WO2003033144A1 - Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst - Google Patents

Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst Download PDF

Info

Publication number
WO2003033144A1
WO2003033144A1 PCT/JP2002/010582 JP0210582W WO03033144A1 WO 2003033144 A1 WO2003033144 A1 WO 2003033144A1 JP 0210582 W JP0210582 W JP 0210582W WO 03033144 A1 WO03033144 A1 WO 03033144A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
layer
particles
forming
colloidal
Prior art date
Application number
PCT/JP2002/010582
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Abe
Shuntaro Kinoshita
Original Assignee
Nippon Soda Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co.,Ltd. filed Critical Nippon Soda Co.,Ltd.
Priority to JP2003535930A priority Critical patent/JP4738736B2/en
Publication of WO2003033144A1 publication Critical patent/WO2003033144A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • B01J35/39

Definitions

  • the present invention provides a structure supporting a photocatalyst used for water purification, deodorization, antifouling, sterilization, wastewater treatment, algae growth suppression, various chemical reactions, etc., and is particularly durable even in an outdoor environment having excellent transparency.
  • TECHNICAL FIELD The present invention relates to a photocatalyst composite having properties, a coating solution for forming a photocatalyst layer, and a photocatalyst supporting structure. Background technology:
  • a photocatalyst-supporting structure in which a photocatalyst is supported on a carrier with the intention of decomposing antibacterial, anti-humidity and harmful substances by the action of a photocatalyst has been known.
  • Such a photocatalyst-carrying structure is usually produced by applying and curing a coating solution for forming a photocatalyst layer containing a photocatalyst component on the surface of a carrier to form a photocatalyst layer.
  • the coating solution for forming the photocatalyst layer contains a binder component because it is difficult to fix the photocatalyst component consisting of metal oxides such as titanium dioxide to various carriers with sufficient strength.
  • Silica sol has often been used as a binder that can withstand the oxidizing action of photocatalysts.
  • a member hereinafter, referred to as a "photocatalyst-supporting structure" having a photocatalyst-containing coating or layer (hereinafter, referred to as a "photocatalyst layer”) formed on the surface of a carrier (substrate or substrate) is used outdoors. If used, they will be exposed to the elements for extended periods. At this time, if the photocatalyst film layer is poor in water resistance, the photocatalyst film layer is partially or entirely peeled off from the carrier, so that sufficient photocatalytic activity cannot be exhibited. Therefore, when the photocatalyst supporting structure is used outdoors for a longer period of time, it has been desired that the photocatalyst supporting structure has higher water resistance.
  • the present invention provides a photocatalyst-supporting structure that can be used for water purification, deodorization, antifouling, sterilization, wastewater treatment, algae growth suppression, and various chemical reactions, and can solve the above three problems. With the goal.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by using a silica sol having aluminum and zirconium as main components as binder components and having a special shape. It was completed.
  • a photocatalyst complex comprising at least one selected from the group consisting of a compound and an aluminum compound,
  • the ratio of the particle diameter measured by the dynamic light scattering method (D l nm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm) is obtained by combining the spherical colloidal force particles into an elongated shape.
  • D 1 / D 2 is 5 or more, and this D 1 is 40 to 300 nm, and has a uniform thickness within the range of 5 to 20 nm observed by electron microscopy, and extends only in one plane.
  • the zirconium compound is selected from the group consisting of zirconium oxide, oxide hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide. It is characterized by being one or a mixture of two or more
  • the photocatalyst complex according to any one of (1) to (5),
  • the aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides.
  • the photocatalyst complex according to any one of (1) to (6), wherein the photocatalyst complex is a mixture of one or more kinds.
  • the colloidal silica particles are contained in an amount of 5 to 50% by weight and the photocatalyst is contained in an amount of 5 to 60% by weight in terms of oxide, based on the entire photocatalyst complex.
  • a coating liquid for forming a photocatalyst layer comprising: a silicide sol in which colloidal silicide particles in which spherical colloidal silica particles are bound in an elongated shape are dispersed; and a photocatalyst particle and / or a sol; and a zirconium compound.
  • a photocatalyst layer coating solution comprising at least one selected from the group consisting of aluminum compounds.
  • a solid sol in which, in terms of oxides, colloidal silicide particles in which spherical colloidal silicide particles are combined in an elongated shape is dispersed is 0.5.
  • the zirconium compound is selected from the group consisting of 0.5 to 5% by weight and the aluminum compound is 2 to 9% by weight in terms of oxide, as solids, based on the entire coating solution for forming a photocatalyst layer.
  • the spherical colloidal silica particles are elongated and colloidal silicide particles that are bound in a shape are the ratio of the particle diameter measured by the dynamic light scattering method (D l nm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm).
  • D 1 / D 2 is 5 or more, and this D 1 is 40 to 300 nm, and has a uniform thickness within the range of 5 to 20 nm observed by electron microscopy, and extends only in one plane.
  • the zirconium compound is selected from the group consisting of zirconium oxide, hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide.
  • the photocatalyst-forming coating liquid according to any one of (12) to (18), wherein the coating liquid is a sol of one or a mixture of two or more kinds thereof.
  • the aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides.
  • the photocatalyst-forming coating liquid according to any one of (12) to (19), wherein the coating liquid is a sol of one or a mixture of two or more kinds thereof.
  • a photocatalyst layer-supporting structure in which an adhesive layer is formed on a surface of a carrier and a photocatalyst layer is further formed on the surface of the adhesive layer, wherein the photocatalyst layer is any one of (1) to (11).
  • a photocatalyst layer-supporting structure comprising the photocatalyst composite according to
  • Adhesion by the cross-cut tape method specified in JI SK5400 after boiling for 1 hour in boiling ion-exchanged water is characterized by a score of 6 or more (23) or (24)
  • the photocatalyst composite of the present invention basically contains a photocatalytic component and colloidal silicide particles in which spherical colloidal silicide particles are bound in an elongated shape, and at least one member selected from the group consisting of zirconium compounds and aluminum compounds. It is characterized by containing.
  • any photocatalyst such as powder, sol, or solution
  • a sol having an average particle diameter of 50 nm or less, preferably 20 nm or less is used, transparency is required because the transparency of the photocatalyst layer is improved and the linear transmittance is increased. It is preferable when the composition is applied to a glass substrate or a plastic molded body.
  • the window glass of a toilet must have a high total light transmittance so that the inside of the toilet is bright, and must have a high haze rate because the inside cannot be clearly seen.
  • T i 0 2, Z n 0 in particular, S r T i 0 3, C d S, G a P, I n P, G a A s, B a T i 0 3 ⁇ KN b 0 3 ⁇ F e 2 0 3 ⁇ T a 2 0 5 ⁇ W0 3 ⁇ S n 0 2 ⁇ B i 2 0 3 , N i 0, Cu 2 0, S i C, S i 0 2 , Mo S 2, I n P b, can be exemplified R u 0 2, C e 0 2 or the like, P t for these photocatalysts, R h, R u 0 2 , n b, C u, S n, Metals or metal oxides such as Ni and Fe can be used.
  • titanium oxide titanium oxide (T i 0 2)
  • photocatalytic activity and anatase type acid titanium are preferred.
  • titanium oxide which exhibits catalytic activity with light containing a large amount of ultraviolet light such as sunlight but also titanium oxide which exhibits catalytic activity even in room light with little ultraviolet light by doping a noble metal can be used. .
  • the content of the photocatalyst in the photocatalyst composite is preferably from 5% by weight to 60% by weight in terms of oxide based on the entire photocatalyst composite. If it is less than 5% by weight, the photocatalytic activity is significantly reduced. On the other hand, when the content exceeds 60% by weight, the photocatalytic activity becomes high, but the adhesion to the adhesive layer becomes poor.
  • the colloidal sily particles used in the present invention are characterized in that spherical colloidal sily particles are combined in an elongated shape.
  • the spherical colloidal shiri particles are used in a pearl necklace.
  • Pearl net looks like pearl
  • a shape like a part of a cress can be exemplified. That is, examples in which three or more, preferably five or more, more preferably seven or more spherical silica particles are connected can be exemplified.
  • the shape of each spherical colloidal particle does not need to be clear, and it may be partially continuous and elongated in a cylindrical shape. Furthermore, it is not necessary that the spherical colloidal particles are bonded.
  • the particles have an elongated shape and a shape as a whole.
  • the length is preferably in the range of 50 to 400 nm
  • the thickness is preferably in the range of 10 to 50 nm
  • the thickness is preferably uniform throughout.
  • the elongated shape preferably extends in two-dimensional directions starting from certain spherical colloidal silica particles. Further, as long as the shape is elongated as a whole, it may have a somewhat branched structure.
  • the average particle size of the spherical colloidal silica particles is preferably in the range of 10 to 50 nm.
  • the colloidal silica particles having the above characteristics specifically, the ratio of the particle diameter measured by the dynamic light scattering method (D lnm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm) D 1 ZD 2 Is greater than or equal to 5, and this D1 is 40 to 300 nm, and the elongation only in one plane with a uniform thickness within the range of 5 to 20 nm by electron microscopy.
  • the elongated colloidal silicide particles having an elongated shape can be exemplified.
  • the methods described in JP-A-1-31715 and JP-A-7-11808 are exemplified. be able to.
  • the zirconium compound used in the present invention is added for the purpose of improving the alkali resistance of the photocatalyst composite.
  • Such zirconium compounds include zirconium oxides, hydroxides, hydroxides, nitrates, oxynitrates, carbonates, oxycarbonates, oxalates, oxyoxalates, acetates, oxyacetates, and carbon atoms of 1 to A gel of one or a mixture of two or more selected from the group consisting of the alkoxide of 6 and the hydrolysis product of the alkoxide is preferred.
  • zirconium compound examples include zirconium oxide, zirconium oxynitrate, zirconium oxychloride, hydrated zirconium oxide, zirconium oxyhydroxide, hydrated zirconium nitrate, hydrated zirconium oxychloride, zirconium oxalate, zirconium acetate, zirconium acetate Examples include tetraisopropoxide, zirconium tetrabutoxide, zirconium dibutoxide acetylacetonate, zirconium dibutoxide lactate, a hydrolysis product of zirconium butoxide, and a hydrolysis product of zirconium isopropoxide.
  • the aluminum compound is added for the purpose of further improving the alkali resistance of the photocatalyst composite and reducing the haze ratio.
  • Aluminum compounds include aluminum oxides, Hydroxide hydroxide, hydroxide, nitrate, oxynitrate, carbonate, oxycarbonate, oxalate, oxyoxalate, acetate, oxyacetate, alkoxide having 1 to 6 carbon atoms, and hydrolysis of the alkoxide One or a mixture of two or more selected from the group consisting of products is preferred.
  • aluminum compounds include aluminum oxide, aluminum oxide hydroxide, aluminum hydroxide, aluminum oxide hydrate, boehmite, aluminum nitrate, aluminum oxynitrate, aluminum carbonate, aluminum oxycarbonate, Aluminum oxalate, aluminum oxalate, aluminum acetate, aluminum oxyacetate, aluminum triisopropoxide, aluminum tributoxide, aluminum dimethyl butoxide acetylacetonate, aluminum butoxy lactate, hydrolysis product of aluminum dimethyl butoxide, Hydrolysis products of aluminum isopropoxide can be exemplified.
  • the zirconium compound or aluminum compound used with the photocatalyst has an average particle diameter of 2 nm to 50 nm, preferably 2 ⁇ ! It is preferred to use ⁇ 20 nm sol.
  • the transparency of the photocatalyst layer is improved and the linear transmittance is increased. Preferred.
  • application of such a transparent photocatalyst layer does not impair the underlying color or pattern.
  • the particles having an average particle diameter of 50 nm or more are used, the linear transmittance decreases and the haze ratio increases.
  • a porous gel having a specific surface area after drying at 150 ° C. of 100 m 2 Z g or more is used. It is preferable to do so.
  • the porous gel has an adsorptive property and has an effect of enhancing photocatalytic activity.
  • the content of the zirconium compound in the photocatalyst composite is 5 to 4 in terms of oxide with respect to the entire photocatalyst composite. Preferably it is 0% by weight. If it is less than 5% by weight, the alkali resistance of the photocatalyst layer becomes poor. On the other hand, if it exceeds 40% by weight, the transparency becomes poor.
  • the content of the aluminum compound in the photocatalyst composite is preferably 20 to 90% by weight in terms of oxide based on the entire photocatalyst composite. If it is less than 20% by weight, the effect of suppressing the increase in the haze ratio of the photocatalyst layer and the effect of increasing the alkali resistance are poor. On the other hand, if the amount exceeds 90% by weight, the photocatalytic activity decreases.
  • the content of the zirconium compound and the aluminum compound in the photocatalyst composite is preferably from 40 to 95% by weight in terms of these acid compounds in total. If the amount is less than 40% by weight, the adhesion to the adhesive layer becomes insufficient. If the amount exceeds 95% by weight, the amount of the photocatalyst that can be added is reduced, so that the photocatalytic activity is remarkably reduced.
  • the film strength is improved by further containing a silicon compound in the photocatalyst composite. As a silicon compound,
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl, (May be substituted with an amino group, a carboxyl group or a chlorine atom).
  • R 2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy
  • R 2 represents an alkyl group having 1 to 8 carbon atoms, which is substituted by an alkoxy group such as methyl, butoxymethyl, methoxethyl, ethoxymethyl, propoxyshetyl, methoxypropyl, and methoxybutyl.
  • the 1 ⁇ , n 2 and n 3 represents 0, 1 or 2
  • n 4 represents an integer of from 2 to 4
  • 1 ⁇ + 11 2 + 113Tasu 11 4 4.
  • Preferred specific examples of the silicon alkoxide represented by the above formula include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane and the like.
  • the content of the silicon compound in the photocatalyst composite is preferably 1 to 20% by weight in terms of oxide based on the entire photocatalyst composite.
  • tin, niobium, tantalum oxides or hydroxides thereof can be added to these multiple components for the purpose of improving the strength of the coating film.
  • the content of the aluminum oxide, hydroxide, or hydroxide in the photocatalyst layer is within the range of the content added for improving the alkali resistance, extremely excellent resistance to aluminum is obtained. It can show the strength
  • the coating solution for forming a photocatalyst layer of the present invention contains a silicic acid sol in which colloidal silicide particles having spherical colloidal silicide particles bonded in an elongated shape are dispersed, and a photocatalyst particle and / or a zolconium compound. It contains at least one member selected from the group consisting of aluminum compounds.
  • silica sol, the zirconium compound, the aluminum compound, and the photocatalyst which are contained in the photocatalyst layer forming coating solution and in which colloidal silica particles in which spherical colloidal silicide particles are combined in an elongated shape, are included in the photocatalyst composite.
  • colloidal silica particles, zirconium compounds, aluminum compounds and photocatalysts as those listed as preferable ones can be used.
  • the zirconium compound, aluminum compound and photocatalyst are preferably used in the form of a sol. preferable.
  • an acid or alkali deflocculant can be added to the photocatalyst coating solution for stabilization.
  • a surfactant or the like of 5% by weight or less based on the photocatalyst can be added to the sol suspension for the purpose of improving adhesion and operability.
  • the amount of each component contained in the coating solution for forming a photocatalyst layer is expressed in terms of oxide as a solid content with respect to the entire coating solution. It is preferable that the sol is 0.5 to 5% by weight, and the photocatalyst particles and Z or sol are 0.5 to 6% by weight as a solid content. It is preferable that the zirconium compound is 0.5 to 5% by weight and the aluminum compound is 2 to 9% by weight in terms of oxides.
  • the silicon compound is contained in the photocatalyst complex, it is preferable that the silicon compound is contained in an amount of 0.001 to 5% by weight in terms of oxide as a solid content with respect to the entire coating solution for forming the photocatalyst layer.
  • the silicon compound for example, a hydrolyzate of a silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or a hydrolyzate product thereof is preferable. When the carbon number of the alkoxy group of the silicon alkoxide exceeds 6, the hydrolysis rate becomes very slow.
  • Polysiloxane obtained by hydrolyzing silicon alkoxide partially containing chlorine can be used.However, when polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may be reduced.
  • a silicon alkoxide for example, a compound represented by the following formula can be preferably used.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl, (It may be substituted by an amino group, a carboxyl group or a chlorine atom.) Represents an alkyl group having 1 to 8 carbon atoms.
  • R2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy
  • n 2 and n 3 represent 0, 1 or 2
  • n 4 represents an integer of 2 to 4
  • n i + n + ns + n Preferred specific examples of the silicon alkoxide represented by the above formula include S i (OCH 3 ) 4 , S i (OC 2 H 5 ) 4 , S i (OC 3 H 7 ) 4 , S i (OC 4 H 9 ) 4 , S i (0 C 5 H U ) 4 , S i (OC 6 H 13 ) 4 S i CH 3 (OCH 3 ) 3 ⁇ S i CH 3 (OC 2 H 5 ) 3 S i CH 3 ( OC 3 H 7 ) 3 ⁇ S i CH 3 (OC 3 H 7 ) 3 ⁇ S i CH 3 (0 C 4 H 9 ) 3 S i C 1 (OCH 3 ) 3 ⁇ S i C 1 (0 C 2 H 5 ) 3 , S i C 1 (OC 3 H 7 ) 3 , S i C 1 (OC
  • the method for preparing the coating solution for forming the photocatalyst layer includes: (a) a method of mixing zirconium or aluminum oxide, oxidized hydroxide or hydroxide sol solution, photocatalyst, colloidal sily sol, etc .; A method of mixing a photocatalyst and a colloidal sily sol in the state of a precursor solution of an oxide, oxide hydroxide or oxide 7 sol, (b) zirconium or aluminum oxide, hydroxide or hydroxide Any method can be employed as long as it is uniformly mixed in the photocatalyst layer, such as a method of mixing a sol solution of the product and a sol-solution for forming a photocatalyst with the colloidal silylation sol.
  • Photocatalyst particles or a sol, a colloidal sily sol, etc. are dispersed in a precursor solution of a zirconium or aluminum oxide, an oxide hydroxide or a hydroxide sol, and the coating solution is hydrolyzed or neutralized during coating. It can also be decomposed to form a sol.
  • solvent used examples include water, alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, and t-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and cyclohexane.
  • Ketones such as hexanone, ethers such as dimethyl ether, methylcellosolve, and tetrahydrofuran; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane and chloroform; sacaneethyl and acetic acid Esters such as propyl and butyl acetate; and saturated hydrocarbons such as pentane, hexane and cyclohexane can be mentioned. Also, two or more of these can be used in combination. Of these, water-alcohol solvents are particularly preferred.
  • the structure supporting the photocatalyst according to the present invention has a structure in which an adhesive layer is provided between the photocatalyst layer and the carrier.
  • the adhesive layer provided between the photocatalyst layer and the carrier has a function of protecting the underlying carrier from deterioration due to the photocatalytic action and a function of firmly adhering the photocatalyst layer to the carrier. Have a characteristic that they are not easily deteriorated by photocatalysis.
  • the carrier is not particularly limited as long as it can support a photocatalyst via an adhesive layer.
  • the ceramic, inorganic material, or carrier material is an organic polymer that cannot be heated or a metal that is easily oxidized and corroded by heat or water, it is possible to obtain a structure provided with the adhesive layer and the photocatalyst layer. it can.
  • the shape of the carrier any complicated shape such as a film, a sheet, a plate, a tube, a fiber, and a net can be used.
  • the thickness of the carrier is preferably 10 ⁇ m or more because it can be firmly supported.
  • the surface is easily treated by electric discharge treatment or Bramer treatment. A carrier that has been subjected to a deposition treatment can be used.
  • the material of the adhesive layer is not particularly limited as long as it can protect the carrier from being deteriorated by the photocatalytic action and can firmly fix the photocatalytic layer.
  • the silicon content is converted to oxide.
  • 2 to 10% by weight of silicon-modified resins such as (acrylic silicone resin, epoxy silicon resin, polyester silicone resin), and (2) a resin containing 3 to 90% by weight of polysiloxane as oxide.
  • a resin containing 5 to 90% by weight of colloidal silica in terms of oxide can be used. These resins adhere well to the photocatalyst and are suitable for protecting the carrier from the photocatalyst.
  • Silicon-modified resin such as acryl silicone resin whose silicon content is less than 2% by weight in terms of oxide, resin whose polysiloxane content is less than 3% by weight in terms of oxide, and colloidal silicide content If the resin is less than 5% by weight in terms of oxide, the adhesion to the photocatalyst layer will be poor. Further, the adhesive layer is deteriorated by the photocatalyst, and the photocatalyst layer is easily peeled.
  • Silicon-modified resin such as acryl-silicon resin whose silicon content exceeds 10% by weight as oxide, resin containing polysiloxane more than 90% by weight as oxide, colloidal silica If the amount of the resin exceeds 90% by weight in terms of oxide, the adhesion to the carrier will be reduced.
  • the resin for introducing silicon examples include an acrylic resin, an epoxy resin, a polyester resin, an alkyd resin, and a urethane resin.
  • acrylic resins, epoxy resins, and polyester resins are particularly preferable in view of film formability, toughness, and adhesion to a carrier.
  • These resins can be used in either a solution state or an emulsion type. Further, additives such as a crosslinking agent may be contained.
  • the polysiloxane contained in the resin of the adhesive layer is a hydrolyzate of a silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or a product of the hydrolyzate, adhesion and durability are further improved.
  • a supporting structure can be obtained. If the alkoxy group in the silicon alkoxide has more than 6 carbon atoms, the hydrolysis rate will be very slow, making it difficult to cure in the resin, resulting in poor adhesion and durability.
  • a polysiloxane obtained by hydrolyzing a silicon alkoxide partially containing chlorine can also be used.However, when a polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may be reduced.
  • a silicon alkoxide for example, a compound represented by the following formula can be preferably used.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl,
  • Amino group, (It may be substituted with a carbonyl group or a chlorine atom.) It represents an alkyl group having 1 to 8 carbon atoms.
  • R 2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy
  • 1 ⁇ , n 2 and n 3 represent 0, 1 or 2
  • n 4 represents an integer of 2 to 4, and It is.
  • Preferred specific examples of the silicon alkoxide represented by the above formula include S i (OCH 3 ) 4 , S i (OC 2 H 5 ) 4 , S i (OC 3 H 7 ) 4 , S i (OC 4 H 9 ) 4 , S i (OC 5 H u ) 4 , S i (OC 6 H 13 ) 4 , S i CH 3 (OCH 3 ) 3 , S i CH 3 (OC 2 H 5 ) 3 , S i CH 3 ( 0 C 3 H 7 ) 3 , S i CH 3 (OC 3 H 7 ) 3 S i CH 3 (OC 4 H g ) 3 , S i C 1 (OCH 3 ) 3 , S i C 1 (0 C 2 H 5) 3, S i C 1 (OC 3 H 7) 3, S i C 1 (OC 4 H g) 3, S i C 1 (OC 6 H 13) 3, S i C 1 (OH) (OCH 3 ) 2 S i C 1 (
  • silicon of these silicon-modified resins there are various methods for introducing silicon of these silicon-modified resins, such as a transesterification reaction, a graft reaction using a silicon macromer or a reactive silicon monomer, a hydrosilylation reaction, and a block copolymerization method.
  • polysiloxane can be introduced into a resin by (1) a method in which silicon alkoxide is mixed with a resin solution in a monomer state and hydrolyzed with moisture in the air when an adhesive layer is formed;
  • methods such as mixing the partial hydrolyzate with a resin, and further hydrolyzing with the moisture in the air at the time of forming the adhesive layer, but any method can be used as long as it can be uniformly mixed with the resin.
  • a small amount of an acid or base catalyst may be added to adjust the hydrolysis rate of silicon alkoxide.
  • the amount of the polysiloxane to be added to the resin is preferably 3 to 90% by weight in terms of oxide in order to firmly adhere the photocatalyst layer to the carrier.
  • any resin such as an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, and an alkyd resin can be used.
  • acrylic resin, epoxy resin, polyester resin, or a resin mixture thereof is preferable in terms of durability and resistance to stress when used as a silicone-modified resin.
  • the particle size of the colloidal silica is preferably 1 Onm or less.
  • the particle diameter is 1 Onm or more, not only the resin in the adhesive layer is easily degraded by the photocatalyst, but also the adhesion between the photocatalyst layer and the adhesive layer becomes poor.
  • a resin solution and a colloidal silica solution are used as a method of introducing colloidal sily force into a resin.
  • the simplest method is to mix the liquids, apply and dry to form a protective film.
  • a polymer obtained by polymerizing a resin in a state where the colloidal silicity is dispersed can be used.
  • colloidal silica treated with a silane coupling agent can be used to improve the adhesiveness and dispersibility between the colloidal silica and the resin.
  • the amount of colloidal silica added to the resin is preferably 5 to 90% by weight in terms of oxide in order to firmly adhere the photocatalyst layer to the carrier.
  • Any resin such as acrylic resin, epoxy resin, urethane resin, polyester resin, and alkyd resin can be used as the resin into which colloidal silica is introduced.
  • acrylic resin, epoxy resin and polyester resin are particularly preferable when they are made of silicone-modified resin, because they can obtain excellent durability and resistance to stress.
  • the colloidal silicity can be any type of silica sol obtained by cation exchange of an aqueous solution of sodium silicate or a silica sol obtained by hydrolyzing silicon alkoxide. it can.
  • a resin containing both polysiloxane and colloidal silicide can be used as the adhesive layer.
  • the total content of the polysiloxane and the colloidal sily in the adhesive layer is within the above range of the content showing the improvement in the alkali resistance when converted to oxides, the same excellent alkali resistance is obtained.
  • the colloidal silicity and the particle diameter of polysiloxane are preferably 10 nm or less. If the particle diameter of colloidal silica or polysiloxane exceeds 10 nm, the dispersibility becomes poor, and the transmissivity of the adhesive layer is reduced, so that the total wavelength of the total wavelength of the adhesive layer and the photocatalyst layer is 550 nm.
  • the light transmittance may be 70% or less.
  • a light stabilizer and a UV absorber or an ultraviolet absorber can be further added to the adhesive layer resin for the purpose of suppressing deterioration due to photocatalysis.
  • a light stabilizer that can be used a hindered amine type is preferable, but other substances can also be used.
  • As the ultraviolet absorber a triazole or the like can be used. These additives are added in an amount of 0.05 to 10% by weight, preferably 0.01 to 5% by weight, based on the resin. It is also preferable to treat the adhesive layer with a silane-based or titanium-based coupling agent to increase the adhesion to the photocatalyst layer.
  • Examples of a method for forming an adhesive layer on a carrier include a method of coating, drying and curing an adhesive resin solution by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, or the like. .
  • the drying temperature varies depending on the type of solvent and resin, but is generally preferably about 50 ° C. to 300 ° C.
  • the thickness of the adhesive layer is preferably about 0.1 jum to 20 jui in order to obtain good adhesion to the photocatalyst layer. When the thickness of the adhesive layer is 0.1 l ⁇ m or less, the function of firmly bonding the photocatalyst layer is weakened. On the other hand, when the thickness is 20 zm or more, there is no particular problem, but there is little merit in setting the thickness to 20 m or more in consideration of actual coating processing.
  • the photocatalyst layer can be formed by coating the coating solution for forming a photocatalyst layer on the surface of the adhesive layer by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, etc., and then drying and curing. it can.
  • the preferred temperature for drying and curing varies depending on the carrier material and the resin material in the adhesive layer, but is usually about 50 ° C to 300 ° C.
  • the photocatalytic activity increases as the thickness of the photocatalyst layer increases, but when it exceeds 20 m, the photocatalytic activity is saturated, but in many cases it becomes difficult in actual coating processing, and the light transmittance of the photocatalytic layer increases. It is preferably 20 m or less because of lowering. On the other hand, when the thickness of the photocatalyst is less than 0.1 ⁇ m, although the translucency is improved, high activity cannot be expected because the ultraviolet light used by the photocatalyst is transmitted.
  • the photocatalyst layer and the adhesive layer can be formed.
  • the total light transmittance at a total wavelength of 550 nm is not less than 80% and the haze rate can be not more than 2%.
  • Such a photocatalyst-supporting structure is excellent in terms of decorativeness when a transparent carrier is used, because transmitted visible light can be used as illumination, and even when the carrier is opaque, the pattern on the carrier is not damaged. It will be.
  • the photocatalyst-carrying structure of the present invention thus obtained is characterized in that the turbidity of the coating film including the adhesive layer and the photocatalyst layer is 3% or less.
  • turbidity is used in the same meaning as the haze ratio described above.
  • the turbidity of the coating film including the adhesive layer and the photocatalyst layer after boiling for 1 hour in boiling ion-exchanged water is 3% or less, and the light intensity of black light having an ultraviolet intensity of 3 mWZ cm 2 is characterized. Is rated at 6 points or more by the cross-cut tape method specified in JISK540 after irradiating for 500 hours at a temperature of 40 ° C and a relative humidity of 90%.
  • the turbidity of the coated film is 3% or less.
  • Structures supporting the photocatalyst of the present invention include architectural paints, wallpapers, window glasses, blinds, curtains, carpets, lighting fixtures, lighting lights, road lights, tunnel lights, noise barriers on highways and bullet trains, and black lights.
  • Ship bottom fishing net antifouling paint, water treatment filler, agricultural film, It can be used for herbicidal sheets, packaging materials, etc. In particular, when used in a high-temperature and high-humidity environment or in an outdoor environment, it exhibits properties such as excellent durability and transparency.
  • A-1) Aluminum oxide hydroxide (boehmite) fine particles (Alumina sol 10 from Kawaken Fine Chemicals)
  • Z-1 A solution obtained by dissolving Wako Pure Chemical's special grade reagent zirconium nitrate hexahydrate in water to form a 10% aqueous solution, and then heating for 12 hours to distill half the volume of water at normal pressure. was used as a zirconium oxynitrate solution.
  • the above titanium oxide photocatalyst, sol solution and compound solution were prepared in an appropriate range of PHI. 5 to 9, mixed, and a predetermined amount of surfactant was added to obtain a coating solution for forming a photocatalyst layer.
  • Adhesive layer The following polysiloxane was used in the adhesive layer.
  • PS-2 Polymethoxysiloxane manufactured by Colcoat Methyl Silicate 51
  • PS-3 Polyethoxysiloxane manufactured by Corcot Tylsilicate 40
  • the following colloidal silica was used as the colloidal silica contained in the adhesive layer.
  • KS-1 Product name Cataroid SI-350, manufactured by Catalysis Kasei Co., Ltd., particle size 7-9 nm
  • KS-2 Product name, Snowtex ST-XS, manufactured by Nissan Chemical Co., Ltd. Particle size 4-6 nm
  • the following resin solutions were used to introduce siloxane or colloidal silica.
  • the silicon content was displayed in terms of S i 0 2 in the resin solids.
  • Polysiloxane or colloidal silica was mixed with the resin solution and the concentration was adjusted to obtain a solution for forming an adhesive layer.
  • the adhesive layer was formed by a dipping method when the thickness was 2 m or less or the carrier shape was other than a flat plate, and was formed by a baker applicator when the carrier was a flat plate and the thickness was 2 mm or more.
  • the drying of the adhesive layer was performed at 80 ° C when the material of the carrier was (TB), and at 120 ° C otherwise.
  • the photocatalyst layer is a dipping method when the thickness of the carrier is 2 m or less or when the shape of the carrier is other than a flat plate, and a bar coater when the carrier is a flat plate and the thickness is 2 m or more.
  • a coating was formed on the surface of the backseat phase.
  • the drying of the photocatalytic layer was performed at the same temperature as the drying of the adhesive layer.
  • a sample carrying a photocatalyst cut out to a size of 70 mm ⁇ 70 mm was placed in a Pyrex (registered trademark) glass container having a capacity of 4 liters.
  • a mixed gas of air and aldehyde was added to the container so that the aldehyde concentration became 2 OO pm.
  • UV intensity 2 mW / cm 2 of black light in carrying the sample FL 15BLB, Toshiba Lighting & Technology Corporation
  • an aldehyde gas concentration in the container was measured Ri by the gas chromatograph, by its decrease Photocatalytic activity was evaluated.
  • the evaluation criteria are as follows.
  • a boiling water test was performed in accordance with the boiling water test specified in JI SK5400. However, the immersion time was set to 1 hour.
  • Table 1 summarizes the embodiments and comparative examples in which the type and amount of each material were changed, and Table 2 summarizes the performance test results of the photocatalyst-carrying structure obtained.
  • Example 1 TA Jl 5 5 85 5 Example 2 TA Jl 5 5 80 10 Example 3 TA J2 5 20 65 10 Example 4 TA PS2 10 Jl 5 5 70 20 Example 5 TA PS3 30 Jl 20 20 40 20 Example 6 TA PS1 10 Jl 20 40 30 10 Example 7 TB PS1 30 Jl 40 5 50 5 Example 8 TB PS3 30 Jl 40 5 45 10 Example 9 TC PS1 10 Jl 40 10 10 40 Example 10 TA PS2 30 Jl 40 10 40 10 Example 11 TB PS2 30 Jl 40 10 30 20 Example 12 TA PS2 30 Jl 40 20 30 10 Example 13 TC PS2 30 Jl 40 10 10 Example 14 TA PS2 30 Jl 60 5 30 5 Example 15 TA PS2 30 J3 40 5 35 20 Example 16 TA PS2 30 J4 40 10 45 5 Example 17 TA PS2 30 J5 20 20 55 5 Example 18 TA PS1 50 J6 60 10 10 20 20
  • Example 1 C 8 8 8 0.7 0.8 0.7 Example 2 C 8 8 8 1.2 1.3 1.2 Example 3 C 10 10 10 1.9 2.2 2.0 Example 4 C 10 10 10 1.7 1.8 1.7 Example 5 B 10 10 10 2.5 2.8 2.6 Example 6 B 10 10 10 2.5 3.0 2.6 Example 7 A 8-8 0.9-0.9 Example 8 A 10 1 10 1.4-1.4 Example 9 A 10 10 10---Example 10 A 10 10 10 1.6 1.8 1.6 Example 11 A 10-10 2.1 2.1 Example 12 A 10 10 10 2.1 2.4 2.2 Example 13 A 10 10 10---Example 14 A 10 10 8 1.0 1.1 1.1 Example 15 A 10 10 10 1.9 2.0 1.9 Example 16 A 8 8 8 1.1 1.3 1.1 Example 17 B 10 10 10 1.5 1.8 1.6 Example 18 A 10 10 8 2.2 2.4 2.3 Example 19 C 10 10 10 2.2 2.3 2.2 Example 20 B 10 10 10 2.5
  • Comparative Examples 1 and 2 are cases in which Nissan Chemical Snowtex 20 was used as a silica sol having no necklace-like structure. Poor adhesion of photocatalyst layer after boiling water test.
  • the haze ratio was high, and the haze ratio was increased after the durability test.
  • Comparative Example 3 is a case where the photocatalyst layer contains too much zirconazole. Initial haze rate is high.
  • Examples 1 to 3 are examples in which an acrylic silicon resin was used for the adhesive layer and a photocatalytic layer using necklace-shaped colloidal silica was used. These samples were evaluated well by the boiling water test and had good durability.
  • Examples 4 to 14 are examples in which an acryl-silicon resin containing polysiloxane was used for the adhesive layer, and a photocatalytic layer using necklace-shaped colloidal silica was used.
  • Examples 7, 8, and 11 are examples in which they are supported on a transparent acrylic plate. These samples also had good durability.
  • epoxy-silicon resin (Example 16), polyester-silicone resin (Example 17), or ataryl polymer (Example 18) into which polysiloxane is introduced is used as the resin for the adhesive layer. It showed good performance.
  • Examples 19 to 26 a resin containing colloidal silica was used for the adhesive layer, and the catalyst activity, boiling water resistance, and durability were good.
  • Examples 27 to 31 show that a photocatalyst layer was formed directly on a sodium glyme glass plate without using an adhesive layer, and then dried at 200 ° C. Boiling water and durability were good.
  • Example 2 The samples obtained in 7 to 31 were subjected to a durability test using a black light under high temperature and high humidity, a boiling water test, and a sunshine force-bon arc weather meter (Suga test machine, WE L— SUN— The sample subjected to accelerated light resistance test (HCH type) for 2000 hours was again examined for photocatalytic activity by the amount of acetoaldehyde gas decomposed in the same manner as in the initial stage. It was found that both samples maintained the initial photocatalytic activity.
  • HSH type accelerated light resistance test
  • Example 27 The sample obtained in Examples 7 to 31 was subjected to accelerated light resistance test using a Sunshine Carbon Arc Weather Meter 1 (Suga Test Machine, WEL-SUN-HCH type) for 2000 hours. When the haze ratio was measured, all turbidity values were within 2%, It was found that transparency was maintained.
  • a film was formed in the same manner as in Example 12 except that a polymethoxysiloxane (reagent) was further added to the photocatalytic layer agent so as to be 10% by weight relative to the total solid content in terms of oxide.
  • the photocatalyst was rated B. However, when a felt abrasion test was performed using a rubbing tester manufactured by Ohira Rika Kogyo Co., Ltd., the coating of Example 12 was peeled in 200 reciprocations. No peeling of the 32 coating film was observed even in 400 reciprocations.
  • a film was formed in the same manner as in Example 14 except that a polymethoxysiloxane (reagent) was further added to the photocatalytic layer agent in an amount of 20% by weight relative to the total solid content in terms of oxide.
  • the photocatalyst was rated C.
  • a felt abrasion test was performed using a rubbing tester manufactured by Ohira Rika Kogyo Co., Ltd.
  • the coating of Example 14 was peeled after 100 reciprocations. In Example 33, no peeling was observed even in 400 reciprocations.
  • the photocatalyst composite of the present invention has a very high photocatalytic activity and is excellent in transparency.
  • the photocatalyst layer-forming coating solution of the present invention has excellent storage stability and can easily form a photocatalyst layer.
  • the resulting photocatalyst layer can be a transparent one that transmits visible light, so that the catalyst can be supported without damaging the pattern of the carrier, and decorativeness can be applied to a wide range of carriers such as general-purpose resins and natural fibers.
  • a photocatalyst-carrying structure having excellent activity without any loss can be obtained.
  • the photocatalyst-supporting structure of the present invention has a photocatalyst firmly adhered to a carrier, has a very high photocatalytic activity, and does not cause deterioration of the carrier or desorption of the photocatalyst by the photocatalytic action.
  • the photocatalyst-supporting structure of the present invention can be used for a long time even under light irradiation.
  • the alkali resistance test has been evaluated well, and since it maintains high adhesion even after accelerated weathering test by the Sunshine Carbon Arc Meter, it can be used in hot and humid environments or in outdoor environments. Can be used.

Abstract

A photocatalyst composite material containing a photocatalyst and colloidal silica particles, characterized in that the colloidal silica particles comprises spherical colloidal silica particles bonded to one another so as to form a long and narrow shape and the photocatalyst composite material further comprises at least one compound selected from the group consisting of a zirconium compound and an aluminum compound. The photocatalyst composite material can be used for providing a structure carrying a photocatalyst which is useful for water clarification, deodorization, anti-staining, sterilization, waste water treatment, suppression of growth of an alga, and various chemical reactions.

Description

明 細 書  Specification
光触媒複合体、 光触媒層形成用塗布液及び光触媒担持構造体 技術分野:  Photocatalyst composite, coating solution for forming photocatalyst layer and photocatalyst supporting structure
本発明は、 浄水、 脱臭、 防汚、殺菌、 排水処理、 藻の成育抑制、 及び各種化学反応等 に用いられる光触媒を担持した構造体、 特に透明性に優れた屋外環境下でも十分な耐 久性を有する光触媒複合体、 光触媒層形成用塗布液及び光触媒担持構造体に関する。 背景技術:  INDUSTRIAL APPLICABILITY The present invention provides a structure supporting a photocatalyst used for water purification, deodorization, antifouling, sterilization, wastewater treatment, algae growth suppression, various chemical reactions, etc., and is particularly durable even in an outdoor environment having excellent transparency. TECHNICAL FIELD The present invention relates to a photocatalyst composite having properties, a coating solution for forming a photocatalyst layer, and a photocatalyst supporting structure. Background technology:
従来から、 光触媒の作用により抗菌、 防徽性ゃ有害物質の分解を意図して、 光触媒 を担体上に担持させてなる光触媒担持構造体が知られている。 かかる光触媒担持構造 体は、 通常担体表面に光触媒成分を含有する光触媒層形成用塗布液を塗布、 硬化させ ることにより光触媒層を形成することにより製造されている。  2. Description of the Related Art A photocatalyst-supporting structure in which a photocatalyst is supported on a carrier with the intention of decomposing antibacterial, anti-humidity and harmful substances by the action of a photocatalyst has been known. Such a photocatalyst-carrying structure is usually produced by applying and curing a coating solution for forming a photocatalyst layer containing a photocatalyst component on the surface of a carrier to form a photocatalyst layer.
光触媒層形成用塗布液は、 二酸化チタン等の金属酸化物からなる光触媒成分だけで は様々な担体に十分な強度を持って固定することが困難であることからバインダ一成 分を含有しており、 光触媒の酸化作用に耐えうるバインダ一としてシリカゾルが多く 用いられてきた。  The coating solution for forming the photocatalyst layer contains a binder component because it is difficult to fix the photocatalyst component consisting of metal oxides such as titanium dioxide to various carriers with sufficient strength. Silica sol has often been used as a binder that can withstand the oxidizing action of photocatalysts.
また、 担体 (基材あるいは基板)表面に光触媒を含有する被膜または層 (以下、 「光 触媒層」 という。) を形成してなる部材 (以下、 「光触媒担持構造体」 という。) を屋外 で使用する場合、 長期間に渡って風雨にさらされる。 このとき、 光触媒膜層が耐水性 に劣るものである場合には、 部分的にあるいは全面的に担体から剥離して、 充分な光 触媒活性を発揮できない。 従って、 光触媒担持構造体がより長期間に渡って屋外で使 用される場合には、 より耐水性が高いことが望まれていた。  In addition, a member (hereinafter, referred to as a "photocatalyst-supporting structure") having a photocatalyst-containing coating or layer (hereinafter, referred to as a "photocatalyst layer") formed on the surface of a carrier (substrate or substrate) is used outdoors. If used, they will be exposed to the elements for extended periods. At this time, if the photocatalyst film layer is poor in water resistance, the photocatalyst film layer is partially or entirely peeled off from the carrier, so that sufficient photocatalytic activity cannot be exhibited. Therefore, when the photocatalyst supporting structure is used outdoors for a longer period of time, it has been desired that the photocatalyst supporting structure has higher water resistance.
さらに、 光触媒層が長期間に渡って風雨にさらされた場合には、 その透明性が劣化 することが知られている。 従って、 ガラスや透明プラスチック等のような透明な担体 上に光触媒膜層を形成する場合には、 下値の色や模様を活かすためにも、 特に耐水性 に優れ、 透明度の変化が少ないことが要求されていた。  Furthermore, it is known that if the photocatalytic layer is exposed to wind and rain for a long period of time, its transparency deteriorates. Therefore, when a photocatalytic film layer is formed on a transparent carrier such as glass or transparent plastic, it is required that it has particularly good water resistance and little change in transparency in order to make use of the lower color and pattern. It had been.
本発明に用いる細長い形状に結合した球状コロイダルシリ力を使用している例が、 例えば、 特開平 1 1— 1 0 8 0 3号公報に光触媒を含有する農業用資材として記載さ れているが、 本発明のような構成は具体的に実施例には記載されていない。 発明の開示:  An example in which a spherical colloidal silicide force bonded to an elongated shape used in the present invention is used is described in, for example, Japanese Patent Application Laid-Open No. 11-108003 as an agricultural material containing a photocatalyst. However, the configuration of the present invention is not specifically described in the embodiments. DISCLOSURE OF THE INVENTION:
耐水性および長期耐久性の評価方法としては J I S K 5 4 0 0や J I S K 6 7 4 4 に規定されているような耐沸騰水試験が知られているが、 1時間漬浸した場合でも、 剥離がなく、 透明性の変化がほとんどないという光触媒触媒層はいままで知られてい なかった。 As a method for evaluating water resistance and long-term durability, a boiling water test as specified in JISK540 and JISK7444 is known, but even when immersed for 1 hour, peeling does not occur. Photocatalyst layers that have no change in transparency Did not.
長期間風雨にさらされるような屋外環境で使用される場合の光触媒担持体が解決し なくてはならない課題として、 1) 1時間沸騰水に潰浸させた後でも、 光触媒と担体 の接着性が良好であり、 かつ光触媒塗膜の透明性の変化が大きくないこと、 2) 光触 媒活性が担体上に担持されることにより大きく低下しないこと、 3) 屋外における紫 外線照射によって担持した光触媒による担体および接着座の劣化がおきず、 長期に渡 つて接着強度を維持し耐久性を保つていることの 3点が挙げられる。  One of the issues that must be solved for the photocatalyst carrier when used in an outdoor environment where it will be exposed to the wind and rain for a long time is as follows: 1) The adhesion between the photocatalyst and the carrier even after immersion in boiling water for one hour. Good, and the change in transparency of the photocatalyst coating film is not large; 2) the photocatalytic activity is not significantly reduced by being supported on the carrier; 3) the photocatalyst carried by ultraviolet irradiation outdoors There are three points: the carrier and the adhesive seat do not deteriorate, and the adhesive strength is maintained and the durability is maintained over a long period of time.
本発明は、 浄水、 脱臭、 防汚、 殺菌、 廃水処理、 藻の育成抑制、 および各種の化学 反応に使用可能で、 上記 3点の課題を解決しうる光触媒を担持した構造体を提供する ことを目的とする。  The present invention provides a photocatalyst-supporting structure that can be used for water purification, deodorization, antifouling, sterilization, wastewater treatment, algae growth suppression, and various chemical reactions, and can solve the above three problems. With the goal.
本発明者らは上述の課題を解決すべく鋭意検討した結果、 バインダ—成分として、 アルミニウム、 ジルコニウムを主成分とし、 特殊な形状を有するシリカゾルを用いる ことで上記課題を解決できることを見出し本発明を完成するに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by using a silica sol having aluminum and zirconium as main components as binder components and having a special shape. It was completed.
すなわち、 本発明は、 That is, the present invention
(1) 光触媒、 コロイダルシリカ粒子を含有する光触媒複合体であって、 前記コロイ ダルシリ力粒子が、 球状コロイダルシリ力粒子が細長 、形状に結合したコロイダルシ リカ粒子であり、 該光触媒複合体にさらにジルコニウム化合物およびアルミニウム化 合物からなる群から選ばれる少なくとも 1種を含有することを特徴とする光触媒複合 体、  (1) A photocatalyst, a photocatalyst composite containing colloidal silica particles, wherein the colloidal silica particles are colloidal silica particles in which spherical colloidal silica particles are elongated and bonded in shape, and the photocatalyst composite further includes zirconium. A photocatalyst complex comprising at least one selected from the group consisting of a compound and an aluminum compound,
(2) さらにシリコン化合物を含有することを特徴とする (1) に記載の光触媒複合 体、  (2) The photocatalyst complex according to (1), further comprising a silicon compound.
(3) 球状コロイダルシリカ粒子の粒子径が 10〜50 nmであることを特徴とする (1) または (2) に記載の光触媒複合体、  (3) The photocatalyst composite according to (1) or (2), wherein the spherical colloidal silica particles have a particle diameter of 10 to 50 nm.
(4) 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子の長 さが 50〜400 nmの範囲であることを特徴とする (1) 〜 (3) のいずれかに記 載の光触媒複合体、  (4) The photocatalyst according to any one of (1) to (3), wherein the length of the colloidal silicide particles in which the spherical colloidal silicide particles are combined in an elongated shape is in the range of 50 to 400 nm. Complex,
(5) 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子が、 動的光散乱法による測定粒子径 (D l nm) と窒素ガス吸着法による測定粒子径 (D 2 nm) の比 D 1/D 2 が 5以上であって、 この D 1は 40〜300 nmであり、 そ して電子顕微鏡観察による 5〜 20 nmの範囲内の一様な太さで一平面内のみの伸長 を有する細長い形状の非晶質コロイダルシリカ粒子であることを特徴とする (1) ま たは (2) に記載の光触媒複合体、  (5) The ratio of the particle diameter measured by the dynamic light scattering method (D l nm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm) is obtained by combining the spherical colloidal force particles into an elongated shape. D 1 / D 2 is 5 or more, and this D 1 is 40 to 300 nm, and has a uniform thickness within the range of 5 to 20 nm observed by electron microscopy, and extends only in one plane. The photocatalyst composite according to (1) or (2), which is an elongated colloidal silica particle having an elongated shape having
(6)前記ジルコニウム化合物が、 ジルコニウムの酸化物、酸化水酸化物、 水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物であることを特徴と する (1) 〜 (5) のいずれかに記載の光触媒複合体、 (6) The zirconium compound is selected from the group consisting of zirconium oxide, oxide hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide. It is characterized by being one or a mixture of two or more The photocatalyst complex according to any one of (1) to (5),
(7)前記アルミニウム化合物が、 アルミニウムの酸化物、酸化水酸化物、 水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物であることを特徴と する (1) 〜 (6) のいずれかに記載の光触媒複合体、  (7) The aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. The photocatalyst complex according to any one of (1) to (6), wherein the photocatalyst complex is a mixture of one or more kinds.
(8) 前記ジルコニウム化合物またはアルミニウム化合物は、 150°Cで乾燥後の比 表面積が 100m2Zg以上の多孔質ゲルである (6) または (7) に記載の光触媒複 合体、 (8) The photocatalyst complex according to (6) or (7), wherein the zirconium compound or the aluminum compound is a porous gel having a specific surface area after drying at 150 ° C of 100 m 2 Zg or more.
(9) 光触媒複合体全体に対して、 酸化物に換算して、 前記コロイダルシリカ粒子を 5〜50重量%含有し、 光触媒を 5〜60重量%含有することを特徴とする (1) 〜 (8) のいずれかに記載の光触媒複合体、  (9) The colloidal silica particles are contained in an amount of 5 to 50% by weight and the photocatalyst is contained in an amount of 5 to 60% by weight in terms of oxide, based on the entire photocatalyst complex. 8) The photocatalyst composite according to any one of the above,
(10) 光触媒複合体全体に対して、 酸化物に換算して、 ジルコニウム化合物を、 5 〜40重量%含有することを特徴とする (1) 〜 (9) のいずれかに記載の光触媒複 合体、  (10) The photocatalyst composite according to any one of (1) to (9), wherein the zirconium compound is contained in an amount of 5 to 40% by weight in terms of oxide with respect to the entire photocatalyst composite. ,
(11) 光触媒複合体全体に対して、 アルミニウム化合物を、 酸化物に換算して 20 〜 90重量%含有することを特徴とする (1) 〜 (10) のいずれかに記載の光触媒 複合体に関する。  (11) The photocatalyst composite according to any one of (1) to (10), wherein the aluminum compound is contained in an amount of 20 to 90% by weight in terms of oxide based on the entire photocatalyst composite. .
また、 Also,
(12) 光触媒層形成用塗布液であって、 球状コロイダルシリカ粒子が細長い形状に 結合したコロイダルシリ力粒子が分散したシリ力ゾル、 並びに光触媒粒子及び/また はゾルを含有し、 さらに、 ジルコニウム化合物およびアルミニウム化合物からなる群 から選ばれる少なくとも 1種をを含有することを特徴とする光触媒層塗布液、 (12) A coating liquid for forming a photocatalyst layer, comprising: a silicide sol in which colloidal silicide particles in which spherical colloidal silica particles are bound in an elongated shape are dispersed; and a photocatalyst particle and / or a sol; and a zirconium compound. And a photocatalyst layer coating solution comprising at least one selected from the group consisting of aluminum compounds.
(13) さらにポリシロキサンを含有することを特徴とする (12) に記載の光触媒 層塗布液、 (13) The photocatalyst layer coating solution according to (12), further comprising a polysiloxane.
(14) 光触媒層形成用塗布液全体に対して、 固形分として酸化物換算で、 球状コロ ィダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子が分散したシリ力ゾ ルシリ力ゾルを 0. 5〜 5重量%、 及び光触媒粒子及び Zまたはゾルを固形分として 0. 5〜6重量%を含有してなることを特徴とする (12) または (13) に記載の 光触媒層形成用塗布液、  (14) For the entire coating solution for forming a photocatalyst layer, a solid sol in which, in terms of oxides, colloidal silicide particles in which spherical colloidal silicide particles are combined in an elongated shape is dispersed, is 0.5. The coating solution for forming a photocatalyst layer according to (12) or (13), wherein the coating solution comprises 0.5 to 6% by weight, and 0.5 to 6% by weight of photocatalyst particles and Z or sol as a solid content.
(15) 光触媒層形成用塗布液全体に対して、 固形分として酸化物換算で、 ジルコ二 ゥム化合物を 0. 5〜5重量%、 アルミニウム化合物を 2〜 9重量%からなる群から 選ばれる少なくとも 1種を含有することを特徴とする (12) または (14) に記載 の光触媒層形成用塗布液、  (15) The zirconium compound is selected from the group consisting of 0.5 to 5% by weight and the aluminum compound is 2 to 9% by weight in terms of oxide, as solids, based on the entire coating solution for forming a photocatalyst layer. The coating liquid for forming a photocatalyst layer according to (12) or (14), which comprises at least one kind.
(16) 球状コロイダルシリカ粒子の粒子径が 10〜50 nmであることを特徴とす る (12) 〜 (15) のいずれかに記載の光触媒形成用塗布液、 (17) 球状コロイダルシリカ粒子が細長い形状に結合したコロイダルシリカ粒子の 長さが 50〜400 nm の範囲であることを特徴とする (12) 〜 (16) のいずれ かに記載の光触媒形成用塗布液、 (16) The coating liquid for forming a photocatalyst according to any one of (12) to (15), wherein the spherical colloidal silica particles have a particle diameter of 10 to 50 nm. (17) The coating for forming a photocatalyst according to any one of (12) to (16), wherein the length of the colloidal silica particles in which the spherical colloidal silica particles are bound in an elongated shape is in the range of 50 to 400 nm. liquid,
( 18 )球状コロイダルシリカ粒子が細長 、形状に結合したコロイダルシリ力粒子が、 動的光散乱法による測定粒子径 (D l nm) と窒素ガス吸着法による測定粒子径 (D 2 nm) の比 D 1/D 2 が 5以上であって、 この D 1は 40〜300 nmであり、 そ して電子顕微鏡観察による 5〜20 nmの範囲内の一様な太さで一平面内のみの伸長 を有する細長い形状の非晶質コロイダルシリカ粒子であることを特徴とする (12) 〜 (15) のいずれかに記載の光触媒形成用塗布液、  (18) The spherical colloidal silica particles are elongated and colloidal silicide particles that are bound in a shape are the ratio of the particle diameter measured by the dynamic light scattering method (D l nm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm). D 1 / D 2 is 5 or more, and this D 1 is 40 to 300 nm, and has a uniform thickness within the range of 5 to 20 nm observed by electron microscopy, and extends only in one plane. (12) The coating liquid for forming a photocatalyst according to any one of (12) to (15), which is an elongated colloidal silica particle having an elongated shape.
(19) 前記ジルコニウム化合物が、 ジルコニウムの酸化物、 酸化水酸化物、 水酸化 物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシ ドの加水分解物からなる群から選ばれる 1種または 2種以上の混合物のゾルであるこ とを特徴とする (12) 〜 (18) のいずれかに記載の光触媒形成用塗布液、 (19) The zirconium compound is selected from the group consisting of zirconium oxide, hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide. The photocatalyst-forming coating liquid according to any one of (12) to (18), wherein the coating liquid is a sol of one or a mixture of two or more kinds thereof.
(20)前記アルミニウム化合物が、 アルミニウムの酸化物、 酸化水酸化物、 水酸化 物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1~4のアルコキシド、 及び該アルコキシ ドの加水分解物からなる群から選ばれる 1種または 2種以上の混合物のゾルであるこ とを特徴とする (12) 〜 (19) のいずれかに記載の光触媒形成用塗布液、(20) The aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. The photocatalyst-forming coating liquid according to any one of (12) to (19), wherein the coating liquid is a sol of one or a mixture of two or more kinds thereof.
(21) 前記アルミニウム化合物の平均粒子径が 2〜 50 nmであることを特徴とす る (12) 〜 (20) のいずれかに記載の光触媒層形成用塗布液、 (21) The coating solution for forming a photocatalyst layer according to any one of (12) to (20), wherein the average particle diameter of the aluminum compound is 2 to 50 nm.
(22) 前記アルミニウム化合物の平均粒子径が 2〜 20 nmである (12) 〜 (2 0) のいずれかに記載の光触媒層形成用塗布液に関する。  (22) The coating liquid for forming a photocatalyst layer according to any one of (12) to (20), wherein the aluminum compound has an average particle diameter of 2 to 20 nm.
(23) 担体表面に接着層を形成し、 さらに該接着層表面に光触媒層を形成してなる 光触媒層担持構造体であって、前記光触媒層が、 (1) 〜 (11) のいすれかに記載の 光触媒複合体からなることを特徴とする光触媒層担持構造体に関し、  (23) A photocatalyst layer-supporting structure in which an adhesive layer is formed on a surface of a carrier and a photocatalyst layer is further formed on the surface of the adhesive layer, wherein the photocatalyst layer is any one of (1) to (11). A photocatalyst layer-supporting structure comprising the photocatalyst composite according to
(24)前記接着層及び光触媒層を合わせた塗膜の濁度が 3 %以下であることを特徴 とする (23) に記載の光触媒担持構造体、  (24) The photocatalyst-supporting structure according to (23), wherein the turbidity of the coating film including the adhesive layer and the photocatalyst layer is 3% or less.
(25) 沸騰イオン交換水中で 1時間煮沸した後での J I SK5400に規定された 碁盤目テープ法による付着性が評価点数 6点以上であることを特徴とする (23) ま たは (24) に記載の光触媒担持構造体、  (25) Adhesion by the cross-cut tape method specified in JI SK5400 after boiling for 1 hour in boiling ion-exchanged water is characterized by a score of 6 or more (23) or (24) The photocatalyst supporting structure according to,
(26) 沸騰イオン交換水中で 1時間煮沸した後での接着層及び光触媒層を合わせた 塗膜の濁度が 3%以下であることを特徴とする (23) に記載の光触媒担持構造体、 (27)紫外線強度 3 niWZ cm2のブラックライトの光を、 温度 40°C、相対湿度 9 0%の下で 500時間照射した後での J I S 5400に規定された碁盤目テープ法 による付着性が評価点数 6点以上であることを特徴とする (23) に記載の光触媒担 持 造体、 ( 2 8 )紫外線強度 3 mW/ c m2のブラックライトの光を、 温度 4 0 °C、相対湿度 9 0 %の下で 5 0 0時間照射した後での接着層及び光触媒層を合わせた塗膜の濁度が 3 %以下であることを特徴とする (2 3 ) に記載の光触媒担持構造体に関する。 (26) The photocatalyst-supporting structure according to (23), wherein the turbidity of the coating film including the adhesive layer and the photocatalyst layer after boiling for 1 hour in boiling ion-exchanged water is 3% or less. (27) the light of the ultraviolet intensity 3 niWZ cm 2 of black light, temperature 40 ° C, adhesion due to the relative humidity of 90% of the cross-cut tape method prescribed in JIS 5400 of after irradiated for 500 hours under the The photocatalyst-bearing structure according to (23), which has an evaluation score of 6 or more, (28) coating a light black light ultraviolet intensity 3 mW / cm 2, the combined adhesive layer and a photocatalyst layer after irradiation temperature 4 0 ° C, under a relative humidity of 90% 5 0 0 h The photocatalyst-supporting structure according to (23), wherein the turbidity of the membrane is 3% or less.
本発明の光触媒複合体は、 基本的には光触媒成分及び球状コロイダルシリ力粒子が 細長い形状に結合したコロイダルシリ力粒子を含有し、 さらにジルコニウム化合物及 びアルミニウム化合物からなる群から選ばれる少なくとも 1種を含有してなることを 特徴とする。  The photocatalyst composite of the present invention basically contains a photocatalytic component and colloidal silicide particles in which spherical colloidal silicide particles are bound in an elongated shape, and at least one member selected from the group consisting of zirconium compounds and aluminum compounds. It is characterized by containing.
光触媒は、 粉末状、 ゾル状、 溶液状など、 乾燥 ·硬化したときに接着層と固着して 光触媒活性を示すものであればいずれも使用することができる。 特にゾル状で平均粒 子径が 5 0 n m以下、 好ましくは 2 0 n m以下のものを使用する場合には、 光触媒層 の透明性が向上し直線透過率が高くなるため、 透明性を要求されるガラス基板やブラ スチック成形体に塗布する場合に好ましい。  Any photocatalyst, such as powder, sol, or solution, can be used as long as it shows photocatalytic activity by being fixed to the adhesive layer when dried and cured. In particular, when a sol having an average particle diameter of 50 nm or less, preferably 20 nm or less is used, transparency is required because the transparency of the photocatalyst layer is improved and the linear transmittance is increased. It is preferable when the composition is applied to a glass substrate or a plastic molded body.
また、 下地の担体に色や模様が印刷されたものの場合に、 こうした透明な光触媒層 を塗布すると下地の色や柄を損なうことがない。 5 0 n m以上では直線透過率が減少 し、 ヘイズ率が高くなる。 ここで、 ヘイズ率は、 ヘイズ率 = (全光透過率—直線透過 率) /全光透過率という関係式で求められる値である。 例えば、 トイレの窓ガラスは、 トイレ内が明るいように全光透過率の高いもので、 かつ、 内部がはっきりと見えては いけないのでヘイズ率は高いものである必要がある。  In the case where a color or pattern is printed on the underlying carrier, applying the transparent photocatalyst layer does not impair the underlying color or pattern. Above 50 nm, the linear transmittance decreases and the haze ratio increases. Here, the haze ratio is a value obtained by a relational expression of haze ratio = (total light transmittance−linear transmittance) / total light transmittance. For example, the window glass of a toilet must have a high total light transmittance so that the inside of the toilet is bright, and must have a high haze rate because the inside cannot be clearly seen.
前記光触媒としては、具体的には T i 02、 Z n 0、 S r T i 03、 C d S、 G a P、 I n P、 G a A s、 B a T i 03ヽ K N b 03ヽ F e 203ヽ T a 205ヽ W03ヽ S n 02ヽ B i 203、 N i 0、 C u 20、 S i C、 S i 02、 M o S 2、 I n P b、 R u 02、 C e 02等 を例示することができ、 さらにこれらの光触媒に P t、 R h、 R u 02、 N b、 C u、 S n、 N i、 F e等の金属もしくは金属酸化物を添加したものを使用することができ る。 これらの内、 耐久性、 コスト、 光触媒活性を考慮すると酸化チタン (T i 02) を 主成分とするものが特に好ましく、 さらに、 光触媒活性を考慮するとアナターゼ型酸 化チタンが好ましい。 また、 太陽光のような紫外線を多く含む光で触媒活性を示す酸 化チタンのみならず、 貴金属をド一プ等して紫外線の少ない室内光においても触媒活 性示す酸化チタンを用いることができる。 As the photocatalyst, T i 0 2, Z n 0 in particular, S r T i 0 3, C d S, G a P, I n P, G a A s, B a T i 0 3ヽKN b 0 3ヽ F e 2 0 3ヽ T a 2 0 5ヽ W0 3ヽ S n 0 2ヽ B i 2 0 3 , N i 0, Cu 2 0, S i C, S i 0 2 , Mo S 2, I n P b, can be exemplified R u 0 2, C e 0 2 or the like, P t for these photocatalysts, R h, R u 0 2 , n b, C u, S n, Metals or metal oxides such as Ni and Fe can be used. Of these, durability, cost, particularly preferably as a main component and considering the photocatalytic activity of titanium oxide (T i 0 2), further, consider the photocatalytic activity and anatase type acid titanium are preferred. In addition, not only titanium oxide which exhibits catalytic activity with light containing a large amount of ultraviolet light such as sunlight but also titanium oxide which exhibits catalytic activity even in room light with little ultraviolet light by doping a noble metal can be used. .
前記光触媒複合体中の光触媒の含有量は、 光触媒複合体全体に対して、 酸化物に換 算して 5重量%〜 6 0重量%が好ましい。 5重量%未満になると光触媒活性が著しく 低下する。 一方、 6 0重量%を越える場合には光触媒活性は高くなるものの、 接着層 との接着性が乏しくなる。  The content of the photocatalyst in the photocatalyst composite is preferably from 5% by weight to 60% by weight in terms of oxide based on the entire photocatalyst composite. If it is less than 5% by weight, the photocatalytic activity is significantly reduced. On the other hand, when the content exceeds 60% by weight, the photocatalytic activity becomes high, but the adhesion to the adhesive layer becomes poor.
本発明に用いられるコロイダルシリ力粒子は、 球状コロイダルシリ力粒子が細長い 形状に結合したコロイダルシリ力粒子であることを特徴とし、 その形状の具体例とし て、 球状コロイダルシリ力粒子をパールネックレスのパールにみたてるとパールネッ クレスの一部のような形状を例示することができる。 すなわち、 球状シリカ粒子を 3 個以上、 好ましくは 5個以上、 更に好ましくは 7個以上連結したものを例示すること ができる。 また、 球状コロイダル粒子一つ一つの形状が明確である必要はなく、 部分 的には筒状に連続して細長い形状をしているものでもよく、 さらに、 球状コロイダル 粒子が結合している必要はなく、 粒子全体として細長 t、形状であるのが好ましい。 細長い形状において、 その長さは、 5 0〜4 0 0 n mの範囲が好ましく、 その太さ を 1 0〜5 0 n mの範囲のものが好ましく、 全体にわたって太さが均一なものが好ま しい。 さらに、 細長い形状は、 ある球状コロイダルシリカ粒子を起点に 2次元方向に 伸長しているのが好ましい。 また、 全体として細長い形状であれば、 多少分岐構造を 有するものでも構わない。 The colloidal sily particles used in the present invention are characterized in that spherical colloidal sily particles are combined in an elongated shape. As a specific example of the shape, the spherical colloidal shiri particles are used in a pearl necklace. Pearl net looks like pearl A shape like a part of a cress can be exemplified. That is, examples in which three or more, preferably five or more, more preferably seven or more spherical silica particles are connected can be exemplified. Further, the shape of each spherical colloidal particle does not need to be clear, and it may be partially continuous and elongated in a cylindrical shape. Furthermore, it is not necessary that the spherical colloidal particles are bonded. It is preferable that the particles have an elongated shape and a shape as a whole. In the elongated shape, the length is preferably in the range of 50 to 400 nm, the thickness is preferably in the range of 10 to 50 nm, and the thickness is preferably uniform throughout. Further, the elongated shape preferably extends in two-dimensional directions starting from certain spherical colloidal silica particles. Further, as long as the shape is elongated as a whole, it may have a somewhat branched structure.
球状コロイダルシリ力粒子が先に述べたようにネックレス状に結合している場合に、 その球状コロイダルシリカ粒子の平均粒径は、 1 0 ~ 5 0 n mの範囲であるのが好ま しい。  When the spherical colloidal silica particles are bonded in a necklace shape as described above, the average particle size of the spherical colloidal silica particles is preferably in the range of 10 to 50 nm.
以上のような特性を有するコロイダルシリカ粒子として、 具体的には、 動的光散乱 法による測定粒子径 (D l n m) と窒素ガス吸着法による測定粒子径 (D 2 n m) の 比 D 1 ZD 2 が 5以上であって、 この D 1は 4 0〜3 0 0 n mであり、そして電子顕 微鏡観察による 5〜2 0 n mの範囲内の一様な太さで一平面内のみの伸長を有する細 長い形状の非晶質コロイダルシリ力粒子を例示することができる。 このようなコロイ ダルシリ力粒子が分散したゾルの製造方法として、 特開平 1— 3 1 7 1 1 5号公報、 特開平 7— 1 1 8 0 0 8号公報に記載されている方法を例示することができる。  As the colloidal silica particles having the above characteristics, specifically, the ratio of the particle diameter measured by the dynamic light scattering method (D lnm) to the particle diameter measured by the nitrogen gas adsorption method (D 2 nm) D 1 ZD 2 Is greater than or equal to 5, and this D1 is 40 to 300 nm, and the elongation only in one plane with a uniform thickness within the range of 5 to 20 nm by electron microscopy. The elongated colloidal silicide particles having an elongated shape can be exemplified. As a method for producing a sol in which such colloidal particles are dispersed, the methods described in JP-A-1-31715 and JP-A-7-11808 are exemplified. be able to.
本発明に用いられるジルコニウム化合物は光触媒複合体の耐ァルカリ性を向上させ る目的で添加される。 かかるジルコニウム化合物としては、 ジルコニウムの酸化物、 酸化水酸化物、 水酸化物、 硝酸塩、 ォキシ硝酸塩、 炭酸塩、 ォキシ炭酸塩、 蓚酸塩、 ォキシ蓚酸塩、 酢酸塩、 ォキシ酢酸塩、 炭素数 1〜6のアルコキシド及び該アルコキ シドの加水分解生成物からなる群から選ばれた 1種又は 2種以上の混合物のゲルが好 ましい。  The zirconium compound used in the present invention is added for the purpose of improving the alkali resistance of the photocatalyst composite. Such zirconium compounds include zirconium oxides, hydroxides, hydroxides, nitrates, oxynitrates, carbonates, oxycarbonates, oxalates, oxyoxalates, acetates, oxyacetates, and carbon atoms of 1 to A gel of one or a mixture of two or more selected from the group consisting of the alkoxide of 6 and the hydrolysis product of the alkoxide is preferred.
ジルコニウムの化合物の好ましい具体例としては、 酸化ジルコニウム、 ォキシ硝酸 ジルコニウム、 ォキシ塩化ジルコニウム、 水和酸化ジルコニウム、 ォキシ水酸化ジル コニゥム、 水和硝酸ジルコニウム、水和ォキシ塩化ジルコニウム、蓚酸ジルコニウム、 酢酸ジルコニウム、 ジルコニウムテトライソプロポキシド、 ジルコニウムテトラブト キシド、 ジルコニウムジブトキシドアセチルァセトナート、 ジルコニウムジブトキシ ドラクテート、 ジルコニウムブトキシドの加水分解生成物、 ジルコニウムイソプロボ キシドの加水分解生成物を挙げることができる。  Preferred specific examples of the zirconium compound include zirconium oxide, zirconium oxynitrate, zirconium oxychloride, hydrated zirconium oxide, zirconium oxyhydroxide, hydrated zirconium nitrate, hydrated zirconium oxychloride, zirconium oxalate, zirconium acetate, zirconium acetate Examples include tetraisopropoxide, zirconium tetrabutoxide, zirconium dibutoxide acetylacetonate, zirconium dibutoxide lactate, a hydrolysis product of zirconium butoxide, and a hydrolysis product of zirconium isopropoxide.
アルミニウムの化合物は、 光触媒複合体の耐アルカリ性をさらに向上させ、 ヘイズ 率を下げる目的で添加される。 アルミニウム化合物としては、 アルミニウムの酸化物、 酸化水酸化物、 水酸化物、 硝酸塩、 ォキシ硝酸塩、 炭酸塩、 ォキシ炭酸塩、 蓚酸塩、 ォキシ蓚酸塩、 酢酸塩、 ォキシ酢酸塩、 炭素数 1〜6のアルコキシド、 及び該アルコ キシドの加水分解生成物からなる群から選ばれた 1種又は 2種以上の混合物が好まし い。 The aluminum compound is added for the purpose of further improving the alkali resistance of the photocatalyst composite and reducing the haze ratio. Aluminum compounds include aluminum oxides, Hydroxide hydroxide, hydroxide, nitrate, oxynitrate, carbonate, oxycarbonate, oxalate, oxyoxalate, acetate, oxyacetate, alkoxide having 1 to 6 carbon atoms, and hydrolysis of the alkoxide One or a mixture of two or more selected from the group consisting of products is preferred.
アルミニウムの化合物の好ましい具体例として、 酸化アルミニウム、 酸化水酸化ァ ルミ二ゥム、 水酸化アルミニウム、 水和酸化アルミニウム、 ベーマイ ト、 硝酸アルミ 二ゥム、 ォキシ硝酸アルミニウム、 炭酸アルミニウム、 ォキシ炭酸アルミニウム、 蓚 酸アルミニウム、 ォキシ蓚酸アルミニウム、 酢酸アルミニウム、 ォキシ酢酸アルミ二 ゥム、 アルミニウムトリイソプロポキシド、 アルミニウムトリブトキシド、 アルミ二 ゥムブトキシドアセチルァセトナート、 アルミニウムブトキシドラクテート、 アルミ ニゥムブトキシドの加水分解生成物、 アルミニウムィソプロポキシドの加水分解生成 物等を挙げることができる。  Preferred specific examples of aluminum compounds include aluminum oxide, aluminum oxide hydroxide, aluminum hydroxide, aluminum oxide hydrate, boehmite, aluminum nitrate, aluminum oxynitrate, aluminum carbonate, aluminum oxycarbonate, Aluminum oxalate, aluminum oxalate, aluminum acetate, aluminum oxyacetate, aluminum triisopropoxide, aluminum tributoxide, aluminum dimethyl butoxide acetylacetonate, aluminum butoxy lactate, hydrolysis product of aluminum dimethyl butoxide, Hydrolysis products of aluminum isopropoxide can be exemplified.
光触媒と共に用いられるジルコニウム化合物またはアルミニゥム化合物は、 平均粒 子径が 2 n m〜5 0 n m、 好ましくは 2 η π!〜 2 0 n mのゾルを使用するのが好まし い。 このいような粒子径のものを使用する場合には、 光触媒層の透明性が向上し、 直 線透過率が高くなるため、 特に透明性を要求されるガラス基板やプラスチック成形体 に塗布する場合に好ましい。 また、下地の担体に色や模様が印刷されたものの場合に、 こうした透明な光触媒層を塗布すると下地の色や柄を損なうことがない。 また、 平均 粒子径が 5 0 n m以上のものを用いる場合には、 直線透過率が減少し、 ヘイズ率が高 くなる。  The zirconium compound or aluminum compound used with the photocatalyst has an average particle diameter of 2 nm to 50 nm, preferably 2 ηπ! It is preferred to use ~ 20 nm sol. When using particles of such a particle size, the transparency of the photocatalyst layer is improved and the linear transmittance is increased. Preferred. Further, in the case where a color or pattern is printed on the underlying carrier, application of such a transparent photocatalyst layer does not impair the underlying color or pattern. In addition, when the particles having an average particle diameter of 50 nm or more are used, the linear transmittance decreases and the haze ratio increases.
前記光触媒複合体中のジルコニウムまたはアルミニウムの、酸化物、酸化水酸化物、 水酸化物は、 1 5 0 °Cで乾燥後の比表面積が 1 0 0 m2Z g以上の多孔質ゲルを使用す るのが好ましい。 多孔質ゲルは吸着性を有しており、 光触媒活性を高める効果を有す 前記光触媒複合体中のジルコニウム化合物の含有量は、光触媒複合体全体に対して、 酸化物に換算して 5〜4 0重量%であるのが好ましい。 5重量%未満では光触媒層の 耐アルカリ性に乏しくなる。 一方、 4 0重量%を越えると透明性が悪くなる。 For the oxide, oxide hydroxide, and hydroxide of zirconium or aluminum in the photocatalyst composite, a porous gel having a specific surface area after drying at 150 ° C. of 100 m 2 Z g or more is used. It is preferable to do so. The porous gel has an adsorptive property and has an effect of enhancing photocatalytic activity.The content of the zirconium compound in the photocatalyst composite is 5 to 4 in terms of oxide with respect to the entire photocatalyst composite. Preferably it is 0% by weight. If it is less than 5% by weight, the alkali resistance of the photocatalyst layer becomes poor. On the other hand, if it exceeds 40% by weight, the transparency becomes poor.
前記光触媒複合体のアルミ二ゥム化合物の含有量は、 光触媒複合体全体に対して、 酸化物に換算して 2 0〜9 0重量%であるのが好ましい。 2 0重量%未満では光触媒 層のヘイズ率の上昇を抑制する効果及び耐ァルカリ性を高める効果に乏しくなる。一 方、 添加量が 9 0重量%を越えると光触媒活性が低下する。  The content of the aluminum compound in the photocatalyst composite is preferably 20 to 90% by weight in terms of oxide based on the entire photocatalyst composite. If it is less than 20% by weight, the effect of suppressing the increase in the haze ratio of the photocatalyst layer and the effect of increasing the alkali resistance are poor. On the other hand, if the amount exceeds 90% by weight, the photocatalytic activity decreases.
前記光触媒複合体中のジルコニウム化合物及びアルミニウム化合物の含有量は、 合 計でこれらの酸化合物に換算して 4 0〜9 5重量%が好ましい。 4 0重量%未満では、 接着層との接着が不十分となり、 9 5重量%を越えると、 添加できる光触媒の量が減 少するため光触媒活性の低下が著しい。 前記光触媒複合体中に、 さらにシリコン化合物を含有することより膜強度が向上す る。 シリコン化合物としては、 The content of the zirconium compound and the aluminum compound in the photocatalyst composite is preferably from 40 to 95% by weight in terms of these acid compounds in total. If the amount is less than 40% by weight, the adhesion to the adhesive layer becomes insufficient. If the amount exceeds 95% by weight, the amount of the photocatalyst that can be added is reduced, so that the photocatalytic activity is remarkably reduced. The film strength is improved by further containing a silicon compound in the photocatalyst composite. As a silicon compound,
S i C 1 n! (O H) n g R ^ g (O R 2) n 4 S i C 1 n! (OH) ng R ^ g (OR 2 ) n 4
で表されるシリコンアルコキシドまたはそれらの加水分解生成物である。 Or a hydrolysis product thereof.
ここで、 R1はメチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s—プチル、 t— プチル、 へキシル、 ォクチル、 アミノメチル、 アミノエチル、 カルボキシメチル、 力 ルポキシェチル、 クロロメチル、 クロロェチル、 クロ口プロピル基等の (ァミノ基、 カルボキシル基又は塩素原子で置換されていてもよい) 炭素数 1〜 8のアルキル基を す。 Where R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl, (May be substituted with an amino group, a carboxyl group or a chlorine atom).
R2は、 メチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s—プチル、 t—プチ ル、 へキシル基等の炭素数 1〜 8のアルキル基、 又はメ トキシメチル、 エトキシメチ ル、 プロボキシメチル、 イソプロポキシメチル、 ブトキシメチル、 メ トキシェチル、 エトキシメチル、 プロポキシェチル、 メ トキシプロピル、 メ トキシプチル基等のアル コキシ基で置換された炭素数 1〜 8のアルキル基を表す。 また 1^、 n2及び n3は 0、 1又は 2を表し、 n4は 2から 4の整数を表し、 かつ 1^ + 11 2 + 113+ 11 4 = 4である。 前記式で表されるシリコンアルコキシドの好ましい具体例としては、 テトラメ トキ シシラン、 テトラエトキシシラン、 メチルトリメ トキシシラン、 メチルトリエトキシ シラン等を挙げることができる。 R 2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy Represents an alkyl group having 1 to 8 carbon atoms, which is substituted by an alkoxy group such as methyl, butoxymethyl, methoxethyl, ethoxymethyl, propoxyshetyl, methoxypropyl, and methoxybutyl. The 1 ^, n 2 and n 3 represents 0, 1 or 2, n 4 represents an integer of from 2 to 4, and 1 ^ + 11 2 + 113Tasu 11 4 = 4. Preferred specific examples of the silicon alkoxide represented by the above formula include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane and the like.
前記光触媒複合体中のシリコン化合物の含有量は、 光触媒複合体全体に対して、 酸 化物に換算して 1〜2 0重量%であるのが好ましい。  The content of the silicon compound in the photocatalyst composite is preferably 1 to 20% by weight in terms of oxide based on the entire photocatalyst composite.
またこれらの多成分に、 塗膜強度を向上させる目的で、 更にスズ、 ニオブ、 タンタ ルの酸化物あるいはこれらの水酸化物を含有させることもできる。 その場合において は、 光触媒層中のアルミニウムの酸化物、 酸化水酸化物もしくは水酸化物のの含有量 が前記耐ァルカリ性向上のために添加する含有量の範囲内であれば、 極めて優れた耐 アル力リ性を示すものとすることができる  In addition, tin, niobium, tantalum oxides or hydroxides thereof can be added to these multiple components for the purpose of improving the strength of the coating film. In this case, if the content of the aluminum oxide, hydroxide, or hydroxide in the photocatalyst layer is within the range of the content added for improving the alkali resistance, extremely excellent resistance to aluminum is obtained. It can show the strength
本発明の光触媒層形成用塗布液は、 球状コロイダルシリ力粒子が細長い形状に結合 したコロイダルシリ力粒子が分散したシリ力ゾル、 並びに光触媒粒子及び/またはゾ ルを含有し、 さらに、 ジルコニウム化合物およびアルミニウム化合物からなる群から 選ばれる少なくとも 1種をを含有することを特徴とする。  The coating solution for forming a photocatalyst layer of the present invention contains a silicic acid sol in which colloidal silicide particles having spherical colloidal silicide particles bonded in an elongated shape are dispersed, and a photocatalyst particle and / or a zolconium compound. It contains at least one member selected from the group consisting of aluminum compounds.
前記光触媒層形成用塗布液に含まれる、 球状コロイダルシリ力粒子が細長い形状に 結合したコロイダルシリカ粒子が分散したシリカゾル、 ジルコニウム化合物、 アルミ ニゥム化合物及び光触媒の具体例としては、 前記光触媒複合体に含まれるコロイダル シリカ粒子、 ジルコニウム化合物、 アルミニウム化合物及び光触媒の好ましいものと して列記したものと同様なものを用いることができる。  Specific examples of the silica sol, the zirconium compound, the aluminum compound, and the photocatalyst, which are contained in the photocatalyst layer forming coating solution and in which colloidal silica particles in which spherical colloidal silicide particles are combined in an elongated shape, are included in the photocatalyst composite. The same colloidal silica particles, zirconium compounds, aluminum compounds and photocatalysts as those listed as preferable ones can be used.
前記ジルコニゥム化合物、 アルミニゥム化合物及び光触媒はゾルの形で用いるのが 好ましい。 ゾルを使用する場合には、 安定化のために光触媒塗布液中へ酸やアルカリ の解膠剤を添加することもできる。 またゾル懸濁液中に、 接着性や操作性を良くする 目的で、 光触媒に対して 5重量%以下の界面活性剤等を添加することもできる。 The zirconium compound, aluminum compound and photocatalyst are preferably used in the form of a sol. preferable. When using a sol, an acid or alkali deflocculant can be added to the photocatalyst coating solution for stabilization. Also, a surfactant or the like of 5% by weight or less based on the photocatalyst can be added to the sol suspension for the purpose of improving adhesion and operability.
光触媒層形成用塗布液に含まれる各成分の量は、 塗布液全体に対して、 固形分とし て酸化物換算で、 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ 力粒子が分散したシリ力ゾルシリ力ゾルを 0. 5〜 5重量%、 及び光触媒粒子及び Z またはゾルを固形分として 0. 5〜 6重量%であるのが好ましく、 光触媒層形成用塗 布液全体に対して、 固形分として酸化物換算で、 ジルコニウム化合物を 0. 5〜5重 量%、 アルミニウム化合物を 2〜 9重量%であるのが好ましい。  The amount of each component contained in the coating solution for forming a photocatalyst layer is expressed in terms of oxide as a solid content with respect to the entire coating solution. It is preferable that the sol is 0.5 to 5% by weight, and the photocatalyst particles and Z or sol are 0.5 to 6% by weight as a solid content. It is preferable that the zirconium compound is 0.5 to 5% by weight and the aluminum compound is 2 to 9% by weight in terms of oxides.
光触媒複合体にシリ コン化合物を含有させる場合には、 光触媒層形成用塗布液全体 に対して、 固形分として酸化物換算で、 シリコン化合物を 0. 001〜5重量%含有 させるのが好ましい。 シリコン化合物としては例えば炭素数 1〜5のアルコキシ基を 有するシリコンアルコキシドの加水分解物あるいは該加水分解物生成物が好ましい。 シリコンアルコキシドのアルコキシ基の炭素数が 6を超えると、 加水分解速度が非常 に遅くなる。 また、 部分的に塩素を含んだシリコンアルコキシドを加水分解したポリ シロキサンを使用することもできるが、 塩素を多量に含有したポリシロキサンを使用 する場合には、 不純物の塩素イオンにより、 担体が腐食されたり、 接着性が低下する おそれがある。  When a silicon compound is contained in the photocatalyst complex, it is preferable that the silicon compound is contained in an amount of 0.001 to 5% by weight in terms of oxide as a solid content with respect to the entire coating solution for forming the photocatalyst layer. As the silicon compound, for example, a hydrolyzate of a silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or a hydrolyzate product thereof is preferable. When the carbon number of the alkoxy group of the silicon alkoxide exceeds 6, the hydrolysis rate becomes very slow. Polysiloxane obtained by hydrolyzing silicon alkoxide partially containing chlorine can be used.However, when polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may be reduced.
かかるシリコンアルコキシドとしては、 例えば、 次式で表される化合物が好ましく 使用できる。  As such a silicon alkoxide, for example, a compound represented by the following formula can be preferably used.
S i C 1 n! (OH) naR1 n3 (OR2) n4 S i C 1 n! (OH) naR 1 n 3 (OR 2 ) n 4
ここで、 R1はメチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s—プチル、 t— プチル、 へキシル、 ォクチル、 アミノメチル、 アミノエチル、 カルボキシメチル、 力 ルポキシェチル、 クロロメチル、 クロロェチル、 クロ口プロピル基等の (ァミノ基、 カルボキシル基又は塩素原子で置換されていてもよい) 炭素数 1〜 8のアルキル基を 表す。 Where R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl, (It may be substituted by an amino group, a carboxyl group or a chlorine atom.) Represents an alkyl group having 1 to 8 carbon atoms.
R2は、 メチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s一プチル、 t一プチ ル、 へキシル基等の炭素数 1~ 8のアルキル基、 又はメ トキシメチル、 エトキシメチ ル、 プロボキシメチル、 イソプロボキシメチル、 ブトキシメチル、 メ トキシェチル、 エトキシメチル、 プロボキシェチル、 メ トキシプロピル、 メ トキシブチル基等のアル コキシ基で置換された炭素数 1〜 8のアルキル基を表す。 また 11 n2及び n3は 0、 1又は 2を表し、 n4は 2から 4の整数を表し、 かつ n i+n +ns+n である。 前記式で表されるシリコンアルコキシドの好ましい具体例としては、 S i (OCH 3)4、 S i (OC2H5)4、 S i (OC3H7)4、 S i (OC4H9)4、 S i (0 C5HU)4、 S i (OC6H13)4 S i CH3 (OCH3)3ゝ S i CH3 (OC2H5)3ゝ S i C H3 (OC3H7)3ゝ S i C H3 (O C3H7)3ヽ S i C H3 (0 C4H9)3 S i C 1 (O C H3)3ヽ S i C 1 (0 C2H5)3、 S i C 1 (O C3H7)3、 S i C 1 (O C4H9)3、 S i C 1 (O C6H13)3、 S i C 1 (O H) (O C H3)z, S i C 1 (O H) (O C2H5)2ゝ S i C 1 (O H) (0 C3H7)2, S i C 1 (O H) (O C4H9)2、 S i C 1 2 (O C H3)2、 S i C 1 2 (O C2H5) 2等を挙げ ることができる。 R2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy Represents an alkyl group having 1 to 8 carbon atoms, which is substituted by an alkoxy group such as methyl, butoxymethyl, methoxethyl, ethoxymethyl, propoxyshetyl, methoxypropyl and methoxybutyl. 11 n 2 and n 3 represent 0, 1 or 2, n 4 represents an integer of 2 to 4, and n i + n + ns + n. Preferred specific examples of the silicon alkoxide represented by the above formula include S i (OCH 3 ) 4 , S i (OC 2 H 5 ) 4 , S i (OC 3 H 7 ) 4 , S i (OC 4 H 9 ) 4 , S i (0 C 5 H U ) 4 , S i (OC 6 H 13 ) 4 S i CH 3 (OCH 3 ) 3ゝ S i CH 3 (OC 2 H 5 ) 3 S i CH 3 ( OC 3 H 7 ) 3ゝ S i CH 3 (OC 3 H 7 ) 3ヽ S i CH 3 (0 C 4 H 9 ) 3 S i C 1 (OCH 3 ) 3ヽ S i C 1 (0 C 2 H 5 ) 3 , S i C 1 (OC 3 H 7 ) 3 , S i C 1 (OC 4 H 9 ) 3 , S i C 1 (OC 6 H 13 ) 3 , S i C 1 (OH) (OCH 3 ) z , S i C 1 (OH) (OC 2 H 5 ) 2ゝ Si C 1 (OH) (0 C 3 H 7 ) 2 , Si C 1 (OH) (OC 4 H 9 ) 2 , Si C 1 2 (OCH 3 ) 2 , SiC 12 (OC 2 H 5 ) 2 and the like.
光触媒層形成用塗布液の調製方法としては、 (a ) ジルコニウム又はアルミニウムの 酸化物、 酸化水酸化物もしくは水酸化物のゾル溶液、 光触媒、 コロイダルシリ力ゾル 等を混合する方法、 ジルコニウム又はアルミニウムの酸化物、 酸化水酸化物もしくは 7 酸化物のゾルの前駆体溶液の状態で光触媒とコロイダルシリ力ゾル等を混合する方 法、 (b ) ジルコニウム又はアルミニウムの酸化物、酸化水酸化物もしくは水酸化物の ゾル溶液及びコロイダルシリ力ゾルと光触媒を形成させるためのゾルゃ溶液等を混合 する方法等、 光触媒層中に均一に混合される方法であれば、 いずれの方法も採用でき る。 また、 (c ) ジルコニウム又はアルミニウムの酸化物、酸化水酸化物もしくは水酸 化物のゾルの前駆体溶液中に、 光触媒粒子又はゾル、 及びコロイダルシリ力ゾル等を 分散し、 コート時に加水分解や中和分解してゾル化させることもできる。  The method for preparing the coating solution for forming the photocatalyst layer includes: (a) a method of mixing zirconium or aluminum oxide, oxidized hydroxide or hydroxide sol solution, photocatalyst, colloidal sily sol, etc .; A method of mixing a photocatalyst and a colloidal sily sol in the state of a precursor solution of an oxide, oxide hydroxide or oxide 7 sol, (b) zirconium or aluminum oxide, hydroxide or hydroxide Any method can be employed as long as it is uniformly mixed in the photocatalyst layer, such as a method of mixing a sol solution of the product and a sol-solution for forming a photocatalyst with the colloidal silylation sol. (C) Photocatalyst particles or a sol, a colloidal sily sol, etc. are dispersed in a precursor solution of a zirconium or aluminum oxide, an oxide hydroxide or a hydroxide sol, and the coating solution is hydrolyzed or neutralized during coating. It can also be decomposed to form a sol.
用いられる溶媒としては、 例えば、 水、 メタノール、 エタノール、 プロピルアルコ ール、 イソプロピルアルコール、 ブタノール、 t—ブタノール等のアルコール類、 ァセ トン、 メチルェチルケトン、 メチルイソブチルケトン、 ァセチルアセトン、 シクロへ キサノン等のケトン類、 ジェチルエーテル、 メチルセルソルブ、 テトラヒ ドロフラン 等のエーテル類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素、 ジクロロメタ ン、 クロ口ホルム等のハロゲン化炭化水素、 サクサンェチル、 酢酸プロピル、 酢酸ブ チル等のエステル類、 ペンタン、 へキサン、 シクロへキサン等の飽和炭化水素等を挙 げることができる。 また、 これらの 2種以上を混合して用いることもできる。 これら の内、 水一アルコール系溶媒が特に好ましい。  Examples of the solvent used include water, alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol, and t-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetyl acetone, and cyclohexane. Ketones such as hexanone, ethers such as dimethyl ether, methylcellosolve, and tetrahydrofuran; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as dichloromethane and chloroform; sacaneethyl and acetic acid Esters such as propyl and butyl acetate; and saturated hydrocarbons such as pentane, hexane and cyclohexane can be mentioned. Also, two or more of these can be used in combination. Of these, water-alcohol solvents are particularly preferred.
本発明に係る光触媒を担持した構造体は、 光触媒層と担体の間に接着層を設けた構 造を有する。 光触媒層と担体との間に設けた接着層は、 下地の担体を光触媒作用によ る劣化から保護する作用と光触媒層を担体に強固に接着させる作用を有しており、 ま た接着層自身が光触媒作用による劣化を受けにくいという特徴をもつ。  The structure supporting the photocatalyst according to the present invention has a structure in which an adhesive layer is provided between the photocatalyst layer and the carrier. The adhesive layer provided between the photocatalyst layer and the carrier has a function of protecting the underlying carrier from deterioration due to the photocatalytic action and a function of firmly adhering the photocatalyst layer to the carrier. Have a characteristic that they are not easily deteriorated by photocatalysis.
前記担体は、接着剤層を介して光触媒を担持可能なものであれば特に限定されない。 例えば、 セラミックス、 無機質材料、 担体材質が熱をかけられない有機高分子体や熱 や水等により酸化腐食し易い金属であっても、 この接着層と光触媒層を設けた構造体 を得ることができる。 また、 担体形状としては、 フィルム状、 シート状、 板状、 管状、 繊維状、 網状等どのような複雑な形状のものも使用可能である。 担体の厚さとしては 1 0 u m以上のものであれば強固に担持することができるので好ましい。 さらに、 担 体と接着層との密着性を良くするために、 表面を放電処理やブラィマ一処理等の易接 着処理を施した担体を用いることができる。 The carrier is not particularly limited as long as it can support a photocatalyst via an adhesive layer. For example, even if the ceramic, inorganic material, or carrier material is an organic polymer that cannot be heated or a metal that is easily oxidized and corroded by heat or water, it is possible to obtain a structure provided with the adhesive layer and the photocatalyst layer. it can. Further, as the shape of the carrier, any complicated shape such as a film, a sheet, a plate, a tube, a fiber, and a net can be used. The thickness of the carrier is preferably 10 μm or more because it can be firmly supported. Furthermore, in order to improve the adhesion between the carrier and the adhesive layer, the surface is easily treated by electric discharge treatment or Bramer treatment. A carrier that has been subjected to a deposition treatment can be used.
接着層の材質としては、 担体を光触媒作用による劣化から保護し、 さらに光触媒層 を強固に固定できるものであれば特に制限されないが、 具体的には (1 ) シリコン含 有量が酸化物に換算して 2〜1 0重量%の (アクリルシリコン樹脂、 エポキシシリコ ン樹脂、 ポリエステルシリコン樹脂) 等のシリコン変性樹脂、 ( 2 ) ポリシロキサンを 酸化物に換算して 3〜9 0重量%含有する樹脂、 又は (3 ) コロイダルシリカを酸化 物に換算して 5〜 9 0重量%含有した樹脂を使用することができる。 これらの樹脂は 光触媒を強固に接着し、 担体を光触媒から保護するのに適当である。  The material of the adhesive layer is not particularly limited as long as it can protect the carrier from being deteriorated by the photocatalytic action and can firmly fix the photocatalytic layer. Specifically, (1) the silicon content is converted to oxide. And 2 to 10% by weight of silicon-modified resins such as (acrylic silicone resin, epoxy silicon resin, polyester silicone resin), and (2) a resin containing 3 to 90% by weight of polysiloxane as oxide. Or (3) a resin containing 5 to 90% by weight of colloidal silica in terms of oxide can be used. These resins adhere well to the photocatalyst and are suitable for protecting the carrier from the photocatalyst.
シリコン含有量が酸化物に換算して 2重量%未満のァクリルシリコン樹脂等のシリ コン変性樹脂やポリシロキサン含有量が酸化物に換算して 3重量%未満の樹脂、 コロ イダルシリ力含有量が酸化物に換算して 5重量%未満の樹脂では、 光触媒層との接着 が悪くなる。 また、 接着層が光触媒により劣化し、 光触媒層が剥離し易くなる。 シリ コン含有量が酸化物に換算して 1 0重量%を超えるァクリル一シリコン樹脂等のシリ コン変性樹脂やポリシロキサン含有量が酸化物に換算して 9 0重量%を超える樹脂、 コロイダルシリカ含有量が酸化物に換算して 9 0重量%を超える樹脂では、 担体との 密着性が低下する。  Silicon-modified resin such as acryl silicone resin whose silicon content is less than 2% by weight in terms of oxide, resin whose polysiloxane content is less than 3% by weight in terms of oxide, and colloidal silicide content If the resin is less than 5% by weight in terms of oxide, the adhesion to the photocatalyst layer will be poor. Further, the adhesive layer is deteriorated by the photocatalyst, and the photocatalyst layer is easily peeled. Silicon-modified resin such as acryl-silicon resin whose silicon content exceeds 10% by weight as oxide, resin containing polysiloxane more than 90% by weight as oxide, colloidal silica If the amount of the resin exceeds 90% by weight in terms of oxide, the adhesion to the carrier will be reduced.
またシリコンを導入する樹脂としては、 アクリル樹脂、 エポキシ樹脂、 ポリエステ ル樹脂、 アルキド樹脂、 ウレタン樹脂等を例示することができる。 これらの内、 ァク リル樹脂、 エポキシ樹脂、 ポリエステル樹脂が、 成膜性、 強靭性、 担体との密着性の 点で特に好ましい。 これらの樹脂は、 溶液状であってもエマルジョンタイプであって もどちらでも使用できる。 また、 架橋剤等の添加物が含まれていてもよい。  Examples of the resin for introducing silicon include an acrylic resin, an epoxy resin, a polyester resin, an alkyd resin, and a urethane resin. Of these, acrylic resins, epoxy resins, and polyester resins are particularly preferable in view of film formability, toughness, and adhesion to a carrier. These resins can be used in either a solution state or an emulsion type. Further, additives such as a crosslinking agent may be contained.
前記接着層の樹脂に含まれるポリシロキサンが炭素数 1〜5のアルコキシ基を有す るシリコンアルコキシドの加水分解物あるいは該加水分解物生成物である場合には、 接着性及び耐久性がより向上した担持構造体を得ることができる。 シリコンアルコキ シドのアルコキシ基の炭素数が 6を超えると、 加水分解速度が非常に遅いので、 樹脂 中で硬化させるのが困難になり、 接着性や耐久性が悪くなる。 また、 部分的に塩素を 含んだシリコンアルコキシドを加水分解したポリシロキサンを使用することもできる が、 塩素を多量に含有したポリシロキサンを使用する場合には、 不純物の塩素イオン により、 担体が腐食されたり、 接着性が低下するおそれがある。  When the polysiloxane contained in the resin of the adhesive layer is a hydrolyzate of a silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or a product of the hydrolyzate, adhesion and durability are further improved. A supporting structure can be obtained. If the alkoxy group in the silicon alkoxide has more than 6 carbon atoms, the hydrolysis rate will be very slow, making it difficult to cure in the resin, resulting in poor adhesion and durability. A polysiloxane obtained by hydrolyzing a silicon alkoxide partially containing chlorine can also be used.However, when a polysiloxane containing a large amount of chlorine is used, the carrier is corroded by chlorine ions as impurities. Or the adhesiveness may be reduced.
かかるシリコンアルコキシドとしては、 例えば、 次式で表される化合物が好ましく 使用できる。  As such a silicon alkoxide, for example, a compound represented by the following formula can be preferably used.
S i C 1 n! (O H) n a R ! n s (O R 2) n 4 S i C 1 n! (OH) na R! Ns (OR 2 ) n 4
ここで、 R1はメチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s—プチル、 t— プチル、 へキシル、 ォクチル、 アミノメチル、 アミノエチル、 カルボキシメチル、 力 ルポキシェチル、 クロロメチル、 クロロェチル、 クロ口プロピル基等の (ァミノ基、 力ルポキシル基又は塩素原子で置換されていてもよい) 炭素数 1〜 8のアルキル基を 表す。 Where R 1 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, lipoxetyl, chloromethyl, chloroethyl, (Amino group, (It may be substituted with a carbonyl group or a chlorine atom.) It represents an alkyl group having 1 to 8 carbon atoms.
R2は、 メチル、 ェチル、 プロピル、 イソプロピル、 プチル、 s—プチル、 t—プチ ル、 へキシル基等の炭素数 1〜 8のアルキル基、 又はメ トキシメチル、 エトキシメチ ル、 プロボキシメチル、 イソプロボキシメチル、 ブトキシメチル、 メ トキシェチル、 エトキシメチル、 プロボキシェチル、 メ トキシプロピル、 メ トキシブチル基等のアル コキシ基で置換された炭素数 1〜 8のアルキル基を表す。 また 1^、 n2及び n3は 0、 1又は 2を表し、 n4は 2から 4の整数を表し、 かつ
Figure imgf000014_0001
である。 前記式で表されるシリコンアルコキシドの好ましい具体例としては、 S i (OCH 3)4、 S i (OC2H5)4、 S i (OC3H7)4、 S i (OC4H9)4、 S i (OC5Hu)4、 S i (OC6H13)4、 S i CH3 (OCH3)3、 S i CH3 (OC2H5)3、 S i C H3 (0 C3H7)3、 S i CH3 (OC3H7)3 S i CH3 (OC4Hg)3、 S i C 1 (OCH3)3、 S i C 1 (0 C2H5)3、 S i C 1 (OC3H7)3、 S i C 1 (OC4Hg)3、 S i C 1 (OC6H13)3、 S i C 1 (OH) (OCH3)2 S i C 1 (OH) (OC2H5)2ヽ S i C 1 (OH) (0 C3H7)2、 S i C 1 (OH) (OC4H9)2、 S i C 12 (OCH3)2、 S i C 12 (0 C2H5) 2等を挙げ ることができる。
R 2 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, etc., or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxy Represents an alkyl group having 1 to 8 carbon atoms, which is substituted with an alkoxy group such as xylmethyl, butoxymethyl, methoxethyl, ethoxymethyl, proboxyl, methoxypropyl, methoxybutyl and the like. 1 ^, n 2 and n 3 represent 0, 1 or 2, n 4 represents an integer of 2 to 4, and
Figure imgf000014_0001
It is. Preferred specific examples of the silicon alkoxide represented by the above formula include S i (OCH 3 ) 4 , S i (OC 2 H 5 ) 4 , S i (OC 3 H 7 ) 4 , S i (OC 4 H 9 ) 4 , S i (OC 5 H u ) 4 , S i (OC 6 H 13 ) 4 , S i CH 3 (OCH 3 ) 3 , S i CH 3 (OC 2 H 5 ) 3 , S i CH 3 ( 0 C 3 H 7 ) 3 , S i CH 3 (OC 3 H 7 ) 3 S i CH 3 (OC 4 H g ) 3 , S i C 1 (OCH 3 ) 3 , S i C 1 (0 C 2 H 5) 3, S i C 1 (OC 3 H 7) 3, S i C 1 (OC 4 H g) 3, S i C 1 (OC 6 H 13) 3, S i C 1 (OH) (OCH 3 ) 2 S i C 1 (OH) (OC 2 H 5 ) 2ヽ S i C 1 (OH) (0 C 3 H 7 ) 2 , S i C 1 (OH) (OC 4 H 9 ) 2 , S i C 1 2 (OCH 3) 2 , S i C 1 2 (0 C 2 H 5) 2 or the like can Rukoto cited.
これらシリコン変性樹脂のシリコンを導入する方法としは、 エステル交換反応、 シ リコンマクロマ一や反応性シリコンモノマーを用いたグラフト反応、 ヒドロシリル化 反応、 ブロック共重合法等種々あるが、 どのような方法で得られたものも使用できる。 例えば、 ポリシロキサンの樹脂への導入方法としては、 (1) シリコンアルコキシド をモノマーの状態で樹脂溶液と混合し、 接着層形成時に空気中の水分で加水分解させ る方法、 (2)予めシリコンアルコキシドの部分加水分解物を樹脂と混合し、 更に、接 着剤層形成時に空気中の水分で加水分解する方法等種々あるが、 樹脂と均一に混合で きる方法ならどのような方法でも良い。  There are various methods for introducing silicon of these silicon-modified resins, such as a transesterification reaction, a graft reaction using a silicon macromer or a reactive silicon monomer, a hydrosilylation reaction, and a block copolymerization method. Can also be used. For example, polysiloxane can be introduced into a resin by (1) a method in which silicon alkoxide is mixed with a resin solution in a monomer state and hydrolyzed with moisture in the air when an adhesive layer is formed; There are various methods such as mixing the partial hydrolyzate with a resin, and further hydrolyzing with the moisture in the air at the time of forming the adhesive layer, but any method can be used as long as it can be uniformly mixed with the resin.
また、 シリコンアルコキシドの加水分解速度を調整するために、 酸や塩基触媒を少 量添加してもよい。 ポリシロキサンの樹脂への添加量は、 担体に光触媒層を強固に接 着させるためには酸化物に換算して 3〜90重量%が好ましい。  Also, a small amount of an acid or base catalyst may be added to adjust the hydrolysis rate of silicon alkoxide. The amount of the polysiloxane to be added to the resin is preferably 3 to 90% by weight in terms of oxide in order to firmly adhere the photocatalyst layer to the carrier.
ポリシロキサンを導入させる樹脂としては、 アクリル樹脂、 エポキシ樹脂、 ポリエ ステル樹脂、 ウレタン樹脂、 アルキド樹脂等どのような樹脂も使用できる。 これらの うち、 アクリル樹脂、 エポキシ樹脂、 ポリエステル樹脂又はこれらの混合樹脂は、 シ リコン変性樹脂とした場合、 耐久性ゃ耐アル力リ性の点で好ましい。  As the resin into which the polysiloxane is introduced, any resin such as an acrylic resin, an epoxy resin, a polyester resin, a urethane resin, and an alkyd resin can be used. Of these, acrylic resin, epoxy resin, polyester resin, or a resin mixture thereof is preferable in terms of durability and resistance to stress when used as a silicone-modified resin.
接着層がコロイダルシリカを含有する場合、 コロイダルシリカの粒子径は 1 Onm 以下であるのが好ましい。 粒子径が 1 Onm以上になると、 接着層中の樹脂は光触媒 により劣化し易くなるばかりか、 光触媒層と接着層との接着も悪くなる。  When the adhesive layer contains colloidal silica, the particle size of the colloidal silica is preferably 1 Onm or less. When the particle diameter is 1 Onm or more, not only the resin in the adhesive layer is easily degraded by the photocatalyst, but also the adhesion between the photocatalyst layer and the adhesive layer becomes poor.
コロイダルシリ力を樹脂に導入する方法としては、 樹脂溶液とコロイダルシリカ溶 液を混合後、 塗布一乾燥して保護膜を形成する方法が最も簡便である。 その他、 コロ ィダルシリ力を分散した状態で樹脂を重合させたたものを使用することもできる。 また、 コロイダルシリカと樹脂との接着性および分散性を良くするために、 シラン カップリング剤で処理されたコロイダルシリカを用いることもできる。 As a method of introducing colloidal sily force into a resin, a resin solution and a colloidal silica solution are used. The simplest method is to mix the liquids, apply and dry to form a protective film. In addition, a polymer obtained by polymerizing a resin in a state where the colloidal silicity is dispersed can be used. Further, colloidal silica treated with a silane coupling agent can be used to improve the adhesiveness and dispersibility between the colloidal silica and the resin.
コロイダルシリカの樹脂への添加量は、 担体に光触媒層を強固に接着させるために は酸化物に換算して 5〜9 0重量%が好ましい。  The amount of colloidal silica added to the resin is preferably 5 to 90% by weight in terms of oxide in order to firmly adhere the photocatalyst layer to the carrier.
コロイダルシリカを導入する樹脂としては、 アクリル樹脂、 エポキシ樹脂、 ウレタ ン樹脂、 ポリエステル樹脂、 アルキド樹脂等どのような物でも使用可能である。 これ らの樹脂の中で、 アクリル樹脂、 エポキシ樹脂及びポリエステル樹脂が、 シリコン変 性樹脂とした場合に耐久性ゃ耐アル力リ性に優れたものを得ることができるため特に 好ましい。  Any resin such as acrylic resin, epoxy resin, urethane resin, polyester resin, and alkyd resin can be used as the resin into which colloidal silica is introduced. Among these resins, acrylic resin, epoxy resin and polyester resin are particularly preferable when they are made of silicone-modified resin, because they can obtain excellent durability and resistance to stress.
またコロイダルシリ力は、 珪酸ナトリゥム水溶液を陽ィォン交換することにより得 られるシリカゾルであっても、 シリコンアルコキシドを加水分解して得られるシリ力 ゾルであつても、 どのようなものでも使用することができる。  The colloidal silicity can be any type of silica sol obtained by cation exchange of an aqueous solution of sodium silicate or a silica sol obtained by hydrolyzing silicon alkoxide. it can.
さらに本発明においては、 ポリシロキサン及びコロイダルシリ力の両方を含有する 樹脂を接着層として使用することができる。 その場合、 接着層中のポリシロキサンお よびコロイダルシリ力の含有量の合計が酸化物に換算して前記耐ァルカリ性向上を示 す含有量の範囲内であれば、 同様に優れた耐ァルカリ性を示すものとすることができ る  Further, in the present invention, a resin containing both polysiloxane and colloidal silicide can be used as the adhesive layer. In this case, if the total content of the polysiloxane and the colloidal sily in the adhesive layer is within the above range of the content showing the improvement in the alkali resistance when converted to oxides, the same excellent alkali resistance is obtained. Can indicate
接着層に使用する樹脂がコロイダルシリカを含有する樹脂若しくはポリシロキサン を含有する樹脂の場合、 そのコロイダルシリ力やポリシロキサンの粒子径は 1 0 n m 以下が望ましい。 コロイダルシリカやポリシロキサンの粒子径が 1 0 n mを越えるも のであると、 分散性が悪くなり、 接着層の透光性が低下するため接着層と光触媒層の 合計の波長 5 5 0 n mの全光線透過率は 7 0 %以下となる場合がある。  When the resin used for the adhesive layer is a resin containing colloidal silica or a resin containing polysiloxane, the colloidal silicity and the particle diameter of polysiloxane are preferably 10 nm or less. If the particle diameter of colloidal silica or polysiloxane exceeds 10 nm, the dispersibility becomes poor, and the transmissivity of the adhesive layer is reduced, so that the total wavelength of the total wavelength of the adhesive layer and the photocatalyst layer is 550 nm. The light transmittance may be 70% or less.
なお接着層樹脂には光触媒作用による劣化を抑える目的で、 光安定化剤及びノ又は 紫外線吸収剤をさらに添加することができる。 使用することができる光安定化剤とし てはヒンダ一ドアミン系が好ましいが、 その他の物でも使用可能である。 紫外線吸収 剤としてはトリァゾ一ル系等が使用できる。 これらの添加量は、 樹脂に対して、 0. 0 0 5重量%〜1 0重量%、 好ましくは 0. 0 1重量%〜5重量%である。 また、 接 着層上をシラン系もしくはチタン系カップリング剤で処理することにより、 光触媒層 との接着性を高めることも好ましい。  Note that a light stabilizer and a UV absorber or an ultraviolet absorber can be further added to the adhesive layer resin for the purpose of suppressing deterioration due to photocatalysis. As a light stabilizer that can be used, a hindered amine type is preferable, but other substances can also be used. As the ultraviolet absorber, a triazole or the like can be used. These additives are added in an amount of 0.05 to 10% by weight, preferably 0.01 to 5% by weight, based on the resin. It is also preferable to treat the adhesive layer with a silane-based or titanium-based coupling agent to increase the adhesion to the photocatalyst layer.
接着層を担体上に形成する方法としては、接着剤樹脂溶液を印刷法、 シート成形法、 スプレー吹き付け法、 ディップコーティング法、 スピンコーティング法等でコート、 乾燥 ·硬化させる方法を例示することができる。 乾燥温度は、 溶媒や樹脂の種類によ つても異なるが、 一般的に 5 0 °C〜3 0 0 °C程度が好ましい。 接着層の厚さは、 光触媒層との良好な接着を得るためには 0 . l ju m〜2 0 ju i 程 度が望ましい。 接着層の厚みが 0 . l ^ m以下であると、 光触媒層を強固に接着させ る働きが弱くなる。 一方、 厚みが 2 0 z m以上の場合は特に問題はないものの、 実際 の塗布加工を考慮すると 2 0 m以上にするメリットは少ない。 Examples of a method for forming an adhesive layer on a carrier include a method of coating, drying and curing an adhesive resin solution by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, or the like. . The drying temperature varies depending on the type of solvent and resin, but is generally preferably about 50 ° C. to 300 ° C. The thickness of the adhesive layer is preferably about 0.1 jum to 20 jui in order to obtain good adhesion to the photocatalyst layer. When the thickness of the adhesive layer is 0.1 l ^ m or less, the function of firmly bonding the photocatalyst layer is weakened. On the other hand, when the thickness is 20 zm or more, there is no particular problem, but there is little merit in setting the thickness to 20 m or more in consideration of actual coating processing.
光触媒層は、 前記光触媒層形成用塗布液を接着層表面に印刷法、 シート成形法、 ス プレー吹き付け法、 ディップコーティング法、 スピンコーティング法等でコートし、 乾燥,硬化させることにより形成することができる。乾燥 ·硬化時の好ましい温度は、 担体材質及び接着層中の樹脂材質によっても異なるが、 通常 5 0 °C〜3 0 0 °C程度で ある  The photocatalyst layer can be formed by coating the coating solution for forming a photocatalyst layer on the surface of the adhesive layer by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, etc., and then drying and curing. it can. The preferred temperature for drying and curing varies depending on the carrier material and the resin material in the adhesive layer, but is usually about 50 ° C to 300 ° C.
光触媒層の厚みは厚い方が光触媒活性は高くなるが、 2 0 mを越えると光触媒活 性は飽和する一方で、 実際の塗布加工において困難となる場合が多く、 また光触媒層 の光透過率が低下するため 2 0 m以下が好ましい。 一方、 光触媒の厚さが 0 . 1 β m未満になると、 透光性は良くなるものの、 光触媒が利用する紫外線をも透過してし まうために高い活性は望めなくなる。  The photocatalytic activity increases as the thickness of the photocatalyst layer increases, but when it exceeds 20 m, the photocatalytic activity is saturated, but in many cases it becomes difficult in actual coating processing, and the light transmittance of the photocatalytic layer increases. It is preferably 20 m or less because of lowering. On the other hand, when the thickness of the photocatalyst is less than 0.1 βm, although the translucency is improved, high activity cannot be expected because the ultraviolet light used by the photocatalyst is transmitted.
光触媒層の厚さを 0 . 1 以上 2 0 以下とし、 しかも平均粒子が 5 0 n m以 下の光触媒粒子、 及びアルミニゥムの酸化物もしくは水酸化物のゲルを用いることに より、 光触媒層と接着層の合計の波長 5 5 0 n mの全光線透過率は 8 0 %以上で、 へ ィズ率が 2 %以下のものを得ることができる。 かかる光触媒担持構造体は、 透明な担 体を用いる場合、 透過した可視光線を照明として利用でき、 また担体が不透明な場合 でも、 担体上の柄を損なうことがないので装飾性の上でも優れたものとなる。  By using a photocatalyst layer having a thickness of 0.1 to 20 and a mean particle size of 50 nm or less and a gel of aluminum oxide or hydroxide, the photocatalyst layer and the adhesive layer can be formed. The total light transmittance at a total wavelength of 550 nm is not less than 80% and the haze rate can be not more than 2%. Such a photocatalyst-supporting structure is excellent in terms of decorativeness when a transparent carrier is used, because transmitted visible light can be used as illumination, and even when the carrier is opaque, the pattern on the carrier is not damaged. It will be.
このようにして得られる本発明の光触媒担持構造体は、 前記接着層及び光触媒層を 合わせた塗膜の濁度が 3 %以下であることを特徴とする。 この場合、 濁度とは、 先に 述べたヘイズ率と同じ意味で用いられる。  The photocatalyst-carrying structure of the present invention thus obtained is characterized in that the turbidity of the coating film including the adhesive layer and the photocatalyst layer is 3% or less. In this case, turbidity is used in the same meaning as the haze ratio described above.
さらに、 沸騰イオン交換水中で 1時間煮沸した後での J I S K 5 4 0 0に規定された 碁盤目テープ法による付着性が評価点数 6点以上であることを特徴とする。 また、 沸 騰イオン交換水中で 1時間煮沸した後での接着層及び光触媒層を合わせた塗膜の濁度 が 3 %以下であることを特徴とし、紫外線強度 3 mWZ c m2のブラックライトの光を、 温度 4 0 °C、 相対湿度 9 0 %の下で 5 0 0時間照射した後での J I S K 5 4 0 0に規 定された碁盤目テープ法による付着性が評価点数 6点以上であることを特徴とし、 紫 外線強度 3 mW/ c m2のブラックライトの光を、 温度 4 0 °C、相対湿度 9 0 %の下で 5 0 0時間照射した後での接着層及び光触媒層を合わせた塗膜の濁度が 3 %以下であ ることを特徴とする。 Furthermore, it is characterized in that it has an evaluation score of at least 6 points after being boiled in boiling ion-exchanged water for one hour by the cross-cut tape method specified in JISK540. In addition, the turbidity of the coating film including the adhesive layer and the photocatalyst layer after boiling for 1 hour in boiling ion-exchanged water is 3% or less, and the light intensity of black light having an ultraviolet intensity of 3 mWZ cm 2 is characterized. Is rated at 6 points or more by the cross-cut tape method specified in JISK540 after irradiating for 500 hours at a temperature of 40 ° C and a relative humidity of 90%. it features a, the light of ultraviolet intensity 3 mW / cm 2 of black light, combined adhesive layer and a photocatalyst layer after irradiation temperature 4 0 ° C, under a relative humidity of 90% 5 0 0 h The turbidity of the coated film is 3% or less.
本発明の光触媒を担持した構造体は、 建築用塗料、 壁紙、 窓ガラス、 ブラインド、 カーテン、 カーペット、 照明器具、 照明灯、 道路灯、 トンネル照明灯、 高速道や新幹 線の遮音壁、 ブラックライト、 船底.漁網防汚塗料、 水処理用充填剤、農ビフィルム、 防草シート、 包装資材等に使用できる。 特に高温多湿の環境下や屋外の環境下で使用 される場合に、 その優れた耐久性や透明性などの特性を発揮する。 発明を実施するための最良の形態: Structures supporting the photocatalyst of the present invention include architectural paints, wallpapers, window glasses, blinds, curtains, carpets, lighting fixtures, lighting lights, road lights, tunnel lights, noise barriers on highways and bullet trains, and black lights. , Ship bottom; fishing net antifouling paint, water treatment filler, agricultural film, It can be used for herbicidal sheets, packaging materials, etc. In particular, when used in a high-temperature and high-humidity environment or in an outdoor environment, it exhibits properties such as excellent durability and transparency. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 実施例により本発明をさらに詳細に説明するが、 本発明は、 実施例に限定さ れるものでない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
1) 光触媒層形成用塗布液  1) Photocatalyst layer forming coating liquid
(1) 光触媒  (1) Photocatalyst
光触媒触媒は次のものを使用した。 The following photocatalyst catalysts were used.
(T— 1) 硝酸酸性酸化チタンゾル (結晶粒子径 8 nm)  (T—1) Nitric acid acidic titanium oxide sol (crystal particle size 8 nm)
(2) シリカゾル  (2) Silica sol
シリ力ゾルは次のものを使用した。 The following was used as the sily sol.
(S— 1) ネックレス状コロイダルシリカ (日産化学製スノーテックス P S) (S—1) Necklace-shaped colloidal silica (Snowtex P S manufactured by Nissan Chemical)
(3) アルミニウム化合物 (3) Aluminum compound
アルミニゥム化合物は次のものを使用した。 The following aluminum compounds were used.
(A— 1) 酸化水酸化アルミニウム (ベーマイト) 微粒子 (川研ファインケミカル製 アルミゾル 10)  (A-1) Aluminum oxide hydroxide (boehmite) fine particles (Alumina sol 10 from Kawaken Fine Chemicals)
(4) ジルコニウム化合物  (4) Zirconium compound
ジルコニウム化合物は次のものを使用した。 The following zirconium compounds were used.
(Z-1) 和光純薬製試薬特級ォキシ硝酸ジルコニウム 6水和物を水に溶解し 10% 水溶液とした後、 12時間加熱して半量の水を常圧で留去して得られた液をォキシ硝 酸ジルコニウム液として使用した。  (Z-1) A solution obtained by dissolving Wako Pure Chemical's special grade reagent zirconium nitrate hexahydrate in water to form a 10% aqueous solution, and then heating for 12 hours to distill half the volume of water at normal pressure. Was used as a zirconium oxynitrate solution.
(5)光触媒層形成用塗布液の調製  (5) Preparation of coating solution for forming photocatalyst layer
上記酸化チタン光触媒、 ゾル溶液および化合物液を、 PHI. 5〜9の適当な範囲に 調製して、 混合し、 所定量の界面活性剤を加えて光触媒層形成用塗布液を得た。The above titanium oxide photocatalyst, sol solution and compound solution were prepared in an appropriate range of PHI. 5 to 9, mixed, and a predetermined amount of surfactant was added to obtain a coating solution for forming a photocatalyst layer.
2)光触媒担持構造体の製造 2) Production of photocatalyst supporting structure
(1) 担体  (1) Carrier
(TA) ソーダライムガラス板  (TA) Soda lime glass plate
(TB) 透明ァクリル板  (TB) Transparent acryl plate
(TC) アルミ板  (TC) Aluminum plate
(2) 接着剤層接着層中に含有するポリシロキサンは、 次のものを使用した。  (2) Adhesive layer The following polysiloxane was used in the adhesive layer.
(P S-1) 信越化学製シリコンテトラメ トキシドモノマー  (PS-1) Shin-Etsu Chemical silicon tetramethoxide monomer
(P S— 2) コルコート製ポリメ トキシシロキサン商品名メチルシリケ一ト 51 (PS-3) コルコ一ト製ポリエトキシシロキサン商品名工チルシリケート 40 接着層中に含有するコロイダルシリカとして、 次のものを使用した。 (KS-1) 触媒化成 (株) 製商品名カタロイド S I— 350、 粒子径 7— 9 nm (KS-2) 日産化学 (株) 製商品名スノーテックス ST— XS、 粒子径 4— 6 nm ポリシロキサンもしくはコロイダルシリカを導入する樹脂溶液としては次のものを使 用した。 尚、 シリコン含有量は樹脂固形分中の S i 02 に換算して表示した。 (PS-2) Polymethoxysiloxane manufactured by Colcoat Methyl Silicate 51 (PS-3) Polyethoxysiloxane manufactured by Corcot Tylsilicate 40 The following colloidal silica was used as the colloidal silica contained in the adhesive layer. (KS-1) Product name Cataroid SI-350, manufactured by Catalysis Kasei Co., Ltd., particle size 7-9 nm (KS-2) Product name, Snowtex ST-XS, manufactured by Nissan Chemical Co., Ltd. Particle size 4-6 nm The following resin solutions were used to introduce siloxane or colloidal silica. The silicon content was displayed in terms of S i 0 2 in the resin solids.
( J— 1 ) シリコン含有量 3重量%のァクリル一シリコン樹脂キシレン溶液  (J-1) Acryl-silicon resin xylene solution with 3% silicon content
(J - 2) シリコン含有量 10重量%のァクリル一シリコン樹脂のキシレンィソプロ パノール溶液  (J-2) Acryl-silicon resin xyleneisopropanol solution with 10% silicon content
(J - 3) シリコン含有量 3重量%のァクリル―シリコンェマルジョン樹脂水溶液 (J -4) シリコン含有量 3重量%のエポキシ一シリコン樹脂メチルェチルケトン溶 液  (J-3) Acryl-silicone emulsion resin aqueous solution with 3% silicon content (J-4) Epoxy-silicon resin methylethyl ketone solution with 3% silicon content
(J - 5) シリコン含有量 3重量%のポリエステル一シリコン樹脂酢酸ェチル溶液 (J - 6) アクリルェマルジョン樹脂水溶液  (J-5) Polyester-silicon resin ethyl acetate solution with 3% silicon content (J-6) Acrylic emulsion resin aqueous solution
ポリシロキサンもしくはコロイダルシリカを樹脂溶液と混合、 濃度調製し、 接着層 形成用溶液を得た。 接着層は、 厚さが 2 m以下の時や担体形状が平板以外の時はデ イツビング法で、 担体が平板で厚さが 2〃m以上の場合には、 ベーカーアプリケータ —により形成した。 なお、接着層の乾燥は、 担体の材質が、 (TB) の場合 80°Cで、 それ以外は 120°Cで行った。  Polysiloxane or colloidal silica was mixed with the resin solution and the concentration was adjusted to obtain a solution for forming an adhesive layer. The adhesive layer was formed by a dipping method when the thickness was 2 m or less or the carrier shape was other than a flat plate, and was formed by a baker applicator when the carrier was a flat plate and the thickness was 2 mm or more. The drying of the adhesive layer was performed at 80 ° C when the material of the carrier was (TB), and at 120 ° C otherwise.
(3) 光触媒層は、 担体の厚みが 2 m以下の場合や担体形状が平板以外の場合は、 ディッピング法で、担体が平板で厚みが 2 m以上の場合は、バーコ一ターを用いて、 背着座位相表面に塗工形成した。 光触媒層の乾燥は、 接着層を乾燥するのと同じ温度 で行った。  (3) The photocatalyst layer is a dipping method when the thickness of the carrier is 2 m or less or when the shape of the carrier is other than a flat plate, and a bar coater when the carrier is a flat plate and the thickness is 2 m or more. A coating was formed on the surface of the backseat phase. The drying of the photocatalytic layer was performed at the same temperature as the drying of the adhesive layer.
3) 光触媒担持構造体の性能試験  3) Performance test of photocatalyst supporting structure
上記で得られた光触媒を担持した各試料を用いて、以下の性能試験を行った。 (1)光 触媒活性の評価試験 The following performance tests were performed using each sample supporting the photocatalyst obtained above. (1) Photocatalytic activity evaluation test
大きさ 70mm X 70 mmに切り出した光触媒を担持した試料を、 容量 4リッ トルの パイレックス (登録商標) 製ガラス容器中に設置した。 この容器中に空気とアルデヒ ドの混合ガスを、 アルデヒド濃度が 2 O O pmとなるように加えた。 次いで、 担持 試料に紫外線強度 2 mW/ cm2のブラックライト (FL 15BLB、東芝ライテック 製) の光を 3時間照射後、 容器内部のアルデヒドガス濃度をガスクロマトグラフによ り測定し、 その減少量により光触媒活性を評価した。 A sample carrying a photocatalyst cut out to a size of 70 mm × 70 mm was placed in a Pyrex (registered trademark) glass container having a capacity of 4 liters. A mixed gas of air and aldehyde was added to the container so that the aldehyde concentration became 2 OO pm. Then, UV intensity 2 mW / cm 2 of black light in carrying the sample (FL 15BLB, Toshiba Lighting & Technology Corporation) after 3 hours irradiation with light, an aldehyde gas concentration in the container was measured Ri by the gas chromatograph, by its decrease Photocatalytic activity was evaluated.
評価基準は下記の通りである。 The evaluation criteria are as follows.
3時間照射後のアルデヒドガス濃度の減少量による性能評価  Performance evaluation by reduction of aldehyde gas concentration after 3 hours irradiation
100 P P m以上 A  100 P P m or more A
50〜: L O Oppm B  50 ~: L O Oppm B
20〜50 ppm C (2) 付着性評価試験 20-50 ppm C (2) Adhesion evaluation test
光触媒を担持した試料表面に、 切り傷によって 2 mmの間隔で 25個のマス目を形成 し、 J I SK5400に規定する碁盤目テープ法試験により付着性の評価を行った。 評価点数は、 J I SK5400に記載の基準で行った。 Twenty-five squares were formed at intervals of 2 mm on the surface of the sample carrying the photocatalyst by a cut, and the adhesion was evaluated by a grid tape test specified in JI SK5400. The evaluation score was based on the criteria described in JI SK5400.
(3) 耐沸騰水性評価試験  (3) Boiling resistance evaluation test
J I SK5400に規定する耐沸騰水試験に準拠して耐沸騰水試験を行った。ただし、 漬浸時間を 1時間とした。  A boiling water test was performed in accordance with the boiling water test specified in JI SK5400. However, the immersion time was set to 1 hour.
(4) ヘイズ率の測定  (4) Measurement of haze ratio
接着層及び光触媒層を担持する前の担体をリファレンスとして、 担持した試料の波長 550 nmの全光線透過率、及びヘイズ率を自記分光光度計(日立製作所(株) 製 U 一 4000型) で測定した。 Using the carrier before carrying the adhesive layer and photocatalyst layer as a reference, measure the total light transmittance and haze ratio of the carried sample at a wavelength of 550 nm using a self-recording spectrophotometer (U-14000 manufactured by Hitachi, Ltd.). did.
(5) 耐久性試験  (5) Durability test
光触媒を担持した試料にブラックライトで紫外線強度 3 m W/ cm2の光を、 温度 4 0°C、相対湿度 90%の恒温恒湿槽内で 500時間照射後、 J I S K5400に規定 の碁盤目テープ法による付着性を測定し、 耐久性の評価とした。 評価点数は、 付着性 評価と同じとした。 The light in the ultraviolet intensity 3 m W / cm 2 by black light to the photocatalyst in carrying samples, temperature 4 0 ° C, 500 hours after irradiation at 90% RH constant temperature and humidity chamber, the cross-cut of the prescribed in JIS K5400 The adhesion by the tape method was measured, and the durability was evaluated. The evaluation score was the same as the adhesion evaluation.
以下の第 1表に各材料の種類や量などを変えた実施例および比較例の様態を、 第 2表 に得られた光触媒担持構造体の性能試験結果をまとめた。 Table 1 below summarizes the embodiments and comparative examples in which the type and amount of each material were changed, and Table 2 summarizes the performance test results of the photocatalyst-carrying structure obtained.
第 1表 Table 1
光触媒層 抻体 ポリシロキサン コロイダノレシリカ 樹脂溶液 Ti Si Al Zr  Photocatalyst layer Polysiloxane Colloidanoresilica Resin solution Ti Si Al Zr
-&(wt%) 種類 量 (wt%) wt% wt% wt% wt% 実施例 1 TA Jl 5 5 85 5 実施例 2 TA Jl 5 5 80 10 実施例 3 TA J2 5 20 65 10 実施例 4 TA PS2 10 Jl 5 5 70 20 実施例 5 TA PS3 30 Jl 20 20 40 20 実施例 6 TA PS1 10 Jl 20 40 30 10 実施例 7 TB PS1 30 Jl 40 5 50 5 実施例 8 TB PS3 30 Jl 40 5 45 10 実施例 9 TC PS1 10 Jl 40 10 10 40 実施例 10 TA PS2 30 Jl 40 10 40 10 実施例 11 TB PS2 30 Jl 40 10 30 20 実施例 12 TA PS2 30 Jl 40 20 30 10 実施例 13 TC PS2 30 Jl 40 40 10 10 実施例 14 TA PS2 30 Jl 60 5 30 5 実施例 15 TA PS2 30 J3 40 5 35 20 実施例 16 TA PS2 30 J4 40 10 45 5 実施例 17 TA PS2 30 J5 20 20 55 5 卖施例 18 TA PS1 50 J6 60 10 10 20 -& (wt%) Type Quantity (wt%) wt% wt% wt% wt% Example 1 TA Jl 5 5 85 5 Example 2 TA Jl 5 5 80 10 Example 3 TA J2 5 20 65 10 Example 4 TA PS2 10 Jl 5 5 70 20 Example 5 TA PS3 30 Jl 20 20 40 20 Example 6 TA PS1 10 Jl 20 40 30 10 Example 7 TB PS1 30 Jl 40 5 50 5 Example 8 TB PS3 30 Jl 40 5 45 10 Example 9 TC PS1 10 Jl 40 10 10 40 Example 10 TA PS2 30 Jl 40 10 40 10 Example 11 TB PS2 30 Jl 40 10 30 20 Example 12 TA PS2 30 Jl 40 20 30 10 Example 13 TC PS2 30 Jl 40 40 10 10 Example 14 TA PS2 30 Jl 60 5 30 5 Example 15 TA PS2 30 J3 40 5 35 20 Example 16 TA PS2 30 J4 40 10 45 5 Example 17 TA PS2 30 J5 20 20 55 5 Example 18 TA PS1 50 J6 60 10 10 20
¾ ^例 19 TA KS1 10 Jl 5 5 50 40 実施例 20 TA KS2 30 Jl 20 10 30 40 実施例 21 TA KS2 50 Jl 40 40 15 5 実施例 22 TA KS1 50 Jl 60 5 25 10 実施例 23 TA KS2 30 J3 60 20 15 5 実施例 24 TA KS1 30 J4 40 20 20 20 実施例 25 TC KS2 30 J5 5 20 55 20 ¾ ^ Example 19 TA KS1 10 Jl 5 5 50 40 Example 20 TA KS2 30 Jl 20 10 30 40 Example 21 TA KS2 50 Jl 40 40 15 5 Example 22 TA KS1 50 Jl 60 5 25 10 Example 23 TA KS2 30 J3 60 20 15 5 Example 24 TA KS1 30 J4 40 20 20 20 Example 25 TC KS2 30 J5 5 20 55 20
TA KS1 30 J6 5 40 50 5 例 27 TA 10 30 30 30 TA KS1 30 J6 5 40 50 5 Example 27 TA 10 30 30 30
TA 10 30 40 20 実施例 29 TA 10 50 20 20 実施例 30 TA 20 30 30 20 実施例 31 TA 20 40 20 20 比較例 1 TA PS2 30 Jl 40 20* 30 10 比較例 2 TA PS2 30 J3 40 5* 35 20 比較例 3 TA KS2 30 Jl 20 10 20 50 第 2表 TA 10 30 40 20 Example 29 TA 10 50 20 20 Example 30 TA 20 30 30 20 Example 31 TA 20 40 20 20 Comparative Example 1 TA PS2 30 Jl 40 20 * 30 10 Comparative Example 2 TA PS2 30 J3 40 5 * 35 20 Comparative Example 3 TA KS2 30 Jl 20 10 20 50 Table 2
テープ剥離試験 ヘイズ率 光触媒 耐沸騰水 耐久性 耐沸縢水 耐久性 活性 初期 試験後 試験後 初期 5式' 後 実施例 1 C 8 8 8 0.7 0.8 0.7 実施例 2 C 8 8 8 1.2 1.3 1.2 実施例 3 C 10 10 10 1.9 2.2 2.0 実施例 4 C 10 10 10 1.7 1.8 1.7 実施例 5 B 10 10 10 2.5 2.8 2.6 実施例 6 B 10 10 10 2.5 3.0 2.6 実施例 7 A 8 - 8 0.9 - 0.9 実施例 8 A 10 一 10 1.4 - 1.4 実施例 9 A 10 10 10 - - - 実施例 10 A 10 10 10 1.6 1.8 1.6 実施例 11 A 10 - 10 2.1 2.1 実施例 12 A 10 10 10 2.1 2.4 2.2 実施例 13 A 10 10 10 - - - 実施例 14 A 10 10 8 1.0 1.1 1.1 実施例 15 A 10 10 10 1.9 2.0 1.9 実施例 16 A 8 8 8 1.1 1.3 1.1 実施例 17 B 10 10 10 1.5 1.8 1.6 実施例 18 A 10 10 8 2.2 2.4 2.3 実施例 19 C 10 10 10 2.2 2.3 2.2 実施例 20 B 10 10 10 2.5 2.7 2.5 実施例 21 A 10 10 10 2.1 2.6 2.2 実施例 22 A 10 10 8 1.5 1.6 1.6 実施例 23 A 10 10 8 1.7 2.0 1.9 実施例 24 A 10 10 10 2.6 2.9 2.7 実施例 25 C 10 10 10 - - 一 実施例 26 C 10 8 10 1.9 2.4 2.0 実施例 27 c 10 10 10 0.3 0.3 0.3 実施例 28 c 10 10 10 0.2 0.3 0.3 実施例 29 c 10 10 10 0.2 0.4 0.4 実施例 30 B 10 10 10 0.4 0.5 0.5 実施例 31 B 10 10 10 0.4 0.6 0.6 比較例 1 A 10 2 4.2  Tape peeling test Haze rate Photocatalyst Boiling water durability Durability Boiling water durability Durability Initial test After test After test Initial 5 formulas After Example 1 C 8 8 8 0.7 0.8 0.7 Example 2 C 8 8 8 1.2 1.3 1.2 Example 3 C 10 10 10 1.9 2.2 2.0 Example 4 C 10 10 10 1.7 1.8 1.7 Example 5 B 10 10 10 2.5 2.8 2.6 Example 6 B 10 10 10 2.5 3.0 2.6 Example 7 A 8-8 0.9-0.9 Example 8 A 10 1 10 1.4-1.4 Example 9 A 10 10 10---Example 10 A 10 10 10 1.6 1.8 1.6 Example 11 A 10-10 2.1 2.1 Example 12 A 10 10 10 2.1 2.4 2.2 Example 13 A 10 10 10---Example 14 A 10 10 8 1.0 1.1 1.1 Example 15 A 10 10 10 1.9 2.0 1.9 Example 16 A 8 8 8 1.1 1.3 1.1 Example 17 B 10 10 10 1.5 1.8 1.6 Example 18 A 10 10 8 2.2 2.4 2.3 Example 19 C 10 10 10 2.2 2.3 2.2 Example 20 B 10 10 10 2.5 2.7 2.5 Example 21 A 10 10 10 2.1 2.6 2.2 Example 22 A 10 10 8 1.5 1.6 1.6 Example 23 A 10 10 8 1.7 2.0 1.9 Example 24 A 10 10 10 2.6 2.9 2.7 Example 25 C 10 10 10--One Example 26 C 10 8 10 1.9 2.4 2.0 Example 27 c 10 10 10 0.3 0.3 0.3 Example 28 c 10 10 10 0.2 0.3 0.3 Example 29 c 10 10 10 0.2 0.4 0.4 Example 30 B 10 10 10 0.4 0.5 0.5 Example 31 B 10 10 10 0.4 0.6 0.6 Comparative example 1 A 10 2 4.2
比較例 2 A 10 4 1.9  Comparative Example 2 A 10 4 1.9
比較例 3 B 6.1 上記第 1表および第 2表中、 比較例 1および比較例 2では、 ネックレス状構造をと らないシリカゾルとして、 日産化学製スノーテックス 2 0を使用した場合である。 耐 沸騰水試験後の光触媒層の付着性が低い。 また、 比較例 1ではヘイズ率が高く、 耐久 性試験後にヘイズ率の上昇がみられた。 Comparative Example 3 B 6.1 In Tables 1 and 2 above, Comparative Examples 1 and 2 are cases in which Nissan Chemical Snowtex 20 was used as a silica sol having no necklace-like structure. Poor adhesion of photocatalyst layer after boiling water test. In Comparative Example 1, the haze ratio was high, and the haze ratio was increased after the durability test.
また比較例 3は、 光触媒層に中のジルコ二ァゾルが多すぎる場合である。 初期のへ ィズ率が高い。  Comparative Example 3 is a case where the photocatalyst layer contains too much zirconazole. Initial haze rate is high.
実施例 1〜3は、 接着層にアクリル一シリコン樹脂を使用し、 ネックレス状コロイ ダルシリカを使用した光触媒層を使用した例である。 これらの試料は耐沸騰水性試験 による評価は良好であり、 耐久性も良好であった。  Examples 1 to 3 are examples in which an acrylic silicon resin was used for the adhesive layer and a photocatalytic layer using necklace-shaped colloidal silica was used. These samples were evaluated well by the boiling water test and had good durability.
実施例 4〜1 4は、 接着層にポリシロキサンを含有したァクリル一シリコン樹脂を 使用し、 ネックレス状コロイダルシリカを使用した光触媒層を使用した例である。 実施例 7、 8、 1 1は、 透明アクリル板上に担持した例である。 これらの試料も耐 久性も良好であった。  Examples 4 to 14 are examples in which an acryl-silicon resin containing polysiloxane was used for the adhesive layer, and a photocatalytic layer using necklace-shaped colloidal silica was used. Examples 7, 8, and 11 are examples in which they are supported on a transparent acrylic plate. These samples also had good durability.
また、接着層の樹脂として、ポリシロキサンを導入したエポキシ一シリコン樹脂(実 施例 1 6 )やポリエステル一シリコン樹脂(実施例 1 7 )、 アタリル樹脂(実施例 1 8 ) を用いた場合にも良好な性能を示した。  Also, when epoxy-silicon resin (Example 16), polyester-silicone resin (Example 17), or ataryl polymer (Example 18) into which polysiloxane is introduced is used as the resin for the adhesive layer. It showed good performance.
実施例 1 9〜2 6は接着層にコロイダルシリカを含有した樹脂を使用したものであ り、 触媒活性、 耐沸騰水性、 耐久性は良好であった。  In Examples 19 to 26, a resin containing colloidal silica was used for the adhesive layer, and the catalyst activity, boiling water resistance, and durability were good.
実施例 1〜 2 6で得られた試料で、高温高湿下のブラックライトによる耐久性試験、 耐沸騰水試験およびサンシャインカーボンァ一クウェザーメーター (スガ試験機性、 £ ー3 !11^ _ 11 ( 11型) による促進耐光性試験にかけた試料を、 再度光触媒活性 を初期と同様の方法によりァセトアルデヒドガスの分解量により調べた。 いずれの試 料についても初期の光触媒活性を維持していることが判った。  For the samples obtained in Examples 1 to 26, a durability test using a black light under high temperature and high humidity, a boiling water test, and a sunshine carbon weather meter (suga test machine property, £ -3! 11 ^ _ The photocatalytic activity of the sample subjected to the accelerated lightfastness test using Type 11 (type 11) was examined again by the amount of acetoaldehyde gas decomposed in the same manner as in the initial test. I found out.
実施例 2 7〜3 1はソ一グライムガラス板上に、 接着層を介さず直接に、 光触媒層 を成膜した後、 2 0 0 °Cで乾燥を行ったものであり、 触媒活性、 耐沸騰水性、 耐久性 は良好であった。  Examples 27 to 31 show that a photocatalyst layer was formed directly on a sodium glyme glass plate without using an adhesive layer, and then dried at 200 ° C. Boiling water and durability were good.
実施例 2 7〜3 1で得られた試料を、 高温高湿下のブラックライトによる耐久性試 験、 耐沸騰水試験およびサンシャイン力一ボンアークウエザーメーター (スガ試験機 性、 WE L— S U N— H C H型) による促進耐光性試験に 2 0 0 0時間かけた試料を、 再度光触媒活性を初期と同様の方法によりァセトアルデヒドガスの分解量により調べ た。 いづれの試料についても初期の光触媒活性を維持していることが判った。  Example 2 The samples obtained in 7 to 31 were subjected to a durability test using a black light under high temperature and high humidity, a boiling water test, and a sunshine force-bon arc weather meter (Suga test machine, WE L— SUN— The sample subjected to accelerated light resistance test (HCH type) for 2000 hours was again examined for photocatalytic activity by the amount of acetoaldehyde gas decomposed in the same manner as in the initial stage. It was found that both samples maintained the initial photocatalytic activity.
実施例 2 7〜3 1で得られた試料を、 サンシャインカーボンアークウエザーメータ 一(スガ試験機性、 WE L— S U N— H C H型) による促進耐光性試験に 2 0 0 0時 間かけた試料のヘイズ率を測定したところ、 濁度がいづれも 2 %以内の値を示し、 高 透明性を維持していることが判った。 Example 27 The sample obtained in Examples 7 to 31 was subjected to accelerated light resistance test using a Sunshine Carbon Arc Weather Meter 1 (Suga Test Machine, WEL-SUN-HCH type) for 2000 hours. When the haze ratio was measured, all turbidity values were within 2%, It was found that transparency was maintained.
実施例 3 2  Example 3 2
光触媒層薬剤にさらにポリメ トキシシロキサン (試薬) を酸化物換算で全固形分に 対して 1 0重量%となるように添加した以外は、 実施例 1 2に準じて成膜した。 光触 媒は B評価であった。 しかし、 大平理化工業 (株)製のラビングテスターを用いて、 フ エルト摩耗試験を行ったところ、 実施例 1 2の塗膜は 2 0 0往復で剥離が認められた のに対して、 実施例 3 2の塗膜は 4 0 0往復でも剥離が認められなかった。  A film was formed in the same manner as in Example 12 except that a polymethoxysiloxane (reagent) was further added to the photocatalytic layer agent so as to be 10% by weight relative to the total solid content in terms of oxide. The photocatalyst was rated B. However, when a felt abrasion test was performed using a rubbing tester manufactured by Ohira Rika Kogyo Co., Ltd., the coating of Example 12 was peeled in 200 reciprocations. No peeling of the 32 coating film was observed even in 400 reciprocations.
実施例 3 3  Example 3 3
光触媒層薬剤にさらにポリメ トキシシロキサン (試薬) を酸化物換算で全固形分に 対して 2 0重量%となるように添加した以外は、 実施例 1 4に準じて成膜した。 光触 媒は C評価であった。 しかし、 大平理化工業 (株)製のラビングテスタ一を用いて、 フ エルト摩耗試験を行ったところ、 実施例 1 4の塗膜は 1 0 0往復で剥離が認められた のに対して、 実施例 3 3は 4 0 0往復でも剥離が認められなかった。 産業上の利用可能性:  A film was formed in the same manner as in Example 14 except that a polymethoxysiloxane (reagent) was further added to the photocatalytic layer agent in an amount of 20% by weight relative to the total solid content in terms of oxide. The photocatalyst was rated C. However, when a felt abrasion test was performed using a rubbing tester manufactured by Ohira Rika Kogyo Co., Ltd., the coating of Example 14 was peeled after 100 reciprocations. In Example 33, no peeling was observed even in 400 reciprocations. Industrial applicability:
以上説明したように、 本発明の光触媒複合体は光触媒活性が非常に高く、 透明性に 優れるものである。  As described above, the photocatalyst composite of the present invention has a very high photocatalytic activity and is excellent in transparency.
本発明の光触媒層形成用塗布液は、 保存安定性に優れ、 簡便に光触媒層を形成する ことができる。 また得られる光触媒層は、 可視光を透過する透明なものも得られるの で、 担体の柄を損なうことがなく触媒を担持することができ、 汎用樹脂や天然繊維な どの幅広い担体に装飾性を損なうことがなく優れた活性を有する光触媒担持構造体を 得ることができる。  The photocatalyst layer-forming coating solution of the present invention has excellent storage stability and can easily form a photocatalyst layer. In addition, the resulting photocatalyst layer can be a transparent one that transmits visible light, so that the catalyst can be supported without damaging the pattern of the carrier, and decorativeness can be applied to a wide range of carriers such as general-purpose resins and natural fibers. A photocatalyst-carrying structure having excellent activity without any loss can be obtained.
本発明の光触媒担持構造体は、 光触媒が担体に強固に接着されており、 光触媒活性 が非常に高く、 しかも光触媒作用により担体が劣化したり、 光触媒が脱離したりする ことがない。  The photocatalyst-supporting structure of the present invention has a photocatalyst firmly adhered to a carrier, has a very high photocatalytic activity, and does not cause deterioration of the carrier or desorption of the photocatalyst by the photocatalytic action.
また、 本発明の光触媒担持構造体は、 光照射下でも長期間使用できるものである。 また、 耐アルカリ性試験の評価も良好で、 サンシャインカーボンアークゥヱザ一メ一 ターによる促進耐候性試験後においても高い付着性を保つていることから、 高温多湿 の環境下や屋外の環境下で使用することができる。  Further, the photocatalyst-supporting structure of the present invention can be used for a long time even under light irradiation. In addition, the alkali resistance test has been evaluated well, and since it maintains high adhesion even after accelerated weathering test by the Sunshine Carbon Arc Meter, it can be used in hot and humid environments or in outdoor environments. Can be used.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光触媒、 コロイダルシリカ粒子を含有する光触媒複合体であって、 前記コロイダ ルシリ力粒子が、 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ 力粒子であり、 該光触媒複合体にさらにジルコニウム化合物およびアルミニウム化合 物からなる群から選ばれる少なくとも 1種を含有することを特徴とする光触媒複合体。 1. A photocatalyst composite containing a photocatalyst and colloidal silica particles, wherein the colloidal silicide particles are colloidal silicide particles in which spherical colloidal silicide particles are combined in an elongated shape, and the photocatalyst complex further includes a zirconium compound. And a photocatalyst composite comprising at least one selected from the group consisting of aluminum compounds.
2. さらにシリカを含有することを特徴とする請求の範囲 1に記載の光触媒複合体。2. The photocatalyst composite according to claim 1, further comprising silica.
3. 球状コロイダルシリカ粒子の粒子径が 1 0〜5 0 n mであることを特徴とする請 求の範囲 1または 2に記載の光触媒複合体。 3. The photocatalyst composite according to claim 1, wherein the spherical colloidal silica particles have a particle diameter of 10 to 50 nm.
4. 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子の長さ が 5 0〜4 0 0 n mの範囲であることを特徴とする請求の範囲 1〜3のいずれかに記 載の光触媒複合体。  4. The method according to any one of claims 1 to 3, wherein the length of the colloidal force particles in which the spherical colloidal force particles are combined in an elongated shape is in a range of 50 to 400 nm. Photocatalyst complex.
5. 球状コロイダルシリカ粒子が細長い形状に結合したコロイダルシリカ粒子が、 動 的光散乱法による測定粒子径 (D l n m) と窒素ガス吸着法による測定粒子径 (D 2 n m) の比 D 1 /D 2 が 5以上であって、 この D 1は 4 0〜3 0 0 n mであり、 そし て電子顕微鏡観察による 5〜2 0 n mの範囲内の一様な太さで一平面内のみの伸長を 有する細長い形状の非晶質コロイダルシリ力粒子であることを特徴とする請求の範囲 1または 2に記載の光触媒複合体。  5. The colloidal silica particles, in which the spherical colloidal silica particles are bound in an elongated shape, are the ratio of the particle size measured by the dynamic light scattering method (D lnm) to the particle size measured by the nitrogen gas adsorption method (D 2 nm) D 1 / D 2 is 5 or more, and this D1 is 40 to 300 nm, and the elongation only in one plane with a uniform thickness within the range of 5 to 20 nm observed by an electron microscope. 3. The photocatalyst composite according to claim 1 or 2, wherein the photocatalyst composite is an elongated colloidal silica force particle having an elongated shape.
6. 前記ジルコニウム化合物が、 ジルコニウムの酸化物、 酸化水酸化物、 水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物であることを特徴と する請求の範囲 1〜5のいずれかに記載の光触媒複合体。  6. The zirconium compound is selected from the group consisting of zirconium oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. The photocatalyst composite according to any one of claims 1 to 5, wherein the photocatalyst composite is a species or a mixture of two or more species.
7. 前記アルミニウム化合物が、 アルミニウムの酸化物、 酸化水酸化物、 水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物であることを特徴と する請求の範囲 1〜 6のいずれかに記載の光触媒複合体。  7. The aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. The photocatalyst composite according to any one of claims 1 to 6, wherein the photocatalyst composite is a species or a mixture of two or more species.
8. 前記ジルコニウム化合物またはアルミニウム化合物は、 1 5 0 °Cで乾燥後の比表 面積が 1 0 0 m2Z g以上の多孔質ゲルである請求の範囲 6または 7に記載の光触媒 複合体。 8. The photocatalyst composite according to claim 6, wherein the zirconium compound or the aluminum compound is a porous gel having a specific surface area after drying at 150 ° C. of 100 m 2 Zg or more.
9. 光触媒複合体全体に対して、 酸化物に換算して、 前記コロイダルシリカ粒子を 5 〜5 0重量%含有し、 光触媒を 5〜6 0重量%含有することを特徴とする請求の範囲 1 - 8のいずれかに記載の光触媒複合体。  9. The photocatalyst composite according to claim 1, wherein the colloidal silica particles are contained in an amount of 5 to 50% by weight and the photocatalyst is contained in an amount of 5 to 60% by weight in terms of oxide. -The photocatalyst complex according to any one of -8.
1 0. 光触媒複合体全体に対して、 酸化物に換算して、 ジルコニウム化合物を、 5〜 4 0重量%含有することを特徴とする請求の範囲 1〜 9のいずれかに記載の光触媒複 合体。  10. The photocatalyst composite according to any one of claims 1 to 9, wherein the zirconium compound is contained in an amount of 5 to 40% by weight in terms of oxide with respect to the entire photocatalyst composite. .
1 1 . 光触媒複合体全体に対して、 アルミニウム化合物を、 酸化物に換算して 2 0〜 9 0重量%含有することを特徴とする請求の範囲 1〜1 0のいずれかに記載の光触媒 複合体。 11 1. The aluminum compound is converted to oxide in the entire photocatalyst complex by 20 to The photocatalyst composite according to any one of claims 1 to 10, wherein the photocatalyst composite is contained at 90% by weight.
1 2. 光触媒層形成用塗布液であって、 球状コロイダルシリカ粒子が細長い形状に結 合したコロイダルシリ力粒子が分散したシリ力ゾル、 並びに光触媒粒子及び/または ゾルを含有し、 さらに、 ジルコニウム化合物およびアルミニウム化合物からなる群か ら選ばれる少なくとも 1種を含有することを特徴とする光触媒層塗布液。  1 2. A coating liquid for forming a photocatalyst layer, comprising a silicic acid sol in which colloidal silicic particles having spherical colloidal silica particles bonded in an elongated shape are dispersed, and a photocatalyst particle and / or a sol, and a zirconium compound. And at least one member selected from the group consisting of aluminum compounds.
1 3. さらにポリシロキサンを含有することを特徴とする請求の範囲 1 2に記載の光 触媒層塗布液。  13. The coating solution for a photocatalyst layer according to claim 12, further comprising a polysiloxane.
1 4. 光触媒層形成用塗布液全体に対して、 固形分として酸化物換算で、 球状コロイ ダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子が分散したシリ力ゾル シリカゾルを 0 . 5〜5重量%、及び光触媒粒子及び またはゾルを固形分として 0 . 5〜 6重量%を含有してなることを特徴とする請求の範囲 1 2 または 1 3に記載の 光触媒層形成用塗布液。  1 4. To the entire coating solution for forming a photocatalyst layer, in terms of oxide, a solid sol in which spherical colloidal sily particles are combined in a slender shape is dispersed in colloidal silicic acid particles as an oxide. 14. The coating solution for forming a photocatalyst layer according to claim 12, wherein the coating solution contains 0.5 to 6% by weight of a photocatalyst particle and / or a sol as a solid content.
1 5. 光触媒層形成用塗布液全体に対して、 固形分として酸化物換算で、 ジルコニゥ ム化合物を 0 . 5〜5重量%、 アルミニウム化合物を 2〜9重量%からなる群から選 ばれる少なくとも 1種を含有することを特徴とする請求の範囲 1 2または 1 4に記載 の光触媒層形成用塗布液。  1 5. At least one selected from the group consisting of 0.5 to 5% by weight of a zirconium compound and 2 to 9% by weight of an aluminum compound in terms of oxide as a solid content with respect to the entire coating solution for forming a photocatalyst layer. 15. The coating solution for forming a photocatalyst layer according to claim 12 or 14, comprising a seed.
1 6 . 球状コロイダルシリカ粒子の粒子径が 1 0〜5 0 n mであることを特徴とする 請求の範囲 1 2〜 1 5のいずれかに記載の光触媒形成用塗布液。  16. The photocatalyst-forming coating liquid according to any one of claims 12 to 15, wherein the spherical colloidal silica particles have a particle diameter of 10 to 50 nm.
1 7. 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子の長 さが 5 0〜4 0 0 n m の範囲であることを特徴とする請求の範囲 1 2〜1 6のいず れかに記載の光触媒形成用塗布液。  17. The colloidal sily force particles in which the spherical colloidal sily force particles are combined in an elongated shape have a length in a range of 50 to 400 nm. A coating solution for forming a photocatalyst according to any one of the above.
1 8. 球状コロイダルシリ力粒子が細長い形状に結合したコロイダルシリ力粒子が、 動的光散乱法による測定粒子径 (D l n m) と窒素ガス吸着法による測定粒子径 (D 2 n m) の比 D 1 ZD 2 が 5以上であって、 この D 1は 4 0〜3 0 0 n mであり、 そ して電子顕微鏡観察による 5〜 2 0 n mの範囲内の一様な太さで一平面内のみの伸長 を有する細長い形状の非晶質コロイダルシリ力粒子であることを特徴とする請求の範 囲 1 2〜1 5のいずれかに記載の光触媒形成用塗布液。  1 8. The colloidal silicide particles, in which the spherical colloidal silicide particles are combined in an elongated shape, are the ratio of the particle size measured by the dynamic light scattering method (D lnm) to the particle size measured by the nitrogen gas adsorption method (D 2 nm). 1 ZD2 is 5 or more, and this D1 is 40 to 300 nm, and only one plane with a uniform thickness within the range of 5 to 20 nm observed by electron microscopy. The coating liquid for forming a photocatalyst according to any one of claims 12 to 15, wherein the coating liquid is an elongated colloidal amorphous force particle having an elongated shape.
1 9. 前記ジルコニウム化合物が、 ジルコニウムの酸化物、酸化水酸化物、水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物のゾルであることを 特徴とする請求の範囲 1 2〜1 8のいずれかに記載の光触媒形成用塗布液。  1 9. The zirconium compound is selected from the group consisting of zirconium oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. The photocatalyst-forming coating liquid according to any one of claims 12 to 18, wherein the coating liquid is a sol of one kind or a mixture of two or more kinds.
2 0. 前記アルミニウム化合物が、 アルミニウムの酸化物、酸化水酸化物、水酸化物、 ォキシ硝酸塩、 ォキシ炭酸塩、 炭素数 1〜4のアルコキシド、 及び該アルコキシドの 加水分解物からなる群から選ばれる 1種または 2種以上の混合物のゾルであることを 特徴とする請求の範囲 1 2〜1 9のいずれかに記載の光触媒形成用塗布液。 20. The aluminum compound is selected from the group consisting of aluminum oxides, hydroxides, hydroxides, oxynitrates, oxycarbonates, alkoxides having 1 to 4 carbon atoms, and hydrolysates of the alkoxides. Sol of one or a mixture of two or more The coating solution for forming a photocatalyst according to any one of claims 12 to 19, characterized by the above-mentioned.
2 1. 前記アルミニウム化合物の平均粒子径が 2〜 5 0 n mであることを特徴とする 請求の範囲 1 2〜 2 0のいずれかに記載の光触媒層形成用塗布液。  21. The coating solution for forming a photocatalyst layer according to any one of claims 12 to 20, wherein the aluminum compound has an average particle diameter of 2 to 50 nm.
2 2. 前記アルミニウム化合物の平均粒子径が 2 ~ 2 0 n mである請求の範囲 1 2〜 2 2. The claim 12 wherein the average particle size of the aluminum compound is 2 to 20 nm.
2 0のいずれかに記載の光触媒層形成用塗布液。 20. The coating solution for forming a photocatalyst layer according to any one of 20.
2 3. 担体表面に接着層を形成し、 さらに該接着層表面に光触媒層を形成してなる光 触媒層担持構造体であって、 前記光触媒層が、 請求の範囲 1〜1 1のいすれかに記載 の光触媒複合体からなることを特徴とする光触媒層担持構造体。  2 3. A photocatalyst layer-carrying structure in which an adhesive layer is formed on the surface of a carrier and a photocatalyst layer is further formed on the surface of the adhesive layer, wherein the photocatalyst layer is any one of claims 1 to 11 A photocatalyst layer-supporting structure, comprising the photocatalyst composite according to any one of the above.
2 4. 前記接着層及び光触媒層を合わせた塗膜の濁度が 3 %以下であることを特徴と する請求の範囲 2 3に記載の光触媒担持構造体。  24. The photocatalyst supporting structure according to claim 23, wherein the turbidity of the coating film including the adhesive layer and the photocatalyst layer is 3% or less.
2 5. 沸騰イオン交換水中で 1時間煮沸した後での J I S K 5 4 0 0に規定された碁 盤目テープ法による付着性が評価点数 6点以上であることを特徴とする請求の範囲 2 3または 2 4に記載の光触媒担持構造体。  2 5. Claims characterized in that the adhesiveness by the cross-cut tape method specified in JISK540 after boiling for 1 hour in boiling ion-exchanged water is 6 or more. Or the photocatalyst-supporting structure according to 24.
2 6. 沸騰イオン交換水中で 1時間煮沸した後での接着層及び光触媒層を合わせた塗 膜の濁度が 3 %以下であることを特徴とする請求の範囲 2 3に記載の光触媒担持構造  24. The photocatalyst-supporting structure according to claim 23, wherein the turbidity of the coating film including the adhesive layer and the photocatalyst layer after boiling for 1 hour in boiling ion-exchanged water is 3% or less.
2 7.紫外線強度 3 mW/ c m2のブラックライトの光を、温度 4 0 °C、相対湿度 9 0 % の下で 5 0 0時間照射した後での J I S K 5 4 0 0に規定された碁盤目テープ法によ る付着性が評価点数 6点以上であることを特徴とする請求の範囲 2 3に記載の光触媒 担持構造体。 2 7. checkerboard of light in the ultraviolet intensity 3 mW / cm 2 of black light, as specified in JISK 5 4 0 0 of after irradiation temperature 4 0 ° C, under a relative humidity of 90% 5 0 0 h 24. The photocatalyst-supporting structure according to claim 23, wherein the adhesiveness by an eye tape method is 6 or more.
2 8.紫外線強度 3 mWZ c m2のブラックライトの光を、温度 4 0 °C、相対湿度 9 0 % の下で 5 0 0時間照射した後での接着層及び光触媒層を合わせた塗膜の濁度が 3 %以 下であることを特徴とする請求の範囲 2 3に記載の光触媒担持構造体。 2 8. light of ultraviolet intensity 3 mWZ cm 2 of black light, temperature 4 0 ° C, the coating film combined adhesive layer and a photocatalyst layer after irradiation 5 0 0 hours under a relative humidity of 90% The photocatalyst-supporting structure according to claim 23, wherein the turbidity is 3% or less.
PCT/JP2002/010582 2001-10-12 2002-10-11 Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst WO2003033144A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003535930A JP4738736B2 (en) 2001-10-12 2002-10-11 Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001314726 2001-10-12
JP2001-314726 2001-10-12

Publications (1)

Publication Number Publication Date
WO2003033144A1 true WO2003033144A1 (en) 2003-04-24

Family

ID=19132991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010582 WO2003033144A1 (en) 2001-10-12 2002-10-11 Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst

Country Status (2)

Country Link
JP (1) JP4738736B2 (en)
WO (1) WO2003033144A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577008A2 (en) * 2004-03-17 2005-09-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
JP2009039687A (en) * 2007-08-10 2009-02-26 Nippon Soda Co Ltd Composition for forming photocatalyst layer
JP2009194120A (en) * 2008-02-14 2009-08-27 Tokyo Ohka Kogyo Co Ltd Composition for inorganic coating film formation
JP2010099647A (en) * 2008-03-28 2010-05-06 Toto Ltd Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol
US7919425B2 (en) 2008-03-26 2011-04-05 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid for the same
US7977270B2 (en) 2007-03-26 2011-07-12 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2013139104A (en) * 2011-12-29 2013-07-18 Toto Ltd Composite material and coating composition
WO2015133316A1 (en) * 2014-03-03 2015-09-11 株式会社鯤コーポレーション Photocatalyst coating liquid and photocatalyst film using same
JP2018070781A (en) * 2016-10-31 2018-05-10 国立大学法人徳島大学 Coating composition for plant growth control
JPWO2017146015A1 (en) * 2016-02-26 2018-12-06 日本曹達株式会社 Photocatalyst structure and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09313948A (en) * 1996-05-28 1997-12-09 Nippon Parkerizing Co Ltd Resin having photocatalyst surface, resin coating material and its production
JPH1110803A (en) * 1997-06-26 1999-01-19 Toray Ind Inc Agricultural material
EP0923988A1 (en) * 1995-06-19 1999-06-23 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
US6071606A (en) * 1996-08-26 2000-06-06 Nissan Motor Co., Ltd Hydrophilic film and method for forming same on substrate
US20010006933A1 (en) * 1999-12-27 2001-07-05 Yamaha Corporation Photocatalyst granules and method of preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310039A (en) * 1996-05-21 1997-12-02 Nippon Soda Co Ltd Photocatalyst coating agent
JP3831457B2 (en) * 1996-08-23 2006-10-11 東陶機器株式会社 Hydrophilic structure having photocatalytic activity
US6407033B1 (en) * 1996-10-08 2002-06-18 Nippon Soda Co., Ltd. Photocatalytic coating composition and photocatalyst-bearing structure
JP4693949B2 (en) * 1999-10-06 2011-06-01 日本曹達株式会社 Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
JP4597292B2 (en) * 1999-11-02 2010-12-15 日本曹達株式会社 Photocatalyst carrying structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923988A1 (en) * 1995-06-19 1999-06-23 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JPH09313948A (en) * 1996-05-28 1997-12-09 Nippon Parkerizing Co Ltd Resin having photocatalyst surface, resin coating material and its production
US6071606A (en) * 1996-08-26 2000-06-06 Nissan Motor Co., Ltd Hydrophilic film and method for forming same on substrate
JPH1110803A (en) * 1997-06-26 1999-01-19 Toray Ind Inc Agricultural material
US20010006933A1 (en) * 1999-12-27 2001-07-05 Yamaha Corporation Photocatalyst granules and method of preparing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577008A3 (en) * 2004-03-17 2006-04-12 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
US7521391B2 (en) 2004-03-17 2009-04-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
EP1577008A2 (en) * 2004-03-17 2005-09-21 Sumitomo Chemical Company, Limited Coating composition of photocatalyst
JP2007055207A (en) * 2005-08-26 2007-03-08 Nippon Soda Co Ltd Structure carrying photocatalyst
US7977270B2 (en) 2007-03-26 2011-07-12 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
US8372774B2 (en) 2007-03-26 2013-02-12 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
US8216959B2 (en) 2007-03-26 2012-07-10 Toto Ltd. Photocatalyst-coated body, coating composition for the same, and process for producing photocatalyst-coated body
US8207079B2 (en) 2007-03-26 2012-06-26 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid therefor
JP2009039687A (en) * 2007-08-10 2009-02-26 Nippon Soda Co Ltd Composition for forming photocatalyst layer
JP2009194120A (en) * 2008-02-14 2009-08-27 Tokyo Ohka Kogyo Co Ltd Composition for inorganic coating film formation
US7919425B2 (en) 2008-03-26 2011-04-05 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010099647A (en) * 2008-03-28 2010-05-06 Toto Ltd Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2010270094A (en) * 2008-06-09 2010-12-02 Sumitomo Chemical Co Ltd Zirconium oxalate sol
JP2013139104A (en) * 2011-12-29 2013-07-18 Toto Ltd Composite material and coating composition
WO2015133316A1 (en) * 2014-03-03 2015-09-11 株式会社鯤コーポレーション Photocatalyst coating liquid and photocatalyst film using same
CN106133078A (en) * 2014-03-03 2016-11-16 株式会社鲲 Photocatalyst coating liquid and use its photocatalyst film
JP2017042683A (en) * 2014-03-03 2017-03-02 株式会社鯤コーポレーション Photocatalyst coating liquid, and photocatalyst film using the same
JPWO2015133316A1 (en) * 2014-03-03 2017-04-06 株式会社鯤コーポレーション Photocatalyst coating liquid and photocatalyst film using the same
JPWO2017146015A1 (en) * 2016-02-26 2018-12-06 日本曹達株式会社 Photocatalyst structure and manufacturing method thereof
JP2018070781A (en) * 2016-10-31 2018-05-10 国立大学法人徳島大学 Coating composition for plant growth control

Also Published As

Publication number Publication date
JP4738736B2 (en) 2011-08-03
JPWO2003033144A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
JP4282597B2 (en) Photocatalyst composition
JP4971608B2 (en) Photocatalyst carrying structure
JPH09310039A (en) Photocatalyst coating agent
WO1997000134A1 (en) Photocatalyst-carrying structure and photocatalyst coating material
JP2012512019A (en) Self-cleaning paint composition
JP5511159B2 (en) Photocatalyst film, method for producing photocatalyst film, article and method for hydrophilization
KR20150028979A (en) Coating composition and uses thereof
KR20060002733A (en) Photocatalyst coating liquid, photocatalyst film and photocatalyst member
JP4017389B2 (en) Method for producing photocatalyst body
WO2003033144A1 (en) Photocatalyst composite material, application liquid for forming photocatalyst layer, and structure carrying photocatalyst
JP4879839B2 (en) Photocatalyst layer forming composition
JP4663065B2 (en) Photocatalyst coating agent and photocatalyst carrying structure
JP4693949B2 (en) Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
JP4884646B2 (en) Adhesive layer forming composition and photocatalyst carrying structure
JP4869578B2 (en) Film forming coating composition for snow sliding, snow coating film and snow sliding member
JP4693965B2 (en) Photocatalyst carrying structure and photocatalyst layer forming composition
JPH09613A (en) Article with silica film containing powder of functional substance
JP4868636B2 (en) Structure comprising a photocatalyst
JP4482338B2 (en) Photocatalyst carrying structure
JP4597292B2 (en) Photocatalyst carrying structure
JP4169558B2 (en) Photocatalyst carrying structure
JP2004100110A (en) Photocatalyst supporting paper
JPH1057817A (en) Hydrophilic structure body having photocatalytic activity
JP2012025163A (en) Photocatalyst supporting structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003535930

Country of ref document: JP

122 Ep: pct application non-entry in european phase