fringe magnitude to the reference magnitude remains constant (as in FIG.24), then side locking is straightforward.
  • side locking works by continually adjusting the laser wavelength to maintain a constant lock point ratio (i.e. a constant ratio of the etalon signal divided by the reference signal).
  • a constant lock point ratio i.e. a constant ratio of the etalon signal divided by the reference signal.
  • the reference detector signal cuts across the etalon detector signal at the half-amplitude point on each etalon peak, as shown by the dots in FIG. 24.
  • the lock point ratio is exactly 1.0.
  • the lock point ratio need not to be set to 1.0.
  • the lock point ratio can be set to other values, so long as the control software of the wavelength locker is programmed with (or can automatically detect) the actual lock point ratio.
  • the lock point ratio is set to about 1.0.
  • the laser reference detector should be mounted so that 30% of the light is captured by the laser reference detector while 70% passes through the etalon to the etalon detector.
  • the half-amplitude point on the etalon peak then represents 35% of the total light, while 30% impinges on the reference detector.
  • About 5% of the light is lost in passing through the etalon.
  • the lock point ratio does not vary from fringe to fringe and hence does not vary from ITU channel to ITU channel. In the off-axis arrangement of FIG.
  • the wavelength locker should be programmed to compensate based on the degree of phase modulation.
  • the degree of phase modulation can either be pre-programmed into the control circuit of the wavelength locker or can be automatically determined by the wavelength locker. Although those skilled in the art can provide the necessary compensation programming, it is certainly preferable to configure the system to not require any such compensation.
  • FIG. 25 illustrates a system 1424, which is a slight variation of the arrangement of
  • the reference wavelength detector 1408 is mounted at an angle between 30 and 45 degrees to the optical axis to ensure that any light reflected from the surface of the detector is reflected off-axis.
  • Etalon 1404 is mounted at angle of between about one and three degrees (and preferably two degrees) to the optical axis, also to ensure that any reflected light is reflected off-axis.
  • FIGS. 26 and 27 illustrate a wavelength locker module 1500, such as a DIP or butterfly package, inco ⁇ orating an on-axis optical wavelength locking system.
  • a WTL laser (not shown) communicates with the module by a fiber 1503 which is coupled to a ferrule 1502 that is mounted to an outside surface of module.
  • the module includes an etalon 1504, an etalon fringe detector 1506 and a laser reference wavelength detector 1508 arranged substantially as described in FIG. 26.
  • a collimator 1509 is provided to initially collimate a beam received from the laser from the fiber.
  • the collimator mounts to a ferrule mounted on the inner side surface of a housing 1511 of the module.
  • Detectors 1506 and 1508 both mount directly to an upper substrate 1530 formed of FR4, which is affixed to inner side surfaces of the housing.
  • Etalon 1504 is mounted to the substrate 1532 formed of Aluminum Nitride.
  • a thermistor or other temperature sensor (i.e., a platinum resistor) 1534 is mounted on the upper substrate near to the etalon to detect the temperature of the etalon.
  • a heating pad deposited on the substrate (not shown) on a portion positioned under the etalon heats the etalon under control of a control circuit 1536 to keep the temperature of the etalon constant as detected by the thermistor.
  • the thermistor is not positioned directly on the etalon (as in the arrangement of FIG.
  • Control circuit 1536 is mounted to opposing sides of a lower substrate 1538, formed of ceramic, which is affixed to inner side surfaces of the housing.
  • FIG. 27 illustrates a slightly different arrangement 1501, wherein there is only a single substrate.
  • Control circuitry 1536 is mounted to an underside of substrate 1538, which is formed of FR4.
  • FIGS. 20 - 27 illustrate various on-axis optical arrangements, which are small in size and which ensure that the aforementioned phase modulation problems are avoided.
  • the arrangements of FIGS. 28 or 29 are preferably used.
  • the arrangements of FIGS. 28 and 29 are similar to that of FIG. 20 and only pertinent differences will be described.
  • the etalon 1604 and etalon detector 1606 are mounted off-axis.
  • a mirror 1609, or other appropriate reflective (but non-transmissive) device, is positioned so as to reflect a portion of laser beam 1603 to the etalon, while permitting remaining portions of the beam to pass directly to the laser wavelength detector 1608.
  • FIG. 28 illustrate various on-axis optical arrangements, which are small in size and which ensure that the aforementioned phase modulation problems are avoided.
  • the arrangements of FIGS. 28 or 29 are preferably used.
  • the arrangements of FIGS. 28 and 29 are similar to that of FIG. 20 and only pertinent differences will be described.
  • the etalon 1654 and etalon detector 1656 are mounted on-axis.
  • the mirror 1659 is positioned so as to reflect a portion of laser beam 1653 to the laser reference detector 1658, while permitting remain portions of the beam to pass directly to the etalon 1654.
  • the mirror is mounted so that about 30% of the beam is transmitted to laser wavelength detector and 70% to the etalon.
  • no transmissive device is used reflect light to either the laser wavelength detector or the etalon detector, and hence the aforementioned phase modulation problems are avoided.
  • the mirror used to reflect portions of the laser beam does not result in a variation in the amplitude of the fringe peaks and hence does not result in the sort of modulation problems illustrated in FIG.24.
  • wavelength mapping and locking techniques for use in ensuring that the wavelength of a laser beam output from a WTL or other laser is locked to a particular ITU grid wavelength for transmission through an optic fiber.
  • frequency chi ⁇ can affect signals transmitted along an optic fiber resulting in potentially significant distortion of the optical pulse, particularly over long haul optic fiber transmission systems. The distortion limits the maximum frequency of signal transmission modulation.
  • FIG. 30 illustrates an optical transmission system 1700 wherein an etalon chi ⁇ filter 1702 is provided for reducing or eliminating frequency chi ⁇ .
  • the etalon chi ⁇ filter is mounted along an output optic fiber 1704 of a DWDM system configured to transmit optical signals at one or more of transmission frequencies of a selected ITU channel grid.
  • the optical signals are generated using individual WTLs of a DWDM 1706, each tuned to a different ITU channel frequency, and are combined for transmission into the single optic fiber using an optical multiplexer 1708.
  • the etalon is fabricated to have a FSR exactly equal to the minimum wavelength spacing of the selected ITU grid.
  • an etalon with an FSR of 100 is used.
  • an etalon with an FSR of 50 GHz is used.
  • the etalon preferably has a finesse of about 25-50.
  • the etalon is tuned to align the etalon fringes 1709 with the ITU channel frequencies 1711. As shown in FIG. 31, the etalon is tuned to align the etalon fringes 1709 with the ITU channel frequencies 1711. As shown in FIG.
  • any portion of an optical transmission pulse 1713 transmitted from the DWDM into the etalon chi ⁇ filter 1704 at a frequency differing from one of the ITU frequencies is thereby filtered out by the etalon, yielding a filtered pulse 1715.
  • a filtered pulse 1715 only those portions of an optical pulse transmitted precisely at one of the ITU channel frequencies are coupled into the optic fiber. Those portions of the optical pulse having a slightly different frequency, perhaps as a result of optical frequency chi ⁇ , are blocked from entering the optic fiber.
  • FIG. 33 illustrates internal components of an exemplary etalon chi ⁇ filter.
  • a collimator 1710 collimates optical signals received from output fiber 1704 for passing through etalon 1712.
  • the temperature of the etalon is adjusted, as needed, by a heating element 1714 to maintain the fringes of the etalon aligned with the selected ITU channel grid frequencies.
  • a thermistor or other temperature sensor 1716 is employed to detect the temperature of the etalon.
  • the heating element is controlled by a control circuit 1717, which receives signals from the thermistor.
  • the filtered optical signals emerging from the etalon are collimated again by a collimator 1718 for coupling back into optic fiber 1704 for transmission to a downstream DWDM.
  • the etalon and thermistor are preferably mounted to a substrate formed of FR4.
  • the control circuitry is mounted to a second substrate formed of ceramic.
  • the collimators and the two substrates are mounted to internal sides of an outer housing 1722.

Abstract

The method and system operate to calibrate a transmission laser of the dense wavelength division multiplexer (DWDM) and to lock the laser to a selected transmission wavelength. In one example, the transmission laser is a widely tunable laser 'WTL' (401) to be tuned to one of a set of international telecommunications union 'ITU' transmission grid lines for transmission through an optic fiber. To lock the WTL (401) to an ITU grid line, a portion of the output beam from the WTL (401) is routed through the etalon (620) to split the beam into a set of transmission lines for detection by an etalon fringe detector (624). Another portion of the beam is routed directly to a laser wavelength detector (626). A wavelength-locking controller (628) compares signals from the two detectors (626, 628) and adjusts the temperature of the etalon (620) to align the wavelength of one of the transmission lines of the etalon (620) with the wavelength of the output beam, then controls the WTL (401) in a feedback loop (606) to lock the laser to the etalon line. The wavelength-locking controller (628) thereafter monitors the temperature of the etalon (620) and keeps the temperature constant to prevent any wavelength drift in the etalon (628).

Description

METHOD AND SYSTEM FOR LOCKING TRANSMISSION
WAVELENGTHS FOR LASERS IN A DENSE WAVELENGTH
DIVISION MULTIPLEXER UTILIZING A TUNABLE ETALON
BACKGROUND OF THE INVENTION
I. Related Applications
This patent application is a Continuation-in-Part of U.S. Patent Application Serial No. 09/811,090, of Randy May also entitled "Method and System for Locking Transmission Wavelengths for Lasers in a Dense Wavelength Division Multiplexer" , filed March 17, 2001, which is a Continuation-in-Part of U.S. Patent Application Serial No. 09/775,772, filed January 31, 2001, which is a Continuation-in-Part of U.S. Patent Application Serial No. 09/685,212, entitled "Method And Apparatus For Determining Transmission Wavelengths For Lasers In A Dense Wavelength Division Multiplexer" , filed October 10, 2000.
II. Field of the Invention
The invention generally relates to dense wavelength division multiplexers (DWDM) and in particular to a technique for locking transmission wavelengths of individual lasers of the DWDM.
III. Description of the Related Art
A DWDM is a device for simultaneously transmitting a set of discrete information channels over a single fiber optic transmission line. A conventional fiber optic transmission line is capable of reliably transmitting signals within a bandwidth of 1280 to 1625 nanometers (nm), the "low loss" region for silica fiber. Within that overall bandwidth, the International Telecommunications Union (ITU) has defined various transmission bands and specified certain transmission channel protocols for use within each transmission band. One example of a transmission band is the ITU "C" band, which extends 40 nm from 1525 nm to 1565 nm. Within the C band, specific transmission channel protocols of 40, 80, or 160 discrete channels are defined and, for each protocol, the ITU has defined a grid of transmission wavelengths, with each line corresponding to an acceptable transmission wavelength. The protocols have been defined to ensure that all DWDM transmission and reception equipment are fabricated to operate at the same wavelengths. For the 40-channel protocol, the corresponding ITU grid has 40 lines with channel spacing of 0.8 nm; for the 80-channel protocol, the corresponding ITU grid has 80 lines with channel spacing of 0.4 nm; and so forth. Additional protocols have been proposed, including 320 channel and 640 channel protocols. Maximum theoretical transmission frequencies for the various ITU protocols are as follows: 100GHz for the 40 channel protocol; 50GHz for the 80 channel protocol; 25GHz for the 160 channel protocol; 12.5GHz for the 320 channel protocol; and 6.25GHz for the 640 channel protocol. Closer channel spacing necessitates a lower modulation rate since channel spacing must be larger than the modulation frequency. High frequency modulation requires suitable optic fibers, as well as appropriate transmission and receiving equipment. Current state-of-the-art DWDMs typically employ a 40 channel ITU protocol but transmit at 2.5 GHz, well below the theoretical maximum. Other exemplary ITU transmission bands are the S- and L- bands.
To simultaneously transmit the set of channels on a fiber optic cable, a conventional DWDM employs a set of the individual distributed feedback (DFB) lasers, with one DFB laser per channel and with the DFB configured to transmit. FIG. 1 illustrates ne,__n _,
PCT/US02/30667
a DWDM 100 having forty individual DFB lasers 102 for transmitting optical signals via a single optic fiber 104. An optical multiplexer 106 couples signals received from the individual DFBs via a set of intermediate optic fibers 107 into output optic fiber 104. Each DFB laser transmits at a different wavelength of the 40-channel ITU C band. This enables forty separate channels of information to be transmitted via the single optical fiber 104 to a de-multiplexer (not shown) provided at the far end of the optical fiber.
To permit the DWDM to transmit forty separate channels simultaneously, each individual DFB must be tuned to a single ITU transmission channel wavelength. A DFB laser can be tuned only within a narrow wavelength band, typically about 2 nm in width. Hence, for the 40-channel protocol of the ITU C band having 0.8 nm transmission line spacing, the typical DFB can only be tuned to one of a few adjacent lines out of the total of 40 lines of the ITU grid. Traditionally each individual DFB laser is manually calibrated at the factory to emit at a corresponding one of the ITU transmission lines. This is achieved by adjusting the laser operating temperature and current to obtain the desired wavelength.
The laser is then, in some implementations, locked to the target wavelength by routing the output beam from each DFB laser through a corresponding manually tunable etalon. (The etalons are not shown in FIG. 1.) A manually tunable etalon is an optical device that produces a periodically-varying transmission spectrum as a function of laser wavelength. By tilting the etalon relative to the DFB laser beam path, a transmission peak of the etalon can be made coincident with the target ITU channel. The wavelength of an etalon transmission peak is calibrated to one of the ITU transmission lines by manually adjusting the angle of the etalon while monitoring the wavelength output from the etalon using an optical wavelength analyzer. The angle of the etalon is adjusted until the output wavelength is properly aligned with one of the ITU transmission lines, then the etalon is mounted in place in an attempt to lock the output wavelength of etalon to the selected ITU transmission line. This is a difficult and time-consuming process requiring skilled technicians resulting in the alignment of the etalon transmission peaks with several ITU transmission lines. In addition, if transmission over a certain range of ITU transmission lines is desired, multiple tunable lasers are required to ensure adequate coverage. Such an ne,__n _,
PCT/US02/30667
arrangement is costly and does not provide rapid switching between ITU transmission lines. Furthermore, mechanical or thermal drift of the etalon over time often moves the transmission peak away from the target ITU channel, which requires recalibration.
Once the DFB lasers of a single DWDM are properly aligned with the ITU grid, the
DWDM may then be used for transmitting signals over a fiber optic line, such as for transmitting digital data over computer networks or for transmitting television signals from a television network to one of its affiliates. A single DWDM must be provided for use with each fiber optic line employed for DWDM transmissions and hence a single customer installation, such as a television broadcast center, may require large numbers of DWDMs. If one of the DFB lasers within a DWDM drifts from its corresponding ITU transmission line or otherwise malfunctions, the entire DWDM typically needs to be replaced to permit the malfunctioning DWDM to be returned to the factory to be re-calibrated or otherwise fixed. As a result, the cost of maintaining a set of DWDMs is often substantial. To help remedy this problem, some DWDMs are provided with an additional widely tunable laser (WTL), which can be tuned separately to any one of the ITU grid lines. Hence, if one of the DFB lasers malfunctions, the single WTL can be tuned to the . corresponding transmission wavelength of the DFB to thereby permit the DWDM to continue to operate. Additional WTLs can be supplied with a DWDM to accommodate the failure of two or more DFB channels, and such "sparing" is a major advantage a WTL over a DFB. However, conventional WTLs cannot simply and accurately be tuned to any target ITU channel at a customer installation and must be calibrated at the factory for operation at a specific channel.
Another problem associated with employing DFB lasers within DWDMs is that, because each DFB laser can only be tuned within a narrow range of about 2 nm, each DFB laser can only be calibrated to one of a few adjacent ITU transmission wavelength lines. It is sometimes desirable to configure the DWDM to use many lasers for transmitting at a single ITU transmission line to provide more bandwidth on that channel. When using DFB lasers, no more than two or three of the lasers can be calibrated to a single ITU transmission line. Hence, in some DWDMs, WTLs are used exclusively instead of DFB lasers, thus permitting any of the lasers to be manually calibrated at the customers installation to transmit on any of the ITU transmission lines. Although the use of WTLs remedies many of the problems associated with using DFB lasers, WTLs are difficult and expensive to fabricate and initially calibrate, and are susceptible to wavelength drift requiring frequent recalibration at the customers installation by trained technicians and hence necessitating high overall installation and maintenance costs.
Thus, whether using DFB lasers or WTLs within a DWDM, significant problems arise in achieving and maintaining proper wavelength calibration of the lasers to permit reliable operation of the DWDM. Accordingly, there was a need to provide an efficient method and system for calibrating transmission lasers within a DWDM and it was to that end that the invention of the senior parent applications were primarily directed. Briefly, the senior parent patent applications involve, inter alia, techniques for calibrating a transmission WTL of a DWDM using an etalon and a gas cell having acetylene, hydrogen cyanide or carbon dioxide. Initially, the absolute transmission wavelengths of the WTL are calibrated by routing an output beam from the WTL through the etalon and through the gas cell while varying tuning parameters of the WTL to thereby generate an etalon spectrum and a gas absorption spectrum both as functions of the tuning parameters. The etalon and gas absorption spectra are compared, along with input reference information specifying gas absoφtion as a function of absolute wavelength, to determine the absolute transmission wavelength for the WTL as a function of the tuning parameters. The WTL is then tuned to align the transmission wavelength of the WTL to an ITU transmission grid line. By tuning the output wavelength of the WTL using an etalon in combination with a gas absorption cell, the WTL can be quickly, easily and precisely set to a selected ITU transmission grid line at a customer installation. The tuning process can be periodically repeated to maintain precise tuning of the WTL despite possible temperature or mechanical drift of the various components. In one implementation, a wavelength mapper is provided for manually connecting to a WTL to tune the WTL to a selected ITU transmission gridline. In another implementation, the wavelength mapper is permanently attached to the WTL along with a wavelength locker to lock the WTL to an ITU transmission gridline. Insofar as wavelength locking is concerned, the parent applications describe a wavelength locker employing a temperature-controlled etalon. After the aforementioned wavelength mapping steps are performed to determine the absolute wavelength of the laser as a function of the laser tuning parameters, tuning parameters are applied to the laser to tune the laser to a selected transmission wavelength, such as an ITU channel wavelength. A temperature offset is applied to the etalon of the wavelength locker to vary the wavelengths of the transmission peaks of the etalon until one of the transmission peaks is precisely aligned with the selected wavelength. Any drift of the laser from the etalon transmission peak is detected and the tuning parameters applied to the laser are automatically adjusted to compensate for the drift. The temperature of the etalon is precisely maintained so that the etalon transmission peak does not drift from the selected wavelength. In this manner, the main output beam of the laser remains locked on the absolute wavelength of the selected transmission channel despite possible variations in the output characteristics of the laser. Periodically, the system can be recalibrated using the known absolute wavelengths of the gas absoφtion chamber to ensure that the transmission peak of the etalon has not drifted from the absolute wavelength of the selected transmission channel.
Although the senior parent application describes highly .useful techniques for mapping the transmission wavelengths of lasers within a DWDM and for locking the transmission wavelengths to ITU grid lines, room for further improvement remains, particularly insofar as the design and fabrication of the wavelength locker is concerned.
For practical applications, the wavelength locker should be highly miniaturized and configured so as to consume relatively little power. The wavelength locker also should be sufficiently durable to operate reliably over a ten- or twenty-year lifetime. Ideally, the wavelength locker should be designed so as to work in combination with any of a wide variety of ITU transmission protocols and fiber optic transmission rates, both existing and proposed and to allow rapid switching between ITU grid lines. Perhaps most importantly, the wavelength locker should be designed so as to be sufficiently inexpensive for practical use. Difficulties arise in each of these areas. Each WTL for use in a DWDM is typically provided in a miniature "butterfly" package for mounting to a circuit board also containing microcontrollers and other components. The circuit boards are mounted in a parallel array within the DWDM with, typically, one board per ITU channel. Hence, a forty ITU channel DWDM employs forty circuit boards; an eighty ITU channel DWDM employs eighty circuit boards. Current state- of-the-art WTLs typically draw about ten watts of power, thus requiring 400 watts of power or more for the a forty channel DWDM and correspondingly more power for 80 or 160 channel DWDMs. A significant portion of the power is consumed by thermoelectric (TE) coolers provided for controlling the temperature of the semiconductor laser of the WTL. With the WTLs already consuming considerable power, it is particularly important that the wavelength locker be configured so as to minimize power consumption, particularly the temperature-controlled etalon. Minimizing power consumption, however, typically requires that the etalon be configured to provide numerous closely-spaced transmission peaks (i.e. to have a narrow free spectral range) such that relatively little heating or cooling is required to expand or contract the etalon or change its index of refraction sufficiently enough to align one of the transmission lines of the etalon with a selected ITU grid line. Using numerous closely spaced peaks, however, increases the risk that the wavelength locker will lock the transmission wavelength of the WTL to the wrong wavelength. Also, to provide numerous closely-spaced transmission peaks, the etalon typically must be configured to have a very short optical axis, thereby making it more difficult to fabricate and align.
Moreover, difficulties arise in adequately insulating the temperature-controlled etalon so as to minimize power loss and to ensure a minimal temperature gradient within the etalon. Any significant temperature gradient within the etalon tends to degrade the finesse of the etalon (i.e. the shaφness of the individual etalon lines) thus making it difficult to achieve precise wavelength locking. Likewise, any slight misalignment of the etalon or any slight imprecision in reflection coatings of the etalon reduces the degree of finesses. Lack of adequate insulation, of course, also increases power consumption and generates a greater amount of waste heat, which may affect the ability of the TE cooler of the laser to efficiently control the temperature of the laser, particularly if the etalon is mounted closely adjacent to the laser within the butterfly package. Typically, manufacturing protocols for DWDMs specify that the DWDM must operate at 70 degrees Celsius or less, thus putting further limitations on the design of the temperature-controlled etalon. It is difficult, therefore, to provide a temperature-controlled etalon and other wavelength locker, which achieves the requisite degree of finesse for precise wavelength locking while also minimizing power consumption, even for use with just one ITU channel protocol. Ideally, however, the temperature-controlled etalon and other components of the wavelength locker should be configured to work with any of a variety of ITU channel protocols, such as 40 to 640 channels, and with any of a variety of transmission frequencies, such as from 2.5 GHz to 100 GHz. Also, ideally, the wavelength locker is sufficiently miniaturized to mount inside the butterfly package of the WTL to minimize overall circuit board space.
For all of the foregoing reasons, it was desirable to provide improved methods and systems for implementing a wavelength locker for use in locking the transmission wavelength of a laser of a DWDM, which is highly miniaturized, achieves low implementation costs and operating costs, consumes relatively little power, works in combination with any of a wide variety of ITU transmission protocols, rapidly switches between ITU grid lines, and is sufficiently durable to reliably operate for ten to twenty years.
The invention of the parent application was directed to providing just such an improved wavelength locker. Briefly, to lock a WTL to an ITU grid line, a portion of the output beam from the WTL is routed through the etalon to split the beam into a set of transmission lines for detection by a detector. Another portion of the beam is routed directly to a laser wavelength detector via a beam splitter inteφosed between the laser and the etalon. A wavelength-locking controller compares signals from the two detectors and adjusts the temperature of the etalon to align the wavelength of one of the transmission lines of the etalon with the wavelength of the output beam. In this arrangement, the wavelength-locking controller operates to control the WTL in a feedback loop to lock the laser to the etalon line. The wavelength-locking controller thereafter monitors the temperature of the etalon and keeps the temperature constant to prevent any wavelength drift in the etalon. In one specific example, the etalon is a silicon etalon configured to have finesse of about 20 and to provide a free spectral range of about 8 GHz. With these parameters, the system is able to lock the wavelength of the WTL to within a precision of about 0.2 GHz. In another example, the etalon is first calibrated during manufacture to determine a "set point" operating temperature sufficient to align transmission peaks of the etalon with desired ITU grid lines. The etalon is thereafter mounted within a WTL and the etalon is adjusted to the set point temperature so as to align transmission peaks of the etalon with the desired ITU grid lines to permit wavelength locking. This later technique allows for rapid switching between channels and obviates the need for a gas cell within the WTL.
Still further improvements are achievable. In particular, with the arrangement just summarized, a beam splitter is employed to split the laser beam into two beams—one to the laser wavelength detector and another to the etalon. The beam splitter causes amplitude variations in the two beams, which are out of phase from one another making it more difficult to lock the laser to one of the ITU channels. Accordingly, it would be desirable to provide an alternative configuration permitting easier wavelength locking, and it is to this end that aspects of the present CEP are directed.
Another concern lies in the possibility of optical frequency chiφ affecting signals transmitted along the optic fiber at one of the ITU gridline wavelengths. Briefly, optical chiφ occurs when a current source used to modulate the transmission laser causes dynamic changes in the index of refraction of a laser junction or other optical transmitter. A dynamic change in the index of refraction in turn causes a dynamic change in the actual transmission frequency of an optical pulse transmitted into the optic fiber. As a result, the time average of the optical transmission may indicate that a leading edge of an optical pulse has a slightly different frequency than the trailing edge of the pulse. Although the initial frequency differential between the leading and trailing edges of the pulse may be slight, chromatic dispersion inherent in optic fibers causes the leading and trailing edges to propagate at different speeds resulting in potentially significant distortion of the optical pulse, particularly over long haul optic fiber transmission systems. The distortion limits either the maximum frequency of signal transmission modulation or the maximum distance at which signals can be reliably transmitted.
Accordingly, it would be desirable to provide a technique for limiting optical frequency chiφ, particularly for use within system transmitting on ITU channel wavelengths, and it is to this end that other aspects of the invention are directed.
SUMMARY OF THE INVENTION
In accordance with one aspect of the invention, a system and method is provided for use in locking a laser to a transmission wavelength using a tunable etalon. The system includes a laser for providing an output beam along an optical path and a laser wavelength detector, positioned along an initial linear portion of the optical path of the laser, for capturing a first portion of the output beam of the laser to detect a transmission wavelength of the laser. The system also includes an etalon positioned for simultaneously receiving a second portion of the output beam of the laser and for splitting the second portion into a series of transmission lines. An etalon wavelength detector is provided for detecting the etalon transmission lines. By positioning the laser wavelength detector along the initial linear portion of the optical path of the laser, the laser wavelength detector directly receives a portion of the output beam from the laser and hence the amplitude of the beam as a function of wavelength is unaffected, as might otherwise occur with the detector positioned off-axis and a beam splitter employed to reflect a portion of the laser beam to the detector. Preferably, the system also includes a control unit for setting the transmission wavelength of the output beam of the laser to a selected wavelength and for tuning the etalon to align a selected etalon transmission line to the selected wavelength. The wavelength-locking control unit thereafter detects any drift of the transmission wavelength of the laser from the selected etalon transmission line and adjusts the laser to compensate for any drift, such that the output beam of the laser is locked to the selected transmission wavelength so long as the selected etalon transmission line remains at the selected wavelength. In an exemplary embodiment, the laser, laser wavelength detector, etalon and etalon wavelength detector are all positioned along a common axis, with the laser wavelength detector inteφosed between the laser and the etalon. The laser wavelength detector is offset slightly from the common axis to permit most of the laser beam to pass directly to the etalon while capturing a smaller portion of the beam for use in detecting the wavelength of the laser. Alternatively, the laser wavelength detector is configured as an annular detector permitting a center portion of the laser beam to pass directly to the etalon while outer portions of the beam are captured by the detector. In either case, the laser wavelength detector preferably captures 30% of the beam of the laser, permitting the etalon to capture the remaining 70%. Also, preferably, the laser wavelength detector is positioned at an angle of 5 to 10 degrees to the initial linear portion of the optical path of the laser such that any light reflected from the detector is not reflected directly back into the laser. In alternative embodiment, the laser wavelength detector is mounted directly on-axis with the laser beam, but the etalon and etalon detector are positioned off-axis. A mirror is mounted between the laser and the laser wavelength detector for reflecting about 70% of the laser beam to the etalon, permitting the remaining 30% to pass directly to the laser wavelength detector. In both embodiments, the laser wavelength detector receives a portion of the laser beam directly from the laser, such that phase characteristics of the laser beam are not affected by intervening reflective or transmissive optical components.
In accordance with another aspect of the invention, a system and method is provided for filtering chiφ from optical signals transmitted by a laser through an optic fiber. The system includes a laser for providing an output beam, with the laser controlled to transmit at a frequency selected from a group of channel frequencies having fixed wavelength spacing, an optic fiber for transmitting the output beam, and an etalon mounted between the laser and the optic fiber. The etalon has a free spectral range (FSR) equal to the fixed wavelength spacing and is tuned so that fringes produced by the etalon are aligned with the transmission channels. Preferably, the etalon provides has a finesse so that the width of the fringe is approximately 1 GHz. By aligning the fringes of the etalon with the transmission channel frequencies, only those portions of signals transmitted at frequencies aligned with one of the selected transmission frequencies are passed by the etalon. Portions of signals with frequencies offset from the selected transmission frequencies are filtered out, including any portions of signals having a frequency offset as a result of transmission signal chiφ. In this manner, chiφ is reduced or completely eliminated by the etalon regardless of which of the selected frequencies is used for transmitting the signals. With chiφ eliminated, the signals can be reliably transmitted over longer fiber optic cables with higher modulation rates.
In an exemplary embodiment, the laser is configured to transmit signals at any one of eighty equally-spaced C-Band ITU channel frequencies. The etalon has an FSR of about 50 and a finesse of about 25-50. With these parameters, the spacing of the etalon fringes exactly matches the spacing of the ITU channels. The etalon is tuned to align its fringes with the C-band ITU channels. Thus, regardless of the particular ITU channel employed to transmit signals, the etalon filters chiφ from the transmitted signals. For denser ITU channel grids, an etalon with a smaller FSR can be used to provide more closely spaced fringes to filter chiφ from any of the more densely spaced ITU channels.
BRIEF DESCRIPTION OF THE DRAWINGS
The features, objects, and advantages of the invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout and wherein:
FIG. 1 illustrates a DWDM configured in accordance with the prior art.
FIG. 2 illustrates a DWDM along with a wavelength mapper provided in accordance with a first exemplary embodiment of the invention, with the wavelength mapper provided for automatically determining the transmission wavelengths of the lasers of the DWDM as a function of tuning parameters of the lasers.
FIG. 3 illustrates the wavelength mapper of FIG. 2. FIG. 4 illustrates a method performed by the wavelength mapper of FIG. 3.
FIG. 5 illustrates an exemplary etalon transmission spectrum detected by the method of FIG. 4, scaled as a function of a laser voltage tuning parameter.
FIG. 6 illustrates an exemplary gas absoφtion spectrum detected by the method of FIG.4, also scaled as a function of the laser voltage tuning parameter.
FIG.7 illustrates an input reference gas absoφtion spectrum.
FIG. 8 illustrates an individual DWDM laser along with a wavelength locker provided in accordance with a second exemplary embodiment of the invention, with the wavelength locker provided for automatically locking the wavelength of the laser to a selected ITU transmission wavelength by using a temperature-controlled etalon in a feedback loop.
FIG. 9 illustrates a general method for locking the transmission wavelength of a WTL of a DWDM to fixed wavelength using a wavelength locker such as the device of FIG. 8.
FIG. 10 graphically illustrates a laser transmission beam and a set of etalon transmission lines adjusted using the method of FIG.9.
FIG. 11 illustrates a first exemplary embodiment of a WTL circuit card for use in a DWDM wherein the card has a laser mounted within a butterfly package and a wavelength locker having a temperature-controlled etalon for use in locking the laser to an ITU channel wavelength using the method of FIG. 9.
FIG. 12 is a perspective view of the temperature-controlled etalon of the wavelength locker of FIG. 11. FIG. 13 illustrates a second exemplary embodiment of the WTL circuit card wherein, in addition to the wavelength locker, the card also has a wavelength mapper with a gas absoφtion chamber for use in mapping the laser to determine absolute transmission wavelengths of the laser prior to wavelength locking.
FIG. 14 illustrates a third exemplary embodiment of the WTL circuit card wherein etalon of the wavelength locker is mounted within the gas absoφtion chamber of the wavelength mapper.
FIG. 15 illustrates a fourth exemplary embodiment of the WTL circuit card wherein an etalon chamber is mounted within the butterfly package along with the laser for use in wavelength locking the laser.
FIG. 16 illustrates a fifth exemplary embodiment of the WTL circuit card wherein a combined etalon gas absoφtion chamber is mounted within the butterfly package along with the laser for use in wavelength mapping and wavelength locking the laser.
FIG. 17 illustrates a method for tuning an etalon to adjust the spacing and alignment of its FSR to match a predetermined ITU Grid Line spacing.
FIG. 18 illustrates an etalon calibration unit for use in accordance with the method enumerated in FIG. 17.
FIG. 19 illustrates a sixth exemplary embodiment of the WTL circuit card wherein a pre-tuned etalon module is mounted within the butterfly package along with the laser for use in wavelength locking the laser.
FIG. 20 illustrates an in-line arrangement of optical components for use in a wavelength locker, configured in accordance with yet another embodiment of the invention wherein a reference laser wavelength detector is slightly off-set from an optical axis of the laser. FIG. 21 illustrates the off-set reference laser wavelength detector of FIG. 20, for an example wherein the detector is round.
FIG. 22 illustrates the reference laser wavelength detector of FIG. 20, for an example wherein the detector is not off-set from the axis of the laser beam but is instead annular.
FIG. 23 is a graph illustrating signals received by a reference laser wavelength detector and an etalon detector for a non-in-line arrangement wherein a beam splitter is inteφosed between the laser and the detectors (as in FIG. 11).
FIG. 24 is a graph illustrating signals received by the reference laser wavelength detector and etalon detector for the in-line arrangement of FIG. 20 wherein no beam splitter is inteφosed between the laser and the detector.
FIG. 25 illustrates the in-line arrangement of optical components of FIG. 20 wherein the laser wavelength detector and the etalon are both mounted at an angle to reduce reflections.
FIG. 26 illustrates an exemplary packaging arrangement for the optical components of FIG.20 employing a pair of parallel substrates.
FIG. 27 illustrates another exemplary packaging arrangement for the optical components of FIG.20 employing a single substrate.
FIG. 28 illustrates an off-axis arrangement of optical components for use in a wavelength locker, wherein the etalon is mounted peφendicular to the optical axis of the laser. FIG. 29 illustrates another off-axis arrangement of optical components for use in a wavelength locker, but wherein the laser reference detector is mounted peφendicular to the optical axis of the laser.
FIG. 30 illustrates a DWDM and an etalon chiφ filter configured in accordance with yet another embodiment of the invention.
FIG. 31 is a graph illustrating the alignment of etalon fringes and ITU channels.
FIG. 32 is a graph illustrating an optical signal output form a DWDM being filtered by the etalon chiφ filter of FIG. 30.
FIG.33 illustrates internal components of the etalon chiφ filter of FIG. 30.
DETAILED DESCRIPTION OF THE EXEMPLARY EMBODIMENTS
With reference to the remaining figures, exemplary embodiments of the invention will now be described.
FIG. 2 illustrates a DWDM 200 having forty individual WTLs 202 for transmitting optical signals on forty ITU C-band channels via a single optic fiber (not shown). In FIG. 2, an optic fiber output from a selected WTL is connected via a fiber optic line 203 to the input of wavelength mapper 204 (which may be either integrated into a fixed machine or in a hand-held, portable unit) configured for automatically determining the transmission wavelength of the WTL as a function of WTL tuning parameters, such as a WTL control voltage or current, output from the wavelength mapper to the selected WTL of DWDM via a control line 205. Although a forty channel DWDM is shown, in other implementations 80, 160, or more WTLs are provided. Also, other lasers may be employed in the alternative, such as DFB lasers, provided their tuning range is sufficient to record a minimum number of gas absoφtion lines (>5). To permit the DWDM to transmit the forty separate ITU channels simultaneously, each individual WTL of the DWDM must be precisely tuned to a single ITU transmission channel wavelength. For an example wherein the WTLs are tuned by applying a control voltage to the WTL, a separate voltage level is associated with each ITU wavelength. The wavelength mapper operates to determine the resulting transmission wavelength for each WTL for values of the control voltage throughout an entire voltage tuning range. This process is performed sequentially for each of the forty WTLs to generate a separate wavelength vs. voltage map for each WTL. Thereafter, any particular WTL can be tuned to any selected transmission wavelength merely by accessing the corresponding wavelength vs. voltage map to determine the appropriate control voltage. Typically, the WTLs are set to selected ITU C-band, S-band, or L-band channels, but can be set to any selected wavelength. Wavelength mapping is performed when a new WTL laser is fabricated and its tuning parameters must be determined, and when an installed WTL must be accurately tuned to another ITU channel in the field by field service personnel.
FIG. 3 illustrates pertinent internal components of wavelength mapper 204. The wavelength mapper receives an input optical beam from one of the WTLs of the DWDM (FIG. 2) via optic fiber 20. The input beam is collimated using a collimator 207 then split using a splitter 208, with one portion of the beam being routed through a gas cell 210 and another portion being routed through an etalon 212. The gas cell contains gas having a known absoφtion spectrum with numerous absoφtion lines in the optical bandwidth in which the laser is to be tuned. For a laser to be tuned within the ITU C- and S-bands, acetylene is appropriate (H 13C N is also appropriate for C-bands), with carbon dioxide being suitable for the L-band. The etalon is configured to provide numerous transmission maxima within the optical bandwidth in which the laser is to be tuned. The etalon, as with all etalons, provides transmission lines (or fringe peaks) equally spaced in terms of wavenumbers. (A wavenumber is 10,000 / (wavelength in microns) and thereby can easily be converted to wavelength or frequency). For use with a forty channel ITU C-band DWDM, the etalon is preferably configured to provide at least five hundred transmission peaks in the C-band. A first optical detector 214 detects a beam emergent from the gas cell and a second optical detector 216 detects a beam emergent from the etalon. Signals detected by the detectors are routed into a microcontroller 218 for processing therein. The microcontroller is also connected to the DWDM via control line 205 to control the selected WTL of the DWDM to scan through the entire ITU C-band. In other words, the microcontroller varies the voltage or current input to the WTL throughout an entire input range to thereby vary the transmission wavelength of the WTL throughout the entire ITU C-band. As a result, the two optical detectors both receive an entire spectrum of optical signals covering the entire ITU C-band. The detector coupled to the etalon detects an etalon spectrum having etalon transmission lines therein. The detector coupled to the gas cell detects a gas absoφtion spectrum having gas absoφtion lines therein. The microcontroller also inputs a reference gas absoφtion spectrum for the gas contained within the gas cell wherein the reference absoφtion spectrum specifies the absolute wavenumber, wavelength or frequency for each of the absoφtion lines of the gas. The microcontroller processes the detected etalon and gas absoφtion spectra in combination with the reference gas spectrum to determine the transmission wavelengths of the WTL as a function of the voltage or current tuning parameter applied to the WTL to thereby map the wavelengths of the WTL. The wavelength map is stored for subsequent use in setting the WTL to transmit at any selected wavelength, such as at one of the ITU C-band channels.
The manner by which the wavelength mapper generates a wavelength vs. tuning parameter map for a WTL or other laser will now be described in greater detail with reference to FIGS. 4 - 7. Initially, at step 300 of FIG. 4, the wavelength mapper routes an output beam of the laser through the etalon and through the gas call while tuning the laser through a complete range of tuning parameters to generate an etalon transmission spectrum and gas absoφtion spectrum. In one specific example, for a laser tuned by a control voltage ranging from 0.0 to 40.0 volts, the wavelength mapper incrementally increases the voltage from 0.0 to 40.0 volts by voltage increments of .0000610352 volts to generate etalon and gas absoφtion spectra each with 65536 data points. The etalon and gas absoφtion spectra are detected at step 306 and stored in separate data arrays by the wavelength mapper. A section of an exemplary etalon spectrum '302 for an etalon having a peak spacing of about 6.6 gigahertz (GHz) is shown in FIG. 5. Preferably, however, an etalon with a peak spacing of about 8 GHz is used. A section of an exemplary gas absoφtion spectrum 304 for acetylene is shown in FIG. 6. Both spectra, are scaled by voltage. For each data point, the wavelength mapper also stores the corresponding data point number in a data array. Hence, the detected etalon and gas absoφtion spectra are both recorded as functions of voltage, not wavelength or frequency, which is as yet unknown. ,
Continuing with FIG. 4, the wavelength mapper then processes the detected etalon spectrum at step 308 to identify and locate transmission peaks therein. The peaks are located by determining first and second derivatives of the etalon spectrum as a function of data point and by applying polynomial fitting in the local peak areas in accordance with conventional techniques. The location of each peak is specified by its corresponding fractional data point number. Note that the peaks are not equally spaced in terms of the data points. Rather, the peaks are generally non-linearly distributed among the data points. In any case, once the peaks are identified and located, the wavelength mapper sequentially assigns relative wavenumbers to each of the transmission peaks beginning with 1 and proceeding to the last detected peak. In the example of FIG. 5 (which shows only a very small section of the etalon spectrum), there are 37 peaks and hence the peaks may be numbered from e.g. 400 to 437. The relative wavenumbers generated by this process are stored in the etalon spectrum data array at the fractional data point corresponding to the voltage peak, and inteφolated to the integer point numbers surrounding the peak. For example, if the 403rd transmission peak is found at data point 50788.56 out of the 65536 data points, then relative wavenumber 403 is assigned to fractional data point 50788.56. Relative wavenumbers for integer data points 50788 and 50789 are obtained by inteφolation and stored in the etalon data array. Similarly, if the 404th transmission peak is found at data point 50823.17 out of the 65536 data points, then relative wavenumbers 404 is stored in association with fractional data point 50823.17. Fractional relative wavenumbers for the adjacent integer points 50823 and 50824 are assigned by inteφolation. The relative wavenumbers can be assigned to the transmission peaks of the etalon spectrum sequentially because the peaks are generated by an optical etalon which, by virtue of its optical properties, produces peaks substantially equally spaced in wavenumber. Hence, even though the peaks are not equally spaced as a function of the data points or as a function of laser input voltage, the peaks are nevertheless equally spaced as a function of relative wavenumber, and sequential wavenumbers can be reliably assigned. The wavenumbers are referred to herein as relative wavenumbers because the absolute wavenumber (and hence the absolute wavelength or wavelength) is not yet known.
Thus, upon completion of step 308, relative wavenumbers have been assigned only to those integer data points in the etalon spectrum array that correspond to the closest etalon transmission peak. At step 310, the wavelength mapper inteφolates between the peaks to assign fractional wavenumbers to each intermediate data point. For the example wherein the relative wavenumber 403 falls between data points 50788 and 50789, and relative wavenumber 404 falls between integer data points 50823 and 50824, the wavelength mapper inteφolates between the assigned fractional wavenumbers to data points 50789 through 50822. In one specific example, as a result of the inteφolation, data point 50789 may be assigned a relative wavenumber of 6471.5600; data point 50790 may be assigned a relative wavenumber of 6471.5625; and so on. In this manner, inteφolation is preformed to assign fractional relative wavenumbers to each remaining value in the etalon spectrum data array. Note that the fractional wavenumbers are not necessarily evenly distributed between integer wavenumbers. Rather, as a result of the inteφolation, the fractional wavenumbers may be assigned non-linearly. Thus following inteφolation, each integer data point of the etalon array has a relative wavenumber associated therewith. The relative wavenumbers are stored along with the corresponding voltage values in the etalon spectrum data array to thereby provide a relative wavenumber for each data point.
At step 312, the relative wavenumbers generated for each data point of the etalon array are used to re-scale the gas spectrum data array. To this end, the relative wavenumber of each data point of the etalon spectrum array is assigned to the corresponding data point of the detected gas absoφtion spectrum array. At this point a relative wavenumber scale exists both for the etalon transmission spectrum and the gas absoφtion spectrum. However, the relative wavenumber scale is not linear because of the non-linear tuning properties of the laser.
At step 318, the wavelength mapper inputs a reference gas absoφtion intensity spectrum for the gas of the gas cell, wherein the reference spectrum is scaled according to absolute wavenumber, rather than relative wavenumber. FIG. 7 illustrates a portion of an exemplary reference gas intensity spectrum 322 for acetylene. This spectrum is generated synthetically using the know frequencies and intensities of the reference gas, which are known to high accuracy through published laboratory measurements and verification by the National Institute of Standards and Technology (NIST). The reference spectrum is input as a data array of equal size to the modified gas absoφtion data array, e.g. 65536 data points. At step 320, the wavelength mapper autocorrelates the intensity pattern of the modified detected gas absoφtion spectrum, which is a function of relative wavenumber, with the intensity pattern of the input reference spectrum, which is a function of absolute wavenumber, to determine any offset therebetween. An appropriate autocorrelation technique, modified as needed, may be found in "Correlation-based Technique for Automated Tunable Diode Laser Scan Stabilization", Randy May, Rev. Scz. Instrum. 63 (5), May 1992. As a second iteration of the process, the etalon transmission peak spacing (the etalon "free spectral range", or FSR) is more precisely determined from the known gas spectrum line positions, and the wavenumber mapping process is repeated to improve accuracy.
Thus, following step 318, the wavelength mapper stores the modified detected gas intensity spectrum generated at step 312 and the reference gas intensity spectrum input at step 318. The two spectra are similar but are offset from one another. At step 320, autocorrelation is performed to determine the shift of the spectra with respect to one another until the spectra are aligned, thus permitting the amount of shift or offset to be determined. The offset represents the offset between the relative wavenumbers and their corresponding absolute wavenumbers. At step 324, the relative wavenumbers of the various arrays are adjusted using the offset to convert the relative wavenumbers to absolute wavenumbers. Once the absolute wavenumbers are known, an absolute wavelength or frequency is assigned at step 326 to each of the control voltage values stored in the etalon spectrum array.
Although the wavelength mapper has been described with respect to an exemplary embodiment wherein the laser is controlled by a single voltage control signal, in general, any laser can be used with the invention so long as an appropriate gas absoφtion reference is available and the laser is tunable via a set of input tuning parameters, such as various combinations of input analog or digital signals. The laser is simply scanned through a range of tuning parameters sufficient to enable determination of the absolute output wavelength of the laser as a function of any combination of the tuning parameters. The resulting wavelength vs. tuning parameters map is therefore a multi-dimensional map having a unique wavelength for each combination of tuning parameters. For some lasers tunable with two parameters, it may be sufficient to set a first tuning parameter to a single constant value while varying a second tuning parameter, then set the second tuning parameter to a single constant value while varying the first tuning parameter. In other cases, it may be necessary to tune the laser through every possible combination of the two parameters to account for non-linear effects. For any given laser, routine experimentation can be performed to determine the specific manner with which the tuning parameters are to be varied.
What has been described thus far is a wavelength mapper that operates to generate a map of wavelength vs. tuning parameters for a laser, particularly one in a DWDM. In the following, a wavelength locker is described which automatically sets the laser to a selected wavelength by using a wavelength map, and then locks the laser wavelength using an etalon transmission peak that has been temperature or voltage tuned to the selected ITU channel. As many of the features of the wavelength locker are the same as the wavelength mapper described above, only pertinent differences will be described in detail.
FIG. 8 illustrates pertinent internal components of a first example of a wavelength locker 400 for use with a WTL 401. The wavelength locker receives the output from WTL
401 via an optical fiber splitter 402. The laser beam input to the wavelength locker is ne,__n _,
PCT/US02/30667
initially of unknown wavelength. Inside the wavelength locker, a second splitter 404 splits the beam in two with one portion routed through a gas cell 408 and the other portion reflected from a mirror 409 and then routed through an etalon 410. Separate detectors 416 and 418 record the transmission spectra of the gas cell and the etalon as with the wavelength mapper. A microcontroller 420 varies control parameters input to the WTL along a control line 422 to generate a spectrum having both etalon transmission peaks and gas absoφtion lines. The recorded spectra are fed into the microcontroller for processing to generate a wavelength vs. WTL tuning parameter map using the techniques described above. Once the wavelength vs. WTL tuning parameter map has been generated, the microcontroller controls looks up the WTL tuning parameter corresponding to a selected wavelength, such as an ITU channel wavelength, then applies the WTL tuning parameter along control signal along line 422 to tune the WTL to the selected transmission wavelength. Additionally, the microcontroller adjusts a temperature control set point to the etalon via a control line 424 to vary the wavelengths of the transmission peaks of the etalon until one of the transmission peaks, as detected by detector 416, is precisely aligned with the selected output wavelength. The microcontroller then locks the output wavelength of the WTL to the selected wavelength by monitoring the etalon transmission peak that is aligned with the selected wavelength. To this end, the micro-controller detects any drift of the laser output wavelength as detected by detector 418 and adjusts the tuning parameters applied to the WTL via control line 422 to compensate for the drift. In other words, a negative feedback loop is provided which keeps the main output beam locked on a selected transmission channel despite possible variations in the output characteristics of the WTL.
Alternatively, gas cell 408 and etalon 410 are integrated into a single device or are provided along a common optical path with a single detector to detect the etalon and the gas absoφtion spectra simultaneously. Although the resulting spectra has both etalon peaks and gas absoφtion lines, the etalon peaks and the gas absoφtion lines do not significantly interfere with one another and hence the wavelength mapping process performed above can be performed. In this regard, the etalon peaks represent about 30% changes in transmission, whereas the gas lines represent only about 1% using second harmonic detection. Thus, the gas lines represent a very small perturbation to the etalon spectrum and do not interfere with the etalon wavenumber locking procedure, but are strong enough to permit the autocorrelation procedure without significant errors.
The general wavelength locking method of the invention is summarized in FIG. 9. The general method may be performed by the wavelength locker of FIG. 8, by the wavelength lockers of FIGS. 11 - 16 to be described below, or by any other suitable device. Initially, at step 500 of FIG. 9, a laser (such as a WTL 401 of FIG. 8) is tuned to a selected transmission wavelength. For a WTL of a DWDM, the laser may be set, for example, to the absolute wavelength of one of the channels of the 40-channel ITU C-band transmission protocol. Step 502 is illustrated by FIG. 10, which shows a laser beam 501 being adjusted to move its center wavelength from some initial transmission wavelength 503 to the selected ITU channel wavelength 505. Preferably, tuning is achieved by first performing the wavelength mapping technique described above to map the absolute transmission wavelengths of the laser as a function of tuning parameters to thereby determine the appropriate tuning parameters to apply to the laser to set the laser to the absolute wavelength of the selected transmission channel. But any other suitable tuning technique can be used instead to tune the laser to a selected transmission wavelength. At step 502 of FIG. 9, the laser begins transmitting information signals along an output optic fiber at the selected transmission wavelength. The information signals may include, for example, data, audio or video signals. A portion of the output beam of the laser is split off at step 504 and routed through an etalon (such as etalon 510 of FIG. 8), which splits the beam into a set of interference lines or fringes. At step 506, a microcontroller connected to the etalon adjusts the etalon to align one of the transmission lines with the transmission wavelength of the laser. Step 506 is illustrated in FIG. 10, which shows a set of etalon transmission lines or fringes 507 being adjusted until the center wavelength 509 of one of the etalon transmission peaks is aligned with the wavelength of the laser at the selected ITU channel wavelength 505. To this end, the portion of the beam split off from the main output beam of the laser can be split again, as shown in FIG. 8, into two separate beams, one passing through the etalon to a first detector and the other passing to a second detector, either directly or through a gas absoφtion chamber. The microcontroller receives signals from both detectors and adjusts the temperature of the etalon until a transmission peak of the etalon is obtained with the desired ITU channel (wavelength). This technique suffices to place the etalon transmission line at the absolute wavelength of the selected ITU transmission channel since the laser has already been set, at step 500, to transmit at the selected absolute wavelength and insufficient time has elapsed for the wavelength of the laser to drift from that absolute wavelength.
Hence, following step 506, both the laser and the etalon have been adjusted to emit beams at the ITU channel wavelength and therefore both the first and second detectors receive signals at the same wavelength. At step 508, any wavelength drift between the beams detected by the first and second detectors is identified and the laser is automatically adjusted by the microcontroller to compensate for the drift. To this end, the tuning parameters applied to the laser are adjusted as needed to lengthen or shorten the transmission wavelength of the laser to keep the transmission wavelength of the laser, as detected by the second detector, aligned with the transmission line of the etalon, as detected by the first detector. In this manner, the laser is kept locked on the absolute wavelength of the selected ITU channel. Routine wavelength locking feedback techniques may be employed to ensure reliable wavelength locking. Simultaneously, at step 509, any drift in the temperature of the etalon is detected and the temperature of the etalon is automatically adjusted by the microcontroller to compensate for the drift. Temperature detectors are mounted to the etalon and routine feedback techniques are employed to keep the temperature of the etalon fixed.
The wavelength-locking technique of FIG. 9 is effective, in part, because the etalon is more stable than the laser and hence it can be assumed that any short-term drift is caused by a variation in the output wavelength of the laser and not by drift in the transmission wavelengths of the etalon. Eventually, the transmission lines of the etalon may begin to drift despite the precise temperature control of the etalon. Hence, periodically, the system is recalibrated at step 510 by using the wavelength mapper to again tune the laser to the absolute wavelength of the selected transmission channel. As described above, wavelength mapping employs a gas absoφtion chamber providing absoφtion lines at known absolute wavelengths that remain fixed despite changes in temperature, pressure etc. After re- calibration, the steps of FIG. 9 are repeated to again align one of the transmission lines of the etalon with the transmission wavelength of the laser and to then lock the laser to the etalon transmission line. Recalibration may be performed, for example, once every week or month depending upon the needs of the specific system. In this regard, routine experiments are performed prior to installation of the system to determine the stability of the transmission lines of the etalon and then the system is re-calibrated as often as needed to ensure that no significant drift occurs in the etalon. The system may be implemented with both the wavelength locker and wavelength mapper such that recalibration can be performed as frequently as needed. Alternatively, an external mapper, such as the wavelength mapper described above is employed.
Various specific implementations will now be described with respect to FIGS. 11 - 16. FIG. 11 illustrates a WTL circuit board card 600 for insertion into a DWDM chassis. Typically, one card is provided per transmission channel of the DWDM. Hence, a forty channel DWDM includes forty of the circuit cards, mounted in parallel. WTL card 600 has a transmission laser mounted within a conventional butterfly package 602 for transmitting a modulated output beam via an output optic fiber 604. The output beam of the fiber 604 is merged with beams from other WTL cards of the DWDM via a multiplexer for eventual transmission via a single optic fiber to a remote DWDM receiver. Digital signals to be transmitted via the output beam and control signals specifying the transmission wavelength to be used are received by a WTL controller 606, which tunes the laser of butterfly package 602 to the transmission wavelength and then controls a signal modulator of the butterfly package to modulate the signal on the output beam. To tune the laser to the selected transmission wavelength, the WTL employs a wavelength map stored in an internal memory (not separately shown), which specifies the tuning parameters (i.e. the control voltage) to apply to the laser to achieve the selected transmission wavelength. The wavelength map is initially generated by a portable wavelength mapper of the type described above and transferred to the WTL controller memory. The WTL controller accesses the stored wavelength map to lookup the tuning parameters based on the input transmission wavelength. Alternatively, the WTL controller directly receives the appropriate tuning parameters via the input control signal and hence need not store the wavelength map. The butterfly package and its internal components can be entirely conventional and will not be described in detail herein. In FIG. 11, the butterfly package is shown in block diagram form with a single input control line from the WTL controller and a single input power line from a power supply 608. In-actuality, the butterfly package has numerous pins for receiving control signals from the controller and power from the power supply. The power supply also supplies power to the two microcontrollers of the circuit card.
To provide wavelength locking, a portion of the output beam from the laser is split from optic fiber 604 by a splitter 610 onto another optic fiber 611, then split again by splitter 612 onto optic fibers 614 and 616. Fiber 616 is coupled to a collimator 618, which directs a collimated beam through a temperature-controlled etalon 620 mounted within a sealed chamber 622. The etalon splits the beam into a set of transmission lines or fringes that are detected by a detector 624. Fiber 618 is coupled directly to a second detector 626. A wavelength-locking controller 628 receives signals from the two detectors and, using the method described above, adjusts the etalon to align one of the transmission lines to have the same wavelength as the output beam, then controls the laser (via controller 606) in a feedback loop to lock the laser to the etalon line. To adjust the etalon, the wavelength- locking controller controls an amount of current applied to resistive heating elements coupled to the etalon so as to adjust the temperature of the etalon and thereby adjust its length and index of refraction and hence adjust the wavelength maxima where transmission lines or fringes are generated by the etalon. Once the etalon has been adjusted to align a transmission line to the selected ITU channel, the wavelength-locking controller thereafter keeps the temperature of the etalon fixed so that the wavelength of the transmission line of the etalon does not drift. To control the laser, the wavelength-locking controller transmits control signals to the WTL controller, which cause the WTL controller to increase or decrease the control voltage applied to the laser of the butterfly package so as to adjust the wavelength of the output beam of the laser. The control signals provided by the wavelength-locking controller override those previously received by the WTL controller. Eventually, the components of the circuit card is recalibrated using the portable wavelength mapper to provide a new wavelength map for storage within the WTL controller or to provide new control signals so that any drift in the etalon can be compensated.
Etalon 620 is shown in FIG. 12. The etalon is a rectangular block formed of silicon and having an optical axis length of about 5.36 mm and a cross-section of about 3 mm by 3 mm and anti-reflection coatings on both faces providing up to 90% reflection at the desired wavelength range. The etalon thereby accommodates a beam width (shown in phantom lines and identified by reference numeral 630) of up to 3 mm. However, it is preferred that the laser beam to be passed through the etalon be collimated to have a width of about 1 mm such that, if the side edges of etalon are not precisely formed, edges of the beam will not be affected. The etalon has finesse in the range of 15 to 30 and preferably about 20 and provides a free spectral range in the range of 6 to 12 and preferably about 8GHz. Finesse relates to the precision of the individual transmission lines 507 (FIG. 10) generated by the etalon and depends primarily on the reflection coatings, and beam quality. If the finesse is too poor then it is difficult to achieve precise wavelength locking. Free spectral range relates to the wavelength spacing between adjacent transmission lines and depends primarily on the length of the etalon and its index of refraction. If the free spectral range is too great, then it may be necessary to heat or cool the etalon substantially to adjust one of the transmission lines until it is aligned with the selected transmission wavelength and hence power consumption is not minimized. Also, the etalon may need to be heated by an amount that will place the temperature of the etalon outside of an acceptable operational temperature range of the entire device, such as above a mandated maximum temperature of 75 degrees C for the entire circuit card. If the free spectral range is too small then there is a risk that the wavelength locker may lock the transmission wavelength of the laser to the wrong etalon transmission line, i.e. frequency hopping may occur. The finesse of 20 and the free spectral range of 100GHz for the 40 channel protocol; 50GHz for the 80 channel protocol; 25GHz for the 160 channel protocol; 12.5GHz for the 320 channel protocol; and 6.25GHz for the 640 channel protocol are preferred parameters because, with these parameters, the etalon can be used to lock the wavelength of the laser to within a precision of about 0.2 GHz with minimal risk of frequency hopping and with minimal power consumption while permitting the etalon to operate at over 75 degrees C. By achieving a precision of 0.2 GHz, the wavelength locker can be used with all ITU transmission protocols from 40 channels up to 1000 channels or more and can be used with all ITU transmission rates from 2.5 GHz to 100 GHz. Although a finesse of 20 and a free spectral range of 8 GHz are preferred, the etalon may also be configured to have other specific combinations of parameters depending upon the needs of particular systems. Also, the etalon can alternatively be made of other materials such as sapphire or indium phosphide, with the etalon configured as needed to achieve a desired finesse and free spectral range.
Two resistive heating elements 632 and 634 (not shown) made of nickel chromium are vapor deposited or mounted on opposing sides of the etalon. Each resistive heating element has a pair of gold contacts 636 on opposing ends thereof for coupling to electrical leads (not shown) from the wavelength-locking controller 628 (FIG. 11). It will be appreciated that numerous heating techniques may be incoφorated into the current invention such that devices provided heating are coupled to the etalon. The etalon is selectively heated by the wavelength-locking controller by applying current through the resistive leads by an amount sufficient to expand or contract the optical axis of the etalon to change its index of refraction and to align one of the transmission lines of the etalon with the selected ITU channel. With the parameters mentioned above, any C-band ITU channel can be accommodated by adjusting the temperature of the etalon in the range of approximately 72 ± 2 degrees C. No TE cooler or other cooling components are required. Rather, cooling is achieved by allowing the etalon to slowly lose heat to the ambient environment. In the alternative, rather than using resistive heating elements to vary the length of the entire etalon, a reflective micro-electrical mechanical system (MEMS) membrane may be mounted to an end of the etalon and coupled to the wavelength-locking controller to permit the controller to adjust an optical reflecting path of the etalon to thereby adjust the wavelengths of the transmission lines of the etalon.
To prevent the temperature-controlled etalon from losing heat too quickly, and to thereby minimize power losses and ensure temperature stability, the etalon is mounted within an airtight chamber (622 of FIG. 11) and is affixed to a base of the chamber by a bonding material 638 having insulating microspheres. By sealing the etalon in the airtight chamber, heat losses due to circulating air are minimized. The chamber may be filled with air or any other gas that provides a relatively low thermal conductivity and is substantially non-reactive and therefore does not corrode the etalon and its components. Another suitable gas is krypton gas. Air is preferred in the embodiment of FIG. 12 as it provides adequate thermal conductivity and is inexpensive to use. By mounting the etalon using a bonding material employing insulating microspheres, heat loss via conduction into the base of the chamber is minimized. This is particularly important because heat loss to the chamber base could result in a temperature gradient within the etalon, i.e. the bottom of the etalon could be cooler that the top. Any temperature gradient within the etalon decreases the finesse of the etalon and thereby can make it more difficult to precisely align a transmission line of the etalon with a selected ITU channel. A preferred bonding material is described in United States Patent 4,888,634 to Lai, et al., issued December 19, 1989 and entitled "High Thermal Resistance Bonding Material And Semiconductor Structures Using Same", which is incoφorated by reference herein. The bonding material of United States Patent 4,888,634 includes a binder and a high thermal resistance material in the form of sieved particles of generally uniform size. The binder is silicone, epoxy or polyimide and the high thermal resistance material is formed of glass microspheres, glass beads, ceramic microspheres, or ceramic beads.
A uniform temperature in the etalon is also facilitated by ensuring that the resistive heating elements cover a substantial portion of the opposing sides of the etalon. The heating elements are offset slightly from top and bottom edges of the etalon to ensure proper and uniform contact with the etalon even if the edges of the etalon are not precisely formed. Once the etalon has been heated so as to align one of the transmission lines of the etalon with the selected ITU transmission wavelength, the wavelength-locking controller keeps the transmission line aligned by detecting the temperature of the etalon using one or more temperature detectors 640 and adjusting the current applied to the etalon as needed to keep the temperature constant. Eventually, as noted above, the transmission line of the etalon may nevertheless drift and hence the aforementioned periodic recalibration is performed. Thus, FIGS. 11 - 12 illustrates one exemplary embodiment of the WTL circuit card of the invention. Various other exemplary embodiments will now be described with reference to FIGS. 13 ■ 16. The embodiments of FIGS. 13 - 16 are similar to that of FIGS. 11 and 12 and only pertinent difference will be described.
FIG. 13 illustrates a WTL circuit card 700 that includes both wavelength-locking components and wavelength-mapping components. The wavelength-mapping components include a gas absoφtion chamber 750 containing a gas of known absoφtion characteristics such as acetylene, hydrogen cyanide or carbon dioxide. The gas absoφtion chamber is mounted between optic fiber 718 and detector 726. A collimator 751 is provided at the end of fiber 718 for collimating a beam received from fiber 718 and directing the beam passed through the gas absoφtion chamber. Hence, a portion of the output beam of the laser of butterfly package 702 is passed through the gas absoφtion chamber. A wavelength- mapping controller 752 receives signals from both detector 726 and detector 724 and, using the wavelength-mapping techniques described above, maps the absolute transmission wavelengths of the laser by determining the laser tuning parameters associated with each absolute transmission wavelength of the laser, at least within a tuning range of interest, for storage within the WTL controller 706. Thereafter, upon receipt of a control signal specifying an ITU channel for transmission, the WTL controller looks up the tuning parameters and controls the laser to transmit signals on the ITU channel. The wavelength- locking controller 728 operates to keep the laser locked on the ITU channel. Periodically, wavelength-mapping is performed to recalibrate the system. By providing wavelength- mapping components along with wavelength-locking components, re-calibration can be performed as often as desired.
Note that, in the embodiment of FIG. 13, detector 726 is used to detect the gas absoφtion spectrum for wavelength-mapping puφoses and also to detect the laser beam for wavelength-locking puφoses. When performing wavelength mapping the wavelength of the laser is tuned through its full range of tuning parameters to generate the gas absoφtion spectrum. When performing wavelength locking, the wavelength of the laser remains substantially fixed, subject only to minor drift, which is compensated for by the wavelength-locking components. Hence, during wavelength-locking, the gas of the gas absoφtion chamber may absorb a portion of the light of the laser beam at the wavelength the laser is being locked to. This is not typically a problem because the gas only absorbs a portion of the beam, leaving a sufficient portion for detection to permit wavelength locking. If desired, three detectors may be provided: one for the etalon, one for the gas absoφtion chamber, and one for directly receiving a portion of the output beam of the laser, so that wavelength locking may be performed without using the beam passed through the gas absoφtion chamber.
FIG. 14 illustrates another WTL circuit card 800 having both wavelength locking components and wavelength mapping components, but wherein an etalon 820 is mounted within a gas absoφtion chamber 850 such that separate chambers need not be provided for the etalon and the absoφtion chamber. The gas absoφtion chamber contains acetylene, with the acetylene acting both as an absoφtive gas for wavelength-mapping puφoses and as an insulating gas for the puφoses of reducing heat loss from the etalon. The WTL circuit card is operated in the same manner as the circuit card of FIG. 13 to provide both wavelength- mapping and wavelength-locking. By mounting the etalon within the gas absoφtion chamber, overall device size can be reduced.
FIG. 15 illustrates a WTL circuit card 900 having wavelength locking components wherein the etalon 920 and its sealed chamber 922 are mounted inside the butterfly package 902. Conventional butterfly packages typically have sufficient unoccupied interior volume to accommodate an etalon of the size described above. If needed, the butterfly package can be made larger to accommodate the etalon chamber. If so, the conventional pin out arrangement of the butterfly package is preferably retained so that the modified butterfly package can be used in conventional WTL circuit cards without further circuit card modification. Also, depending upon the specific implementation, it may be possible to mount the etalon directly in the butterfly package without an etalon chamber. The use of an etalon chamber to enclose the etalon, however, is preferred as it permits more precise control of the temperature of the etalon and reduces the risk that heat from the etalon might affect the functioning of the laser. In any case, by mounting the etalon inside the butterfly package, overall device size is further reduced.
FIG. 16 illustrates another WTL circuit card 1000 wherein an etalon chamber 1022 is mounted within the butterfly package 1002, but wherein the etalon chamber also contains acetylene so as to function as a gas absoφtion chamber as well. The WTL circuit card is operated in the same manner as the circuit card of FIG. 14 to provide both wavelength- mapping and wavelength-locking. By mounting the etalon within the gas absoφtion chamber and mounting the gas absoφtion chamber inside the butterfly package, overall device size is still further reduced.
As the nature of the use of lasers or DWDM in which lasers are installed may prevent periodic mapping of the lasers for recalibration puφoses, a technique that provides for a single calibration for a laser package is summarized in FIG. 17. The general method may be performed by an etalon calibration unit, such as the one illustrated in FIG. 18, to be described below, or by any other suitable device. The etalon to be calibrated in the calibration unit is later integrated into a laser package, such as the one illustrated in FIG. 19.
Initially, at step 1100 of FIG. 17, a module containing an etalon (such as etalon 620 of FIG. 12) and a detector is mounted within an etalon calibration unit FIG. 18. The etalon calibration unit 1200 includes a calibration laser 1204, a gas cell 1212 (or any other suitable device for comparing the transmission wavelengths of the calibration laser detected by the detector on the module with a known wavelength spacing), and a microcontroller 1216 coupled to leads on the module. At step 1104, the calibration laser transmits a beam through the etalon and through the gas cell while varying the wavelength of the laser beam. A resulting etalon transmission line spectrum and a resulting gas absoφtion line spectrum are detected for processing by the microcontroller. At step 1108, the microcontroller compares the spacing between adjacent transmission peaks of the etalon spectrum with the spacing between known absoφtion lines of the gas absoφtion spectrum to determine the absolute wavelength spacing of the transmission peaks. The spacing is compared to a desired predetermined ITU grid line spacing (such as the 40 channel C-band spacing), and if the spacing does not closely match the desired grid line spacing, the microcontroller applies heat to the etalon at step 1112 to adjust the temperature of the etalon until the transmission peak spacing approximately matches the desired ITU grid line spacing. If the spacing of the etalon transmission peaks cannot be adjusted to match the grid line spacing solely by the application of heat to the etalon or if the amount of heart required exceeds predetermined manufacturing tolerances, then at step 1116 the etalon is either discarded or is manually tilted within its package to approximate the desired spacing and steps 1100 - 1112 are repeated. Manual tilting of the etalon at step 1116 typically requires that the etalon be removed from the etalon package by severing whatever adhesive or other bonding material was used to mount the etalon within the etalon package and then re-mounting the etalon at a slightly different angle using additional adhesives or bonding materials.
Once the spacing between the etalon peaks is equivalent or within the allowable tolerances for the particular ITU grid line spacing, then at step 1120, the amount of heat applied to the etalon is slightly adjusted to shift the etalon transmission peaks until they align with the nearest ITU grid line. Note that the slight adjustment of the temperature is not sufficient to change the spacing of the etalon peaks beyond the desired tolerances, only the wavelengths of the peaks. (Other suitable tuning techniques can be used instead to tune the laser to a selected transmission wavelength). The resulting temperature of the etalon is recorded as the "etalon set point temperature." Then, at step 1124 the etalon module is removed from the calibration package and is eventually mounted within a laser such as a
WTL of a DWDM. The microcontroller of the WTL is then programmed with the etalon set point temperature to permit the etalon to be quickly adjusted to align the transmission peaks of the etalon with selected ITU lines. Thereafter, if needed, the calibration of the etalon can be verified by using the wavelength mapper described above.
In one specific example, the DWDM employs a 160 channel protocol and the desired spacing between ITU grid lines is 25 GHz with an allowable variation in the etalon peak spacing of ± 0.008 GHz, although each individual etalon peak may be within ± 0.625
GHz of each individual ITU transmission line. Therefore, prior to installation into the laser package, a 1.71999 mm at 50 °C thick silicon etalon 1201 mounted on a module 1203 iss placed within the etalon calibration unit 1200. If the initial spacing of the etalon peaks detected at step 1108 is not equal to 25 GHz ± 0.008 GHz, then the temperature of the etalon is adjusted (usually ± 20 °C which adjusts the FSR by ± 0.025 GHz) until the peaks are spaced at 25 GHz ± 0.008 GHz. If, at step 1108, the microcontroller detects that the FSR falls outside of the range of 25 GHz ± 0.025 GHz, then the etalon is discarded or is manually tilted by approximately 3 degrees or less to allow the FSR to align with the ITU grid lines. Fine tuning of the temperature of the etalon is adjusted slightly (usually ± 0.5 °C) so that the etalon transmission peaks line up with the nearest ITU grid lines. For a 50 GHz spacing, a 2.066 mm at 50 °C thick fused silica etalon may be utilized.
This arrangement provides for more rapid switching by the laser between ITU channels as every etalon transmission peak remains associated with one of the ITU channels and the tuning parameters of the laser need only be accordingly adjusted. Furthermore, periodic recalibration of the laser is not required if the etalon is maintained at the predetermined temperature and the laser does not exhibit large amounts of hysterisis.
FIG. 19 illustrates a WTL circuit card 1300 wherein an etalon 1201 is mounted within a module 1203 separate from a laser 1304 that is mounted within a butterfly package 1308. Unlike the previously described WTL circuit card embodiments, no gas cell is required within the WTL. Also, rather than diverting light from the front laser facet, the etalon is mounted opposite the main output of the laser and receives light from the rear laser facet. A wavelength-locking controller of the WTL is programmed with the etalon set point temperature and then WTL is operated in the same manner as the circuit card of FIG. 15 to provide wavelength-locking.
FIGS. 20 - 29 illustrate various alternative embodiments of the wavelength lockers of FIG. 11 and FIG. 15 that provide wavelength locking but not wavelength mapping, i.e. the wavelength lockers lack a reference gas chamber for use in mapping the complete set of tuning parameters of the laser but include an etalon for use in locking the laser to a selected transmission wavelength once the appropriate tuning parameters are known. More specifically, the various embodiments of FIGS. 20 - 29 employ an arrangement of optical components configured so as to simplify wavelength locking.
FIG. 20 shows pertinent portions of a wavelength locker 1400 having a WTL laser 1402 for transmitting a laser beam 1403 via a rear facet 1405 through an etalon 1404 and to an etalon fringe detector 1406. A laser reference wavelength detector 1408 is inteφosed between the laser and etalon to capture a portion of the laser beam. Laser reference wavelength detector 1408 is slightly offset from an optical path of the laser beam to permit most of the light emitted from the rear facet of the laser to reach the etalon. The laser reference wavelength detector 1408 however captures a small portion of the light for use in detecting a reference wavelength of the laser. The wavelength locker employs the method of FIG. 9 to lock the output wavelength of the laser to an ITU grid wavelength by comparing signals detected by detectors 1406 and detector 1408. Simultaneously, the laser outputs a modulated beam 1411 through a front facet 1410 into an optic fiber 1412. The modulated output beam, transmitted along fiber 1412, is merged with beams from other WTL cards of a DWDM via a multiplexer for eventual transmission via a single optic fiber to a remote DWDM receiver. Note that FIG. 20 shows only pertinent selected components of the wavelength locker. Other components that may be needed, such as control circuitry, heating elements, thermistors, collimators, and the like, are illustrated in subsequent figures.
Thus FIG. 20 illustrates an optical arrangement wherein the various components are mounted substantially in-line, i.e. the components are positioned along a common axis so as to provide a compact arrangement permitting installation in small butterfly or DIP packages. Also, by positioning laser wavelength detector 1408 directly in the path of the laser beam, rather than off-axis, ease of wavelength locking is achieved, as will be explained in detail below. Detector 1408 is preferably a round detector, as shown in FIG. 21, sized and positioned to capture about 30% of the light of beam 1403, permitting 70% to enter the etalon. In an alternative arrangement, shown in FIG. 22, the detector is aligned on-axis with beam 1403 but has an annular shape sized to capture an outer perimeter portion of the beam while permitting a center portion to pass directly to the etalon. Again, preferably, the detector captures about 30% of the light. The amount of light the detector captures need not be set to exactly 30% but in general can be set to any value sufficient to capture enough light to permit the detector operate. Other appropriate values are, for example, in the range of 20 - 40%. In both arrangements, detector 1408 receives light directly from the laser and rather than via a beam splitter as in the arrangement of FIG. 11.
FIGS. 23 and 24 illustrate the magnitude of a laser signal as a function of wavelength as detected by a reference laser detector and an etalon detector for an off-axis arrangement (as in the arrangement of FIG. 11) and for an on-axis detector (as in the arrangement of FIG. 20). The dashed line 1418 of FIG. 23 is the signal detected by the laser reference detector. The solid line 1414 is the signal detected by the etalon detector, which includes various fringes. For the arrangement of FIG. 23, a beam splitter is used to split the laser beam into two separate beams— one to the laser wavelength detector and the other to the etalon detector. The beam splitter causes the amplitude of the reference signal (dashed line 1418) to vary as a function of wavelength. The beam splitter also causes the amplitude of the peaks of the fringes (solid line 1414) to vary as a function of wavelength. The amplitude variation in the reference signal and the etalon signal are out of phase because the beam splitter includes both transmissive and reflective components. For the on-axis arrangement of FIG. 24, there is no beam splitter and hence there is no wavelength variation in either the reference signal 1420 or the fringe peaks 1416. In other words, the two signals remain in phase.
Wavelength locking is achieved by detecting the wavelength at which one side of a fringe achieves a reference magnitude equal to half of the average fringe magnitude (1422 in FIG. 24) and then adjusting the laser in a feedback loop so as to prevent the laser from drifting. This is referred to as side locking (or slope locking) and is typically easier than attempting to detect the top of the fringe. So long as the ratio of the fringe magnitude to the reference magnitude remains constant (as in FIG.24), then side locking is straightforward.
More specifically, side locking works by continually adjusting the laser wavelength to maintain a constant lock point ratio (i.e. a constant ratio of the etalon signal divided by the reference signal). In the on-axis arrangement, with the percentage of light on each detector properly adjusted, the reference detector signal cuts across the etalon detector signal at the half-amplitude point on each etalon peak, as shown by the dots in FIG. 24. In this case, the lock point ratio is exactly 1.0. Note though that the lock point ratio need not to be set to 1.0. The lock point ratio can be set to other values, so long as the control software of the wavelength locker is programmed with (or can automatically detect) the actual lock point ratio. Preferably, though, the lock point ratio is set to about 1.0. To achieve a lock point ratio as close as possible to 1.0, the laser reference detector should be mounted so that 30% of the light is captured by the laser reference detector while 70% passes through the etalon to the etalon detector. The half-amplitude point on the etalon peak then represents 35% of the total light, while 30% impinges on the reference detector. About 5% of the light is lost in passing through the etalon. Hence, about 30% of the total light signal reaches each detector at the half-amplitude point on the fringe thus achieving a lock point ratio of 1.0. And, most importantly, the lock point ratio does not vary from fringe to fringe and hence does not vary from ITU channel to ITU channel. In the off-axis arrangement of FIG. 23, the lock point ratio varies from fringe to fringe and hence also varies from ITU channel to ITU channel, thereby making side locking more difficult. To achieve precise side locking in the off-axis arrangement, the wavelength locker should be programmed to compensate based on the degree of phase modulation. The degree of phase modulation can either be pre-programmed into the control circuit of the wavelength locker or can be automatically determined by the wavelength locker. Although those skilled in the art can provide the necessary compensation programming, it is certainly preferable to configure the system to not require any such compensation.
FIG. 25 illustrates a system 1424, which is a slight variation of the arrangement of
FIG. 20. In system 1424, the reference wavelength detector 1408 is mounted at an angle between 30 and 45 degrees to the optical axis to ensure that any light reflected from the surface of the detector is reflected off-axis. Etalon 1404 is mounted at angle of between about one and three degrees (and preferably two degrees) to the optical axis, also to ensure that any reflected light is reflected off-axis. ne,__n _,
PCT/US02/30667
FIGS. 26 and 27 illustrate a wavelength locker module 1500, such as a DIP or butterfly package, incoφorating an on-axis optical wavelength locking system. A WTL laser (not shown) communicates with the module by a fiber 1503 which is coupled to a ferrule 1502 that is mounted to an outside surface of module. The module includes an etalon 1504, an etalon fringe detector 1506 and a laser reference wavelength detector 1508 arranged substantially as described in FIG. 26. A collimator 1509 is provided to initially collimate a beam received from the laser from the fiber. The collimator mounts to a ferrule mounted on the inner side surface of a housing 1511 of the module. Detectors 1506 and 1508 both mount directly to an upper substrate 1530 formed of FR4, which is affixed to inner side surfaces of the housing. Etalon 1504 is mounted to the substrate 1532 formed of Aluminum Nitride. A thermistor or other temperature sensor (i.e., a platinum resistor) 1534 is mounted on the upper substrate near to the etalon to detect the temperature of the etalon. A heating pad deposited on the substrate (not shown) on a portion positioned under the etalon heats the etalon under control of a control circuit 1536 to keep the temperature of the etalon constant as detected by the thermistor. The thermistor is not positioned directly on the etalon (as in the arrangement of FIG. 12) for ease of manufacturing. Care should be taken to ensure that the thermistor is mounted sufficiently close to the etalon to be able to reliable detect the temperature of the etalon. Control circuit 1536 is mounted to opposing sides of a lower substrate 1538, formed of ceramic, which is affixed to inner side surfaces of the housing. FIG. 27 illustrates a slightly different arrangement 1501, wherein there is only a single substrate. Control circuitry 1536 is mounted to an underside of substrate 1538, which is formed of FR4.
Thus FIGS. 20 - 27 illustrate various on-axis optical arrangements, which are small in size and which ensure that the aforementioned phase modulation problems are avoided. In cases where size is either not critical and where an off-axis arrangement is more convenient, the arrangements of FIGS. 28 or 29 are preferably used. The arrangements of FIGS. 28 and 29 are similar to that of FIG. 20 and only pertinent differences will be described. In FIG. 28, the etalon 1604 and etalon detector 1606 are mounted off-axis. A mirror 1609, or other appropriate reflective (but non-transmissive) device, is positioned so as to reflect a portion of laser beam 1603 to the etalon, while permitting remaining portions of the beam to pass directly to the laser wavelength detector 1608. In FIG. 29, the etalon 1654 and etalon detector 1656 are mounted on-axis. The mirror 1659 is positioned so as to reflect a portion of laser beam 1653 to the laser reference detector 1658, while permitting remain portions of the beam to pass directly to the etalon 1654. In both embodiments, the mirror is mounted so that about 30% of the beam is transmitted to laser wavelength detector and 70% to the etalon. As with the arrangement of FIGS. 20 - 27, no transmissive device is used reflect light to either the laser wavelength detector or the etalon detector, and hence the aforementioned phase modulation problems are avoided. In this regard, the mirror used to reflect portions of the laser beam does not result in a variation in the amplitude of the fringe peaks and hence does not result in the sort of modulation problems illustrated in FIG.24.
What have been described thus far are various wavelength mapping and locking techniques for use in ensuring that the wavelength of a laser beam output from a WTL or other laser is locked to a particular ITU grid wavelength for transmission through an optic fiber. However, as described above, frequency chiφ can affect signals transmitted along an optic fiber resulting in potentially significant distortion of the optical pulse, particularly over long haul optic fiber transmission systems. The distortion limits the maximum frequency of signal transmission modulation.
FIG. 30 illustrates an optical transmission system 1700 wherein an etalon chiφ filter 1702 is provided for reducing or eliminating frequency chiφ. The etalon chiφ filter is mounted along an output optic fiber 1704 of a DWDM system configured to transmit optical signals at one or more of transmission frequencies of a selected ITU channel grid. The optical signals are generated using individual WTLs of a DWDM 1706, each tuned to a different ITU channel frequency, and are combined for transmission into the single optic fiber using an optical multiplexer 1708. The etalon is fabricated to have a FSR exactly equal to the minimum wavelength spacing of the selected ITU grid. Hence, if the system is configured to transmit at any one of the channels of the 40 channel C-band ITU system, an etalon with an FSR of 100 is used. If the system is configured to transmit at any one of the channels of the 80 channel C-band ITU system, an etalon with an FSR of 50 GHz is used. In either case, the etalon preferably has a finesse of about 25-50. As shown in FIG. 31, the etalon is tuned to align the etalon fringes 1709 with the ITU channel frequencies 1711. As shown in FIG. 32, when properly aligned, any portion of an optical transmission pulse 1713 transmitted from the DWDM into the etalon chiφ filter 1704 at a frequency differing from one of the ITU frequencies is thereby filtered out by the etalon, yielding a filtered pulse 1715. Hence, only those portions of an optical pulse transmitted precisely at one of the ITU channel frequencies are coupled into the optic fiber. Those portions of the optical pulse having a slightly different frequency, perhaps as a result of optical frequency chiφ, are blocked from entering the optic fiber.
FIG. 33 illustrates internal components of an exemplary etalon chiφ filter. A collimator 1710 collimates optical signals received from output fiber 1704 for passing through etalon 1712. The temperature of the etalon is adjusted, as needed, by a heating element 1714 to maintain the fringes of the etalon aligned with the selected ITU channel grid frequencies. A thermistor or other temperature sensor 1716 is employed to detect the temperature of the etalon. The heating element is controlled by a control circuit 1717, which receives signals from the thermistor. The filtered optical signals emerging from the etalon are collimated again by a collimator 1718 for coupling back into optic fiber 1704 for transmission to a downstream DWDM. As with the arrangement of the wavelength locker of FIG. 26, the etalon and thermistor are preferably mounted to a substrate formed of FR4. The control circuitry is mounted to a second substrate formed of ceramic. The collimators and the two substrates are mounted to internal sides of an outer housing 1722.
The exemplary embodiments have been primarily described with reference to block diagrams illustrating pertinent components of the embodiments. It should be appreciated that not all components of a complete implementation of a practical system are necessarily illustrated or described in detail, nor are all of the varying component layout schema described. Rather, only those components and architectures necessary for a thorough understanding of the invention have been illustrated and described in detail. Actual implementations may contain more components or, depending upon the implementation, fewer components. Modifications to the preferred embodiments will be apparent to those skilled in the art. For example, in embodiments employing reflective surfaces other reflective surfaces, such as a MEMS mirror, can instead be used. Consequently, the scope of the present invention should not be limited by the particular embodiments discussed above, but should be defined only by the claims set forth below and equivalents thereof.

Claims

WHAT IS CLAIMED IS:
1. A system for use in locking a transmission wavelength of a laser to a selected wavelength comprising: a laser for providing an output beam along an optical path; a laser wavelength detector, positioned along an initial linear portion of the optical path of the laser, for capturing a first portion of the output beam of the laser to detect a transmission wavelength of the laser; an etalon positioned along the initial linear portion of the optical path of the laser downstream from the laser wavelength detector for simultaneously receiving a second portion of the output beam of the laser and for splitting the second portion into a series of transmission lines; and an etalon wavelength detector for detecting the etalon transmission lines.
2. The system of claim 1 further including: a control unit for setting the transmission wavelength of the output beam of the laser to a selected wavelength and also for tuning the etalon to align a selected one of the etalon transmission lines to the selected wavelength, the wavelength-locking control unit thereafter detecting any drift of the transmission wavelength of the laser from the selected etalon transmission line and adjusting the laser to compensate for any drift such that the output beam of the laser is locked to the selected transmission wavelength so long as the selected etalon transmission line remains at the selected wavelength.
3. The system of claim 1 wherein the laser wavelength detector is round and a perimeter portion thereof is inteφosed along the initial linear portion of the optical path of the laser to capture the first portion of the beam.
4. The system of claim 1 wherein the laser wavelength detector includes a through hole formed therein and wherein an annular portion of the laser wavelength detector captures the first portion of the beam.
5. The system of claim 1 wherein the laser wavelength detector is mounted so as to capture 20% to 40% of the output beam of the laser before the beam reaches the etalon.
6. The system of claim 5 wherein the laser wavelength detector is positioned so as to capture 30% of the output beam of the laser before the beam reaches the etalon.
7. The system of claim 1 wherein the laser wavelength detector is positioned at an angle to the initial linear portion of the optical path of the laser.
8. The system of claim 7 wherein the laser wavelength detector is positioned at an angle of 30 to 45 degrees to the initial linear portion of the optical path of the laser.
9. The system of claim 1 wherein the laser wavelength detector, etalon, and etalon wavelength detector are mounted to a first substrate.
10. The system of claim 9 wherein the first substrate is formed of FR4.
11. The system of claim 1 wherein the control unit is mounted to a second substrate.
12. The system of claim 11 wherein the second substrate is ceramic.
13. The system of claim 1 wherein the laser wavelength detector, etalon, and etalon wavelength detector are mounted to a first side of a substrate and wherein the control unit is mounted to a second side of the substrate.
14. The system of claim 1 wherein the laser wavelength detector, etalon, and etalon wavelength detector are positioned along an optical path emanating for a first output facet of the laser and wherein an output optic fiber is positioned along an optical path emanating for a second output facet of the laser.
15. The system of claim 14 further including a second etalon positioned between the second output facet of the laser and the optic fiber and configured so as to reduce frequency chiφ of optical signals transmitted by the laser through the optic fiber.
16. The system of claim 15 wherein the laser is controlled so as to transmit at a frequency selected from a group of channel frequencies having fixed wavelength spacing and wherein the second etalon has a free spectral range equal to the fixed wavelength spacing such that frequency chiφ is reduced at any of the selected frequencies.
17. The system of claim 15 wherein the second etalon has a free spectral range of about 50.
18. The system of claim 15 wherein the second etalon has a finesse in the range of about 25-50.
19. A system for use in locking a transmission wavelength of a laser to a selected wavelength comprising: means for providing an output laser beam along an optical path; means, positioned along an initial linear portion of the optical path of the laser, for capturing a first portion of the output beam of the laser to detect a transmission wavelength of the laser; means, positioned along the initial linear portion of the optical path of the laser ' downstream from the means for capturing the first portion of the laser beam, for simultaneously receiving a second portion of the output beam of the laser and for splitting the second portion into a series of transmission lines; and means for detecting the etalon transmission lines.
20. A method for locking a transmission wavelength of a laser to a selected wavelength a laser wavelength detector, an etalon, an etalon wavelength detector and a control unit, the method comprising the steps of: setting a transmission wavelength of the laser to a selected wavelength; detecting a transmission wavelength of a laser using the laser wavelength detector with the laser wavelength detector mounted along an initial linear portion of an optical path of the laser to capture a first portion of the output beam of the laser; simultaneously detecting etalon transmission lines using the etalon and the wavelength detector with the etalon and etalon wavelength detector positioned along the initial linear portion of the optical path of the laser downstream from the laser wavelength detector so as to capture a second portion of the output beam of the laser; tuning the etalon to align a selected one of the etalon transmission lines to the selected wavelength; detecting any drift of the transmission wavelength of the laser from the selected etalon transmission line; and adjusting the laser to compensate for any drift, such that the output beam of the laser is locked to the selected transmission wavelength so long as the selected etalon transmission line remains at the selected wavelength.
21. A system for use in locking a transmission wavelength of a laser to a selected wavelength comprising: a laser for providing an output beam along an optical path; a mirror, positioned along a linear portion of the optical path of the laser, for reflecting a first portion of the laser beam off-axis while permitting a second portion of the laser beam to continue along on-axis; an etalon positioned to capture the first portion of the output beam of the laser for splitting the second portion into a series of transmission lines; an etalon wavelength detector for detecting the etalon transmission lines; and a laser wavelength detector positioned to simultaneously capture the second portion of the output beam of the laser to detect a transmission wavelength of the laser.
22. The system of claim 21 wherein the mirror is mounted so as to reflect 60% to 80% of the output beam of the laser to the etalon, permitting the remaining 20% to 40% to pass to the laser wavelength detector.
23. A system for use in locking a transmission wavelength of a laser to a selected wavelength comprising: a laser for providing an output beam along an optical path; a mirror, positioned along a linear portion of the optical path of the laser, for reflecting a first portion of the laser beam off-axis while permitting a second portion of the laser beam to continue along on-axis; a laser wavelength detector positioned to capture the first portion of the output beam of the laser to detect a transmission wavelength of the laser; an etalon positioned to simultaneously capture the second portion of the output beam of the laser for splitting the second portion into a series of transmission lines; and an etalon wavelength detector for detecting the etalon transmission lines.
24. The system of claim 23 wherein the mirror is mounted so as to reflect 20% to 40% of the output beam of the laser to the laser wavelength detector, permitting the remaining 60% to 80% to pass to the etalon.
25. A system for filtering chiφ from optical signals transmitted by a laser through an optic fiber, the system comprising: a laser for providing an output beam, the laser controlled to transmit at a frequency selected from a group of channel frequencies having fixed a wavelength spacing; an optic fiber for transmitting the output beam; and an etalon chiφ filter, mounted between the laser and the optic fiber, for reducing frequency chiφ in signals transmitted by the laser at any of the selected frequencies.
26. The system of claim 25 wherein the etalon chiφ filter includes an etalon having a free spectral range equal to the fixed wavelength spacing such that frequency chiφ is reduced at any selected frequency of the group of channel frequencies.
27. The system of claim 26 wherein the etalon has a free spectral range of about 50.
28. The system of claim 26 wherein the etalon has a finesse of about 20.
29. The system of claim 26 wherein the optic fiber and the etalon are positioned along a first optical path emanating for a first output facet of the laser and wherein a laser wavelength detector, a second etalon, and an etalon wavelength detector are positioned along a second optical path emanating for a second output facet of the laser.
30. The system of claim 29 wherein the laser wavelength detector positioned along the second optical path of the laser detects a transmission wavelength of the laser, the second etalon splits the second portion into a series of transmission lines, and the etalon wavelength detector detects the etalon transmission lines; and wherein a control unit is provided for setting the transmission wavelength of the laser to a selected wavelength and for tuning the second etalon to align a selected one of the etalon transmission lines to the selected wavelength, the wavelength-locking control unit thereafter detecting any drift of the transmission wavelength of the laser from the selected etalon transmission line and adjusting the laser to compensate for any drift such that the output beam of the laser is locked to the selected transmission wavelength so long as the selected etalon transmission line remains at the selected wavelength.
31. A system for filtering chiφ from optical signals transmitted by a laser through an optic fiber, the system comprising: means for providing a laser beam at a frequency selected from a group of channel frequencies having fixed a wavelength spacing; and an etalon chiφ filtering means, having a free spectral range equal to the fixed wavelength spacing and tuned to provide transmission lines aligned with the group of channel frequencies, for reducing frequency chiφ in signals transmitted at any of the selected frequencies by the means for providing a laser beam.
32. A method for filtering chiφ from optical signals transmitted by a laser through an optic fiber, the method comprising the steps of: selecting frequencies from a group of channel frequencies having fixed a wavelength spacing; transmitting laser beams at the selected frequencies; and routing the laser beam through an etalon, having a free spectral range equal to the fixed wavelength spacing and tuned to provide transmission lines aligned with the group of channel frequencies, to reduce frequency chiφ in signals transmitted at all of the selected frequencies.
PCT/US2002/030667 2001-09-28 2002-09-26 Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon WO2003030311A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002362396A AU2002362396A1 (en) 2001-09-28 2002-09-26 Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon
EP02800371A EP1436864A4 (en) 2001-09-28 2002-09-26 Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/966,152 2001-09-28
US09/966,152 US6693928B2 (en) 2000-10-10 2001-09-28 Technique for filtering chirp from optical signals

Publications (2)

Publication Number Publication Date
WO2003030311A2 true WO2003030311A2 (en) 2003-04-10
WO2003030311A3 WO2003030311A3 (en) 2003-08-21

Family

ID=25510986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/030667 WO2003030311A2 (en) 2001-09-28 2002-09-26 Method and system for locking transmission wavelengths for lasers in a dense wavelength multiplexer utilizing a tunable etalon

Country Status (4)

Country Link
US (1) US6693928B2 (en)
EP (1) EP1436864A4 (en)
AU (1) AU2002362396A1 (en)
WO (1) WO2003030311A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11177630B2 (en) 2018-02-02 2021-11-16 Brolis Sensor Technology, Uab Wavelength determination for widely tunable lasers and laser systems thereof
US11298057B2 (en) 2017-05-22 2022-04-12 Brolis Sensor Technology, Uab Tunable hybrid III-V/IV laser sensor system-on-a-chip for real-time monitoring of a blood constituent concentration level

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7209498B1 (en) * 2000-05-04 2007-04-24 Intel Corporation Method and apparatus for tuning a laser
JP2002016318A (en) * 2000-06-30 2002-01-18 Furukawa Electric Co Ltd:The Wavelength locker module
US6693928B2 (en) * 2000-10-10 2004-02-17 Spectrasensors, Inc. Technique for filtering chirp from optical signals
US6671296B2 (en) * 2000-10-10 2003-12-30 Spectrasensors, Inc. Wavelength locker on optical bench and method of manufacture
US7505488B2 (en) * 2001-09-28 2009-03-17 Raytheon Company Synthetic aperture ladar with chirped modelocked waveform
US6959024B2 (en) 2002-02-28 2005-10-25 Picarro, Inc. Laser Tuning by spectrally dependent spatial filtering
GB0205529D0 (en) * 2002-03-08 2002-04-24 Agilent Technologies Inc Module apparatus
US6724784B2 (en) * 2002-04-15 2004-04-20 Agere Systems Inc. Optical wavelength locker module having a high thermal conductive material
AU2003244772A1 (en) * 2002-06-07 2003-12-22 Bookham Technology Plc Wavelength stabilized optical device
US7268944B2 (en) * 2002-06-12 2007-09-11 Finisar Corporation Optical interleaver, filter cell, and component design with reduced chromatic dispersion
US20040227996A1 (en) * 2002-06-12 2004-11-18 Tengda Du Optical interleaver and filter cell design with enhanced thermal stability
US7245833B1 (en) * 2002-11-15 2007-07-17 Itt Manufacturing Enterprises, Inc. Photonic channelized RF receiver employing dense wavelength division multiplexing
US7180918B2 (en) * 2003-05-16 2007-02-20 Metal Improvement Company, Llc Self-seeded single-frequency solid-state ring laser and system using same
US20060279819A1 (en) * 2005-05-26 2006-12-14 Inphase Technologies, Inc. Laser mode stabilization using an etalon
US7688872B2 (en) * 2008-03-18 2010-03-30 Alcatel-Lucent Usa Inc. Self-Calibrating integrated photonic circuit and method of control thereof
US8363224B2 (en) * 2010-03-31 2013-01-29 General Electric Company Fringe locking subsystem and methods of making and using the same
US8477296B2 (en) * 2010-04-12 2013-07-02 University of Maribor Opto-electronic signal processing methods, systems, and apparatus for optical sensor interrogation
JP5720200B2 (en) * 2010-11-25 2015-05-20 セイコーエプソン株式会社 Optical module and optical measuring device
US9667033B2 (en) 2012-02-10 2017-05-30 Nkt Photonics A/S Laser device
US9249656B2 (en) 2012-11-15 2016-02-02 Baker Hughes Incorporated High precision locked laser operating at elevated temperatures
CN103196852B (en) * 2013-04-10 2015-05-13 中煤科工集团重庆研究院有限公司 Laser gas detection method with automatic linearity correction function
US9203206B2 (en) * 2013-06-18 2015-12-01 Oclaro Inc. Thermal locker
JP2015088626A (en) * 2013-10-30 2015-05-07 住友電気工業株式会社 Method for testing wavelength variable laser device and wavelength variable laser device
US10024787B2 (en) 2014-05-15 2018-07-17 General Electric Company System and method for measuring concentration of a trace gas in a gas mixture
CN104112971B (en) * 2014-07-15 2017-01-18 鲁东大学 Intelligent tunable fiber laser based on wavelength division multiplexer (WDM) wave length detecting technology
US10050405B2 (en) * 2016-04-19 2018-08-14 Lumentum Operations Llc Wavelength locker using multiple feedback curves to wavelength lock a beam
DE102016208754B4 (en) * 2016-05-20 2017-12-28 Humedics Gmbh Method for controlling the emission frequency of a laser
CN106953232B (en) * 2017-05-16 2023-08-29 深圳新飞通光电子技术有限公司 Dual-wavelength tunable laser, dual-wavelength tunable laser system and method for realizing rapid frequency modulation
TWI661686B (en) * 2018-02-23 2019-06-01 中華電信股份有限公司 A message transparent transmission device for automatic adjusting optical wavelength scheme and method thereof
CN110212977A (en) * 2019-06-10 2019-09-06 昂纳信息技术(深圳)有限公司 A kind of wavelength and power monitor device
CN110657947B (en) * 2019-09-03 2021-01-12 天津大学 Optical fiber calibration method for signal splicing based on gas absorption cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041611A1 (en) * 2000-10-10 2002-04-11 May Randy Dean Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US20020097760A1 (en) * 2000-10-10 2002-07-25 Tunable Photonics Corporation Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US20020163650A1 (en) * 2000-10-10 2002-11-07 Tunable Photonics Corporation Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4468773A (en) 1981-05-29 1984-08-28 Seaton Norman T Laser control apparatus and method
FR2542511B1 (en) 1983-03-09 1986-12-19 Lecoy Pierre METHOD AND DEVICE FOR REGULATING THE LIGHT POWER OF LASER DIODES
US4689794A (en) 1985-01-28 1987-08-25 Northrop Corporation Injection locking a xenon chloride laser at 308.4 nm
EP0240293B1 (en) 1986-03-31 1992-10-28 Matsushita Electric Industrial Co., Ltd. Frequency stabilized light source
JPH0728077B2 (en) 1986-04-16 1995-03-29 株式会社トプコン Semiconductor laser oscillation frequency / oscillation output stabilizer
US4737798A (en) 1986-07-03 1988-04-12 Xerox Corporation Laser diode mode hopping sensing and control system
CA1297935C (en) 1987-02-11 1992-03-24 James A. Piper Wavelength locked dye lazer with transverse pumping
DE3885134D1 (en) 1987-03-30 1993-12-02 Siemens Ag Arrangement for controlling or regulating an emission wavelength and emitted power of a semiconductor laser.
JPH01251681A (en) 1988-03-25 1989-10-06 Topcon Corp Semiconductor laser oscillation frequency/oscillation output stabilizing device
JP2687557B2 (en) * 1989-03-17 1997-12-08 横河電機株式会社 Frequency stabilized semiconductor laser device
US4982406A (en) 1989-10-02 1991-01-01 The United States Of America As Represented By The Secretary Of The Air Force Self-injection locking technique
US5023947A (en) * 1989-11-01 1991-06-11 At&T Bell Laboratories Optical equalization receiver for lightwave communication systems
US5068864A (en) 1990-05-04 1991-11-26 Laser Science, Inc. Laser frequency stabilization
US5313480A (en) 1990-09-18 1994-05-17 Litton Systems, Inc. Stabilization apparatus and method for an SFS
JP3407893B2 (en) 1991-05-27 2003-05-19 パイオニア株式会社 Semiconductor laser controller
US5691989A (en) 1991-07-26 1997-11-25 Accuwave Corporation Wavelength stabilized laser sources using feedback from volume holograms
US5509022A (en) 1991-09-20 1996-04-16 The University Of Melbourne Self-tuned mode-locked laser
US5363388A (en) 1991-10-18 1994-11-08 Cedars-Sinai Medical Center Continuously tunable solid state ultraviolet coherent light source
US5323409A (en) 1991-12-05 1994-06-21 Honeywell Inc. Wavelength stabilization
US5208819A (en) 1992-01-23 1993-05-04 General Instrument Corporation Optical source with frequency locked to an in-fiber grating resonantor
US5801866A (en) 1992-08-27 1998-09-01 Trex Communications Corporation Laser communication device
US5299212A (en) 1993-03-10 1994-03-29 At&T Bell Laboratories Article comprising a wavelength-stabilized semiconductor laser
JPH07240716A (en) 1994-02-28 1995-09-12 Ando Electric Co Ltd Variable wavelength light source
US5428700A (en) 1994-07-29 1995-06-27 Litton Systems, Inc. Laser stabilization
KR100363238B1 (en) 1995-05-09 2003-02-05 삼성전자 주식회사 Method and apparatus for generating second harmonic
US5627648A (en) 1995-07-12 1997-05-06 Jds Fitel Inc. Method and apparatus for use in the measurement of the wavelength or frequency of an optical signal
AU6119396A (en) 1995-07-27 1997-02-26 Jds Fitel Inc. Method and device for wavelength locking
US5706301A (en) 1995-08-16 1998-01-06 Telefonaktiebolaget L M Ericsson Laser wavelength control system
JP3681447B2 (en) 1995-10-25 2005-08-10 富士通株式会社 Optical wavelength stabilization system
US5717708A (en) * 1995-11-09 1998-02-10 Mells; Bradley Method and apparatus of stabilizing a semiconductor laser
US5825792A (en) 1996-07-11 1998-10-20 Northern Telecom Limited Wavelength monitoring and control assembly for WDM optical transmission systems
JP2871623B2 (en) 1996-07-11 1999-03-17 日本電気株式会社 Semiconductor laser device
US5780843A (en) 1996-07-16 1998-07-14 Universite Laval Absolute optical frequency calibrator for a variable frequency optical source
US6088142A (en) 1997-03-13 2000-07-11 Oplink Communications, Inc. System and method for precision wavelength monitoring
US5915052A (en) 1997-06-30 1999-06-22 Uniphase Telecommunications Products, Inc. Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam
US6078418A (en) 1997-08-12 2000-06-20 Lucent Technologies Inc. Wavelength locking of variable dispersive elements
US6125128A (en) 1997-11-13 2000-09-26 Ciena Corporation Laser output locking and self filtering device
US6101200A (en) 1997-12-24 2000-08-08 Nortel Networks Corporation Laser module allowing simultaneous wavelength and power control
CN1163937C (en) * 1998-02-16 2004-08-25 松下电器产业株式会社 Manufacture of electron tube
US6134253A (en) 1998-02-19 2000-10-17 Jds Uniphase Corporation Method and apparatus for monitoring and control of laser emission wavelength
ES2196784T3 (en) * 1998-03-11 2003-12-16 Cymer Inc WAVE LENGTH SYSTEM FOR AN EXCIMER LASER.
US6122301A (en) 1998-06-17 2000-09-19 Santec Corporation Laser light source apparatus
DE19827699A1 (en) * 1998-06-22 1999-12-23 Siemens Ag Wavelength stabilized laser arrangement
US6222861B1 (en) 1998-09-03 2001-04-24 Photonic Solutions, Inc. Method and apparatus for controlling the wavelength of a laser
US6108355A (en) * 1998-10-16 2000-08-22 New Focus, Inc. Continuously-tunable external cavity laser
US6243403B1 (en) * 1999-01-11 2001-06-05 Agere Systems Optoelectronics Guardian Corp Method and apparatus for integrated optical wavelength stabilization
US6240109B1 (en) 1999-02-25 2001-05-29 Lucent Technologies Inc Wavelength stabilization of wavelength division multiplexed channels
US6181717B1 (en) 1999-06-04 2001-01-30 Bandwidth 9 Tunable semiconductor laser system
US6879619B1 (en) * 1999-07-27 2005-04-12 Intel Corporation Method and apparatus for filtering an optical beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020041611A1 (en) * 2000-10-10 2002-04-11 May Randy Dean Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US20020097760A1 (en) * 2000-10-10 2002-07-25 Tunable Photonics Corporation Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US20020163650A1 (en) * 2000-10-10 2002-11-07 Tunable Photonics Corporation Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1436864A2 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298057B2 (en) 2017-05-22 2022-04-12 Brolis Sensor Technology, Uab Tunable hybrid III-V/IV laser sensor system-on-a-chip for real-time monitoring of a blood constituent concentration level
US11696707B2 (en) 2017-05-22 2023-07-11 Brolis Sensor Technology, UAB et al. Tunable hybrid III-V/IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level
US11896373B2 (en) 2017-05-22 2024-02-13 Brolis Sensor Technology, Uab Tunable hybrid III-V/ IV laser sensor system-on-a chip for real-time monitoring of a blood constituent concentration level
US11177630B2 (en) 2018-02-02 2021-11-16 Brolis Sensor Technology, Uab Wavelength determination for widely tunable lasers and laser systems thereof
US11201453B2 (en) 2018-02-02 2021-12-14 Brolis Sensor Technology, Uab Wavelength determination for widely tunable lasers and laser systems thereof

Also Published As

Publication number Publication date
EP1436864A2 (en) 2004-07-14
AU2002362396A1 (en) 2003-04-14
WO2003030311A3 (en) 2003-08-21
US20020041611A1 (en) 2002-04-11
US6693928B2 (en) 2004-02-17
EP1436864A4 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
US6693928B2 (en) Technique for filtering chirp from optical signals
US7460567B2 (en) Laser wavelength locker
US6714309B2 (en) Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer
US6611341B2 (en) Method and system for locking transmission wavelengths for lasers in a dense wavelength division multiplexer utilizing a tunable etalon
US6879619B1 (en) Method and apparatus for filtering an optical beam
US6526071B1 (en) Tunable laser transmitter with internal wavelength grid generators
US6498800B1 (en) Double etalon optical wavelength reference device
US6717967B2 (en) Absolutely calibrated periodic filters and sources
US6272157B1 (en) Apparatus and method for calibrating a wavelength stabilized laser
WO2003091756A2 (en) Frequency locker
US6826211B2 (en) Diode laser controling module and applied equipment thereof
EP1153463A1 (en) Tunable laser transmitter with internal wavelength grid generators
US7295581B2 (en) External cavity tunable optical transmitters
US7218650B2 (en) Wavelength reference filter
US20060050355A1 (en) Wavelength locker comprising a diamond etalon
WO2003079504A2 (en) Absolutely calibrated periodic filters and sources

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002800371

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002800371

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002800371

Country of ref document: EP