WO2003065433A1 - Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage - Google Patents

Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage Download PDF

Info

Publication number
WO2003065433A1
WO2003065433A1 PCT/JP2003/000714 JP0300714W WO03065433A1 WO 2003065433 A1 WO2003065433 A1 WO 2003065433A1 JP 0300714 W JP0300714 W JP 0300714W WO 03065433 A1 WO03065433 A1 WO 03065433A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
substrate
acid
group
semiconductor device
Prior art date
Application number
PCT/JP2003/000714
Other languages
English (en)
French (fr)
Inventor
Makoto Ikemoto
Yasuhiro Kawase
Hitoshi Morinaga
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020047011547A priority Critical patent/KR100913557B1/ko
Publication of WO2003065433A1 publication Critical patent/WO2003065433A1/ja
Priority to US10/899,304 priority patent/US20050020463A1/en
Priority to US11/898,233 priority patent/US7621281B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/042Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D2111/22

Definitions

  • the present invention relates to a cleaning liquid and a cleaning method for a substrate for a semiconductor device, and is used for cleaning a substrate surface of a semiconductor, a glass, a metal, a ceramic, a resin, a magnetic material, a superconductor, etc., in which metal contamination and particle contamination pose a problem.
  • cleaning liquid More specifically, the present invention relates to a cleaning liquid for cleaning a semiconductor device substrate surface in a process for manufacturing a semiconductor device substrate such as a semiconductor element or a display device, which requires a highly clean substrate surface.
  • the cleaning solution and the cleaning method of the present invention are preferably used for cleaning a semiconductor material such as silicon, an insulating material such as silicon nitride, silicon oxide, glass, a low dielectric constant (Low_k) material, a transition metal or a transition metal compound, or the like.
  • a semiconductor material such as silicon
  • an insulating material such as silicon nitride, silicon oxide, glass
  • a low dielectric constant (Low_k) material a transition metal or a transition metal compound, or the like.
  • Removal of organic and metal contamination such as silica particles, alumina particles, fine particles (particles) such as organic particles, resist residue, etc.
  • Flat panel displays such as TFT LCD, microprocessor, Memory
  • a semiconductor device such as a CCD, silicon, Sani ⁇ silicon (S i 0 2), sub-micron dimensions or quarter micron on the surface of the substrate such as a glass Is used to form patterns and thin films. Therefore, in each of these manufacturing steps, it is extremely important to remove even a small amount of contamination on the substrate surface and to highly clean the substrate surface. It is difficult to remove all of the contamination, especially particle contamination and metal contamination, which are minute contaminations. However, since such contamination lowers the electrical characteristics and yield of the semiconductor device, it is necessary to remove such contamination as much as possible before bringing it to the next step. To remove such contamination, cleaning of the substrate surface with a cleaning liquid is generally performed.
  • an alkaline aqueous solution is known to be effective as a cleaning liquid used for removing particle contamination.
  • an aqueous ammonia solution, an aqueous potassium hydroxide solution, or an aqueous hydroxide solution is used for cleaning the surface of a semiconductor device substrate.
  • An alkaline aqueous solution such as an aqueous solution of tetramethylammonium is used, and cleaning with a cleaning solution containing ammonia, hydrogen peroxide, and water (referred to as “SC_1 cleaning solution” or “APM cleaning solution”) (“SC”).
  • SC_1 cleaning solution or “APM cleaning solution”
  • SC cleaning solution containing ammonia, hydrogen peroxide, and water
  • an acidic cleaning solution is also useful in addition to the above alkaline cleaning solution.
  • acidic cleaning solutions are effective for removing metal contamination on the substrate surface, but are not suitable for removing particle contamination.
  • acid cleaning solutions have various surfactants for the purpose of improving the removal of particle contamination. It has been proposed to add agents. For example, it has been proposed to clean silicon wafers using a specific surfactant and hydrofluoric acid (Japanese Patent Application Laid-Open No. Hei 7-216392).
  • wiring (hereinafter simply referred to as “wiring”) connecting small semiconductor elements in semiconductor devices, and electrodes (hereinafter simply referred to as “wiring”) in semiconductor devices.
  • New metal materials such as copper (Cu) and tungsten (W), are being introduced as metal materials used for electrodes.
  • Cu copper
  • W tungsten
  • Cu which has a lower resistance than the conventionally used aluminum alloy (A 1), is being adopted as a wiring material.
  • Another novel material is an interlayer insulating film between semiconductor elements having a laminated structure.
  • this interlayer insulating film a low dielectric constant film using a film made of an organic polymer material or an inorganic polymer material having a lower dielectric constant than the conventionally used SiO 2 film is being adopted.
  • This interlayer insulating film is exposed on the substrate together with the wiring during a substrate cleaning step (hereinafter, sometimes referred to as “post-processing”) performed after the metal wiring is formed on the surface of the semiconductor device during the manufacturing process of the semiconductor device. are doing.
  • post-processing a substrate cleaning step
  • tungsten is being introduced into the electrode as an electrode material having a low resistance and advantageous for fine processing.
  • the electrodes are usually exposed on the surface of the substrate during the step of cleaning the substrate before forming the metal wiring (hereinafter sometimes referred to as “pre-process”).
  • pre-process the step of cleaning the substrate before forming the metal wiring
  • the A1 wiring is easily affected by ultrapure water or organic solvents, because it is weak to strong acids and strong metals and is less affected by metal contamination than the previous process. Only a clean wash was performed.
  • Cu was used instead of A1
  • C u is one of pollutants disliked most Te convex in S i, fast diffusion rate of C u in oxide film (S i 0 2 film) in the semiconductor element surface, the adverse effects of Had a problem of far exceeding A1.
  • the wiring is formed by applying Cu plating to the insulating film in which the groove has been dug in advance (to form the Cu wiring), and then unnecessary portions are formed by CMP (C hemica 1 Mechanical Polishing), etc., the wiring must be formed by the so-called damascene method.
  • Surfactant precipitates as oil droplets in the cleaning solution at room temperature or when heated.- Does not cause turbidity, does not cause deterioration in cleaning performance, or causes oil droplets to remain on the substrate surface. .
  • the surfactant is a substance that does not adversely affect the natural environment, and the washing waste liquid can be properly treated.
  • anionic surfactants generally have no cloud point, so they have a high cleaning effect. It is possible to use the cleaning solution at a high temperature (for example, 80 ° C or higher) in anticipation of the above. However, since the foaming property is high, the operability in the cleaning device may be adversely affected.
  • nonionic surfactants have high cleaning performance and low foaming power, but generally have a low cloud point. Therefore, when a high cleaning effect is expected and cleaning is performed at a high cleaning liquid temperature, there is a problem that the surfactant appears as oil droplets in the cleaning liquid and remains on the substrate. Disclosure of the invention
  • the present inventors have intensively studied a substrate cleaning solution for a semiconductor device using a surfactant with respect to the above-mentioned problems.
  • surfactants used in cleaning liquids especially ethylene oxide-type surfactants, which are nonionic surfactants.
  • the ethylene oxide surfactant has a hydrocarbon group and a polyoxyethylene group in the same molecular structure.
  • the present inventors have found that, in the ethylene oxide surfactant having such a structure, the ratio (m) between the number of carbon atoms (m) contained in the hydrocarbon group and the number (n) of the oxishylene group in the polyoxyethylene group is determined. / n) is 1 to 1.5, the number of carbon atoms (m) is 9 or more, and the number of oxyethylene groups (n) in the polyoxyethylene group is 7 or more.
  • ethylene oxide surfactants within this specific range are solid and have low solubility in water at room temperature and atmospheric pressure. Therefore, such an ethylene oxide type surfactant has a low handling property in an industrial production process and has been avoided from being used.
  • a semiconductor device substrate cleaning liquid containing an alkali or organic acid prepared by heating and melting an ethylene oxide type surfactant within a specific range and dissolving it in water is unexpectedly substantially produced. Demonstrated good cleaning performance even without containing hydrogen peroxide. In particular, cleaning properties against fine particle contamination (particle size of 0.1 m order), which cannot be predicted from general cleaning effects Particle removal).
  • the above-mentioned cleaning solution for semiconductor device substrates is hydrophobic and easily repels the aqueous cleaning solution, and exhibits a sufficient wettability even on the surface of a low dielectric constant film having low particle removal properties, and has an excellent cleaning effect. did.
  • the present inventors have found these facts and completed the present invention.
  • the gist of the present invention resides in a cleaning liquid for a semiconductor device substrate and a cleaning method using the cleaning liquid, characterized by containing at least the following components (A), (B) and (C). .
  • Component (A) It has a hydrocarbon group which may have a substituent (excluding a phenyl group) and a polyoxyethylene group, and has the number of carbon atoms (m) in the hydrocarbon group and the polyoxyethylene group.
  • An ethylene oxide-type surfactant having a ratio (m / n) of the number of oxyshethylene groups (n) of 1 to 1.5, the number of carbon atoms (m) of 9 or more, and the number of oxyethylene groups (n) of 7 or more.
  • Component (C) alkali or organic acid
  • the cleaning solution of the present invention contains at least a specific surfactant as the component (A), a surfactant as the component (B), and an alkali or organic acid as the component (C).
  • the surfactant used as the component (A) has a hydrocarbon group which may have a substituent (excluding a phenyl group) and a polyoxyethylene group,
  • the ratio (m / n) of the number of carbon atoms (m) in the carbon group to the number of oxyethylene groups (n) in the polyoxyethylene group is 1 to 1.5, the number of carbon atoms (m) is 9 or more, and the number of oxyethylene groups
  • the ratio (m / n) is preferably between 1 and 1.4. When the number of carbon atoms (m) is less than 9, particle removability is reduced even when the (m / n) ratio is within the above-mentioned optimum range.
  • the carbon number (m) is preferably 9 to 16, more preferably 10 to 14.
  • the hydrocarbon group constituting component (A) has a hydrocarbon group as a substituent, the total number of carbon atoms in the main chain hydrocarbon group and the number of carbon atoms in the substituent hydrocarbon group is m And
  • (n) is preferably 7 to 16, more preferably 7 to 14.
  • ethylene oxide surfactant specified in the present invention, both the wettability of the cleaning liquid and the removability of particles are improved.
  • examples of the above-mentioned ethylene oxide surfactant include polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene alkylamine, and polyoxyethylene alkyl ether sulfate.
  • polyoxyethylene alkyl ether represented by the following general formula (II) is preferable from the viewpoint of the ability to remove particle contamination and the ability to prevent redeposition.
  • R 2 represents a hydroxyl group, an amino group, an alkoxy group, or an alkyl group optionally substituted with halogen, the number of carbon atoms (m) contained in the alkyl group is 9 or more, and (n) is 7 Represents the above numbers.
  • polyoxyethylene (n 8)
  • a plurality of ethylene oxide type surfactants having different (m) and (n) may be used in an optional ratio within the scope of the present invention.
  • the average value of (mZn) for all surfactants is 1 to 1.5
  • the average value of (m) is 9 or more
  • the average value of (n) is 7 or more. If the conditions are met, (m) is less than 9 or (m) is less than 7, even if (m / n) is less than 1.0 or more than 1.5 in each individual surfactant. There may be.
  • the content of the component (A) in the cleaning liquid usually 0001-1 wt%, the good Mashiku 0.0003 to 0.5 wt 0/0, more preferably 0.001 to 0, 1 by weight 0/6 Particularly preferably, it is 0.001 to 0.05% by weight. If the concentration of component (A) is too low, If the particle contamination removal performance is not sufficient and the concentration of the component (A) is too high, there is no change in the particle contamination removal performance, bubbling becomes remarkable, making the cleaning process unsuitable, and The load when biodegrading is increased.
  • the component (A) may contain metal impurities such as Na, K, and Fe in an amount of about 1 to several thousand ppm in a commercially available form.
  • component (A) is a source of metal contamination. Therefore, the surfactant used as the component (A) is preferably used after being purified.
  • the content of each metal impurity is usually 10 ppm or less, preferably 1 ppm or less, more preferably 0.1 ppm or less.
  • a purification method for example, a method in which a surfactant is dissolved in water and then passed through an ion exchange resin to cause the resin to capture metal impurities is preferable.
  • the cleaning liquid of the present invention among the metal impurities in the cleaning liquid, at least each of Na, Mg, A, K, Ca, Fe, Cu, Pb, and Zn has a content of 20%. It is preferably not more than 5 ppb, particularly preferably not more than 0.1 ppb.
  • a surfactant other than the component (A) may be used as long as the effects of the present invention are not impaired.
  • the surfactant other than the component (A) may be any of a cationic surfactant, an anionic surfactant and a nonionic surfactant.
  • anionic surfactants and nonionic surfactants include alkylbenzenesulfonic acids having 8 to 12 carbon atoms and Examples thereof include salts, alkylmethyltauric acid having 8 to 12 carbon atoms and salts thereof, and alkyl sulfates having 8 to 12 carbon atoms and salts thereof.
  • the nonionic surfactant include a surfactant composed of only polyoxyalkylene.
  • water is used as the component (B).
  • deionized water preferably ultrapure water
  • electrolytic water obtained by electrolysis of water, hydrogen water in which hydrogen gas is dissolved in water, and the like can be used.
  • an alkali or organic acid is used as the component (C). That is, the cleaning liquid of the present invention is an alkaline cleaning liquid or an acidic cleaning liquid.
  • alkali used in the present invention is not particularly limited, but typical alkalis include hydroxylamine ammonium (aqueous ammonia solution) and organic alkalis.
  • organic alkali include amines such as hydroxylamine, quaternary ammonium, amine, and amino alcohol.
  • a hydroxyl 4th grade ammonium Hydroxyl group, alkoxy group, alkyl group having 1 to 4 carbon atoms which may be substituted by halogen or carbon number:!
  • Preferred are those having from 4 to 4 hydroxyalkyl groups, and all of these substituents may be the same or different.
  • alkyl group examples include lower alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • hydroxyalkyl group examples include a hydroxymethyl group and a hydroxyethyl group.
  • lower hydroxyalkyl groups having 1 to 4 carbon atoms such as a hydroxy group, a hydroxypropyl group and a hydroxybutyl group.
  • quaternary ammonium hydroxide having the above substituent examples include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, and trimethyl (hydroxyethyl) ammonium hydroxide. (Commonly known as choline) and triethyl (hydroxyethyl) ammonium hydroxide.
  • TMAH tetramethylammonium hydroxide
  • tetraethylammonium hydroxide Trimethyl (hydroxyethyl) ammonium hydroxide.
  • choline choline
  • examples of the amines examples include ethylenediamine, monoethanolamine, and trimethanolamine.
  • alkalis ammonium hydroxide, tetramethylammonium hydroxide (TMAH), trimethyl (hydroxymethyl) are used for reasons such as cleaning effect, little metal residue, economy, and stability of cleaning solution.
  • TMAH tetramethylammonium hydroxide
  • Chill ammonium hydroxide (commonly known as choline) is preferred.
  • These alkalis may be used alone or two or more of them may be used in any ratio.
  • the concentration of the alkaline solution in the cleaning solution may be appropriately selected, but is preferably a concentration at which the pH of the cleaning solution becomes 9 or more alkaline. If the alkali concentration is too low and the pH is not high, the effect of removing contamination, which is the object of the present invention, may not be obtained. On the other hand, if the pH is too high, the effect of increasing the pH is not obtained, which is not economically disadvantageous and also increases the risk of damaging the substrate surface by etching. Accordingly, the pH of the alkaline cleaning solution is preferably 9 to 13, more preferably 10 to 12.5, and particularly preferably 10.5 to 12.
  • the type of the organic acid used in the present invention is not particularly limited. Or an organic sulfonic acid is preferred.
  • organic carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, ethylmethylacetic acid, trimethylacetic acid, oxalic acid, succinic acid, malonic acid, citric acid, tartaric acid, and malic acid. No. Among these, one or more selected from the group consisting of acetic acid, propionic acid, oxalic acid, succinic acid, malonic acid, citric acid, tartaric acid, and malic acid are preferable, and from the group of acetic acid, oxalic acid, and citric acid, One or more selected ones are more preferred.
  • Acetic acid is used as an etchant material for semiconductor substrates, etc., and is most preferable because it can be obtained at a low price with high purity and low content of metal impurities by distillation operation, and does not generate powder due to water evaporation. .
  • Organic sulfonic acids include methanesulfonic acid, ethanesulfonic acid, n-propanesulfonic acid, i-propanesulfonic acid, n-butanesulfonic acid, phenylsulfonic acid and the like. Of these, methanesulfonic acid and / or ethanesulfonic acid are preferred, and methanesulfonic acid is particularly preferred.
  • the above organic acids may be used alone, or two or more kinds may be used in an optional ratio.
  • the concentration of the organic acid in the washing solution may be appropriately selected, but is preferably a concentration at which the pH of the acidic washing solution is 1 to 5.
  • concentration of the organic acid is too low and the pH is not sufficiently low, the effects of removing contamination and preventing adhesion, which are the objects of the present invention, may not be obtained.
  • concentration is too high, the effect of lowering the pH is not obtained, which is not only economically disadvantageous but also may cause corrosion of the substrate surface, which is not preferable.
  • the pH of the acidic washing solution is preferably 2-3.
  • a complexing agent In the cleaning solution of the present invention, it is preferable to add a complexing agent, since an extremely highly cleaned surface with further reduced metal contamination on the substrate surface can be obtained. Any conventionally known complexing agent can be used.
  • the type of complexing agent may be selected by comprehensively judging the contamination level on the substrate surface, the type of metal, the required cleanliness level on the substrate surface, the cost of the complexing agent, the chemical stability, etc. For example, the following (1) to (4) are exemplified.
  • amino acids such as glycine; iminodiacetic acid, nitrite triacetic acid, ethylenediamine tetraacetic acid [EDTA], trans-1,2-diaminocyclohexanetetraacetic acid [CyDTA], and methylenetriaminepentaacetic acid
  • Nitrogen-containing carboxylic acids such as DTPA] and triethylenetetramine hexaacetic acid [TTHA]; ethylenediaminetetrakis (methylenephosphonic acid) [EDTPO], nitrilotris (methylenephosphonic acid) [NTPO], propylenediaminetetra (methylenephosphonic acid) [ PDTMP] and other nitrogen-containing phosphonic acids.
  • catechol for example, catechol, resorcinol, phenols such as Tiron, and the force s such a derivative conductor.
  • EDDHA Ethylenediaminediorthohydroxyphenylacetic acid
  • ethylenediamine diorthohydroxyphenylacetic acid [EDDHA], ethylenediamine monoN, N, monobis [(2-hydroxy-5-methylphenyl) acetic acid] [EDDHMA], ethylenediamine monoN, N, monobis [(2-hydro Aromatic nitrogen-containing carboxylic acids such as [xyl-5-chlorophenyl) acetic acid] [EDDHCA], ethylenediamine-N, N, monobis [(2-hydroxy-5-sulfophenyl) acetic acid] [EDDHSA]; ethylenediamine-N, N Aromatic nitrogen-containing phosphonic acids such as 1,2-bis [(2-hydroxy-15-methylphenyl) phosphonic acid] and ethylenediamine-N, N'-bis [(2-hydroxy-15-phosphophenyl) phosphonic acid].
  • EDDHA ethylenediamine diorthohydroxyphenylacetic acid
  • EDDHMA ethylenediamine monoN, N, monobis [(2-hydroxy-5-methyl
  • amines such as ethylenediamine, 8-quinolinol, and 0-phenanthroline
  • carboxylic acids such as acetic acid, oxalic acid, and tartaric acid
  • hydrogen halides such as hydrofluoric acid, hydrochloric acid, hydrogen bromide, and hydrogen iodide.
  • oxo acids such as phosphoric acid and condensed phosphoric acid, and salts thereof.
  • the complexing agent may be in the form of an acid or in the form of a salt such as an ammonium salt.
  • nitrogen-containing carboxylic acids such as ethylenediaminetetraacetic acid [EDTA] and diethylenetriaminepentaacetic acid [DTPA] for reasons of cleaning effect and chemical stability; ethylenediaminetetrakis (methylenephosphonic acid)
  • Nitrogen-containing phosphonic acids such as [EDTPO:], propylenediaminetetra (methylenephosphonic acid) [PDTMP]; ethylenediaminediorthohydroxyphenylacetic acid [EDDHA] and its derivatives; N, N, —bis (2-hydroxy Benzyl) Ethylenediamine monoN, N, monoacetic acid [HBED] is preferred.
  • EPDHA ethylenediamine mono N, N, monobis [(2-hydroxy-5-methylphenyl) acetic acid]
  • EDDHMA diethylenetriamine pentaacetic acid
  • DTPA ethylenediaminetetraacetic acid
  • PTMP propylenediaminetetra (methylenephosphonic acid)
  • the above-mentioned complexing agents may be used alone, or two or more kinds may be used in any ratio.
  • the concentration of the complexing agent in the cleaning liquid, the type and amount of contaminant metal impurity may be selected arbitrarily according to the required cleanliness levels on the substrate surface force? Usually l ⁇ 10000pp m, preferably 5 to: L000 ppm, more preferably 10 to 200 ppm. If the concentration of the complexing agent is too low, the effect of removing the contamination and prevention of adhesion by the complexing agent cannot be obtained.If the concentration is too high, the effect corresponding to the increase in the concentration cannot be obtained, which is economically disadvantageous. The risk of complexing agents adhering to the substrate surface and remaining after surface treatment increases.
  • the complexing agent contains about 1 to several thousand ppm of metal impurities such as Fe AKZn in a commercially available reagent, so that the complexing agent used in the present invention is a metal contamination source. Can be considered. These metals are present in the form of a stable complex with the complexing agent at the beginning, but are released when the complexing agent is decomposed during long-term use as a surface cleaning solution, and the substrate is removed. Attaches to surface. Therefore, it is preferable that the complexing agent used in the present invention be purified and used in advance.
  • the content of each of the contained metal impurities is usually 5 ppm or less, preferably 1 ppm or less, more preferably 0.1 ppm or less. Purification methods include, for example, dissolving the complexing agent in an acidic or alkaline solution, removing the insoluble impurities by filtration, neutralizing again to precipitate crystals, and separating the crystals from the liquid.
  • the preferred method is
  • the cleaning liquid of the present invention may contain other components in an arbitrary ratio as long as the performance is not impaired.
  • Other components include sulfur-containing organic compounds
  • R 3 (R is an alkyl group having 1 to 4 carbon atoms), N (ROH) 3 (R is an alkyl group having 1 to 4 carbon atoms), perylene, thioperia, etc.), water-soluble polymer (polyethylene glycol, polypropylene)
  • Corrosion inhibitors such as alkyl alcohol compounds (ROH (R is an alkyl group having 1 to 4 carbon atoms)), acids such as sulfuric acid and hydrochloric acid, reducing agents such as hydrazine, hydrogen, argon, nitrogen, etc. Dissolved gas, hydrofluoric acid, ammonium fluoride, BHF, etc. Etching promoters that can be expected to have a removal effect are exemplified.
  • oxidizing agents such as hydrogen peroxide, ozone, and oxygen.
  • the concentration of hydrogen peroxide in the cleaning solution is usually 0.01 to 5% by weight, preferably 0.1 to 1% by weight.
  • wiring / device element electrodes of a semiconductor device made of a metal material which reacts and dissolves with hydrogen peroxide may be exposed on the surface of the substrate to be cleaned.
  • a metal material include a transition metal such as Cu and W or a transition metal compound.
  • the cleaning liquid used for the cleaning does not substantially contain hydrogen peroxide.
  • the cleaning liquid of the present invention shows sufficient cleaning performance without adversely affecting such a metal material even without substantially containing hydrogen peroxide.
  • substantially does not contain hydrogen peroxide refers to a material on a substrate to be cleaned, for example, a wiring material such as Cu or W, an electrode material, and a low dielectric constant film.
  • a wiring material such as Cu or W
  • an electrode material such as an electrode material
  • a low dielectric constant film it means that hydrogen peroxide does not cause adverse effects such as corrosion and alteration. In other words, it means that these materials sufficiently function as wiring, electrodes, and the like when used as a semiconductor device.
  • hydrogen peroxide is not contained in the cleaning solution of the present invention, and even if it is contained, it is preferable that the content thereof be kept low.
  • the content is, for example, 10 ppm or less, preferably 1 ppm, more preferably 10 ppm or less.
  • the cleaning liquid of the present invention is used for cleaning the surface of a substrate such as a semiconductor, a glass, a metal, a ceramic, a resin, a magnetic material, and a superconductor, in which metal contamination and particle contamination pose a problem.
  • a semiconductor device in the process of manufacturing a substrate for a semiconductor device such as a semiconductor device or a display device that requires a particularly clean substrate surface. It is suitably used for cleaning the surface of a substrate for substrates. Wiring, electrodes and the like may be present on the surface of these substrates.
  • Suitable materials for the wiring or electrodes S i, G e, G a
  • a s semiconductor material such as; S i 0 2, silicon nitride, glass, a low dielectric constant material, Sani ⁇ A Rumi two ⁇ beam, a transition metal oxide things (Sani ⁇ titanium, tantalum oxide, Sani ⁇ hafnium, zirconium oxide, etc.), (B a, S r ) T i 0 3 (BST), polyimide, an insulating material such as an organic thermosetting resin; W, Examples thereof include metals such as Cu and A1, or alloys thereof, silicides, and nitrides.
  • Low-permittivity material is a general term for materials whose relative permittivity is 3.5 or less.
  • the dielectric constant of the S i 0 2 is Ru 3.8 to 3.9 Der.
  • the cleaning solution of the present invention is suitably used for cleaning a substrate for a semiconductor device having a transition metal or a transition metal compound on the surface.
  • the transition metal include W, Cu, Ti, Cr, Co, Zr, Hf, Mo, Ru, Au, Pt, and Ag.
  • the transition metal compound these transition metal nitrides, oxides, silicides and the like can be mentioned. Of these, W and / or Cu are preferred.
  • the step of cleaning the substrate having tungsten on its surface includes cleaning the surface of the substrate having a gate electrode and silicon when tungsten is used as a gate electrode material. Specifically, a cleaning step after forming a tungsten film on a semiconductor device, in particular, a cleaning step after dry etching of a tungsten film, and a cleaning step after ion implantation into a silicon exposed portion. .
  • a cleaning step after forming a tungsten film on a semiconductor device in particular, a cleaning step after dry etching of a tungsten film, and a cleaning step after ion implantation into a silicon exposed portion.
  • an ultra-fine (for example, a gate electrode having a width of about 0.15 m) gate electrode is formed of tungsten, which is likely to be broken by ultrasonic cleaning or brush scrub. In this case, it is suitable for cleaning the gate electrode and the substrate surface.
  • the step of cleaning the substrate having Cu on the surface includes cleaning the surface of the substrate having Cu wiring and an interlayer insulating film when Cu is used as a wiring material. Specifically, the cleaning process after forming a Cu film on a semiconductor device, The cleaning process is performed after the CMP (Chemical Mechanical Polishing) is performed on the u film, and the cleaning process is performed after forming a hole in the interlayer insulating film on the wiring by dry etching.
  • CMP Chemical Mechanical Polishing
  • the cleaning liquid of the present invention is also suitably used for cleaning a substrate for a semiconductor device having a low dielectric constant material on the surface as an interlayer insulating film material.
  • Low-k materials can be broadly divided into three types: organic polymer materials, inorganic polymer (siloxane-based) materials, and porous (porous) materials.
  • organic polymer materials include Polyimide, BCB (Benzocyclobutene), Flare (Honeywell), SiLK (Dow Chemical), etc.
  • Inorganic polymer materials include FSG (Fluorinated silicate glass), BLACK DIAMOND (Applied Materials), Aurora (Japan ASM) and the like.
  • the cleaning liquid of the present invention is suitably used for cleaning the surface of a semiconductor device substrate regardless of the presence or absence of electrodes and wiring materials on the substrate surface.
  • the cleaning liquid of the present invention is suitably used for cleaning a semiconductor device substrate having a hydrophobic property in which the contact angle of water on the substrate surface is 60 ° or more.
  • the washing solution of the present invention may be prepared by a conventionally known method.
  • constituent components of the cleaning liquid for example, surfactant, hydroxylated ammonium, water, and other components such as a complexing agent as required
  • any two or three or more components are previously blended, and thereafter, The remaining components may be mixed together, or all may be mixed at once.
  • the semiconductor device substrate cleaning liquid of the present invention can be used for a semiconductor device substrate having a metal material having a low resistance to a chemical solution such as hydrogen peroxide on the surface thereof. Since it does not substantially corrode the new material, it is a cleaning solution that can be used in both the pre-process and post-process and has an excellent cleaning effect.
  • another gist of the present invention is that a semiconductor device having at least a semiconductor element electrode or a metal wiring on a surface thereof, characterized by satisfying the following conditions (a), (b) and (c). Exists in substrate cleaning solution.
  • metal contaminants amount is 1 0 0 0 ⁇ 5 0 0 0 (X 1 0 1 0 atoms / cm 2) der That In the case where the substrate was cleaned, contamination metal content after washing is less than or equal to 10 (X 10 1Q at 0 ms / cm ⁇ ).
  • the above provisions (b) and (c) specify the properties of the cleaning liquid of the present invention, but do not specify the cleaning conditions under which the cleaning liquid of the present invention is used.
  • “substantially does not corrode the semiconductor element electrode and the metal wiring” means that the semiconductor element electrode and the metal wiring on the substrate to be cleaned, specifically, for example, W and Cu It does not cause adverse effects such as corrosion and alteration on electrode materials and wiring materials such as, and it means that these materials function sufficiently as electrodes and wiring when used as semiconductor devices.
  • the condition (c) is that when the object to be cleaned is a substantially disk-shaped substrate surface, that is, a substantially circular substrate surface, even if the cleaning is performed for a short time, the substrate surface is highly purified regardless of the position of the substrate surface. Means that you can do it.
  • the surface of a substantially circular substrate having a radius r and having particles having a particle diameter of 0.1 or more of 80 00 to 100000 (pieces of 0.03 m 2 ) is cleaned for a cleaning time of 't: 0.5 to 1 [minute].
  • the remaining particles are reduced to 200 t or less, and the outer circumference is relatively small. Even within a circumference of 0.9 r, including the part, the number of particles is 800 / t or less, which means that the substrate surface can be highly cleaned.
  • cleaning liquid for semiconductor device substrates of the present invention means that the semiconductor device substrate is cleaned with a cleaning liquid by a cleaning method as described below.
  • the cleaning method is not particularly limited as long as it is a method which can be usually employed when cleaning a substrate for a semiconductor device.
  • the method of contacting the cleaning liquid with the substrate is a spin method that rotates the substrate at high speed while flowing the cleaning liquid on the substrate, and the temperature of the cleaning liquid should be in the range of room temperature to 90 ° C. Is preferred.
  • the cleaning method of the present invention is performed by a method in which a cleaning liquid is brought into direct contact with a substrate.
  • the method of contacting the cleaning liquid with the substrate is as follows: a diff in which the cleaning tank is filled with the cleaning liquid and immersed in the substrate: a spin type in which the substrate is rotated at a high speed while the cleaning liquid flows on the substrate from a nozzle, and the liquid is sprayed on the substrate. And a spray type for washing.
  • Devices for performing such cleaning include a batch-type cleaning device for simultaneously cleaning a plurality of substrates contained in a cassette, and a single-wafer-type cleaning device for mounting one substrate on a holder and performing cleaning. is there.
  • the washing time is usually 30 seconds to 30 minutes, preferably 1 to 15 minutes for a batch type washing apparatus, and usually 1 second to 15 minutes, preferably 5 seconds to 5 minutes for a single wafer type washing apparatus. 5 minutes. If the cleaning time is too short, the cleaning effect is not sufficient, and if it is too long, the improvement of the cleaning effect is small and the throughput is reduced.
  • the cleaning liquid of the present invention can be applied to any of the above methods, it is preferably used for spin-type or spray-type cleaning, since more efficient decontamination can be achieved in a short time. Further, if the present invention is applied to a single-wafer cleaning apparatus in which the reduction of the cleaning time and the amount of the cleaning liquid used are problematic, these problems can be solved, which is preferable.
  • the temperature of the cleaning solution is usually room temperature, but for the purpose of improving the cleaning effect, it is preferable to heat the cleaning solution to about 40 to 701 :.
  • the silicon is exposed on the surface
  • the substrate is subjected to a heat treatment step at a temperature of 300 ° C or more to be thermally decomposed, or is subjected to ozone water treatment. Then, it is preferable to oxidatively decompose the organic matter.
  • the cleaning method of the present invention is preferably used in combination with a cleaning method using physical force, for example, mechanical cleaning such as scrub cleaning using a cleaning brush or ultrasonic cleaning.
  • a cleaning method using physical force for example, mechanical cleaning such as scrub cleaning using a cleaning brush or ultrasonic cleaning.
  • ultrasonic irradiation or brush scrub in combination, since the removability of particle contamination is improved and the cleaning time is shortened.
  • a resin brush for cleaning after CMP it is preferable to use.
  • the material of the resin brush can be arbitrarily selected, it is preferable to use, for example, PVA (polyvinyl alcohol). Irradiating the substrate with ultrasonic waves having a frequency of 0.5 MHz or more is preferable because the synergistic action with the surfactant significantly improves the removability of particles. Further, before and / or after the cleaning method of the present invention, cleaning with electrolytic ionic water obtained by electrolysis of water or hydrogen water in which hydrogen gas is dissolved in water may be combined. BEST MODE FOR CARRYING OUT THE INVENTION
  • Washing method Scrub type washing (washing temperature: room temperature, washing time t: 1 minute)
  • Measuring device "LS-5000" manufactured by Hitachi Electronics Engineering (edge cut: 40 mm)
  • the number of particles on the substrate surface before washing is 8000 ⁇ ; 100000 [pcs Z 0.03 m 2 ], after washing
  • the number of particles is the number within a circle having a radius of 0.6 r, which is the same as the center of the substrate.
  • a SiO 2 particle-attached substrate was prepared in the same manner as in Example 1. Then, using the shown to cleaning solution in Table 2, the cleaning time except for using inter 0.5 minutes, in the same manner as in Example 1 were washed S I_ ⁇ 2 particles adhered substrate to obtain a cleaned substrate. Table 2 shows the results.
  • the wettability evaluation in Table 2 was performed by the following method. That is, the low dielectric constant film (S i OC: carbon-containing S i 0 2) with a test piece (2 cm square) immersed perpendicularly to each washing liquid shown in Table 2. After 0.5 minute, the test piece was pulled out vertically and evaluated by the ratio of the area with the washing liquid to the total area of the test piece.
  • the evaluation criteria were: ⁇ : 80% or more, ⁇ : 50% or more and less than 80%, X: less than 50%.
  • Washing method Scrub type washing (washing temperature: room temperature, washing time t: 0.5 minutes)
  • Low dielectric constant film the (S i OC carbon containing S i 0 2) with a 8-inch silicon substrate (disk-shaped substrate of radius r is 4 inches), was surface-treated for 1 minute with 0.5 wt% hydrofluoric acid Then, it was immersed in the SiO 2 slurry solution for 10 minutes. The immersed substrate was washed with ultrapure water for 1 minute, and spin-dried with a multi-spinner (“KS SP-201” manufactured by Riki Ijo Co., Ltd.). Thereafter, the number of particles adhering to the substrate surface with a laser surface inspection device (product of Hitachi Electronics Engineering Co., Ltd. "LS- 6600”) was measured, 0. 11 mu m or more S i 0 2 particles above a certain quantity (however, the upper limit Is 100000 pieces).
  • KS SP-201 manufactured by Riki Ijo Co., Ltd.
  • the above-mentioned substrate having the SiO 2 particles attached thereto was brush-scrubbed with a brush made of PVA by the above-mentioned multi-spinner to remove particles. Washing with a washing solution was performed at room temperature for 0.5 minutes. Thereafter, the substrate was washed with ultrapure water for 1 minute, and then spin-dried to obtain a washed substrate. Table 3 shows the results.
  • Washing method Scrub type washing (washing temperature: room temperature, washing time t: 0.5 min)
  • Measuring device “LS-6600” manufactured by Hitachi Electronics Engineering (edge cut: 10 mm)
  • the number of particles on the substrate surface before cleaning is 20000 to 100000 [pieces / 0.03 m 2 ].
  • the number of particles after cleaning is the number within a circle having a radius of 0.9 r and having the same center as the substrate.
  • a SiO 2 particle-attached substrate was prepared in the same manner as in Example 1. Then, using the shown to the cleaning solution in Table 4, the cleaning time except for using inter 0.5 minutes, in the same manner as in Example 1 were washed S i 0 2 particles adhered substrate to obtain a cleaned substrate. Table 4 shows the results.
  • Washing method Scrub type washing (washing temperature: room temperature, washing time t: 0.5 minutes)
  • Measuring device “LS-5000” manufactured by Hitachi Electronics Engineering (edge cut: 40 mm)
  • the number of particles on the substrate surface before cleaning is 8000 to 100000 [pcs Z 0.03 m 2 ].
  • the number of one ticicle is the number within a circle having a radius of 0.6 r and the same center as the substrate.
  • a 4-inch silicon substrate (disc-shaped substrate with a radius of r s and 2-inch) with a thermal oxide film with a thickness of about 100 nm on the substrate surface is exposed to the air for 3 hours to attach airborne substances.
  • the substrate had 10,000 or more particles with a particle size of 0.2 / m or more (the upper limit was 100,000).
  • the substrate was immersed for 10 minutes in each of the cleaning liquids shown in Table 3 controlled at a temperature of 50 ° C., washed with running running pure water for 10 minutes, and dried with a spin drier. Table 5 shows the measurement results of the number of particles remaining on the substrate after the cleaning process.
  • Example 13 as a cleaning solution, 29 weight 0/0 hydroxide Anmoniumu solution, 50 wt% aqueous hydrogen peroxide, ultrapure water volume ratio of 1: 4 was mixed at 20 to prepare solution (APM cleaning liquid ) Was evaluated in the same manner as in Example 13 except that) was used. Table 5 shows the results.
  • the cleaning liquid of Comparative Example 11 has a relatively small number of adhered particles after cleaning.However, the cleaning liquid contains hydrogen peroxide, so it cannot be applied to new materials in the future and will not be usable in the future. .
  • APM 2 9 weight 0/0 ammonia ice, 3 0 wt 0/0 hydrogen peroxide and pure water volume ratio of 1: 2: a solution obtained by mixing at 4 0
  • washing temperature 50 ° C, washing time t: 10 minutes (edge cut: 10 mm)
  • a 4-inch silicon substrate with a natural oxide film (a disc-shaped substrate with a radius r of 2 inches) was immersed in a 0.5% by weight aqueous HF solution for 5 minutes to obtain a substrate from which the surface oxide film had been removed.
  • the number of particles having a particle size of 0.2 ⁇ m or more remaining on the substrate after the cleaning treatment was measured using a substrate surface inspection device (“LS-5000” manufactured by Hitachi Electronics Engineering Co., Ltd.). Table 6 shows the results.
  • a 4-inch silicon substrate (disk-shaped substrate with a radius r of 2 inches) was prepared by removing the surface native oxide film by immersion treatment in a 0.5% by weight HF aqueous solution for 5 minutes. This was immersed in a cleaning solution described in Table 5 for each temperature controlled for a predetermined time, washed with running running pure water for 5 minutes, and dried with a spin drier. Immediately after the substrate was dried, Rms (nm), which is the standard deviation of the Z-axis displacement of the substrate surface, was measured with an atomic force microscope (Digital & Instruments, NanoScopellla). Table 7 shows the results.
  • the surface roughness of the substrate is visually evaluated. The following results were obtained. That is, in the case of Comparative Examples 15 and 16, the number of crater-like irregularities having a diameter of about 1 to 10 mm on the substrate surface and the surface roughening force such as interference fringes over the entire substrate surface were observed. Was not observed.
  • a test piece of about 100 nm-thick polycrystalline polysilicon from which a surface oxide film was removed by immersion treatment in a 0.5% by weight HF aqueous solution for 5 minutes was prepared.
  • the test piece was immersed in each of the cleaning liquids described in Table 6 at a temperature of 50 ° C. for 10 minutes, washed with running running pure water for 5 minutes, and dried with a nitrogen probe.
  • the thickness of the polycrystalline polysilicon was measured with an optical interference type film thickness measuring device (“Nanospec L-6100” manufactured by Nanometrics). The etching rate was calculated from the film thickness measurement before and after the cleaning treatment. Table 8 shows the results.
  • PEG 400 manufactured by NOF Corporation: Condensation product of oxytylene, molecular weight 400
  • Processing temperature 50 ° C, processing time t: 10 minutes
  • the cleaning liquid of the present invention suppresses the etching rate of the substrate surface with respect to a simple aqueous solution, and is used as a substrate cleaning liquid for semiconductor devices. It turns out that it is excellent.
  • APM 29 wt% ammonia water, 30 wt% hydrogen peroxide solution and pure water mixed at a volume ratio of 1: 2: 40 Treatment temperature: 0 ° C. Treatment time t: 10 minutes
  • a 4-inch silicon substrate (disc-shaped substrate with a radius r of 2 inches) was immersed in an APM cleaning solution containing metal ions (Fe, Cu).
  • the APM cleaning liquid, 2 9 weight 0/0 aqueous ammonia, 3 1 wt% aqueous hydrogen peroxide and water volume ratio of 1: 1 were mixed with 5, metal content thereto F e (20 ppb), C It was prepared by adding a metal ion-containing aqueous solution so as to obtain u (1 ppm).
  • the immersed silicon substrate was washed with ultrapure water for 10 minutes and dried by blowing nitrogen to obtain a metal-contaminated silicon substrate.
  • the analysis of the contaminated metals (Fe, Cu) on the silicon substrate was performed for both the contaminated silicon substrate and the cleaned silicon substrate by the following method.
  • the metal on the surface of the substrate is recovered by treating the substrate with an aqueous solution containing 0.1% by weight of hydrofluoric acid and 1% by weight of hydrogen peroxide, and is analyzed by an inductively coupled plasma mass spectrometer (ICP-MS). Measure the amount of metal and convert it to the metal concentration (at oms / cm 2 ) on the substrate surface.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the above silicon substrate contaminated with metal was cleaned by a dip cleaning method using the cleaning liquid shown in Table 10 at a cleaning liquid temperature of 60 ° C and a cleaning time of 10 minutes. Analysis results of contaminated silicon substrate and residual metal on cleaned silicon substrate surface
  • Table 10 shows (F e, Cu).
  • Example 21 C 12 H 25 0 (C 2 H 4 O) n H 12 11 1.1 50 TMAH 50 EDDHA 100 5.2 ⁇ 1 Comparative Example 21 TMAH 50 682 139 washing ⁇ (silicon ⁇ er Ha contaminated with metals) 1000- 3000 3000-5000 Cleaning method: Dip cleaning
  • the cleaning liquid of the present invention is excellent in removing fine particles (particles) attached to a hydrophobic low dielectric constant film.
  • the cleaning liquid of the present invention has better removability even for particles adhering to airborne substances from airborne substances.
  • the cleaning solution of the present invention is excellent in that it can be used in both the pre-process and the post-process, even if the cleaning solution is a semiconductor device substrate on the surface of which a material having low resistance to a chemical such as hydrogen peroxide is used. It is clear that this is a cleaning solution having a good cleaning effect.
  • a semiconductor material such as silicon, an insulating material such as silicon nitride, silicon oxide, glass, a low dielectric constant material, a transition metal or a transition metal compound, etc. is partially or entirely coated on the surface. Effectively removes fine particles (particles), organic contaminants, and metallic contaminants adhering to the surface of the substrate by cleaning, and can suppress adhesion even when fine particles are mixed in the system. is there. In particular, it improves the wettability of hydrophobic low-dielectric-constant materials that are easy to repel chemicals, and has excellent cleaning properties.

Description

明 細 書 半導体デバイス用基板の洗浄液および洗浄方法 技術分野
本発明は、 半導体デバイス用基板の洗浄液および洗浄方法に関し、 金属汚染 やパーティクル汚染が問題となる半導体、 ガラス、 金属、 セラミックス、 樹脂、 磁性体、 超伝導体などの基板表面の洗浄に使用される洗浄液に関する。 詳しく は、 本発明は、 高清浄な基板表面が要求される、 半導体素子やディスプレイデ バイス用などの半導体デバイス用基板を製造する工程における、 半導体デバイ ス用基板表面を洗浄するための洗浄液およぴ洗浄方法に関する。
本発明の洗浄液および洗浄方法は、 特に、 シリコン等の半導体材料、 窒化シ リコン、 酸化シリコン、 ガラス、 低誘電率 (L o w_ k ) 材料などの絶縁材料、 遷移金属または遷移金属化合物などを表面の一部または全面に有する半導体デ バイス用基板に於いて、 基板表面に付着したシリカ粒子、 アルミナ粒子、 有機 物粒子の様な微小粒子 (パーティクル) 、 レジスト残渣などの有機汚染、 金属 汚染を除去し、 併せて再付着を抑制し、 基板表面の荒れや腐食を引き起こすこ となく高度に清浄化することが出来る。 背景技術
T F T液晶などのフラットパネルディスプレイ、 マイクロプロセッサー、 メ モリー、 C C D等の半導体デバイスの製造工程では、 シリコン、 酸ィ匕シリコン ( S i 02) 、 ガラス等の基板表面にサブミクロン乃至クォータミクロンの寸法 でパターン形成や薄膜形成を行っている。 従って、 これらの製造の各工程に於 いては、 当該基板表面の僅かな汚染も除去し、 基板表面を高度に清浄化するこ とが極めて重要な課題となっている。 汚染の中でも、 特に、 微小な汚染である パーティクル汚染おょぴ金属汚染は、 その全てを除去することが困難である。 しかし、 斯かる汚染によって半導体デバイスの電気的特性や歩留まりが低下す るため、 この様な汚染を次工程に持ち込む前に極力除去する必要がある。 そし て、 この様な汚染の除去には、 洗浄液による基板表面の洗浄が一般的に行われ ている。
近年、 半導体デバイスの製造に於いては一層のスループット向上、 生産効率 化が要求されている。 そして、 益々微細化 .高集積化傾向にある半導体デバイ ス製造用の基板については、 基板表面のパーティクル汚染おょぴ金属汚染の除 去性のみならず除去後の再付着防止性に優れ、 且つ、 迅速に基板表面を高度に 清浄ィヒし得る洗浄液およぴ洗浄方法が望まれている。
一般に、 パーティクル汚染の除去に使用する洗浄液としては、 アルカリ性水 溶液が"^効であることが知られている。 半導体デバイス用基板表面の洗诤には、 アンモニア水溶液、 水酸化カリウム水溶液、 水酸化テトラメチルアンモニゥム 水溶液などのアルカリ性水溶液が使用されている。 また、 アンモニア、 過酸ィ匕 水素、 水を含む洗浄液 ( 「S C _ 1洗浄液」 又は 「A P M洗浄液」 という。 ) による洗浄 ( 「S C— 1洗浄」 又は ΓΑ Ρ Μ洗浄」 という。 ) も広く使用され ている (W.Kern and D.A.Puotinen: RCA Review, p.187, June (1970)) 。 そして、 最近では、 この様なアルカリ性洗浄液の性能を改善すべく、 具体的 には半導体デバイス用基板表面のエッチングを抑制し、 また、 表面荒れを抑制 し且つ基板表面の濡れ性も向上させ、 そして、 パーティクル汚染の除丟性を向 上させること等を目的として、 アルカリ性洗浄液に様々な界面活性剤を添加す ることが種々提案されている。
例えば、 洗浄液による基板表面の荒れを抑制するため、 アルカリ性の過酸ィ匕 水素水溶液に界面活性剤を添加し、 基板表面に対する洗浄液の接触角を 1 0度 以下にすることが提案されている (特開平 5— 3 3 5 2 9 4号公報) 。 また、 基板表面への洗浄液の濡れ性を向上させるため、 エチレンォキサイドの付加モ ル数が 3〜1 0であるエチレンォキサイド付加型非イオン系界面活性剤を添カロ した過酸化水素含有アルカリ性洗浄液が提案されている (特許第 3 1 6 9 0 2 4号公報)
また、 代表的な半導体デバイス基板であるシリコン基板の表面のエッチング を抑制するため、 アルカリ性洗浄液に様々な界面活性剤を添加することが提案 されている (特開 2 0 0 1 - 4 0 3 8 9号公報) 。 特に、 有機物汚染の除去性 能を向上させるために、 特定の界面活性剤を含有する半導体デバイス用基板の 洗浄に使用する洗浄液力 ¾1案されている (特開平 1 1— 1 2 1 4 1 8号公報) 。 汚染除去性向上のため、 過酸化水素含有アルカリ性洗浄液にアルキルべンゼン スルホン酸を添加することも提案されている (特開平 7— 2 4 5 2 8 1号公報) 。 また、 パーティクル除去性向上のため、 フルォロアルキルスルホンアミ ド化合 物よりなるフッ素系界面活性剤を A P M洗浄液に添加することも提案されてい る (特開平 5 _ 2 5 1 4 1 6号公報) 。
また、 半導体デバイス用基板の洗浄に於いては、 上記のアルカリ性洗浄液以 外に、 酸性洗诤液も有用である。 一般的に、 酸性洗浄液は基板表面の金属汚染 除去には有効だが、 パーティクル汚染の除去には不向きであることから、 パー テイクル汚染の除去性向上などを目的として、 酸性洗浄液にも様々な界面活性 剤を添加することが提案されている。 例えば、 特定の界面活性剤とフッ化水素 酸を使用してシリコンゥエーハを洗浄することが提案されている (特開平 7 - 2 1 6 3 9 2号公報)
また、 シリコンゥエーハの洗浄に使用するフッ酸水溶液に、 界面活性剤およ びオゾンを添加することが提案されている (特開平 8— 6 9 9 9 0号公報) 。 金属配線を表面に有する基板に吸着した金属不純物およびパーティクル汚染の 除去のため、 分散剤および/または界面活性剤に有機酸化合物を添加すること も提案されている (特開 2 0 0 1— 7 0 7 1号公報) 。
また、 近年、 半導体デバイスの微細化 ·高積層化に伴い、 半導体デバイスに おける微小な半導体素子間を繋ぐ、 配線 (以下、 単に 「配線」 という。 ) や、 半導体素子における電極 (以下、 単に 「電極」 という。 ) に使用する金属材料 として、 新たに銅 (C u ) やタングステン (W) 等の新金属材料が導入されつ つある。 具体的には、 例えば、 配線材料としては、 従来から使用されたきたァ ルミニゥム (A 1 ) より抵抗値が低い C uが採用されつつある。
また、 他の新規な材料として、 積層構造を有する半導体素子間の層間絶縁膜 が挙げられる。 この層間絶縁膜としては、 従来から使用されている S i 02膜 よりも、 誘電率の低い、 有機ポリマー材料や無機ポリマー材料からなる膜を使 用した低誘電率膜が採用されつつある。 この層間絶縁膜は、 半導体デバイスの 製造工程中、 金属配線がその表面に形成された後に行う基板の洗浄工程 (以下、 「後工程」 ということがある。 ) の際、 配線と共に基板上に露出している。 また、 電極には、 抵抗値が低く微細加工に有利な電極材料として、 タングス テンが導入されつつある。 電極は、 通常、 金属配線形成前の基板の洗浄工程 (以下、 「前工程」' ということがある。 ) の際、 基板表面上に露出している。 従来、 前工程に於いて洗浄する基板表面は全て S i化合物で構成されていたの で、 僅かな汚染でも半導体デバイスに影響が出るために、 基板表面を高度に清 浄化する必要があった。 そのため、 R C A洗浄による強力な洗浄が必須であつ た。
近年は、 上述した様な新材料が表面に露出している様な基板をも、 高度に洗 浄すべく、 先述した様々な提案の適応が試みられている。
A 1配線を使用した従来の後工程では、 A 1配線が強酸や強アル力リに弱い ことや、 前工程に比べて金属汚染の影響が低いことから、 超純水や有機溶媒に よる簡単な洗浄のみが行われていた。 し力 し、 A 1に代わり C uを使用すると、 以下の様な二つの問題が新たに生じた。
第一に、 C uは S i にとつて最も嫌われる汚染物質の一つであり、 半導体素 子表面の酸化膜 (S i 02膜) 中における C uの拡散速度が速く、 その悪影響 度は A 1を遙かに上回ることが問題となっていた。
第二に、 A 1 と異なり C uはドライエツチングが出来ない点が問題である。
C uによる配線を形成するには、 予め (C u配線を形成するための) 溝を掘つ た絶縁膜に C uめっきを施して配線を形成し、 次いで、 不要部分を CM P (C h e m i c a 1 Me c h a n i c a l P o l i s h i n g) 等の方法によつ て削り取る方法、 所謂ダマシン法による配線形成をせざるを得ない。
上記のダマシン法による配線形成では大量の C uと、 C M Pに使用したスラ リー中の研磨粒子 (酸ィ匕アルミニウム粒子などに代表されるパーティクル) が、 C u配線や低誘電率膜表面を汚染してしまうことが問題となる。 この様な基板 表面の汚染は、 もはや超純水や有機溶媒による簡単な洗浄では除去できず、 深 刻な問題となっていた。
上記の様な汚染に対して、 強酸や強アルカリによる従来の R C A洗浄を行う と、 Cuや W等の新金属材料は過酸ィヒ水素に対して溶解してしまうという問題 が新たに生じていた。 そして、 更に、 低誘電率膜表面は疎水性なので洗浄液の 濡れ性が悪く、 洗浄液をはじいてしまい、 特に、 パーティクル汚染の除去を充 分に除去し難いという問題がある。
従って、 上記の様な新材料を表面に有する基板の洗浄工程では、 今後、 過酸 化水素水を含有する、 RC A洗浄液を使用した洗浄が不可能となる等、 深刻な 問題が生じており、 過酸化水素などの薬液に弱い新金属材料を表面に有する基 板を洗浄するに当たり、 新たな洗浄液の開発が強く望まれている。
これに対し、 前述した様に、 界面活性剤を含有する洗浄液の開発がなされて きた。 しかし、 金属汚染除去やパーティクル汚染除丟と共に、 再付着防止が充 分になされ、 且つ、 下記 (1) 〜 (3) に記載の課題を満足する洗浄液は、 こ れ迄になく、 基板の表面洗浄に於ける課題となっていた。
(1) 室温あるいは加温時に、 界面活性剤が洗浄液中に油滴となって析出 -白 濁することなく、 洗浄性能の低下や、 基板表面への油滴の残留などを引き起こ さないこと。
(2) 発泡性が小さく、 洗浄装置の動作に悪影響を与えないこと。
(3) 界面活性剤が自然環境に悪影響を与えない物質であり、 洗浄廃液が適切 に処理できること。
例えば、 ァニオン系界面活性剤は、 一般的に曇点が無いので、 高い洗浄効果 を期待して洗浄液の温度を高く (例えば 8 0 °C以上) して使用することが可能 である。 しかし、 高発泡性であるので洗浄装置での操作性に悪影響を及ぼす恐 れがぁる。
また、 非イオン系界面活性剤は、 洗浄性能が高く、 低発泡性ではある力 曇 点は一般的に低い。 従って、 高い洗浄効果を期待し、 洗浄液の温度を高くして 洗浄を行うと、 この界面活性剤が洗浄液中に油滴状として現れ、 基板上に残留 するという問題がある。 発明の開示
本発明者らは、 上述した課題につき、 界面活性剤を使用する半導体デバイス 用基板洗浄液について鋭意検討した。 特に、 洗浄液に使用する界面活性剤、 と りわけ非ィォン系界面活性剤であるエチレンォキサイド型界面活性剤に着目し た。
エチレンォキサイド型界面活性剤は、 炭化水素基とポリオキシエチレン基を 同一分子構造内に有するものである。 本発明者らは、 この様な構造のエチレン オキサイド型界面活性剤に於いて、 炭化水素基に含まれる炭素数 (m) とポリ ォキシエチレン基中のォキシェチレン基の数 ( n ) との比率 (m/ n ) が 1〜 1 . 5、 炭素数 (m) が 9以上、 ポリオキシエチレン基中のォキシエチレン基 数 (n ) が 7以上の条件を満たす特定範囲内の界面活性剤に着目した。
この特定範囲内のエチレンオキサイド型界面活性剤の多くは、 室温、 大気圧 の条件下に於いて、 固体であり且つ水への溶解度が低い。 故に、 この様なェチ レンォキサイド型界面活性剤は、 工業的生産工程に於いて取り扱い性が低く、 使用が避けられていた。 しかし、 この様な、 特定範囲内のエチレンオキサイド 型界面活性剤を加熱溶融させ、 水に溶解させて調製した、 アルカリ又は有機酸 を含有する半導体デバイス用基板洗浄液は、 意外にも、 実質的に過酸化水素を 含有せずとも、 良好な洗浄性能を示した。 とりわけ、 一般的な汚染洗浄効果か らは予測できない、 微小粒子汚染に対する洗浄性 (粒径 0 . 1 mオーダーの パーティクル除去性) に優れていた。 しかも、 上記の半導体デバイス用基板洗 浄液は、 疎水性のために水性洗浄液をはじき易く、 パーティクル除去性が低い 低誘電率膜表面へも、 充分な濡れ性を示し、 優れた洗浄効果を奏した。 本発明 者らは、 これらのことを見出し、 本発明を完成させるに至った。
すなわち、 本発明の要旨は、 少なくとも、 以下の成分 (A) 、 (B) 及び (C) を含有することを特徴とする半導体デバィス用基板の洗浄液およぴ当該 洗浄液を使用する洗浄方法に存する。
成分 (A) :置換基 (フエ二ル基を除く) を有していてもよい炭化水素基と ポリオキシエチレン基とを有し、 炭化水素基中の炭素数 (m) とポリオキシェ チレン基中のォキシェチレン基数 (n) の比率 (m/n) が 1〜1. 5であり、 炭素数 (m) が 9以上、 ォキシエチレン基数 (n) が 7以上であるエチレンォ キサイ ド型界面活性剤。
成分 (B) :水
成分 (C) : アルカリ又は有機酸
以下、 本発明を詳細に説明する。 本発明の洗浄液は、 少なくとも、 成分 (A) として特定の界面活性剤、 成分 (B) としてフ 、 成分 (C) としてアルカリ又 は有機酸を含有する。
本発明に於いて、 成分 (A) として使用する界面活性剤は、 置換基 (フエ二 ル基を除く) を有していてもよい炭ィヒ水素基とポリオキシエチレン基とを有し、 炭化 素基中の炭素数 (m) とポリオキシエチレン基中のォキシエチレン基数 (n) の比率 (m/n) が 1〜1. 5であり、 炭素数 (m) が 9以上、 ォキシ エチレン基数 (n) が 7以上であるエチレンオキサイド型界面活性剤である。 上記の比率 (mZn) が 1未満の場合は、 液中におけるパーティクル除去能 力やシリコンの腐食抑制が不十分となる。 また、 ォキシエチレン鎖長増による 水への溶解性の低下、 廃液処理の負荷も増加する。 一方、 1. 5を超える場合 は、 アルカリ液中で洗浄時に〇 /W型のェマルジヨンを形成し、 界面活性剤が 細かい油滴となって析出して白濁してしまレ、 洗浄性能の低下や油滴の残留な どの問題を引き起こす。 比率 (m/n) は、 好ましくは 1〜1. 4である。 上記の炭素数 (m) が 9未満の場合は、 (m/n) 比が前記最適範囲内であつ てもパーティクル除去性が低下する。 また、 (m) が大きすぎる場合は、 水へ の溶解性の低下や廃液処理の負荷も増加するので好ましくない。 従って、 炭素 数 (m) は、 好ましくは 9〜 16、 更に好ましくは 10〜 14である。 ただし、 成分 (A) を構成する炭化水素基が、 置換基として炭化水素基を有する際には、 主鎖となる炭化水素基と、 置換基である炭化水素基における炭素数の合計数を mとする。
また、 上記の (II) が 7未満の場合は、 (m/n) 比が前記最適範囲内であつ てもパーティクル除去性が低下する。 (n) が大きすぎる場合は、 廃液処理の 負荷が大きくなり、 また、 界面活性剤が洗浄液中で分解し易くなる。 従って、 (n) は、 好ましくは 7〜 16、 更に好ましくは 7〜 14である。
本発明で規定する上記のエチレンォキサイド型界面活性剤を使用することに より、 洗浄液の濡れ性とパーティクルの除去性の両方が良くなる。 上記のェチ レンオキサイド型界面活性剤としては、 例えば、 ポリオキシエチレンアルキル エーテル、 ポリオキシエチレン脂肪酸エステル、 ポリオキシエチレンアルキル ァミン、 ポリオキシエチレンアルキルエーテル硫酸塩などが挙げられる。 特に、 パーティクル汚染の除去性や再付着防止能などの観点から、 下記一般式 (II) で表されるポリォキシエチレンアルキルエーテルが、好ましい。
R2〇一 (CH2CH20) nH (II)
(但し、 R2は、 水酸基、 アミノ基、 アルコキシ基、 ハロゲンにて置換されて いてもよいアルキル基を示し、 アルキル基に含まれる炭素数 (m) は 9以上で あり、 (n) は 7以上の数を表す。 )
上記のポリォキシエチレンアルキルエーテルの具体例としては、 ポリォキシ エチレン (n = 8) ノニルエーテル、 ポリオキシエチレン (n = 9) デシルエー テル、 ポリオキシエチレン (n= l l) ゥンデシルエーテル、 ポリオキシェチ レン (n= 10) ラウリルエーテル、 ポリオキシエチレン (n= l l) ラウリ ルエーテル、 ポリオキシエチレン (n = 10) トリデシルエーテル、 ポリオキ シエチレン (n=12) トリデシルエーテル、 ポリオキシエチレン (n= l 1) テトラデシルエーテル、 ポリオキシエチレン (n=13) テトラデシルエーテ ル、 ポリオキシエチレン (n = 12) ペンタデシルエーテル、 ポリォキシェチ レン (n= 14) ペンタデシルェ一テル、 ポリオキシエチレン (n=12) セ チルエーテル、 ポリォキシエチレン (n = 1 5) セチルエーテル、 ポリオキシ エチレン (n= 18) ォレイルエーテル等が挙げられる。 なお、 上記の nにお ける数値は前記の一般式 (II) における nを表す。
本発明に於いては、 本発明の範囲内であれば (m) 及び (n) の異なる複数 のエチレンォキサイ .ド型界面活性剤を任意の割合で併用してもよい。 更に複数 種の界面活性剤を併用する際、 全界面活性剤の (mZn) の平均値が 1〜1. 5、 (m) の平均値が 9以上、 (n) の平均値が 7以上の条件を満たせば、 各々 個別の界面活性剤に於いて (m/n) が 1. 0未満または 1. 5を超えていて も、 また、 (m) が 9未満、 (n) が 7未満であってもよい。
洗浄液中における成分 (A) の含有量は、 通常 0001〜 1重量%、 好 ましくは 0. 0003〜0. 5重量0 /0、 更に好ましくは 0. 001〜0, 1重 量0 /6、 特に好ましくは 0. 001〜0. 05重量%である。 成分 (A) の濃度 カ Sすぎる場合は、 ノ、。一ティクル汚染除去性能が十分でなく、 一方、 成分 (A) の濃度が高すぎる場合は、 パーティクル汚染の除丟性能に変化がなく、 泡立ち が顕著となり洗浄工程に不向きとなったり、 また、 廃液を生分解処理する場合 の負荷が増大する場合がある。
成分 (A) は、 通常販売されている形態に於いて 1〜数千 p pm程度の N a、 K、 F e等の金属不純物が含有している場合がある。 斯かる場合は、 成分 (A) が金属汚染源となる。 そのため、 成分 (A) として使用する界面活性剤は、 精 製して使用するのが好ましい。 そして、 金属不純物各々の含有量は、 通常 10 p p m以下、 好ましくは 1 p p m以下、 更に好ましくは 0 . 1 p p m以下とさ れる。 精製方法としては、 例えば、 界面活性剤を水で溶解した後、 イオン交換 樹脂に通液し、 樹脂に金属不純物を捕捉させる方法が好適である。
上記の様に精製された成分 (A) を使用することで、 金属不純物含有量が極 めて低減された洗诤液を得ることが出来る。 本発明の洗浄液としては、 洗浄液 中の金属不純物のうち、 少なくとも、 N a、 M g、 Aし K、 C a、 F e、 C u、 P b、 Z nの各々の含有量が、 2 0 p p b以下、 中でも 5 p p b以下、 特 に 0 . 1 p p b以下であることが好ましい。
なお、 本発明に於いては、 本発明の効果を損ねない範囲で成分 (A) 以外の 界面活性剤を使用してもよい。 成分 (A) 以外の界面活性剤としては、 カチォ ン系界面活性剤、 ァニオン系界面活性剤およびノニォン系界面活性剤の何れで もよい。 中でも、 ァニオン系界面活性剤ゃノニオン系界面活性剤を使用するこ とが好まし く、 具体的には、 例えば、 ァニオン系界面活性剤としては、 炭素数 8〜 1 2のアルキルベンゼンスルホン酸およびその塩、 炭素数 8〜 1 2のアル キルメチルタウリン酸およびその塩、 炭素数 8〜1 2のアルキル硫酸エステル 及びその塩などが挙げられる。 ノニオン系界面活性剤としては、 ポリオキシァ ルキレンのみからなる界面活性剤などが挙げられる。
本発明に於いては、 成分 (B ) として水を使用する。 高清浄な基板表面を得 たい場合は、 通常、 脱イオン水、 好ましくは超純水が使用される。 また、 水の 電気分解によって得られる電解ィォン水、 水に水素ガスを溶存させた水素水な どを使用することも出来る。
本発明に於いては、 成分 (C ) としてアルカリ又は有機酸を使用する。 すな わち、 本発明の洗浄液はアル力リ性洗浄液または酸性洗浄液とされる。
本発明で使用されるアルカリの種類は、 特に限定されないが、 代表的なアル カリ としては、 水酸ィ匕アンモニゥム (アンモニア水溶液) と有機アルカリが挙 げられる。 有機アルカリ としては、 水酸ィ匕第 4級アンモニゥム、 ァミン、 アミ ノアルコール等のアミン類が挙げられる。 水酸ィ匕第 4級アンモニゥムとしては、 水酸基、 アルコキシ基、 ハロゲンにて置換されていてもよい炭素数 1〜 4のァ ルキル基または炭素数:!〜 4のヒドロキシアルキル基を有するものが好ましく、 これらの置換基は全て同一でも異なっていてもよい。
上記の様なアルキル基としては、 メチル基、 ェチル基、 プロピル基、 ブチル 基などの炭素数 1〜 4の低級アルキル基が挙げられ、 ヒドロキシアルキル基と しては、 ヒドロキシメチル基、 ヒドロキシェチル基、 ヒドロキシプロピル基、 ヒドロキシブチル基などの炭素数 1〜 4の低級ヒドロキシアルキル基が挙げら れる。
上記の置換基を有する水酸化第 4級アンモニゥムの具体例としては、 テトラ メチルァモニゥムヒドロキシド (TMAH) 、 テトラェチルアンモニゥムヒド ロキシド、 トリメチル (ヒドロキシェチル) アンモニゥムヒドロキシド (通称: コリン) 、 トリェチル (ヒドロキシェチル) アンモニゥムヒドロキシド等が挙 げられる。 一方、 アミン類としては、 エチレンジァミン、 モノエタノールアミ ン、 トリメタノールァミン等が挙げられる。
上述のアルカリの中では、 洗浄効果、 金属残留が少ないこと、 経済性、 洗浄 液の安定性.などの理由から、 水酸化アンモニゥム、 テトラメチルアンモニゥム ヒドロキシド (TMA H) 、 トリメチル (ヒドロキシェチル) アンモニゥムヒ ドロキシド (通称: コリン) が好ましい。 これらのアルカリは、 単独で使用し てもよいし、 2種以上を任意の割合で使用してもよい。
洗浄液中のアル力リの濃度は、 適宜選択すればよいが、 洗浄液の p Hが 9以 上のアルカリ性となる濃度であることが好ましい。 アルカリ濃度が低すぎて p Hが高くない場合は、 本発明の目的である汚染除去効果が得られない場合があ る。 一方、 p Hが高すぎる場合は、 p Hを高めたことによる効果が得られずに 経済的に不利であるばかりか、 基板表面がエッチングにより損傷する危険性が 増すので好ましくない。 従って、 アルカリ性洗浄液の p Hは、 好ましくは 9〜 1 3、 更に好ましくは 1 0〜 1 2 . 5、 特に好ましくは 1 0 . 5〜 1 2である。 本発明で使用される有機酸の種類は、 特に限定されないが、 有機カルボン酸 または有機スルホン酸が好ましい。 有機カルボン酸の代表的なものとしては、 蟻酸、 酢酸、 プロピオン酸、 酪酸、 イソ酪酸、 吉草酸、 ェチルメチル酢酸、 ト リメチル酢酸、 蓚酸、 コハク酸、 マロン酸、 クェン酸、 酒石酸、 リンゴ酸など が挙げられる。 これらの中では、 酢酸、 プロピオン酸、 蓚酸、 コハク酸、 マロ ン酸、 クェン酸、 酒石酸、 リンゴ酸の群から選択される 1種または 2種以上が 好ましく、 酢酸、 蓚酸、 クェン酸の群から選択される 1種または 2種以上が更 に好ましい。 酢酸は、 半導体基板のエツチャント材料などに使用されており、 蒸留操作により高純度で金属不純物の少ない物が安価で入手が可能であり、 水 分蒸発による粉体の発生も起こらない点で最も好ましい。
有機スルホン酸の代表的なものとしては、 メタンスルホン酸、 エタンスルホ ン酸、 n—プロパンスルホン酸、 i—プロパンスルホン酸、 n—ブタンスルホ ン酸、 フエニルスルホン酸などが挙げられる。 これらの中では、 メタンスルホ ン酸および/またはエタンスルホン酸が好ましく、 メタンスルホン酸が特に好 ましい。 上記の有機酸は、 単独で使用してもよいし、 2種以上を任意の割合で 使用してもよい。
洗浄液中の有機酸の濃度は、 適宜選択すればよいが、 酸性洗浄液の p Hが 1 〜 5 となる濃度であることが好ましい。 有機酸の濃度が低すぎて p Hが充分低 くない場合は、 本発明の目的である汚染の除去や付着防止効果が得られない場 合がある。 一方、 濃度が高すぎる場合は、 p Hを低下させたことによる効果が 得られずに経済的に不利で有るばかりか、 基板表面の腐食の原因にもなり得る ので好ましくない。 酸性洗浄液の p Hは好ましくは 2〜 3である。
本発明の洗浄液に於いては、 錯化剤を含有させると基板表面の金属汚染を更 に低減した極めて高度に清浄ィヒされた表面が得られるので好ましい。 錯化剤と しては、 従来公知の任意のものを使用できる。 錯化剤の種類は、 基板表面の汚 染レベル、 金属の種類、 基板表面に要求される清浄度レベル、 錯化剤コスト、 化学的安定性などから総合的に判断して選択すればよく、 例えば、 以下の (1 ) 〜 (4 ) にて示すものが挙げられる。 ( 1 ) ドナー原子である窒素とカルボキシル基および Zまたはホスホン酸基を 有する化合物:
例えば、 グリシン等のアミノ酸類;ィミノ 2酢酸、 二トリ口 3酢酸、 ェチレ ンジァミン 4酢酸 [EDTA] 、 トランス一1, 2—ジアミノシクロへキサン 4酢酸 [C y D T A] 、 ジェチレントリアミン 5酢酸 [D T P A] 、 トリェチ レンテトラミン 6酢酸 [TTHA] 等の含窒素カルボン酸類;エチレンジアミ ンテトラキス (メチレンホスホン酸) [EDTPO] 、 二トリロトリス (メチ レンホスホン酸) [NTPO] 、 プロピレンジアミンテトラ (メチレンホスホ ン酸) [PDTMP] 等の含窒素ホスホン酸類など力挙げられる。
(2) 芳香族炭化水素環を有し且つ芳香族炭化水素環を構成する炭素原子に直 接結合した 0 H基およひンまたは 0—基を 2つ以上有する化合物:
例えば、 カテコール、 レゾルシノール、 タイロン等のフエノール類、 その誘 導体など力 s挙げられる。
(3) 上記 (1) 及び (2) の構造を併せ持った化合物:
(3— 1) エチレンジアミンジオルトヒドロキシフエニル酢酸 [EDDHA] 及びその誘導体:
例えば、 エチレンジアミンジオルトヒドロキシフエニル酢酸 [EDDHA]、 エチレンジァミン一 N, N, 一ビス 〔 (2—ヒドロキシ _ 5—メチルフエニル) 酢酸〕 [EDDHMA] 、 エチレンジァミン一 N, N, 一ビス 〔 (2—ヒドロ キシ一 5—クロルフエニル) 酢酸〕 [EDDHCA] 、 エチレンジァミン一N, N, 一ビス 〔 (2—ヒ ドロキシー 5—スルホフエニル) 酢酸〕 [EDDHSA] 等の芳香族含窒素カルボン酸類;エチレンジァミ ン一 N, N, 一ビス 〔 (2 ーヒ ドロキシ一 5—メチルフエニル) ホスホン酸〕 、 エチレンジァミン一N, N' 一ビス 〔 (2—ヒドロキシ一 5—ホスホフェニル) ホスホン酸〕 等の芳香 族含窒素ホスホン酸類が挙げられる。
(3-2) N, N, 一ビス (2—ヒドロキシベンジル) エチレンジァミン一N, N, —2酢酸 [HBED] 及びその誘導体: 例えば、 N, N' —ビス (2—ヒドロキシベンジル) エチレンジァミン一N, N' —2酢酸 [HBED] 、 N, N, 一ビス ( 2—ヒドロキシー 5—メチルベ ンジル) エチレンジァミン一 N, N' —2酢酸 [HMBED] 、 N, N, ービ ス (2—ヒドロキシ一 5—クロルベンジル) エチレンジァミン一N, N' -2 酢酸などが挙げられる。
(4) その他:
例えば、 エチレンジァミン、 8—キノリノール、 0—フエナント口リン等の ァミン類;キ 、 酢酸、 シユウ酸、 酒石酸などのカルボン酸類; フッ化水素酸、 塩酸、 臭化水素、 ヨウ化水素などのハロゲン化水素、 それらの塩; リン酸、 縮 合リン酸などのォキソ酸類、 それらの塩など力挙げられる。
上記の錯化剤は、 酸の形態のものを使用してもよいし、 アンモニゥム塩など の塩の形態のものを使用してもよい。
上述した錯化剤の中でも、 洗浄効果、 化学的安定性などの理由から、 ェチレ ンジアミン 4酢酸 [EDTA] 、 ジエチレントリアミン 5酢酸 [DTP A] 等 の含窒素カルボン酸類; エチレンジアミンテトラキス (メチレンホスホン酸)
[EDTPO:] 、 プロピレンジアミンテトラ (メチレンホスホン酸) [PDT MP] 等の含窒素ホスホン酸類; エチレンジアミンジオルトヒドロキシフエ二 ル酢酸 [EDDHA] 及ぴその誘導体; N, N, —ビス (2—ヒドロキシベン ジル) エチレンジァミン一N, N, 一2酢酸 [HBED] が好ましい。
中でも洗浄効果の観点からェレンジアミンジオルトヒドロキシフエニル酢酸
[EDDHA] 、 エチレンジァミン一 N, N, 一ビス 〔 (2—ヒ ドロキシー 5 —メチルフエ二ル) 酢酸〕 [EDDHMA] 、 ジエチレン ト リアミ ン 5酢酸
[DTP A] 、 エチレンジァミン 4酢酸 [EDTA] 、 プロピレンジアミ ンテ トラ (メチレンホスホン酸) [PDTMP] が好ましい。 上記の錯化剤は、 単 独で使用してもよいし、 2種以上を任意の割合で使用してもよい。
洗浄液中の錯化剤の濃度は、 汚染金属不純物の種類と量、 基板表面に要求さ れる清浄度レベルによって任意に選択すればよい力 ?、 通常 l〜10000pp m、 好ましくは 5〜: L 0 0 0 p p m、 更に好ましくは 1 0〜2 0 0 p p mであ る。 錯化剤の濃度が低すぎる場合は、 錯化剤による汚染除去や付着防止効果が 得られず、 高すぎる場合は、 濃度増加に見合う効果が得られずに経済的に不利 であるばかりか、 基板表面に錯化剤が付着し、 表面処理後に残留する危険性が 増す。
なお、 錯化剤は、 通常販売されている試薬に於いて 1〜数千 p p m程度の F e A K Z n等の金属不純物を含有しているので、 本発明で使用する錯化剤が 金属汚染源となる場合が考えられる。 これらの金属は、 初期には錯化剤と安定 な錯体を形成して存在しているが、 表面洗浄液として長時間使用しているうち に錯化剤が分解してくると、 遊離し、 基板表面に付着する。 そのため、 本発明 で使用する錯化剤は、 予め、 精製して使用するのが好ましい。 そして、 含まれ る金属不純物各々の含有量は、 通常 5 p p m以下、 好ましくは 1 p p m以下、 更に好ましくは 0 . l p p m以下とされる。 精製方法としては、 例えば、 酸性 またはアル力リ性溶液に錯化剤を溶解した後、 不溶性不純物をろ過分離して取 り除き、 再び中和して結晶を析出させ、 当該結晶を液と分離する方法が好適で ある。
また、 本発明の洗浄液は、 その性能を損なわない範囲に於いて、 その他の成 分を任意の割合で含有していてもよい。 他の成分としては、 含硫黄有機化合物
( 2 _メルカプトチアゾリン、 2—メルカプトイミダゾリン、 2—メルカプト エタノール、 チォグリセ口ール等) 、 含窒素有機化合物 (ベンゾトリアゾール、 アルキルべンゾトリァゾール、 テトラソール、 3—アミノ トリアゾール、 N
(R) 3 (Rは炭素数 1〜 4のアルキル基) 、 N (R O H) 3 (Rは炭素数 1〜 4のアルキル基) 、 ゥレア、 チォゥレア等) 、 水溶性ポリマー (ポリエチレン グリコール、 ポリピニルアルコール等) 、 アルキルアルコール系化合物 (R O H (Rは炭素数 1〜4のアルキル基) ) 等の防食剤、 硫酸、 塩酸などの酸、 ヒ ドラジン等の還元剤、 水素、 アルゴン、 窒素などの溶存ガス、 フッ酸、 フッ化 アンモニゥム、 B H F等のドライエッチング後に強固に付着したポリマー等の 除去効果が期待できるエツチング促進剤などが挙げられる。
そして、 本発明の洗浄液に含有させる他の成分として過酸化水素、 オゾン、 酸素などの酸化剤も挙げられる。 半導体デバイス用基板の洗浄工程に於いて、 酸化膜のないシリコン (ベアシリコン) 基板表面を洗浄する際には、 酸化剤の 配合により、 基板表面へのエッチングによる表面荒れを抑えることが出来るの で好ましい。 本発明のアルカリ性洗浄液に過酸ィヒ水素を含有させる場合には、 洗浄液中の過酸化水素濃度は、 通常 0 . 0 1〜 5重量%、 好ましくは 0 . 1〜 1重量%とされる。
ところで、 洗浄する基板の表面には、 過酸化水素と反応して溶解する金属材 料からなる半導体デバイスの配線ゃデバイス素子電極が露出している場合があ る。 この様な金属材料としては、 例えば、 C uや Wなどの遷移金属または遷移 金属化合物が挙げられる。 この際、 洗浄に使用する洗浄液は、 実質的に過酸ィヒ 水素を含有しないことが好ましい。 本発明の洗浄液は、 従来の A P M洗浄液と は異なり、 過酸化水素を実質的に含有しなくても、 この様な金属材料に悪影響 を及ぼすことなく、 充分な洗浄性能を示す。
なお、 本発明の洗浄液に於いて、 「実質的に過酸化水素を含有しない」 とは、 洗浄する基板上の材料、 例えば C uや W等の配線材料や電極材料、 及び低誘電 率膜に対し、 過酸化水素による腐食や変質などの悪影響を生じさせないことを 意味する。 つまり、 これらの材料が、 半導体デバイスとした際に、 配線や電極 などとして充分に機能することを意味する。 そのためには、 本発明の洗浄液に 過酸ィヒ水素が含まれない様にし、 含有されたとしてもその含有量を少なく抑え るほど好ましい。 その含有量は、 例えば、 1 0 p p m以下、 好ましくは 1 p p m、 更に好ましくは 1 0 p p b以下とされる。
本発明の洗浄液は、 金属汚染やパーティクル汚染が問題となる半導体、 ガラ ス、 金属、 セラミックス、 樹脂、 磁性体、 超伝導体などの基板表面の洗浄に使 用される。 特に高清浄な基板表面が要求される、 半導体素子、 ディスプレイデ バイス用などの半導体デバィス用基板を製造する工程における、 半導体デバイ ス用基板表面の洗浄に好適に使用される。 これらの基板の表面には、 配線、 電 極などが存在していてもよい。 配線や電極の材料としては、 S i、 G e、 G a A s等の半導体材料; S i 02、 窒化シリコン、 ガラス、 低誘電率材料、 酸ィ匕ァ ルミ二ゥム、 遷移金属酸化物 (酸ィ匕チタン、 酸化タンタル、 酸ィ匕ハフニウム、 酸化ジルコニウム等) 、 (B a、 S r ) T i 03 ( B S T) 、 ポリイミ ド、 有機 熱硬化性樹脂などの絶縁材料; W、 C u、 A 1等の金属またはこれらの合金、 シリサイド、 窒化物などが挙げられる。 低誘電率材料とは、 比誘電率が 3 . 5 以下である材料の総称である。 因に、 S i 02の比誘電率は 3 . 8〜 3 . 9であ る。
特に、 本発明の洗诤液は、 表面に遷移金属または遷移金属化合物を有する半 導体デバイス用基板の洗浄に好適に使用される。 遷移金属としては、 W、 C u、 T i、 C r、 C o、 Z r、 H f 、 M o、 R u、 A u、 P t、 A g等が挙げられ、 遷移金属化合物としては、 これらの遷移金属のチッ化物、 酸化物、 シリサイド 等が挙げられる。 これらの中では、 W及び/又は C uが好ましい。
表面にタングステンを有する基板の洗浄を行う工程としては、 タングステン をゲート電極材料として使用した場合の、 ゲート電極とシリコン等を有する基 板表面の洗浄が挙げられる。 具体的には、 半導体デノ イスにタングステン膜を 形成した後の洗浄工程、 特に、 タングステン膜をドライエツチングした後の洗 浄工程、 その後にシリコン露出部にィォン注入した後の洗浄工程が挙げられる。 本発明の洗浄液を使用すれば、 超音波照射やブラシスクラブを行わなくても、 パーティクルや金属の除去を行なうことが出来る。 従って、 本発明の洗浄液は、 超音波洗浄やブラシスクラブを行うと壊れてしまう恐れが大きい、 極微細な (例えば、 ゲート電極の幅が 0 . 1 5 m程度の) ゲート電極をタングステン で形成した場合の、 ゲート電極およぴ基板表面の洗浄に好適である。
表面に C uを有する基板の洗浄を行う工程としては、 C uを配線材料として 使用した場合の、 C u配線と層間絶縁膜などを有する基板表面の洗浄が挙げら れる。 具体的には、 半導体デバイスに C u膜を形成した後の洗净工程、 特に C u膜に対して C M P (Chemical Mechanical Polishing) を行った後の洗浄ェ 程、 配線上の層間絶縁膜にドライエッチングによりホールを開けた後の洗浄ェ 程が挙げられる。
また、 本発明の洗浄液は、 表面に層間絶縁膜材料となる低誘電率材料を有す る半導体デバイス用基板の洗浄にも好適に使用される。 低誘電率材料としては、 有機ポリマー材料、 無機ポリマー (シロキサン系) 材料、 多孔質 (ポーラス) 材料と、 大きく 3つに分けられる。 有機ポリマー材料としては、 Polyimide、 B C B (Benzocyclobutene), Flare (Honeywell社)、 SiLK(Dow Chemical)等 力 s挙げられ、 無機ポリマー材料としては、 F S G (Fluorinated silicate glass)、 BLACK DIAMOND(Applied Materials)、 Aurora(日本 ASM)等が挙げられる。 本発明の洗浄液は、 上述の様に、 基板表面に於ける電極や配線材料の有無に 拘わらず、 半導体デバイス用基板の表面洗浄に好適に使用される。 その中でも、 本発明の洗浄液は、 基板表面に於ける水の接触角が 6 0 ° 以上の疎水性を示す 半導体デバイス用基板の洗浄に好適に使用される。
本発明の洗诤液の調製方法は、 従来公知の方法によればよい。 洗浄液の構成 成分 (例えば、 界面活性剤、 水酸ィ匕アンモニゥム、 水、 必要に応じて錯化剤な ど、 他の成分) のうち、 何れか 2成分または 3成分以上を予め配合し、 その後 に残りの成分を混合してもよいし、 一度に全部を混合してもよい。
前述の様に、 本発明の半導体デバイス用基板洗浄液は、 今後の新材料、 つま り過酸ィヒ水素などの薬液に対して耐性の低い金属材料が表面にある半導体デバ イス用基板でも、 これら新材料を実質的に腐食しないので、 前工程およぴ後工 程の何れにも使用可能な、 優れた洗浄効果を奏する洗浄液となる。
すなわち、 本発明の他の要旨は、 以下の条件 (a ) 、 (b ) 及び (c ) を満 たすことを特徴とする、 少なくとも半導体素子電極または金属配線を表面に有 する、 半導体デバイス用基板洗浄液に存する。
( a ) 実質的に半導体素子電極およぴ金属配線を腐食しない。
( b ) 汚染金属量が 1 0 0 0〜 5 0 0 0 ( X 1 0 1 0 a t o m s / c m 2 ) であ る基板を洗浄した場合に於いて、 洗浄後の汚染金属量が 10 (X 101Q a t 0 m s / c m Λ ) 以下である。
( c ) 粒径 0. 1 μ m以上のパーテイクルを 8000〜 100000 (個/ 0. 03m2) 有する半径 rの略円形状基板表面を t (分) 間洗浄した場合に於い て、 洗浄後、 基板と中心を同じくする基板表面上の円周内でのパーティクル個 数が、 t = 0. 5〜 1の際、 円周半径 0. 6 rの円周内で 200/t個以下、 または、 円周半径 0. 9 rの円周内では 80 OZt個以下である。
なお、 上記の (b) 及び (c) の規定は、 本発明の洗浄液の特性を規定した ものであり、 本発明の洗浄液が使用される洗浄条件を規定したものではない。 また、 本発明の洗浄液に於いて、 「実質的に半導体素子電極及び金属配線を腐 食しない」 とは、 洗浄する基板上の半導体素子電極や金属配線、 具体的には、 例えば Wや C u等の電極材料や配線材料に対して、 腐食や変質などの悪影響を 生じさせず、 これらの材料が、 半導体デバイスとした際に、 電極や配線などと して充分に機能することを意味する。
上記の本発明の洗浄液に於いて、 条件 (b) 及び (c) を満たすということ は、 金属汚染、 パーテイクル汚染、 何れの汚染をも充分に除去することが可能 であることを示す。
条件 (c) は、 洗浄対象が略円板状基板の表面、 つまり略円形状基板表面の 際、 短時間の洗浄であっても、 基板表面の位置によらず、 基板表面を高度に清 浄ィ匕出来ることを意味する。 つまり粒径 0. 1 以上のパーティクルを 80 00〜: 100000 (個 0. 03 m2) 有する半径 rの略円形状基板表面を 洗浄時間' t : 0. 5〜1 [分] として洗浄した後、 基板と中心を同じくする基 板表面上の比較的内周部である円周半径 0. 6 rの円周内では、 残留するパー ティクルを 200 t個以下まで除まし、 且つ、 比較的外周部までをも含む円 周半径 0. 9 rの円周内に於いても、 パーティクルを 800/t個以下とし、 基板表面を高度に清浄ィヒできることを意味する。
また、 上述した、 本発明の半導体デバイス用基板洗浄液における、 「洗浄し た場合に於いて」 とは、 後述する様な洗浄方法によって、 半導体デバイス用基 板を洗浄液によって洗浄した場合であることを示す。 洗浄方法は、 通常、 半導 体デバイス用基板の洗浄時に採用されうる方法であれば特に限定されない。 中 でも、 洗浄液の基板への接触方法は、 基板上に洗浄液を流しながら基板を高速 回転させるスピン式とし、 洗浄液の液温度は室温〜 9 0 °Cの範囲とすることが 安定した結果が得られるので好ましい。
更に、 洗浄の際、 物理力による洗浄方法、 例えば洗浄ブラシを使用したスク ラブ洗浄などの機械的洗浄や、 基板に周波数 0 . 5メガヘルツ以上の超音波を 照射する超音波洗浄、 そしてこれらを併用する洗浄方法などを採用することに より、 より安定した洗浄結果が得られるので好ましい。
本発明の洗浄方法は、 洗浄液を基板に直接接触させる方法で行われる。 洗浄 液の基板への接触方法には、 洗净槽に洗浄液を満たして基板を浸漬させるディッ フ¾:、 ノズルから基板上に洗浄液を流しながら基板を高速回転させるスピン式、 基板に液を噴霧して洗浄するスプレー式などが挙げられる。 この様な洗浄を行 うための装置としては、 カセットに収容された複数枚の基板を同時に洗浄する バッチ式洗浄装置、 1枚の基板をホルダーに装着して洗浄する枚葉式洗浄装置 などがある。
洗浄時間は、 バッチ式洗浄装置の場合、 通常 3 0秒から 3 0分、 好ましくは 1〜 1 5分、 枚葉式洗浄装置の場合、 通常 1秒から 1 5分、 好ましくは 5秒か ら 5分である。 洗浄時間が短すぎる場合は洗浄効果が十分でなく、 長すぎる場 合は、 洗浄効果の向上は小さく、 スループットの低下を招く。 本発明の洗浄液 は、 上記の何れの方法にも適用できるが、 短時間でより効率的な汚染除去が出 来る点から、 スピン式やスプレー式の洗浄に好ましく使用される。 そしては、 洗浄時間の短縮、 洗浄液使用量の削減が問題となっている枚葉式洗浄装置に適 用するならば、 これらの問題力 s解消されるので好ましい。
洗浄液の温度は、 通常は室温とされるが、 洗浄効果を向上させる目的で、 4 0〜7 0 1:程度に加温することが好ましい。 更に、 表面にシリコンが露出して いる基板を洗浄する場合は、 シリコン表面に有機物汚染が残留し易いため、 基 板を温度 3 0 0 °C以上の加熱処理工程に供して熱分解させるか、 または、 ォゾ ン水処理によつて有機物を酸化分解処することが好ましい。
また、 本発明の洗浄方法は、 物理力による洗浄方法、 例えば、 洗浄ブラシを 使用したスクラブ洗浄などの機械的洗浄や超音波洗浄と併用させることが好ま しい。 特に、 超音波照射またはブラシスクラブを併用するならば、 パーテイク ル汚染の除去性が: に向上し、 洗浄時間の短縮にも繫がるので好ましい。 特に、 C M P後の洗浄で樹脂製ブラシを使用して洗浄するのが好ましい。
樹脂製ブラシの材質は、 任意に選択し得るが、 例えば P V A (ポリビニルァ ルコール) を使用するのが好ましい。 また、 基板に周波数 0 . 5メガヘルツ以 上の超音波を照射するならば、 界面活性剤との相乗作用により、 パーティクル の除去性が著しく向上するので好ましい。 更に、 本発明の洗浄方法の前および Zまたは後に、 水の電気分解によって得られる電解イオン水、 または、 水に水 素ガスを溶存させた水素水による洗浄を組み合わせてもよい。 発明を実施するための最良の形態
次に、 実施例により、 本発明を具体的に説明するが、 本発明はその要旨を超 えない限り、 以下の実施例により限定されるものではない。
実施例 1、 2及び比較例 1〜3
(スクラブ式洗浄によるパーテイクル汚染の洗浄性評価)
低誘電率膜 (S i O C :炭素含有 S i 02) 付きの 8インチシリコン基板 (半 径 rが、 4インチの円板) I犬基板) を、 S i 02スラリー溶夜に 1 0分間浸潰した。 浸漬後の基板を超純水で 1分間水洗し、 マルチスピンナー ( (株) カイジョー 製 「K S S P— 2 0 1」 ) でスピン乾燥させた。 その後、 レーザー表面検査装 置 (日立電子エンジニアリング社製 「L S— 5 0 0 0」 ) により、 基板表面に 付着した散粒子数を測定し、 0 . 2 m以上の S i 0 2粒子が一定数量以上
(ただし、 上限は 1 0 0 0 0 0個) 付着していることを確認した。 表 1 に示す洗浄液を使用し、 上記のマルチスピンナ一により、 P V A製のブ ラシで上記の S i 02粒子付着基板をブラシスクラブ洗浄し、 パーティクルを 除去した。 洗浄液による洗浄は室温で 1分間行なった。 その後、 超純水で基板 を 1分間洗浄した後、 スピン乾燥し、 洗浄済基板を得た。 結果を表 1に示す。
Figure imgf000025_0001
洗浄方法:スクラブ式洗浄 (洗浄温度:室温, 洗诤時間 t : 1分)
測定装置: 日立電子エンジニアリング社製「L S— 5000」 (エッジカット : 40 mm) 洗净前の基板表面上のパーティクル個数は 8000〜; 100000 [個 Z 0. 03 m2] である, 洗浄後のパーティクル個数は基板と中心を同じくする半径 0. 6 rの円周内での個数である。
実施例 3〜 6及ぴ比較例 4〜 8
(スクラブ式洗浄によるパーテイクル汚染の洗浄性評価)
先ず、 実施例 1と同様に S i 02粒子付着基板を作成した。 次いで、 表 2に示 す洗浄液を使用し、 洗浄時間を 0 . 5分間とした以外は、 実施例 1と同様に S i〇2粒子付着基板を洗浄し、 洗浄済基板を得た。 結果を表 2に示す。
表 2中の濡れ性評価は次の方法で行った。 すなわち、 低誘電率膜 (S i O C : 炭素含有 S i 02) 付きのテスト片 (2 c m角) を表 2に記載の各洗浄液に垂直 に漬ける。 0 . 5分後、 テスト片を垂直に引き出し、 テスト片の全面積に対す る洗浄液が付いた面積の割合で評価した。 評価基準は、 〇: 8 0 %以上, △ : 5 0 %以上 8 0 %未満, X : 5 0 %未満とした。
Figure imgf000027_0001
洗诤方法:スクラブ式洗浄 (洗浄温度:室温, 洗浄時間 t : 0. 5分)
測定装置: 日立電子エンジニアリング社製 「L S _ 5000」 (エツジカット : 10 mm) 洗浄前の基板表面上のパーティクル個数は 8000 100000 [個ノ 0. 03 m2] である, 洗诤後のパーティクル個数は基板と中心を同じくする半径 0. 9 rの円周内での個数である。
実施例 7〜 10
(スクラブ式洗浄によるパ^"テイクル汚染の洗浄性評価)
低誘電率膜 (S i OC:炭素含有 S i 02) 付きの 8インチシリコン基板 (半 径 rが 4インチの円板状基板) を、 0. 5重量%フッ酸で 1分間表面処理した 後、 S i 02スラリー溶液に 10分間浸漬した。 浸漬後の基板を超純水で 1分間 水洗し、 マルチスピンナ一 ( (株) 力イジョー製 「KS SP— 201」 ) でス ピン乾燥させた。 その後、 レーザー表面検査装置 (日立電子エンジニアリング 社製 「LS— 6600」 ) で基板表面に付着した微粒子数を測定し、 0. 11 μ m以上の S i 02粒子が一定数量以上 (ただし、 上限は 100000個) 付 着していることを確認した。
表 3に示す洗浄液を使用し、 前述のマルチスピンナ一により、 PVA製のブ ラシで上記の S i 02粒子付着基板をブラシスクラブ洗浄し、 パーティクルを除 去した。 洗浄液による洗浄は室温で 0. 5分間行なった。 その後、 超純水で基 板を 1分間洗浄した後、 スピン乾燥して、 洗浄済基板を得た。 結果を表 3に示 す。
Figure imgf000029_0001
洗浄方法:スクラブ式洗浄 (洗浄温度:室温, 洗诤時間 t : 0. 5分)
測定装置: 日立電子ェンジニアリング社製 「L S— 6600」 (エッジカット: 10 mm) 洗浄前の基板表面上のパーティクル個数は 20000〜 100000 [個/ 0. 03 m2] である。 洗浄後のパーティクル個数は基板と中心を同じくする半径 0. 9 rの円周内での個数である。
実施例 1 1、 1 2及び比較例 9
(スクラブ式洗浄によるパーテイクル汚染の洗浄性評価)
先ず、 実施例 1と同様に S i 02粒子付着基板を作成した。 次いで、 表 4に示 す洗浄液を使用し、 洗浄時間を 0 . 5分間とした以外は、 実施例 1と同様に S i 02粒子付着基板を洗浄し、 洗浄済基板を得た。 結果を表 4に示す。
Figure imgf000031_0001
デモール AS : /?—ナフタリンスルホン酸ホルマリン縮合物
洗诤方法:スクラブ式洗浄 (洗诤温度:室温, 洗浄時間 t : 0. 5分)
測定装置:日立電子エンジニアリング社製 「L S— 5000」 (エッジカット : 40 mm) 洗浄前の基板表面上のパーテイクル偭数は 8000〜 100000 [個 Z 0. 03 m2] である, 洗浄後のパ一ティクル個数は基板と中心を同じくする半径 0. 6 rの円周内での個数である。
実施例 13及び比較例 10
基板表面に厚さ約 l O O nmの熱酸化膜の付いた 4インチシリコン基板 (半 径 r力 s 2ィンチの円板状基板) を大気中に 3時間暴露し、 気中浮遊物を付着さ せた。 基板表面検査装置 (日立電子エンジニアリング f土製 「LS— 5000」 ) で測定した結果、 基盤には粒径 0. 2 / m以上のパーティクルが 1万個以上 (ただし、 上限は 100000個) 付着していた。 この基板を 50°Cに温度制 御された表 3に記載の各洗浄液に各 10分間浸漬処理した後、 10分間純水に よる流水洗浄を行ない、 スピンドライヤーにて乾燥した。 洗浄処理後の基板上 に残存するパーティクル数の測定結果を表 5に示す。
比較例 1 1
実施例 13に於いて、 洗浄液として、 29重量0 /0水酸化アンモニゥム水溶液、 50重量%過酸化水素水、 超純水を容量比 1 : 4 : 20にて混合して調製した 溶液 (APM洗浄液) を使用した以外は、 実施例 13と同様に行なって評価し た。 結果を表 5に示す。
比較例 1 1の洗浄液は、 洗浄後の付着粒子数が比較的少ないが、 洗浄液に過 酸化水素を含むために、 今後の新材料への適用が出来ず、 将来的には使用不可 能となる。
en
洗浄剤成分 付着粒子数
0.2 μ m以上:
界面活性剤 アルカリ 洗浄剤 個/ゥェ—ハ
H
構造式 m n m/n 種類 洗浄前 洗浄後 実施例 13 C12H250(C2H40)HH 12 11 1.1 25 NH4OH 2800 11.3 756 I 比較例 10 NH4OH 2800 11.3 >10000 1866
比較例 11 APM 6000 10.3 1145
A P M: 2 9重量0 /0アンモニア氷、 3 0重量0 /0過酸化水素水および純水を容量比 1 : 2 : 4 0で混合した溶液
洗诤温度: 5 0 °C、 洗诤時間 t : 1 0分 (エッジカット : 1 0 mm)
g m
¾
実施例 14及び比較例 12〜: L 4
自然酸化膜の付いた 4インチシリコン基板 (半径 rが 2インチの円板状基板) を 0. 5重量% H F水溶液に 5分間浸漬処理して表面酸化膜を除去した基板を 得た。 これを Silicon (IV) Nitride粒子 (Johnson Matthey社製「Stk#12145」 ) 0. 02 g/Lが添加され且つ 50 °Cに温度制御された表 4に記載の各洗浄液 に 10分間浸漬処理し後、 5分間純水による流水洗浄を行ない、 スピンドライ ヤーにて乾燥した。 基板表面検査装置 (日立電子エンジニアリング社製 「LS — 5000」 ) により、 洗浄処理後の基板上に残存する粒径 0. 2 μ m以上の パーティクルの数を測定した。 結果を表 6に示す。
洗浄液成分 付着粒子数
0.2 μ m以上: 界面活性剤 アル力リ 洗诤液 個 /✓ ゥノ エーノヽ
H
構造式 m n m/n 種類 浸漬処理後
Ppm
実施例 14 し ΐ2 5リ (C2H40)nH 12 11 1.1 25 NH4OH 2800 11.3 296
比較例 12 アデ力 L一 4 4 25 NH4OH 2800 11.3 3888
比較例 13 ュニセーフ DC1100 25 NH4OH 2800 11.3 3208
比較例 14 NH4OH 2800 11.3 >10000 旭電化工業社製 「アデ力 L一 4 4 J :ォキシエチレン及びォキシプロピレンのブロック共重合体, 分子量2200 日本油脂社製 「ュニセーフ D C 1100」 :ォキシエチレン及ぴォキシブチレンのブロック共重合体, 分子量 1100 処理温度: 5 0 °C, 処理時間 t : 1 0分 (エッジカット : 1 0 mm)
g m
実施例 1 5、 比較例 15, 16
0. 5重量%HF水溶液に 5分間浸漬処理することにより表面自然酸化膜を 除去した 4インチシリコン基板 (半径 rが 2インチの円板状基板) を用意した。 これを各温度制御された表 5に記載の洗浄液に所定時間浸漬処理した後、 5分 間純水による流水洗浄を行ない、 スピンドライヤーにて乾燥した。 基板乾燥後、 直ちに原子間力顕微鏡 (Digital Instmments社製 NanoScopellla) で 基板表面の Z軸変位の標準偏差である Rms (nm) を測定した。 結果を表 7 に示す。
上記の基板の表面荒れについて目視による評価を行ない。 次の結果を得た。 すなわち、 比較例 15及び 16の場合は、 基板表面に直径約 1〜10mm程度 の無数のクレーター状凹凸と基板表面全体に亘る干渉縞の様な表面荒れ力 s観察 された力 実施例 15の場合は観察されなかった。
洙诤液成分
界面活性剤 アルカリ 洗浄液 処理温度 処理時間 R m s
H (°C) (分) ( n m) 構造式 m n m/n 実施例 15 C12H250(C2H40)nH 12 11 1.1 25 NH4OH 2800 11.3 50 10 0.281 比較例 15 NH4OH 2800 11.3 40 10 4.328 比較例 16 NH4OH 2800 11.3 50 10 3.074 処理温度: 4 0 °C又は 5 0 °C、 処理時間 t : 1 0分
¾
実施例 1 6〜; L 9及び比較例 1 7〜: L 9
0 . 5重量% H F水溶液に 5分間浸漬処理することにより表面酸化膜を除去 した膜厚約 1 0 0 n mの多結晶ポリシリコンのテスト片を用意した。 このテス ト片を 5 0 °Cに温度制御された表 6に記載の各洗浄液に 1 0分間浸漬処理した 後、 5分間純水による流水洗浄を行ない、 窒素プロ一にて乾燥した。 多結晶ポ リシリコンの膜厚は、 光干渉式膜厚測定器 (ナノメトリクス社製 「ナノスぺッ ク L— 6 1 0 0」 ) で測定した。 洗浄処理前後の膜厚測定よりエッチングレー トを算出した。 結果を表 8に示す。
oo
Figure imgf000039_0001
日本油脂社製 「P E G 400」 :ォキシチレン縮合物, 分子量 400
日本油脂杜製 「ュニオックス M-400J :ォキシチレン縮合物のモノメチルエーテル, 分子量 400
処理温度: 5 0 °C、 処理時間 t : 1 0分
実施例 2 0、 参考例 1
0 . 3重量0 /0アンモニア水溶液に 5分間浸漬処理することにより表面酸化膜 を除去した膜厚約 1 0 0 n mのタングステンのテスト片を用意した。 このテス ト片を、 4 0 °Cに温度制御された表 9に記載の各洗浄液に 1 0分間浸漬処理し た後、 5分間純水による流水洗浄を行ない、 窒素ブローにて乾燥した。 タング ステンの膜厚は、 全反射蛍光 X線 (J e 0 1社製 「R I X— 3 0 0 0」 ) を使 用し、 反射強度からの換算により導出した。 洗浄処理前後の膜厚測定よりエツ チングレートを算出した。 結果を表 9に示す。
ここで、 実施例 2 0 と参考例 1 とを比較して明らかな通り、 本発明の洗浄液 は、 単なるアル力リ水溶液に対して、 基板表面のエッチングレートを抑制し、 半導体デバイス用基板洗浄液として優れていることが分かる。
比較例 2 0
実施例 2 0に於いて、 洗浄液として、 比較例 1 1と同様の A P M洗浄液を使 用した以外は、 実施例 2 0と同様に行なって評価した。 結果を表 9に示す。
O
洗浄液成分
界面活性剤 アルカリ 洗浄液 エッチングレート
H ( n / i n) 構造式 m n m/n 種類 実施例 20 Ci2 り (C2H4〇)UH 12 11 1.1 25 NH4OH 2800 11.3 0.071
参考例 1 NH4OH 2800 11.3 0.080
比較例 20 APM 6000 10.4 >10
APM: 29重量%アンモニア水、 30重量%過酸化水素水および純水を容量比 1 : 2 : 40で混合した溶液 処理温度: 0 °C. 処理時間 t : 10分
§ m
実施例 2 1、 比較例 2 1
4インチシリコン基板 (半径 rが 2インチの円板状基板) を、 金属イオン (F e、 C u) を含有した A PM洗浄液に浸漬した。 この APM洗浄液は、 2 9重量0 /0アンモニア水、 3 1重量 %過酸化水素水および水を容量比 1 : 1 : 5 で混合し、 これに金属含有量が F e (20 p p b) 、 C u ( 1 p p m) となる 様に金属イオン含有水溶液を添加して調製した。 浸漬後のシリコン基板を超純 水で 1 0分間水洗し、 窒素ブローにより乾燥し、 金属で汚染されたシリコン基 板を得た。
このシリコン基板上の汚染金属 (Fe、 Cu) の分析は、 汚染されたシリコ ン基板おょぴ洗浄後のシリコン基板共に、 次の方法で行なった。 すなわち、 基 板表面にある金属を、 フッ酸 0. 1重量%と過酸化水素 1重量%を含む水溶液 で基板を処理することによって回収し、 誘導結合プラズマ質量分析計 (I CP -MS) で金属量を測定し、 基板表面での金属濃度 (a t oms/cm2) に 換算する。
金属で汚染された上記のシリコン基板の洗浄を、 表 10に示す洗浄液を使用 し、 洗浄液温度 60°C, 洗浄時間 10分とし、 ディップ式洗浄法により行った。 汚染されたシリコン基板の分析結果および洗浄済シリコン基板表面の残留金属
(F e, C u) を表 10に示す。
洗诤剤成分 金属除去性
濃度(X 10IQatoms/cm2) 界面活性剤 アルカリ 錯化剤
濃度
構造式 m n m/n 種類 種類 F e C u
ppm
実施例 21 C12H250(C2H4O)nH 12 11 1.1 50 TMAH 50 EDDHA 100 5.2 <1 比較例 21 TMAH 50 682 139 洗诤前 (金属で汚染されたシリコンゥエーハ) 1000-3000 3000-5000 洗浄方法:ディプ式洗浄
洗浄温度: 6 0 °C, 洗浄時間 t 1 0分 g m
g m
ϊ 0 以上の結果から、 本発明の洗浄液は、 疎水性である低誘電率膜に付着した微 粒子 (パーティクル) の除丟性に優れていることが明らかである。 また、 水酸 化アンモニゥム溶液や A P M溶液による従来の洗浄方法に比し、 気中浮遊物由 来のパーテイクル付着物に対しても、 より優れた除去性を有していることが判 る
同様に、 系内に微粒子 (パーティクル) 等が混入しても、 本発明の洗浄方法 で除去することにより、 基板への付着を抑制することが可能となる。 更に、 従 来の洗浄方法と比較し、 アル力リ性の洗浄液に於いてもシリコン表面のラフネ ス (表面あれ) を極めて小さく抑制することが可能であり、 ポリシリコンゃタ ングステンへのエッチングによる加工寸法変化などの副作用が殆ど無く、 洗浄 性とラフネス抑制およぴ低ェッチング性を両立することが可能となる。
そして、 本発明の洗浄液は、 過酸ィヒ水素などの薬液に対して耐性の低い材料 が表面にある半導体デバイス用基板であつても、 前工程および後工程の何れに も使用可能な、 優れた洗浄効果を奏する洗浄液であることが明白である。 産業上の利用可能性
本発明の洗浄液によれば、 シリコン等の半導体材料、 窒化シリコン、 酸ィ匕シ リコン、 ガラス、 低誘電率材料などの絶縁材料、 遷移金属または遷移金属化合 物などを表面の一部あるいは全面に有する半導体デバイス用基板に於いて、 基 板表面に付着した微粒子 (パーティクル) 、 有機汚染、 金属汚染を洗浄により 効果的に除去し、 系内に微粒子などが混入した際にも付着抑制が可能である。 特に、 薬液をはじき易い疎水性の低誘電率材料の濡れ性を良くし、 洗浄性に優 れている。 また、 アルカリ性洗浄液に於いても、 洗浄性に加え、 シリコン表面 のラフネス抑制および低エツチング性を両立することが可能であり、 半導体デ バイス、 ディスプレイデバイス等の製造工程における汚染洗浄用などの表面処 理方法として、 工業的に非常に有用である。

Claims

請 求 の 範 囲
1. 少なくとも、 以下の成分 (A) 、 (B) 及び (C) を含有することを特徴 とする半導体デバイス用基板の洗浄液。
成分 (A) :置換基 (フヱ二ル基を除く) を有していてもよい炭化水素基と ポリオキシエチレン基とを有し、 炭化水素基中の炭素数 (m) とポリオキシェ チレン基中のォキシエチレン基数 (n) の比率 (m/n) が 1〜1. 5であり、 炭素数 (m) が 9以上、 ォキシエチレン基数 (n) が 7以上であるエチレンォ キサイド型界面活性剤。
成分 (B) :水
成分 (C) : アルカリ又は有機酸
2. 成分 (A) における炭素数 (m) が 9〜16である 1に記載の洗浄液。
3. 成分 (C) としてアルカリを含有し、 p Hが 9以上である 1に記載の洗浄 液。
4. 成分 (C) が以下の一般式 (I) で表されるアルカリ化合物である 3に記 載の洗诤液。 '
(R1) 4N + OH- (I)
(但し、 R1は水素原子、 又は水酸基、 アルコキシ基、 ハロゲンにて置換され ていてもよいアルキル基を示し、 R1は全て同一でも異なっていてもよい。 )
5. 成分 (C) が水酸ィ匕アンモニゥム若しくは^:素数 1〜4のアルキル基およ ぴ Zまたはヒドロキシアルキル基を有する水酸ィ匕第 4級アンモニゥムである 4 に記載の洗浄液。
6. 成分 (C) として有機酸を含有し、 p Hが:!〜 5である 1に記載の洗浄液。
7. 成分 (C) が有機カルボン酸および/または有機スルホン酸である 6に記 載の洗诤液。
8. 有機カルボン酸が、 酢酸、 プロピオン酸、 蓚酸、 コハク酸、 マロン酸、 ク ェン酸、 酒石酸、 リンゴ酸から成る群より選ばれる少なくとも 1種である 7に 記載の洗浄液。
9. 有機スルホン酸が、 メタンスルホン酸、 エタンスルホン酸、 n—プロパン スルホン酸、 i—プロパンスルホン酸、 n—ブタンスルホン酸から成る群より 選ばれる少なくとも 1種である 7に記載の洗浄液。
10. 成分 (A) の含有量が 0. 0001〜 1重量0 /0である 1に記載の洗浄液。
1 1. 成分 (A) がポリオキシエチレンアルキルエーテル類である 1に記載の 洗浄液。
12. 更に錯化剤を含有する 1に記載の洗浄液。
13. 実質的に過酸化水素を含有しない 1に記載の洗浄液。
14. ;!〜 13の何れかに記載の洗浄液を使用することを特徴とする半導体デ バイス用基板の洗浄方法。
1 5. 周波数 0. 5メガヘルツ以上の超音波を照射しながら基板を洗浄する 1 4に記載の洗浄方法。
1 6. 化学的機械研磨した後の半導体デバイス用基板をブラシ洗浄する 14記 載の洗浄方法。
1 7. 洗浄液を 40〜 70 °Cの温度に加温して使用する 14に記載の洗浄方法。
18. 洗浄液で洗浄した後、 更に温度 300°C以上の加熱処理か又はオゾン水 処理を行う 14に記載の洗浄方法。
1 9. 表面に水の接触角が 60° 以上の絶縁膜を有する半導体デバイス用基板 に適用する 14に記載の洗浄方法。
20. 表面にシリコン、 遷移金属または遷移金属化合物を有する半導体デバイ ス用基板に適用する 14に記載の洗浄方法。
2 1. 以下の条件 (a) 、 (b) 及び (c) を満たすことを特徴とする、 少な くとも半導体素子電極または金属配線を表面に有する、 半導体デバイス用基板 洗浄液。
( a ) 実質的に半導体素子電極および金属配線を腐食しない。
(b) 汚染金属量が 1000〜 5000 (X 1010 a t oms/c m2) であ る基板を洗浄した場合に於いて、 洗浄後の汚染金属量が 10 (X 101Q a t 0 m s/c m2) 以下である。
( c ) 粒径 0. 1 m以上のパーテイクルを 8000〜 100000 (個 Z 0. 03m2) 有する半径 rの略円形状基板表面を t (分) 間洗浄した場合に於い て、 洗诤後、 基板と中心を同じくする基板表面上の円周内でのパーティクル個 数が、 t = 0. 5〜: 1の際、 円周半径 0. 6 rの円周内で 200/ t個以下、 または、 円周半径 0. 9 rの円周内では 800/t個以下である。
PCT/JP2003/000714 2002-01-28 2003-01-27 Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage WO2003065433A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047011547A KR100913557B1 (ko) 2002-01-28 2003-01-27 반도체 디바이스용 기판의 세정액 및 세정방법
US10/899,304 US20050020463A1 (en) 2002-01-28 2004-07-27 Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same
US11/898,233 US7621281B2 (en) 2002-01-28 2007-09-11 Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002018547 2002-01-28
JP2002-18547 2002-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/899,304 Continuation US20050020463A1 (en) 2002-01-28 2004-07-27 Cleaning solution for cleaning substrate for semiconductor devices and cleaning method using the same

Publications (1)

Publication Number Publication Date
WO2003065433A1 true WO2003065433A1 (fr) 2003-08-07

Family

ID=27653860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/000714 WO2003065433A1 (fr) 2002-01-28 2003-01-27 Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage

Country Status (5)

Country Link
US (2) US20050020463A1 (ja)
KR (1) KR100913557B1 (ja)
CN (1) CN1639846A (ja)
TW (1) TWI302950B (ja)
WO (1) WO2003065433A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005075924A (ja) * 2003-08-29 2005-03-24 Neos Co Ltd シリカスケール除去剤
EP1715510A1 (en) 2004-02-09 2006-10-25 Mitsubishi Chemical Corporation Substrate cleaning liquid for semiconductor device and cleaning method
WO2008048443A1 (en) * 2006-10-16 2008-04-24 Lam Research Corporation Methods and apparatus for wet cleaning electrode assemblies for plasma processing apparatuses
US7503982B2 (en) 2003-04-09 2009-03-17 Kanto Jangaku Kabushiki Kaisha Method for cleaning semiconductor substrate
WO2012011020A3 (en) * 2010-07-19 2012-03-15 Basf Se Aqueous alkaline cleaning compositions and methods of their use
US8765653B2 (en) 2009-07-07 2014-07-01 Air Products And Chemicals, Inc. Formulations and method for post-CMP cleaning
US9048088B2 (en) 2008-03-28 2015-06-02 Lam Research Corporation Processes and solutions for substrate cleaning and electroless deposition

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182773A (ja) * 2002-11-29 2004-07-02 Nec Electronics Corp 疎水性基板洗浄用液体組成物
US20090325362A1 (en) * 2003-01-07 2009-12-31 Nabil Chhaimi Method of recycling an epitaxied donor wafer
FR2892228B1 (fr) * 2005-10-18 2008-01-25 Soitec Silicon On Insulator Procede de recyclage d'une plaquette donneuse epitaxiee
KR20050110470A (ko) * 2004-05-19 2005-11-23 테크노세미켐 주식회사 반도체 기판용 세정액 조성물, 이를 이용한 반도체 기판세정방법 및 반도체 장치 제조 방법
KR100639615B1 (ko) * 2004-11-02 2006-10-30 주식회사 하이닉스반도체 세정액 및 그를 이용한 반도체소자의 세정 방법
JP4843285B2 (ja) * 2005-02-14 2011-12-21 東京エレクトロン株式会社 電子デバイスの製造方法及びプログラム
KR100679007B1 (ko) * 2005-03-31 2007-02-06 유청 반도체소자 세정용 조성물
KR20060122188A (ko) * 2005-05-25 2006-11-30 리퀴드테크놀로지(주) 반도체 공정용 잔사제거액 조성물
JP4613744B2 (ja) * 2005-08-10 2011-01-19 株式会社Sumco シリコンウェーハの洗浄方法
US20070095366A1 (en) * 2005-11-02 2007-05-03 Applied Materials, Inc. Stripping and cleaning of organic-containing materials from electronic device substrate surfaces
DE102006000882A1 (de) * 2006-01-04 2007-07-05 Henkel Kgaa Reinigung gesägter Siliciumscheiben
JP2007266074A (ja) * 2006-03-27 2007-10-11 Toshiba Corp 半導体装置の製造方法及び液浸リソグラフィーシステム
JP2008013389A (ja) * 2006-07-04 2008-01-24 Nec Corp エッチング装置及び薄型ガラス基板の製造方法
US20080039356A1 (en) * 2006-07-27 2008-02-14 Honeywell International Inc. Selective removal chemistries for semiconductor applications, methods of production and uses thereof
JP5428200B2 (ja) * 2007-05-18 2014-02-26 三菱化学株式会社 半導体デバイス用基板洗浄液、半導体デバイス用基板の洗浄方法及び半導体デバイス用基板の製造方法
US20090056744A1 (en) * 2007-08-29 2009-03-05 Micron Technology, Inc. Wafer cleaning compositions and methods
TWI467055B (zh) * 2007-12-21 2015-01-01 Wako Pure Chem Ind Ltd 蝕刻劑及蝕刻方法
US8580656B2 (en) * 2008-07-14 2013-11-12 Air Products And Chemicals, Inc. Process for inhibiting corrosion and removing contaminant from a surface during wafer dicing and composition useful therefor
AT11005U1 (de) * 2008-09-24 2010-02-15 Austria Tech & System Tech Verfahren zum verbessern der korrosionsbeständigkeit einer elektronischen komponente, insbesondere von leiterbahnen einer leiterplatte
US8105997B2 (en) * 2008-11-07 2012-01-31 Lam Research Corporation Composition and application of a two-phase contaminant removal medium
US8333843B2 (en) * 2009-04-16 2012-12-18 Applied Materials, Inc. Process to remove metal contamination on a glass substrate
US20170069480A9 (en) * 2009-10-14 2017-03-09 Sun Chemical Corporation Method of cleaning and micro-etching semiconductor wafers
JP2011124546A (ja) * 2009-10-14 2011-06-23 Rohm & Haas Electronic Materials Llc 半導体ウェハを清浄化しマイクロエッチングする方法
US8148310B2 (en) 2009-10-24 2012-04-03 Wai Mun Lee Composition and method for cleaning semiconductor substrates comprising an alkyl diphosphonic acid
US8782884B2 (en) * 2009-12-01 2014-07-22 Cochlear Limited Manufacturing an electrode assembly having contoured electrode contact surfaces
US8461042B2 (en) * 2009-12-01 2013-06-11 Cochlear Limited Electrode contact contaminate removal
US8536106B2 (en) * 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
CN101838111B (zh) * 2010-05-20 2012-06-27 合肥茂丰电子科技有限公司 玻璃基板蚀刻液及其制备方法
JP6014985B2 (ja) * 2010-10-01 2016-10-26 三菱化学株式会社 半導体デバイス用基板洗浄液及び洗浄方法
KR101925272B1 (ko) * 2011-03-21 2019-02-27 바스프 에스이 질소-무함유 수성 세정 조성물, 이의 제조 및 용도
TWI449783B (zh) * 2011-08-19 2014-08-21 Chi Mei Cooperation Ltd 洗淨液組成物及基板之洗淨方法
JP6123335B2 (ja) * 2012-02-17 2017-05-10 三菱化学株式会社 半導体デバイス用洗浄液及び半導体デバイス用基板の洗浄方法
WO2013136882A1 (ja) * 2012-03-14 2013-09-19 Hoya株式会社 マスクブランク、及び転写用マスクの製造方法
US20150079502A1 (en) 2012-03-14 2015-03-19 Hoya Corporation Mask blank and method of manufacturing a transfer mask
US8916429B2 (en) 2012-04-30 2014-12-23 Taiwan Semiconductor Manufacturing Co., Ltd. Aqueous cleaning techniques and compositions for use in semiconductor device manufacturing
CN104781204A (zh) * 2012-11-22 2015-07-15 旭硝子株式会社 玻璃基板的清洗方法
US9096428B2 (en) * 2013-03-08 2015-08-04 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for MEMS structure release
CN103295881B (zh) * 2013-06-04 2016-08-31 上海华力微电子有限公司 去除硅片表面低介电材料的方法
CN103433233B (zh) * 2013-08-22 2015-11-25 英利集团有限公司 晶硅腐蚀浆料的清洗方法、晶硅太阳能电池及其制作方法
US9150759B2 (en) * 2013-09-27 2015-10-06 Rohm And Haas Electronic Materials Cmp Holdings, Inc Chemical mechanical polishing composition for polishing silicon wafers and related methods
CN103603001B (zh) * 2013-11-06 2015-11-04 天津圳鹏清洗技术开发有限公司 一种铜合金低温清洗剂
KR20150061172A (ko) * 2013-11-26 2015-06-04 삼성디스플레이 주식회사 평판표시장치 세정제 조성물 및 이를 이용한 표시 장치의 제조방법
US10035758B2 (en) 2013-12-09 2018-07-31 Basf Se Method of producing an aminocarboxylic acid
JP6476617B2 (ja) * 2014-07-04 2019-03-06 株式会社Sumco 半導体基板表面の有機物汚染評価方法およびその利用
TWI630034B (zh) * 2014-09-18 2018-07-21 台灣積體電路製造股份有限公司 半導體基板的清潔方法與半導體裝置的製作方法
KR20170056631A (ko) * 2014-09-18 2017-05-23 어플라이드 머티어리얼스, 인코포레이티드 엔지니어링된 점성 유체를 이용한 고효율 cmp 후 세정을 위한 방법 및 장치
WO2017188296A1 (ja) * 2016-04-28 2017-11-02 富士フイルム株式会社 処理液及び処理液収容体
KR102051346B1 (ko) * 2016-06-03 2019-12-03 후지필름 가부시키가이샤 처리액, 기판 세정 방법 및 레지스트의 제거 방법
KR20180067167A (ko) * 2016-12-12 2018-06-20 김윤겸 수용성 세정제 및 이를 이용한 세정방법
CN110462795A (zh) * 2017-03-31 2019-11-15 关东化学株式会社 清洁液组合物
US11446708B2 (en) * 2017-12-04 2022-09-20 Entegris, Inc. Compositions and methods for reducing interaction between abrasive particles and a cleaning brush
CN109986458B (zh) * 2017-12-29 2021-02-05 长鑫存储技术有限公司 缓研磨去除多晶硅表面凸块缺陷的方法及半导体工艺方法
CN108550639B (zh) * 2018-03-21 2020-08-21 台州市棱智塑业有限公司 一种硅异质结太阳能电池界面处理剂及处理方法
KR102062342B1 (ko) * 2019-03-08 2020-01-03 영창케미칼 주식회사 반도체 웨이퍼 세정액 조성물 및 그를 이용한 세정방법
CN113692640A (zh) * 2019-04-15 2021-11-23 三菱化学株式会社 清洗液、清洗方法和半导体晶片的制造方法
JP2021042326A (ja) * 2019-09-12 2021-03-18 日華化学株式会社 電解洗浄剤及び金属の洗浄方法
EP4175772A1 (en) * 2020-07-03 2023-05-10 Applied Materials, Inc. Methods for refurbishing aerospace components
CN115746711B (zh) * 2022-11-08 2023-07-14 东莞领航电子新材料有限公司 一种铝合金镜面抛光液以及抛光方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414924A (en) * 1987-07-09 1989-01-19 Mitsubishi Gas Chemical Co Semiconductor treating agent
JPH0613364A (ja) * 1991-07-12 1994-01-21 Mitsubishi Gas Chem Co Inc シリコンウエハーおよび半導体素子洗浄液
JPH07142436A (ja) * 1993-11-18 1995-06-02 Pure Retsukusu:Kk シリコンウェーハ洗浄液及び該洗浄液を用いたシリコンウェーハの洗浄方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629127A (en) * 1968-08-05 1971-12-21 Basf Wyandotte Corp Low foaming rinse additive
US3959163A (en) * 1972-09-18 1976-05-25 Colgate-Palmolive Company Stain removal
NL89736C (ja) * 1973-03-15
US4421514A (en) * 1982-08-03 1983-12-20 Colgate-Palmolive Antistatic laundry treatment
US4828750A (en) * 1987-12-02 1989-05-09 Colgate-Polmolive Company Fabric rinse composition to remove surfactant residues
JPH02197580A (ja) * 1989-01-24 1990-08-06 Okuno Seiyaku Kogyo Kk 無電解ハンダめっき浴
JPH05335294A (ja) 1992-05-29 1993-12-17 Mitsubishi Gas Chem Co Inc 半導体基板洗浄液
US5354366A (en) * 1993-09-27 1994-10-11 Deluxe Corporation Ink composition and resins and methods relating thereto
US5704987A (en) * 1996-01-19 1998-01-06 International Business Machines Corporation Process for removing residue from a semiconductor wafer after chemical-mechanical polishing
US5935869A (en) * 1997-07-10 1999-08-10 International Business Machines Corporation Method of planarizing semiconductor wafers
JPH11121418A (ja) 1997-10-14 1999-04-30 Kao Corp 洗浄剤組成物及び洗浄方法
US6152148A (en) * 1998-09-03 2000-11-28 Honeywell, Inc. Method for cleaning semiconductor wafers containing dielectric films
US7064070B2 (en) * 1998-09-28 2006-06-20 Tokyo Electron Limited Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process
US20010001392A1 (en) * 1998-11-12 2001-05-24 Dainippon Screen Mfg. Co., Ltd. Substrate treating method and apparatus
US20050229946A1 (en) * 1998-11-12 2005-10-20 Dainippon Screen Mfg. Co., Ltd. Substrate treating method and apparatus
JP4516176B2 (ja) 1999-04-20 2010-08-04 関東化学株式会社 電子材料用基板洗浄液
US7208049B2 (en) * 2003-10-20 2007-04-24 Air Products And Chemicals, Inc. Process solutions containing surfactants used as post-chemical mechanical planarization treatment
JP2001040389A (ja) 1999-07-26 2001-02-13 Daikin Ind Ltd ウエハ洗浄液
US6723691B2 (en) * 1999-11-16 2004-04-20 Advanced Technology Materials, Inc. Post chemical-mechanical planarization (CMP) cleaning composition
US6492308B1 (en) * 1999-11-16 2002-12-10 Esc, Inc. Post chemical-mechanical planarization (CMP) cleaning composition
US6417147B2 (en) * 2000-02-29 2002-07-09 Showa Denko K.K. Cleaning agent composition, method for cleaning and use thereof
JP2002020787A (ja) * 2000-07-05 2002-01-23 Wako Pure Chem Ind Ltd 銅配線半導体基板洗浄剤
US6310019B1 (en) * 2000-07-05 2001-10-30 Wako Pure Chemical Industries, Ltd. Cleaning agent for a semi-conductor substrate
EP1389496A1 (en) * 2001-05-22 2004-02-18 Mitsubishi Chemical Corporation Method for cleaning surface of substrate
US6723799B2 (en) * 2001-08-24 2004-04-20 E I. Du Pont De Nemours And Company Acid-dyeable polymer compositions
US7468105B2 (en) * 2001-10-16 2008-12-23 Micron Technology, Inc. CMP cleaning composition with microbial inhibitor
TWI276682B (en) * 2001-11-16 2007-03-21 Mitsubishi Chem Corp Substrate surface cleaning liquid mediums and cleaning method
JP2004182773A (ja) * 2002-11-29 2004-07-02 Nec Electronics Corp 疎水性基板洗浄用液体組成物
TWI324362B (en) * 2003-01-10 2010-05-01 Kanto Kagaku Cleaning solution for semiconductor substrate
US6930017B2 (en) * 2003-08-21 2005-08-16 Micron Technology, Inc. Wafer Cleaning method and resulting wafer
EP1715510B2 (en) * 2004-02-09 2016-02-24 Mitsubishi Chemical Corporation Substrate cleaning liquid for semiconductor device and cleaning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414924A (en) * 1987-07-09 1989-01-19 Mitsubishi Gas Chemical Co Semiconductor treating agent
JPH0613364A (ja) * 1991-07-12 1994-01-21 Mitsubishi Gas Chem Co Inc シリコンウエハーおよび半導体素子洗浄液
JPH07142436A (ja) * 1993-11-18 1995-06-02 Pure Retsukusu:Kk シリコンウェーハ洗浄液及び該洗浄液を用いたシリコンウェーハの洗浄方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503982B2 (en) 2003-04-09 2009-03-17 Kanto Jangaku Kabushiki Kaisha Method for cleaning semiconductor substrate
JP2005075924A (ja) * 2003-08-29 2005-03-24 Neos Co Ltd シリカスケール除去剤
EP1715510A1 (en) 2004-02-09 2006-10-25 Mitsubishi Chemical Corporation Substrate cleaning liquid for semiconductor device and cleaning method
US7541322B2 (en) 2004-02-09 2009-06-02 Mitsubishi Chemical Corporation Cleaning solution for substrate for semiconductor device and cleaning method
WO2008048443A1 (en) * 2006-10-16 2008-04-24 Lam Research Corporation Methods and apparatus for wet cleaning electrode assemblies for plasma processing apparatuses
US7942973B2 (en) 2006-10-16 2011-05-17 Lam Research Corporation Methods and apparatus for wet cleaning electrode assemblies for plasma processing apparatuses
TWI426556B (zh) * 2006-10-16 2014-02-11 Lam Res Corp 溼式清潔用於電漿處理設備之電極總成的方法與裝置
US9048088B2 (en) 2008-03-28 2015-06-02 Lam Research Corporation Processes and solutions for substrate cleaning and electroless deposition
US8765653B2 (en) 2009-07-07 2014-07-01 Air Products And Chemicals, Inc. Formulations and method for post-CMP cleaning
WO2012011020A3 (en) * 2010-07-19 2012-03-15 Basf Se Aqueous alkaline cleaning compositions and methods of their use
US8927476B2 (en) 2010-07-19 2015-01-06 Basf Se Aqueous alkaline cleaning compositions and methods of their use

Also Published As

Publication number Publication date
US20050020463A1 (en) 2005-01-27
TWI302950B (en) 2008-11-11
KR100913557B1 (ko) 2009-08-21
US20080011321A1 (en) 2008-01-17
US7621281B2 (en) 2009-11-24
CN1639846A (zh) 2005-07-13
TW200304962A (en) 2003-10-16
KR20040077805A (ko) 2004-09-06

Similar Documents

Publication Publication Date Title
WO2003065433A1 (fr) Detergent liquide pour substrat de dispositif semi-conducteur et procede de nettoyage
JP4304988B2 (ja) 半導体デバイス用基板の洗浄方法
JP4942275B2 (ja) 化学的機械的平坦化(cmp)後の清浄化組成物
EP1360712B9 (en) Post chemical-mechanical planarization (cmp) cleaning composition
EP1715510B1 (en) Substrate cleaning liquid for semiconductor device and cleaning method
JP5428200B2 (ja) 半導体デバイス用基板洗浄液、半導体デバイス用基板の洗浄方法及び半導体デバイス用基板の製造方法
US7235516B2 (en) Semiconductor cleaning composition comprising an ethoxylated surfactant
JP4736445B2 (ja) 半導体デバイス用基板洗浄液及び洗浄方法
WO2002094462A1 (fr) Procede de nettoyage de la surface d&#39;un substrat
US20080076688A1 (en) Copper passivating post-chemical mechanical polishing cleaning composition and method of use
KR20080025697A (ko) 구리를 부동태화하는 cmp후 세정 조성물 및 이용 방법
WO2001040425A2 (en) Post chemical-mechanical planarization (cmp) cleaning composition
JP2003068696A (ja) 基板表面洗浄方法
JP2003109930A (ja) 半導体デバイス用基板の洗浄液及び洗浄方法
JP2009071165A (ja) 半導体デバイス用基板洗浄液
JP2003088817A (ja) 基板表面洗浄方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BR BZ CA CN CO CR CU DM DZ EC GD GE HR HU ID IL IN IS KP KR LC LK LR LT LV MA MG MK MN MX NO NZ OM PH PL RO SC SG TN TT UA US UZ VC VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020047011547

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10899304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038048027

Country of ref document: CN

122 Ep: pct application non-entry in european phase