WO2003052640A1 - Method for comparing and selecting process control apparatus - Google Patents

Method for comparing and selecting process control apparatus Download PDF

Info

Publication number
WO2003052640A1
WO2003052640A1 PCT/US2002/036862 US0236862W WO03052640A1 WO 2003052640 A1 WO2003052640 A1 WO 2003052640A1 US 0236862 W US0236862 W US 0236862W WO 03052640 A1 WO03052640 A1 WO 03052640A1
Authority
WO
WIPO (PCT)
Prior art keywords
process control
calculating
control instruments
flow
flow meters
Prior art date
Application number
PCT/US2002/036862
Other languages
French (fr)
Inventor
Steven B. Rogers
William F. Graber
John O. Landsom
Nicole Coolidge
Thomas A. O'banion
James E. Pomroy
Joel R. Lemke
Tonya L. Wyatt
Original Assignee
Rosemount, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount, Inc. filed Critical Rosemount, Inc.
Priority to EP02782309A priority Critical patent/EP1456781A1/en
Priority to JP2003553458A priority patent/JP2005513625A/en
Priority to AU2002348285A priority patent/AU2002348285A1/en
Publication of WO2003052640A1 publication Critical patent/WO2003052640A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/0272Presentation of monitored results, e.g. selection of status reports to be displayed; Filtering information to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • G06Q30/0601Electronic shopping [e-shopping]
    • G06Q30/0641Shopping interfaces

Definitions

  • the invention generally relates to process control instrumentation and, more particularly, relates to methods for comparing and selecting process control instrumentation for use in a process control environment.
  • Valves and regulators control flow to and from areas of the process control environment. Such valves and regulators may receive control signals from sensors within the system monitoring flow rate, temperatures, pressures, levels, etc., or may receive control signals from a central processing unit coordinating operation of the entire system.
  • the selection of the various process control instruments used in such systems is a time consuming, repetitive, and subjective process.
  • flow rate for example, in the selection of flow meters, the user is often only provided with tabulated numerical data for a particular flow meter under one set of operating conditions.
  • the selection process typically requires intensive interaction between a representative of a flow meter manufacturer and one or more engineers from the process control facility. Such a process is typically performed in person or over the telephone and involves numerous background questions, a series of calculations, a review of the types of flow meters" available, and a cost benefit analysis of each.
  • the questions may be directed to the type of fluid being metered, the size and length of the piping to and from the flow meter, the desired accuracy, the cost range, the pressure, temperature, and density under which the fluid flows, as well as other considerations. Based on such information, calculations are then performed, often manually, to determine the size and responsiveness of the flow meter required. Once that information is obtained, the types and manufacturers of the flow meters which are capable of handling the situation are reviewed, and finally a review of the cost of each available apparatus is undertaken.
  • a method of analyzing a plurality of potential process control instruments adapted for use in a specific process control application or environment includes receiving data pertaining to the process control environment, and displaying calculated performance characteristics. The received data is related to the specific process control environment and may be received via a computer device. Still further, a method of doing business includes providing a computer accessible website, receiving data related to a specific process control application or environment, calculating performance characteristics, displaying the calculated performance characteristics, and enabling each of the plurality of process control instruments, capable of meeting requirements of the specific process control application to be purchased.
  • a method of analyzing a flow meter from a group of potential flow meter types includes the steps of entering, through a computer device, data parameters under which the flow meter will operate, and receiving a graphical representation of performance characteristics generated according to the entered data parameters.
  • FIG. 1 is a flow chart depicting a sample sequence of operations which may be taken to compare and select process control devices;
  • FIG. 2 is a continuation of the flow chart of FIG. 1;
  • FIG. 3 is a schematic representation of a process control device selection and comparison system;
  • FIG. 4 is a sample graph " which may be generated by the system of FIG. 3;
  • FIG. 5 is another sample graph which may be generated by the system of FIG. 3; and
  • FIG. 6 is another sample graph which may be generated by the system of FIG. 3.
  • process control instrumentation refers to the group of equipment employed in controlling the flow and operation of a fluid processing line or any other type of process. Examples of such equipment include, but are not -limited to, flow meters, pressure sensors, control valves, regulators, temperature sensors, fluid level sensors, and the like.
  • process control instrumentation refers to the group of equipment employed in controlling the flow and operation of a fluid processing line or any other type of process. Examples of such equipment include, but are not -limited to, flow meters, pressure sensors, control valves, regulators, temperature sensors, fluid level sensors, and the like.
  • the system 20 is described in conjunction with the comparing and selecting of flow meters, but it is to be understood that the system and method for selecting process control instrumentation can be employed just as well with any other type of process control instruments.
  • the system 20 includes a computer device 22 which may be a personal computer of the desktop or laptop variety, or may be any other type of computer device with sufficient processing capability to execute software as herein described.
  • the computer device 22 may be a personal digital assistant, a networked computer terminal, or the like.
  • the computer device 22 may include a central processing unit 24 having a processor 26, a permanent memory 28 such as a hard drive, and a portable memory unit, such as a disk drive 30.
  • the computer 22 may further include a user interface device such as a monitor 32, an input device 34 such as a keyboard, and an output device 36 such as a printer as well as any other desired peripheral devices.
  • the computer device 22 is also preferably web- enabled so as to allow communication to multiple external websites 38 using conventional communication hardware and software, such as cable, telephone, LAN, WAN, etc. technology.
  • software can be operated on the computer device 22 as a stand-alone unit, or may be operated on a server of the website 38 to which the computer device 22 gains access over the internet. As illustrated in FIG.
  • the memory 28 may store a number of software routines including a comparison and selection routine 28a (which may make comparisons of process instrumentation), feature calculations or process or device modeling software routines 28b and a graphics or display routine 28c.
  • routine 28a uses the routines 28b to calculate performance measures or statistics, to model the operation of or otherwise analyze process control instrumentation within a given process environment and displays the results of these analyses to a user of the graphics display routine 28c.
  • the graphics display routine 28c may be any desired user interface type of routine, such as a windowing display or interface, etc.
  • routines 28b may be any known or desired modeling routines, such as device or process modeling routines, or other known process instrumentation analysis routines which compute, calculate or determine performance measures or characteristics of a process control device. Different such routines or models for different process instrumentation devices are known to those of ordinary skill in the art and thus will not be described in detail herein.
  • a first step 40 (which may be implemented in software running on a processor or manually) accesses the software routine 28a. As indicated above, this step 40 may be accomplished by executing the software on the computer device 22, or via the website 38 or any other computer device.
  • the system 20 inquires, in a step 42, whether a saved file regarding a desired or known process control instrument or process control environment should be accessed.
  • the user may enter the file name, tag number or other recall mechanism, as indicated in a step 44, to retrieve the data from the memory 28, disk drive 30, website 38 or other storage location.
  • the data may be also be imported from a file saved by another, or from a database of information useable by multiple programs.
  • the storage device used to store process control instrument data or process control environment data such as for example, a standalone database or a database associated with a web site, may be updated, as necessary, with the most current specifications available for each of the available process control instruments or most current parameters associated with stored process control environments, thereby providing a user with access to the most current data available for performing the comparison and selection process.
  • the storage device may be provided with the capability to sort, organize, prioritize, share, rep ⁇ rt, ⁇ listV and categorize different types of process control instruments based on user supplied requirements and/or parameters. If process control environment data or process control instrument data has not been saved, the system 20 proceeds, as indicated by a step 45, to enable the user to specify an environment or instrument by, for example, selecting the type of process control instrument of interest. As indicated above, the software 40 and system 20 can be employed with any type of process control instrument. For the example of FIG. 1, the system 20 may inquire whether the process control instrument of interest is a flow meter, as indicated by a step 46.
  • the system 20 executes subroutines for other types of process control instruments, as indicated in a step 48, until the appropriate instrument is found.
  • a series of queries are posed to obtain information necessary to calculate the performance characteristics of each possible flow meter capable of meeting the demands of the given process control environment (which may also be input by the user or read in from a stored data file). As illustrated in FIG.
  • these queries may include the type of fluid being processed (step 50), the sizes and types of pipings and flow disturbances employed in the line (step 52), the flow rates at which the fluid is expected to travel (step 54), the pressures under which the fluid is transmitted (step 56), the temperatures under which the fluid is transmitted (step 58), the ambient temperature of the line (step 60), and the fluid densities involved (step 62). Any and all of these parameters as well as other parameters may be used to define a process control environment.
  • the information also need not be entered as set values, but can be entered as a range including maximum, minimum and normal values, if appropriate.
  • the user may be presented with a series of information gathering screen ' s having the parameter title proximate an active window or windows into which the information can be typed. Alternatively, the user may be selectively prompted with individual screens, each asking for one parameter to be entered.
  • One of ordinary skill in the art will readily appreciate that a variety of software tools can be employed to effectively gather the necessary information.
  • the data can be saved in a step 63. The data may be saved as an unspecified or non-meter specific data type to enable subsequent recalls of the data for sizing and.
  • step 64 (FIG. 2), wherein the user is prompted to select from a list of possible flow meters including, but not limited to Coriolis, vortex, magnetic, thermal mass, ultrasonic and differential pressure flow meters types.
  • the various types of flow meters offered by the multiple divisions of a company or even by different companies can be selected and compared simultaneously.
  • multiple versions of the same type of flow meter may be compared. For example, the vortex type of flow meter of company A can be compared to the vortex type of flow meter of company B.
  • a step 66 (which may call the graphical display routine 28c) enables screens detailing the advantages and disadvantages of each type of flow meter to be accessible. If this is not desired, the system 20 prompts the user to enter information specific to each type of flow meter as indicated in a step 68. For example, if the desired flow meter is a differential pressure (dp) type of meter, the user may be prompted to enter whether the primary element type included is an orifice plate, venturi, nozzle, or annubar. Once such information is entered, it may be desirable to save the data as a tagged file as indicated in a step 70. This enables multiple analyses to be performed while only entering the information a single time. This also enables other users to perform analyses using data entered by another party or to use the same instrument in other process control environments.
  • dp differential pressure
  • FIGS. 4-6 illustrate three of the possible graphs which can be generated by the system 20 using, for example, the graphical display routine 28c. More specifically, FIG. 4 plots the accuracy of four different types of flow meters against the flow rate traveling through the flow meter from a minimum level to a maximum level. FIG. 5 plots the total length of piping that is required with each different type of flow meter.
  • Such a graph can be further broken down, as by color coding, to indicate the lengths of piping upstream and downstream from the flow meter, the lengths of reducers and expanders needed, and the length of actual meter pipe required.
  • FIG. 6 graphs the total pressure loss which can be expected for each type of flow meter at both the maximum entered flow rate, and for the normal entered flow rate. Such information can also be provided in tabular form if desired. It is appreciated that these three charts are specific examples of the types of graphical or tabular analysis that can be displayed to the user in various formats.
  • the system calculates the performance characteristics of each flow meter as indicated in a step 74 using one or more routines 28b, and displays the calculated performance characteristics in a step 76 using the aforementioned selected types of charts and the display routine 28c.
  • the usef ' Is then able to easily compare and contrast the various types of flow meters as they can be expected to perform once installed. The time savings and convenience of such a system greatly improves upon known device or instrumentation selection processes.
  • the models or routines 28b may calculate performance characteristics of each of a plurality of potential process control instruments over an entire range of operation of each process control instrument, may provide a comparison between installed performance and reference performance for each instrument, may calculate and display performance data as a function of flow rate from a maximum level to a minimum level, may calculate the size of the process control instrument needed to satisfy the process control application, may calculate flow meter accuracy as a continuous function of flow rate, may calculate fluid pressure losses for each of the flow meters, may determine and display straight pipe requirements for use with each type of flow meter which may include straight pipe requirements separated into reducer pipe requirements, expander pipe requirements, pipe fittings, pipe couplings, inches upstream of the flow meter, and inches downstream from the flow meter and may calculate and display (graphically, pictorially, tabularly) permanent pressure loss for each type of flow meter at a maximum flow rate, a normal flow rate and a minimum flow rate to name but a few.
  • the system 20 is able to calculate and display any additional pressure losses caused by the 3" to 2" reducer and/or 2" to 3" expander.
  • the user can be provided with a cost analysis for each flow meter as installed in the user-defined process control environment.
  • the system 20 may query the user as to, for example, typical costs associated with straight line pipe, pipe fittings, labor, etc. Such information can then be factored into the cost analysis as installed. If the user is so inclined, an order or orders for equipment can also then be made, as indicated by a step 78. For example, a series of prompts or screens can be generated to enable account information and authorization to be entered, as indicated in a step 80.
  • the system 20 prompts the user as to whether he or she wishes to continue, as indicated in a step 82. If the user does wish to continue, the system 20 returns to the step 42 to determine if saved data should be accessed in order for the system 20 to continue. If not, the system 20 exits, as indicated by a step 84.

Abstract

A method for comparing and selecting process control equipment is disclosed. The method employs software, executed on a stand-alone computer device, or accessible through the web to retrieve data specific to a given process environment, and calculate the performance characteristics of multiple types of process control equipment capable of meeting the demands of the application. The performance characteristics of each type can be provided in graphical form, at the same time, to enable a potential user to readily discern the advantages and disadvantages of each type of process control equipment. In one embodiment, a purchase of the apparatus may then be made.

Description

METHOD FOR COMPARING AND SELECTING PROCESS CONTROL APPARATUS
TECHNICAL FIELD The invention generally relates to process control instrumentation and, more particularly, relates to methods for comparing and selecting process control instrumentation for use in a process control environment.
BACKGROUND In a typical process control environment, fluid lines, tanks, reservoirs, etc. need to be continually monitored and controlled in terms of pressure, flow rate, temperature, fluid level, pressure drop, etc. Such process control environments include myriad examples such as, but not limited to, petroleum refineries, pulp and paper factories, dairies, food and chemical processing plants, and the like. To properly maintain such facilities, various tools are often employed in an automated fashion. Valves and regulators control flow to and from areas of the process control environment. Such valves and regulators may receive control signals from sensors within the system monitoring flow rate, temperatures, pressures, levels, etc., or may receive control signals from a central processing unit coordinating operation of the entire system.
Under current technologies, the selection of the various process control instruments used in such systems is a time consuming, repetitive, and subjective process. Using flow rate, for example, in the selection of flow meters, the user is often only provided with tabulated numerical data for a particular flow meter under one set of operating conditions. If the customer has a specific process control application to address, the selection process typically requires intensive interaction between a representative of a flow meter manufacturer and one or more engineers from the process control facility. Such a process is typically performed in person or over the telephone and involves numerous background questions, a series of calculations, a review of the types of flow meters" available, and a cost benefit analysis of each. The questions may be directed to the type of fluid being metered, the size and length of the piping to and from the flow meter, the desired accuracy, the cost range, the pressure, temperature, and density under which the fluid flows, as well as other considerations. Based on such information, calculations are then performed, often manually, to determine the size and responsiveness of the flow meter required. Once that information is obtained, the types and manufacturers of the flow meters which are capable of handling the situation are reviewed, and finally a review of the cost of each available apparatus is undertaken.
Recently, elementary software programs have become available which allow for preliminary levels of review. However, such systems typically only serve as an information gathering tool for a particular manufacturer, and result in a particular model or model number being recommended. Little or no justification is provided as to why the particular model has been recommended, nor is sufficient quantitative or comparative analysis provided to enable the user to make an informed decision. Moreover, such programs only address one type of process control apparatus at a time. If the user wishes to compare various types of flow meters, e.g., Coriolis, vortex, magnetic, thermal mass, ultrasonic, and differential pressure meters, separate entries of information and separate sets of calculations must be made for each. Even after such separate calculations are made, the burden remains with the customer to actually compare the garnered information.
Further detracting from current systems is their inability to allow purchases to made based on such software generated information. Instead, purchases of such process control apparatus can only be made through conventional channels.
SUMMARY A method of analyzing a plurality of potential process control instruments adapted for use in a specific process control application or environment includes receiving data pertaining to the process control environment, and displaying calculated performance characteristics. The received data is related to the specific process control environment and may be received via a computer device. Still further, a method of doing business includes providing a computer accessible website, receiving data related to a specific process control application or environment, calculating performance characteristics, displaying the calculated performance characteristics, and enabling each of the plurality of process control instruments, capable of meeting requirements of the specific process control application to be purchased.
Still further, a method of analyzing a flow meter from a group of potential flow meter types includes the steps of entering, through a computer device, data parameters under which the flow meter will operate, and receiving a graphical representation of performance characteristics generated according to the entered data parameters.
These and other aspects and features will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart depicting a sample sequence of operations which may be taken to compare and select process control devices; FIG. 2 is a continuation of the flow chart of FIG. 1; FIG. 3 is a schematic representation of a process control device selection and comparison system;
FIG. 4 is a sample graph "which may be generated by the system of FIG. 3; FIG. 5 is another sample graph which may be generated by the system of FIG. 3; and
FIG. 6 is another sample graph which may be generated by the system of FIG. 3.
While the method and device described herein are susceptible to various modifications and alternative constructions, certain illustrative embodiments thereof have been shown in the drawings and will be described below in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION Referring now to the drawings, and with specific reference to FIG. 3, a system for comparing and selecting process control instrumentation is generally referred to by reference numeral 20. As used herein, process control instrumentation refers to the group of equipment employed in controlling the flow and operation of a fluid processing line or any other type of process. Examples of such equipment include, but are not -limited to, flow meters, pressure sensors, control valves, regulators, temperature sensors, fluid level sensors, and the like. For ease of reference in the following description, the system 20 is described in conjunction with the comparing and selecting of flow meters, but it is to be understood that the system and method for selecting process control instrumentation can be employed just as well with any other type of process control instruments.
Referring again to FIG. 3, "the system 20 includes a computer device 22 which may be a personal computer of the desktop or laptop variety, or may be any other type of computer device with sufficient processing capability to execute software as herein described. For example, the computer device 22 may be a personal digital assistant, a networked computer terminal, or the like.
The computer device 22 may include a central processing unit 24 having a processor 26, a permanent memory 28 such as a hard drive, and a portable memory unit, such as a disk drive 30. The computer 22 may further include a user interface device such as a monitor 32, an input device 34 such as a keyboard, and an output device 36 such as a printer as well as any other desired peripheral devices. The computer device 22 is also preferably web- enabled so as to allow communication to multiple external websites 38 using conventional communication hardware and software, such as cable, telephone, LAN, WAN, etc. technology. As will be described in further detail herein, software can be operated on the computer device 22 as a stand-alone unit, or may be operated on a server of the website 38 to which the computer device 22 gains access over the internet. As illustrated in FIG. 3, the memory 28 may store a number of software routines including a comparison and selection routine 28a (which may make comparisons of process instrumentation), feature calculations or process or device modeling software routines 28b and a graphics or display routine 28c. Generally speaking, the routine 28a (an example of which is illustrated and described with respect to FIGS. 1 and 2) uses the routines 28b to calculate performance measures or statistics, to model the operation of or otherwise analyze process control instrumentation within a given process environment and displays the results of these analyses to a user of the graphics display routine 28c. The graphics display routine 28c may be any desired user interface type of routine, such as a windowing display or interface, etc. Likewise the routines 28b may be any known or desired modeling routines, such as device or process modeling routines, or other known process instrumentation analysis routines which compute, calculate or determine performance measures or characteristics of a process control device. Different such routines or models for different process instrumentation devices are known to those of ordinary skill in the art and thus will not be described in detail herein.
Referring now to FIGS. 1 and 2, a flow chart depicting a sample sequence of steps (or a sample software routine 28a) which may be used to select and compare process control instrumentation is depicted. A first step 40 (which may be implemented in software running on a processor or manually) accesses the software routine 28a. As indicated above, this step 40 may be accomplished by executing the software on the computer device 22, or via the website 38 or any other computer device. Upon accessing the software for comparing and selecting process control instrumentation, the system 20 inquires, in a step 42, whether a saved file regarding a desired or known process control instrument or process control environment should be accessed. If data related to the process control instrument or environment has already been saved, the user may enter the file name, tag number or other recall mechanism, as indicated in a step 44, to retrieve the data from the memory 28, disk drive 30, website 38 or other storage location. The data may be also be imported from a file saved by another, or from a database of information useable by multiple programs. The storage device used to store process control instrument data or process control environment data, such as for example, a standalone database or a database associated with a web site, may be updated, as necessary, with the most current specifications available for each of the available process control instruments or most current parameters associated with stored process control environments, thereby providing a user with access to the most current data available for performing the comparison and selection process. In addition, the storage device may be provided with the capability to sort, organize, prioritize, share, repόrt,^listV and categorize different types of process control instruments based on user supplied requirements and/or parameters. If process control environment data or process control instrument data has not been saved, the system 20 proceeds, as indicated by a step 45, to enable the user to specify an environment or instrument by, for example, selecting the type of process control instrument of interest. As indicated above, the software 40 and system 20 can be employed with any type of process control instrument. For the example of FIG. 1, the system 20 may inquire whether the process control instrument of interest is a flow meter, as indicated by a step 46. If this is answered negatively, the system 20 executes subroutines for other types of process control instruments, as indicated in a step 48, until the appropriate instrument is found. When, for example, the system 20 has decided that a flow meter is desired, a series of queries are posed to obtain information necessary to calculate the performance characteristics of each possible flow meter capable of meeting the demands of the given process control environment (which may also be input by the user or read in from a stored data file). As illustrated in FIG. 1 , these queries may include the type of fluid being processed (step 50), the sizes and types of pipings and flow disturbances employed in the line (step 52), the flow rates at which the fluid is expected to travel (step 54), the pressures under which the fluid is transmitted (step 56), the temperatures under which the fluid is transmitted (step 58), the ambient temperature of the line (step 60), and the fluid densities involved (step 62). Any and all of these parameters as well as other parameters may be used to define a process control environment.
It is to be understood that the foregoing operating parameters do not represent an exhaustive list of possibilities. The information also need not be entered as set values, but can be entered as a range including maximum, minimum and normal values, if appropriate. The user may be presented with a series of information gathering screen's having the parameter title proximate an active window or windows into which the information can be typed. Alternatively, the user may be selectively prompted with individual screens, each asking for one parameter to be entered. One of ordinary skill in the art will readily appreciate that a variety of software tools can be employed to effectively gather the necessary information. Once all such information is entered, the data can be saved in a step 63. The data may be saved as an unspecified or non-meter specific data type to enable subsequent recalls of the data for sizing and. selecting of multiple types of process control apparatus. An additional question asked by the system 20 concerns the types of flow meters of interest. This step is indicated by a step 64 (FIG. 2), wherein the user is prompted to select from a list of possible flow meters including, but not limited to Coriolis, vortex, magnetic, thermal mass, ultrasonic and differential pressure flow meters types. In so doing, the various types of flow meters offered by the multiple divisions of a company or even by different companies can be selected and compared simultaneously. Moreover, multiple versions of the same type of flow meter may be compared. For example, the vortex type of flow meter of company A can be compared to the vortex type of flow meter of company B. If the user desires further information regarding the features of each type of flow meter, as determined by a step 65, a step 66 (which may call the graphical display routine 28c) enables screens detailing the advantages and disadvantages of each type of flow meter to be accessible. If this is not desired, the system 20 prompts the user to enter information specific to each type of flow meter as indicated in a step 68. For example, if the desired flow meter is a differential pressure (dp) type of meter, the user may be prompted to enter whether the primary element type included is an orifice plate, venturi, nozzle, or annubar. Once such information is entered, it may be desirable to save the data as a tagged file as indicated in a step 70. This enables multiple analyses to be performed while only entering the information a single time. This also enables other users to perform analyses using data entered by another party or to use the same instrument in other process control environments.
After the entered data is saved, the user is prompted to select the desired types of performance reports to be generated, as indicated in a step 72. As opposed to current technology, which simply provides numerical data in a tabular format for a single set of operating conditions, the system 20 enables detailed, graphical information to be generated over the range of operating conditions to which the flow meter can be expected to be exposed. For example, FIGS. 4-6 illustrate three of the possible graphs which can be generated by the system 20 using, for example, the graphical display routine 28c. More specifically, FIG. 4 plots the accuracy of four different types of flow meters against the flow rate traveling through the flow meter from a minimum level to a maximum level. FIG. 5 plots the total length of piping that is required with each different type of flow meter. Such a graph can be further broken down, as by color coding, to indicate the lengths of piping upstream and downstream from the flow meter, the lengths of reducers and expanders needed, and the length of actual meter pipe required. FIG. 6 graphs the total pressure loss which can be expected for each type of flow meter at both the maximum entered flow rate, and for the normal entered flow rate. Such information can also be provided in tabular form if desired. It is appreciated that these three charts are specific examples of the types of graphical or tabular analysis that can be displayed to the user in various formats.
After the user has entered all required data, selected the types of flow meters of interest, and selected the desired reports, the system calculates the performance characteristics of each flow meter as indicated in a step 74 using one or more routines 28b, and displays the calculated performance characteristics in a step 76 using the aforementioned selected types of charts and the display routine 28c. The usef'Is then able to easily compare and contrast the various types of flow meters as they can be expected to perform once installed. The time savings and convenience of such a system greatly improves upon known device or instrumentation selection processes.
While there are many different types of models or other analyses which can be implemented to model different devices or instruments to enable a user to compare and contrast these instruments within a process control environment, all of these analyses create performance characteristics which may be used to compare and contrast devices to thereby select the best or most desirable device for a particular use or process control environment. In these analyses, the models or routines 28b may calculate performance characteristics of each of a plurality of potential process control instruments over an entire range of operation of each process control instrument, may provide a comparison between installed performance and reference performance for each instrument, may calculate and display performance data as a function of flow rate from a maximum level to a minimum level, may calculate the size of the process control instrument needed to satisfy the process control application, may calculate flow meter accuracy as a continuous function of flow rate, may calculate fluid pressure losses for each of the flow meters, may determine and display straight pipe requirements for use with each type of flow meter which may include straight pipe requirements separated into reducer pipe requirements, expander pipe requirements, pipe fittings, pipe couplings, inches upstream of the flow meter, and inches downstream from the flow meter and may calculate and display (graphically, pictorially, tabularly) permanent pressure loss for each type of flow meter at a maximum flow rate, a normal flow rate and a minimum flow rate to name but a few. Moreover, if a user selects, for example, a two inch flow meter to be used with a three inch pipe, the system 20 is able to calculate and display any additional pressure losses caused by the 3" to 2" reducer and/or 2" to 3" expander.
In addition, the user can be provided with a cost analysis for each flow meter as installed in the user-defined process control environment. To facilitate such cost calculation and display (which may be any suitable form display, including but not limited to, graphical and tabular display), the system 20 may query the user as to, for example, typical costs associated with straight line pipe, pipe fittings, labor, etc. Such information can then be factored into the cost analysis as installed. If the user is so inclined, an order or orders for equipment can also then be made, as indicated by a step 78. For example, a series of prompts or screens can be generated to enable account information and authorization to be entered, as indicated in a step 80. If the user does not wish to order, the system 20 prompts the user as to whether he or she wishes to continue, as indicated in a step 82. If the user does wish to continue, the system 20 returns to the step 42 to determine if saved data should be accessed in order for the system 20 to continue. If not, the system 20 exits, as indicated by a step 84.
From the foregoing, one of ordinary skill in the art will appreciate that the teachings of the invention can be employed to create a system enabling multiple types of process control apparatus to be simultaneously analyzed in graphical and/or tabular form.

Claims

WHAT IS CLAIMED IS:
1. A method of analyzing'a plurality of process control instruments adapted for use in a specific process control environment, comprising the steps of: receiving data related to the specific process control environment, in which the plurality of process control instruments are to be used, via a computer device; and displaying performance characteristics for each of the plurality of the process control instruments simultaneously via the computer device.
2. The method of claim 1, further including the step of calculating the performance characteristics for each of the plurality of process control instruments using the received data.
3. The method of claim 1, further including the step of retrieving, from a memory of the computer device, the performance characteristics for each of the plurality of process control instruments based on the received data.
4. The method of claim 1, wherein the computer device is a personal computer.
5. The method of claim 1, where the computer device is a web-enabled device.
6. The method of claim 1, wherein the plurality of process control instruments are each flow meters.
7. The method of claim 1, wherein at least one of the plurality of process control instruments is a Coriolis type of flow meter.
8. The method of claim 1, wherein at least one of the plurality of process control instruments is a vortex type of flow meter.
9. The method of claim 1, wherein at least one of the plurality of process control instruments is a magnetic type of flow meter.
10. The method of claim 1, wherein at least one of the plurality of process control instruments is a differential pressure type of flow meter.
11. The method of claim 1, wherein at least one of the plurality of process control instruments is a thermal mass type of flow meter.
12. The method of claim 1, wherein at least one of the plurality of process control instruments is an ultrasonic type of flow meter.
13. The method of claim 1, wherein the receiving step is performed by entering the data through a keyboard of the computer device.
14. The method of claim 1, wherein the receiving step is performed by downloading the data from a memory.
15. The method of claim 1, wherein the receiving step is performed by importing the data from a database.
16. The method of claim 2, wherein the calculating step involves the step of calculating performance characteristics of each of the plurality of process control instrument's over an entire range of operation of each process control instrument.
17. The method of claim 16, wherein the displaying step involves the step of displaying performance characteristics of each of the plurality of process control instruments in a graphical manner.
18. The method of claim 17, wherein the displaying step provides a comparison between installed performance and performance at reference conditions.
19. The method of claim 1, wherein the process control instruments are flow meters and wherein the step of displaying provides performance data as a function of flow rate from a maximum level to a minimum level.
20. The method of claim 2, wherein the calculating step further includes the step of calculating the size of the process control instrument needed to satisfy the process control application.
21. The method of claim 1 , further including the step of saving the received data in a memory of the computer device.
22. The method of claim 21, further including the step of assigning an electronic tag to the saved data to facilitate later retrieval.
23. The method of claim 1, wherein the receiving data step includes receiving a selection of the plurality of process control instruments to be used in the analysis.
24. The method of claim 2, wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating flow meter accuracy as a continuous function of flow rate.
25. The method of claim 2, wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating straight pipe requirements for each of the flow meters.
26. The method of claim 2, wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating fluid pressure losses for each of the flow meters.
27. The method of claim 26, wherein the calculating step includes the calculation of pressure loss due to pipe fittings.
28. The method of claim 27, wherein the calculated performance characteristics are displayed graphically.
29. The method of claim 28, wherein the graphical display includes pictorial representations of pipe, pipe fittings, and flow meters.
30. The method of claim 2, wherein the calculating step involves calculating installed costs associated with the plurality of process control instruments.
31. A method of doing business, comprising the steps of: providing a computer accessible website; receiving data related to a specific process control application; calculating performance characteristics for a plurality of process control instruments capable of meeting requirements of the specific process control application; displaying the calculated performance characteristic for each of the plurality of process control instruments; and enabling one or more of the plurality of process control instruments to be purchased.
32. The method of claim 31 , wherein the receiving step involves the step of prompting a user to enter specific information through the computer device.
33. The method of claim 31 , wherein the receiving step includes the step of downloading stored data from a memory.
34. The method of claim 31 , wherein the receiving step includes the step of accessing data from a database.
35. The method of claim 31, wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating flow meter accuracy as a continuous function of flow rate.
36. The method of claim 31 , wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating fluid pressure losses for each of the flow meters.
37. The method of claim 31, wherein the process control instruments are each flow meters, and wherein the calculating step includes the step of calculating straight pipe requirements for each of the flow meters.
38. The method of claim 35, wherein the displaying step includes the step of graphically displaying the calculated performance characteristics for each of the flow meters.
39. The method of claim 31 , wherein the enabling step includes the steps of receiving account information and authorization from a user and charging the account.
40. A method of analyzing flow meters from a group of potential flow meter types, comprising the steps of: entering through a "computer device, data parameters under which the potential flow meters will operate; and receiving a graphical representation, through the computer device, of performance characteristics of each of the potential flow meters when operated according to the data parameters.
41. The method of claim 40 further including the step of ordering a selected flow meter through the computer device based on the performance characteristics displayed for each of the potential flow meters.
42. The method of claim 40, wherein at least one of the data parameters is selected from the group of data parameters including fluid type, pipe size, flow disturbances in fluid line, maximum flow rate, minimum flow rate, minimum process pressure, maximum process pressure, minimum fluid temperature, maximum fluid temperature, maximum ambient temperature, minimum ambient temperature and fluid density.
43. The method of claim 40, further including the step of selecting the types of the potential flow meters.
44. The method of claim 43, wherein the types of the potential flow meters are chosen from the group of flow meters including vortex, magnetic, differential pressure, thermal mass, ultrasonic, and Coriolis type flow meters.
45. The method of claim 40, wherein the graphical representation plots accuracy of each type of flow meter as a function of flow rate.
46. The method of claim 40, wherein the graphical representation plots straight pipe requirements for use with each type of flow meter.
47. The method of claim 46, wherein the straight pipe requirements are separated into reducer pipe requirements, expander pipe requirements, distance upstream of the flow meter, distance downstream from the flow meter, and pipe fitting requirements, thereby illustrating total pipe space requirements.
48. The method of claim 40, wherein the graphical representation plots permanent pressure loss for each type of flow meter at both a maximum flow rate and a normal flow rate.
49. The method of claim 40, wherein the entering step is performed by downloading information from a memory device.
50. The method of claim 40, further including the step of storing the entered data in a memory of the computer device.
PCT/US2002/036862 2001-12-18 2002-11-15 Method for comparing and selecting process control apparatus WO2003052640A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02782309A EP1456781A1 (en) 2001-12-18 2002-11-15 Method for comparing and selecting process control apparatus
JP2003553458A JP2005513625A (en) 2001-12-18 2002-11-15 Method for comparison and selection of process control devices
AU2002348285A AU2002348285A1 (en) 2001-12-18 2002-11-15 Method for comparing and selecting process control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/024,891 2001-12-18
US10/024,891 US7349872B2 (en) 2001-12-18 2001-12-18 Method for comparing and selecting process control apparatus

Publications (1)

Publication Number Publication Date
WO2003052640A1 true WO2003052640A1 (en) 2003-06-26

Family

ID=21822896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/036862 WO2003052640A1 (en) 2001-12-18 2002-11-15 Method for comparing and selecting process control apparatus

Country Status (7)

Country Link
US (1) US7349872B2 (en)
EP (1) EP1456781A1 (en)
JP (2) JP2005513625A (en)
CN (1) CN100538708C (en)
AU (1) AU2002348285A1 (en)
RU (1) RU2325692C2 (en)
WO (1) WO2003052640A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131978A1 (en) * 2003-12-10 2005-06-16 Microsoft Corporation Systems and methods that employ process algebra to specify contracts and utilize performance prediction implementations thereof to measure the specifications
MX2007007858A (en) * 2004-12-30 2007-08-17 Micro Motion Inc A method and apparatus for directing the use of a coriolis flow meter.
US7315765B1 (en) * 2005-07-29 2008-01-01 Advanced Micro Devices, Inc. Automated control thread determination based upon post-process consideration
DE102006060441A1 (en) * 2006-12-19 2008-06-26 Endress + Hauser Gmbh + Co. Kg Method for selecting, determining and / or designing at least one measuring device or measuring system
DE102008022370A1 (en) * 2008-05-06 2009-11-12 Endress + Hauser Gmbh + Co. Kg Method for determining reference values for measured values of a capacitance to be measured with a capacitive measuring device
JP5368628B2 (en) * 2009-03-31 2013-12-18 ローズマウント インコーポレイテッド System comprising field device
US10753830B2 (en) * 2013-03-18 2020-08-25 Dean Carroll Method and apparatus for controlling sampling of events involving a fluid control
AU2014201257A1 (en) * 2013-12-23 2015-07-09 Liquip International Pty Limited Liquid management system
RU2602393C2 (en) * 2014-03-26 2016-11-20 Общество с ограниченной ответственностью "ТатАСУ" System for technological processes execution monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803964A2 (en) * 1996-04-19 1997-10-29 Vlt Corporation Method of configuring power converters
WO2000019347A1 (en) * 1998-09-30 2000-04-06 Trilogy Development Group, Inc. Method and apparatus for determining an arrangement of components
WO2001020428A2 (en) * 1999-09-17 2001-03-22 Figure9, Llc Consumer electronics system configuration
JP2001355577A (en) * 2000-06-13 2001-12-26 Ebara Corp Energy saving promoting method, diagnosing method and transaction method for fluid machinery

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU596950A1 (en) 1973-05-18 1978-03-05 Предприятие П/Я В-8117 Arrangement for selecting ship loading version
US4972318A (en) * 1988-09-09 1990-11-20 Iron City Sash & Door Company Order entry and inventory control method
US4992940A (en) * 1989-03-13 1991-02-12 H-Renee, Incorporated System and method for automated selection of equipment for purchase through input of user desired specifications
JP3125791B2 (en) * 1990-03-09 2001-01-22 株式会社日立製作所 Make-to-order system
US5319542A (en) * 1990-09-27 1994-06-07 International Business Machines Corporation System for ordering items using an electronic catalogue
US5808894A (en) * 1994-10-26 1998-09-15 Optipat, Inc. Automated ordering method
US5729698A (en) * 1995-05-16 1998-03-17 Master Control Systems, Inc. Fire pump data system for producing submittals
US5710887A (en) * 1995-08-29 1998-01-20 Broadvision Computer system and method for electronic commerce
US5963915A (en) * 1996-02-21 1999-10-05 Infoseek Corporation Secure, convenient and efficient system and method of performing trans-internet purchase transactions
US6012051A (en) * 1997-02-06 2000-01-04 America Online, Inc. Consumer profiling system with analytic decision processor
WO1999022311A1 (en) 1997-10-27 1999-05-06 Kla-Tencor Corporation Software system and method for graphically building customized recipe flowcharts
JP3125097B2 (en) * 1997-12-26 2001-01-15 株式会社山武 Flow meter throttle ratio selection method
US6260004B1 (en) * 1997-12-31 2001-07-10 Innovation Management Group, Inc. Method and apparatus for diagnosing a pump system
US6173210B1 (en) * 1998-03-02 2001-01-09 Northeast Equipment, Inc. Apparatus and method for selecting a mechanical seal
US6070149A (en) * 1998-07-02 2000-05-30 Activepoint Ltd. Virtual sales personnel
US6282518B1 (en) * 1999-02-02 2001-08-28 Abb Automation Group Ltd. Process for internet ordering of industrial products
JP2000292584A (en) * 1999-04-08 2000-10-20 Toshiba Corp Nuclear instrumentation design aiding system
JP2001337824A (en) * 2000-05-24 2001-12-07 Toshiba Corp Nuclear instrumentation design supporting system
US6606570B2 (en) * 2000-11-29 2003-08-12 Micro Motion, Inc. Remote coriolis flowmeter sizing and ordering system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803964A2 (en) * 1996-04-19 1997-10-29 Vlt Corporation Method of configuring power converters
WO2000019347A1 (en) * 1998-09-30 2000-04-06 Trilogy Development Group, Inc. Method and apparatus for determining an arrangement of components
WO2001020428A2 (en) * 1999-09-17 2001-03-22 Figure9, Llc Consumer electronics system configuration
JP2001355577A (en) * 2000-06-13 2001-12-26 Ebara Corp Energy saving promoting method, diagnosing method and transaction method for fluid machinery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FAUX I ET AL: "Intelligent access, publishing and collaboration in global engineering networking", COMPUTER NETWORKS AND ISDN SYSTEMS, NORTH HOLLAND PUBLISHING. AMSTERDAM, NL, vol. 30, no. 13, 3 August 1998 (1998-08-03), pages 1249 - 1262, XP004147410, ISSN: 0169-7552 *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 04 4 August 2002 (2002-08-04) *

Also Published As

Publication number Publication date
CN1606744A (en) 2005-04-13
JP2005513625A (en) 2005-05-12
RU2004121984A (en) 2006-01-20
JP2009104641A (en) 2009-05-14
CN100538708C (en) 2009-09-09
RU2325692C2 (en) 2008-05-27
EP1456781A1 (en) 2004-09-15
AU2002348285A1 (en) 2003-06-30
US20030115109A1 (en) 2003-06-19
US7349872B2 (en) 2008-03-25

Similar Documents

Publication Publication Date Title
JP2009104641A (en) Method for displaying performance characteristic of process control apparatus
JP2023113140A (en) System for measuring industrial process performance to industrial process facility
US9111212B2 (en) Dynamic outlier bias reduction system and method
US8005707B1 (en) Computer-implemented systems and methods for defining events
US8239757B2 (en) System and method for creating and modifying test data files
US20070022000A1 (en) Data analysis using graphical visualization
US20200182847A1 (en) System and method for performing industrial processes across facilities
US8781879B2 (en) System and method of facilitating petroleum engineering analysis
US20050080695A1 (en) System and method for facilitating the selection of security analyst research reports
US6895411B2 (en) Partial stepwise regression for data mining
US8224690B2 (en) Graphical risk-based performance measurement and benchmarking system and method
Shu et al. Design of multiple cause-selecting charts for multistage processes with model uncertainty
JP7246956B2 (en) Data analysis device and data analysis method
US20100070182A1 (en) Method in an oil and/or a gas production system
US8175754B2 (en) Configuration of a multivariable process fluid flow device
JP4777941B2 (en) Demand forecasting method and apparatus
US20220382729A1 (en) Top contributor recommendation for cloud analytics
US5778154A (en) Advisor system and method for determining reservoir properties
Lam* et al. Integrated control chart system—optimization of sample sizes, sampling intervals and control limits
JP7246957B2 (en) Data analysis device and data analysis method
Wu et al. Optimization design of control chart systems
Dysert Sharpen your capital-cost-estimation skills
JPH0696234A (en) Processing system for time sequential data
US20140019205A1 (en) Impact measurement based on data distributions
Anastasopoulou et al. Monitoring a BAR (1) Process with EWMA and DEWMA Control Charts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003553458

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20028255224

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002782309

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004121984

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2002782309

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002782309

Country of ref document: EP