WO2003063258A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2003063258A1
WO2003063258A1 PCT/JP2002/000510 JP0200510W WO03063258A1 WO 2003063258 A1 WO2003063258 A1 WO 2003063258A1 JP 0200510 W JP0200510 W JP 0200510W WO 03063258 A1 WO03063258 A1 WO 03063258A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
input
output
thermal sensor
film
Prior art date
Application number
PCT/JP2002/000510
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Yutani
Tsukasa Matsuura
Kazuhiko Tsutsumi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2002/000510 priority Critical patent/WO2003063258A1/en
Priority to JP2003536318A priority patent/JPWO2003063258A1/en
Publication of WO2003063258A1 publication Critical patent/WO2003063258A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a structure of a semiconductor device in which inputs and outputs of elements formed on a front surface of a substrate can be extracted from a back surface of the substrate.
  • FIG. 9 is an external view of an element schematically showing a part of a flow rate detecting element which is one of the thermal sensors disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 11-12845.
  • FIG. 1 is a cross-sectional view including the mounting form of the thermal sensor of FIG.
  • reference numeral 101 denotes a flat substrate constituting a thermal sensor element 100 cut out of, for example, a silicon wafer, and 107 and 108 are formed on one surface of the flat substrate 1.
  • An insulating support film for example, a silicon nitride film.
  • the silicon nitride film 108 also serves as a protective film.
  • a thermal resistor film 102 is formed between the silicon nitride films 107 and 108.
  • the heat-sensitive resistor film 102 corresponds to a heat-generating portion used for a heat-generating resistor and a temperature-measuring resistor, and is made of, for example, platinum.
  • Reference numeral 103 denotes a wiring connecting the thermal resistance film 102 and the input / output pad 150, and is formed of the same film as the thermal resistance film 102, for example.
  • Reference numeral 151 denotes a thermal sensor package, for example, epoxy resin.
  • the substrate 101 of the thermal sensor element 100 0 0 is fixed to the package 15 1 with an adhesive 15 5 c 15 3 is the external input / output lead, 15 4 is the input / output pad 15 0 External input / output
  • a wire-bonding material for electrically connecting the leads 153 is, for example, a gold (Au) wire having a diameter of 25 ⁇ m.
  • Reference numeral 152 denotes a cover of the package 151, which covers the wire bond 154.
  • a silicon nitride film 107 having a thickness of about 410 is formed on a plate-shaped base material silicon wafer having a thickness of about 400 / m by a method such as a sputter method, and further thereon.
  • a heat-sensitive resistor film 102 made of platinum or the like having a thickness of 0.2 m is formed by an evaporation method, a sputtering method, or the like. After that, anneal for several hours at about 600 ° C for stabilization.
  • the platinum film 102 is subjected to patterning using a photoengraving method, an etching method, a dry etching method, or the like, whereby the heat generating portion 102 of the pattern as shown in FIG. And the wiring 103 are formed.
  • a silicon nitride film 108 having a thickness of about 0.8 ⁇ m is formed as a protective film by a sputtering method or the like.
  • a part of the back surface protective film 108 on the wiring 103 is etched using a photolithography method or the like to form an input / output unit 150.
  • the diaphragm 105 composed of the silicon nitride films 107 and 108 is formed on the surface opposite to the surface on which the support films 107 and 108 are disposed by using a photolithography method or the like. It is formed by performing a desired patterning, for example, by applying an Al force retching.
  • the thermal sensor element created in this way is fixed to the package 15 1 with adhesive 15 5, and the thermal sensor element input / output pad 150 and external input / output lead 15 3 are connected with the wire bond 15 4 ⁇ Continue. Finally, the lid 15 2 of the package is bonded and fixed to protect the wire bond portion. In this way, a thermal sensor on which the elements are mounted is completed.
  • the package 151 is designed in a wing shape so that there is no turbulence in the air flow near the detector 102 of the thermal sensor, and is designed to have no irregularities around the detector. Therefore, the distance X (shown in Fig. 10) from the detector to the package lid 152 needs to be large enough not to disturb the air flow, and it is preferable that it is about 2mm or more.
  • the signal output unit 150 is formed on the same surface as the detection unit 102 of the substrate 101 constituting the sensor element, The output section had to be sufficiently separated from the detection section so as not to affect it, and it was necessary to make the wiring area from the detection section to the output section long.
  • the element size is increased, the manufacturing cost of the element is increased, and the packaging structure is complicated and large in mounting, which increases the number of assembly steps and component costs.
  • the present invention has been made to solve the above problems, and has as its object to obtain a semiconductor device having a small and simple mounting structure. That is, in a semiconductor device having a semiconductor element section (in the above example, a thermal sensor having a thermosensitive resistor film in the semiconductor element section), the mounting structure for input / output wiring to the semiconductor element section is simplified and reduced in size. is there. Disclosure of the invention
  • a semiconductor device includes a semiconductor element on a first surface of a semiconductor substrate, a first input / output wiring to the semiconductor element, and a portion including at least a partial region of the first input / output wiring.
  • the semiconductor substrate is removed to form a diaphragm structure, and the first input / output wiring and the input / output portion formed on the second surface of the semiconductor substrate are connected to the second input / output via the diaphragm structure.
  • the structure was such that an insulating resin was provided in a removed portion of the semiconductor substrate on which the diaphragm structure was formed, by connecting with wiring.
  • the input / output wiring of the element formed on the surface of the substrate is connected to the wiring on the back surface of the substrate at the contact portion of the diaphragm structure that can be easily created.
  • the input / output section, which had to be performed, can now be formed on the back surface of the substrate, and the size of the element can be reduced, and the manufacturing cost can be reduced.
  • the choice of mounting structure is expanded, and it is possible to select the optimal mounting form according to the usage condition of the element, simplifying the mounting structure and assembling This has the effect of reducing man-hours and the number of mounted components, thus reducing costs.
  • the diaphragm is filled with resin, the backside wiring is protected from the outside air, and the strength of the diaphragm and the connection is improved.
  • the filler can reduce the thermal resistance of the diaphragm, suppress the heat generation of the contact when current is applied, and improve the electrical reliability of the contact.
  • the second input / output wiring and the input / output portion are covered with an insulating resin, so that if an insulating material having a passivation effect is used, entry of moisture from the outside air can be prevented.
  • This has the effect of improving the reliability of the contact portion with the backside wiring and the topside wiring.
  • the insulating resin placed in the diaphragm and the second filler The insulating resin covering the output wiring and the input / output portion may be the same material.
  • a thermal sensor can be easily configured, and the conventional method for detecting the surface of a substrate
  • the input / output unit which had to be formed sufficiently separated from the unit, can be formed on the back surface of the substrate, so that the size of the element can be reduced and the manufacturing cost can be reduced.
  • FIG. 1 is a schematic diagram for explaining a thermal sensor as a semiconductor device according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a mounting form
  • FIG. 3 is a cross-sectional view for explaining a thermal sensor according to a second embodiment of the present invention.
  • FIG. 4 is a cross-sectional view for explaining a thermal sensor according to a third embodiment of the present invention.
  • FIG. 5 is a cross-sectional view for explaining a thermal sensor according to a fourth embodiment of the present invention.
  • FIG. 6 is a sectional view for explaining a thermal sensor according to a fifth embodiment of the present invention.
  • FIG. 7 is a sectional view for explaining a thermal sensor according to a sixth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view for explaining a semiconductor device according to another embodiment of the present invention.
  • FIG. 9 is an external view of a sensor element showing the appearance of a conventional thermal sensor
  • FIG. 10 is a schematic sectional view of the thermal sensor shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram for explaining an example in which a semiconductor device according to an embodiment of the present invention is applied to a thermal flow sensor, and is an external view of an element of the flow sensor.
  • FIG. 2 is a cross-sectional view showing a mounting form of the flow sensor shown in FIG.
  • 1 is a flat substrate of a thermal sensor element cut out of, for example, a silicon wafer
  • 7 and 8 are insulating support films formed on one surface of the flat substrate 1, for example, a silicon nitride film. Consists of The silicon nitride film 8 also serves as a protective film.
  • the thermal resistor film 2 is formed between the silicon nitride films 7 and 8.
  • the heat-sensitive resistor film 2 corresponds to a heat-generating portion used for a heat-generating resistor and a temperature-measuring resistor, and is made of, for example, platinum (Pt). Also, the silicon substrate 1 around the thermal resistor film 2 has been removed (1a) so that the heat generated in the thermal resistor film 2 does not escape to the silicon substrate 1 and the temperature of the heat generating portion rises. A diaphragm 5 composed of the dangling silicon films 7 and 8 is formed.
  • Reference numeral 3 denotes a wiring on the front side electrically connected to the thermal resistor film 2 and is formed of, for example, the same film as the thermal resistor film 2.
  • the silicon substrate 1 is removed in a part of the front side wiring 3 (lb), and a diaphragm 4 composed of silicon nitride films 7 and 8 is formed.
  • Reference numeral 6 denotes a backside wiring
  • 9 denotes an insulating layer for electrically insulating the backside wiring 6 from the substrate 1, for example, a silicon nitride film.
  • Reference numeral 10 denotes a contact hole formed in the insulating layers 7 and 9 for electrically connecting the rear wiring 6 and the front wiring 3.
  • Reference numeral 11 denotes a backside protective film, for example, a silicon nitride film.
  • Reference numeral 12 denotes an opening of the backside protective film 11, which is an input / output pad of a thermal sensor.
  • the thermal sensor element 1 is fixed to the package 21 with an adhesive 18.
  • Reference numeral 23 denotes an external input / output lead
  • reference numeral 24 denotes a wire bonding material for electrically connecting the input / output pad 12 and the external input / output lead 23, for example, a gold (Au) wire having a diameter of 25 mm.
  • 2 2 is a package covering wire bond 24 2 1 is the lid.
  • the thermal sensor element 1 is fixed to the package 21 with an adhesive 18.
  • Reference numeral 19 denotes an insulating resin filled in the opening of the diaphragm 4, for example, a silicon resin or a polyimide resin.
  • a method of manufacturing a main part of the thermal sensor element shown in FIGS. 1 and 2 will be described.
  • a silicon wafer 1 having a thickness of about 400 an which is a plate-like base material
  • a silicon nitride film 7 having a thickness of, for example, about 1 ⁇ m is formed by a method such as a sputter method, and further, a thickness of, for example, A thermal resistor film 2 made of platinum or the like is formed by an evaporation method, a sputtering method, or the like.
  • the platinum film 2 is patterned by photolithography, wet etching, dry etching, or the like, thereby forming a heating portion 2 and a surface wiring 3 having a pattern as shown in FIG. Is done.
  • a silicon nitride film 8 having a thickness of about 0.8 ⁇ m is formed as a protective film by a sputtering method or the like.
  • the diaphragm 5 composed of the silicon nitride films 7 and 8 performs a desired patterning by using a photoengraving method or the like on a surface opposite to the surface on which the support films 7 and 8 are disposed. It is formed by performing re-etching or the like.
  • the diaphragm 4 may be formed at the same time.
  • a silicon nitride film 9 having a thickness of about 0.5 / m is formed on the back surface by a sputtering method or the like.
  • a desired patterning is performed from the back side by using photolithography or the like, and the insulating films 9 and 10 are etched to form contact holes 10.
  • the surface wiring 3 is exposed.
  • an AlSi film is formed as a wiring film on the back surface by a sputtering method or the like.
  • the back wiring film is subjected to desired patterning using photolithography or the like and etched to form the back wiring 6.
  • the front surface wiring 3 and the rear surface wiring 6 are electrically connected by the contact hole 10.
  • a silicon nitride film having a thickness of about 0.8 / m is formed as a back surface protective film 11 by a sputtering method or the like.
  • a part of the backside protection crotch 11 on the backside wiring 6 is etched using photolithography and output.
  • Form part 12 Finally, the opening of the diaphragm 4 is filled with an insulating material 19 of silicone resin.
  • the thermal sensor element thus created is fixed to the package 21 with an adhesive 18, and the thermal sensor element input / output pad 12 and the external input / output lead 23 are connected with a wire-to-bond 24.
  • the adhesive 18 may be of the same type as the insulating material 19.
  • the package lid 22 is bonded and fixed to protect the wire bond.
  • FIG. 3 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention.
  • the same numbers as in FIGS. 1 and 2 indicate the same or corresponding parts.
  • the backside protective film 11 in FIG. 2 is omitted, and the backside wiring 6 is directly filled with an insulating resin 19.
  • the insulating resin 19 is, for example, a silicon resin or a polyimide resin.
  • Reference numeral 31 denotes an insulating material applied so as to cover an exposed portion of the back wiring 6, which is, for example, a silicon resin or polyimide resin.
  • These insulating materials 19 and 31 are made of a resin having a passivation effect for preventing intrusion of moisture or the like from the outside.
  • the back wiring 6 is completely covered with the insulating material 31 and the buried insulating material 19.
  • the insulating material 31 may be of the same type as the insulating material 19. Further, it may be the same type as the adhesive 18.
  • Example 3
  • FIG. 4 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention, and shows an example in which the insulating material 31 in FIG. 3 is the same material as the embedded insulating material 19 and is formed at the same time.
  • the thermal sensor element is fixed to the package 21 with an adhesive 18 and the thermal sensor element input / output pad 12 and the external input / output lead 23 are connected by a wire-to-bond 24. Fill the opening with silicone resin 19.
  • an insulating material 19 including a wire-to-bond portion is applied so that the back wiring 6 is completely covered.
  • the cover 22 is bonded and fixed to protect the wire-to-bond portion.
  • FIGS. 3 and 4 show the structure in which the back surface protective film 11 shown in FIG. 2 is omitted, these may have a structure in which the back surface protective film 11 is provided.
  • the insulating materials 19, 31 and the protective film 11 can prevent the intrusion of water or the like from the outside twice, and the reliability can be further improved.
  • Example 4
  • FIG. 5 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention.
  • the same numbers as in FIGS. 1 and 2 indicate the same or corresponding parts.
  • 15 is a bump made of gold or solder.
  • Reference numeral 32 denotes an insulating sealing material filled around the bump 15. This sealing material 32 may be of the same type as the adhesive material 18. Further, it may be the same type as the insulating material 19.
  • a gold bump having a height of, for example, 10 ⁇ m is formed on at least one of the input / output pad 12 and the output lead 23 of the thermal sensor element.
  • Gold bumps are formed by pressing and fixing gold on individual pads using a wire-bonder, or by plating. Align the pad 12 of the thermal sensor element so that it is directly above the pad of the output lead 23, and then pressurize to raise the temperature and electrically connect the pads with a gold bump. At this time, ultrasonic waves may be applied to make the joint stronger.
  • a molten metal such as solder is used as the bump 15, it is prepared as follows.
  • solder bumps of about several tens of m / m are formed on both or any of the input / output pads 12 and the output leads 23 of the thermal sensor element by plating.
  • the thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then heated to a temperature at which the solder melts, and the pads are electrically connected by solder bumps.
  • a sealing material 32 such as an epoxy resin and an adhesive 18 are put between the element and the package 21 and cured.
  • a sealing material 32 that has a passivation effect is used.
  • FIG. 6 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention.
  • reference numeral 13 denotes a wiring board for connecting the thermal sensor element and the signal processing circuit element 17 and is formed of, for example, glass epoxy resin.
  • Reference numeral 14 denotes a wiring layer of the wiring board 13 which is electrically connected to the input / output pads 12 of the thermal sensor via bumps 15 and also used as bumps 16 for input / output pads of the signal processing circuit element 17. It is connected.
  • the bumps 15 and 16 are formed of a molten metal such as gold or solder. The mounting method of this embodiment is described below.
  • a gold bump having a height of several tens / zm is formed on at least one of the input / output pad 12 of the thermal sensor element and the pad 14 of the wiring board 13.
  • Gold bumps are formed by pressing and fixing gold on individual pads using a wire bonder, or by plating.
  • the thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then pressurized to increase the temperature, and the pads are electrically connected with gold bumps. At this time, ultrasonic waves may be applied to make the bonding stronger.
  • a molten metal such as solder is used as the bump 15, it is prepared as follows.
  • a solder bump of about several tens of meters or slightly more is formed on both or one of the input / output pad 12 of the thermal sensor element and the pad 14 of the wiring board 13.
  • the thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then heated to a temperature at which the solder melts, and the pads are electrically connected by solder bumps.
  • Elements (not shown) such as elements 17 and resistors of the signal processing circuit are connected to the wiring board in the same manner.
  • sealing material 32 such as epoxy resin.
  • the adhesive 18 is put between the element and the circuit board and cured.
  • the sealing material 32 and the adhesive 18 may be the same material.
  • the insulating protection film 11 on the back surface can be omitted as in the embodiment of FIG. And the number of production steps can be reduced. Finally, the entire surface except the detection surface is sealed with mold resin 25. This structure enables downsizing including the signal processing circuit. Embodiment 6.
  • FIG. 7 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention.
  • 26 is a circuit portion of the signal processing circuit element 17, and 27 is a surface wiring.
  • Reference numeral 28 denotes a rear surface wiring of the signal processing circuit element 17, and reference numeral 29 denotes a diaphragm opening for connecting the front surface wiring 27 and the rear surface wiring 28, which is insulated in the same manner as the opening of the diaphragm 4 of the sensor element.
  • Resin 19 is filled. These are created in the same way as the sensor elements.
  • the back wiring 6 of the sensor element and the front wiring 27 of the signal processing circuit element 17 are electrically connected by the bump 15.
  • the input and output of the sensor element are connected to the circuit section 26 by the surface wiring 27 and driven and signal processed.
  • the surface wiring of the output of the circuit part 25 is connected to the back wiring 28 at the diaphragm opening 29, connected to the circuit board 13 by the bump 16, and connected to the outside by the lead 23.
  • the method of connecting the bumps is the same as that of the fifth embodiment.In this embodiment, the bumps 16 are used to connect the circuit board and the back wiring of the signal processing circuit 17, and then the back wiring of the sensor element and the front wiring of the signal processing circuit are connected.
  • the bumps 15 may be used for connection, or the front wiring of the signal processing circuit 17 and the back wiring of the sensor element 1 may be connected by the bump 15 and then the back wiring of the signal processing circuit 17 and the circuit board 13 may be bumped. You may connect with 16. Finally, the entire surface except for the detection surface is sealed with mold resin 25. This structure enables downsizing including the signal processing circuit. Although a thermal type flow sensor having a semiconductor element portion provided with a thermosensitive resistor film as a backside output semiconductor device has been described as an example, this may be another sensor. Further, a general semiconductor element such as a memory or a logic may be used. FIG.
  • FIG. 8 shows a partial cross-sectional view of a semiconductor device in the case where the memory element 50 and the logic element 60 are connected in the same structure as in FIG.
  • 51 is a circuit portion of the memory element 50
  • 52 is a surface wiring.
  • Reference numeral 53 denotes a rear surface wiring of the memory element 50
  • 54 denotes a diaphragm opening for connecting the front surface wiring 52 and the rear surface wiring 53, and the opening of the diaphragm 4 of the sensor element shown in the above embodiment.
  • the insulating resin 19 is filled.
  • Reference numeral 61 denotes a circuit portion of the mouth diode 60
  • 62 denotes a surface wiring.
  • Reference numeral 63 denotes a back surface wiring of the logic element 60
  • reference numeral 64 denotes a diaphragm opening for connecting the front surface wiring 62 and the back surface wiring 63, and the opening of the diaphragm 4 of the sensor element shown in the above embodiment.
  • insulating resin 19 is filled.
  • the bumps 65 connect the backside wiring 53 of the memory element 50 to the front side wiring 62 of the logic element 60
  • the bumps 66 connect the backside wiring 63 of the logic element 60 to the circuit board 13. ing.
  • the mounting and assembling method is the same as in the case of FIG.
  • the whole is sealed with a mold resin 25.
  • the semiconductor device according to the present invention relates to the structure of a semiconductor device in which the input and output of elements formed on the front surface of a substrate can be taken out from the back surface of the substrate.
  • a thermal sensor or the like can be considered.
  • it is used for a flow sensor or a pressure sensor for measuring an intake air amount of an internal combustion engine for a vehicle or the like.

Abstract

A semiconductor device keeps the base material of a semiconductor substrate (2) partially removed from the rear in a partial region of a wiring to a semiconductor element (2) arranged on the surface of a semiconductor substrate (1) to from a diaphragm section (4) comprising the upper and lower insulating films of a front wiring (3). A part of the insulating film on the rear of the diaphragm has a contact hole (10) to the front wiring, and a rear wiring (6) formed on the rear of the substrate via the insulating film is electrically connected to the front wiring through the contact hole. The rear wiring is electrically connected to a rear input/output pad (12), and an insulating resin (19) is embedded in the rear opening of the diaphragm section.

Description

技術分野 Technical field
この発明は、 基板表面に形成された素子の入出力を基板裏面から取り 出せるようにした半導体装置の構造に関するものである。  The present invention relates to a structure of a semiconductor device in which inputs and outputs of elements formed on a front surface of a substrate can be extracted from a back surface of the substrate.
 Light
 Fine
景技術  Landscape technology
第 9図は、 例えば特閧平 1 1一 2 8 1 4 4 5号公報に開示された熱式 センサの一つである流量検出素子の一部を模式的に示した素子外観図で ある。 また第 1◦図は第 9図の熱式センサの実装形態を含めた断面図で ある。  FIG. 9 is an external view of an element schematically showing a part of a flow rate detecting element which is one of the thermal sensors disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 11-12845. FIG. 1 is a cross-sectional view including the mounting form of the thermal sensor of FIG.
図において 1 0 1は例えばシリコンウェハから切り出された熱式セン サ素子 1 0 0 0を構成する平板状基板で、 1 0 7、 1 0 8は平板状基板 1の一方の面に形成された絶縁性の支持膜で、 例えば窒化シリコン膜か らなる。 窒化シリコン膜 1 0 8は保護膜も兼ねている。 窒化シリコン膜 1 0 7、 1 0 8の間に感熱抵抗体膜 1 0 2が形成される。 この感熱抵抗 体膜 1 0 2は、 発熱抵抗、 測温抵抗に利用される発熱部に相当するもの で、 例えば白金からなる。 また感熱抵抗体膜 1 0 2で発生した熱がシリ コン基板 1 0 1に逃げずに発熱部の温度が上昇するように感熱抵抗体膜 1 0 2の周囲のシリコン基板 1 0 1が除去されていて (1 0 1 a ) 窒ィ匕 シリコン膜 1 0 7 , 1 0 8からなるダイヤフラム 1 0 5が形成されてい る。 1 0 3は感熱抵抗膜 1 0 2と入出力パッド 1 5 0を接続する配線で 例えば感熱抵抗膜 1 0 2と同じ膜で形成されている。 1 5 1は熱式セン ザのパッケージで例えばエポキシ樹脂である。 熱式センサ素子 1 0 0 0 の基板 1 0 1は接着剤 1 5 5によりパッケージ 1 5 1に固定されている c 1 5 3は外部入出力リード、 1 5 4は入出力パヅド 1 5 0と外部入出力 リード 1 5 3を電気的に接続するためのワイヤ一ボンド材で例えば 2 5 〃m径の金 (Au) 線である。 また 1 5 2はワイヤ一ボンド 1 5 4を覆 ぅパヅケージ 1 5 1の蓋である。 In the figure, reference numeral 101 denotes a flat substrate constituting a thermal sensor element 100 cut out of, for example, a silicon wafer, and 107 and 108 are formed on one surface of the flat substrate 1. An insulating support film, for example, a silicon nitride film. The silicon nitride film 108 also serves as a protective film. A thermal resistor film 102 is formed between the silicon nitride films 107 and 108. The heat-sensitive resistor film 102 corresponds to a heat-generating portion used for a heat-generating resistor and a temperature-measuring resistor, and is made of, for example, platinum. Also, the silicon substrate 101 around the heat-sensitive resistor film 102 is removed so that the heat generated in the heat-sensitive resistor film 102 does not escape to the silicon substrate 101 and the temperature of the heat-generating portion rises. (101a) A diaphragm 105 composed of silicon nitride films 107 and 108 is formed. Reference numeral 103 denotes a wiring connecting the thermal resistance film 102 and the input / output pad 150, and is formed of the same film as the thermal resistance film 102, for example. Reference numeral 151 denotes a thermal sensor package, for example, epoxy resin. The substrate 101 of the thermal sensor element 100 0 0 is fixed to the package 15 1 with an adhesive 15 5 c 15 3 is the external input / output lead, 15 4 is the input / output pad 15 0 External input / output A wire-bonding material for electrically connecting the leads 153 is, for example, a gold (Au) wire having a diameter of 25 μm. Reference numeral 152 denotes a cover of the package 151, which covers the wire bond 154.
次に、 第 9図,第 1 0図に示される熱式センサ素子の主要部の製造方 法について説明する。 板状基材である厚さ約 4 0 0 /mのシリコンゥェ ノ、 1 0 1上に、 例えば厚さ約 の窒化シリコン膜 1 0 7をスパヅ夕 法等の方法により形成し、 さらにその上に例えば厚さ 0 . 2 mの白金 等よりなる感熱抵抗体膜 1 0 2を蒸着法やスパヅ夕法等により形成する。 その後、 安定化のために約 6 0 0 °Cで数時間ァニールする。 この白金膜 1 0 2は写真製版法、 ゥヱヅトェヅチング法あるいはドライエッチング 法等を用いてパ夕一ニングがおこなわれ、 これにより第 9図のようなパ ターンの発熱部 1 0 2と配線 1 0 3が形成される。パターニングされた、 白金膜 1 0 2、 1 0 3の上に、 保護膜として、 厚さ約 0 . 8〃mの窒化 シリコン膜 1 0 8をスパッ夕法等により形成する。 次に、 配線 1 0 3上 の裏面保護膜 1 0 8の一部を写真製版法等を用いてエッチングして入出 力部 1 5 0を形成する。 窒化シリコン膜 1 0 7、 1 0 8からなるダイヤ フラム 1 0 5は支持膜 1 0 7 , 1 0 8が配置されている方の表面とは反 対側の面に写真製版法等を用いて所望のパターニングをおこない、 例え ばアル力リエツチング等を施すことにより形成される。 このように作成 した熱式センサ素子をパッケージ 1 5 1に接着剤 1 5 5で固定し、 熱式 センサ素子入出力パッド 1 5 0と外部入出力リード 1 5 3をワイヤーボ ンド 1 5 4で^続する。 最後にパッケージの蓋 1 5 2を接着固定してヮ ィヤーボンド部を保護する。 こうして素子の搭載された熱式センサが完 成する。  Next, a method of manufacturing the main part of the thermal sensor element shown in FIGS. 9 and 10 will be described. For example, a silicon nitride film 107 having a thickness of about 410 is formed on a plate-shaped base material silicon wafer having a thickness of about 400 / m by a method such as a sputter method, and further thereon. For example, a heat-sensitive resistor film 102 made of platinum or the like having a thickness of 0.2 m is formed by an evaporation method, a sputtering method, or the like. After that, anneal for several hours at about 600 ° C for stabilization. The platinum film 102 is subjected to patterning using a photoengraving method, an etching method, a dry etching method, or the like, whereby the heat generating portion 102 of the pattern as shown in FIG. And the wiring 103 are formed. On the patterned platinum films 102 and 103, a silicon nitride film 108 having a thickness of about 0.8 μm is formed as a protective film by a sputtering method or the like. Next, a part of the back surface protective film 108 on the wiring 103 is etched using a photolithography method or the like to form an input / output unit 150. The diaphragm 105 composed of the silicon nitride films 107 and 108 is formed on the surface opposite to the surface on which the support films 107 and 108 are disposed by using a photolithography method or the like. It is formed by performing a desired patterning, for example, by applying an Al force retching. The thermal sensor element created in this way is fixed to the package 15 1 with adhesive 15 5, and the thermal sensor element input / output pad 150 and external input / output lead 15 3 are connected with the wire bond 15 4 ^ Continue. Finally, the lid 15 2 of the package is bonded and fixed to protect the wire bond portion. In this way, a thermal sensor on which the elements are mounted is completed.
次に熱式センサ素子を流量センサとして使用する場合の動作について 説明する。 感熱抵抗膜 1 0 2に電流を流し発熱させる。 第 9図中矢印 Y に示す通り、 発熱部の表面を流量を計測する気体が流れるように素子を 配置すると、 気体の流量が大きいほど発熱部表面から奪われる熱量も大 きくなる。 したがって感熱抵抗膜に一定の電流を流している場合、 流量 が大きくなると発熱部の温度は低下する。 発熱部に例えば白金抵抗膜を 用いている場合、 抵抗膜の温度が低下すると抵抗値も減少するので流量 を抵抗値の変化として求めることができる。 発熱と温度計測を別々の抵 抗体で構成することもある。 また流量が増加して奪われる熱量が大きく なつた分だけ電流値を増加させて絶えず発熱部の温度が一定になるよう に制御して、この制御電流の変化を信号出力とする読み出し方法もある。 また外気温度によっても出力が変化するので、 温度補正用の外気温度セ ンサを基板 1 0 1上に形成する場合もある。 パッケージ 1 5 1は熱式セ ンサの検出部 1 0 2付近で気流の乱れが生じないように翼状で検出部周 辺には凹凸がないような形状に設計される。 したがって検出部からパッ ケージの蓋 1 5 2までの距離 X (第 1 0図中に記載) は気流が乱れない ように十分大きくする必要があり、 おおよそ 2mm以上であることが望 ましい。 Next, the operation when the thermal sensor element is used as a flow sensor will be described. An electric current is applied to the heat-sensitive resistive film 102 to generate heat. As shown by the arrow Y in Fig. 9, the element is positioned so that the gas for which With this arrangement, the greater the gas flow rate, the greater the amount of heat taken from the surface of the heating part. Therefore, when a constant current is applied to the heat-sensitive resistive film, the temperature of the heat-generating part decreases as the flow rate increases. For example, when a platinum resistance film is used for the heating section, the resistance value decreases as the temperature of the resistance film decreases, so that the flow rate can be obtained as a change in the resistance value. Heat generation and temperature measurement may be composed of separate resistors. There is also a reading method in which the current value is increased by an amount corresponding to an increase in the amount of heat taken away due to an increase in the flow rate so that the temperature of the heating portion is constantly kept constant, and a change in the control current is used as a signal output. . Further, since the output varies depending on the outside air temperature, an outside air temperature sensor for temperature correction may be formed on the substrate 101 in some cases. The package 151 is designed in a wing shape so that there is no turbulence in the air flow near the detector 102 of the thermal sensor, and is designed to have no irregularities around the detector. Therefore, the distance X (shown in Fig. 10) from the detector to the package lid 152 needs to be large enough not to disturb the air flow, and it is preferable that it is about 2mm or more.
上記のように、 従来の熱式センサはセンサ素子を構成する基板 1 0 1 の検出部 1 0 2の形成された面と同じ面に信号出力部 1 5 0が形成され ているので、 検出に影響しないように出力部を検出部から十分離して配 置しなければならず、 検出部から出力部への配線領域を長くとることが 必要となっていた。 そのため、 素子サイズが大きくなり素子の製造コス トが高くなるとともに、 実装においてもパッケ一ジ構造が複雑で大きく なり組み立て工数や部品コストが増大するなどの問題点があつた。  As described above, in the conventional thermal sensor, since the signal output unit 150 is formed on the same surface as the detection unit 102 of the substrate 101 constituting the sensor element, The output section had to be sufficiently separated from the detection section so as not to affect it, and it was necessary to make the wiring area from the detection section to the output section long. As a result, there have been problems in that the element size is increased, the manufacturing cost of the element is increased, and the packaging structure is complicated and large in mounting, which increases the number of assembly steps and component costs.
この発明は、 上記のような問題点を解決するためになされたものであ り、 小型で簡素な実装構造をもつ半導体装置を得ることを目的とするも のである。 即ち、 半導体素子部を有する半導体装置において (上記例示 では半導体素子部に感熱抵抗体膜を備える熱式センサである)、 半導体 素子部への入出力配線に関する実装構造を簡素で小型化することである。 発明の開示 The present invention has been made to solve the above problems, and has as its object to obtain a semiconductor device having a small and simple mounting structure. That is, in a semiconductor device having a semiconductor element section (in the above example, a thermal sensor having a thermosensitive resistor film in the semiconductor element section), the mounting structure for input / output wiring to the semiconductor element section is simplified and reduced in size. is there. Disclosure of the invention
本発明に係る半導体装置は、 半導体基板の第 1の面に、 半導体素子と 該半導体素子への第 1の入出力配線とを備え、 少なくとも上記第 1の入 出力配線の一部領域を含む部位の上記半導体基板が除去されてダイャフ ラム構造をなし、 該ダイャフラム構造を介して上記第 1の入出力配線と 上記半導体基板の第 2面に形成された入出力用部位とを第 2の入出力配 線で接続し、 上記ダイャフラム構造の形成された上記半導体基板の除去 部に絶縁性樹脂を設けた構造とした。 即ち、 簡単に作成できるダイヤフ ラム構造のコンタクト部で基板表面に形成された素子の入出力配線を基 板裏面の配線へ接続するようにしたので、 従来、 基板表面の検出部から 十分離して形成しなければならなかった入出力部を基板裏面に形成でき るようになり、 素子の小型化が可能になり製造コストが削減できる。 ま た、 検出面と反対の面から出力を取り出せるため実装構造の選択肢が広 がり、 素子の使用状況に合わせた最適な実装形態を選尺することが可能 になり、 実装構造の簡略化や組み立て工数と実装部品点数の削減が可能 になりコストが減少する効果がある。 さらにダイヤフラム部に樹脂を充 填したので、 裏面配線が外気から保護される効果とダイヤフラム部とコ ン夕クト部の強度が向上する効果がある。 さらに充填材によりダイヤフ ラム部の熱抵抗が削減できて電流印加時のコンタクト部の発熱を抑えら れつンタクト部の電気的な信頼性が向上する効果がある。  A semiconductor device according to the present invention includes a semiconductor element on a first surface of a semiconductor substrate, a first input / output wiring to the semiconductor element, and a portion including at least a partial region of the first input / output wiring. The semiconductor substrate is removed to form a diaphragm structure, and the first input / output wiring and the input / output portion formed on the second surface of the semiconductor substrate are connected to the second input / output via the diaphragm structure. The structure was such that an insulating resin was provided in a removed portion of the semiconductor substrate on which the diaphragm structure was formed, by connecting with wiring. In other words, the input / output wiring of the element formed on the surface of the substrate is connected to the wiring on the back surface of the substrate at the contact portion of the diaphragm structure that can be easily created. The input / output section, which had to be performed, can now be formed on the back surface of the substrate, and the size of the element can be reduced, and the manufacturing cost can be reduced. In addition, because the output can be taken out from the surface opposite to the detection surface, the choice of mounting structure is expanded, and it is possible to select the optimal mounting form according to the usage condition of the element, simplifying the mounting structure and assembling This has the effect of reducing man-hours and the number of mounted components, thus reducing costs. In addition, since the diaphragm is filled with resin, the backside wiring is protected from the outside air, and the strength of the diaphragm and the connection is improved. In addition, the filler can reduce the thermal resistance of the diaphragm, suppress the heat generation of the contact when current is applied, and improve the electrical reliability of the contact.
また、 上記半導体装置において、 第 2の入出力配線と入出力用部位と が絶縁性樹脂で覆われるので、 パッシベーション効果のある絶縁材を使 用すれば外気からの水分の進入を防ぐことが可能になり、 裏面配線部や 表面配線とのコンタクト部の信頼性が向上する効果がある。 また裏面の 保護膜を省略できるようになり. Γ.程が削減できてコストを低減できる効 果がある。 このとき、 ダイヤフラム部に配 i した絶鉍性樹脂と第 2の入 出力配線と入出力用部位とを覆う絶縁性樹脂とが同一材料であってもよ い。 In the above semiconductor device, the second input / output wiring and the input / output portion are covered with an insulating resin, so that if an insulating material having a passivation effect is used, entry of moisture from the outside air can be prevented. This has the effect of improving the reliability of the contact portion with the backside wiring and the topside wiring. In addition, it becomes possible to omit the protective film on the back surface. At this time, the insulating resin placed in the diaphragm and the second filler The insulating resin covering the output wiring and the input / output portion may be the same material.
また、 上記半導体装置において、 半導体素子部に感熱抵抗体膜を設け 該感熱抵抗体膜を含む領域を第 2のダイヤフラム構造としたので、 容易 に熱式センサを構成でき、 従来、 基板表面の検出部から十分離して形成 しなければならなかった入出力部を基板裏面に形成できるようになり、 素子の小型化が可能になり製造コス卜が削減できる。 図面の簡単な説明  Further, in the above semiconductor device, since a heat-sensitive resistor film is provided in the semiconductor element portion and a region including the heat-sensitive resistor film has a second diaphragm structure, a thermal sensor can be easily configured, and the conventional method for detecting the surface of a substrate The input / output unit, which had to be formed sufficiently separated from the unit, can be formed on the back surface of the substrate, so that the size of the element can be reduced and the manufacturing cost can be reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の第 1の実施例による半導体装置として熱式センサを 説明するための模式図で、 第 2図は実装形態を示す断面図である。 第 3図は、 本発明の第 2の実施例による熱式センサの説明するための 断面図である。  FIG. 1 is a schematic diagram for explaining a thermal sensor as a semiconductor device according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a mounting form. FIG. 3 is a cross-sectional view for explaining a thermal sensor according to a second embodiment of the present invention.
第 4図は、 本発明の第 3の実施例による熱式センサを説明するための 断面図である。  FIG. 4 is a cross-sectional view for explaining a thermal sensor according to a third embodiment of the present invention.
第 5図は、 本発明の第 4の実施例による熱式センサを説明するための 断面図である。  FIG. 5 is a cross-sectional view for explaining a thermal sensor according to a fourth embodiment of the present invention.
第 6図は、 本発明の第 5の実施例による熱式センサを説明するための 断面図である。  FIG. 6 is a sectional view for explaining a thermal sensor according to a fifth embodiment of the present invention.
第 7図は、 本発明の第 6の実施例による熱式センサを説明するための 断面図である。  FIG. 7 is a sectional view for explaining a thermal sensor according to a sixth embodiment of the present invention.
第 8図は、 本発明の他の実施例による半導体装置を説明するための断 面図である。  FIG. 8 is a cross-sectional view for explaining a semiconductor device according to another embodiment of the present invention.
第 9図は、 従来の熱式センサの外観を示したセンサ素子外観図、 第 1 0図は第 9図の熱式センサの実装形態を含んだ断面模式図である。 発明を実施するための最良の形態 以下、 この発明の実施例を図について説明する。 FIG. 9 is an external view of a sensor element showing the appearance of a conventional thermal sensor, and FIG. 10 is a schematic sectional view of the thermal sensor shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1 . Example 1
第 1図は、 この発明の一実施例による半導体装置で熱式流量センサに 適用した例を説明するための図で、 流量センサの素子外観図である。 ま た、第 2図は第 1図で示した流量センサの実装形態を示す断面図である。 図において、 1は例えばシリコンウェハから切り出された熱式センサ 素子の平板状基板で、 7, 8は平板状基板 1の一方の面に形成された絶 縁性の支持膜で、 例えば窒ィヒシリコン膜からなる。 窒化シリコン膜 8は 保護膜も兼ねている。 窒化シリコン膜 7 , 8の間に感熱抵抗体膜 2が形 成される。 この感熱抵抗体膜 2は、 発熱抵抗、 測温抵抗に利用される発 熱部に相当するもので、 例えば白金 (Pt) からなる。 また感熱抵抗体膜 2で発生した熱がシリコン基板 1に逃げずに発熱部の温度が上昇するよ うに感熱抵抗体膜 2の周囲のシリコン基板 1が除去されていて( 1 a )、 窒ィ匕シリコン膜 7 , 8からなるダイヤフラム 5が形成されている。 3は 感熱抵抗体膜 2と電気的に接続された表側の配線で例えば感熱抵抗体膜 2と同じ膜で形成されている。 表側配線 3の一部の領域でシリコン基板 1が除去されていて ( l b )、 窒化シリコン膜 7, 8からなるダイヤフ ラム 4が形成されている。 6は裏面側配線、 9は裏面配線 6と基板 1を 電気的に絶縁する絶縁層で例えば窒化シリコン膜である。 1 0は裏面配 線 6と表面配線 3を電気的に接続するために絶縁層 7, 9に開けられた コンタクトホールである。 また 1 1は裏面の保護膜で例えば窒化シリコ ン膜で、 1 2は裏面保護膜 1 1の開口部で熱式センサの入出力パッドで ある。 2 1は熱式センサのパッケージで例えばエポキシ樹脂である。 熱 式センサ素子 1は接着剤 1 8によりパヅケージ 2 1に固定されている。 2 3は外部入出力リード、 2 4は入出力パッド 1 2と外部入出力リード 2 3を電気的に接続するためのワイヤ一ボンド材で例えば 2 5〃m径の 金 (Au) 線である。 また 2 2はワイヤーボンド 2 4を覆うパッケージ 2 1の蓋である。 熱式センサ素子 1は接着剤 1 8によりパッケージ 2 1 に固定されている。 1 9はダイヤフラム 4の開口部に充填された絶縁性 の樹脂で例えばシリコン樹脂やポリイミ ド樹脂である。 FIG. 1 is a diagram for explaining an example in which a semiconductor device according to an embodiment of the present invention is applied to a thermal flow sensor, and is an external view of an element of the flow sensor. FIG. 2 is a cross-sectional view showing a mounting form of the flow sensor shown in FIG. In the figure, 1 is a flat substrate of a thermal sensor element cut out of, for example, a silicon wafer, and 7 and 8 are insulating support films formed on one surface of the flat substrate 1, for example, a silicon nitride film. Consists of The silicon nitride film 8 also serves as a protective film. The thermal resistor film 2 is formed between the silicon nitride films 7 and 8. The heat-sensitive resistor film 2 corresponds to a heat-generating portion used for a heat-generating resistor and a temperature-measuring resistor, and is made of, for example, platinum (Pt). Also, the silicon substrate 1 around the thermal resistor film 2 has been removed (1a) so that the heat generated in the thermal resistor film 2 does not escape to the silicon substrate 1 and the temperature of the heat generating portion rises. A diaphragm 5 composed of the dangling silicon films 7 and 8 is formed. Reference numeral 3 denotes a wiring on the front side electrically connected to the thermal resistor film 2 and is formed of, for example, the same film as the thermal resistor film 2. The silicon substrate 1 is removed in a part of the front side wiring 3 (lb), and a diaphragm 4 composed of silicon nitride films 7 and 8 is formed. Reference numeral 6 denotes a backside wiring, and 9 denotes an insulating layer for electrically insulating the backside wiring 6 from the substrate 1, for example, a silicon nitride film. Reference numeral 10 denotes a contact hole formed in the insulating layers 7 and 9 for electrically connecting the rear wiring 6 and the front wiring 3. Reference numeral 11 denotes a backside protective film, for example, a silicon nitride film. Reference numeral 12 denotes an opening of the backside protective film 11, which is an input / output pad of a thermal sensor. 21 is a package of a thermal sensor, for example, epoxy resin. The thermal sensor element 1 is fixed to the package 21 with an adhesive 18. Reference numeral 23 denotes an external input / output lead, reference numeral 24 denotes a wire bonding material for electrically connecting the input / output pad 12 and the external input / output lead 23, for example, a gold (Au) wire having a diameter of 25 mm. . Also, 2 2 is a package covering wire bond 24 2 1 is the lid. The thermal sensor element 1 is fixed to the package 21 with an adhesive 18. Reference numeral 19 denotes an insulating resin filled in the opening of the diaphragm 4, for example, a silicon resin or a polyimide resin.
次に、 第 1図, 第 2図に示される熱式センサ素子の主要部の製造方法 について説明する。 板状基材である厚さ約 4 0 0 anのシリコンウェハ 1上に、 例えば厚さ約 1〃mの窒化シリコン膜 7をスパヅ夕法等の方法 により形成し、 さらにその上に例えば厚さ 0 . の白金等よりなる 感熱抵抗体膜 2を蒸着法やスパッ夕法等により形成する。 その後、 安定 化のために約 6 0 0 °Cで数時間ァニールする。 この白金膜 2は写真製版 法、 ゥヱットエッチング法あるいはドライエッチング法等を用いてパ夕 —ニングがおこなわれ、 これにより第 1図のようなパターンの発熱部 2 と表面配線 3が形成される。パ夕一ニングされた、 白金膜 2 , 3の上に、 保護膜として、 厚さ約 0 . 8〃mの窒ィ匕シリコン膜 8をスパヅ夕法等に より形成する。 窒化シリコン膜 7 , 8からなるダイヤフラム 5は支持膜 7 , 8が配置されている方の表面とは反対側の面に写真製版法等を用い て所望のパ夕一ニングをおこない、 例えばアル力リエッチング等を施す ことにより形成される。この時ダイヤフラム 4を同時に形成してもよい。 次に裏面に厚さ約 0 . 5 /mの窒化シリコン膜 9をスパヅ夕法等により 形成する。 裏面側から写真製版法等を用いて所望のパターニングをおこ ない絶縁膜 9 , 1 0をエッチングしてコンタクトホール 1 0を形成する。 コンタクトホール 1 0では表面配線 3が露出する。 その後、 裏面の配線 膜として例えば AlSi膜をスパッ夕法等により形成する。 裏面配線膜を 写真製版法等を用いて所望のパ夕一ニングをおこないエッチングして裏 面配線 6を形成する。 これで表面配線 3と裏面配線 6はコンタクトホー ル 1 0で電気的に接続される。 次に裏面保護膜 1 1として厚さ約 0 . 8 / mの窒化シリコン膜をスパッ夕法等により形成する。 次に裏面配線 6 上の裏面保護股 1 1の一部を写真製版法等を用いてエッチングして出力 部 1 2を形成する。 最後にダイヤフラム 4の開口部にシリコン樹脂の絶 縁材 1 9を充填する。 このように作成した熱式センサ素子をパッケージ 2 1に接着剤 1 8で固定し、 熱式センサ素子入出力パッド 1 2と外部入 出力リード 2 3をワイヤ一ボンド 2 4で接続する。 接着材 1 8は絶縁材 1 9と同種であってもよい。 最後にパッケージの蓋 2 2を接着固定して ワイヤーボンド部を保護する。 実施例 2 . Next, a method of manufacturing a main part of the thermal sensor element shown in FIGS. 1 and 2 will be described. On a silicon wafer 1 having a thickness of about 400 an, which is a plate-like base material, a silicon nitride film 7 having a thickness of, for example, about 1 μm is formed by a method such as a sputter method, and further, a thickness of, for example, A thermal resistor film 2 made of platinum or the like is formed by an evaporation method, a sputtering method, or the like. After that, anneal for several hours at about 600 ° C for stabilization. The platinum film 2 is patterned by photolithography, wet etching, dry etching, or the like, thereby forming a heating portion 2 and a surface wiring 3 having a pattern as shown in FIG. Is done. On the patterned platinum films 2 and 3, a silicon nitride film 8 having a thickness of about 0.8 μm is formed as a protective film by a sputtering method or the like. The diaphragm 5 composed of the silicon nitride films 7 and 8 performs a desired patterning by using a photoengraving method or the like on a surface opposite to the surface on which the support films 7 and 8 are disposed. It is formed by performing re-etching or the like. At this time, the diaphragm 4 may be formed at the same time. Next, a silicon nitride film 9 having a thickness of about 0.5 / m is formed on the back surface by a sputtering method or the like. A desired patterning is performed from the back side by using photolithography or the like, and the insulating films 9 and 10 are etched to form contact holes 10. In the contact hole 10, the surface wiring 3 is exposed. Thereafter, for example, an AlSi film is formed as a wiring film on the back surface by a sputtering method or the like. The back wiring film is subjected to desired patterning using photolithography or the like and etched to form the back wiring 6. Thus, the front surface wiring 3 and the rear surface wiring 6 are electrically connected by the contact hole 10. Next, a silicon nitride film having a thickness of about 0.8 / m is formed as a back surface protective film 11 by a sputtering method or the like. Next, a part of the backside protection crotch 11 on the backside wiring 6 is etched using photolithography and output. Form part 12 Finally, the opening of the diaphragm 4 is filled with an insulating material 19 of silicone resin. The thermal sensor element thus created is fixed to the package 21 with an adhesive 18, and the thermal sensor element input / output pad 12 and the external input / output lead 23 are connected with a wire-to-bond 24. The adhesive 18 may be of the same type as the insulating material 19. Finally, the package lid 22 is bonded and fixed to protect the wire bond. Example 2.
第 3図は本発明の他の実施例による熱式センサの断面を示す図である。 第 1図、 第 2図と同一番号は同一または相当部を示している。 この実施 例では第 2図の裏面保護膜 1 1が省略され、 裏面配線 6上に直接絶縁性 の樹脂 1 9が充填されている。 絶縁性樹脂 1 9は例えばシリコン樹脂や ポリイミ ド樹脂である。 また 3 1は裏面配線 6の露出部を覆うように塗 布された絶縁材で例えばシリコン樹脂やポリイミ ド樹旨である。 これら の絶縁材 1 9 , 3 1には外部からの水分などの浸入を防ぐパッシベ一シ ヨン効果のある樹脂が使用される。 この絶縁材 3 1と埋め込み絶縁材 1 9によって裏面配線 6は完全に覆われている。 絶縁材 3 1は絶縁材 1 9 と同種であってもよい。 また接着材 1 8と同種であってもよい。 実施例 3 .  FIG. 3 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention. The same numbers as in FIGS. 1 and 2 indicate the same or corresponding parts. In this embodiment, the backside protective film 11 in FIG. 2 is omitted, and the backside wiring 6 is directly filled with an insulating resin 19. The insulating resin 19 is, for example, a silicon resin or a polyimide resin. Reference numeral 31 denotes an insulating material applied so as to cover an exposed portion of the back wiring 6, which is, for example, a silicon resin or polyimide resin. These insulating materials 19 and 31 are made of a resin having a passivation effect for preventing intrusion of moisture or the like from the outside. The back wiring 6 is completely covered with the insulating material 31 and the buried insulating material 19. The insulating material 31 may be of the same type as the insulating material 19. Further, it may be the same type as the adhesive 18. Example 3.
第 4図は本発明の他の実施例による熱式センサの断面を示す図で、 第 3図の絶縁材 3 1が埋め込み絶縁材 1 9と同一材料であって同時に形成 した例を示す。 この実施例では熱式センサ素子をパッケージ 2 1に接着 剤 1 8で固定し、 熱式センサ素子入出力パッド 1 2と外部入出力リード 2 3をワイヤ一ボンド 2 4で接続した後にダイヤフラム 4の開口部にシ リコン樹脂 1 9を充填する。 この時裏面配線 6が完全に覆われるように ワイヤ一ボンド部も含めて絶縁材 1 9を塗布する。 最後にパッケージの 蓋 2 2を接着固定してワイヤ一ボンド部を保護する。 FIG. 4 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention, and shows an example in which the insulating material 31 in FIG. 3 is the same material as the embedded insulating material 19 and is formed at the same time. In this embodiment, the thermal sensor element is fixed to the package 21 with an adhesive 18 and the thermal sensor element input / output pad 12 and the external input / output lead 23 are connected by a wire-to-bond 24. Fill the opening with silicone resin 19. At this time, an insulating material 19 including a wire-to-bond portion is applied so that the back wiring 6 is completely covered. Finally in the package The cover 22 is bonded and fixed to protect the wire-to-bond portion.
なお第 3図、 第 4図の実施例では第 2図に記載の裏面の保護膜 1 1を 省略した構造を示したが、 これらは裏面の保護膜 1 1がある構造でもよ い。 この場合絶縁材 1 9 , 3 1と保護膜 1 1により外部からの水などの 浸入を 2重に防ぐことが可能になりより信頼性を高めることができる。 実施例 4 .  Although the embodiments shown in FIGS. 3 and 4 show the structure in which the back surface protective film 11 shown in FIG. 2 is omitted, these may have a structure in which the back surface protective film 11 is provided. In this case, the insulating materials 19, 31 and the protective film 11 can prevent the intrusion of water or the like from the outside twice, and the reliability can be further improved. Example 4.
第 5図は本発明の他の実施例による熱式センサの断面を示す図である。 第 1図、 第 2図と同一番号は同一または相当部を示している。 1 5は金 または半田などからなるバンプである。 また 3 2はバンプ 1 5の周辺に 充填された絶縁性の封止材である。 この封止材 3 2は接着材 1 8と同種 であってもよい。 また絶縁材 1 9と同種であってもよい。  FIG. 5 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention. The same numbers as in FIGS. 1 and 2 indicate the same or corresponding parts. 15 is a bump made of gold or solder. Reference numeral 32 denotes an insulating sealing material filled around the bump 15. This sealing material 32 may be of the same type as the adhesive material 18. Further, it may be the same type as the insulating material 19.
この実施例の実装方法を以下に示す。 まず熱式センサ素子の入出力パ ッド 1 2と出力リード 2 3のパッド部の両方またはいずれかに例えば高 さ数 1 0〃mの金バンプを形成する。 金バンプはワイヤ一ボンダを用い て個々のパッド上に金を圧接固定して形成したり、 メツキで形成したり する。 熱式センサ素子のパッド 1 2が出力リード 2 3のパッド部の真上 にくるようにァライメントした後に加圧し温度を上げてパヅド間を金バ ンプで電気的に接続する。 この時接合をより強固にするため超音波を印 加することもある。 またバンプ 1 5として半田などの溶融金属を用いる 場合は以下のように作成する。 熱式センサ素子の入出力パッド 1 2と出 力リード 2 3のパッド部の両方またはいずれかに例えばメツキで数十// m程度の半田バンプを形成する。 熱式センサ素子のパッド 1 2が配線基 板 1 3のパッド 1 4の真上にくるようにァライメントした後に半田が溶 ける温度まで加熱してパッド間を半田バンプで電気的に接続する。 最後 にエポキシ樹脂などの封止材 3 2と接着剤 1 8を素子とパッケージ 2 1 の間に入れて硬化する。 またパッシベーシヨン効果のある封止材 3 2と 埋め込み絶縁材 1 9で裏面配線 6を完全に覆うようにすれば第 4図の実 施例と同様に裏面の絶縁保護膜 1 1を省略することができて作成工程を 削減できる。 実施例 5 . The mounting method of this embodiment will be described below. First, a gold bump having a height of, for example, 10 μm is formed on at least one of the input / output pad 12 and the output lead 23 of the thermal sensor element. Gold bumps are formed by pressing and fixing gold on individual pads using a wire-bonder, or by plating. Align the pad 12 of the thermal sensor element so that it is directly above the pad of the output lead 23, and then pressurize to raise the temperature and electrically connect the pads with a gold bump. At this time, ultrasonic waves may be applied to make the joint stronger. When a molten metal such as solder is used as the bump 15, it is prepared as follows. For example, solder bumps of about several tens of m / m are formed on both or any of the input / output pads 12 and the output leads 23 of the thermal sensor element by plating. The thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then heated to a temperature at which the solder melts, and the pads are electrically connected by solder bumps. Finally, a sealing material 32 such as an epoxy resin and an adhesive 18 are put between the element and the package 21 and cured. In addition, a sealing material 32 that has a passivation effect is used. By completely covering the back wiring 6 with the buried insulating material 19, the insulating protective film 11 on the back can be omitted as in the embodiment of FIG. 4, and the number of manufacturing steps can be reduced. Embodiment 5.
第 6図は本発明の他の実施例による熱式センサの断面を示す図である。 第 5図と同一番号は同一または相当部を示している。 図において 1 3は 熱式センサ素子と信号処理回路素子 1 7を接続する配線基板で例えばガ ラスエポキシ樹脂で形成される。 1 4は配線基板 1 3の配線層であって バンプ 1 5で熱式センサの入出力パヅド 1 2と電気的に接続されていて 信号処理回路素子 1 7の入出力パッドにもバンプ 1 6で接続されている。 バンプ 1 5, 1 6は例えば金や半田などの溶融金属で形成される。 この 実施例の実装方法を以下に示す。 熱式センサ素子の入出力パッド 1 2と 配線基板 1 3のパッド 1 4の両方またはいずれかに例えば高さ数十/ zm 金バンプを形成する。 金バンプはワイヤーボンダを用いて個々のパッド 上に金を圧接固定して形成したり、 メツキで形成したりする。 熱式セン サ素子のパッド 1 2が配線基板 1 3のパヅ ド 1 4の真上にくるようにァ ライメントした後に加圧し温度を上げてパヅド間を金バンプで電気的に 接続する。 この時、 接合をより強固にするため超音波を印加することも ある。 またバンプ 1 5として半田などの溶融金属を用いる場合は以下の ように作成する。 熱式センサ素子の入出力パッド 1 2と配線基板 1 3の パッド 1 4の両方またはいずれかに例えばメツキで数十 m程度あるい はそれより若干犬の半田バンプを形成する。 熱式センサ素子のパッド 1 2が配線基板 1 3のパヅド 1 4の真上にくるようにァライメントした後 に半田が溶ける温度まで加熱してパッド間を半田バンプで電気的に接続 する。 信号処理回路の素子 1 7や抵抗などの素子 (図示せず) も同様な 方法で配線基板に接続される。 次にエポキシ樹脂などの封止材 3 2と接 着剤 1 8を素子と回路基板の間に入れて硬化する。 封止材 3 2と接着剤 1 8は同一材料でもよい。 またパヅシベ一シヨン効果のある封止材 3 2 と埋め込み絶縁材 1 9で裏面配線 6を完全に覆うようにすれば第 4図の 実施例と同様に裏面の絶縁保護膜 1 1を省略することができて作成工程 を削減できる。 最後にモ一ルド樹脂 2 5で検出面除く全体を封止する。 この構造により信号処理回路を含めた小型化が可能になる。 実施例 6 . FIG. 6 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention. The same numbers as those in FIG. 5 indicate the same or corresponding parts. In the figure, reference numeral 13 denotes a wiring board for connecting the thermal sensor element and the signal processing circuit element 17 and is formed of, for example, glass epoxy resin. Reference numeral 14 denotes a wiring layer of the wiring board 13 which is electrically connected to the input / output pads 12 of the thermal sensor via bumps 15 and also used as bumps 16 for input / output pads of the signal processing circuit element 17. It is connected. The bumps 15 and 16 are formed of a molten metal such as gold or solder. The mounting method of this embodiment is described below. For example, a gold bump having a height of several tens / zm is formed on at least one of the input / output pad 12 of the thermal sensor element and the pad 14 of the wiring board 13. Gold bumps are formed by pressing and fixing gold on individual pads using a wire bonder, or by plating. The thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then pressurized to increase the temperature, and the pads are electrically connected with gold bumps. At this time, ultrasonic waves may be applied to make the bonding stronger. When a molten metal such as solder is used as the bump 15, it is prepared as follows. For example, a solder bump of about several tens of meters or slightly more is formed on both or one of the input / output pad 12 of the thermal sensor element and the pad 14 of the wiring board 13. The thermal sensor element is aligned so that the pad 12 is directly above the pad 14 of the wiring board 13 and then heated to a temperature at which the solder melts, and the pads are electrically connected by solder bumps. Elements (not shown) such as elements 17 and resistors of the signal processing circuit are connected to the wiring board in the same manner. Next, contact with sealing material 32 such as epoxy resin. The adhesive 18 is put between the element and the circuit board and cured. The sealing material 32 and the adhesive 18 may be the same material. If the back wiring 6 is completely covered with the sealing material 3 2 having a passivation effect and the buried insulating material 19, the insulating protection film 11 on the back surface can be omitted as in the embodiment of FIG. And the number of production steps can be reduced. Finally, the entire surface except the detection surface is sealed with mold resin 25. This structure enables downsizing including the signal processing circuit. Embodiment 6.
第 7図は本発明の他の実施例による熱式センサの断面を示す図である。 第 6図と同一番号は同一または相当部を示している。 図において 2 6は 信号処理回路素子 1 7の回路部分、 2 7は表面配線である。 また、 2 8 は信号処理回路素子 1 7の裏面配線、 2 9は表面配線 2 7と裏面配線 2 8を接続するためのダイャフラム開口部で、 センサ素子のダイャフラム 4の開口部と同じように絶縁性の樹脂 1 9が充填されている。 これらは センサ素子と同様な方法で作成される。 この実施例ではバンプ 1 5でセ ンサ素子の裏面配線 6と信号処理回路素子 1 7の表面配線 2 7が電気的 に接続される。 これによりセンサ素子の入出力は表面配線 2 7で回路部 分 2 6に接続されて駆動及び信号処理される。 回路部分 2 5の出力の表 面配線はダイヤフラム開口 2 9で裏面配線 2 8に接続されバンプ 1 6に より回路基板 1 3に接続されてリード 2 3により外部につながつている。 バンプの接続方法は実施例 5と同様であるが、 この実施例ではバンプ 1 6で回路基板と信号処理回路 1 7の裏面配線を接続した後にセンサ素子 の裏面配線と信号処理回路の表面配線をバンプ 1 5で接続してもよいし、 信号処理回路 1 7の表面配線とセンサ素子 1の裏面配線をバンプ 1 5で 接続してから信号処理回路 1 7の裏面配線と回路基板 1 3をバンプ 1 6 で接続してもよい。 最後にモールド樹脂 2 5で検出面除く全体を封止す る。 この構造により信号処理回路を含めた小型化が可能になる。 なお裏面出力の半導体装置として半導体素子部に感熱抵抗体膜を設け た熱式流量センサの場合を例に示したが、 これは他のセンサでもよい。 またメモリやロジックなどの一般の半導体素子でもよい。 第 8図にメモ リ素子 5 0とロジック素子 6 0を第 7図と同様な構造で接続した場合の 半導体装置の一部断面図を示す。 図において 5 1はメモリ素子 5 0の回 路部分、 5 2は表面配線である。 また、 5 3はメモリ素子 5 0の裏面配 線、 5 4は表面配線 5 2と裏面配線 5 3を接続するためのダイヤフラム 開口部で、 上記実施例で示したセンサ素子のダイヤフラム 4の開口部と 同じように絶縁性の樹脂 1 9が充填されている。 また 6 1は口ジヅク素 子 6 0の回路部分、 6 2は表面配線である。 また、 6 3はロジック素子 6 0の裏面配線、 6 4は表面配線 6 2と裏面配線 6 3を接続するための ダイャフラム開口部で、 上記実施例で示したセンサ素子のダイャフラム 4の開口部と同じように絶縁性の樹脂 1 9が充填されている。 またバン プ 6 5でメモリ素子 5 0の裏面配線 5 3とロジック素子 6 0の表面配線 6 2が接続され、 バンプ 6 6でロジック素子 6 0の裏面配線 6 3と回路 基板 1 3が接続されている。 実装組み立て方法は第 7図の場合と同様で ある。 最後にモールド樹脂 2 5で全体を封止する。 2素子を組み合わせ た場合を例に示したが 2素子以上の素子を同様に接続することは当然可 能である。 この構造により複数素子から構成される半導体装置の小型化 が可能になる。 産業上の利用可能性 FIG. 7 is a view showing a cross section of a thermal sensor according to another embodiment of the present invention. The same numbers as those in FIG. 6 indicate the same or corresponding parts. In the figure, 26 is a circuit portion of the signal processing circuit element 17, and 27 is a surface wiring. Reference numeral 28 denotes a rear surface wiring of the signal processing circuit element 17, and reference numeral 29 denotes a diaphragm opening for connecting the front surface wiring 27 and the rear surface wiring 28, which is insulated in the same manner as the opening of the diaphragm 4 of the sensor element. Resin 19 is filled. These are created in the same way as the sensor elements. In this embodiment, the back wiring 6 of the sensor element and the front wiring 27 of the signal processing circuit element 17 are electrically connected by the bump 15. As a result, the input and output of the sensor element are connected to the circuit section 26 by the surface wiring 27 and driven and signal processed. The surface wiring of the output of the circuit part 25 is connected to the back wiring 28 at the diaphragm opening 29, connected to the circuit board 13 by the bump 16, and connected to the outside by the lead 23. The method of connecting the bumps is the same as that of the fifth embodiment.In this embodiment, the bumps 16 are used to connect the circuit board and the back wiring of the signal processing circuit 17, and then the back wiring of the sensor element and the front wiring of the signal processing circuit are connected. The bumps 15 may be used for connection, or the front wiring of the signal processing circuit 17 and the back wiring of the sensor element 1 may be connected by the bump 15 and then the back wiring of the signal processing circuit 17 and the circuit board 13 may be bumped. You may connect with 16. Finally, the entire surface except for the detection surface is sealed with mold resin 25. This structure enables downsizing including the signal processing circuit. Although a thermal type flow sensor having a semiconductor element portion provided with a thermosensitive resistor film as a backside output semiconductor device has been described as an example, this may be another sensor. Further, a general semiconductor element such as a memory or a logic may be used. FIG. 8 shows a partial cross-sectional view of a semiconductor device in the case where the memory element 50 and the logic element 60 are connected in the same structure as in FIG. In the figure, 51 is a circuit portion of the memory element 50, and 52 is a surface wiring. Reference numeral 53 denotes a rear surface wiring of the memory element 50, 54 denotes a diaphragm opening for connecting the front surface wiring 52 and the rear surface wiring 53, and the opening of the diaphragm 4 of the sensor element shown in the above embodiment. Similarly, the insulating resin 19 is filled. Reference numeral 61 denotes a circuit portion of the mouth diode 60, and 62 denotes a surface wiring. Reference numeral 63 denotes a back surface wiring of the logic element 60, reference numeral 64 denotes a diaphragm opening for connecting the front surface wiring 62 and the back surface wiring 63, and the opening of the diaphragm 4 of the sensor element shown in the above embodiment. Similarly, insulating resin 19 is filled. The bumps 65 connect the backside wiring 53 of the memory element 50 to the front side wiring 62 of the logic element 60, and the bumps 66 connect the backside wiring 63 of the logic element 60 to the circuit board 13. ing. The mounting and assembling method is the same as in the case of FIG. Finally, the whole is sealed with a mold resin 25. Although the case where two elements are combined has been described as an example, it is naturally possible to connect two or more elements in the same manner. With this structure, a semiconductor device including a plurality of elements can be reduced in size. Industrial applicability
この発明による半導体装置は、 基板表面に形成された素子の入出力を 基板裏面から取り出せるようにした半導体装置の構造に関するもので、 応用例としては熱式センサ等が考えられ、 この熱式センサは例えば車両 用等の内燃機関の吸入空気量の計測等の流量センサや圧力センサに利用 される。  The semiconductor device according to the present invention relates to the structure of a semiconductor device in which the input and output of elements formed on the front surface of a substrate can be taken out from the back surface of the substrate. As an application example, a thermal sensor or the like can be considered. For example, it is used for a flow sensor or a pressure sensor for measuring an intake air amount of an internal combustion engine for a vehicle or the like.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体基板の第 1の面に、 半導体素子と該半導体素子への第 1の入 出力配線とを備え、 少なくとも上記第 1の入出力配線の一部領域を含む 部位の上記半導体碁板が除去されてダイャフラム構造をなし、 該ダイャ フラム構造を介して上記第 1の入出力配線と上記半導体基板の第 2面に 形成された入出力用部位とを第 2の入出力配線で接続し、 上記ダイヤフ ラム構造の形成された上記半導体基板の除去部に絶縁性樹脂を設けたこ とを特徴とする半導体装置。 1. On a first surface of a semiconductor substrate, a semiconductor element and first input / output wiring to / from the semiconductor element are provided, and the semiconductor go board of a portion including at least a partial region of the first input / output wiring is provided. Removed to form a diaphragm structure, and the first input / output wiring and the input / output portion formed on the second surface of the semiconductor substrate are connected by a second input / output wiring via the diaphragm structure; A semiconductor device, wherein an insulating resin is provided in a removed portion of the semiconductor substrate on which the diaphragm structure is formed.
2 . 第 2の入出力配線と入出力用部位とを絶縁性樹脂で覆うことを特徴 とする請求の範囲第 1項に記載の半導体装置。  2. The semiconductor device according to claim 1, wherein the second input / output wiring and the input / output portion are covered with an insulating resin.
3 . 半導体素子が感熱抵抗体を備え、 少なくとも上記感熱抵抗体の形成 された部位の半導体基板が除去されて第 2のダイヤフラム構造としたこ とを特徴とする請求の範囲第 1項または第 2項に記載の半導体装置。  3. The semiconductor device according to claim 1, wherein the semiconductor element includes a thermosensitive resistor, and at least a semiconductor substrate at a portion where the thermosensitive resistor is formed is removed to form a second diaphragm structure. 13. The semiconductor device according to item 9.
PCT/JP2002/000510 2002-01-24 2002-01-24 Semiconductor device WO2003063258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2002/000510 WO2003063258A1 (en) 2002-01-24 2002-01-24 Semiconductor device
JP2003536318A JPWO2003063258A1 (en) 2002-01-24 2002-01-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/000510 WO2003063258A1 (en) 2002-01-24 2002-01-24 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2003063258A1 true WO2003063258A1 (en) 2003-07-31

Family

ID=27590525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000510 WO2003063258A1 (en) 2002-01-24 2002-01-24 Semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2003063258A1 (en)
WO (1) WO2003063258A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008225A (en) * 2008-06-26 2010-01-14 Denso Corp Thermal flow sensor and manufacturing method thereof
JP2010107315A (en) * 2008-10-29 2010-05-13 Denso Corp Thermal flow rate sensor
JP2011501126A (en) * 2007-10-11 2011-01-06 メンシス インコーポレイテッド Semiconductor microanemometer apparatus and fabrication method
EP2356409A1 (en) * 2008-11-06 2011-08-17 Continental Automotive GmbH Mass flow sensor and motor vehicle having the mass flow sensor
JP2012103078A (en) * 2010-11-09 2012-05-31 Denso Corp Flow sensor
JP2012112737A (en) * 2010-11-23 2012-06-14 Denso Corp Heat sensitive flow rate sensor
JP2012533750A (en) * 2009-07-22 2012-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Heat flow sensor integrated circuit with short response time and high sensitivity
JP2014001969A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal type flowmeter
JP2014106096A (en) * 2012-11-27 2014-06-09 Denso Corp Dynamic quantity sensor and manufacturing method therefor
US8886317B2 (en) 2004-12-17 2014-11-11 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
US8897875B2 (en) 2007-12-06 2014-11-25 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
US8977356B2 (en) 2009-02-19 2015-03-10 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
US9381371B2 (en) 2009-12-08 2016-07-05 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
US9561378B2 (en) 2008-10-02 2017-02-07 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
JP2020016465A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Fluid sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310553A (en) * 1999-04-27 2000-11-07 Yazaki Corp Flow sensor
JP2001074531A (en) * 1999-09-02 2001-03-23 Unisia Jecs Corp Flow rate detecting device, and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310553A (en) * 1999-04-27 2000-11-07 Yazaki Corp Flow sensor
JP2001074531A (en) * 1999-09-02 2001-03-23 Unisia Jecs Corp Flow rate detecting device, and its manufacture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8886317B2 (en) 2004-12-17 2014-11-11 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
JP2011501126A (en) * 2007-10-11 2011-01-06 メンシス インコーポレイテッド Semiconductor microanemometer apparatus and fabrication method
US8897875B2 (en) 2007-12-06 2014-11-25 Cardiac Pacemakers, Inc. Selectively connecting the tip electrode during therapy for MRI shielding
JP2010008225A (en) * 2008-06-26 2010-01-14 Denso Corp Thermal flow sensor and manufacturing method thereof
US9561378B2 (en) 2008-10-02 2017-02-07 Cardiac Pacemakers, Inc. Implantable medical device responsive to MRI induced capture threshold changes
JP2010107315A (en) * 2008-10-29 2010-05-13 Denso Corp Thermal flow rate sensor
EP2356409A1 (en) * 2008-11-06 2011-08-17 Continental Automotive GmbH Mass flow sensor and motor vehicle having the mass flow sensor
JP2012507730A (en) * 2008-11-06 2012-03-29 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mass flow sensor and automobile equipped with mass flow sensor
US8977356B2 (en) 2009-02-19 2015-03-10 Cardiac Pacemakers, Inc. Systems and methods for providing arrhythmia therapy in MRI environments
JP2012533750A (en) * 2009-07-22 2012-12-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Heat flow sensor integrated circuit with short response time and high sensitivity
US9072464B2 (en) 2009-07-22 2015-07-07 Koninklijke Philips N.V. Thermal flow sensor integrated circuit with low response time and high sensitivity
US9381371B2 (en) 2009-12-08 2016-07-05 Cardiac Pacemakers, Inc. Implantable medical device with automatic tachycardia detection and control in MRI environments
JP2012103078A (en) * 2010-11-09 2012-05-31 Denso Corp Flow sensor
JP2012112737A (en) * 2010-11-23 2012-06-14 Denso Corp Heat sensitive flow rate sensor
JP2014001969A (en) * 2012-06-15 2014-01-09 Hitachi Automotive Systems Ltd Thermal type flowmeter
JP2014106096A (en) * 2012-11-27 2014-06-09 Denso Corp Dynamic quantity sensor and manufacturing method therefor
JP2020016465A (en) * 2018-07-23 2020-01-30 ミネベアミツミ株式会社 Fluid sensor

Also Published As

Publication number Publication date
JPWO2003063258A1 (en) 2005-05-26

Similar Documents

Publication Publication Date Title
JP4952428B2 (en) Sensor device
WO2003063258A1 (en) Semiconductor device
JP5012330B2 (en) Manufacturing method of sensor device and sensor device
JP3863171B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JP4847960B2 (en) Method for mounting a semiconductor chip and corresponding semiconductor chip device
JP4281630B2 (en) Manufacturing method of sensor device
JP5212133B2 (en) Flow type sensor
JP4894669B2 (en) Sensor device and manufacturing method thereof
JPH07174599A (en) Semiconductor sensor device and its manufacture
JP5093052B2 (en) Thermal flow sensor
JP2010133829A (en) Thermal flow sensor
US10367510B2 (en) Crystal oscillator and method for manufacturing crystal oscillator
JP2009031067A (en) Sensor device
US10466197B2 (en) Component part having a MECS component on a mounting carrier
JP3908266B2 (en) Semiconductor pressure sensor and manufacturing method thereof
JPH0660906B2 (en) Semiconductor acceleration sensor
JPWO2003060434A1 (en) Thermal sensor and manufacturing method thereof
JP2010133865A (en) Method for manufacturing thermal type flow sensor, and thermal type flow sensor
JP5492834B2 (en) Thermal flow meter
JP4978587B2 (en) Sensor device and manufacturing method thereof
JP4356159B2 (en) Semiconductor device having sensing unit
JP4207847B2 (en) Pressure sensor
JPH04348280A (en) Heater built-in hybrid ic
JP5092936B2 (en) Thermal flow sensor and manufacturing method thereof
JP2005345303A (en) Pressure sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2003536318

Country of ref document: JP

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase