WO2003072876A1 - Ceramic fiber aggregate - Google Patents

Ceramic fiber aggregate Download PDF

Info

Publication number
WO2003072876A1
WO2003072876A1 PCT/JP2003/002129 JP0302129W WO03072876A1 WO 2003072876 A1 WO2003072876 A1 WO 2003072876A1 JP 0302129 W JP0302129 W JP 0302129W WO 03072876 A1 WO03072876 A1 WO 03072876A1
Authority
WO
WIPO (PCT)
Prior art keywords
aggregate
fiber
ceramic fiber
fibers
ceramic
Prior art date
Application number
PCT/JP2003/002129
Other languages
French (fr)
Japanese (ja)
Inventor
Mamoru Shoji
Toshiaki Sasaki
Toshio Ito
Naoyuki Kagawa
Original Assignee
Mitsubishi Chemical Functional Products, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Functional Products, Inc. filed Critical Mitsubishi Chemical Functional Products, Inc.
Publication of WO2003072876A1 publication Critical patent/WO2003072876A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration

Definitions

  • the present invention relates to a ceramic fiber assembly.
  • the ceramic fiber aggregate is usually melted in a melting furnace at a temperature close to 2000 ° C at a temperature of around 2000 ° C (melting method), and then centrifuged by a rotating plate or compressed air. It is manufactured by a method that converts into fibers by cooling at once.
  • the ceramic fiber aggregate obtained by the melting method as described above contains a large amount of unfibrillated particles during spinning. I Dog (hereinafter referred to as shot), and its proportion is usually 50% by weight. Reach.
  • the fiber structure becomes an amorphous amorphous glass structure because it is rapidly cooled from a molten state during fiberization.
  • Such a ceramic fiber aggregate is inexpensive, but is inferior to a crystalline alumina fiber in heat resistance 5 ′, and is further reduced in performance by a large amount of shot.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel ceramic fiber aggregate that maintains high fiber properties and has a short shot content power of 5 ′.
  • the gist of the present invention is an aggregate of ceramic fibers, is water-dispersible fiber ⁇ height is 1 4 0 m 1 / g Shiyotto content and above particle diameter 4 5 lambda m above 20% by weight or less in the ceramic fiber aggregate.
  • the ceramic fiber aggregate of the present invention is obtained by a melting method and contains alumina and silica as main components. That is, the ceramic fiber aggregate of the present invention is basically manufactured as a fiber aggregate by the above-described known melting method.
  • alumina and silica are the main components means that their content is 80% by weight or more. That is, the ceramic fiber of the present invention in order to enhance heat resistance, a small amount of C r 2 0 3, Z r 0 2 or the like may be added.
  • the ceramic fiber aggregate of the present invention has a bulk in water of 140 m 1 / g or more and a shot content of 45 ⁇ m or more in particle diameter of 20% by weight or less. Characterized.
  • the value of the “bulk height of the dispersion fiber in water” described above means a value measured by the following method. That is, 3 g of ceramic fiber is refined, put into a 1 L mesis cylinder (a commercially available standard product) having a diameter of 65.5 mm, and further added with 1 L of water and sufficiently sealed to obtain a fiber. After dispersing the mixture, the mixture is allowed to stand for 30 minutes and the bulk of the precipitated fiber is measured. The value obtained by converting the bulk of the obtained fiber per unit g was defined as the bulk height of the fiber dispersed in water. The lower the value of the bulk of the dispersed fibers in water, the shorter the fibers constituting the ceramic fiber aggregate.
  • the content of the “shot having a particle diameter of 45 ⁇ m or more” described above means a value measured by a method in accordance with JISR-3331.
  • the ceramic fiber aggregate of the present invention is obtained, for example, by a melting method, and has alumina and silica as main components and an alumina-silicon weight ratio of usually 30:70 to 60:40. It can be obtained by subjecting an aggregate of ceramic fibers to a wet defibration and then performing a de-shot process.
  • the above commercial products have shots with an alumina / silica weight ratio of approximately 50:50, an average fiber diameter of 2-3 m, and a size of 45 ⁇ 111 or more according to JISR-3311.
  • the amount is usually of the order of 50% by weight.
  • typical product forms of the above-mentioned commercial products include blanket and balta, but balta is preferable.
  • the fibers may become entangled by a heat treatment called needle punching or squeezing, and the wet defibration may not be performed sufficiently.
  • needle punching or squeezing a heat treatment that is used to satisfy the physical properties specified in the present invention.
  • an oil agent added to the fiber surface. Its purpose is to prevent dust from fibers and maintain the texture. Furthermore, in the case of blankets, it is added as a lubricant for punch needles during needle punching. Such an oil agent is added to the entire fiber at the stage of melt spinning. Therefore, a general blanket does not remain because the fiber is hardened by heat treatment after needle punching, but remains in the case of bulk.
  • a hydrophilic nonionic surfactant or a non-hydrophilic cationic surfactant is mainly used.
  • the above-mentioned oils have an adverse effect on the dispersibility of the fibers during wet unraveling. That is, when the oil agent is non-hydrophilic, the fibers repel water and are hardly dispersed in water. If the oil agent is hydrophilic, it foams in and further, the fibers and shots are dispersed in water, making shot separation difficult.
  • the ceramic fiber aggregate to be subjected to the above-described modification treatment is degreased before wet defibration.
  • the degreasing treatment is usually performed by heat treatment at 400 to 600 ° C. If the heat treatment temperature is lower than 400 ° C, the removal of the “oil” in the fiber becomes insufficient, and if it exceeds 600 ° C, there are problems such as thermal deterioration and fusion of the fiber. Failure occurs during defibration (dispersion of fibers) Wet defibration, no. It can be carried out using a device commercially available under the name of a refiner, a stirrer, a mixer, or the like for a loop.
  • the ratio of the fiber to water is usually 0.5 to 3% by weight, preferably 1 to 2% by weight. If the fiber concentration in the water is too high, the fibers will become entangled with each other and the dispersion of the fibers will not be successful, requiring long-term dispersion. As a result, there is a problem that the fiber length is shortened more than necessary. In addition, productivity force when the fiber concentration in the water is too low? Deteriorate.
  • the ceramic fiber aggregate is dissolved so that the bulk of the fibers dispersed in water is at least 140 ml / g and the content of the shot having a particle diameter of at least 45 ⁇ m is at most 20% by weight.
  • the fiber conditions are appropriately selected.
  • the bulk of the dispersion fiber in water is preferably 200 ml / g or more, and the upper limit is not particularly limited, but it is considered that it can be up to about 700 m1 / g.
  • the content of the shot having a particle diameter of 45 ⁇ m or more is preferably 10% by weight or less.
  • the lower limit is not particularly limited, but is usually about 5% by weight because excessive de-shot processing increases the possibility of shortening the fiber length more than necessary.
  • the shot 1 is removed from the unraveled fiber by sedimentation in water.
  • a separation method a liquid cyclone, a separation method using a floating sedimentation tank, or the like can be used.
  • the fiber concentration in the water is usually in the range of 1 to 2% by weight, preferably 0.2 to 1% by weight. If the fiber concentration is too high, shots separated from the fibers by dispersion and defibration will be mixed with the fibers and difficult to separate. What are the separation conditions? It is determined by the equipment used, the content of the shot in the fiber obtained, the yield of the fiber, and the like.
  • the ceramic fiber aggregate modified as described above needs to be dried depending on the application.
  • the ceramic fiber aggregate of the present invention may be subjected to a firing treatment.
  • the firing conditions vary depending on the type of fiber used, the type of heat treatment furnace, etc., but usually, mullite crystals are generated in the fiber at 900 to 1200 ° C (preferably 950 to 1100 ° C).
  • the temperature is usually 5 to 5 hours (preferably about 1 hour).
  • the size of the mrit crystal is measured by the Wi-son method based on X-ray diffraction, and calcined so that this value is usually 30 OA or less, preferably 20 OA or less, and more preferably 50 to 15 OA. To process.
  • the above-mentioned baking process is performed after the de-shot process.
  • the sheet can be processed before the firing treatment.
  • Such sheet processing can be performed by a method in which the ceramic fiber aggregate after the de-shock treatment is processed by a paper machine, a vacuum molding machine, or the like.
  • the present invention will be described in more detail with reference to examples.
  • the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
  • the evaluation method and the aggregate of ceramic fibers used in the following examples are as follows.
  • the ceramic fiber aggregate was heat-treated at 600 ° C for 1 hour to remove the oil attached to the fiber surface before use.
  • the paper mat is cut to 5 Omm, and it is applied to a compression tester (Shimadzu “IS-500”) and compressed at a compression speed of 1 mm / min.
  • the load per unit area (kg / cm 2 ) was determined by dividing the compressive load by the mat area, and the relationship between the compressive density (g / cm 3 ) and the load (kg / cm 2 ) was determined.
  • Mats that provide high surface pressure have excellent resilience and are suitable for applications such as heat-resistant packing and cushioning materials.
  • the surface pressure as described above is usually about 6 kg / cm 2 or more, and up to about 12 kgZ cm 2 can be expected as the upper limit.
  • Measurement angle of reference material 26.6, 36.5, 39.4, 40.3, 42.4
  • TMA thermo-mechanical analysis
  • test fiber aggregate ((F) in Table 2) was added to 4.0 L of water and dispersed to form a 1% by weight slurry, and the slurry was mixed with a commercially available mixer (Model 34BL22 manufactured by Waring Co.) to 7800 The dispersion was further dispersed by rpm and dispersed for 2 minutes.
  • the fiber assembly (papermaking mat) obtained in Example 3 above was subjected to a heat treatment to test the high temperature properties.
  • Table 4 shows the results. Mullite crystal grains were detected in the paper-made mat that had been heat-treated above 950 ° C, and the heat resistance by TMA was greatly improved. In particular, in the case of a paper-made mat having a crystal grain size of 15 OA or less, the fiber did not deteriorate due to the heat treatment, and a high surface pressure could be maintained.
  • a short fiber contained in a large amount of fibers while maintaining an appropriate fiber length is provided.
  • removing the fibers it is possible to obtain a ceramic fiber aggregate having significantly improved physical properties.
  • Such a ceramic fiber aggregate is relatively inexpensive and, moreover, covers an intermediate temperature region between alumina fiber and ceramic fiber, so that it is suitable for applications such as heat-resistant packing and cushioning materials.
  • a gripping material for a catalytic converter of a vehicle exhaust gas purification device is exemplified.

Abstract

A ceramic fiber aggregate, characterized in that it has a fiber bulkiness in the state of being dispersed in water of 140 ml/g or more and it contains shots, which mean non-fibrous particles, having a particle diameter of 45 μm or more in a content of 20 wt %. The ceramic fiber aggregate is considerably removed of shots, which are contained in a great content in a conventional ceramic fiber aggregate, while maintaining an appropriate fiber length, and thus can be suitably used for a heat-resistant packing, cushioning material and the like.

Description

明 細 書 セラミック繊維集合体 技術分野  Description Ceramic fiber aggregate Technical field
本発明はセラミック繊維集合体に関する。 背景技術  The present invention relates to a ceramic fiber assembly. Background art
セラミック繊維集合体は、 通常、 溶融炉において、 2, 0 0 0 °C近くの温度 でアルミナ及びシリカの鉱石または結晶を溶融 (溶融法) してから、 回転板に よる遠心力または圧縮エアーで一気に冷却して繊維化する方法により製造され る。  The ceramic fiber aggregate is usually melted in a melting furnace at a temperature close to 2000 ° C at a temperature of around 2000 ° C (melting method), and then centrifuged by a rotating plate or compressed air. It is manufactured by a method that converts into fibers by cooling at once.
上記の様な溶融法によって得られたセラミック繊維集合体には、 紡糸の際に 多量の未繊維化粒子) I犬物 (以下ショットと言う) が含まれ、 その割合は通常 5 0重量%に達する。 また、 繊維の構造は、 繊維化の際、 溶融状態から一気に冷 却されるため、 無定形の非晶質ガラス構造となる。 斯かるセラミック繊維集合 体は、 安価であるが、 結晶質のアルミナ繊維に較べて耐熱性力5'劣り、 更に、 多 量に含有されるショッ トによって一層の性能低下が引き起こされている。 The ceramic fiber aggregate obtained by the melting method as described above contains a large amount of unfibrillated particles during spinning. I Dog (hereinafter referred to as shot), and its proportion is usually 50% by weight. Reach. In addition, the fiber structure becomes an amorphous amorphous glass structure because it is rapidly cooled from a molten state during fiberization. Such a ceramic fiber aggregate is inexpensive, but is inferior to a crystalline alumina fiber in heat resistance 5 ′, and is further reduced in performance by a large amount of shot.
ところで、 従来から、 セラミック繊維中のショット含有量に関する記述はあ るが、 ショッ ト含有量と繊維物性との関係は未だ明らかにされていない。 発明の開示  By the way, there has been a description of the shot content in ceramic fibers, but the relationship between the shot content and the fiber properties has not been clarified yet. Disclosure of the invention
本発明は、 上記実情に鑑みなされたものであり、 その目的は、 高い繊維物性 を維持し且つショッ ト含有量力5'低い新規なセラミック繊維集合体を提供するこ とにめる。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a novel ceramic fiber aggregate that maintains high fiber properties and has a short shot content power of 5 ′.
すなわち、 本発明の要旨は、 セラミック繊維の集合体であって、 水中分散繊 維嵩高さが 1 4 0 m 1 / g以上で且つ粒子径 4 5 Λ m以上のシヨット含有量が 2 0重量%以下であることを特徴とするセラミック繊維集合体に存する。 That is, the gist of the present invention is an aggregate of ceramic fibers, is water-dispersible fiber維嵩height is 1 4 0 m 1 / g Shiyotto content and above particle diameter 4 5 lambda m above 20% by weight or less in the ceramic fiber aggregate.
以下、 本発明を詳細に説明する。 本発明のセラミック繊維集合体は、 溶融法 によって得られ、 アルミナとシリカとを主成分とする。 すなわち、 本発明のセ ラミック繊維集合体は、 基本的には、 前述した公知の溶融法によって繊維集合 体として製造される。  Hereinafter, the present invention will be described in detail. The ceramic fiber aggregate of the present invention is obtained by a melting method and contains alumina and silica as main components. That is, the ceramic fiber aggregate of the present invention is basically manufactured as a fiber aggregate by the above-described known melting method.
上記のアルミナとシリカとを主成分とするとは、 これらの含有量が 8 0重量 %以上であることを意味する。 すなわち、 本発明のセラミック繊維には、 耐熱 性を高めるため、 少量の C r 203、 Z r 02等が添加されていてもよい。 The fact that the above-mentioned alumina and silica are the main components means that their content is 80% by weight or more. That is, the ceramic fiber of the present invention in order to enhance heat resistance, a small amount of C r 2 0 3, Z r 0 2 or the like may be added.
本発明のセラミ ック繊維集合体は、 水中分散繊維嵩高さが 1 4 0 m 1 / g以 上で且つ粒子径 4 5 μ m以上のショット含有量が 2 0重量%以下であることに よって特徴づけられる。  The ceramic fiber aggregate of the present invention has a bulk in water of 140 m 1 / g or more and a shot content of 45 μm or more in particle diameter of 20% by weight or less. Characterized.
上記の 「水中分散繊維嵩高さ」 の値は次の方法で測定された値を意味する。 すなわち、 セラミック繊維 3 gを精枰し、 直径が 6 5 . 5 m mである 1 Lのメ シスリンダ一 (市販の標準品) に入れ、 更に、 水 1 Lを加えて十分にシヱーキ ングして繊維を分散させた後、 3 0分静置して沈降した繊維の嵩を測定する。 得られた繊維の嵩を単位 g当たりに換算して得られた値を水中分散繊維嵩高さ とした。 水中分散繊維嵩高さの値が低いほどにセラミック繊維集合体を構成す る繊維が短いことを意味する。  The value of the “bulk height of the dispersion fiber in water” described above means a value measured by the following method. That is, 3 g of ceramic fiber is refined, put into a 1 L mesis cylinder (a commercially available standard product) having a diameter of 65.5 mm, and further added with 1 L of water and sufficiently sealed to obtain a fiber. After dispersing the mixture, the mixture is allowed to stand for 30 minutes and the bulk of the precipitated fiber is measured. The value obtained by converting the bulk of the obtained fiber per unit g was defined as the bulk height of the fiber dispersed in water. The lower the value of the bulk of the dispersed fibers in water, the shorter the fibers constituting the ceramic fiber aggregate.
上記の 「粒子径 4 5 μ m以上のシヨット」 の含有率は、 J I S R— 3 3 1 1に準拠した方法測定された値を意味する。  The content of the “shot having a particle diameter of 45 μm or more” described above means a value measured by a method in accordance with JISR-3331.
本発明のセラミ ック繊維集合体は、 例えば、 溶融法によつて得られ、 アルミ ナとシリカとを主成分とし且つアルミナ ' シリ力重量比が通常 3 0 : 7 0〜 6 0 : 4 0であるセラミック繊維の集合体を湿式解繊した後に脱ショット処理し て得ることが出来る。  The ceramic fiber aggregate of the present invention is obtained, for example, by a melting method, and has alumina and silica as main components and an alumina-silicon weight ratio of usually 30:70 to 60:40. It can be obtained by subjecting an aggregate of ceramic fibers to a wet defibration and then performing a de-shot process.
上記の改質処理に供することが出来るセラミ ック繊維集合体の市販品として は、 例えば、 新日化サーマルセラミックス (株) 製の 「S C— 1 2 6 0バルク」 、 東芝モノフラックス (株) 製の 「ファイバーェクセルバルクフアイバー」 、 ィ ソライ ト工業 (株) 製の 「イソウール 1 2 6 0バルク」 、 イビデン (株) 製の 「jバルク」 等である。 Commercially available ceramic fiber aggregates that can be subjected to the above-mentioned reforming treatment include, for example, “SC-126 Bulk” manufactured by Shin Nikka Thermal Ceramics Co., Ltd., and Toshiba Monoflux Co., Ltd. "Fiber Excel Bulk Fiber" “Isowool 126 Bulk” manufactured by Solyte Industries Co., Ltd., and “j Bulk” manufactured by Ibiden Co., Ltd.
上記の市販品は、 アルミナ ·シリカ重量比が略 5 0 : 5 0、 平均繊維径が 2 〜3 m、 J I S R— 3 3 1 1 に準拠した方法による 4 5 ^ 111以上の大きさ のショット含有量が通常 5 0重量%程度である。  The above commercial products have shots with an alumina / silica weight ratio of approximately 50:50, an average fiber diameter of 2-3 m, and a size of 45 ^ 111 or more according to JISR-3311. The amount is usually of the order of 50% by weight.
また、 上記の市販品の代表的な製品形態としては、 ブランケット、 バルタ等 があるがバルタが好適である。 ブランケットの場合は、 ニードルパンチや硬ィ匕 と呼ばれる熱処理によつて繊維が絡み合い、 湿式解繊が十分に出来ない場合が あり、 また、 解繊が進み過ぎて必要以上に繊維長さを短く し、 本発明で規定す る物性値を満足することが困難な場合がある。  In addition, typical product forms of the above-mentioned commercial products include blanket and balta, but balta is preferable. In the case of a blanket, the fibers may become entangled by a heat treatment called needle punching or squeezing, and the wet defibration may not be performed sufficiently. However, it may be difficult to satisfy the physical properties specified in the present invention.
ところで、 通常、 市販のセラミック繊維集合体には、 繊維表面に平滑剤 (以 下油剤と言う) が添加されている。 その目的は、 繊維からの発塵防止、 風合い 維持である。 更に、 ブランッケットの場合はニードルパンチの際のパンチ針の 減摩剤として添加される。 斯かる油剤は、 溶融紡糸の段階で繊維全体に添加さ れる。 従って、 一般的なブランケットはニードルパンチの後に熱処理して繊維 を硬ィヒするため残存していないが、 バルクの場合には残存している。 そして、 油剤としては、 主に、 親水性のノニォン系界面活性剤または非親水性のカチォ ン系界面活性剤が使用される。  In general, commercially available ceramic fiber aggregates have a smoothing agent (hereinafter referred to as an oil agent) added to the fiber surface. Its purpose is to prevent dust from fibers and maintain the texture. Furthermore, in the case of blankets, it is added as a lubricant for punch needles during needle punching. Such an oil agent is added to the entire fiber at the stage of melt spinning. Therefore, a general blanket does not remain because the fiber is hardened by heat treatment after needle punching, but remains in the case of bulk. As the oil agent, a hydrophilic nonionic surfactant or a non-hydrophilic cationic surfactant is mainly used.
ところが、 上記の様な油剤は湿式解織の際に繊維の分散性に悪影響を与える。 すなわち、 油剤が非親水性である場合は繊維が水をはじいて水中に分散し難く なる。 油剤が親水性の場合は、 中で泡立ったり、 更に、 繊維およびショット が水中に分散してショット分離が困難となる。  However, the above-mentioned oils have an adverse effect on the dispersibility of the fibers during wet unraveling. That is, when the oil agent is non-hydrophilic, the fibers repel water and are hardly dispersed in water. If the oil agent is hydrophilic, it foams in and further, the fibers and shots are dispersed in water, making shot separation difficult.
そこで、 本発明の好ましい態様においては、 前記の改質処理に供するセラミツ ク繊維集合体が湿式解繊前に脱脂処理される。 脱脂処理は、 通常 4 0 0〜 6 0 0 °Cで熱処理することによって行なわれる。 熱処理温度が 4 0 0 °C未満の場合 は繊維中の 「油分」 の除去が不十分となり、 6 0 0 °Cを超える場合は繊維が熱 劣化したり融着する等の問題があり、 湿式解繊 (繊維の分散) の際に障害が生 湿式解繊は、 ノ、。ルプ用のリファイナー、 撹拌機、 ミキサー等の名称で市販さ れる装置を使用して行なうことが出来る。 この際、 水に対する繊維の割合は、 通常 0 . 5〜 3重量%、 好ましくは 1〜 2重量%とされる。 水中の繊維濃度が 高すぎる場合は、 繊維同士が絡み合い繊維の分散がうまくいかず長時間の分散 を必要とする。 その結果、 必要以上に繊維長さを短く してしまう問題が発生す る。 また、 水中の繊維濃度が低すぎる場合は生産性力 ?悪くなる。 Therefore, in a preferred embodiment of the present invention, the ceramic fiber aggregate to be subjected to the above-described modification treatment is degreased before wet defibration. The degreasing treatment is usually performed by heat treatment at 400 to 600 ° C. If the heat treatment temperature is lower than 400 ° C, the removal of the “oil” in the fiber becomes insufficient, and if it exceeds 600 ° C, there are problems such as thermal deterioration and fusion of the fiber. Failure occurs during defibration (dispersion of fibers) Wet defibration, no. It can be carried out using a device commercially available under the name of a refiner, a stirrer, a mixer, or the like for a loop. At this time, the ratio of the fiber to water is usually 0.5 to 3% by weight, preferably 1 to 2% by weight. If the fiber concentration in the water is too high, the fibers will become entangled with each other and the dispersion of the fibers will not be successful, requiring long-term dispersion. As a result, there is a problem that the fiber length is shortened more than necessary. In addition, productivity force when the fiber concentration in the water is too low? Deteriorate.
その他の解繊条件は、 使用する機器、 得られる繊維中のショット含有量、 繊 維の歩留まり、 繊維長さに等よつて決定される。 すなわち、 湿式解繊は脱ショ ト処理のために行なわれる。 要するに、 繊維からのショットの分離には、 ある 程度繊維を破砕して短くする必要があり、 その結果、 繊維長さが短くなり過ぎ て逆に物性を悪化させる。 そこで、 本発明においては、 セラミック繊維集合体 の水中分散繊維嵩高さが 1 4 0 m l / g以上で且つ粒子径 4 5 μ m以上のショッ ト含有量が 2 0重量%以下となる様に解繊条件を適宜選択する。  Other defibration conditions are determined by the equipment used, the shot content in the resulting fiber, the yield of the fiber, the fiber length, and the like. That is, wet defibration is performed for de-short processing. In short, the separation of shots from the fibers requires that the fibers be crushed and shortened to some extent, resulting in a fiber length that is too short and conversely degrades the physical properties. Accordingly, in the present invention, the ceramic fiber aggregate is dissolved so that the bulk of the fibers dispersed in water is at least 140 ml / g and the content of the shot having a particle diameter of at least 45 μm is at most 20% by weight. The fiber conditions are appropriately selected.
上記の水中分散繊維嵩高さは、 好ましくは 2 0 0 m l / g以上であり、 その 上限は、 特に制限されないが、 7 0 0 m 1 / g程度まで可能と考えられる。 一 方、 上記の粒子径 4 5 μ m以上のショッ ト含有量は、 好ましくは 1 0重量%以 下である。 そして、 その下限は、 特に制限されないが、 脱ショット処理を行い 過ぎると必要以上に繊維長さを短くしてしまう可能性が高くなるため、 通常 5 重量%程度である。  The bulk of the dispersion fiber in water is preferably 200 ml / g or more, and the upper limit is not particularly limited, but it is considered that it can be up to about 700 m1 / g. On the other hand, the content of the shot having a particle diameter of 45 μm or more is preferably 10% by weight or less. The lower limit is not particularly limited, but is usually about 5% by weight because excessive de-shot processing increases the possibility of shortening the fiber length more than necessary.
脱ショッ ト処理においては、 解織した繊維から水中で沈降分離によってショッ 1、を除去する。 分離方法としては、 液体サイクロン、 浮上沈降槽を使用した分 離方法などを使用できる。 この場合、 水中の繊維濃度は、 通常 1〜2重量 %、 好ましくは 0 . 2〜 1重量%の範囲である。 繊維濃度が高すぎる場合は分 散 ·解繊によって繊維から切り離したショットが繊維と混在して分離し難くな る。 分離条件は。 使用する機器、 得られる繊維中のショッ ト含有量、 繊維の歩 留まり等によって決定される。 上記の様にして改質処理されたセラミック繊維集合体は、 用途によっては乾 燥する必要がある。 その場合は適宜決められた含水率まで乾燥すればよい。 本発明のセラミック繊維集合体は焼成処理されていてもよい。 焼成処理の条 件は、 使用する繊維の種類、 熱処理炉の形式などによって変更されるが、 通常、 繊維中にムライ ト結晶が発生する 900〜 1200 °C (好ましくは 950〜 1 100°C) の温度で、 通常 5〜5時間 (好ましくは 1時間程度) の条件が 採用される。 本発明においては、 X線回折による Wi 1 s o n法によりムラィ ト結晶粒径を測定し、 この値が通常 30 OA以下、 好ましくは 20 OA以下、 更に好ましくは 50〜 1 5 OAとなる様に焼成処理する。 In the de-short treatment, the shot 1 is removed from the unraveled fiber by sedimentation in water. As a separation method, a liquid cyclone, a separation method using a floating sedimentation tank, or the like can be used. In this case, the fiber concentration in the water is usually in the range of 1 to 2% by weight, preferably 0.2 to 1% by weight. If the fiber concentration is too high, shots separated from the fibers by dispersion and defibration will be mixed with the fibers and difficult to separate. What are the separation conditions? It is determined by the equipment used, the content of the shot in the fiber obtained, the yield of the fiber, and the like. The ceramic fiber aggregate modified as described above needs to be dried depending on the application. In that case, it may be dried to a suitably determined moisture content. The ceramic fiber aggregate of the present invention may be subjected to a firing treatment. The firing conditions vary depending on the type of fiber used, the type of heat treatment furnace, etc., but usually, mullite crystals are generated in the fiber at 900 to 1200 ° C (preferably 950 to 1100 ° C). The temperature is usually 5 to 5 hours (preferably about 1 hour). In the present invention, the size of the mrit crystal is measured by the Wi-son method based on X-ray diffraction, and calcined so that this value is usually 30 OA or less, preferably 20 OA or less, and more preferably 50 to 15 OA. To process.
上記の焼成処理は脱ショット処理後に行なうのが好ましい。 また、 本発明に おいては、 焼成処理前にシート加工することも出来る。 斯かるシート加工は、 脱ショッ ト処理後のセラミック繊維集合体を抄造機、 真空成型機などで処理す る方法で行なうことが出来る。 発明を実施するための最良の形態  It is preferable that the above-mentioned baking process is performed after the de-shot process. Further, in the present invention, the sheet can be processed before the firing treatment. Such sheet processing can be performed by a method in which the ceramic fiber aggregate after the de-shock treatment is processed by a paper machine, a vacuum molding machine, or the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施例により更に詳細に説明するカ 本発明は、 その要旨を 超えない限り、 以下の実施例に限定されるものではない。 以下の緒例に使用し た評価方法およびセラミック繊維の集合体は以下の通りである。 セラミック繊 維の集合体は、 600°Cで 1時間熱処理し、 繊維表面に付着した油剤を除去し て使用した。  Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples unless it exceeds the gist of the present invention. The evaluation method and the aggregate of ceramic fibers used in the following examples are as follows. The ceramic fiber aggregate was heat-treated at 600 ° C for 1 hour to remove the oil attached to the fiber surface before use.
(1) 抄造によるマット試験片の作製方法:  (1) Method of preparing mat test piece by papermaking:
1 Lの水にセラミック繊維 8. 3 g (0. 8重量0 /0) を分散させた後、 下部 にネットを設けた直径 90 mm の筒に流し込み、 徐々に水分を抜き取り、 下 部のネッ トに均一に繊維を堆積させた。 次いで、 下部のネットからマツトを取 り出し、 1 10°Cで 1時間乾燥し、 単位面積当たり 1300 gZm2の抄造マツ トを作製した。 After dispersing the ceramic fiber 8. 3 g (0. 8 wt 0/0) of water 1 L, poured into the cylinder of 90 mm diameter having a net bottom, gradually withdrawn water, the lower part net The fibers were uniformly deposited on the fibers. Next, the mat was taken out from the lower net and dried at 110 ° C for 1 hour to prepare a paper-made mat having a unit area of 1300 gZm 2 .
( 2 ) 風食試験: 3 OmmX 5 Ommに抄造マツトをカットして 5 mmのスぺーサーを介して 2枚の金属板で挟んだ。 次いで、 マツトの幅方向 (3 Omm方向) の端面から 5 mmの距離に、 先端に 5 mm穴を設けたエアーノズル配置した。 エアーノズ ルから 3 k g/cm2の圧縮エアーをマット端面に 「吹き付け 0. 5秒」 、 「停 止 1. 0秒」 の間隔で 30分間パルス状に与え、 繊維が浸食して幅方向 (30 mm方向) に吹き抜ける力 かを評価した。 繊維が過度に裁断されて短くなり、 風食し易いマッ トは、 耐熱パッキン、 クッション材の用途に不向きである。 (2) Wind erosion test: The paper-cut mat was cut into 3 OmmX 5 Omm and sandwiched between two metal plates through a 5-mm spacer. Next, an air nozzle with a 5 mm hole at the tip was placed at a distance of 5 mm from the end face of the mat in the width direction (3 Omm direction). From Eanozu Le compressed air 3 kg / cm 2 to the mat edge "blowing 0.5 seconds" given to 30 minutes pulsed at intervals of "stop 1.0 sec", the width direction (30 fibers eroding (in the direction of mm). Fibers that are excessively cut, shortened, and easily eroded are not suitable for heat-resistant packing and cushioning applications.
( 3 ) 面圧測定:  (3) Surface pressure measurement:
5 OmmX 5 Ommに抄造マットをカットして圧縮試,験機 (島津社製 「 I S — 500」 ) にかけ、 圧縮速度 1 mm/m i n. で圧縮し、 圧縮密度 (gZc m3) と圧縮荷重 (k g) を求めた。 圧縮荷重をマッ ト面積で除して単位面積あ たりの荷重 (k g/cm2) を求め、 圧縮密度 (g/cm3) と荷重 (k g/c m2) の関係を求めた。 高い面圧が得られるマットは、 反発力に優れた特性を持 つことになり、 耐熱パッキン、 クッション材の用途に好適である。 本発明のセ ラミック繊維集合体を使用した抄造マッ トの場合、 上記の様な面圧は通常 6 k g/cm2程度以上であり、 その上限として 12 k gZ cm2程度まで期待でき る 5 OmmX The paper mat is cut to 5 Omm, and it is applied to a compression tester (Shimadzu “IS-500”) and compressed at a compression speed of 1 mm / min. The compression density (gZc m 3 ) and the compression load (Kg). The load per unit area (kg / cm 2 ) was determined by dividing the compressive load by the mat area, and the relationship between the compressive density (g / cm 3 ) and the load (kg / cm 2 ) was determined. Mats that provide high surface pressure have excellent resilience and are suitable for applications such as heat-resistant packing and cushioning materials. In the case of a papermaking mat using the ceramic fiber aggregate of the present invention, the surface pressure as described above is usually about 6 kg / cm 2 or more, and up to about 12 kgZ cm 2 can be expected as the upper limit.
(4) ムライト結晶粒子径の測定方法:下記の表 1に記載の条件で測定した。 (4) Mullite crystal particle size measurement method: Measured under the conditions described in Table 1 below.
表 1 table 1
測定装置: R i g a k u社製 「RAD-2C型 (ソフト RINT2000シリーズ) 」 標準物質: N I ST A l p h a Qu a r t z  Measuring device: "RAD-2C type (software RINT2000 series)" manufactured by Rigaku Corporation Reference material: NIST Alpha Quartz
標準物質の測定角度: 26. 6, 36. 5, 39. 4, 40. 3, 42. 4  Measurement angle of reference material: 26.6, 36.5, 39.4, 40.3, 42.4
45. 8 (6ピーク)  45. 8 (6 peaks)
試料の測定角度: 26. 3, 3 1. 0, 33. 3 35. 3, 40. 9,  Sample measurement angle: 26.3, 31.0, 33.3 35.3, 40.9,
42. 6, 53. 5, 57. 6 60. 7 (9ピーク) X線: CuK«Z40KV.1 40mA, モノクロメータ 42.6, 53.5, 57.6 60.7 (9 peaks) X-ray: CuK «Z40KV. 1 40mA, monochromator
発散スリッ ト (DS) /散乱スリッ ト (S S) :各 l d e g.  Divergent slit (DS) / scattering slit (SS): each l d e g.
受光スリット (R S) : 0. 1 5mm  Receiving slit (R S): 0.15mm
操作モード (FT) : 0. 6 s e c.  Operation mode (FT): 0.6 sec.
ステップ幅: 0. 01°  Step width: 0.01 °
測定方法: W i 1 s 0 n法  Measurement method: Wi 1 s 0 n method
(5) TMA (熱機械測定) による荷重状態の厚み減少率の測定方法: 抄造マツトを小片に切り出し、 TMAで 1 k g/ cm2の一定荷重を与えなが ら、 安定した時点から、 10 °C/m i n. で 1 130 °Cまで昇温して 9 Q分保 持した。 この条件で初期厚み (L) に対する減少量 (AL) を求め、 AL/L X 100で減少率 (%) を測定した。 減少率が小さいマツトは、 高温下での耐 久性が良いことになり、 耐熱 /、°ッキン、 クッション材の用途に好適である。 本 発明のセラミック集合体を使用した抄造マツトの場合、 上記の減少率は、 通常 40 %以下、 好ましくは 30 %以下であり、 その下限として 1 5 %程度まで期 待できる。 表 2 (5) TMA (thermo-mechanical analysis) measures the thickness reduction rate of the load condition by way: papermaking mat cut into small pieces, but such gives a constant load of 1 kg / cm 2 in TMA al, from a stable point, 10 ° The temperature was raised to 1 130 ° C at C / min and maintained for 9 Q minutes. Under these conditions, the amount of reduction (AL) relative to the initial thickness (L) was determined, and the reduction rate (%) was measured using AL / LX100. A mat with a small reduction rate has good durability at high temperatures, and is suitable for heat resistance, heat sink, and cushioning. In the case of a papermaking mat using the ceramic aggregate of the present invention, the above reduction rate is usually 40% or less, preferably 30% or less, and the lower limit can be expected to about 15%. Table 2
Figure imgf000009_0001
実施例および比較例
Figure imgf000009_0001
Examples and comparative examples
水 4. 0 Lに 40 gの試験用繊維集合体 (表 2の ( 〜 F) を加えて分散し 1 重量%濃度のスラリーとし、 市販のミキサー (ワーリング社製 「型式 34BL 22」 ) により 7800 r p mで更に分散した。 2分間分散 ·解繊してショッ トを繊維から切り離した。  40 g of a test fiber aggregate ((F) in Table 2) was added to 4.0 L of water and dispersed to form a 1% by weight slurry, and the slurry was mixed with a commercially available mixer (Model 34BL22 manufactured by Waring Co.) to 7800 The dispersion was further dispersed by rpm and dispersed for 2 minutes.
次いで、 10 Lのビーカーに移し、 市販の撹拌機 (東京理化機械 (株) 製 「型式 Z— 1200」 , 10 Oiran の垂直撹拌羽根 6枚装備) を 75 r pm で撹拌し、 15分分散させた後、 撹拌しながら 20 LZm i n. の流水を与え てオーバーフローさせて繊維分を回収し繊維集合体を得た。 なお、 ミキサーの 回転数および繊維の分散濃度を変えて種々の繊維集合体を得た。 得られた各繊 維集合体について、 前記の評価を行なった。 表 3に評価結果を示す。 表 3 Then, the mixture was transferred to a 10 L beaker, and a commercially available stirrer (“Model Z-1200”, manufactured by Tokyo Rika Kikai Co., Ltd., equipped with 6 vertical stirring blades of 10 Oiran) was stirred at 75 rpm and dispersed for 15 minutes. After that, 20 LZ min. Of running water was given with stirring to overflow, and the fiber content was recovered to obtain a fiber aggregate. In addition, various fiber aggregates were obtained by changing the rotation speed of the mixer and the dispersion concentration of the fibers. Each of the obtained fiber aggregates was evaluated as described above. Table 3 shows the evaluation results. Table 3
Figure imgf000010_0001
Figure imgf000010_0001
(* :湿式解繊 (脱ショット処理) せず) 表 3に示す様に、 各実施例に示す本発明のセラミック繊維集合体の圧縮面圧 および風食試験の結果は、 参考例 1及び 2に示すアルミナ繊維集合体に匹敵し て優れていることが分る。 (*: Wet defibration (without de-shot processing)) As shown in Table 3, the results of the compression surface pressure and wind erosion test of the ceramic fiber aggregate of the present invention shown in each example were superior to those of the alumina fiber aggregate shown in Reference Examples 1 and 2. I understand.
試験例 1  Test example 1
上記の実施例 3で得られた繊維集合体 (抄造マット) に熱処理を加えて高温 特性を試験した。 表 4に結果を示す。 9 5 0 °C以上に熱処理した抄造マツトに はムライ トの結晶粒が検出され、 TMAによる耐熱性は大幅に改善された。 特 に結晶粒径が 1 5 O A以下の抄造マツトは、 熱処理に伴う繊維の劣化も少なく 高い面圧が維持できた。  The fiber assembly (papermaking mat) obtained in Example 3 above was subjected to a heat treatment to test the high temperature properties. Table 4 shows the results. Mullite crystal grains were detected in the paper-made mat that had been heat-treated above 950 ° C, and the heat resistance by TMA was greatly improved. In particular, in the case of a paper-made mat having a crystal grain size of 15 OA or less, the fiber did not deteriorate due to the heat treatment, and a high surface pressure could be maintained.
表 4  Table 4
Figure imgf000011_0001
Figure imgf000011_0001
産業上の利用可能性 Industrial applicability
本発明によれば、 適度な繊維長さを維持しながら繊維中に多量に含まれるショッ トにを除去することにより、 大幅に物性を改善したセラミック繊維集合体を得 ることが出来る。 斯かるセラミック繊維集合体は、 比較的安価であり、 しかも、 アルミナ繊維とセラミック繊維の中間温度領域をカバーするため、 耐熱パッキ ン、 クッション材などの用途に好適である。 斯かる用途の具体例として、 自動 車排ガス用浄化装置の触媒コンバータ一用の把持材が例示される。 According to the present invention, a short fiber contained in a large amount of fibers while maintaining an appropriate fiber length is provided. By removing the fibers, it is possible to obtain a ceramic fiber aggregate having significantly improved physical properties. Such a ceramic fiber aggregate is relatively inexpensive and, moreover, covers an intermediate temperature region between alumina fiber and ceramic fiber, so that it is suitable for applications such as heat-resistant packing and cushioning materials. As a specific example of such a use, a gripping material for a catalytic converter of a vehicle exhaust gas purification device is exemplified.

Claims

請 求 の 範 囲 The scope of the claims
1 . セラミ ック繊維の集合体であつて、 水中分散繊維嵩高さが 1 4 0 m 1ノ g 以上で且つ粒子径 4 5; m以上のショット含有量が 2 0重量%以下であること を特徴とするセラミック繊維集合体。 1. An aggregate of ceramic fibers having a bulk in water dispersed fiber of at least 140 m 1 g and a particle diameter of 45; Characteristic ceramic fiber aggregate.
2 . セラミック繊維のムライ ト結晶粒径が 2 0 0 A以下である 1に記載の集合 体。  2. The aggregate according to 1, wherein the mullite crystal particle size of the ceramic fiber is 200 A or less.
3 . 水中分散繊維嵩高さが 2 0 0 m 1 / g以上である 1に記載の集合体。  3. The aggregate according to 1, wherein the bulk of the fibers dispersed in water is 200 m 1 / g or more.
4 . 粒子径 4 5 m超のショッ ト含有量が 1 0重量%以下である 1に記載の集 合体。  4. The aggregate according to 1, wherein the content of the shot having a particle size of more than 45 m is 10% by weight or less.
5 . セラミック繊維における、 アルミナとシリカの含有量が 8 0重量%以上で あり、 アルミナとシリカ重量比が 3 0 : 7 0〜6 0 : 4 0である 1に記載の集 合体  5. The aggregate according to 1, wherein the content of alumina and silica in the ceramic fiber is 80% by weight or more, and the weight ratio of alumina to silica is 30:70 to 60:40.
6 . セラミック繊維の集合体を湿式解繊した後に脱ショッ ト処理して得られる 1に記載の集合体。  6. The aggregate according to 1, obtained by subjecting the aggregate of ceramic fibers to wet defibration and then performing a deshort treatment.
7 . セラミ ック繊維の集合体が湿式解繊前に脱脂処理されている 6に記載の集 合体。  7. The aggregate according to 6, wherein the aggregate of ceramic fibers is degreased before wet defibration.
8 . セラミツク繊維の集合体が焼成処理されている 6に記載の集合体。  8. The aggregate according to 6, wherein the aggregate of ceramic fibers is subjected to a baking treatment.
9 . セラミック繊維の集合体が脱ショット処理後に焼成処理されいる 8に記載 の集合体。  9. The aggregate according to 8, wherein the ceramic fiber aggregate is fired after the de-shot processing.
10. セラミック繊維の集合体が焼成処理前にシート加工されている 8に記載の 集合体。  10. The aggregate according to item 8, wherein the aggregate of ceramic fibers is subjected to sheet processing before firing.
11. 焼成処理温度が 9 0 0〜 1 2 0 0 °Cである 8に記載の集合体。  11. The assembly according to 8, wherein the firing temperature is 900 to 1200 ° C.
PCT/JP2003/002129 2002-02-27 2003-02-26 Ceramic fiber aggregate WO2003072876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002050904 2002-02-27
JP2002-50904 2002-02-27

Publications (1)

Publication Number Publication Date
WO2003072876A1 true WO2003072876A1 (en) 2003-09-04

Family

ID=27764291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002129 WO2003072876A1 (en) 2002-02-27 2003-02-26 Ceramic fiber aggregate

Country Status (1)

Country Link
WO (1) WO2003072876A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115814A1 (en) * 2013-01-23 2014-07-31 電気化学工業株式会社 Alumina fiber and alumina fiber aggregate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952130A (en) * 1972-11-17 1976-04-20 United States Gypsum Company Mineral wool paper
GB1455563A (en) * 1972-11-29 1976-11-17 Ici Ltd Fibrous mater-als
JPS58208419A (en) * 1982-04-30 1983-12-05 Ibiden Co Ltd Removal of shots in flocculent ceramic fibers
US4532006A (en) * 1983-08-05 1985-07-30 The Flintkote Company Inorganic fiber mat using mineral wool and related process and apparatus
JPH0411091A (en) * 1990-04-26 1992-01-16 Honshu Paper Co Ltd Method for making inorganic paper and inorganic paper by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952130A (en) * 1972-11-17 1976-04-20 United States Gypsum Company Mineral wool paper
GB1455563A (en) * 1972-11-29 1976-11-17 Ici Ltd Fibrous mater-als
JPS58208419A (en) * 1982-04-30 1983-12-05 Ibiden Co Ltd Removal of shots in flocculent ceramic fibers
US4532006A (en) * 1983-08-05 1985-07-30 The Flintkote Company Inorganic fiber mat using mineral wool and related process and apparatus
JPH0411091A (en) * 1990-04-26 1992-01-16 Honshu Paper Co Ltd Method for making inorganic paper and inorganic paper by the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115814A1 (en) * 2013-01-23 2014-07-31 電気化学工業株式会社 Alumina fiber and alumina fiber aggregate
JPWO2014115814A1 (en) * 2013-01-23 2017-01-26 デンカ株式会社 Alumina fiber and alumina fiber aggregate

Similar Documents

Publication Publication Date Title
JP2533025B2 (en) Insulation product based on inorganic fiber and manufacturing method thereof
JP4731381B2 (en) Disc roll and base material for disc roll
JP5814114B2 (en) Pulling roll material for the production of flat glass
CN107001149B (en) Boron-free aluminum alloy ceramic foam filter
US5858289A (en) Process for preparing compressed shape of ceramic fiber
JP2011519337A5 (en)
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
KR101160531B1 (en) Filter for aluminum melt
JP6768236B2 (en) Insulation material and its manufacturing method
WO2003072876A1 (en) Ceramic fiber aggregate
TW200837114A (en) Cellulose ether additives for the extrusion of ceramic masses
JP7097498B2 (en) Insulation
JP2003328235A (en) Ceramic fiber aggregate
JP2020066561A (en) Inorganic fibrous molded body
JP2019151533A (en) Silicon carbide powder
CN113636832A (en) Aluminum zirconium silicon carbide brick for CFB boiler cyclone separator target area and preparation method thereof
EP1137611A1 (en) Insulating raw material for high temperature applications
JPH01160854A (en) Fire-proof castables of high strength and abrasion resistance
JP7034981B2 (en) Insulation material, its manufacturing method, and composition
JP6669205B2 (en) High alumina composition inorganic fiber, inorganic fiber aggregate and inorganic fiber molded body
JP5871126B2 (en) Alumina zirconia refractory raw material manufacturing method, alumina zirconia refractory raw material and plate refractory
RU2358954C1 (en) Method of producing fibered ceramic material
JP3327883B2 (en) Refractories containing massive graphite
JP5637915B2 (en) Disc roll and its base material
JP7441997B1 (en) Inorganic fiber mat manufacturing method and inorganic fiber mat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase