WO2003032422A1 - Fuel cell system, and fuel cell power generating method - Google Patents

Fuel cell system, and fuel cell power generating method Download PDF

Info

Publication number
WO2003032422A1
WO2003032422A1 PCT/JP2002/010154 JP0210154W WO03032422A1 WO 2003032422 A1 WO2003032422 A1 WO 2003032422A1 JP 0210154 W JP0210154 W JP 0210154W WO 03032422 A1 WO03032422 A1 WO 03032422A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
temperature
oxidant
humidity
supplied
Prior art date
Application number
PCT/JP2002/010154
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Nishizuru
Akinari Nakamura
Tatsuo Nakayama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Matsushita Seiko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Matsushita Seiko Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2003032422A1 publication Critical patent/WO2003032422A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system and a fuel cell power generation method.
  • FIG. 7 is a configuration diagram of a conventional fuel cell system.
  • the conventional fuel cell system includes a fuel cell 1 and a fuel processing device 2 ′ that reforms a raw material such as natural gas, generates hydrogen-rich gas, and supplies the gas to the fuel cell 1.
  • a burner 3 for raising the temperature of the fuel processor 2 to a temperature required for the reforming reaction, a fuel humidifier 4 for humidifying the fuel gas supplied to the fuel cell 1, and a fuel gas discharged from the fuel cell 1.
  • a fuel-side water recovery unit 5 that recovers the contained water vapor, an air supply unit 6 that supplies oxidant air to the fuel cell 1, and an oxidization-side humidifier 7 'that humidifies the supply air by supplying water to the heating iron plate.
  • the fuel water pump 10 that sends the recovered water to the fuel humidifier 4 and the acid And a side humidifier 7 'oxidation side water pump 1 1 to be sent to the'.
  • a cooling pipe 12 for sending water to the fuel cell 1 for cooling a cooling pump 13 for circulating water in the pipe
  • a cooling radiator 14 for releasing heat generated in the fuel cell 1 to the outside
  • the fuel gas converted into a hydrogen-rich gas by the fuel processor 2 ′ is humidified by the fuel humidifier 4 using water supplied from the water storage tank 9 by the fuel water pump 10, and the fuel cell 1 Sent to.
  • the fuel gas discharged from the fuel cell 1 and not used for power generation is dehumidified by the fuel-side water collector 5, and then released to the atmosphere.
  • the air used for the oxidizing agent is sent to the oxidizing humidifier T by the air supply device 6 and humidified by the water supplied from the water storage tank 9 by the oxidizing water pump 11 ′ to the fuel cell 1 Sent to.
  • the air not used for power generation discharged from the fuel cell 1 is dehumidified by the oxidizing water recovery unit 8 and then released to the atmosphere.
  • the air supplied to the fuel cell system as an oxidizing agent is composed of fine particles and ions (such as sodium ions in seawater in coastal areas) in the air. May contain many impurities.
  • the inventor of the present invention has conceived that the above-mentioned impurities induce poisoning of the polymer film which leads to deterioration of the performance of the fuel cell main body. We thought that we could bring out the performance that we had.
  • An object of the present invention is to provide a fuel cell system and a fuel cell power generation method that can sufficiently bring out the inherent performance of a fuel cell body in consideration of the above-described conventional problems. is there.
  • a first aspect of the present invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidant to generate power,
  • a humidity-exchange type heat exchanger having a temperature-humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidizing agent is introduced.
  • the impurities contained in the supplied oxidant are adsorbed on the ion exchange material when the temperature and humidity are exchanged.
  • a second invention is the fuel cell system according to the first invention, wherein the ion exchange material is a polymer electrolyte membrane.
  • the temperature and humidity exchange surface is freely replaceable.
  • 1 is a fuel cell system of the present invention.
  • the fourth invention is a fuel cell power generation method for generating power using a fuel cell by supplying a fuel gas and an oxidant,
  • a humidity exchange type heat exchanger having a temperature / humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidant is introduced, impurities contained in the supplied oxidant are removed.
  • FIG. 1 is a configuration diagram of a fuel cell system in Embodiment 1 related to the present invention.
  • FIG. 2 is a configuration diagram of the humidifier 7 in Embodiment 1 related to the present invention.
  • FIG. 3 is a configuration diagram of a humidifier in Embodiment 2 related to the present invention.
  • FIG. 4 is a configuration diagram of a fuel cell system according to Embodiment 3 of the present invention.
  • FIG. 5 is a configuration diagram of a temperature / humidity exchange type heat exchanger 16 according to Embodiment 3 of the present invention.
  • FIG. 6 is a configuration diagram of a temperature / humidity exchange type heat exchanger according to Embodiment 4 of the present invention.
  • FIG. 7 is a configuration diagram of a conventional fuel cell system. (Explanation of code)
  • FIG. 1 is a configuration diagram of the fuel cell system
  • FIG. 2 which is a configuration diagram of the humidifier 7 in the first embodiment related to the present invention. I do.
  • the fuel cell system includes a fuel cell 1 that generates power using a fuel gas and an oxidizing gas, a reformer 2 that reforms a raw material to generate a hydrogen-rich reformed gas, An air supply device 6 for supplying the air to the fuel cell 1, a humidifier 7 (see FIG. 2) for humidifying the supply air supplied by the air supply device 6, and an air and fuel gas discharged from the fuel cell.
  • the recovered water supply pump 11 for supplying the recovered water, the cooling pipe 12 for cooling the fuel cell 1 by circulating water between the fuel cell 1 and the heat sink 15, and the cooling pump 1 3 It is composed of
  • the fuel cell system raises the temperature of the recovered water by a heater or the like, and humidifies and purifies the supply air by passing the heated water through the recovered water.
  • a major feature is that it is equipped with a humidifier 7 that operates.
  • the means having the same functions as those of the conventional fuel cell system are given the same reference numerals, and those functions are the same as those of the conventional fuel cell system. According to the function of.
  • the cooling pipe 12, the cooling pump 13, and the heat radiator 15 constitute a cooling circuit
  • the heat radiator 15 is a cooling radiator, an oxidizing side. It integrates a water recovery unit and a fuel-side water recovery unit.
  • the reformer 2 reforms a raw material (for example, natural gas) to generate a hydrogen-rich gas, which is then supplied to the fuel cell 1.
  • the air supplied to the fuel cell 1 by the air supply device 3 as the oxidizing gas is humidified by the humidifier 7 and supplied to the fuel cell 1 as described later.
  • the temperature of the fuel and air discharged without being consumed from the fuel cell 1 is lowered by the heat rejector 15, and the water vapor contained therein is recovered and then released to the atmosphere.
  • the recovered water is stored in a water storage tank 9 and then supplied to a humidifier 7 by a recovered water supply pump 11 to be stored and used for humidification.
  • Water for cooling the fuel cell 1 is circulated through a cooling pipe 12 by a cooling pump 13, and the heat generated in the fuel cell 1 is released to the outside by exchanging heat with outside air by a heat exchanger 15. Put out.
  • the humidifier 7 raises the temperature of the recovered water supplied and stored by a recovered water supply pump 11 by a heater or the like inside the humidifier 7 and stores the heated recovered water inside the humidifier 7
  • the supply air is humidified by being fed through a hole provided below the surface of the collected water (bubbling).
  • the oxidizing agent is used when passing the recovered water that has been heated. Humidification is also performed).
  • the supply air When the supply air is humidified, it passes through the recovered water, and impurities and ions contained in the supply air are purified by being taken into the recovered water. It is possible to reduce ions and the like, and it is possible to operate the fuel cell 1 without deteriorating its inherent performance (especially, suppressing flow path blockage due to dust, dirt, and grease). It becomes possible).
  • the cooling radiator is described as being integrated with the oxidizing-side water collector and the fuel-side water collecting unit. Either or both of them may be used alone, and there is no difference in the operation and effect.
  • FIG. 3 is a configuration diagram of the humidifier in the second embodiment related to the present invention.
  • the configuration and operation of the fuel cell system according to the present embodiment are similar to the configuration and operation of the fuel cell system according to the first embodiment described above.
  • the supply air inside the humidifier is heated by a heater or the like, and the recovered water supplied by the recovered water supply pump 11 (see FIG. 1) is supplied to the heated supply air.
  • Humidification of the supplied air by spraying in the form of an appropriate fog (mist) The oxidizer supplied is also humidified when the recovered water is sprayed by raising the temperature. ).
  • FIG. 4 is a configuration diagram of the fuel cell system according to the third embodiment of the present invention
  • FIG. 5 is a configuration diagram of a temperature-humidity exchange type heat exchanger 16 according to the third embodiment of the present invention.
  • the configuration of the fuel cell system according to the present embodiment will be described with reference to FIG.
  • the fuel cell system uses fuel gas and oxidizing gas.
  • a fuel cell 1 for generating electric power by generating electricity a reformer 2 for reforming a raw material to generate a hydrogen-rich reformed gas, an air supply device 6 for supplying air as an oxidant to the fuel cell 1, and the air
  • a temperature-humidity exchange type heat exchanger that exchanges temperature and humidity between the supply air supplied by the supply device 6 and the exhaust air from the fuel cell 1
  • Heat collector 15 for collecting and recovering water, a water storage tank 9 for storing the recovered water collected by the heat sink 15, and a fuel cell by circulating water between the fuel cell 1 and the heat sink 15. It is composed of a cooling pipe 12 for cooling 1 and a cooling pump 13.
  • the fuel cell system performs humidification of supply air and dehumidification of discharge air simultaneously by exchanging temperature and humidity between supply air and discharge air.
  • a temperature / humidity exchange type heat exchanger 16 that purifies by introducing impurities contained in the supply air into a polymer electrolyte membrane such as Nafion Pore Select (both are trade names) is provided.
  • the point is a big feature.
  • Means having the same functions as those of FIG. 1 are denoted by the same reference numerals, and those functions are in accordance with the functions of each means of the fuel cell system according to the first embodiment.
  • the cooling pipe 12, the cooling pump 13, and the heat radiator 15 constitute a cooling circuit
  • the heat radiator 15 is a cooling radiator, an oxidizing side. It integrates a water recovery unit and a fuel-side water recovery unit.
  • the reformer 2 reforms a raw material (eg, natural gas) to generate a hydrogen-rich gas, and then supplies the gas to the fuel cell 1.
  • a raw material eg, natural gas
  • the air supplied to the fuel cell 1 by the air supply device 6 as the oxidizing gas is different from the exhaust air discharged from the fuel cell 1 by the temperature / humidity exchange type heat exchanger 16.
  • the humidification of the supply air and the dehumidification of the discharge air are performed at the same time, and then the fuel is supplied to the fuel cell 1.
  • Exhaust air discharged without being consumed from the fuel cell 1 and dehumidified by the temperature / humidity exchange heat exchanger 16 and exhausted fuel not consumed by the fuel cell 1 are cooled by the exhaust heatr 15 After the water vapor contained inside is recovered, it is released to the atmosphere.
  • the recovered water collected is stored in a water storage tank 9 and then supplied to a reformer 2 by a recovered water supply pump 11 to be used for reforming.
  • Water for cooling the fuel cell 1 is circulated through a cooling pipe 12 by a cooling pump 13, and the heat generated by the fuel cell 1 is released to the outside by exchanging heat with the outside air at a heat exchanger 15. I do.
  • the temperature-humidity exchange heat exchanger 16 uses the polymer electrolyte membrane used for the fuel cell 1 on the temperature-humidity exchange surface to humidify the supply air without using any power and supply Purification can be achieved by taking in impurities such as ions contained in the air into the polymer electrolyte membrane (in particular, a reduction in ion conductivity due to trapping of metal ions can be suppressed). Thus, the fuel cell 1 can be operated without deteriorating its inherent performance.
  • the cooling radiator is described as being integrated with the oxidizing-side water collector and the fuel-side water collecting unit. However, either or both of them may be used alone. It may be composed, and there is no difference in the effects.
  • Embodiment 4 a temperature-humidity exchange type heat exchanger according to Embodiment 4 of the present invention.
  • the configuration and operation of the fuel cell system according to the present embodiment will be described with reference to FIG.
  • the configuration and operation of the fuel cell system according to the present embodiment are similar to the configuration and operation of the fuel cell system according to the third embodiment described above.
  • the temperature / humidity exchange type heat exchanger in the present embodiment includes a temperature / humidity exchange unit 17 and a polymer electrolyte membrane unit 18.
  • the temperature / humidity exchange unit 17 has a structure in which the polymer electrolyte membrane unit 18 can be removed by sliding, so that the exchange of the polymer electrolyte membrane unit 18 can be performed easily.
  • the ions in the supply air will be adsorbed in the polymer electrolyte membrane.
  • the temperature and humidity exchange performance of the polymer electrolyte membrane decreases.
  • the temperature-humidity exchange type heat exchanger according to the present embodiment, even when the polymer electrolyte membrane is deteriorated due to the continuous adsorption and removal of ions and the like contained in the supply air by the polymer electrolyte membrane butt 18. By simply replacing the polymer electrolyte cut 18, the original temperature and humidity exchange performance can be restored. This eliminates the need to replace the temperature and humidity exchange type heat exchanger when the polymer electrolyte membrane has deteriorated, and at the same time reduces maintenance costs due to replacing only the polymer electrolyte unit 18. In other words, reduction can be achieved.
  • the polymer electrolyte unit 18 is replaced by sliding, but only the polymer electrolyte unit is replaced. Any structure may be used as long as the structure can be replaced, and no difference is produced in the operation and effect.
  • the first to fourth embodiments have been described in detail.
  • the impurity removing means related to the present invention is a means including a humidifier in the above-described embodiment, the present invention is not limited to this. In other words, the impurity removing means is included in the gas discharged from the fuel cell. Any means may be used as the means for removing impurities contained in the supplied oxidant by using the recovered water from which the water vapor is recovered.
  • the present invention relates to a fuel cell system which is supplied with a fuel gas and an oxidizing agent (air) to generate electric power using a fuel cell, wherein the gas discharged from the fuel cell (discharged from the fuel cell)
  • a fuel cell system equipped with an impurity removing unit that removes impurities contained in the supplied oxidant by using recovered water from which steam contained in air and fuel gas is recovered.
  • the present invention relates to a fuel cell system which is supplied with a fuel gas and an oxidizing agent (air) to generate electric power using a fuel cell, wherein the oxidizing agent discharged from the fuel cell is used.
  • This is a fuel cell system provided with impurity removing means for removing impurities contained in the supplied oxidizing agent.
  • the ion exchange material is a polymer electrolyte membrane in the present embodiment described above, but is not limited thereto, and may be, for example, an ion exchange resin.
  • the oxidizing agent according to the present invention may be humidified while removing impurities contained therein.
  • a temperature-humidity exchange heat exchanger is used for temperature adjustment and humidification of the supply air.
  • a polymer electrolyte membrane for the temperature and humidity exchange surface, it is possible to achieve temperature control and humidification of the supply air using the heat and steam contained in the air discharged from the fuel cell without using any power.
  • ions contained in the supply air can be adsorbed and removed, and the inherent performance of the fuel cell can be fully exploited.
  • the polymer electrolyte membrane used for the temperature / humidity exchange surface is unitized to have a shape that can be removed from the temperature / humidity exchange heat exchanger, so that it is included in the supply air.
  • the deteriorated polymer electrolyte unit can be easily replaced, and even if the temperature / humidity exchange performance deteriorates, the performance can be easily recovered at low cost.
  • the first invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidizing agent to generate power,
  • a humidity-exchange type heat exchanger having a temperature-humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidizing agent is introduced.
  • the impurities contained in the supplied oxidizing agent can be obtained by a fuel cell system that is adsorbed on the ion exchange material when the temperature and humidity are exchanged.
  • a second invention is the fuel cell system according to the first invention, wherein the ion exchange material is a polymer electrolyte membrane.
  • the temperature / humidity exchange surface is freely replaceable. It is a fuel cell system of the invention.
  • a fourth invention is a fuel cell power generation method for performing power generation using a fuel cell by supplying a fuel gas and an oxidant,
  • a humidity exchange type heat exchanger having a temperature / humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidant is introduced, impurities contained in the supplied oxidant are removed.
  • a fuel cell power generation method comprising a step of adsorbing to the ion exchange material when the temperature and humidity are exchanged.
  • a fifth invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidant to generate power,
  • a fuel cell system comprising an impurity removing means for removing impurities contained in the supplied oxidant by using recovered water in which water vapor contained in gas discharged from the fuel cell is recovered.
  • a sixth aspect of the present invention is the fuel cell system according to the fifth aspect, wherein using the recovered water means passing the recovered water through the supplied oxidizing agent.
  • the impurity removing means includes: a storage portion for storing the recovered water; a hole provided in a portion below the surface of the stored recovered water, for feeding the oxidizing agent;
  • An eighth invention is the fuel cell system according to the fifth invention, wherein the use of the recovered water is to inject the recovered water into the supplied oxidant.
  • the fuel cell according to the eighth aspect of the present invention includes: a spray section for spraying the recovered water; and a heater for heating the oxidant. Pond system.
  • a tenth invention is a fuel cell power generation method for performing power generation using a fuel cell by supplying a fuel gas and an oxidizing agent
  • a fuel cell power generation method comprising a step of removing impurities contained in the supplied oxidant by using recovered water in which water vapor contained in gas discharged from the fuel cell is recovered.
  • the present invention has an advantage that the inherent performance of the fuel cell body can be sufficiently brought out.

Abstract

It has been impossible to fully bring out the function the fuel cell main body inherently has. A fuel cell system that is fed with fuel gas and an oxidant to effect power generation utilizing a fuel cell (1), comprising a temperature-humidity exchange type heat exchanger (16) having a temperature-humidity exchange surface formed of a polyelectrolytic film separating a chamber to which the oxidant fed is introduced from a chamber to which the oxidant discharged from the fuel cell (1) is introduced, to effect temperature and humidity exchange between the oxidant fed and the oxidant discharged from the fuel cell (1), wherein the impurities contained in the oxidant fed are adsorbed by the polyelectrolytic film during temperature and humidity exchange.

Description

明 細 書 燃料電池システム、 および燃料電池発電方法 技術分野  Description Fuel cell system and fuel cell power generation method
本発明は、 燃料電池システム、 および燃料電池発電方法に関する。 背景技術  The present invention relates to a fuel cell system and a fuel cell power generation method. Background art
はじめに、 従来の燃料電池システムの構成図である図 7を参照しなが ら、 従来の燃料電池システムの構成について説明する。  First, the configuration of a conventional fuel cell system will be described with reference to FIG. 7, which is a configuration diagram of a conventional fuel cell system.
図 7に示すように、 従来の燃料電池システムは、 燃料電池 1と、 天然 ガスなどの原料を改質し、 水素リツチなガスを生成して燃料電池 1に供 給する燃料処理装置 2 ' と、 燃料処理装置 2 を改質反応に必要な温度 まで昇温させるバーナー 3と、 燃料電池 1に供給する燃料ガスを加湿す る燃料側加湿器 4と、 燃料電池 1より排出される燃料ガスに含まれる水 蒸気を回収する燃料側水回収器 5と、 酸化剤の空気を燃料電池 1に供給 する空気供給装置 6と、 加熱鉄板への給水によって供給空気を加湿する 酸化側加湿器 7 ' と、 燃料電池 1から排出される空気に含まれる水蒸気 を回収する酸化側水回収器 8と、 燃料側水回収器 5と、 酸化側水回収器 8とで回収した水を蓄える蓄水タンク 9と、 回収水を、 燃料側加湿器 4 に送る燃料側水ポンプ 1 0と酸化側加湿器 7 ' に送る酸化側水ポンプ 1 1 ' とを備えている。  As shown in FIG. 7, the conventional fuel cell system includes a fuel cell 1 and a fuel processing device 2 ′ that reforms a raw material such as natural gas, generates hydrogen-rich gas, and supplies the gas to the fuel cell 1. A burner 3 for raising the temperature of the fuel processor 2 to a temperature required for the reforming reaction, a fuel humidifier 4 for humidifying the fuel gas supplied to the fuel cell 1, and a fuel gas discharged from the fuel cell 1. A fuel-side water recovery unit 5 that recovers the contained water vapor, an air supply unit 6 that supplies oxidant air to the fuel cell 1, and an oxidization-side humidifier 7 'that humidifies the supply air by supplying water to the heating iron plate. An oxidizing water recovery unit 8 for recovering water vapor contained in air discharged from the fuel cell 1, a fuel-side water recovery unit 5, and a water storage tank 9 for storing water recovered by the oxidizing-side water recovery unit 8. The fuel water pump 10 that sends the recovered water to the fuel humidifier 4 and the acid And a side humidifier 7 'oxidation side water pump 1 1 to be sent to the'.
さらに、 燃料電池 1に水を送って冷却する冷却配管 1 2と、 配管内の 水を循環させる冷却用ポンプ 1 3と、 燃料電池 1で発生した熱を外部へ 放出する冷却用放熱器 1 4とを備えている。 つぎに、 従来の燃料電池システムの動作について説明する。 Further, a cooling pipe 12 for sending water to the fuel cell 1 for cooling, a cooling pump 13 for circulating water in the pipe, and a cooling radiator 14 for releasing heat generated in the fuel cell 1 to the outside And Next, the operation of the conventional fuel cell system will be described.
燃料処理装置 2 ' によって水素リッチなガスとなった燃料ガスは、 燃 料側加湿器 4で、 蓄水タンク 9より燃料側水ポンプ 1 0によって供給さ れる水を用いて加湿され、 燃料電池 1に送り込まれる。 燃料電池 1より 排出される発電に用いられなかった燃料ガスは、 燃料側水回収器 5によ つて除湿された後、 大気に放出される。  The fuel gas converted into a hydrogen-rich gas by the fuel processor 2 ′ is humidified by the fuel humidifier 4 using water supplied from the water storage tank 9 by the fuel water pump 10, and the fuel cell 1 Sent to. The fuel gas discharged from the fuel cell 1 and not used for power generation is dehumidified by the fuel-side water collector 5, and then released to the atmosphere.
一方、 酸化剤に用いる空気は、 空気供給装置 6によって酸化側加湿器 T に送り込まれ、 蓄水タンク 9より酸化側水ポンプ 1 1' によって供 給される水を用いて加湿され、 燃料電池 1に送り込まれる。 燃料電池 1 より排出される発電に用いられなかつた空気は、 酸化側水回収器 8によ つて除湿された後、 大気に放出される。  On the other hand, the air used for the oxidizing agent is sent to the oxidizing humidifier T by the air supply device 6 and humidified by the water supplied from the water storage tank 9 by the oxidizing water pump 11 ′ to the fuel cell 1 Sent to. The air not used for power generation discharged from the fuel cell 1 is dehumidified by the oxidizing water recovery unit 8 and then released to the atmosphere.
さらに、 発電を行う燃料電池 1の温度を一定に保っために、 冷却配管 1 2を通して、 冷却用ポンプ 1 3で水を循環させ、 冷却用放熱器 1 4で 燃料電池 1で発生した熱を外部へ放出する。  In addition, in order to keep the temperature of the fuel cell 1 that generates power constant, water is circulated by the cooling pump 13 through the cooling pipe 12, and the heat generated by the fuel cell 1 is cooled by the cooling radiator 14. Release to
なお、 空気中から燃料電池性能の低下原因となる含有不純ガスを除去 する不純ガス除去手段を備えた燃料電池システム (たとえば下記の特許 文献 1参照) がある。  In addition, there is a fuel cell system provided with an impurity gas removing means for removing impurity gas contained in the air, which causes a decrease in fuel cell performance (for example, see Patent Document 1 below).
【特許文献 1】  [Patent Document 1]
特開平 8— 1 38 70 3号公報  JP-A-8-138703
しかしながら、 上述のようにして燃料電池システムに酸化剤として供 給される空気は、 大気中の麈ゃ埃などの微粒子やイオン (特に、 沿岸地 域などにおいては、 海水中のナトリウムイオン) などの不純物を多く含 んでいることがある。  However, as described above, the air supplied to the fuel cell system as an oxidizing agent is composed of fine particles and ions (such as sodium ions in seawater in coastal areas) in the air. May contain many impurities.
より具体的には、 (1) 埃や塵、 およびグリスなどは流路を閉塞させ (これらの大粒子は ME A (memb r a n e e l e c t r o d e a s s e mb l y, 膜/電極接合体)を破損してしまうこともある) 、 ( 2 ) C 02などの有機系分子は触媒を被毒し、 (3 ) 金属系イオンはトラ ップされてイオン導電性を低下させることに、 本発明者は気付いたわけ である。 発明の開示 More specifically, (1) Dust, dust, and grease block the flow path (these large particles may damage MEA (membrane electrodease mbly, membrane / electrode assembly)) ), ( 2) organic molecules such as C 0 2 is poisoned catalyst, (3) metallic ions are traps that reduce the ionic conductivity, the inventors are not noticed. Disclosure of the invention
本発明者は、 上述の不純物が燃料電池本体の性能低下につながる高分 子膜の被毒を誘因することに想到し、 このような不純物をより確実に除 去することで燃料電池本体が本来持つ性能を十分に引き出すことができ ると考えた。  The inventor of the present invention has conceived that the above-mentioned impurities induce poisoning of the polymer film which leads to deterioration of the performance of the fuel cell main body. We thought that we could bring out the performance that we had.
本発明は、 上記従来のこのような課題を考慮し、 燃料電池本体が本来 持つ性能を十分に引き出すことができる燃料電池システム、 およぴ燃料 電池発電方法を提供することを目的とするものである。  An object of the present invention is to provide a fuel cell system and a fuel cell power generation method that can sufficiently bring out the inherent performance of a fuel cell body in consideration of the above-described conventional problems. is there.
第 1の本発明は、 燃料ガスおよび酸化剤を供給されて発電を行う燃料 電池を備える燃料電池システムであって、  A first aspect of the present invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidant to generate power,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度およぴ湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を備え、  A room into which the supplied oxidant is introduced and an exhausted gas from the fuel cell for exchanging temperature and humidity between the supplied oxidant and the oxidant discharged from the fuel cell. A humidity-exchange type heat exchanger having a temperature-humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidizing agent is introduced.
前記供給される酸化剤に含まれる不純物は、 前記温度および湿度の交 換が行われる際に前記イオン交換材料に吸着される燃料電池システムで ある。  In the fuel cell system, the impurities contained in the supplied oxidant are adsorbed on the ion exchange material when the temperature and humidity are exchanged.
第 2の本発明は、 前記イオン交換材料は、 高分子電解質膜である第 1 の本発明の燃料電池システムである。  A second invention is the fuel cell system according to the first invention, wherein the ion exchange material is a polymer electrolyte membrane.
第 3の本発明は、 前記温湿度交換面は、 自在に取り替え可能である第 1の本発明の燃料電池システムである。 In a third aspect of the present invention, the temperature and humidity exchange surface is freely replaceable. 1 is a fuel cell system of the present invention.
第 4の本発明は、 燃料ガスおよび酸化剤を供給されて燃料電池を利用 した発電を行う燃料電池発電方法であって、  The fourth invention is a fuel cell power generation method for generating power using a fuel cell by supplying a fuel gas and an oxidant,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度おょぴ湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を利用して、 前記供給される酸化剤に含まれる不純物を、 前記 温度および湿度の交換が行われる際に前記イオン交換材料に吸着するス  A room into which the supplied oxidant is introduced and an exhausted gas from the fuel cell for performing temperature and humidity exchange between the supplied oxidant and the oxidant discharged from the fuel cell. Using a humidity exchange type heat exchanger having a temperature / humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidant is introduced, impurities contained in the supplied oxidant are removed. When the temperature and humidity are exchanged, the ions adsorbed on the ion exchange material
-備えた燃料電池発電方法である。 図面の簡単な説明  -This is a fuel cell power generation method. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に関連する実施の形態 1における燃料電池システムの 構成図である。  FIG. 1 is a configuration diagram of a fuel cell system in Embodiment 1 related to the present invention.
図 2は、 本発明に関連する実施の形態 1における加湿器 7の構成図で ある。  FIG. 2 is a configuration diagram of the humidifier 7 in Embodiment 1 related to the present invention.
図 ·3は、 本発明に関連する実施の形態 2における加湿器の構成図であ る。  FIG. 3 is a configuration diagram of a humidifier in Embodiment 2 related to the present invention.
図 4は、 本発明にかかる実施の形態 3における燃料電池システムの構 成図である。  FIG. 4 is a configuration diagram of a fuel cell system according to Embodiment 3 of the present invention.
図 5は、 本発明にかかる実施の形態 3における温湿度交換型熱交換器 1 6の構成図である。  FIG. 5 is a configuration diagram of a temperature / humidity exchange type heat exchanger 16 according to Embodiment 3 of the present invention.
図 6は、 本発明にかかる実施の形態 4における温湿度交換型熱交換器 の構成図である。  FIG. 6 is a configuration diagram of a temperature / humidity exchange type heat exchanger according to Embodiment 4 of the present invention.
図 7は、 従来の燃料電池システムの構成図である。 (符号の説明) FIG. 7 is a configuration diagram of a conventional fuel cell system. (Explanation of code)
. 燃料電池  . Fuel cell
2 改質器  2 Reformer
3 ノ ーナー  3 Norner
4 燃料側加湿器  4 Fuel humidifier
5 燃料側水回収器  5 Fuel side water recovery unit
6  6
7 酸化側加湿器  7 Oxidation side humidifier
8 酸化側水回収器  8 Oxidation side water recovery unit
9  9
1 0 燃料側水ポンプ  1 0 Fuel side water pump
1 1 回収水供給ポンプ  1 1 Collected water supply pump
1 2 冷却配管  1 2 Cooling piping
1 3 冷却用ポンプ  1 3 Cooling pump
1 4 冷却用放熱器  1 4 Cooling radiator
1 5 排熱器  1 5 Heat sink
1 6 温湿度交換型熱交換器  1 6 Heat and humidity exchange type heat exchanger
1 7 温湿度交換ュニット  1 7 Temperature and humidity exchange unit
1 8 高分子電解質ュ-ット 発明を実施するための最良の形態  1 8 Polyelectrolyte cutout BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本実施の形態について、 図面を参照しつつ説明を行う。  Hereinafter, the present embodiment will be described with reference to the drawings.
(実施の形態 1 )  (Embodiment 1)
はじめに、 本発明に関連する実施の形態 1における燃料電池システム の構成図である図 1、 およぴ本発明に関連する実施の形態 1における加 湿器 7の構成図である図 2を参照しながら、 本実施の形態の燃料電池シ ステムの構成について説明する。 First, a fuel cell system according to Embodiment 1 related to the present invention The configuration of the fuel cell system according to the present embodiment will be described with reference to FIG. 1 which is a configuration diagram of the fuel cell system and FIG. 2 which is a configuration diagram of the humidifier 7 in the first embodiment related to the present invention. I do.
本実施の形態における燃料電池システムは、 燃料ガスと酸化ガスを用 いて発電を行う燃料電池 1と、 原料を改質して水素リツチな改質ガスを 生成する改質器 2と、 酸化剤としての空気を燃料電池 1に供給する空気 供給装置 6と、 前記空気供給装置 6によって供給される供給空気を加湿 する加湿器 7 (図 2参照) と、 燃料電池より排出される空気および燃料 ガスに含まれる水蒸気を凝縮して回収する排熱器 1 5と、 排熱器 1 5に よって回収された回収水を蓄える蓄水タンク 9と、 前記加湿器 7に前記 畜水タンク 9内に蓄えられた前記回収水を供給する回収水供給ポンプ 1 1と、 燃料電池 1およぴ排熱器 1 5間に水を循環させて燃料電池 1を冷 却する冷却配管 1 2および冷却用ポンプ 1 3とで構成されている。  The fuel cell system according to the present embodiment includes a fuel cell 1 that generates power using a fuel gas and an oxidizing gas, a reformer 2 that reforms a raw material to generate a hydrogen-rich reformed gas, An air supply device 6 for supplying the air to the fuel cell 1, a humidifier 7 (see FIG. 2) for humidifying the supply air supplied by the air supply device 6, and an air and fuel gas discharged from the fuel cell. A heat dissipator 15 for condensing and recovering the water vapor contained therein, a water storage tank 9 for storing the recovered water collected by the heat dissipator 15, and a humidifier 7 stored in the stock water tank 9. The recovered water supply pump 11 for supplying the recovered water, the cooling pipe 12 for cooling the fuel cell 1 by circulating water between the fuel cell 1 and the heat sink 15, and the cooling pump 1 3 It is composed of
もちろん、 後に詳述されるように、 本実施の形態の燃料電池システム は、 回収水をヒーター等により昇温し、 昇温された回収水内を通過させ ることによって供給空気を加湿するとともに浄化する加湿器 7を備えて いる点を大きな特徴としている。  Of course, as will be described in detail later, the fuel cell system according to the present embodiment raises the temperature of the recovered water by a heater or the like, and humidifies and purifies the supply air by passing the heated water through the recovered water. A major feature is that it is equipped with a humidifier 7 that operates.
なお、 上述の各手段の内、 従来の燃料電池システム (図 7参照) と同 じ機能を有する手段には同一の符号を付与しており、 それらの機能は従 来の燃料電池システムの各手段の機能に準ずる。  Among the means described above, the means having the same functions as those of the conventional fuel cell system (see FIG. 7) are given the same reference numerals, and those functions are the same as those of the conventional fuel cell system. According to the function of.
また、 本実施の形態においては、 冷却配管 1 2、 冷却用ポンプ 1 3、 およぴ排熱器 1 5が冷却回路を構成しており、 排熱器 1 5は冷却用放熱 器、 酸化側水回収器、 および燃料側水回収器を一体化したものである。 つぎに、 本実施の形態の燃料電池システムの動作について説明する。 なお、 本実施の形態の燃料電池システムの動作について説明しながら、 本発明に関連する燃料電池発電方法の一実施の形態についても説明する (以下の本実施の形態についても同様である) 。 In the present embodiment, the cooling pipe 12, the cooling pump 13, and the heat radiator 15 constitute a cooling circuit, and the heat radiator 15 is a cooling radiator, an oxidizing side. It integrates a water recovery unit and a fuel-side water recovery unit. Next, the operation of the fuel cell system according to the present embodiment will be described. Note that while describing the operation of the fuel cell system of the present embodiment, an embodiment of a fuel cell power generation method related to the present invention will also be described. (The same applies to the following embodiment).
改質器 2は、 原料(例えば、 天然ガス)を改質して.水素リッチなガスを 生成した後、 燃料電池 1に供給している。 一方、 酸化ガスとして、 空気 供給装置 3によって燃料電池 1に供給される空気は、 後述されるように して加湿器 7で加湿され、 燃料電池 1に供給される。 燃料電池 1から消 費されずに排出された燃料およぴ空気は排熱器 1 5により温度を下げら れ、 内部に含んでいる水蒸気を回収された後、 大気に放出される。 回収 された回収水は蓄水タンク 9に蓄えられた後、 回収水供給ポンプ 1 1に より加湿器 7に供給,貯溜され加湿に利用される。 また、 燃料電池 1を 冷却する水は、 冷却用ポンプ 1 3により冷却配管 1 2を循環し、 燃料電 池 1で発生した熱を排熱器 1 5で外気と熱交換することにより外部へ放 出する。  The reformer 2 reforms a raw material (for example, natural gas) to generate a hydrogen-rich gas, which is then supplied to the fuel cell 1. On the other hand, the air supplied to the fuel cell 1 by the air supply device 3 as the oxidizing gas is humidified by the humidifier 7 and supplied to the fuel cell 1 as described later. The temperature of the fuel and air discharged without being consumed from the fuel cell 1 is lowered by the heat rejector 15, and the water vapor contained therein is recovered and then released to the atmosphere. The recovered water is stored in a water storage tank 9 and then supplied to a humidifier 7 by a recovered water supply pump 11 to be stored and used for humidification. Water for cooling the fuel cell 1 is circulated through a cooling pipe 12 by a cooling pump 13, and the heat generated in the fuel cell 1 is released to the outside by exchanging heat with outside air by a heat exchanger 15. Put out.
本実施の形態における加湿器 7 (図 2を参照) は、 その内部で回収水 供給ポンプ 1 1により供給 ·貯溜された回収水をヒーター等により昇温 し、 昇温された回収水内を貯溜されている回収水の水面下に設けられた 孔から送り込んで通過させる (バブリングする) ことによって、 供給空 気を加湿する (酸化剤は、 昇温を行われた回収水を通過させられる際に 加湿をも行われるわけである) 。  The humidifier 7 (see FIG. 2) in the present embodiment raises the temperature of the recovered water supplied and stored by a recovered water supply pump 11 by a heater or the like inside the humidifier 7 and stores the heated recovered water inside the humidifier 7 The supply air is humidified by being fed through a hole provided below the surface of the collected water (bubbling). (The oxidizing agent is used when passing the recovered water that has been heated. Humidification is also performed).
供給空気を加湿する際に回収水内を通過させることによって、 供給空 気内に含まれる不純物やイオン等を回収水内に取り込むことで浄化し、 燃料電池 1に供給する供給空気内の不純物やイオン等を低減することが でき、 燃料電池 1が本来持つている性能を低下させることなく運転する ことが可能となる (特に、 埃や塵、 およぴグリスなどによる流路の閉塞 を抑制することが可能となる) 。  When the supply air is humidified, it passes through the recovered water, and impurities and ions contained in the supply air are purified by being taken into the recovered water. It is possible to reduce ions and the like, and it is possible to operate the fuel cell 1 without deteriorating its inherent performance (especially, suppressing flow path blockage due to dust, dirt, and grease). It becomes possible).
なお、 上述した本実施の形態においては、 冷却用放熱器は酸化側水回 収器および燃料側水回収器と一体化されたものであるとして説明したが 、 両者のいずれかもしくはそれぞれを単独として構成しても良く、 その 作用効果に差異を認めない。 In the above-described embodiment, the cooling radiator is described as being integrated with the oxidizing-side water collector and the fuel-side water collecting unit. Either or both of them may be used alone, and there is no difference in the operation and effect.
(実施の形態 2 )  (Embodiment 2)
つぎに、 本発明に関連する実施の形態 2における加湿器の構成図であ る図 3を参照しながら、 本実施の形態の燃料電池システムの構成おょぴ 動作について説明する。 '  Next, the configuration and operation of the fuel cell system according to the present embodiment will be described with reference to FIG. 3, which is a configuration diagram of the humidifier in the second embodiment related to the present invention. '
本実施の形態の燃料電池システムの構成および動作は、 前述した本実 施の形態 1の燃料電池システムの構成および動作に類似している。  The configuration and operation of the fuel cell system according to the present embodiment are similar to the configuration and operation of the fuel cell system according to the first embodiment described above.
ただし、 本実施の形態における加湿器は、 その内部で供給空気をヒー ターなどにより昇温し、 昇温された供給空気に回収水供給ポンプ 1 1 ( 図 1参照) により供給された回収水を適切な霧 (ミス ト) 状にして噴霧 することで、 供給空気を加湿する (供給される酸化剤は、 昇温を行われ て回収水を噴霧される際に加湿をも行われるわけである) 。  However, in the humidifier in the present embodiment, the supply air inside the humidifier is heated by a heater or the like, and the recovered water supplied by the recovered water supply pump 11 (see FIG. 1) is supplied to the heated supply air. Humidification of the supplied air by spraying in the form of an appropriate fog (mist) (The oxidizer supplied is also humidified when the recovered water is sprayed by raising the temperature. ).
供給空気を加湿する際、 供給空気内に霧状の回収水を噴霧することで 、 供給空気内に含まれる不純物やイオン等を回収水内に取り込み、 加湿 に利用されなかった水分が再び凝縮する際に不純物やイオン等を持ち去 ることで供給空気を浄化し、 燃料電池 1に供給する供給空気内の不純物 やイオン等を低減することができ、 燃料電池 1が本来持つている性能を 低下させることなく運転することが可能となる (特に、 c o2などの有機 系分子による触媒の被毒を抑制することができる) 。 When the supply air is humidified, by spraying the mist-like recovery water into the supply air, impurities and ions contained in the supply air are taken into the recovery water, and moisture not used for humidification is condensed again. By removing impurities and ions at the time of supply, the supply air is purified and impurities and ions in the supply air supplied to the fuel cell 1 can be reduced, which lowers the inherent performance of the fuel cell 1. It is possible to operate without causing the catalyst (especially, poisoning of the catalyst by organic molecules such as co 2 can be suppressed).
(実施の形態 3 )  (Embodiment 3)
はじめに、 本発明にかかる実施の形態 3における燃料電池システムの 構成図である図 4、 およぴ本発明にかかる実施の形態 3における温湿度 交換型熱交換器 1 6の構成図である図 5を参照しながら、 本実施の形態 の燃料電池システムの構成について説明する。  First, FIG. 4 is a configuration diagram of the fuel cell system according to the third embodiment of the present invention, and FIG. 5 is a configuration diagram of a temperature-humidity exchange type heat exchanger 16 according to the third embodiment of the present invention. The configuration of the fuel cell system according to the present embodiment will be described with reference to FIG.
本実施の形態における燃料電池システムは、 燃料ガスと酸化ガスを用 いて発電を行う燃料電池 1と、 原料を改質して水素リツチな改質ガスを 生成する改質器 2と、 酸化剤としての空気を燃料電池 1に供給する空気 供給装置 6と、 前記空気供給装置 6によって供給される供給空気と燃料 電池 1からの排出空気との間の温湿度交換を行う温湿度交換型熱交換器The fuel cell system according to the present embodiment uses fuel gas and oxidizing gas. A fuel cell 1 for generating electric power by generating electricity, a reformer 2 for reforming a raw material to generate a hydrogen-rich reformed gas, an air supply device 6 for supplying air as an oxidant to the fuel cell 1, and the air A temperature-humidity exchange type heat exchanger that exchanges temperature and humidity between the supply air supplied by the supply device 6 and the exhaust air from the fuel cell 1
(単に湿度交換型熱交換器といってもよい) 1 6 (図 5参照) と、 温湿 度交換型熱交換器 1 6から排出された空気およぴ燃料ガスに含まれる水 蒸気を凝縮して回収する排熱器 1 5と、 排熱器 1 5によって回収された 回収水を蓄える蓄水タンク 9と、 燃料電池 1およぴ排熱器 1 5間に水を 循環させて燃料電池 1を冷却する冷却配管 1 2および冷却用ポンプ 1 3 とで構成されている。 (It may be simply referred to as a humidity exchange type heat exchanger) 16 (see Fig. 5) and condensate water vapor contained in air and fuel gas discharged from the temperature and humidity exchange type heat exchanger 16 Heat collector 15 for collecting and recovering water, a water storage tank 9 for storing the recovered water collected by the heat sink 15, and a fuel cell by circulating water between the fuel cell 1 and the heat sink 15. It is composed of a cooling pipe 12 for cooling 1 and a cooling pump 13.
もちろん、 後に詳述されるように、 本実施の形態の燃料電池システム は、 供給空気と排出空気との間で温湿度の交換を行うことにより、 供給 空気の加湿および排出空気の除湿を同時に行うとともに、 供給空気内に 含まれている不純物をナフイオンゃゴァセレクト (何れも商品名である ) などの高分子電解質膜内に取り込むことで浄化する温湿度交換型熱交 換器 1 6を備えている点を大きな特徴としている。  Of course, as will be described in detail later, the fuel cell system according to the present embodiment performs humidification of supply air and dehumidification of discharge air simultaneously by exchanging temperature and humidity between supply air and discharge air. In addition, a temperature / humidity exchange type heat exchanger 16 that purifies by introducing impurities contained in the supply air into a polymer electrolyte membrane such as Nafion Pore Select (both are trade names) is provided. The point is a big feature.
なお、 上述の各手段の内、 前述の本実施の形態 1の燃料電池システム The fuel cell system according to the first embodiment described above among the above-described units.
(図 1参照) と同じ機能を有する手段には同一の符号を付与しており、 それらの機能は本実施の形態 1の燃料電池システムの各手段の機能に準 ずる。 Means having the same functions as those of FIG. 1 are denoted by the same reference numerals, and those functions are in accordance with the functions of each means of the fuel cell system according to the first embodiment.
また、 本実施の形態においては、 冷却配管 1 2、 冷却用ポンプ 1 3、 およぴ排熱器 1 5が冷却回路を構成しており、 排熱器 1 5は冷却用放熱 器、 酸化側水回収器、 および燃料側水回収器を一体化したものである。  In the present embodiment, the cooling pipe 12, the cooling pump 13, and the heat radiator 15 constitute a cooling circuit, and the heat radiator 15 is a cooling radiator, an oxidizing side. It integrates a water recovery unit and a fuel-side water recovery unit.
つぎに、 本実施の形態の燃料電池システムの動作について説明する。 改質器 2は、 原料(例えば、 天然ガス)を改質して水素リッチなガスを 生成した後、 燃料電池 1に供給している。 一方、 本実施の形態においては、 酸化ガスとして空気供給装置 6によ つて燃料電池 1に供給される空気は、 温湿度交換型熱交換器 1 6により 燃料電池 1から排出される排出空気との間で温湿度の交換を行うことに より、 供給空気の加湿および排出空気の除湿を同時に行われた後、 燃料 電池 1に供給される。 Next, the operation of the fuel cell system according to the present embodiment will be described. The reformer 2 reforms a raw material (eg, natural gas) to generate a hydrogen-rich gas, and then supplies the gas to the fuel cell 1. On the other hand, in the present embodiment, the air supplied to the fuel cell 1 by the air supply device 6 as the oxidizing gas is different from the exhaust air discharged from the fuel cell 1 by the temperature / humidity exchange type heat exchanger 16. By exchanging the temperature and humidity between the two, the humidification of the supply air and the dehumidification of the discharge air are performed at the same time, and then the fuel is supplied to the fuel cell 1.
燃料電池 1から消費されずに排出され、 温湿度交換型熱交換器 1 6に よつて除湿された排出空気および燃料電池 1で消費されなかつた排出燃 料は排熱器 1 5により温度を下げられ、 内部に含んでいる水蒸気を回収 された後、 大気に放出される。 回収された回収水は蓄水タンク 9に蓄え られた後、 回収水供給ポンプ 1 1により改質器 2に供給され改質に利用 される。 また、 燃料電池 1を冷却する水は、 冷却用ポンプ 1 3により冷 却配管 1 2を循環し、 燃料電池 1で発生した熱を排熱器 1 5で外気と熱 交換することにより外部へ放出する。  Exhaust air discharged without being consumed from the fuel cell 1 and dehumidified by the temperature / humidity exchange heat exchanger 16 and exhausted fuel not consumed by the fuel cell 1 are cooled by the exhaust heatr 15 After the water vapor contained inside is recovered, it is released to the atmosphere. The recovered water collected is stored in a water storage tank 9 and then supplied to a reformer 2 by a recovered water supply pump 11 to be used for reforming. Water for cooling the fuel cell 1 is circulated through a cooling pipe 12 by a cooling pump 13, and the heat generated by the fuel cell 1 is released to the outside by exchanging heat with the outside air at a heat exchanger 15. I do.
温湿度交換型熱交換器 1 6は、 温湿度交換面に燃料電池 1に利用され ている高分子電解質膜を用いることで、 動力をまったく使うことなく供 給空気の加湿を行うと同時に、 供給空気内に含まれているイオン等の不 純物を高分子電解質膜内に取り込むことで浄化することができる (特に 、 金属系イオンのトラップによるイオン導電性の低下を抑制できる) 。 かくして、 燃料電池 1が本来持っている性能を低下させることなく運転 することが可能となる。  The temperature-humidity exchange heat exchanger 16 uses the polymer electrolyte membrane used for the fuel cell 1 on the temperature-humidity exchange surface to humidify the supply air without using any power and supply Purification can be achieved by taking in impurities such as ions contained in the air into the polymer electrolyte membrane (in particular, a reduction in ion conductivity due to trapping of metal ions can be suppressed). Thus, the fuel cell 1 can be operated without deteriorating its inherent performance.
なお、 上述した本実施の形態においては、 冷却用放熱器は酸化側水回 収器および燃料側水回収器と一体化されたものであるとして説明したが 、 両者のいずれかもしくはそれぞれを単独として構成しても良く、 その 作用効果に差異を認めない。  In the above-described embodiment, the cooling radiator is described as being integrated with the oxidizing-side water collector and the fuel-side water collecting unit. However, either or both of them may be used alone. It may be composed, and there is no difference in the effects.
(実施の形態 4 )  (Embodiment 4)
つぎに、 本発明にかかる実施の形態 4における温湿度交換型熱交換器 の構成図である図 6を参照しながら、 本実施の形態の燃料電池システム の構成おょぴ動作について説明する。 Next, a temperature-humidity exchange type heat exchanger according to Embodiment 4 of the present invention. The configuration and operation of the fuel cell system according to the present embodiment will be described with reference to FIG.
本実施の形態の燃料電池システムの構成および動作は、 前述した本実 施の形態 3の燃料電池システムの構成および動作に類似している。  The configuration and operation of the fuel cell system according to the present embodiment are similar to the configuration and operation of the fuel cell system according to the third embodiment described above.
ただし、 本実施の形態における温湿度交換型熱交換器は、 温湿度交換 ユニット 1 7と高分子電解質膜ュニット 1 8とからなっている。 そして 、 温湿度交換ュュット 1 7は、 高分子電解質膜ュニット 1 8をスライ ド させて取り外せる構造となっており、 高分子電解質膜ュニット 1 8の交 換が簡便に行えるようになつている。  However, the temperature / humidity exchange type heat exchanger in the present embodiment includes a temperature / humidity exchange unit 17 and a polymer electrolyte membrane unit 18. The temperature / humidity exchange unit 17 has a structure in which the polymer electrolyte membrane unit 18 can be removed by sliding, so that the exchange of the polymer electrolyte membrane unit 18 can be performed easily.
燃料電池システムの運転を続け、 温湿度交換型熱交換器で加湿を行う と同時に供給空気内に含まれるイオン等の吸着除去を続けると、 高分子 電解質膜内に供給空気中のイオンが吸着し、 高分子電解質膜での温湿度 交換性能が低下してくる。  If the operation of the fuel cell system is continued and humidification is performed by the temperature-humidity exchange type heat exchanger and the adsorption and removal of ions and the like contained in the supply air are continued, the ions in the supply air will be adsorbed in the polymer electrolyte membrane. However, the temperature and humidity exchange performance of the polymer electrolyte membrane decreases.
従来の温湿度交換型熱交換器では、 高分子電解質膜が劣化した場合、 温湿度交換型熱交換器全体を交換しなければ温湿度交換性能を回復させ ることが出来なかった。  In the conventional temperature-humidity exchange heat exchanger, if the polymer electrolyte membrane deteriorates, the temperature-humidity exchange performance cannot be restored unless the entire temperature-humidity exchange heat exchanger is replaced.
本実施の形態における温湿度交換型熱交換器では、 供給空気内に含ま れるイオン等の高分子電解質膜ュュット 1 8による吸着除去を続けるこ とによつて高分子電解質膜が劣化した場合においても、 高分子電解質ュ -ット 1 8を取り替えるだけで、 本来の温湿度交換性能を回復させるこ とができる。 これによつて、 高分子電解質膜が劣化した場合の温湿度交 換型熱交換器を交換する手間を省くことができると同時に、 高分子電解 質ュニット 1 8のみを交換することによるメンテナンス費用の低減を図 ることができるわけである。  In the temperature-humidity exchange type heat exchanger according to the present embodiment, even when the polymer electrolyte membrane is deteriorated due to the continuous adsorption and removal of ions and the like contained in the supply air by the polymer electrolyte membrane butt 18. By simply replacing the polymer electrolyte cut 18, the original temperature and humidity exchange performance can be restored. This eliminates the need to replace the temperature and humidity exchange type heat exchanger when the polymer electrolyte membrane has deteriorated, and at the same time reduces maintenance costs due to replacing only the polymer electrolyte unit 18. In other words, reduction can be achieved.
なお、 上述した本実施の形態においては、 高分子電解質ュニット 1 8 をスライ ドして交換する構造としたが、 高分子電解質ユニットのみを交 換することができる構造であれば良く、 その作用効果に差異を生じない 以上においては、 本実施の形態 1〜4について詳しく説明した。 In the above-described embodiment, the polymer electrolyte unit 18 is replaced by sliding, but only the polymer electrolyte unit is replaced. Any structure may be used as long as the structure can be replaced, and no difference is produced in the operation and effect. In the above, the first to fourth embodiments have been described in detail.
なお、 本発明に関連する不純物除去手段は、 上述した本実施の形態に おいては、 加湿器を含む手段であつたが、 これに限らず、 要するに、 燃 料電池から排出されるガスに含まれる水蒸気が回収された回収水を利用 することにより、 供給される酸化剤に含まれる不純物を除去するための 不純物除去手段であればよい。  Although the impurity removing means related to the present invention is a means including a humidifier in the above-described embodiment, the present invention is not limited to this. In other words, the impurity removing means is included in the gas discharged from the fuel cell. Any means may be used as the means for removing impurities contained in the supplied oxidant by using the recovered water from which the water vapor is recovered.
要するに、 本発明は、 燃料ガスおょぴ酸化剤 (空気) を供給されて燃 料電池を利用した発電を行う燃料電池システムであって、 燃料電池から 排出されるガス (燃料電池より排出される空気おょぴ燃料ガスなど) に 含まれる水蒸気が回収された回収水を利用することにより、 供給される 酸化剤に含まれる不純物を除去する不純物除去手段を備えた燃料電池シ ステムである。  In short, the present invention relates to a fuel cell system which is supplied with a fuel gas and an oxidizing agent (air) to generate electric power using a fuel cell, wherein the gas discharged from the fuel cell (discharged from the fuel cell) This is a fuel cell system equipped with an impurity removing unit that removes impurities contained in the supplied oxidant by using recovered water from which steam contained in air and fuel gas is recovered.
また、 本発明は、 燃料ガスおょぴ酸化剤 (空気) を供給されて燃料電 池を利用した発電を行う燃料電池システムであって、 燃料電池から排出 される酸化剤を利用することにより、 供給される酸化剤に含まれる不純 物を除去する不純物除去手段を備えた燃料電池システムである。  Further, the present invention relates to a fuel cell system which is supplied with a fuel gas and an oxidizing agent (air) to generate electric power using a fuel cell, wherein the oxidizing agent discharged from the fuel cell is used. This is a fuel cell system provided with impurity removing means for removing impurities contained in the supplied oxidizing agent.
また、 イオン交換材料は、 上述した本実施の形態においては、 高分子 電解質膜であつたが、 これに限らず、 たとえばイオン交換樹脂であって もよい。  Further, the ion exchange material is a polymer electrolyte membrane in the present embodiment described above, but is not limited thereto, and may be, for example, an ion exchange resin.
もちろん、 本発明にかかる酸化剤は、 含まれる不純物を除去されると ともに、 加湿をも行われてよい。  Of course, the oxidizing agent according to the present invention may be humidified while removing impurities contained therein.
したがって、 本発明は、 たとえば、 供給空気の加湿を行うと同時に、 供給空気内に含まれる不純物やイオン等を除去し、 燃料電池が本来持つ ている性能を十分に引き出すことが可能となる。  Therefore, according to the present invention, for example, while humidifying the supply air, impurities, ions, and the like contained in the supply air are removed, and the performance inherent in the fuel cell can be sufficiently obtained.
また、 供給空気の温度調整と加湿に温湿度交換型熱交換器を用い、 そ の温湿度交換面に高分子電解質膜を用いることにより、 動力を一切用い ることなく、 燃料電池からの排出空気に含まれる熱と水蒸気を用いた供 給空気の温度調整と加湿が実現できると同時に供給空気内に含まれるィ オンを吸着除去することができ、 燃料電池が本来持っている性能を充分 に引き出すことが可能となる。 In addition, a temperature-humidity exchange heat exchanger is used for temperature adjustment and humidification of the supply air. By using a polymer electrolyte membrane for the temperature and humidity exchange surface, it is possible to achieve temperature control and humidification of the supply air using the heat and steam contained in the air discharged from the fuel cell without using any power. At the same time, ions contained in the supply air can be adsorbed and removed, and the inherent performance of the fuel cell can be fully exploited.
さらに、 温湿度交換型熱交換器において、 温湿度交換面に使用してい る高分子電解質膜をュニット化して温湿度交換型熱交換器から取り外し 可能な形状とすることで、 供給空気中に含まれるイオン等を吸着除去す ることによって劣化した高分子電解質ュニットを容易に交換できるよう になり、 温湿度交換性能が低下した場合でも容易に安価で性能を回復す ることが可能となる。  Furthermore, in the temperature / humidity exchange heat exchanger, the polymer electrolyte membrane used for the temperature / humidity exchange surface is unitized to have a shape that can be removed from the temperature / humidity exchange heat exchanger, so that it is included in the supply air. By absorbing and removing ions and the like, the deteriorated polymer electrolyte unit can be easily replaced, and even if the temperature / humidity exchange performance deteriorates, the performance can be easily recovered at low cost.
つぎに、 本発明者が発明した発明であり、 上記本発明に関連する発明 を説明する。  Next, the invention which was invented by the inventor and which is related to the above-mentioned invention will be described.
第 1の発明は、 燃料ガスおょぴ酸化剤を供給されて発電を行う燃料電 池を備える燃料電池システムであって、  The first invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidizing agent to generate power,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度おょぴ湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を備え、  A room into which the supplied oxidant is introduced and an exhausted gas from the fuel cell for performing temperature and humidity exchange between the supplied oxidant and the oxidant discharged from the fuel cell. A humidity-exchange type heat exchanger having a temperature-humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidizing agent is introduced.
前記供給される酸化剤に含まれる不純物は、 前記温度および湿度の交 換が行われる際に前記イオン交換材料に吸着される燃料電池システムで める。  The impurities contained in the supplied oxidizing agent can be obtained by a fuel cell system that is adsorbed on the ion exchange material when the temperature and humidity are exchanged.
第 2の発明は、 前記イオン交換材料は、 高分子電解質膜である第 1の 発明の燃料電池システムである。  A second invention is the fuel cell system according to the first invention, wherein the ion exchange material is a polymer electrolyte membrane.
第 3の発明は、 前記温湿度交換面は、 自在に取り替え可能である第 1 の発明の燃料電池システムである。 In a third aspect, the temperature / humidity exchange surface is freely replaceable. It is a fuel cell system of the invention.
第 4の発明は、 燃料ガスおよび酸化剤を供給されて燃料電池を利用し た発電を行う燃料電池発電方法であつて、  A fourth invention is a fuel cell power generation method for performing power generation using a fuel cell by supplying a fuel gas and an oxidant,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度おょぴ湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を利用して、 前記供給される酸化剤に含まれる不純物を、 前記 温度おょぴ湿度の交換が行われる際に前記イオン交換材料に吸着するス テツプを備えた燃料電池発電方法である。  A room into which the supplied oxidant is introduced and an exhausted gas from the fuel cell for performing temperature and humidity exchange between the supplied oxidant and the oxidant discharged from the fuel cell. Using a humidity exchange type heat exchanger having a temperature / humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the oxidant is introduced, impurities contained in the supplied oxidant are removed. A fuel cell power generation method comprising a step of adsorbing to the ion exchange material when the temperature and humidity are exchanged.
第 5の発明は、 燃料ガスおよび酸化剤を供給されて発電を行う燃料電 池を備える燃料電池システムであって、  A fifth invention is a fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidant to generate power,
前記燃料電池から排出されるガスに含まれる水蒸気が回収された回収 水を利用することにより、 前記供給される酸化剤に含まれる不純物を除 去する不純物除去手段を備えた燃料電池システムである。 '  A fuel cell system comprising an impurity removing means for removing impurities contained in the supplied oxidant by using recovered water in which water vapor contained in gas discharged from the fuel cell is recovered. '
第 6の発明は、 前記回収水を利用するとは、 前記供給される酸化剤に 前記回収水を通過させることである第 5の発明の燃料電池システムであ る。  A sixth aspect of the present invention is the fuel cell system according to the fifth aspect, wherein using the recovered water means passing the recovered water through the supplied oxidizing agent.
第 7の発明は、 前記不純物除去手段は、 前記回収水を貯溜する貯溜部 と、 前記貯溜される回収水の水面より下の部分に設けられた、 前記酸化 剤を送り込むための孔と、 前記回収水を昇温するためのヒータとを有す る第 6の発明の燃料電池システムである。  In a seventh aspect, the impurity removing means includes: a storage portion for storing the recovered water; a hole provided in a portion below the surface of the stored recovered water, for feeding the oxidizing agent; A fuel cell system according to a sixth aspect of the present invention, comprising a heater for raising the temperature of the recovered water.
第 8の発明は、 前記回収水を利用するとは、 前記供給される酸化剤に 前記回収水を噴射することである第 5の発明の燃料電池システムである c 第 9の発明は、 前記不純物除去手段は、 前記回収水を噴霧する嘖霧部 と、 前記酸化剤を昇温するためのヒータとを有する第 8の発明の燃料電 池システムである。 An eighth invention is the fuel cell system according to the fifth invention, wherein the use of the recovered water is to inject the recovered water into the supplied oxidant. The fuel cell according to the eighth aspect of the present invention includes: a spray section for spraying the recovered water; and a heater for heating the oxidant. Pond system.
第 1 0の発明は、 燃料ガスおょぴ酸化剤を供給されて燃料電池を利用 した発電を行う燃料電池発電方法であって、  A tenth invention is a fuel cell power generation method for performing power generation using a fuel cell by supplying a fuel gas and an oxidizing agent,
前記燃料電池から排出されるガスに含まれる水蒸気が回収された回収 水を利用することにより、 前記供給される酸化剤に含まれる不純物を除 去するステップを備えた燃料電池発電方法である。  A fuel cell power generation method comprising a step of removing impurities contained in the supplied oxidant by using recovered water in which water vapor contained in gas discharged from the fuel cell is recovered.
なお、 上述の文献の全ての開示は、 そっく りそのままここに引用 (参 照) することにより、 一体化される。 産業上の利用可能性  The entire disclosure of the above-mentioned documents is incorporated by reference (referred to as such) here. Industrial applicability
以上述べたところから明らかなように、 本発明は、 燃料電池本体が本 来持つ性能を十分に引き出すことができるという長所を有する。  As is apparent from the above description, the present invention has an advantage that the inherent performance of the fuel cell body can be sufficiently brought out.

Claims

求 の Sought
1 . 燃料ガスおよぴ酸化剤を供給されて発電を行う燃料電池を備え る燃料電池システムであって、 1. A fuel cell system including a fuel cell that is supplied with a fuel gas and an oxidant to generate power,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度および湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を備え、  A room in which the supplied oxidant is introduced and an oxidation discharged from the fuel cell for exchanging temperature and humidity between the supplied oxidant and the oxidant discharged from the fuel cell. A humidity-exchange type heat exchanger having a temperature-humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the agent is introduced,
前記供給される酸化剤に含まれる不純物は、 前記温度おょぴ湿度の交 換が行われる際に前記イオン交換材料に吸着される燃料電池システム。  The fuel cell system according to claim 1, wherein the impurities contained in the supplied oxidant are adsorbed on the ion exchange material when the temperature and humidity are exchanged.
2 . 前記イオン交換材料は、 高分子電解質膜である請求項 1記載の 燃料電池システム。  2. The fuel cell system according to claim 1, wherein the ion exchange material is a polymer electrolyte membrane.
3 . 前記温湿度交換面は、 自在に取り替え可能である請求項 1記载 の燃料電池システム。  3. The fuel cell system according to claim 1, wherein the temperature and humidity exchange surface is freely replaceable.
4 . 燃料ガスおよび酸化剤を供給されて燃料電池を利用した発電を 行う燃料電池発電方法であって、  4. A fuel cell power generation method in which fuel gas and an oxidant are supplied to generate power using a fuel cell,
前記供給される酸化剤と前記燃料電池から排出される酸化剤との間で 温度および湿度の交換を行うための、 前記供給される酸化剤が導入され る部屋と前記燃料電池から排出される酸化剤が導入される部屋とを仕切 る所定のイオン交換材料で形成された温湿度交換面を有する湿度交換型 熱交換器を利用して、 前記供給される酸化剤に含まれる不純物を、 前記 温度および湿度の交換が行われる際に前記イオン交換材料に吸着するス テツプを備えた燃料電池発電方法。  A room in which the supplied oxidant is introduced and an oxidation discharged from the fuel cell for exchanging temperature and humidity between the supplied oxidant and the oxidant discharged from the fuel cell. Using a humidity exchange type heat exchanger having a temperature / humidity exchange surface formed of a predetermined ion exchange material that separates the room into which the agent is introduced, impurities contained in the supplied oxidant are removed by the temperature And a step of adsorbing the ion exchange material when the humidity is exchanged.
PCT/JP2002/010154 2001-10-02 2002-09-30 Fuel cell system, and fuel cell power generating method WO2003032422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/306954 2001-10-02
JP2001306954A JP2005108436A (en) 2001-10-02 2001-10-02 Fuel cell system and power generating method of fuel cell

Publications (1)

Publication Number Publication Date
WO2003032422A1 true WO2003032422A1 (en) 2003-04-17

Family

ID=19126502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010154 WO2003032422A1 (en) 2001-10-02 2002-09-30 Fuel cell system, and fuel cell power generating method

Country Status (2)

Country Link
JP (1) JP2005108436A (en)
WO (1) WO2003032422A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524712A3 (en) * 2003-10-01 2005-11-23 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290998B (en) * 2007-04-17 2012-05-23 上海清能燃料电池技术有限公司 Self-humidifying electrochemical device
JP5227100B2 (en) * 2008-07-01 2013-07-03 日本電信電話株式会社 Fuel cell power generation system and power generation method
JP2010020965A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2010044960A (en) * 2008-08-13 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method of fuel cell
JP2014107259A (en) * 2012-11-30 2014-06-09 Tokyo Gas Co Ltd Fuel cell system
KR20210020311A (en) * 2019-08-14 2021-02-24 현대자동차주식회사 Humidifier for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067830A1 (en) * 1998-06-24 1999-12-29 International Fuel Cells Corporation Mass and heat recovery system for a fuel cell power plant
WO1999067829A2 (en) * 1998-06-03 1999-12-29 International Fuel Cells Corporation Direct mass and heat transfer fuel cell power plant
US6048383A (en) * 1998-10-08 2000-04-11 International Fuel Cells, L.L.C. Mass transfer composite membrane for a fuel cell power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999067829A2 (en) * 1998-06-03 1999-12-29 International Fuel Cells Corporation Direct mass and heat transfer fuel cell power plant
WO1999067830A1 (en) * 1998-06-24 1999-12-29 International Fuel Cells Corporation Mass and heat recovery system for a fuel cell power plant
US6048383A (en) * 1998-10-08 2000-04-11 International Fuel Cells, L.L.C. Mass transfer composite membrane for a fuel cell power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1524712A3 (en) * 2003-10-01 2005-11-23 Matsushita Electric Industrial Co., Ltd. Fuel cell system and operation method thereof

Also Published As

Publication number Publication date
JP2005108436A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
US6451466B1 (en) Functional integration of multiple components for a fuel cell power plant
US6045934A (en) Solid polymer electrolyte fuel cell
US6489052B1 (en) Fuel cell air purification subsystem
US20080026270A1 (en) Fuel cell and apparatus for purifying air supplied to fuel cell
JP4072707B2 (en) Solid polymer electrolyte fuel cell power generator and its operation method
JP2002280032A (en) Fuel cell system
JP2003523047A (en) Refrigerant treatment system for direct antifreeze-cooled fuel cell assembly
US6605378B2 (en) Functional integration of multiple components for a fuel cell power plant
JP3706937B2 (en) Fuel cell system
JP2000156236A5 (en)
JP4504614B2 (en) Fuel cell power generation system
WO2003032422A1 (en) Fuel cell system, and fuel cell power generating method
JP2007042649A (en) Fuel cell system and operation method of the same
JP4419329B2 (en) Solid polymer electrolyte fuel cell power generator
JP4140269B2 (en) Fuel cell system
EP1524712A2 (en) Fuel cell system and operation method thereof
JPH11214022A (en) Fuel cell power generating device
JP2000260455A (en) Deterioration restoring process for fuel cell
JP2001216981A (en) Humidifying device for fuel cell
US20030148157A1 (en) Functional integration of multiple components for a fuel cell power plant
JP2003132928A (en) Fuel cell system
JP4000971B2 (en) Fuel cell system
JP2002075418A (en) Humidifying device for fuel cell
JP3831836B2 (en) Solid polymer fuel cell power generator
JP2009170131A (en) Fuel cell power generation system and its operation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP