WO2003038897A2 - Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren - Google Patents

Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren Download PDF

Info

Publication number
WO2003038897A2
WO2003038897A2 PCT/DE2002/003296 DE0203296W WO03038897A2 WO 2003038897 A2 WO2003038897 A2 WO 2003038897A2 DE 0203296 W DE0203296 W DE 0203296W WO 03038897 A2 WO03038897 A2 WO 03038897A2
Authority
WO
WIPO (PCT)
Prior art keywords
components
organic
grouping
circuit
active
Prior art date
Application number
PCT/DE2002/003296
Other languages
English (en)
French (fr)
Other versions
WO2003038897A3 (de
Inventor
Wolfgang Clemens
Walter Fix
Jörg ZAPF
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2003541053A priority Critical patent/JP4360910B2/ja
Priority to US10/492,923 priority patent/US7483275B2/en
Priority to EP02769914A priority patent/EP1436839A2/de
Publication of WO2003038897A2 publication Critical patent/WO2003038897A2/de
Publication of WO2003038897A3 publication Critical patent/WO2003038897A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]

Definitions

  • the invention relates to a new concept for the realization of an encapsulated and at least partially organic electronic component.
  • This includes a new concept for combining various electrical components to form an electronic component, such as an antenna, diode (rectifier and / or light-emitting diode), transistor, etc., and a circuit optimized for this.
  • RFID radio frequency identification
  • Photovoltaic cell and the like based on conventional silicon technology.
  • These electronic components are used, for example, as an electronic bar code for consumer goods, as an electronic watermark, as an electronic stamp, as a luggage tag and / or as a ticket.
  • Such electronic components can be manufactured significantly cheaper if they are at least partially constructed from components that are based on organic electronics (plastic electronics).
  • organic electronics plastic electronics
  • the rectifier diode 3 makes only half of the radiated electrical power usable as a supply for the RFID tag, because only one half-wave of the AC voltage can be rectified with a diode. This is particularly serious because the power radiated for an RFID tag, for example, is limited by law and the halving of the radiated power considerably limits the working range and thus the areas of application of the electronic components.
  • a typical electronic component such as the RFID tag comprises several components, for example an antenna, capacitors, diodes (light-emitting diodes and / or rectifier diodes), possibly photovoltaic cells and at least one integrated circuit with transistors.
  • These individual components require different manufacturing processes because they require different materials and processing techniques.
  • For the manufacture of the transistors one needs particularly high-resolution application techniques for the structuring and works with materials that are relatively easy to handle, whereas the manufacture of the diode and / or the capacitor on an organic basis requires the handling of difficult materials and, in return, sufficient structuring is sufficient Quality delivers.
  • Metal is usually used in the manufacture of the antenna, which in turn is completely different processing machines and
  • the object of the invention is therefore to provide an at least partially organic electronic component and / or a circuit which, by selecting and arranging the components, enables inexpensive production and encapsulation.
  • the focus here is on optimizing the known circuits with regard to power transmission and (load) modulation and thereby realizing rational mass production processes.
  • the invention relates to an organic electronic component, comprising at least three groupings of components: a grouping of essentially inorganic components (for example antenna), a grouping of passive, preferably organic components, a grouping of active, preferably organic components, the grouping of the passive components contains no active components or components and the grouping of the active components essentially contains organic field-effect transistors and generally does not contain any passive components which can be produced three groups separately from one another, via electrical contacts on a substrate and / or are interconnected via an encapsulation and implement a circuit through which electrical contacts between passive and active components run from one grouping to another.
  • a grouping is one or more component (s) which are combined on a (piece of) substrate (s) and / or under an encapsulation and which can be produced in process steps that are easy to process and / or comparable in terms of conditions ,
  • the invention also relates to a circuit for an electronic component based at least in part on organic functional polymers, comprising the following components: - an antenna (1), a capacitor (2), a diode (3) and a modulation transistor (4) in front of an integrated circuit (5), two capacitors (7, 8) and a further diode (6) being connected in such a way that the integrated circuit (5) is supplied via a capacitor (7) and at the same time prevented via a diode (6) the modulation transistor (4) can extract energy from this capacitor (7).
  • the invention relates to a method for producing an organic electronic component at least one inorganic component (antenna), a passive, preferably organically based, and comprising an active, preferably organically based component, the antenna, passive and active component being prefabricated separately and then using simple electrical contacts of the individual elements the circuit is realized.
  • An electronic transponder such as an RFID tag
  • an electronic component in any case a part comprising several components, one component being the smaller unit but also made up of a large number of components.
  • Components such as transistors, capacitors, photovoltaic cells, etc. can exist.
  • a “passive component” is a diode (rectifier and / or light-emitting diode), a coupler such as an optocoupler, a capacitor, a resistor and / or the like.
  • a transistor, a photovoltaic cell, a sensor and / or the like is, for example, an “active component”.
  • passive components such as resistors can also be contained in an integrated active circuit.
  • Passive and / or active components are preferably used within the scope of the invention which at least partially contain organic functional polymers (or generally electrically conductive or semiconducting organic materials).
  • organic functional polymers or generally electrically conductive or semiconducting organic materials.
  • these are then referred to as "organic components", although non-organic parts may also be present in the component, but at least one organic part, preferably an organic functional polymer, is in a component which is referred to here as an "organic component” , contain.
  • the circuit is particularly advantageous for use in RFID tags.
  • an antenna which can be a coil, for example, either made of metal, a metal-containing compound such as Alloys, copper, aluminum and / or an organic functional polymer, which may also contain metal, such as Conductive silver and / or only organic material, e.g. Polyaniline, Pedot, soot or mixtures thereof.
  • the antenna is, like the other components and / or components of the organic electronic component, on one
  • a substrate e.g. a flexible film (such as polyester) is used.
  • a flexible film such as polyester
  • these barrier properties can either be given by the film material itself, by additives in the film, by coating (s) (such as silicates and / or metallizations) and / or by several of the individual measures mentioned.
  • the substrate film should be stable against damage due to the conditions of the production steps (temperature, mechanical loads, process media, ).
  • the corresponding components are applied to the substrate and / or the encapsulation, preferably flexible foils, e.g. an integrated circuit consisting of organic transistors, passive components, organic diodes (both light-emitting diodes and rectifier diodes), organic photovoltaic cells and similar components.
  • flexible foils e.g. an integrated circuit consisting of organic transistors, passive components, organic diodes (both light-emitting diodes and rectifier diodes), organic photovoltaic cells and similar components.
  • a combination of organic and inorganic components is also possible (e.g. a largely metallic antenna combined with an organic transponder chip circuit).
  • an insulation layer is applied at least to the surface of a foil (e.g. by screen printing, spraying, curtain casting, laminating another, possibly pre-punched foil ).
  • the individual components are provided with electrically conductive contacts. Two or more of these components are now connected to one another by connecting these electrical contacts to one another, advantageously with an electrically conductive adhesive or an electrically conductive compound.
  • the required electrical through-plating or conductor tracks for through-plating can be introduced at the same time, or are subsequently opened by opening the insulation layer, e.g. generated by laser.
  • the vias can now be filled conductive, e.g. by screen printing a conductive adhesive or by electroless metallization. In the simplest case, only a thin insulation layer is chosen so that the vias do not have to be filled.
  • the components are again preferably encapsulated with a film which has a similar structure and properties to those described above for the substrate. This can e.g. done by gluing or welding.
  • the encapsulation is preferably applied in a gastight manner. If the individual components were encapsulated before the assembly and contacting to the finished electronic component, the electrical connections can be led out of this encapsulation, e.g. for power supply, signal transmission or for sensory purposes. An encapsulated component with combined polymer-electronic components is thus obtained. If the different components have to be manufactured in different processes or if this is economically more favorable, the different components can also be applied separately on the substrate film and / or on the encapsulation film and electrically brought together in the connection process described above. On the one hand, attention must be paid to electrical insulation and, on the other hand, to a defined through-connection.
  • the manufacturing process of the respective component or of the electronic component is optimized in such a way that the two foils (substrate and encapsulation) are used equally for arranging components by as little as possible to need individual manufacturing steps for overall production.
  • organic material or “organic functional poly er” here encompasses all types of organic, organometallic and / or organic-inorganic plastics (hybrids), in particular those which are described in English e.g. be called "plastics". These are all types of substances with the exception of the semiconductors that form the classic diodes (germanium, silicon) and the typical metallic conductors. A restriction in the dogmatic sense to organic material as carbon-containing material is therefore not provided, but rather is also due to the widespread use of e.g. Silicones thought. Furthermore, the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules” is also entirely possible.
  • the word component "polymer" in the functional polymer is historical and therefore contains no information about the presence of an actually polymeric compound.
  • the circuit is particularly advantageous for RFID tags based on organic material.
  • the circuit enables cost-effective production and encapsulation by means of a small number of different components.
  • the manufacturing method takes into account the fact that the individual components of an electronic component, such as a capacitor and transistor, for example, have different manufacturing conditions and requirements. In this way, all components of a "type" are combined on one component, so that the component can be produced in the shortest possible production line.
  • the components are then encapsulated either individually or together on the substrate and connected to one another. It can still be a Component with components on an organic basis in connection with conventional, ie silicon-containing components.
  • Figure 1 shows the state of the art as published by Hart, C.M .; De Leeuw, D.M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998.
  • FIGS. 2-4 show schematically different embodiments of the circuit
  • FIG. 5 shows the circuit from FIG. 4 divided into three components
  • FIGS. 6 and 7 show possibilities for realizing the circuit as finished electronic components.
  • the circuit 1 shows a circuit for an RFID tag as it is state of the art.
  • the transistor 4 and the integrated circuit 5 are made of organic material.
  • the antenna 1, the capacitor 2 and the silicon diode 3 are made of inorganic materials.
  • the OFET 4 after the rectifier diode 3 the problem of the inadequate switching speed and the AC voltage unsuitability of the OFETs compared to conventional transistors is solved because of the property of organic materials to act as charge accumulators and not through charge invasion.
  • the modulation transistor 4 can only switch a small part of the electrical power, since otherwise the power supply for the logic circuit 5 would break down.
  • the diode 3 can only use half of the radiated electrical power as a supply for the RFID tag.
  • Simple circuit variations of the Philips publication consist in integrating the transistor 4 into the logic circuit 5 or omitting it entirely and using the load change in the logic circuit 5 directly as a modulation signal.
  • An example of this is a ring oscillator, which is connected as the only logic circuit to the rectifier output. The oscillation changes the power consumption periodically, this can be read out directly as load modulation. This enables simple electronic watermarks to be implemented, since, depending on the manufacture of the ring oscillators, they oscillate at a very specific frequency.
  • Figure 2 shows an embodiment
  • An antenna 1 forms, together with the capacitor 2, an oscillating circuit which is adapted to the transmission frequency of a reading device.
  • the organic diode 3 forms, together with the capacitor 8, a rectifier which outputs a smoothed DC voltage.
  • the organic modulation transistor 4 is connected to the output of the rectifier.
  • the organic capacitor 7 forms an energy store for the logic circuit 5, the organic diode 6 prevents the capacitor 7 from being discharged via the modulation transistor 4.
  • the logic circuit 8 contains circuits which read out a memory and serialize the information bit by bit to the Pass on output. This is connected to the gate of the modulation transistor 4. The speed of the logic circuit 5 is independent of the transmission frequency of the reader.
  • FIG. 3 shows a similar embodiment, but the rectifying diode 3 is replaced by a bridge rectifier 3.
  • This rectifier includes four integrated organic diodes. If positive and negative voltages are required for the logic circuit (IC), this can be achieved by means of two rectifier units connected in parallel with simple diodes or diode bridge circuits. A further possibility for this is the construction of a voltage divider behind a simple rectifier circuit, for example with resistors connected in series.
  • FIG. 4 again shows an embodiment of a circuit which is similar to that of Figures 2 and 3, but all capacitors are each by one or two org. Diodes have been replaced.
  • Capacitor 2 is operated with AC voltage, so it is replaced by two diodes 2, 2 ⁇ connected in series with opposite poles.
  • the capacitors 7 and 8 are supplied with direct voltage, so they can be powered by one diode each
  • the logic circuit is supplied via an energy store (for example an organic capacitor 7), with an organic diode 6 preventing the modulation transistor 4 from storing this Can withdraw energy (see embodiments of Figures 2 to 4).
  • This energy store is then charged when the modulation transistor 4 is in the blocking state.
  • the energy store is discharged when the bit sequence 1 1 1 1 ... (or 0 0 0 0, depending on the coding of the logic) occurs. This is prevented if the logic circuit 5 of the RFID tag outputs the information bits in such a way that the modulation transistor 4 is switched off for a very short time between each bit. This can be carried out in such a way that the energy store cannot fall below a certain charge state, regardless of the bit sequence.
  • the main advantage of energy storage is that the modulation transistor 4 can switch the electrical power 100% without the voltage supply for the logic circuit 5 breaking down.
  • Another problem that is solved with the circuit is the transmission of higher electrical power through the use of organic integrable diodes as are known from DE 100 44 842.9. This enables the use of a diode bridge circuit for rectification. As a result, twice the power is transmitted, since both half-waves of the AC voltage can be used (see exemplary embodiments in FIGS. 3 and 4). With the approach known from the prior art, the hybrid use of a Si diode, such a bridge circuit can practically not be used, since the production of RFID tags with hybrid Si diodes becomes too complex and expensive.
  • FIG. 4 A particularly advantageous embodiment of the invention (FIG. 4) is based on the fact that organic diodes behave like a capacitor in the reverse direction. With two diodes connected in series with reversed polarity, capacitors that work with AC voltage are also obtained.
  • One advantage of this circuit is the greatly simplified structure of the polymer RFID tags, since there is no need for capacitors, that is to say several layers of functional polymer and the associated process steps.
  • FIG. 5 shows the circuit from FIG. 4 divided into different components 1, 2 and 3.
  • component 11 which is a substrate 14 (flexible film with barrier properties), which is provided with an electrically conductive track 1, which functions as an antenna, and with electrically conductive contacts 15.
  • component 12 which contains all components that function as a diode or capacitor (2, 3, 6, 7 and 8) and also electrically conductive contacts 15.
  • component 13 in which all components 4, 5 are assembled, which contain an organic transistor, and likewise electrically conductive contacts 15. Only individual components need to be based on organic material, for example an organic chip with an inorganic diode can also be built up or the antenna can be made of metal or metal-containing connections.
  • FIG. 6 shows how the individual components 11, 12 and 13 can advantageously be built up to form an overall system.
  • FIG. 6E shows the assembled electronic component and 6D the encapsulation film lying above it.
  • FIG. 6F a cross section through an electronic component is shown in FIG. 6F.
  • an antenna (1) and electrical contacts (15) are applied to the substrate film (14) using appropriate methods (for example by methods such as sputtering, vapor deposition, galvanic or currentless deposition, printing, micro-punching, photolithography, etching methods or combinations) , this is component 11.
  • One possibility for constructing capacitors is, for example, that a metallization or conductive polymer surface is produced for the capacitor on the substrate side, which is arranged in such a way that a capacitance is created by this surface and conductive surfaces of the transponder antenna after the two foils have been joined.
  • the encapsulation film 16 which, like the substrate 14, should have barrier properties for external influences such as oxygen and / or water vapor and can be applied to the other components 11, 12 and 13 by appropriate methods such as gluing or laminating.
  • the individual components or components 11, 12 and / or 13 are thus applied to the substrate or to the encapsulation film and coated with an insulation layer for electrical insulation.
  • the foils prepared in this way are now adjusted and added to the overall system e.g. put together the transponder.
  • the adhesive could also correspond to the above-mentioned insulation layer at the same time, or could be applied in a further process step, for example by printing, spraying, curtain casting.
  • the two foils are adjusted and pressed (autoclave, vacuum press or the like).
  • the adhesive application and / or the pressing process ensures that the adhesive in the edge area of the two foils Over-thickness is minimized, so that there is also a lateral barrier against gases and moisture.
  • electrical contact with the vias must also be made possible.
  • the adhesive is cured thermally and / or by UV light.
  • This principle of construction is also advantageous for many other products with polymer electronic components, for example a photovoltaic sensor structure with integrated evaluation circuit or OLEDs with integrated control circuit.
  • the photovoltaic or OLED cells can be applied to one film and the polymer circuits to the other film. It is of course also possible in this way to connect organic components with conventional, inorganic components.
  • FIG. 7 now describes how these components can be advantageously constructed in a different way to form an overall system.
  • the figure is again divided into sub-figures 7A to 7E, which show the following:
  • an antenna 1 and electrical contacts 15 are applied to the substrate film 14 using appropriate methods (for example by methods such as sputtering, vapor deposition, galvanic or electroless deposition, printing, micro-punching, photolithography, etching methods or combinations), this is component 11.
  • the component 12 is applied directly to the encapsulation film 14, which reduces the total number of components and eliminates one work step.
  • the method for producing the electronic components can not only be used for the production of RFID tags, but there are many other application examples which contain at least one organic electronic component and are built on a flexible substrate, such as Example:
  • OLED Active organic displays
  • Advertising labels for example with flashing and / or luminous and / or acoustic displays.

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Thin Film Transistor (AREA)
  • Credit Cards Or The Like (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Combinations Of Printed Boards (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Die Erfindung betrifft ein neues Konzept für die Realisierung eines verkapselten und zumindest teilorganischen Elektronikbauteils. Das beinhaltet ein neues Konzept für die Kombination verschiedener elektronischer Bauelemente zu einem Elektronikbauteil, wie Antenne, Diode (Gleichrichter- und/oder Leuchtdiode), Transistor etc. und eine dafür optimierte Schaltung. Dazu werden gleichartige Bauelemente des Bauteils und/oder der Schaltung auf einem Substrat(bereich) und/oder in einer Verkapselung zu einer Gruppierung gebündelt, die dann untereinander elektronisch verbunden werden.

Description

Beschreibung
Elektronikbauteil, Schaltungskonzept dafür und Herstellungsverfahren
Die Erfindung betrifft ein neues Konzept für die Realisierung eines verkapselten und zumindest teil-organischen Elektronikbauteils. Das beinhaltet ein neues Konzept für die Kombinati- on verschiedener elektrischer Bauelemente zu einem Elektro- nikbauteil, wie Antenne, Diode (Gleichrichter- und/oder Leuchtdiode) , Transistor etc. und eine dafür optimierte Schaltung.
Bekannt sind Elektronikbauteile wie z. B. ein Radio- Frequency-Identification (RFID) Tag, ein Ξensorarray, eine
Photovoltaikzelle und ähnliches mehr auf der Basis herkömmlicher Silizium-Technologie.
Diese Elektronikbauteile finden beispielsweise Anwendung als elektronischer Strichkode für Konsumgüter, als elektronisches Wasserzeichen, als elektronische Briefmarke, als Kofferanhänger und/oder als Ticket.
Solche Elektronikbauteile können deutlich preiswerter herge- stellt werden, wenn sie zumindest teilweise aus Bauelementen aufgebaut werden, die auf organischer Elektronik (Plastik- Elektronik) basieren. Hierbei ergeben sich jedoch mehrere Probleme. Zunächst müssen unterschiedliche Bauelement-Gruppen wie Antenne, Gleichrichter und/oder Transponderchip in sehr verschiedenen Prozessen hergestellt und dann zusammengefügt und verkapselt werden.
Für die neuen Plastik-Elektronikbauteile, die beispielsweise aus der DE 100 43 204.2 bekannt sind, ist eine Schaltung bis- lang von Hart, C.M.; De Leeuw, D.M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998) veröffentlicht (vgl. hierzu Figur 1), wobei nur der Modulations-Transistor 4 und die integrierte Schaltung 5 auf organischem Material basieren. Die Antenne 1, der Kondensator 2 und die Silizium-Diode 3 sind aus anorganischem Material (herkömmliche Silizium- Technologie) . Ein OFET (Organischer Feld-Effekt-Transistor) 4 wird nach der Gleichrichterdiode 3 eingesetzt. Ein Problem bei dieser Ausführung ist aber, dass der Modulations- Transistor 4 nur einen geringen Teil der elektrischen Leistung schalten kann, da andernfalls die Stromversorgung für die integrierte Schaltung 5 zusammenbrechen würde. Ein weite- res Problem ist, dass durch die Gleichrichter-Diode 3 nur die Hälfte der eingestrahlten elektrischen Leistung als Versorgung für das RFID-Tag nutzbar gemacht wird, weil mit einer Diode nur eine Halbwelle der Wechselspannung gleichgerichtet werden kann. Dies ist insbesondere deshalb von so gravieren- dem Nachteil, weil die z.B. für ein RFID-Tag eingestrahlte Leistung gesetzlich beschränkt ist und die Halbierung der eingestrahlten Leistung die Arbeitsreichweite und damit die Einsatzgebiete der Elektronikbauteile erheblich einschränkt.
Ein typisches Elektronikbauteil wie das RFID-Tag umfasst mehrere Komponenten, beispielsweise eine Antenne, Kondensatoren, Dioden (Leuchtdioden und/oder Gleichrichterdioden) , eventuell Photovoltaikzellen und zumindest eine integrierte Schaltung mit Transistoren. Diese einzelnen Komponenten erfordern ver- schiedene Herstellungsverfahren, da sie unterschiedliche Materialien und Verarbeitungstechniken brauchen. So benötigt man zur Herstellung der Transistoren besonders hochauflösende Aufbringungstechniken für die Strukturierung und arbeitet dafür mit relativ gut handhabbaren Materialien, wohingegen die Herstellung der Diode und/oder des Kondensators auf organischer Basis die Handhabung schwieriger Materialien erfordert und im Gegenzug mit einer weit weniger aufwendigen Strukturierung ausreichende Qualität liefert. Bei der Herstellung der Antenne wird wiederum in aller Regel Metall verarbeitet, das auch wieder ganz andere Verarbeitungsmaschinen und
-techniken verlangt. Die Herstellung der zumindest zum Teil organischen (Plastik) -Elektronikbauteile ist entsprechend kompliziert und momentan noch nicht Gegenstand von Veröffentlichungen gewesen aber für die erforderliche Marktreife als Massen-Ein-Weg Produkt sollten Lösungen gefunden werden, dass diese vielen verschiedenen Herstellungsschritte möglichst ra- tionell bewältigt werden können.
Aufgabe der Erfindung ist es daher, ein zumindest zum Teil organisches Elektronikbauteil und/oder eine Schaltung zur Verfügung zu stellen, das durch Auswahl und Anordnung der Bauelemente eine kostengünstige Herstellung und Verkapselung ermöglicht. Dabei steht im Vordergrund, die bekannten Schaltungen hinsichtlich Leistungsübertragung und (Last)- Modulation zu optimieren und dabei rationelle Massenfertigungsprozesse zu realisieren.
Hier wird eine Lösung beschrieben, wie dies realisiert werden kann, durch ein neues Konzept der Zusammenlegung von Bauelementen zu einem Elektronikbauteil, wie Antenne, Diode (Gleichrichter- und/oder Leuchtdiode) , Transistor etc. und/oder eine geeignete Optimierung des Schaltungskonzeptes.
Gegenstand der Erfindung ist ein organisches Elektronikbauteil, zumindest drei Gruppierungen von Bauelementen umfassend: Eine Gruppierung von im wesentlichen anorganischen Bauelementen (z.B. Antenne), eine Gruppierung von passiven, vorzugsweise organischen Bauelementen eine Gruppierung von aktiven, vorzugsweise organischen Bauelementen, wobei die Gruppierung der passiven Bauelemente keine aktiven Bauelemente oder Komponenten enthält und die Gruppierung der aktiven Bauelemente im wesentlichen organische Feld-Effekt- Transistoren und in der Regel keine passiven Bauelemente enthält, die drei Gruppierungen getrennt voneinander herstellbar sind, über elektrische Kontakte auf einem Substrat und/oder über eine Verkapselung miteinander verbunden sind und eine Schaltung realisieren, durch die elektrische Kontakte zwischen passiven und aktiven Bauelementen von einer Gruppierung zur anderen verlaufen.
Als Gruppierung wird ein oder mehrere Bauelement (e) bezeichnet, die auf einem (Stück eines) Substrat (s) und/oder unter einer Verkapselung zusammengefasst sind und die in prozesstechnisch leicht zusammenlegbaren und/oder von den Bedingun- gen her vergleichbaren Verfahrensschritten herstellbar sind.
Außerdem ist Gegenstand der Erfindung eine Schaltung für ein zumindest zum Teil auf organischen Funktionspolymeren basierendes Elektronikbauteil, folgende Komponenten umfassend: - eine Antenne (1), einen Kondensator (2), eine Diode (3) und einen Modulationstransistor (4) vor einem integrierten Schaltkreis (5), wobei zwei Kondensatoren (7,8) und eine weitere Diode (6) so geschaltet sind, dass die integrierte Schaltung (5) über einen Kondensator (7) versorgt wird und gleichzeitig über eine Diode (6) verhindert wird, dass der Modulationstransistor (4) diesem Kondensator (7) Energie entziehen kann.
Schließlich ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines organischen Elektronikbauteils zumindest einem anorganischen Bauteil (Antenne) , einem passiven vorzugsweise organisch basierend und ein aktives vorzugsweise organisch basierende Bauelement umfassend, wobei Antenne, passives und aktives Bauelement gesondert vorgefertigt werden und dann über einfache elektrische Kontaktierungen der einzelnen Elemente die Schaltung realisiert wird.
Als Elektronikbauteil wird hier ein ganzer Transponder wie z.B. ein RFID-Tag bezeichnet, in jedem Fall ein mehrere Bau- elemente umfassendes Teil, wobei ein Bauelement die kleinere Einheit ist aber durchaus auch aus einer Vielzahl von Kompo- nenten wie Transistoren, Kondensatoren Photovoltaikzellen, etc. bestehen kann.
Als "passives Bauelement" wird eine Diode (Gleichrichter- und/oder Leuchtdiode) , ein Koppler wie ein Optokoppler, ein Kondensator, ein Widerstand und/oder ähnliches bezeichnet. Als "aktives Bauelement" gilt beispielsweise ein Transistor, eine Photovoltaikzelle, ein Sensor und/oder ähnliches. In einer integrierten aktiven Schaltung können allerdings auch passive Bauteile wie Widerstände enthalten sein.
Bevorzugt werden im Rahmen der Erfindung passive und/oder aktive Bauelemente eingesetzt, die zumindest zum Teil organische Funktionspolymere (bzw. allgemein elektrisch leitfähige bzw. halbleitende organische Materialien) enthalten. Diese werden dann der Kürze wegen als "organische Bauelemente" bezeichnet, obwohl durchaus auch nicht-organische Teile im Bauelement enthalten sein können, aber zumindest ein organisches Teil, bevorzugt eine organisches Funktionspolymer ist in einem Bauelement, das hier als "organisches Bauelement" bezeichnet wird, enthalten.
Die Schaltung ist insbesondere vorteilhaft für die Anwendung in RFID-Tags.
Als ein Bauelement wird z.B. eine Antenne eingesetzt, die beispielsweise eine Spule sein kann, entweder aus Metall, einer metallhaltigen Verbindung wie z.B. Legierungen, Kupfer, Aluminium und/oder einem, unter Umständen auch metallhalti- gern, organischen Funktionspolymer wie z.B. Leitsilber und/ oder auch nur aus organischen Material, wie z.B. Polyanlilin, Pedot, Russ oder aus Mischungen hieraus.
Die Antenne wird, wie die anderen Bauelemente und/oder Kompo- nenten des organischen Elektronikbauteils auch, auf einem
Substrat aufgebracht und mit einer Verkapselung, die gleich- zeitig das Substrat bilden kann, gegen unerwünschte Umwelteinflüsse geschützt.
Als Substrat wird z.B. eine flexible Folie (wie beispielswei- se Polyester) genommen. Diese kann je nach Bedarf verschieden stark ausgeprägte Barriereeigenschaften gegen Feuchtigkeit und Luft haben, weil die Bauelemente zum Teil aus organischen Materialien bestehen, die instabil sind bei Feuchtigkeitsund/oder Sauerstoffeinfluss. Diese Barriereeigenschaften kön- nen entweder durch das Folienmaterial selber gegeben sein, durch Zusätze in der Folie, durch Beschichtung (en) (wie z.B. Silikate und/oder Metallisierungen) und/oder auch durch mehrere der genannten Einzelmaßnahmen. Die Substratfolie soll stabil sein gegen Beschädigung durch die Bedingungen der Fer- tigungsschritte (Temperatur, mechanische Belastungen, Prozessmedien, ... ) .
Auf das Substrat und/oder die Verkapselung, bevorzugt flexible Folien, werden die entsprechenden Komponenten aufgebracht, z.B. eine integrierte Schaltung, bestehend aus organischen Transistoren, passive Bauteile, organischen Dioden (sowohl Leuchtdioden als auch Gleichrichterdioden) , organischen Pho- tovoltaikzellen und ähnliche Bauteile. Ferner ist auch eine Kombination organischer mit anorganischen Bauteilen möglich (z.B. eine weitgehend metallische Antenne kombiniert mit einer organischen Transponderchip-Schaltung) .
Zur elektrischen Isolation der Folien wird mindestens auf die Oberfläche einer Folie eine Isolationsschicht aufgebracht (z.B. durch Siebdruckverfahren, Sprühverfahren, Vorhanggießen, Laminieren einer weiteren, evtl. vorgestanzten Folie... ) .
Die einzelnen Bauelemente werden mit elektrisch leitfähigen Kontakten versehen. Zwei oder mehrere dieser Bauelemente werden nun miteinander verbunden indem diese elektrischen Kontakte miteinander verbunden werden, vorteilhafterweise mit einem elektrisch leitfähigen Kleber oder einer elektrisch leitfähigen Verbundmasse.
Die benötigten elektrischen Durchkontaktierungen oder Leiter- bahnen zur Durchkontaktierung (Vias) können hierbei gleich miteingebracht werden, oder werden anschließend durch Öffnen der Isolationsschicht, z.B. mittels Laser erzeugt. Die Vias können nun leitfähig gefüllt werden, z.B. durch Siebdrucken eines Leitklebers oder durch stromloses Metallisieren. Im einfachsten Fall wird nur eine dünne Isolationsschicht gewählt, sodass auf ein Füllen der Vias verzichtet werden kann.
Die Bauelemente werden wieder mit einer Folie bevorzugt verkapselt, die ähnlichen Aufbau und ähnliche Eigenschaften hat wie oben für das Substrat beschrieben wurden. Dies kann z.B. durch Kleben oder Verschweißen geschehen. Bevorzugt wird die Verkapselung gasdicht aufgebracht. Falls die einzelnen Bauelemente vor dem Zusammenfügen und der Kontaktierung zum fertigen Elektronikbauteil verkapselt wurden, können aus dieser Verkapselung die elektrischen Anschlüsse herausgeführt werden, z.B. zur Stromversorgung, Signalübertragung oder für sensorische Zwecke. Somit erhält man ein gekapseltes Bauteil mit kombinierten polymerelektronischen Komponenten. Falls die verschiedenen Komponenten in verschiedenen Prozessen herge- stellt werden müssen oder falls dies ökonomisch günstiger ist, so kann man die verschiedenen Bauelemente auch getrennt auf der Substratfolie und/oder auf der Verkapselungsfolie aufbringen und elektrisch zusammenführen im oben beschriebenen Verbindungsprozess. Dabei muss einerseits auf eine elekt- rische Isolierung und andererseits auf eine definierte Durchkontaktierung geachtet werden.
Der Herstellungsprozess des jeweiligen Bauelements oder des Elektronikbauteils wird dahingehend optimiert, dass die bei- den Folien (Substrat und Verkapselung) gleichermaßen zur Anordnung von Komponenten genutzt werden um möglichst wenig einzelne Fertigungsschritte zur Gesamtherstellung zu benötigen.
Der Begriff "organisches Material" oder "organisches Funkti- onspoly er" umfasst hier alle Arten von organischen, metallorganischen und/oder organisch-anorganischen Kunststoffen (Hybride), insbesondere die, die im Englischen z.B. mit "plastics" bezeichnet werden. Es handelt sich um alle Arten von Stoffen mit Ausnahme der Halbleiter, die die klassischen Dioden bilden (Germanium, Silizium) , und der typischen metallischen Leiter. Eine Beschränkung im dogmatischen Sinn auf organisches Material als Kohlenstoff-enthaltendes Material ist demnach nicht vorgesehen, vielmehr ist auch an den breiten Einsatz von z.B. Siliconen gedacht. Weiterhin soll der Term keiner Beschränkung im Hinblick auf die Molekülgröße, insbesondere auf polymere und/oder oligomere Materialien unterliegen, sondern es ist durchaus auch der Einsatz von "small molecules" möglich. Der Wortbestandteil "polymer" im Funktionspolymer ist historisch bedingt und enthält insofern keine Aussage über das Vorliegen einer tatsächlich polymeren Verbindung.
Die Schaltung ist insbesondere vorteilhaft für RFID-Tags basierend auf organischem Material. Die Schaltung ermöglicht durch Auswahl und Anordnung der Komponenten auf den Bauelementen eine kostengünstige Herstellung und Verkapselung durch eine geringe Anzahl unterschiedlicher Bauelemente.
Das Verfahren zur Herstellung trägt dem Umstand Rechnung, dass die einzelnen Komponenten eines Elektronikbauteils, wie Kondensator und Transistor, beispielsweise, unterschiedliche Herstellungsbedingungen und -anforderungen haben. So werden auf je einem Bauelement alle Komponenten einer "Art" zusam- mengefasst, damit das Bauelement in einer möglichst kurzen Fertigungsstrasse produziert werden kann. Die Bauelemente werden dann entweder einzeln oder zusammen auf dem Substrat verkapselt und miteinander verbunden. Dabei kann trotzdem ein Bauelement mit Komponenten auf organischer Basis in Verbindung mit herkömmlichen, also Silizium enthaltenden Komponenten aufgebaut sein.
Im folgenden wird die Erfindung anhand einzelner Figuren, die Ausführungsformen der Erfindung im Vergleich zum Stand der Technik zeigen, näher erläutert:
Figur 1 zeigt den Stand der Technik wie er aus der Veröffent- lichung von Hart, C.M.; De Leeuw, D.M. et al., Philips Res. Lab., ESSCIRC '98, ISBN 2-86332-235-4, 1998 bekannt ist.
Figuren 2 - 4 zeigen schematisch verschiedene Ausführungsformen der Schaltung, Figur 5 zeigt die Schaltung aus Figur 4 aufgeteilt auf drei Bauelemente und Figuren 6 und 7 zeigen Möglichkeiten der Realisierung der Schaltung als fertige E- lektronikbauteile .
In Figur 1 ist eine Schaltung für ein RFID-Tag zu sehen, wie sie Stand der Technik ist. Bei dieser Schaltung sind nur der Transistor 4 und die integrierte Schaltung 5 aus organischem Material. Die Antenne 1, der Kondensator 2 und die Silizium- Diode 3 sind aus anorganischen Materialien. Durch den Einsatz des OFETs 4 nach der Gleichrichterdiode 3 ist das Problem der mangelhaften Schaltgeschwindigkeit und der Wechselspannung- suntauglichkeit der OFETs gegenüber den herkömmlichen Transistoren wegen der Eigenschaft organischer Materialien, als Ladungsträgerakkumulanten zu wirken und nicht durch Ladungsträgerinvasion, gelöst. Ein Problem bei dieser Ausführung bleibt aber, dass der Modulations-Transistor 4 nur einen geringen Teil der elektrischen Leistung schalten kann, da andernfalls die Stromversorgung für die logische Schaltung 5 zusammenbrechen würde. Ein weiteres Problem ist, dass durch die Diode 3 nur die Hälfte der eingestrahlten elektrischen Leistung als Versorgung für das RFID-Tag verwendet werden kann. Einfache Schaltungsvariationen der Philips-Veröffentlichung, die somit ebenfalls zum Stand der Technik gehören, bestehen darin, dass man den Transistor 4 in die logische Schaltung 5 integriert oder ihn ganz weg lässt und direkt die Lastände- rung der logischen Schaltung 5 als Modulationssignal verwendet. Ein Beispiel hierfür ist ein Ringoszillator, der als alleinige logische Schaltung an den Gleichrichterausgang angeschlossen wird. Durch das Oszillieren ändert sich der Leistungsverbrauch periodisch, dies kann direkt als Last- Modulation ausgelesen werden. Damit lassen sich einfache elektronische Wasserzeichen realisieren, da je nach Herstellung der Ringoszillatoren mit einer ganz bestimmten Frequenz oszillieren.
Figur 2 zeigt ein Ausführungsbeispiel:
Eine Antenne 1 bildet zusammen mit dem Kondensator 2 einen Schwingkreis, der an die Sendefrequenz eines Lesegeräts ange- passt ist. Die organische Diode 3 bildet zusammen mit dem Kondensator 8 einen Gleichrichter der eine geglättet Gleichspannung ausgibt. Der organische Modulations-Transistor 4 ist an den Ausgang des Gleichrichters angeschlossen. Der organische Kondensator 7 bildet einen Energiespeicher für die logische Schaltung 5, die organische Diode 6 verhindert ein Ent- laden des Kondensators 7 über den Modulations-Transistor 4. Die logische Schaltung 8 enthält Schaltkreise, die einen Speicher auslesen und die Information bitweise seriell an den Ausgang weitergeben. Dieser ist mit dem Gate des Modulations- Transistor 4 verbunden. Die Geschwindigkeit der logischen Schaltung 5 ist dabei unabhängig von der Sendefrequenz des Lesegeräts.
Figur 3 zeigt eine ähnliche Ausführungsform jedoch ist die gleichrichtende Diode 3 durch einen Brückengleichrichter 3 ersetzt. Dieser Gleichrichter umfasst vier integrierte organische Dioden. Falls für die logische Schaltung (IC) positive und negative Spannungen benötigt werden, kann dies durch zwei parallel geschaltete Gleichrichtereinheiten mit einfachen Dioden oder Diodenbrückenschaltungen realisiert werden. Eine weitere Mög- lichkeit hierfür ist der Aufbau eines Spannungsteilers hinter einer einfachen Gleichrichterschaltung, beispielsweise mit in Serie geschalteten Widerständen.
Figur 4 zeigt wieder eine Ausführungsform einer Schaltung die derjenigen aus Figuren 2 und 3 ähnelt, jedoch sind alle Kondensatoren durch je eine bzw. zwei org. Dioden ersetzt worden. Kondensator 2 wird mit Wechselspannung betrieben, daher wird er durch zwei gegenpolig in Reihe geschalteten Dioden 2, 2Λ ersetzt. Die Kondensatoren 7 und 8 werden mit Gleichspan- nung versorgt, sie können also durch jeweils eine Diode
(7,8), die in Sperrrichtung geschaltet ist, ersetzt werden. Bei diesem Ausführungsbeispiel kann ganz auf Kondensatoren verzichtet werden, was die Herstellung der Schaltung stark vereinfacht.
Das Problem mit der niedrigen (Last-) Modulation wird in der Schaltung folgendermaßen gelöst: die logische Schaltung wird über einen Energiespeicher (z.B. einen organischen Kondensator 7) versorgt, wobei mit einer organischen Diode 6 verhin- dert wird, dass der Modulationstransistor 4 diesem Speicher Energie entziehen kann (siehe Ausführungsbeispiele der Figuren 2 bis 4). Dieser Energiespeicher wird dann geladen, wenn der Modulations-Transistor 4 im sperrenden Zustand ist. Ein Problem dabei ist, dass der Energiespeicher dann entladen wird, wenn die Bitfolge 1 1 1 1... (oder 0 0 0 0, je nach Kodierung der Logik) auftritt. Das wird verhindert, wenn die logische Schaltung 5 des RFID-Tags die Informationsbits so ausgibt, dass zwischen jedem Bit der Modulations-Transistor 4 für sehr kurze Zeit ausgeschaltet wird. Dies kann so ausge- führt werden, dass der Energiespeicher unabhängig von der Bitfolge einen bestimmten Ladezustand nicht unterschreiten kann. Der Hauptvorteil des Energiespeichers liegt darin, dass der Modulations-Transistor 4 die elektrische Leistung zu 100% schalten kann, ohne dass die Spannungsversorgung für die logische Schaltung 5 zusammenbricht.
Ein weiteres Problem, dass mit der Schaltung gelöst wird, ist die Übertragung höherer elektrischer Leistung durch die Verwendung von organischen integrierbaren Dioden wie sie aus der DE 100 44 842.9 bekannt sind. Das ermöglicht die Verwendung von einer Dioden-Brückenschaltung zur Gleichrichtung. Dadurch wird die doppelte Leistung übertragen, da beide Halbwellen der Wechselspannung genutzt werden können (siehe Ausführungsbeispiele der Figuren 3 und 4) . Mit dem aus dem Stand der Technik bekannten Ansatz, dem hybriden Verwenden einer Si- Diode, lässt sich eine solche Brückenschaltung praktisch nicht verwenden, da die Herstellung von RFID-Tags mit hybriden Si-Dioden zu aufwendig und teuer wird.
Eine besonders vorteilhafte Ausführung der Erfindung (Figur 4) beruht auf der Tatsache, dass organische Dioden sich in Sperrrichtung wie ein Kondensator verhalten. Mit zwei in Reihe geschalteten Dioden mit umgekehrter Polarität erhält man damit auch Kondensatoren, die mit Wechselspannung funktionieren. Ein Vorteil dieser Schaltung liegt in dem stark vereinfachten Aufbau der Polymer-RFID-Tags, da auf Kondensatoren, also auf mehrere Schichten Funktionspolymer und die dazugehörigen Prozessschritte, verzichtet werden kann.
In Figur 5 ist die Schaltung aus Figur 4 aufgeteilt auf verschiedene Bauelemente 1, 2 und 3 zu sehen.
Zunächst ist hier Bauteil 11, das ein Substrat 14 (flexible Folie mit Barriereeigenschaften) , das mit einer elektrisch leitfähigen Bahn 1, die als Antenne fungiert und mit elektrisch leitfähigen Kontakten 15 versehen ist. Dann kommt Bauteil 12, das alle Komponenten enthält, die als Diode oder Kondensator (2,3,6,7 und 8) fungieren sowie ebenfalls elektrisch leitfähige Kontakte 15. Schließlich kommt Bauteil 13, in dem alle Komponenten 4, 5 zusammengefügt sind, die einen organischen Transistor enthalten, sowie ebenfalls elektrisch leitfähige Kontakte 15. Dabei brauchen nur einzelne dieser Komponenten auf organischem Material basieren, z.B. lässt sich auch ein organischer Chip mit einer anorganischen Diode aufbauen bzw. die Antenne kann aus Metall oder metallhaltigen Verbindungen sein.
In Figur 6 ist zu sehen, wie die einzelnen Bauelemente 11, 12 und 13 vorteilhaft zu einem Gesamtsystem aufgebaut werden können.
Zu sehen ist in Teilfigur 6A das Bauteil 11 mit Antenne und Kontakten, Teilfiguren 6B und 6C zeigen die Bauelemente 12 und 13 jeweils von oben. Teilfigur 6E zeigt das zusammengebaute Elektronikbauteil und 6D die darüberliegende Verkapselungsfolie. Schließlich ist in Figur 6F noch ein Querschnitt durch ein Elektronikbauteil gezeigt.
A) auf die Substratfolie (14) wird mit entsprechenden Verfahren eine Antenne (1) sowie elektrische Kontakte (15) aufgebracht (z.B. durch Verfahren wie Sputtern, Aufdampfen, galvanische oder stromlose Abscheidung, Drucken, Mik- rostanzen, Photolithographie, Ätzverfahren oder Kombinationen) , dies ist Bauteil 11.
B) Das Bauteil 12, das beispielsweise die Dioden und Kondensatoren wie in Figur 5 beschrieben, enthält wird mit einem entsprechenden Verfahren hergestellt und es werden elektrische Kontakte 15 angebracht. Eine Möglichkeit zum Aufbau von Kondensatoren ist beispielsweise, dass für den Kondensator auf der Substratseite eine Metallisierungs- oder leitfähige Polymerfläche erzeugt wird, die so angeordnet ist, dass nach dem Zusammenfügen beider Folien eine Kapazität durch diese Fläche und leitfähige Flächen der Transponderantenne entsteht . C) Das Bauteil 13, das beispielsweise die organischen Transistoren 4 und integrierten Schaltungen 5 enthält (die z.B. durch Verfahren wie Drucken, Photolithographie, Spin- coaten und ähnliches hergestellt werden) , wird mit einem entsprechenden Verfahren hergestellt und es werden elektrische Kontakte 15 angebracht.
D) Zeigt die Verkapselungsfolie 16, die wie das Substrat 14 Barriereeigenschaften für äußere Einflüsse wie Sauerstoff und/oder Wasserdampf haben soll und durch entsprechende Verfahren wie Kleben oder Laminieren auf die anderen Bauteile 11, 12, und 13 aufgebracht werden kann.
E) Zeigt den Aufbau der Bauteile 11,12 und 13 im aufgebauten Zustand von oben. Die Bauteile 12 und 13 sind dabei so aufgebaut, dass die jeweils passenden elektrischen Kontakte 15 miteinander verbunden sind.
F) Zeigt den Aufbau von E) von der Seite, hier ist zusätzlich die Verkapselungsfolie mit eingezeichnet
Die einzelnen Bauelemente oder Bauteile 11, 12 und/oder 13 werden also auf das Substrat oder auf die Verkapselungsfolie aufgebracht und zur elektrischen Isolation mit einer Isolationsschicht überzogen. Die so vorbereiteten Folien werden nun justiert und zu dem Gesamtsystem z.B. dem Transponder zusammengefügt .
Dies geschieht beispielsweise durch Kleben oder Verschweißen. Der Kleber könnte auch gleichzeitig der oben genannten Isolationsschicht entsprechen, oder aber in einem weiteren Prozessschritt beispielsweise durch Drucken, Sprühen, Vorhanggießen aufgebracht werden. Die beiden Folien werden justiert gefügt und verpresst (Autoklav, Vakuumpresse o.a.). Hierbei wird durch den Kleberauftrag und/oder den Verpressvorgang sichergestellt, dass im Randbereich der beiden Folien die Kle- berdicke minimiert wird, sodass auch eine laterale Barriere gegen Gase und Feuchtigkeit gegeben ist. Gleichzeitig muss auch ein elektrischer Kontakt bei den Vias ermöglicht werden. Der Kleber wird thermisch und/oder durch UV-Licht ausgehär- tet.
Dieses Aufbauprinzip ist auch für viele weitere Produkte mit Polymerelektronikbauteilen vorteilhaft, beispielsweise ein Photovoltaik - Sensoraufbau mit integrierter Auswerteschal- tung oder OLEDs mit integrierter Ansteuerschaltung. In diesem Fall kann man beispielsweise die Photovoltaik- oder OLED- Zellen auf die eine Folie und die Polymerschaltungen auf die andere Folie aufbringen. Auch ist es natürlich möglich auf diese Weise organische Bauteile mit konventionellen, anorga- nischen Bauteilen zu verbinden.
In Figur 7 wird nun beschrieben, wie diese Bauteile in anderer Weise vorteilhaft zu einem Gesamtsystem aufgebaut werden können. Die Figur ist wieder in Teilfiguren 7A bis 7E unterteilt, die folgendes zeigen:
A) auf die Substratfolie 14 wird mit entsprechenden Verfahren eine Antenne 1 sowie elektrische Kontakte 15 aufgebracht (z.B. durch Verfahren wie Sputtern, Aufdampfen, galvanische oder stromlose Abscheidung, Drucken, Mikro- stanzen, Photolithographie, Ätzverfahren oder Kombinationen) , dies ist Bauteil 11.
B) Das Bauteil 12, das beispielsweise die Dioden und Kondensatoren wie in Figur 5 beschrieben, enthält wird mit einem entsprechenden Verfahren hergestellt und es werden elektrische Kontakte 15 angebracht. Hier ist das Bauteil 12 direkt auf der Verkapselungsfolie 14 aufgebracht, dadurch reduziert sich die Gesamtzahl der Bauteile und es entfällt ein Arbeitsschritt. C) Das Bauteil 13, das beispielsweise die organischen Transistoren und integrierten Schaltungen enthält (die z.B. durch Verfahren wie Drucken, Photolithographie, Spin- coaten und ähnliches hergestellt werden) , wird mit einem entsprechenden Verfahren hergestellt und es werden elektrische Kontakte 15 angebracht.
D) Zeigt den Aufbau der Bauteile 11,12 und 13 im aufgebau- ten Zustand von oben. Die Bauteile 12 und 13 sind dabei so aufgebaut, dass die jeweils passenden elektrischen Kontakte 15 miteinander verbunden sind
E) Zeigt den Aufbau aus Figur 7D von der Seite.
Das Verfahren zur Herstellung der Elektronikbauteile, wie in den Figuren gezeigt, kann nicht nur für die Herstellung von RFID-Tags verwendet werden, vielmehr gibt es viele weitere Anwendungsbeispiele die mindestens ein organisches Elektronikbauteil enthalten und auf einem flexiblen Sub- strat aufgebaut werden, wie zum Beispiel:
• (organische) Photovoltaikzelle oder entsprechende Senso- rarrays mit integrierter Elektronik
• aktive organische Displays (OLED oder andere Displays)
• Taschenrechner, der aus mehreren Einzelkomponenten besteht • "wearable electronics" . In Kleidung eingefügte Elektronikbauteile
• Intelligentes Papier: Elektronik, die in Papier oder papierähnliches Material eingefügt ist
• Werbelabel, beispielsweise mit blinkenden und/oder leuch- tenden und/oder akustischen Anzeigen.

Claims

Patentansprüche
1. Organisches Elektronikbauteil, zumindest drei Gruppierungen von Bauelementen umfassend: eine Gruppierung von im wesentlichen anorganischen Bauelementen (z.B. Antenne), eine Gruppierung von passiven, vorzugsweise organischen Bauelementen eine Gruppierung von aktiven, vorzugsweise organischen Bauelementen, wobei die Gruppierung der passiven Bauelemente keine aktiven Bauelemente oder Komponenten enthält und die Gruppierung der aktiven Bauelemente im wesentlichen organische Feld-Effekt- Transistoren, die drei Gruppierungen getrennt voneinander herstellbar sind, über elektrische Kontakte auf einem Substrat und/oder über eine Verkapselung miteinander verbunden sind und eine Schaltung realisieren, durch die elektrische Kontakte zwischen passiven und aktiven Bauelementen von einer Gruppierung zur anderen verlaufen.
2. Organisches Elektronikbauteil nach Anspruch 1, bei dem das Substrat und/oder die Verkapselung eine flexible Folie ist.
3. Organisches Elektronikbauteil nach einem der Ansprüche 1 oder 2, bei dem zumindest ein elektrischer Kontakt durch Verkleben und/oder mittels einer elektrisch leitfähigen Verbundmasse hergestellt wird.
4. Verwendung des organischen Bauteils nach einem der Ansprüche 1 bis 3 in einem RFID-Tag, einem Sensorarray, einer Pho- tovoltaikzelle, als "wearable electronic", als aktives Display, als elektronischer Strichkode für Konsumgüter, als elektronisches Wasserzeichen, als elektronische Briefmarke, als Kofferanhänger und/oder als elektronisches Ticket.
5. Organisches Elektronikbauteil nach einem der Ansprüche 1 bis 4 bei dem eine Schaltung folgende Komponenten umfassend: - eine Antenne (1), einen Kondensator (2), eine Diode (3) und einen Modulationstransistor (4) vor einem integrierten Schaltkreis (5), wobei zwei Kondensatoren (7,8) und eine weitere Diode (6) so geschaltet sind, dass die integrierte Schaltung (5) über einen Kondensator (7) versorgt wird und gleichzeitig über eine Diode (6) verhindert wird, dass der Modulationstransistor (4) diesem Kondensator (7) Energie entziehen kann, realisiert ist.
6. Verfahren zur Herstellung eines organischen Elektronikbauteils zumindest eine Gruppierung mit Antenne, eine passive Gruppierung und eine aktive Gruppierung umfassend, wobei Antenne, passive und aktive Gruppierung gesondert vorgefertigt werden und dann über einfache elektrische Kontaktierungen der einzelnen Gruppierungen die Schaltung realisiert wird.
7. Verfahren zur Herstellung eines organischen Elektronikbauteils nach Anspruch 6, wobei für den Kondensator auf der Substratfolie eine Metallisierungs- und/oder leitfähige Polymerfläche so erzeugt wird, dass nach dem Zusammenfügen der Substratfolie und der aktiven oder passiven Gruppierung oder der Verkapselungsfolie eine Kapazität durch diese Fläche und die leitfähige Fläche der Antenne entsteht.
PCT/DE2002/003296 2001-10-18 2002-09-06 Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren WO2003038897A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003541053A JP4360910B2 (ja) 2001-10-18 2002-09-06 電子構成部材、該電子構成部材の回路コンセプト及び製造方法
US10/492,923 US7483275B2 (en) 2001-10-18 2002-09-06 Electronic unit, circuit design for the same, and production method
EP02769914A EP1436839A2 (de) 2001-10-18 2002-09-06 Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10151440A DE10151440C1 (de) 2001-10-18 2001-10-18 Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung
DE10151440.9 2001-10-18

Publications (2)

Publication Number Publication Date
WO2003038897A2 true WO2003038897A2 (de) 2003-05-08
WO2003038897A3 WO2003038897A3 (de) 2003-08-28

Family

ID=7702918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/003296 WO2003038897A2 (de) 2001-10-18 2002-09-06 Elektronikbauteil, schaltungskonzept dafür und herstellungsverfahren

Country Status (5)

Country Link
US (1) US7483275B2 (de)
EP (1) EP1436839A2 (de)
JP (1) JP4360910B2 (de)
DE (1) DE10151440C1 (de)
WO (1) WO2003038897A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006061001A1 (de) * 2004-12-10 2006-06-15 Polyic Gmbh & Co. Kg Elektronikbauteil mit modulator
JP2007522712A (ja) * 2004-01-15 2007-08-09 オーガニシッド・インコーポレイテッド 非準静的位相ロックループ分周回路
JP2008523479A (ja) * 2004-12-10 2008-07-03 ポリアイシー ゲーエムベーハー ウント コー カーゲー 識別システム
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924781B1 (en) * 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE112004000012B4 (de) * 2003-01-21 2012-06-14 Polyic Gmbh & Co. Kg Kunststoffprodukt mit integriertem organischen elektronischen Bauteil, Verfahren zur Herstellung dazu
US10499465B2 (en) 2004-02-25 2019-12-03 Lynk Labs, Inc. High frequency multi-voltage and multi-brightness LED lighting devices and systems and methods of using same
US10575376B2 (en) 2004-02-25 2020-02-25 Lynk Labs, Inc. AC light emitting diode and AC LED drive methods and apparatus
DE102004040831A1 (de) 2004-08-23 2006-03-09 Polyic Gmbh & Co. Kg Funketikettfähige Umverpackung
DE102004063435A1 (de) 2004-12-23 2006-07-27 Polyic Gmbh & Co. Kg Organischer Gleichrichter
DE102005009819A1 (de) * 2005-03-01 2006-09-07 Polyic Gmbh & Co. Kg Elektronikbaugruppe
DE102005017655B4 (de) * 2005-04-15 2008-12-11 Polyic Gmbh & Co. Kg Mehrschichtiger Verbundkörper mit elektronischer Funktion
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
DE102005035589A1 (de) 2005-07-29 2007-02-01 Polyic Gmbh & Co. Kg Verfahren zur Herstellung eines elektronischen Bauelements
DE102005044306A1 (de) 2005-09-16 2007-03-22 Polyic Gmbh & Co. Kg Elektronische Schaltung und Verfahren zur Herstellung einer solchen
WO2007038450A2 (en) * 2005-09-23 2007-04-05 Futurelogic, Inc. Method and apparatus for the randomized storage of printouts
US7642918B2 (en) * 2005-10-21 2010-01-05 Georgia Tech Research Corporation Thin flexible radio frequency identification tags and subsystems thereof
DE102006012708A1 (de) * 2006-03-17 2007-09-20 Polyic Gmbh & Co. Kg Verfahren zur Herstellung eines aktiven oder passiven elektrischen Bauteils sowie elektrisches Bauteil
FR2900752B1 (fr) * 2006-05-05 2008-10-10 Inside Contactless Sa Procede et dispositif de transmission de donnees par modulation de charge
DE102006039929A1 (de) * 2006-08-25 2008-03-06 Printed Systems Gmbh Verfahren und System zur elektrischen Kopplung eines Informationsträgers mit einem Kontaktelement
DE102007000885A1 (de) * 2007-11-12 2009-05-14 Bundesdruckerei Gmbh Dokument mit einer integrierten Anzeigevorrichtung
DE102007000875A1 (de) 2007-11-12 2009-05-14 Bundesdruckerei Gmbh Dokument mit einer integrierten Anzeigevorrichtung
DE102008026216B4 (de) 2008-05-30 2010-07-29 Polyic Gmbh & Co. Kg Elektronische Schaltung
US8292178B2 (en) * 2009-09-17 2012-10-23 Sap Ag Integrated smart label
CN103699928B (zh) * 2014-01-08 2017-01-04 卓捷创芯科技(深圳)有限公司 一种可连续调整整流信号幅度的限幅电路与无源射频标签
DE102015204360A1 (de) * 2015-03-11 2016-09-15 Osram Oled Gmbh Optoelektronisches Bauteil und Verfahren zum Austausch eines optoelektronischen Bauteils
CN105303229B (zh) * 2015-11-13 2020-05-22 捷德(中国)科技有限公司 一种可穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321240A (en) * 1992-01-30 1994-06-14 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card
WO1998040930A1 (en) * 1997-03-10 1998-09-17 Precision Dynamics Corporation Reactively coupled elements in circuits on flexible substrates
WO1999030432A1 (en) * 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
US5973598A (en) * 1997-09-11 1999-10-26 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
EP0981165A1 (de) * 1998-08-20 2000-02-23 Lucent Technologies Inc. Dünnschichttransistoren
FR2793089A1 (fr) * 1999-04-28 2000-11-03 Rene Liger Transpondeur a antenne integree
DE19933757A1 (de) * 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1052869A (en) * 1912-05-20 1913-02-11 Edwin M Wheelock Automatic steering device for traction-engines.
US3512052A (en) 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) 1973-10-12 1979-02-24
JPS54101176A (en) 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4340657A (en) 1980-02-19 1982-07-20 Polychrome Corporation Novel radiation-sensitive articles
DE3338597A1 (de) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
JPS60117769A (ja) 1983-11-30 1985-06-25 Fujitsu Ltd 半導体メモリ装置
EP0239808B1 (de) 1986-03-03 1991-02-27 Kabushiki Kaisha Toshiba Strahlungsdetektor
JP2728412B2 (ja) 1987-12-25 1998-03-18 株式会社日立製作所 半導体装置
GB2215307B (en) 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5364735A (en) 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5206525A (en) 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FR2664430B1 (fr) 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5159296A (en) 1991-03-28 1992-10-27 Texas Instruments Incorporated Four port monolithic gaas pin diode switch
US5170139A (en) 1991-03-28 1992-12-08 Texas Instruments Incorporated PIN diode switch
JPH0580530A (ja) 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
DE59105477D1 (de) 1991-10-30 1995-06-14 Fraunhofer Ges Forschung Belichtungsvorrichtung.
DE4243832A1 (de) 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
JP3457348B2 (ja) 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5567550A (en) 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
WO1995006240A1 (en) * 1993-08-24 1995-03-02 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (ja) 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
JP3246189B2 (ja) 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5792428A (en) * 1994-07-18 1998-08-11 Chemical Research & Licensing Company Apparatus for conducting exothermic reactions
JP3141692B2 (ja) * 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
US5574291A (en) 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
US5691069A (en) * 1995-02-14 1997-11-25 Avery Dennison Corporation Acrylic emulsion coatings for rubber articles
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
GB2310493B (en) 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US6466131B1 (en) * 1996-07-30 2002-10-15 Micron Technology, Inc. Radio frequency data communications device with adjustable receiver sensitivity and method
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR100248392B1 (ko) 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
EP0968537B1 (de) 1997-08-22 2012-05-02 Creator Technology B.V. Feld-effekt-transistor, der im wesentlichen aus organischen materialien besteht
US6251513B1 (en) 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (ja) 1997-11-12 1999-05-28 Nintendo Co Ltd 携帯型情報処理装置
US5997817A (en) 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
AU739848B2 (en) 1998-01-28 2001-10-18 Thin Film Electronics Asa A method for generation of electrical conducting or semiconducting structures in three dimensions and methods for erasure of the same structures
US6087196A (en) 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (de) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chipkarte, insbesondere Guthabenkarte
US6033202A (en) 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
GB9808061D0 (en) 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
PT1108207E (pt) 1998-08-26 2008-08-06 Sensors For Med & Science Inc Dispositivos de sensores ópticos
EP0996176B8 (de) 1998-10-13 2005-10-19 Sony Deutschland GmbH Herstellungsverfahren einer Licht emittierenden Anzeigevorrichtung mit aktiver Matrix
US6384804B1 (en) 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
WO2000052457A1 (en) 1999-03-02 2000-09-08 Helix Biopharma Corporation Card-based biosensor device
US6207472B1 (en) 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
US6383664B2 (en) 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
US6593690B1 (en) 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
US6517995B1 (en) 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
JP2001147659A (ja) 1999-11-18 2001-05-29 Sony Corp 表示装置
EP1103916A1 (de) * 1999-11-24 2001-05-30 Infineon Technologies AG Chipkarte
US6621098B1 (en) 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6197663B1 (en) 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
BR0016670A (pt) 1999-12-21 2003-06-24 Plastic Logic Ltd Métodos para formar um circuito integrado e para definir um circuito eletrônico, e, dispositivo eletrônico
US6706159B2 (en) 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
DE10012204A1 (de) * 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
EP1134694A1 (de) * 2000-03-16 2001-09-19 Infineon Technologies AG Dokument mit integrierter elektronischer Schaltung
JP2001267578A (ja) 2000-03-17 2001-09-28 Sony Corp 薄膜半導体装置及びその製造方法
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
JP2004506985A (ja) 2000-08-18 2004-03-04 シーメンス アクチエンゲゼルシヤフト 封入された有機電子構成素子、その製造方法および使用
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
KR20020036916A (ko) 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR100390522B1 (ko) 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
US20020170897A1 (en) 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP2003089259A (ja) 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6946332B2 (en) 2002-03-15 2005-09-20 Lucent Technologies Inc. Forming nanoscale patterned thin film metal layers
US7204425B2 (en) * 2002-03-18 2007-04-17 Precision Dynamics Corporation Enhanced identification appliance
US6812509B2 (en) 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5321240A (en) * 1992-01-30 1994-06-14 Mitsubishi Denki Kabushiki Kaisha Non-contact IC card
WO1998040930A1 (en) * 1997-03-10 1998-09-17 Precision Dynamics Corporation Reactively coupled elements in circuits on flexible substrates
US5973598A (en) * 1997-09-11 1999-10-26 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
WO1999030432A1 (en) * 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
EP0981165A1 (de) * 1998-08-20 2000-02-23 Lucent Technologies Inc. Dünnschichttransistoren
FR2793089A1 (fr) * 1999-04-28 2000-11-03 Rene Liger Transpondeur a antenne integree
DE19933757A1 (de) * 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1436839A2 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007522712A (ja) * 2004-01-15 2007-08-09 オーガニシッド・インコーポレイテッド 非準静的位相ロックループ分周回路
WO2006061001A1 (de) * 2004-12-10 2006-06-15 Polyic Gmbh & Co. Kg Elektronikbauteil mit modulator
JP2008523478A (ja) * 2004-12-10 2008-07-03 ポリアイシー ゲーエムベーハー ウント コー カーゲー 変調器を有する電子コンポーネント
JP2008523479A (ja) * 2004-12-10 2008-07-03 ポリアイシー ゲーエムベーハー ウント コー カーゲー 識別システム
KR101114714B1 (ko) * 2004-12-10 2012-02-29 폴리아이씨 게엠베하 운트 코. 카게 변조기를 구비하는 전자식 컴포넌트
US8463116B2 (en) 2008-07-01 2013-06-11 Tap Development Limited Liability Company Systems for curing deposited material using feedback control

Also Published As

Publication number Publication date
US20040256467A1 (en) 2004-12-23
JP4360910B2 (ja) 2009-11-11
EP1436839A2 (de) 2004-07-14
JP2005508572A (ja) 2005-03-31
DE10151440C1 (de) 2003-02-06
WO2003038897A3 (de) 2003-08-28
US7483275B2 (en) 2009-01-27

Similar Documents

Publication Publication Date Title
DE10151440C1 (de) Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung
DE102007046679B4 (de) RFID-Transponder
DE102010028444B4 (de) Dokument mit einem Chip und Verfahren zur Herstellung eines Dokuments
EP1309994A2 (de) Verkapseltes organisch-elektronisches bauteil, verfahren zu seiner herstellung und seine verwendung
DE10045192A1 (de) Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
EP1836655A1 (de) Organischer gleichrichter
EP1825516A2 (de) Gatter aus organischen feldeffekttransistoren
EP1375131A1 (de) Laminat mit einer als Antennenstruktur ausgebildeten elektrisch leitfähigen Schicht
DE19805282A1 (de) Flächiger Träger mit einer Anzeigeeinrichtung
EP2820768A1 (de) Kontaktlose datenübertragungseinrichtung, diese enthaltendes sicherheits- und/oder wertdokument und verfahren zur herstellung der kontaktlosen datenübertragungseinrichtung
WO2002021612A1 (de) Organischer gleichrichter, schaltung, rfid-tag und verwendung eines organischen gleichrichters
EP1825423B1 (de) Elektronikbauteil mit modulator
DE602004003498T2 (de) Flexibles halbleiter-bauelement und identifikationsetikett
JP4977126B2 (ja) 電子機能を備える多層複合体
EP1586004B1 (de) Platine oder substrat für ein organisches elektronikgerät, sowie verwendung dazu
DE102010028868B4 (de) Halbleitersubstratbasierte Anordnung für eine RFID-Einrichtung, RFID-Einrichtung und Verfahren zur Herstellung einer solchen halbleitersubstratbasierten Anordnung
DE102007028357A1 (de) Transponderkarte
DE102008039473A1 (de) Mehrschichtiges Folienelement
DE10229972B4 (de) Tragbarer Datenträger mit einer polymerbasierten integrierten Schaltung
WO2007082798A1 (de) Display mit energiespeicher, sowie herstellungsverfahren dazu
WO2015135829A1 (de) Verfahren zum austauschen von daten zwischen einem wert- oder sicherheitsdokument und einer datenaustausch-vorrichtung und wert- oder sicherheitsdokument
US20200372317A1 (en) Wireless communication semiconductor device and manufacturing method therefor
DE102012203265B4 (de) Kontaktlose Datenübertragungseinrichtung und diese enthaltendes Wert- und/oder Sicherheitsdokument

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002769914

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003541053

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10492923

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002769914

Country of ref document: EP