WO2003077295A1 - Method for dicing substrate - Google Patents

Method for dicing substrate Download PDF

Info

Publication number
WO2003077295A1
WO2003077295A1 PCT/JP2003/002669 JP0302669W WO03077295A1 WO 2003077295 A1 WO2003077295 A1 WO 2003077295A1 JP 0302669 W JP0302669 W JP 0302669W WO 03077295 A1 WO03077295 A1 WO 03077295A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
region
semiconductor substrate
semiconductor
polishing
Prior art date
Application number
PCT/JP2003/002669
Other languages
English (en)
French (fr)
Inventor
Yoshimaro Fujii
Fumitsugu Fukuyo
Kenshi Fukumitsu
Naoki Uchiyama
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27800279&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003077295(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2003575413A priority Critical patent/JP3762409B2/ja
Priority to EP03744003A priority patent/EP1494271B1/en
Priority to KR1020047014158A priority patent/KR100715576B1/ko
Priority to AU2003211763A priority patent/AU2003211763A1/en
Priority to ES03744003T priority patent/ES2377521T3/es
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to AT03744003T priority patent/ATE534142T1/de
Priority to EP17179800.2A priority patent/EP3252806B1/en
Priority to EP19193330.8A priority patent/EP3664131A3/en
Priority to US10/507,321 priority patent/US8268704B2/en
Publication of WO2003077295A1 publication Critical patent/WO2003077295A1/ja
Priority to US11/332,228 priority patent/US7566635B2/en
Priority to US11/987,328 priority patent/US8304325B2/en
Priority to US12/762,444 priority patent/US8314013B2/en
Priority to US13/618,637 priority patent/US8518801B2/en
Priority to US13/618,393 priority patent/US8518800B2/en
Priority to US13/618,699 priority patent/US8519511B2/en
Priority to US13/953,443 priority patent/US8889525B2/en
Priority to US14/517,552 priority patent/US9142458B2/en
Priority to US14/793,181 priority patent/US9287177B2/en
Priority to US14/984,066 priority patent/US9711405B2/en
Priority to US15/226,417 priority patent/US9543207B2/en
Priority to US15/226,284 priority patent/US9553023B2/en
Priority to US15/226,519 priority patent/US9548246B2/en
Priority to US15/226,662 priority patent/US9543256B2/en
Priority to US15/617,431 priority patent/US10068801B2/en
Priority to US16/050,640 priority patent/US10622255B2/en
Priority to US16/806,552 priority patent/US20200203225A1/en
Priority to US17/202,807 priority patent/US11424162B2/en
Priority to US17/868,644 priority patent/US20220352026A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • H01L2223/5446Located in scribe lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a substrate dividing method used for dividing a substrate such as a semiconductor substrate in a manufacturing process of a semiconductor device.
  • the semiconductor substrate may be thinned to a thickness of several tens of meters in the semiconductor device manufacturing process.
  • the thinned semiconductor substrate is cut and divided with a blade, the occurrence of chipping and cracking increases as compared with the case where the semiconductor substrate is thick, and the yield of semiconductor chips obtained by dividing the semiconductor substrate is reduced. There is a problem.
  • the present invention has been made in view of such circumstances, and provides a substrate dividing method capable of preventing the occurrence of cracking, thinning the substrate, and dividing the substrate. Objective.
  • a substrate dividing method is provided inside a substrate.
  • a laser beam is irradiated with the light spot aligned, and a modified region by multiphoton absorption is formed inside the substrate, and this modified region allows a predetermined distance from the laser light incident surface of the substrate along the planned cutting line of the substrate. It is characterized by comprising a step of forming a cutting starting region inside the distance and a step of polishing the substrate so that the substrate has a predetermined thickness after the step of forming the cutting starting region.
  • the laser beam is irradiated with the focusing point inside the substrate, and the phenomenon of multiphoton absorption is generated inside the substrate.
  • the modified region it is possible to form the cutting start region in the substrate along the desired cutting line to be cut with the modified region.
  • a crack occurs in the thickness direction of the substrate starting from the cutting start region by a natural or relatively small force.
  • the substrate is polished so that the substrate has a predetermined thickness. At this time, the polishing surface starts from the cutting start region. Even when the generated cracks are reached, the cut surfaces of the substrates cut by the cracks are in close contact with each other, so that chipping and cracking of the substrates due to polishing can be prevented.
  • the substrate can be made thinner and the substrate can be divided.
  • the condensing point is a portion where the laser beam is condensed.
  • Polishing means cutting, grinding, chemical etching, and the like.
  • the cutting starting point region means a region that becomes a starting point of cutting when the substrate is cut. Therefore, the cutting start region is a planned cutting portion where cutting is planned on the substrate.
  • the cut starting point region may be formed by continuously forming the modified region, or may be formed by intermittently forming the modified region.
  • the substrate includes a semiconductor substrate such as a silicon substrate and a GaAs substrate, and an insulating substrate such as a sapphire substrate and an A 1 N substrate. And when the substrate is a semiconductor substrate As the reforming region, for example, there is a melt-treated region.
  • a functional element is formed on the surface of the substrate, and it is preferable to polish the back surface of the substrate in the step of polishing the substrate. Since the substrate can be polished after the functional element is formed, it is possible to obtain a chip that is thinned to cope with, for example, miniaturization of a semiconductor device.
  • the functional element means a light receiving element such as a photodiode, a light emitting element such as a laser diode, or a circuit element formed as a circuit.
  • the step of polishing the substrate preferably includes a step of performing chemical etching on the back surface of the substrate.
  • chemical etching is performed on the back surface of the substrate, the back surface of the substrate is naturally smoothed.
  • the cutting is performed. Only the edge portion on the back side of the surface is selectively etched and chamfered. Therefore, it is possible to improve the bending strength of the chip obtained by dividing the substrate, and to prevent the occurrence of cracking in the chip.
  • FIG. 1 is a plan view of an object to be processed during laser processing by the laser processing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II of the workpiece shown in FIG.
  • FIG. 3 is a plan view of an object to be processed after the laser processing by the laser processing method according to the present embodiment.
  • FIG. 4 is a sectional view taken along line IV-IV of the workpiece shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line V—V of the workpiece shown in FIG.
  • FIG. 6 is a plan view of a processing object cut by the laser processing method according to the present embodiment.
  • FIG. 7 is a graph showing the relationship between the electric field strength and the crack spot size in the laser processing method according to the present embodiment.
  • FIG. 8 is a cross-sectional view of the object to be processed in the first step of the laser processing method according to the present embodiment.
  • FIG. 9 is a cross-sectional view of the object to be processed in the second step of the laser caching method according to the present embodiment.
  • FIG. 10 is a cross-sectional view of the object to be processed in the third step of the laser processing method according to the present embodiment.
  • FIG. 11 is a cross-sectional view of the object to be processed in the fourth step of the laser processing method according to the present embodiment.
  • FIG. 12 is a view showing a photograph of a cross section of a part of a silicon wafer cut by the laser processing method according to the present embodiment.
  • FIG. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate in the laser processing method according to the present embodiment.
  • FIG. 14 is a schematic configuration diagram of a laser carriage device according to the first embodiment.
  • FIG. 15 is a flowchart for explaining the laser processing method according to the first embodiment.
  • FIG. 16 is a diagram illustrating the semiconductor substrate after the step of forming the cutting start region according to the first embodiment.
  • FIG. 17 is a diagram for explaining the process of attaching the protective film according to the first embodiment.
  • FIG. 18 is a diagram for explaining a process of polishing the semiconductor substrate according to the first embodiment.
  • FIG. 19 is a diagram for explaining the process of attaching the expansion film according to the first embodiment.
  • FIG. 20 is a diagram for explaining a process of peeling off the protective film according to Example 1.
  • Figure 21 shows the expansion of the expansion film according to Example 1 and picking up the semiconductor chip. It is a figure for demonstrating a process.
  • FIG. 22 is a diagram illustrating chamfering formed in the edge portion on the back surface side of the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to the first embodiment.
  • Fig. 23 A shows a case where a melt-processed region remains in the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to Example 1, and the crack reaches the surface before the step of polishing the semiconductor substrate. It is a figure for demonstrating the case.
  • FIG. 23B shows a case where a melt-processed region remains in the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to Example 1, and the crack reaches the surface before the step of polishing the semiconductor substrate. It is a figure for demonstrating the case where it is not.
  • Fig. 24 A shows a case in which no melt-processed area remains in the cut surface of the semiconductor chip after the process of polishing the semiconductor substrate according to Example 1, and the crack occurs before the process of polishing the semiconductor substrate. It is a figure for demonstrating the case where has reached the surface.
  • FIG. 24B shows the case where the melted region does not remain in the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to Example 1, in which cracking occurs before the step of polishing the semiconductor substrate. It is a figure for demonstrating the case where it has not reached the surface.
  • FIG. 25A shows a case where a melt-processed region remains in the edge portion on the back side of the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to Example 1, and before the step of polishing the semiconductor substrate It is a figure for demonstrating the case where the crack has reached the surface.
  • FIG. 25B shows a case where a melt-treated region remains in the edge portion on the back side of the cut surface of the semiconductor chip after the step of polishing the semiconductor substrate according to Example 1, and before the step of polishing the semiconductor substrate It is a figure for demonstrating the case where the crack has not reached the surface.
  • FIG. 26A is a cross-sectional view of the peripheral portion of the semiconductor substrate before the step of polishing the semiconductor substrate according to the first embodiment.
  • FIG. 26B is a cross-sectional view of the periphery of the semiconductor substrate after the step of polishing the semiconductor substrate according to the first embodiment.
  • FIG. 27 is a plan view of the sapphire substrate according to Example 2.
  • FIG. FIG. 28 is a cross-sectional view for explaining a step of forming the cutting start region according to the second embodiment.
  • FIG. 29 is a cross-sectional view for explaining a step of forming the functional element according to the second embodiment.
  • FIG. 30 is a cross-sectional view for explaining the process of attaching the protective film according to Example 2.
  • FIG. 31 is a sectional view for explaining a step of polishing the sapphire substrate according to the second embodiment.
  • FIG. 32 is a cross-sectional view for explaining the process of attaching the expansion film according to the second embodiment.
  • FIG. 33 is a cross-sectional view for explaining the step of irradiating the protective film according to Example 2 with ultraviolet rays.
  • FIG. 34 is a cross-sectional view for explaining the process of peeling off the protective film according to Example 2.
  • FIG. 35 is a cross-sectional view for explaining a process of expanding the expansion film according to Example 2 and separating the semiconductor chip.
  • a laser beam is irradiated with a condensing point inside the substrate, and a modified region by multiphoton absorption is formed inside the substrate to form a cutting start region. And a step of polishing the substrate so that the substrate has a predetermined thickness after the step of forming the cutting start region.
  • the intensity of the laser beam is determined by the peak power density (W / cm 2 ) at the condensing point of the laser beam. For example, the intensity of the laser beam is high when the peak power density is 1 X 10 8 (W / cm 2 ) or more. Photon absorption occurs.
  • the peak power density can be calculated by (Energy per pulse of laser beam at the focal point) ⁇ (Laser beam beam spot cross-sectional area X pulse width).
  • the intensity of the laser beam is determined by the electric field strength (WZ cm 2 ) at the condensing point of the laser beam.
  • Figure 1 is a plan view of the substrate 1 during laser processing.
  • FIG. 2 is a cross-sectional view taken along line II—II of substrate 1 shown in FIG. 1
  • FIG. 3 is a plan view of substrate 1 after laser processing
  • FIG. 4 is IV of substrate 1 shown in FIG.
  • FIG. 5 is a cross-sectional view taken along line IV
  • FIG. 5 is a cross-sectional view taken along line VV of substrate 1 shown in FIG. 3
  • FIG. 6 is a plan view of cut substrate 1.
  • the surface 3 of the substrate 1 has a desired cutting line 5 on which the substrate 1 is to be cut.
  • the planned cutting line 5 is an imaginary line extending in a straight line (the actual cutting line 5 may be used as the planned cutting line 5).
  • the modified region 7 is formed by aligning the condensing point P inside the substrate 1 and irradiating the substrate 1 with the laser light L under the condition that multiphoton absorption occurs.
  • the condensing point is a portion where the laser beam L is condensed.
  • the condensing point P is moved along the planned cutting line 5 by relatively moving the laser beam L along the planned cutting line 5 (that is, along the direction of arrow A).
  • the modified region 7 is formed only inside the substrate 1 along the planned cutting line 5 as shown in FIGS. 3 to 5, and the modified starting region (scheduled portion) 8 is formed by the modified region 7. Is formed.
  • the modified region 7 is not formed by causing the substrate 1 to generate heat when the substrate 1 absorbs the laser light L.
  • substrate The modified region 7 is formed by transmitting laser light L through 1 and generating multiphoton absorption inside the substrate 1. Therefore, since the laser beam L is hardly absorbed by the surface 3 of the substrate 1, the surface 3 of the substrate 1 does not melt.
  • the substrate 1 In the cutting of the substrate 1, if there is a starting point at the position to be cut, the substrate 1 is broken from the starting point, so that the substrate 1 can be cut with a relatively small force as shown in FIG. Therefore, the substrate 1 can be cut without causing unnecessary cracks on the surface 3 of the substrate 1.
  • the substrate starting from the cutting start area There are two possible ways to cut the substrate starting from the cutting start area.
  • One is a case where, after the cutting start region is formed, an artificial force is applied to the substrate, so that the substrate is cracked starting from the cutting start region and the substrate is cut. This is, for example, cutting when the substrate is thick.
  • the artificial force is applied, for example, to apply a bending stress or a shear stress to the substrate along the cutting start region of the substrate, or to generate a thermal stress by giving a temperature difference to the substrate.
  • the other one is a case where the cutting start region is formed, so that the substrate is naturally cracked in the cross-sectional direction (thickness direction) of the substrate starting from the cutting start region, resulting in the substrate being cut.
  • the substrate thickness is small, and the cutting start region is formed by a single modified region.
  • the substrate thickness is large, multiple rows are formed in the thickness direction. This can be achieved by forming the cutting start region by the formed modified region. Even in the case of natural cracking, the crack does not run on the surface of the portion corresponding to the portion where the cutting start region is not formed at the portion to be cut, and corresponds to the portion where the cutting start region is formed. Since only the part can be cleaved, the cleaving can be controlled well. In recent years, since the thickness of a substrate such as a silicon wafer tends to be thin, such a cleaving method with good controllability is very effective.
  • the modified regions formed by multiphoton absorption in this embodiment include the following (1) to (3).
  • the modified region is a crack region containing one or more cracks Inside the substrate (e.g., glass or a piezoelectric material made L i T a 0 3) to match the focal point, the electric field intensity at the focal point is and the pulse width 1 X 10 8 (W / cm 2) or more Irradiate with laser light under 1 / s or less.
  • the magnitude of this pulse width is a condition that allows a crack region to be formed only inside the substrate without causing extra damage to the surface of the substrate while causing multiphoton absorption.
  • a phenomenon called optical damage due to multiphoton absorption occurs inside the substrate. This optical damage induces thermal strain inside the substrate, thereby forming a crack region inside the substrate.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (W / cm 2 ).
  • the pulse width is preferably 1 ns to 200 ns.
  • the present inventor obtained the relationship between the electric field strength and the crack size by experiment.
  • the experimental conditions are as follows.
  • Light source Semiconductor laser pumped Nd: Y AG laser
  • Polarization characteristics linearly polarized light
  • the laser beam quality is TEM.
  • highly condensing means that light can be collected up to the wavelength of laser light.
  • FIG. 7 is a graph showing the results of the above experiment.
  • the horizontal axis is the peak power density. Since the laser beam is a pulsed laser beam, the electric field strength is expressed by the peak power density.
  • the vertical axis shows the size of the crack (crack spot) formed inside the substrate by one pulse of laser light. Crack spots gather to form a crack area. The size of the crack spot is the size of the largest portion of the crack spot shape.
  • the data indicated by black circles in the graph is when the magnification of the condensing lens (C) is 100.times. And the numerical aperture (NA) is 0.80.
  • the data indicated by white circles in the graph is for the case where the magnification of the condenser lens (C) is 50 times and the numerical aperture (NA) is 0.55. It can be seen that crack spots are generated inside the substrate from the peak power density of about 10 1 1 (W / cm 2 ), and the crack spot increases as the peak power density increases.
  • the crack region 9 is a region including one or more cracks.
  • a cutting start region is formed.
  • the crack grows further from the crack region 9 (that is, from the cutting start region), and the crack reaches the front surface 3 and the back surface 21 of the substrate 1 as shown in FIG.
  • the substrate 1 is broken and the substrate 1 is cut.
  • the cracks that reach the front and back surfaces of the substrate may grow spontaneously, or they may grow when force is applied to the substrate.
  • a laser is focused on a substrate (for example, a semiconductor material such as silicon) with a condensing point and the electric field strength at the condensing point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 ns or less. Irradiate light.
  • a substrate for example, a semiconductor material such as silicon
  • the electric field strength at the condensing point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 ns or less. Irradiate light.
  • the inside of the substrate is locally heated by multiphoton absorption.
  • the melt treatment region is a region once solidified after melting, a region in a molten state, or a region re-solidified from a molten state, and can also be referred to as a phase-changed region or a region where the crystal structure has changed.
  • a melt-processed region can also be referred to as a region in which one structure is changed to another in a single crystal structure, an amorphous structure, or a polycrystalline structure.
  • a region that has changed from a single crystal structure to an amorphous structure a region that has changed from a single crystal structure to a polycrystalline structure, and a region that has changed from a single crystal structure to a structure including an amorphous structure and a polycrystalline structure.
  • the melt processing region has, for example, an amorphous silicon structure.
  • the upper limit value of the electric field strength is, for example, 1 ⁇ 10 12 (W / cm 2 ).
  • the pulse width is preferably 1 ns to 200 ns.
  • the inventor has confirmed through experiments that a melt-processed region is formed inside a silicon wafer.
  • the experimental conditions are as follows.
  • Substrate Silicon wafer (thickness 350 ⁇ , outer diameter 4 inches)
  • Figure 12 shows a photograph of a cross section of a part of a silicon wafer cut by laser processing under the above conditions.
  • a melt processing region 13 is formed inside the silicon wafer 11. It should be noted that the size in the thickness direction of the melt processing region 13 formed under the above conditions is about 100 / im.
  • Fig. 13 is a graph showing the relationship between the wavelength of the laser beam and the transmittance inside the silicon substrate. However, the reflection components on the front side and back side of the silicon substrate are removed to show the transmittance only inside. The above relationship was shown for each of the silicon substrate thicknesses t of 5 0 / ⁇ ⁇ , 1 0 0 ⁇ ⁇ , 2 0 0 ⁇ 5 0 0, u m 1 0 0 0 0 ⁇ m.
  • the laser beam is transmitted more than 80% inside the silicon substrate.
  • the thickness of the silicon wafer 1 1 shown in Fig. 1 2 is 3500 ⁇
  • the melt-processed region 1 3 due to multiphoton absorption is formed near the center of the silicon wafer, that is, 1 75 ⁇ from the surface. Is done.
  • the transmittance is 90% or more with reference to a silicon wafer with a thickness of 2 0 0 // m. Therefore, the laser beam is hardly absorbed inside the silicon wafer 1 1 and almost all To Penetrate.
  • melt processing region 13 was formed by multiphoton absorption.
  • the formation of the melt processing region by multiphoton absorption is, for example, welding It is described in “Evaluation of processing characteristics of silicon by picosecond pulse laser” on pages 7 2 to 7 3 of the 6th Annual Meeting Summary (April 2010).
  • Silicon wafers are cracked in the cross-sectional direction starting from the cutting start region formed in the melt processing region, and as a result, the crack reaches the front and back surfaces of the silicon wafer. Disconnected.
  • the cracks that reach the front and back surfaces of the silicon wafer may grow spontaneously, or they may grow when a force is applied to the silicon wafer.
  • the cracks grow from the state in which the melt processing region forming the cutting origin region is melted, and the cutting origin region In some cases, cracks grow when the solidification region that forms the melt resolidifies from a molten state.
  • the melting region is formed only inside the silicon wafer, and on the cut surface after cutting, the melting region is formed only inside as shown in FIG. If the cutting start area is formed in the melt processing area inside the substrate, the cleaving control is facilitated because it is difficult to cause unnecessary cracks off the cutting start area line during cleaving.
  • the focusing point is set inside the substrate (eg, glass), and the laser beam is irradiated under the condition that the electric field strength at the focusing point is 1 X 10 8 (W / cm 2 ) or more and the pulse width is 1 ns or less.
  • the pulse width is made extremely short and multiphoton absorption occurs inside the substrate, the energy due to multiphoton absorption is not converted into thermal energy, and the ion valence change, crystallization, or polarization inside the substrate A permanent structural change such as orientation is induced to form a refractive index change region.
  • the upper limit value of the electric field strength is, for example, 1 X 10 1 2 (W / cm 2 ).
  • the pulse width is preferably 1 11 s or less, and more preferably 1 ps or less.
  • the formation of the refractive index change region by multiphoton absorption is, for example, “The 4th 2nd Laser Thermal Processing Research Papers” (1 997, 1 January) "Photo-induced structure formation inside glass by femtosecond laser irradiation".
  • the cases of (1) to (3) have been described as the modified regions formed by multiphoton absorption, but the cutting origin region is formed as follows in consideration of the crystal structure of the substrate and its cleavage. Then, it becomes possible to cut the substrate with a smaller force and with high accuracy from the cutting start region.
  • the cutting origin is in the direction along the (1 1 1) plane (first cleavage plane) or (1 10) plane (second cleavage plane). It is preferable to form a region.
  • a substrate made of a zinc-blende-type III-V compound semiconductor such as Ga As, it is preferable to form the cutting origin region in the direction along the (1 10) plane.
  • the (0001) plane (C plane) is the main plane (1 120) plane (eight planes) or (1 100) It is preferable to form the cutting start region in a direction along the plane (M plane).
  • the above-described cutting origin region should be formed in a direction (for example, a direction along the (1 1 1) plane in a single crystal silicon substrate) or a direction perpendicular to the direction in which the cutting origin region should be formed. If the orientation flat is formed, it becomes possible to easily and accurately form the cutting start region along the direction in which the cutting start region is to be formed by using the orientation flat as a reference.
  • the substrate 1 is a silicon wafer (thickness 350 ⁇ , outer diameter 4 inches) (hereinafter “substrate 1” is referred to as “semiconductor substrate 1” in the first embodiment), and a semiconductor substrate is used in the device manufacturing process.
  • the target is one in which a plurality of functional elements are formed in a matrix on the surface 3 of 1.
  • FIG. 14 is a schematic configuration diagram of the laser processing apparatus 100.
  • the laser processing apparatus 100 includes a laser light source 101 that generates laser light L, a laser light source control unit 102 that controls the laser light source 101 in order to adjust the output and pulse width of the laser light L, and the laser light L
  • a dichroic mirror 103 having a reflection function and arranged to change the direction of the optical axis of the laser light L by 90 °; and a condensing lens 105 for condensing the laser light L reflected by the dichroic mirror 103;
  • the focal point P of the laser beam L can be aligned with the inside of the semiconductor substrate 1 by moving the Z-axis stage 1 13 in the Z-axis direction. Further, the focal point P is moved in the X (Y) axis direction by moving the semiconductor substrate 1 in the X (Y) axis direction by the X (Y) axis stage 109 (1 1 1).
  • the laser light source 101 is an Nd: YAG laser that generates pulsed laser light.
  • Nd YV_ ⁇ 4 Les monodentate
  • Nd there is YL F laser or titanium sapphire laser. If that form a molten processed region, Nd: YAG laser, Nd: YV0 4 laser, Nd: it is preferable to use a YLF, single THE.
  • pulsed laser light is used to process the semiconductor substrate 1, but continuous wave laser light may be used as long as multiphoton absorption can be caused.
  • the laser processing apparatus 1 0 0 further includes an observation light source 1 1 7 that generates visible light to illuminate the semiconductor substrate 1 mounted on the mounting table 1 0 7 with a visible light beam, and a dike mouth mirror 1 0 3. And a beam splitter for visible light 1 19 disposed on the same optical axis as the condensing lens 10 5.
  • a dichroic mirror 10 3 is disposed between the beam splitter 1 1 9 and the condensing lens 1 0 5.
  • the beam splitter 1 1 9 has a function of reflecting about half of visible light and transmitting the other half, and is arranged so as to change the direction of the optical axis of visible light by 90 °.
  • the laser processing apparatus 100 further includes an image sensor 1 2 1 and an imaging lens 1 arranged on the same optical axis as the beam splitter 1 1 9, the dichroic mirror 1 0 3 and the condensing lens 1 0 5.
  • An example of the image sensor 1 2 1 is a CCD camera.
  • the reflected light of the visible light that illuminates the surface 3 including the planned cutting line 5 etc. passes through the condensing lens 1 0 5, the dichroic mirror 1 0 3, the beam splitter 1 1 9, and the imaging lens 1 2 3
  • the image is formed by and imaged by the image sensor 1 2 1 and becomes imaging data.
  • the laser processing apparatus 100 further includes an imaging data processing unit 1 2 5 to which imaging data output from the imaging element 1 2 1 is input, and an overall control unit 1 2 7 that controls the entire laser processing apparatus 100. And a monitor 1 2 9.
  • the imaging data processing unit 1 2 5 calculates focus data for focusing the visible light generated by the observation light source 1 1 7 on the surface 3 based on the imaging data. Based on this focus data, the stage controller 1 1 5 controls the movement of the Z-axis stage 1 1 3 so that the visible light is focused on the surface 3. Therefore, the imaging data processing unit 1 2 5 functions as an autofocus unit. Further, the imaging data processing unit 1 25 calculates image data such as an enlarged image of the surface 3 based on the imaging data. This image data is sent to the overall control unit 1 27, where it is subjected to various processing and sent to the monitor 1 29. This An enlarged image is displayed on the monitor 1 2 9.
  • the overall control unit 1 2 7 receives data from the stage control unit 1 1 5 and image data from the imaging data processing unit 1 2 5. Based on these data, the laser light source control unit 1 0 2 The entire laser processing apparatus 100 is controlled by controlling the observation light source 1 1 7 and the stage controller 1 15. Therefore, the overall control unit 1 2 7 functions as a commutator.
  • FIG. 15 is a flowchart for explaining a process of forming the cutting start region.
  • the light absorption characteristics of the semiconductor substrate 1 are measured with a spectrophotometer (not shown). Based on this measurement result, a laser light source 10 0 1 that generates a laser beam L having a wavelength transparent to the semiconductor substrate 1 or a wavelength with little absorption is selected (S 1 0 1). Subsequently, the thickness of the semiconductor substrate 1 is measured. The amount of movement of the semiconductor substrate 1 in the Z-axis direction is determined based on the thickness measurement result and the refractive index of the semiconductor substrate 1 (S 1 0 3). This is because the Z of the semiconductor substrate 1 is based on the condensing point P of the laser beam L positioned on the surface 3 of the semiconductor substrate 1 in order to position the condensing point P of the laser beam inside the semiconductor substrate 1. The amount of movement in the axial direction. This movement amount is input to the overall control unit 1 2 7.
  • the semiconductor substrate 1 is mounted on the mounting table 10 07 of the laser processing apparatus 100. Then, visible light is generated from the observation light source 1 17 to illuminate the semiconductor substrate 1 (S 10.5).
  • the surface 3 of the semiconductor substrate 1 including the illuminated cut line 5 is imaged by the image sensor 1 2 1.
  • the planned cutting line 5 is a desired virtual line for cutting the semiconductor substrate 1.
  • the semiconductor substrate 1 is divided into functional elements formed on the surface 3 to obtain a semiconductor chip, so the cutting lines 5 are set in a lattice shape so as to run between adjacent functional elements.
  • the imaging data imaged by the imaging element 1 2 1 is sent to the imaging data processing unit 1 2 5. Based on this imaging data, the imaging data processing unit 1 2 5 calculates focus data such that the visible light focus of the observation light source 1 1 7 is located on the surface 3 ( S 1 0 7).
  • This focus data is sent to the stage controller 1 1 5.
  • the stage controller 1 15 moves the Z-axis stage 1 13 in the Z-axis direction based on the focus data (S 1 0 9). Thereby, the focus of the visible light of the observation light source 1 17 is located on the surface 3 of the semiconductor substrate 1.
  • the imaging data processing unit 1 25 calculates the enlarged image data of the surface 3 of the semiconductor substrate 1 including the planned cutting line 5 based on the imaging data. This enlarged image data is sent to the monitor 1 2 9 via the overall control unit 1 2 7, and thereby an enlarged image around the planned cutting line 5 is displayed on the monitor 1 2 9.
  • step S 1 0 3 The movement amount data determined in advance in step S 1 0 3 is input to the overall control unit 1 27, and this movement amount data is sent to the stage control unit 1 15. Based on this movement amount data, the stage control unit 1 1 5 moves the semiconductor substrate 1 in the Z-axis direction by the Z-axis stage 1 1 3 to the position where the condensing point P of the laser beam L is inside the semiconductor substrate 1. Move it (S 1 1 1).
  • a laser beam L is generated from the laser light source 101, and the laser beam L is irradiated onto the planned cutting line 5 on the surface 3 of the semiconductor substrate 1. Since the condensing point P of the laser beam L is located inside the semiconductor substrate 1, the melting region is formed only inside the semiconductor substrate 1. Then, move the X-axis stage 109 and the Y-axis stage 1 1 1 along the planned cutting line 5 to the planned cutting line 5 in the melt processing area formed along the planned cutting line 5. A cutting starting point region is formed inside the semiconductor substrate 1 (S 1 1 3).
  • the process of forming the cutting start region is completed, and the cutting start region is formed inside the semiconductor substrate 1.
  • the cutting start region is formed inside the semiconductor substrate 1, a crack occurs in the thickness direction of the semiconductor substrate 1 starting from the cutting start region, naturally or by a relatively small force.
  • Example 1 in the step of forming the above-described cutting start region, the cutting starting region is formed at a position close to the surface 3 side inside the semiconductor substrate 1, and this cutting starting region is started. As a point, the semiconductor substrate 1 is cracked in the thickness direction.
  • FIG. 16 is a diagram showing the semiconductor substrate 1 after the cutting start region is formed. As shown in FIG. 16, cracks 15 starting from the cutting start region in semiconductor substrate 1 are formed in a lattice shape along the planned cutting line, and reach only surface 3 of semiconductor substrate 1, Back side 2 1 has not been reached. That is, the crack 15 generated in the semiconductor substrate 1 divides the plurality of functional elements 19 formed in a matrix on the surface of the semiconductor substrate 1 individually.
  • the cut surfaces of the semiconductor substrate 1 cut by the crack 15 are in close contact with each other.
  • the cutting start region is formed at a position close to the surface 3 side inside the semiconductor substrate 1” means that the modified region such as the melt processing region constituting the cutting start region is in the thickness direction of the semiconductor substrate 1. This means that it is deviated from the center position (position at half the thickness) to the surface 3 side. In other words, it means that the center position of the width of the modified region in the thickness direction of the semiconductor substrate 1 is deviated from the center position in the thickness direction of the semiconductor substrate 1 toward the surface 3 side. Is not limited to the case where all the parts of the semiconductor substrate 1 are located on the surface 3 side with respect to the center position in the thickness direction of the semiconductor substrate 1.
  • FIGS. 17 to 21 are diagrams for explaining each process including the process of polishing the semiconductor substrate.
  • the semiconductor substrate 1 is thinned from a thickness of 3500 ⁇ to a thickness of 50 ⁇ m.
  • a protective film 20 is attached to the surface 3 of the semiconductor substrate 1 after the formation of the cutting start region.
  • the protective film 20 is for protecting the functional element 19 formed on the surface 3 of the semiconductor substrate 1 and holding the semiconductor substrate 1.
  • the back surface 21 of the semiconductor substrate 1 is surface ground, and after this surface grinding, the back surface 21 is subjected to chemical etching, so that the semiconductor substrate 1 is thinned to 50 / m.
  • the semiconductor substrate 1 reaches the crack 15 generated from the cutting start region by polishing the back surface 2 1 of the semiconductor substrate 1,
  • the semiconductor substrate 1 is divided into semiconductor chips 25 each having functional elements 19.
  • Kemi force Ruetchingu wet etching (HF ⁇ ⁇ 0 3) and plasma etching (HB r - C 1 2), and the like.
  • an expansion film 23 is attached so as to cover the back surface of all the semiconductor chips 25, and then, as shown in FIG. 20, the functional elements of all the semiconductor chips 25. 1 Protective film pasted to cover 9 is peeled off. Subsequently, as shown in FIG. 21, the expansion film 23 is expanded to separate the semiconductor chips 25 from each other, and the semiconductor chip 25 is picked up by the suction collet 27.
  • the substrate dividing method according to the first embodiment after the functional element 19 is formed on the front surface 3 of the semiconductor substrate 1 in the device manufacturing process, the back surface 21 of the semiconductor substrate 1 is polished. Can do. Then, the yield of the semiconductor chip 25 that is thinned to cope with the miniaturization of the semiconductor device can be obtained by the following effects exhibited by the process of forming the cutting start region and the step of polishing the semiconductor substrate. It becomes possible.
  • the surface 3 of the semiconductor substrate 1 along the line to be cut does not melt, so the interval between the adjacent functional elements 19 can be reduced, and one semiconductor substrate The number of semiconductor chips 25 separated from 1 can be increased.
  • the back surface 21 of the semiconductor substrate 1 is surface ground so that the semiconductor substrate 1 has a predetermined thickness after the cutting start region is formed inside the semiconductor substrate 1, Back side 2 1 Force Generated starting from the cutting start area
  • the crack 15 since the cut surfaces of the semiconductor substrate 1 cut by the crack 15 are in close contact with each other, chipping of the semiconductor substrate 1 by surface grinding can be prevented from cracking. Therefore, chipping can be prevented from cracking, the semiconductor substrate 1 can be made thin, and the semiconductor substrate 1 can be divided.
  • the above-mentioned close contact of the cut surface of the semiconductor substrate 1 prevents cracking of the grinding waste generated by surface grinding 15 and prevents contamination of the semiconductor chip 25 obtained by dividing the semiconductor substrate 1 with grinding waste. It also has the effect of preventing. Similarly, the close contact of the cut surfaces in the semiconductor substrate 1 also has the effect of reducing the chip jump of the semiconductor chip 25 by surface grinding compared to the case where the semiconductor chips 25 are separated from each other. That is, it is possible to use a protective film 20 with reduced holding power.
  • the back surface 21 of the semiconductor substrate 1 is subjected to chemi-etching, so that the back surface of the semiconductor chip 25 obtained by dividing the semiconductor substrate 1 can be further smoothed. it can. Furthermore, since the cut surfaces of the semiconductor substrate 1 due to cracks 15 generated from the cutting start region are in close contact with each other, only the edge portion on the back surface side of the cut surface is selective as shown in FIG. The chamfer 29 is formed by etching. Therefore, the bending strength of the semiconductor chip 25 obtained by dividing the semiconductor substrate 1 can be improved, and the occurrence of chipping in the semiconductor chip 25 can be prevented. Note that the relationship between the semiconductor chip 25 after the step of polishing the semiconductor substrate and the melt processing region 13 is shown in FIGS.
  • Fig. 2 3 A, Fig. 2 4 A and Fig. 25 A are the cases where the crack 15 reaches the surface 3 of the semiconductor substrate 1 before the step of polishing the semiconductor substrate, and Fig. 2 3 B Fig. 2 4 B and Fig. 2 5 B are broken before the process of polishing the semiconductor substrate 1 This is a case where 5 does not reach the surface 3 of the semiconductor substrate 1. Also in the case of FIGS. 2 3 B, 2 4 B, and 25 B, the crack 15 reaches the surface 3 of the semiconductor substrate 15 after the step of polishing the semiconductor substrate.
  • the semiconductor chip 25 in which the melt-processed region 13 remains in the cut surface is protected by the melt-processed region 13.
  • the bending strength of the semiconductor chip 25 is improved.
  • the semiconductor chip 25 in which the melt-processed region 13 does not remain in the cut surface is such that the melt-processed region 13 does not adversely affect the semiconductor device. It is effective in the case.
  • the semiconductor chip 25 in which the melt processing region 13 remains in the wedge portion on the back side of the cut surface is protected by the melt processing region 13.
  • chipping in the edge portion can be prevented from occurring.
  • Fig. 2 3 A, Fig. 2 4 A and Fig. 2 5 A compared to the case where crack 15 reaches surface 3 of semiconductor substrate 1 before the step of polishing the semiconductor substrate, as shown in Fig. 2 3 B, Fig. 24 B and Fig. 25 B
  • the step after the step of polishing the semiconductor substrate The straightness of the cut surface of the obtained semiconductor chip 25 is further improved.
  • the size of the melt processing region 13 can be controlled by, for example, the output of the pulse laser beam in the process of forming the cutting start region, and the size is increased by increasing the output of the pulse laser beam, and the output of the pulse laser beam is decreased. Get smaller.
  • FIGS. 26A and 26B are cross-sectional views of the periphery of the semiconductor substrate 1 before and after the step of polishing the semiconductor substrate according to the first embodiment.
  • the thickness of the semiconductor substrate 1 shown in FIG. 26 A before the process of polishing the semiconductor substrate is 3500 ⁇ m, and the thickness of the semiconductor substrate 1 shown in FIG. 26 B after the process of polishing the semiconductor substrate is shown. Is 50 zm. As shown in FIG.
  • a plurality of chamfered rounds (here, seven) are formed in advance at the peripheral edge of the semiconductor substrate 1 for every thickness of 50 ⁇ m, that is, the semiconductor substrate 1
  • the cross-sectional shape of the peripheral portion is formed in a corrugated shape.
  • FIG. 26B since the peripheral portion of the semiconductor substrate 1 after the step of polishing the semiconductor substrate 1 is rounded by chamfering, the occurrence of chipping and cracking at the peripheral portion is prevented. It can be prevented, and as a result, handling can be facilitated by improving the mechanical strength.
  • the substrate 1 is an insulating sapphire substrate (thickness: 4500 ⁇ m, outer diameter: 2 inches) (hereinafter, “Substrate 1” is referred to as “Sapphire substrate 1 J” in Example 2).
  • Fig. 28 to Fig. 35 are sectional views taken along the line XX-XX of the sapphire substrate 1 shown in Fig. 27. First, as shown in Fig. 28. Then, the laser light L is aligned with the condensing point P inside the sapphire substrate 1, and a modified region 7 is formed inside the sapphire substrate 1.
  • a plurality of functional elements 19 are formed in a matrix shape, and the sapphire substrate 1 is divided for each functional element 19. Therefore, the surface 3 side is matched to the size of each functional element 19 From the grid
  • the modified region 7 is formed along the planned cutting line, and this modified region 7 is set as a cutting start region.
  • the modified region 7 is obtained.
  • a clarata region is formed (a melt-processed region may be formed).
  • the substrate can be cut with a smaller force and with higher accuracy from the cutting start region by the modified region 7 as a starting point. This is the same even if the modified region 7 is formed in the direction along the (1 1 0 0) plane and the direction orthogonal to the direction.
  • an n-type gallium nitride compound semiconductor layer (hereinafter referred to as an “n-type layer”) 3 1 is formed on the surface 3 of the sapphire substrate 1 as shown in FIG. Crystal growth is performed until the thickness reaches 6 m. Further, a p-type gallium nitride compound semiconductor layer (hereinafter referred to as “p-type layer”) 3 2 is crystallized on the n-type layer 31 until a thickness of 1 ⁇ . Grow. Then, the ⁇ -type layer 3 1 and the ⁇ -type layer 3 2 are etched halfway along the ⁇ -type layer 3 1 along the modified region 7 formed in a lattice shape. A plurality of functional elements 19 composed of 2 are formed in a matrix.
  • the sapphire substrate 1 After forming the ⁇ -type layer 3 1 and the ⁇ -type layer 3 2 on the surface 3 of the sapphire substrate 1, the sapphire substrate 1 is irradiated with laser light L with the focusing point ⁇ inside the sapphire substrate 1, The modified region 7 may be formed inside the substrate 1. Further, the laser beam L may be irradiated from the front surface 3 side of the sapphire substrate 1 or from the rear surface 21 side. Even when the laser beam L is irradiated from the surface 3 side after the formation of the ⁇ -type layer 3 1 and the ⁇ -type layer 3 2, the laser beam L is applied to the sapphire substrate 1, the ⁇ -type layer 3 1, and the ⁇ -type layer 3 2.
  • the ⁇ -type layer 31 and the ⁇ -type layer 3 2 can be prevented from melting.
  • a protective film 20 is attached to the surface 3 side of the sapphire substrate 1 as shown in FIG.
  • the protective film 20 protects the functional element 19 formed on the surface 3 of the sapphire substrate 1 and holds the sapphire substrate 1.
  • the back surface 21 of the sapphire substrate 1 is subjected to surface grinding so that the sapphire substrate 1 is thinned to a thickness of 1550 / m.
  • a crack 15 is generated starting from the cutting start region by the modified region 7, and this crack 15 reaches the front surface 3 and the back surface 21 of the sapphire substrate 1,
  • the sapphire substrate 1 is divided into the semiconductor chip 25 having the 11-type layer 3 1 and!)-Type layer 3 2 and the functional elements 19 respectively.
  • the protective film 20 is exposed to ultraviolet rays as shown in Fig. 33.
  • the UV curable resin which is the adhesive layer of the protective film 20, is cured by irradiating the line, and the protective film 20 is peeled off as shown in FIG.
  • the expansion film 23 is expanded outward to form each semiconductor chip.
  • the semiconductor chip 25 and 25 are separated from each other, and the semiconductor chip 25 is picked up by using an adsorption collet or the like. Thereafter, electrodes are attached to the n-type layer 31 and the p-type layer 32 of the semiconductor chip 25 to produce a light emitting diode.
  • the laser beam L is irradiated with the condensing point P inside the sapphire substrate 1
  • the sapphire substrate 1 is arranged along the desired cutting line to be cut with the modified region 7.
  • a cutting start region can be formed inside the substrate.
  • Cracks 15 occur in the thickness direction of the substrate 1.
  • the sapphire substrate 1 is polished so that the sapphire substrate 1 has a predetermined thickness after the cutting starting region is formed inside the sapphire substrate 1. Even when the surface reaches the crack 15 generated from the cutting start region, the cut surfaces of the sapphire substrate 1 cut by the crack 15 are in close contact with each other, so the sapphire substrate 1 is chipped by polishing. Nya cracking can be prevented.
  • chipping can prevent cracking, thin the sapphire substrate 1 and divide the sapphire substrate 1, and obtain a semiconductor chip 25 having a thin sapphire substrate 1 with high yield. Become.
  • the substrate can be made thinner and the substrate can be divided.

Description

明糸田
基板の分割方法
技術分野
本発明は、 半導体デバイスの製造工程等において半導体基板等の基板を分割す るために使用される基板の分割方法に関する。
背景技術
近年の半導体デバイスの小型化に伴い、 半導体デバイスの製造工程において、 半導体基板が数 1 0 m程度の厚さにまで薄型化されることがある。 このように 薄型化された半導体基板をブレードにより切断し分割すると、 半導体基板が厚い 場合に比べてチッビングやクラッキングの発生が増加し、 半導体基板を分割する ことで得られる半導体チップの歩留まりが低下するという問題がある。
このような問題を解決し得る半導体基板の分割方法として、 特開昭 6 4— 3 8 2 0 9号公報や特開昭 6 2— 4 3 4 1号公報に記載された方法が知られている。 すなわち、 これらの公報に記載された方法は、 表面に機能素子が形成されてい る半導体基板に対して当該表面側からプレードにより溝を形成し、 その後に、 当 該表面に粘着シートを貼り付けて半導体基板を保持し、 予め形成された溝に達す るまで半導体基板の裏面を研磨することで、 半導体基板を薄型化する共に半導体 基板を分割するというものである。
発明の開示
しかしながら、 上記公報に記載された方法にあっては、 半導体基板の裏面の研 磨を平面研削により行うと、 平面研削面が、 半導体基板に予め形成された溝に達 した際に、 当該溝の側面でチッビングやクラッキングが発生するおそれがある。 そこで、 本発明は、 このような事情に鑑みてなされたものであり、 チッビング ゃクラッキングの発生を防止して、 基板を薄型化し且つ基板を分割することので きる基板の分割方法を提供することを目的とする。
上記目的を達成するために、 本発明に係る基板の分割方法は、 基板の内部に集 光点を合わせてレーザ光を照射し、 基板の内部に多光子吸収による改質領域を形 成し、 この改質領域によって、 基板の切断予定ラインに沿って基板のレーザ光入 射面から所定距離内側に切断起点領域を形成する工程と、 切断起点領域を形成す る工程後、 基板が所定の厚さとなるよう基板を研磨する工程とを備えることを特 徴とする。
'この基板の分割方法によれば、 切断起点領域を形成する工程においては、 基板 の内部に集光点を合わせてレーザ光を照射し、 基板の内部に多光子吸収という現 象を発生させて改質領域を形成するため、 この改質領域でもって、 基板を切断す べき所望の切断予定ラインに沿うよう基板の内部に切断起点領域を形成すること ができる。 基板の内部に切断起点領域が形成されると、 自然に或いは比較的小さ な力によって、 切断起点領域を起点として基板の厚さ方向に割れが発生する。 そして、 基板を研磨する工程においては、 基板の内部に切断起点領域を形成し た後に、 基板が所定の厚さとなるよう基板を研磨するが、 このとき、 研磨面が、 切断起点領域を起点として発生した割れに達しても、 この割れにより切断された 基板の切断面は互いに密着した状態であるため、 研磨による基板のチッビングや クラッキングを防止することができる。
したがって、 チッビングやクラッキングの発生を防止して、 基板を薄型化し且 つ基板を分割することが可能となる。
ここで、 集光点とは、 レーザ光が集光した箇所のことである。 また、 研磨とは 、 切削、 研削及びケミカルエッチング等を含む意味である。 さらに、 切断起点領 域とは、 基板が切断される際に切断の起点となる領域を意味する。 したがって、 切断起点領域は、 基板において切断が予定される切断予定部である。 そして、 切 断起点領域は、 改質領域が連続的に形成されることで形成される場合もあるし、 改質領域が断続的に形成されることで形成される場合もある。
また、 基板としては、 シリコン基板や G a A s基板等の半導体基板や、 サファ ィァ基板や A 1 N基板等の絶縁基板がある。 そして、 基板が半導体基板の場合の 改質領域としては、 例えば溶融処理した領域がある。
また、 基板の表面には機能素子が形成されており、 基板を研磨する工程では基 板の裏面を研磨することが好ましい。 機能素子の形成後に基板を研磨することが できるため、 例えば半導体デバイスの小型化に対応するよう、 薄型化されたチッ プを得ることが可能となる。 ここで、 機能素子とは、 フォトダイオード等の受光 素子やレーザダイオード等の発光素子、 或いは回路として形成された回路素子等 を意味する。
また、 基板を研磨する工程は、 基板の裏面にケミカルエッチングを施す工程を 含むことが好ましい。 基板の裏面にケミカルエッチングを施すと、 基板の裏面が より平滑化されることは勿論であるが、 切断起点領域を起点として発生した割れ による基板の切断面が互いに密着しているため、 当該切断面の裏面側のェッジ部 のみが選択的にエッチングされ面取りされた状態となる。 したがって、 基板を分 割することで得られるチップの抗折強度を向上させることができると共に、 チッ プにおけるチッピングゃクラッキングの発生を防止することが可能となる。 図面の簡単な説明
図 1は、 本実施形態に係るレーザ加工方法によるレーザ加工中の加工対象物の 平面図である。
図 2は、 図 1に示す加工対象物の II一 II線に沿った断面図である。
図 3は、 本実施形態に係るレ一ザ加工方法によるレ一ザ加工後の加工対象物の 平面図である。
図 4は、 図 3に示す加工対象物の IV— IV線に沿った断面図である。
図 5は、 図 3に示す加工対象物の V— V線に沿った断面図である。
図 6は、 本実施形態に係るレーザ加工方法により切断された加工対象物の平面 図である。
図 7は、 本実施形態に係るレーザ加工方法における電界強度とクラックスポッ トの大きさとの関係を示すグラフである。 図 8は、 本実施形態に係るレーザ加工方法の第 1工程における加工対象物の断 面図である。
図 9は、 本実施形態に係るレーザカ卩ェ方法の第 2工程における加工対象物の断 面図である。
図 1 0は、 本実施形態に係るレーザ加工方法の第 3工程における加工対象物の 断面図である。
図 1 1は、 本実施形態に係るレーザ加工方法の第 4工程における加工対象物の 断面図である。
図 1 2は、 本実施形態に係るレーザ加工方法により切断されたシリコンウェハ の一部における断面の写真を表した図である。
図 1 3は、 本実施形態に係るレーザ加工方法におけるレーザ光の波長とシリコ ン基板の内部の透過率との関係を示すグラフである。
図 1 4は、 実施例 1に係るレーザカ卩ェ装置の概略構成図である。
図 1 5は、 実施例 1に係るレーザ加工方法を説明するためのフローチャートで ある。
図 1 6は、 実施例 1に係る切断起点領域を形成する工程後の半導体基板を示す 図である。
図 1 7は、 実施例 1に係る保護フィルムを貼り付ける工程を説明するための図 である。
図 1 8は、 実施例 1に係る半導体基板を研磨する工程を説明するための図であ る。
図 1 9は、 実施例 1に係る拡張フィルムを貼り付ける工程を説明するための図 である。
図 2 0は、 実施例 1に係る保護フィルムを剥がす工程を説明するための図であ る。
図 2 1は、 実施例 1に係る拡張フイルムをエキスパンドし半導体チップをピッ -る工程を説明するための図である。
図 2 2は、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切断 面の裏面側のェッジ部に形成された面取りを示す図である。
図 2 3 Aは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面内に溶融処理領域が残存する場合であって、 半導体基板を研磨する工程前に 割れが表面に達している場合を説明するための図である。
図 2 3 Bは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面内に溶融処理領域が残存する場合であって、 半導体基板を研磨する工程前に 割れが表面に達していない場合を説明するための図である。
図 2 4 Aは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面内に溶融処理镇域が残存しなレ、場合であって、 半導体基板を研磨する工程前 に割れが表面に達している場合を説明するための図である。
図 2 4 Bは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面内に溶融処理領域が残存しなレ、場合であって、 半導体基板を研磨する工程前 に割れが表面に達していなレ、場合を説明するための図である。
図 2 5 Aは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面の裏面側のェッジ部に溶融処理領域が残存する場合であって、 半導体基板を 研磨する工程前に割れが表面に達している場合を説明するための図である.。 図 2 5 Bは、 実施例 1に係る半導体基板を研磨する工程後の半導体チップの切 断面の裏面側のェッジ部に溶融処理領域が残存する場合であつて、 半導体基板を 研磨する工程前に割れが表面に達していない場合を説明するための図である。 図 2 6 Aは、 実施例 1に係る半導体基板を研磨する工程前の半導体基板の周縁 部の断面図である。
図 2 6 Bは、 実施例 1に係る半導体基板を研磨する工程後の半導体基板の周縁 部の断面図である。
図 2 7は、 実施例 2に係るサファイア基板の平面図である。 図 2 8は、 実施例 2に係る切断起点領域を形成する工程を説明するための断面 図である。
図 2 9は、 実施例 2に係る機能素子を形成する工程を説明するための断面図で ある。
図 3 0は、 実施例 2に係る保護フィルムを貼り付ける工程を説明するための断 面図である。
図 3 1は、 実施例 2に係るサファイア基板を研磨する工程を説明するための断 面図である。
図 3 2は、 実施例 2に係る拡張フィルムを貼り付ける工程を説明するための断 面図である。
図 3 3は、 実施例 2に係る保護フィルムに紫外線を照射する工程を説明するた めの断面図である。
図 3 4は、 実施例 2に係る保護フィルムを剥がす工程を説明するための断面図 である。
図 3 5は、 実施例 2に係る拡張フィルムをエキスパンドし半導体チップを分離 する工程を説明するための断面図である。
発明を実施するための最良の形態
以下、 図面と共に本発明の好適な実施形態について詳細に説明する。 本実施形 態に係る基板の分割方法は、 基板の内部に集光点を合わせてレーザ光を照射し、 基板の内部に多光子吸収による改質領域を形成することで切断起点領域を形成す る工程と、 切断起点領域を形成する工程後、 基板が所定の厚さとなるよう基板を 研磨する工程とを備えている。
まず、 切断起点領域を形成する工程において実施されるレーザ加工方法、 特に 多光子吸収について説明する。
材料の吸収のバンドギヤップ E eよりも光子のエネルギー h Vが小さいと光学 的に透明となる。 よって、 材料に吸収が生じる条件は h V〉E Cである。 しかし 、 光学的に透明でも、 レーザ光の強度を非常に大きくすると n h v〉E eの条件 ( n = 2 , 3 , 4, · · .) で材料に吸収が生じる。 この現象を多光子吸収とい う。 パルス波の場合、 レーザ光の強度はレーザ光の集光点のピークパワー密度 ( W/ c m 2) で決まり、 例えばピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上 の条件で多光子吸収が生じる。 ピークパワー密度は、 (集光点におけるレーザ光 の 1パルス当たりのエネルギー) ÷ (レーザ光のビームスポット断面積 Xパルス 幅) により求められる。 また、 連続波の場合、 レーザ光の強度はレーザ光の集光 点の電界強度 (WZ c m 2) で決まる。
このような多光子吸収を利用する本実施形態に係るレーザ加工の原理について 、 図 1〜図 6を参照して説明する。 図 1はレーザ加工中の基板 1の平面図であり
、 図 2は図 1に示す基板 1の II— II線に沿った断面図であり、 図 3はレーザ加工 後の基板 1の平面図であり、図 4は図 3に示す基板 1の IV— IV線に沿った断面図 であり、図 5は図 3に示す基板 1の V—V線に沿った断面図であり、図 6は切断さ れた基板 1の平面図である。
図 1及び図 2に示すように、 基板 1の表面 3には、 基板 1を切断すべき所望の 切断予定ライン 5がある。 切断予定ライン 5は直線状に延びた仮想線である (基 板 1に実際に線を引いて切断予定ライン 5としてもよい) 。 本実施形態に係るレ 一ザ加工は、 多光子吸収が生じる条件で基板 1の内部に集光点 Pを合わせてレー ザ光 Lを基板 1に照射して改質領域 7を形成する。 なお、 集光点とはレーザ光 L が集光した箇所のことである。
レーザ光 Lを切断予定ライン 5に沿って (すなわち矢印 A方向に沿って) 相対 的に移動させることにより、 集光点 Pを切断予定ライン 5に沿って移動させる。 これにより、 図 3〜図 5に示すように改質領域 7が切断予定ライン 5に沿って基 板 1の内部にのみ形成され、 この改質領域 7でもって切断起点領域 (切断予定部 ) 8が形成される。 本実施形態に係るレーザ加工方法は、 基板 1がレーザ光 Lを 吸収することにより基板 1を発熱させて改質領域 7を形成するのではない。 基板 1にレーザ光 Lを透過させ基板 1の内部に多光子吸収を発生させて改質領域 7を 形成している。 よって、 基板 1の表面 3ではレーザ光 Lがほとんど吸収されない ので、 基板 1の表面 3が溶融することはない。
基板 1の切断において、 切断する箇所に起点があると基板 1はその起点から割 れるので、 図 6に示すように比較的小さな力で基板 1を切断することができる。 よって、 基板 1の表面 3に不必要な割れを発生させることなく基板 1の切断が可 能となる。
なお、 切断起点領域を起点とした基板の切断には、 次の 2通りが考えられる。 1つは、 切断起点領域形成後、 基板に人為的な力が印加されることにより、 切断 起点領域を起点として基板が割れ、 基板が切断される場合である。 これは、 例え ば基板の厚さが大きい場合の切断である。 人為的な力が印加されるとは、 例えば 、 基板の切断起点領域に沿って基板に曲げ応力やせん断応力を加えたり、 基板に 温度差を与えることにより熱応力を発生させたりすることである。 他の 1つは、 切断起点領域を形成することにより、 切断起点領域を起点として基板の断面方向 (厚さ方向) に向かって自然に割れ、 結果的に基板が切断される場合である。 こ れは、 例えば基板の厚さが小さい場合には、 1列の改質領域により切断起点領域 が形成されることで可能となり、 基板の厚さが大きい場合には、 厚さ方向に複数 列形成された改質領域により切断起点領域が形成されることで可能となる。 なお 、 この自然に割れる場合も、 切断する箇所において、 切断起点領域が形成されて いない部位に対応する部分の表面上にまで割れが先走ることがなく、 切断起点領 域を形成した部位に対応する部分のみを割断することができるので、 割断を制御 よくすることができる。 近年、 シリコンウェハ等の基板の厚さは薄くなる傾向に あるので、 このような制御性のよい割断方法は大変有効である。
さて、 本実施形態において多光子吸収により形成される改質領域としては、 次 の (1 ) 〜 (3 ) がある。
( 1 ) 改質領域が 1つ又は複数のクラックを含むクラック領域の場合 基板 (例えばガラスや L i T a 03からなる圧電材料) の内部に集光点を合わ せて、 集光点における電界強度が 1 X 108 (W/cm2) 以上で且つパルス幅が 1 / s以下の条件でレーザ光を照射する。 このパルス幅の大きさは、 多光子吸収 を生じさせつつ基板の表面に余計なダメージを与えずに、 基板の内部にのみクラ ック領域を形成できる条件である。 これにより、 基板の内部には多光子吸収によ る光学的損傷という現象が発生する。 この光学的損傷により基板の内部に熱ひず みが誘起され、 これにより基板の内部にクラック領域が形成される。 電界強度の 上限値としては、 例えば 1 X 1012 (W/cm2) である。 パルス幅は例えば 1 n s〜200 n sが好ましい。 なお、 多光子吸収によるクラック領域の形成は、 例えば、 第 45回レーザ熱加工研究会論文集 (1 998年. 1 2月) の第 23頁 〜第 28頁の 「固体レーザー高調波によるガラス基板の内部マーキング」 に記載 されている。
本発明者は、 電界強度とクラックの大きさとの関係を実験により求めた。 実験 条件は次ぎの通りである。
(A) 基板:パイレックス (登録商標) ガラス (厚さ 700 /im)
(B) レーザ
光源:半導体レーザ励起 N d : Y AGレーザ
波長: 1064 nm
レーザ光スポッ ト断面積: 3. 14X 10— 8cm2
発振形態: Qスィツチパルス
繰り返し周波数: 100 kH z
パルス幅 : 30 n s
出力:出力 < lm J /パルス
レーザ光品質: TEM00
偏光特性:直線偏光
(C) 集光用レンズ レーザ光波長に対する透過率: 6 0パーセント
(D ) 基板が載置される載置台の移動速度: 1 0 O mm/秒
なお、 レーザ光品質が T EM。。とは、 集光性が高くレーザ光の波長程度まで集 光可能を意味する。
図 7は上記実験の結果を示すグラフである。 横軸はピークパワー密度であり、 レーザ光がパルスレーザ光なので電界強度はピークパワー密度で表される。 縦軸 は 1パルスのレーザ光により基板の内部に形成されたクラック部分 (クラックス ポット) の大きさを示している。 クラックスポットが集まりクラック領域となる 。 クラックスポットの大きさは、 クラックスポッ トの形状のうち最大の長さとな る部分の大きさである。 グラフ中の黒丸で示すデータは集光用レンズ (C ) の倍 率が 1 0 0倍、 開口数 (N A) が 0 . 8 0の場合である。 一方、 グラフ中の白丸 で示すデータは集光用レンズ (C ) の倍率が 5 0倍、 開口数 (NA) が 0 . 5 5 の場合である。 ピークパワー密度が 1 0 1 1 (W/ c m 2) 程度から基板の内部に クラックスポットが発生し、 ピークパヮ一密度が大きくなるに従いクラックスポ ットも大きくなることが分かる。
次に、 本実施形態に係るレーザ加工において、 クラック領域形成による基板の 切断のメカニズムについて図 8〜図 1 1を用いて説明する。 図 8に示すように、 多光子吸収が生じる条件で基板 1の内部に集光点 Pを合わせてレーザ光 Lを基板 1に照射して切断予定ラインに沿って内部にクラック領域 9を形成する。 クラッ ク領域 9は 1つ又は複数のクラックを含む領域である。 このクラック領域 9でも つて切断起点領域が形成される。 図 9に示すようにクラック領域 9を起点として (すなわち、 切断起点領域を起点として) クラックがさらに成長し、 図 1 0に示 すようにクラックが基板 1の表面 3と裏面 2 1に到達し、 図 1 1に示すように基 板 1が割れることにより基板 1が切断される。 基板の表面と裏面に到達するクラ ックは自然に成長する場合もあるし、 基板に力が印加されることにより成長する 場合もある。 ( 2 ) 改質領域が溶融処理領域の場合
基板 (例えばシリコンのような半導体材料) の内部に集光点を合わせて、 集光 点における電界強度が 1 X 108 (W/cm2) 以上で且つパルス幅が 1 n s以下 の条件でレーザ光を照射する。 これにより基板の内部は多光子吸収によって局所 的に加熱される。 この加熱により基板の内部に溶融処理領域が形成される。 溶融 処理領域とは一旦溶融後再固化した領域や、 まさに溶融状態の領域や、 溶融状態 から再固化する状態の領域であり、 相変化した領域や結晶構造が変化した領域と いうこともできる。 また、 溶融処理領域とは単結晶構造、 非晶質構造、 多結晶構 造において、 ある構造が別の構造に変化した領域ということもできる。 つまり、 例えば、 単結晶構造から非晶質構造に変化した領域、 単結晶構造から多結晶構造 に変化した領域、 単結晶構造から非晶質構造及び多結晶構造を含む構造に変化し た領域を意味する。 基板がシリコン単結晶構造の場合、 溶融処理領域は例えば非 晶質シリコン構造である。 電界強度の上限値としては、 例えば 1 X 1012 (W/ cm2) である。 パルス幅は例えば 1 n s〜 200 n sが好ましい。
本発明者は、 シリコンウェハの内部で溶融処理領域が形成されることを実験に より確認した。 実験条件は次の通りである。
(A) 基板:シリコンウェハ (厚さ 350 μπι、 外径 4インチ)
(Β) レーザ
光源:半導体レーザ励起 Nd : YAGレーザ
波長: 1064 n m
レーザ光スポット断面積: 3. 14 X 10~8 c m2
発振形態: Qスィツチパルス
繰り返し周波数: 100 k H Z
ノヽ0ノレス幅 : 30 n s
出力: 20 μ J Zパルス
レーザ光品質: TEM00 偏光特性:直線偏光
( C ) 集光用レンズ
倍率: 5 0倍
N . A . : 0 . 5 5
レーザ光波長に対する透過率: 6 0パーセント
(D ) 基板が載置される載置台の移動速度: 1 0 0 mm/秒
図 1 2は、 上記条件でのレーザ加工により切断されたシリコンウェハの一部に おける断面の写真を表した図である。 シリコンウェハ 1 1の内部に溶融処理領域 1 3が形成されている。 なお、 上記条件により形成された溶融処理領域 1 3の厚 さ方向の大きさは 1 0 0 /i m程度である。
溶融処理領域 1 3が多光子吸収により形成されたことを説明する。 図 1 3は、 レーザ光の波長とシリコン基板の内部の透過率との関係を示すグラフである。 た だし、 シリコン基板の表面側と裏面側それぞれの反射成分を除去し、 内部のみの 透過率を示している。 シリコン基板の厚さ tが 5 0 /ζ ιη、 1 0 0 ί ΐη、 2 0 0 μ 5 0 0 ,u m 1 0 0 0 μ mの各々について上記関係を示した。
例えば、 N d : YA Gレーザの波長である 1 0 6 4 n mにおいて、 シリコン基 板の厚さが 5 0 0 /i m以下の場合、 シリコン基板の内部ではレーザ光が 8 0 %以 上透過することが分かる。 図 1 2に示すシリコンウェハ 1 1の厚さは 3 5 0 μ πι であるので、 多光子吸収による溶融処理領域 1 3はシリコンウェハの中心付近、 つまり表面から 1 7 5 μ ιηの部分に形成される。 この場合の透過率は、 厚さ 2 0 0 // mのシリコンウェハを参考にすると、 9 0 %以上なので、 レーザ光がシリコ ンウェハ 1 1の内部で吸収されるのは僅かであり、 ほとんどが透過する。 このこ とは、 シリ コンウェハ 1 1の内部でレーザ光が吸収されて、 溶融処理領域 1 3が シリコンゥ ハ 1 1の内部に形成 (つまりレーザ光による通常の加熱で溶融処理 領域が形成) されたものではなく、 溶融処理領域 1 3が多光子吸収により形成さ れたことを意味する。 多光子吸収による溶融処理領域の形成は、 例えば、 溶接学 会全国大会講演概要第 6 6集 (2 0 0 0年 4月) の第 7 2頁〜第 7 3頁の 「ピコ 秒パルスレーザによるシリコンの加工特性評価」 に記載されている。
なお、 シリコンウェハは、 溶融処理領域でもって形成される切断起点領域を起 点として断面方向に向かって割れを発生させ、 その割れがシリコンウェハの表面 と裏面とに到達することにより、 結果的に切断される。 シリコンウェハの表面と 裏面に到達するこの割れは自然に成長する場合もあるし、 シリコンウェハに力が 印加されることにより成長する場合もある。 なお、 切断起点領域からシリコンゥ ハの表面と裏面とに割れが自然に成長する場合には、 切断起点領域を形成する 溶融処理領域が溶融している状態から割れが成長する場合と、 切断起点領域を形 成する溶融処理領域が溶融している状態から再固化する際に割れが成長する場合 とのいずれもある。 ただし、 どちらの場合も溶融処理領域はシリコンウェハの内 部のみに形成され、 切断後の切断面には、 図 1 2のように内部にのみ溶融処理領 域が形成されている。 基板の内部に溶融処理領域でもつて切断起点領域を形成す ると、 割断時、 切断起点領域ラインから外れた不必要な割れが生じにくいので、 割断制御が容易となる。
( 3 ) 改質領域が屈折率変化領域の場合
基板 (例えばガラス) の内部に集光点を合わせて、 集光点における電界強度が 1 X 1 0 8 (W/ c m 2) 以上で且つパルス幅が 1 n s以下の条件でレーザ光を照 射する。 パルス幅を極めて短くして、 多光子吸収を基板の内部に起こさせると、 多光子吸収によるエネルギーが熱エネルギーに転化せずに、 基板の内部にはィォ ン価数変化、 結晶化又は分極配向等の永続的な構造変化が誘起されて屈折率変化 領域が形成される。 電界強度の上限値としては、 例えば 1 X 1 0 1 2 (W/ c m 2 ) である。 パルス幅は例えば 1 11 s以下が好ましく、 1 p s以下がさらに好まし い。 多光子吸収による屈折率変化領域の形成は、 例えば、 第 4 2回レーザ熱加工 研究会論文集 (1 9 9 7年. 1 1月) の第 1 0 5頁〜第 1 1 1頁の 「フェムト秒 レーザー照射によるガラス内部への光誘起構造形成」 に記載されている。 以上、 多光子吸収により形成される改質領域として (1) 〜 (3) の場合を説 明したが、 基板の結晶構造やその劈開性などを考慮して切断起点領域を次のよう に形成すれば、 その切断起点領域を起点として、 より一層小さな力で、 しかも精 度良く基板を切断することが可能になる。
すなわち、 シリコンなどのダイヤモンド構造の単結晶半導体からなる基板の場 合は、 (1 1 1) 面 (第 1劈開面) や (1 10) 面 (第 2劈開面) に沿った方向 に切断起点領域を形成するのが好ましい。 また、 Ga Asなどの閃亜鉛鉱型構造 の III— V族化合物半導体からなる基板の場合は、 (1 10) 面に沿った方向に切 断起点領域を形成するのが好ましい。 さらに、 サファイア (A l 23) などの六 方晶系の結晶構造を有する基板の場合は、 (0001) 面 (C面) を主面として (1 120) 面 (八面) 或いは (1 100) 面 (M面) に沿った方向に切断起点 領域を形成するのが好ましい。
なお、 上述した切断起点領域を形成すべき方向 (例えば、 単結晶シリコン基板 における (1 1 1) 面に沿った方向) 、 或いは切断起点領域を形成すべき方向に 直交する方向に沿って基板にオリエンテーションフラットを形成すれば、 そのォ リエンテーションフラットを基準とすることで、 切断起点領域を形成すべき方向 に沿った切断起点領域を容易且つ正確に基板に形成することが可能になる。
以下、 実施例により、 本発明についてより具体的に説明する。
[実施例 1 ]
本発明に係る基板の分割方法の実施例 1について説明する。 実施例 1では、 基 板 1をシリコンウェハ (厚さ 350 μπι、 外径 4インチ) とし (以下、 実施例 1 では 「基板 1」 を 「半導体基板 1」 という) 、 デバイス製作プロセスにおいて半 導体基板 1の表面 3に複数の機能素子がマトリックス状に形成されたものを対象 とする。
まず、 半導体基板 1の内部に切断起点領域を形成する工程について説明するが
、 その説明に先立って、 切断起点領域を形成する工程において使用されるレーザ 加工装置について、 図 14を参照して説明する。 図 14はレーザ加工装置 100 の概略構成図である。
レーザ加工装置 100は、 レーザ光 Lを発生するレーザ光源 101と、 レーザ 光 Lの出力やパルス幅等を調節するためにレーザ光源 101を制御するレーザ光 源制御部 1 02と、 レーザ光 Lの反射機能を有しかつレーザ光 Lの光軸の向きを 90° 変えるように配置されたダイクロイツクミラー 103と、 ダイクロイツク ミラー 103で反射されたレーザ光 Lを集光する集光用レンズ 105と、 集光用 レンズ 105で集光されたレーザ光 Lが照射される半導体基板 1が載置される載 置台 107と、 載置台 107を X軸方向に移動させるための X軸ステージ 109 と、 載置台 107を X軸方向に直交する Y軸方向に移動させるための Y軸ステー ジ 1 1 1と、 載置台 107を X軸及び Y軸方向に直交する Z軸方向に移動させる ための Z軸ステージ 1 13と、 これら 3つのステージ 109, 1 1 1, 1 1 3の 移動を制御するステージ制御部 1 15とを備える。
Z軸方向は半導体基板 1の表面 3と直交する方向なので、 半導体基板 1に入射 するレーザ光 Lの焦点深度の方向となる。 よって、 Z軸ステージ 1 1 3を Z軸方 向に移動させることにより、 半導体基板 1の内部にレーザ光 Lの集光点 Pを合わ せることができる。 また、 この集光点 Pの X (Y) 軸方向の移動は、 半導体基板 1を X (Y) 軸ステージ 109 (1 1 1) により X (Y) 軸方向に移動させるこ とにより行う。
レーザ光源 10 1はパルスレーザ光を発生する N d : Y AGレーザである。 レ 一ザ光源 1 01に用いることができるレーザとして、 この他、 Nd : YV〇4レ 一ザ、 Nd : YL Fレーザやチタンサファイアレーザがある。 溶融処理領域を形 成する場合には、 Nd : YAGレーザ、 Nd : YV04レーザ、 Nd : YLFレ 一ザを用いるのが好適である。 実施例 1では、 半導体基板 1の加工にパルスレー ザ光を用いているが、 多光子吸収を起こさせることができるなら連続波レーザ光 でもよい。 レーザ加工装置 1 0 0はさらに、 載置台 1 0 7に載置された半導体基板 1を可 視光線により照明するために可視光線を発生する観察用光源 1 1 7と、 ダイク口 イツクミラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された可視光用 のビームスプリッタ 1 1 9とを備える。 ビームスプリッタ 1 1 9と集光用レンズ 1 0 5との間にダイクロイツクミラー 1 0 3が配置されている。 ビームスプリツ タ 1 1 9は、 可視光線の約半分を反射し残りの半分を透過する機能を有しかつ可 視光線の光軸の向きを 9 0 ° 変えるように配置されている。 観察用光源 1 1 7か ら発生した可視光線はビームスプリッタ 1 1 9で約半分が反射され、 この反射さ れた可視光線がダイクロイツクミラー 1 0 3及び集光用レンズ 1 0 5を透過し、 半導体基板 1の切断予定ライン 5等を含む表面 3を照明する。
レーザ加工装置 1 0 0はさらに、 ビームスプリッタ 1 1 9、 ダイクロイツクミ ラー 1 0 3及び集光用レンズ 1 0 5と同じ光軸上に配置された撮像素子 1 2 1及 び結像レンズ 1 2 3を備える。 撮像素子 1 2 1としては例えば C C Dカメラがあ る。 切断予定ライン 5等を含む表面 3を照明した可視光線の反射光は、 集光用レ ンズ 1 0 5、 ダイクロイツクミラー 1 0 3、 ビームスプリッタ 1 1 9を透過し、 結像レンズ 1 2 3で結像されて撮像素子 1 2 1で撮像され、 撮像データとなる。
レーザ加工装置 1 0 0はさらに、 撮像素子 1 2 1から出力された撮像データが 入力される撮像データ処理部 1 2 5と、 レーザ加工装置 1 0 0全体を制御する全 体制御部 1 2 7と、 モニタ 1 2 9とを備える。 撮像データ処理部 1 2 5は、 撮像 データを基にして観察用光源 1 1 7で発生した可視光の焦点を表面 3上に合わせ るための焦点データを演算する。 この焦点データを基にしてステージ制御部 1 1 5が Z軸ステージ 1 1 3を移動制御することにより、 可視光の焦点が表面 3に合 うようにする。 よって、 撮像データ処理部 1 2 5はオートフォーカスユニットと して機能する。 また、 撮像データ処理部 1 2 5は、 撮像データを基にして表面 3 の拡大画像等の画像データを演算する。 この画像データは全体制御部 1 2 7に送 られ、 全体制御部で各種処理がなされ、 モニタ 1 2 9に送られる。 これにより、 モニタ 1 2 9に拡大画像等が表示される。
全体制御部 1 2 7には、 ステージ制御部 1 1 5からのデータ、 撮像データ処理 部 1 2 5からの画像データ等が入力し、 これらのデータも基にしてレーザ光源制 御部 1 0 2、 観察用光源 1 1 7及びステージ制御部 1 1 5を制御することにより 、 レーザ加工装置 1 0 0全体を制御する。 よって、 全体制御部 1 2 7はコンビュ ータュ-ットとして機能する。
続いて、 上述したレーザ加工装置 1 0 0を使用した場合の切断起点領域を形成 する工程について、 図 1 4及び図 1 5を参照して説明する。 図 1 5は、 切断起点 領域を形成する工程を説明するためのフローチャートである。
半導体基板 1の光吸収特性を図示しない分光光度計等により測定する。 この測 定結果に基づいて、 半導体基板 1に対して透明な波長又は吸収の少ない波長のレ 一ザ光 Lを発生するレーザ光源 1 0 1を選定する (S 1 0 1 )。続いて、半導体基 板 1の厚さを測定する。 厚さの測定結果及び半導体基板 1の屈折率を基にして、 半導体基板 1の Z軸方向の移動量を決定する (S 1 0 3 )。 これは、 レーザ光しの 集光点 Pを半導体基板 1の内部に位置させるために、 半導体基板 1の表面 3に位 置するレーザ光 Lの集光点 Pを基準とした半導体基板 1の Z軸方向の移動量であ る。 この移動量は全体制御部 1 2 7に入力される。
半導体基板 1をレーザ加工装置 1 0 0の載置台 1 0 7に載置する。 そして、 観 察用光源 1 1 7から可視光を発生させて半導体基板 1を照明する (S 1 0 .5 )。照 明された切断予定ライン 5を含む半導体基板 1の表面 3を撮像素子 1 2 1により 撮像する。 切断予定ライン 5は、 半導体基板 1を切断すべき所望の仮想線である 。 ここでは、 半導体基板 1をその表面 3に形成された機能素子毎に分割して半導 体チップを得るため、 切断予定ライン 5は、 隣り合う機能素子間を走るよう格子 状に設定される。 撮像素子 1 2 1により撮像された撮像データは撮像データ処理 部 1 2 5に送られる。 この撮像データに基づいて撮像データ処理部 1 2 5は観察 用光源 1 1 7の可視光の焦点が表面 3に位置するような焦点データを演算する ( S 1 0 7 )。
この焦点データはステージ制御部 1 1 5に送られる。 ステージ制御部 1 1 5は 、 この焦点データを基にして Z軸ステージ 1 1 3を Z軸方向の移動させる (S 1 0 9 )。 これにより、観察用光源 1 1 7の可視光の焦点が半導体基板 1の表面 3に 位置する。 なお、 撮像データ処理部 1 2 5は撮像データに基づいて、 切断予定ラ イン 5を含む半導体基板 1の表面 3の拡大画像データを演算する。 この拡大画像 データは全体制御部 1 2 7を介してモニタ 1 2 9に送られ、 これによりモニタ 1 2 9に切断予定ライン 5付近の拡大画像が表示される。
全体制御部 1 2 7には予めステップ S 1 0 3で決定された移動量データが入力 されており、 この移動量データがステージ制御部 1 1 5に送られる。 ステージ制 御部 1 1 5はこの移動量データに基づいて、 レーザ光 Lの集光点 Pが半導体基板 1の内部となる位置に、 Z軸ステージ 1 1 3により半導体基板 1を Z軸方向に移 動させる (S 1 1 1 )。
続いて、 レーザ光源 1 0 1からレーザ光 Lを発生させて、 レーザ光 Lを半導体 基板 1の表面 3の切断予定ライン 5に照射する。 レーザ光 Lの集光点 Pは半導体 基板 1の内部に位置しているので、 溶融処理領域は半導体基板 1の内部にのみ形 成される。 そして、 切断予定ライン 5に沿うように X軸ステージ 1 0 9や Y軸ス テージ 1 1 1を移動させて、 切断予定ライン 5に沿うよう形成された溶融処理領 域でもつて切断予定ライン 5に沿う切断起点領域を半導体基板 1の内部に形成す る (S 1 1 3 )。
以上により切断起点領域を形成する工程が終了し、 半導体基板 1の内部に切断 起点領域が形成される。 半導体基板 1の内部に切断起点領域が形成されると、 自 然に或いは比較的小さな力によって、 切断起点領域を起点として半導体基板 1の 厚さ方向に割れが発生する。
実施例 1では、 上述した切断起点領域を形成する工程において、 半導体基板 1 の内部の表面 3側に近い位置に切断起点領域が形成され、 この切断起点領域を起 点として半導体基板 1の厚さ方向に割れが発生している。 図 1 6は切断起点領域 形成後の半導体基板 1を示す図である。 図 1 6に示すように、 半導体基板 1にお いて切断起点領域を起点として発生した割れ 1 5は、 切断予定ラインに沿うよう 格子状に形成され、 半導体基板 1の表面 3にのみ到達し、 裏面 2 1には到達して いない。 すなわち、 半導体基板 1に発生した割れ 1 5は、 半導体基板 1の表面に マトリックス状に形成された複数の機能素子 1 9を個々に分割している。 また、 この割れ 1 5により切断された半導体基板 1の切断面は互いに密着している。 なお、 「半導体基板 1の内部の表面 3側に近い位置に切断起点領域が形成され る」 とは、 切断起点領域を構成する溶融処理領域等の改質領域が、 半導体基板 1 の厚さ方向における中心位置 (厚さの半分の位置) から表面 3側に偏倚して形成 されることを意味する。 つまり、 半導体基板 1の厚さ方向における改質領域の幅 の中心位置が、 半導体基板 1の厚さ方向における中心位置から表面 3側に偏倚し て位置している場合を意味し、 改質領域の全ての部分が半導体基板 1の厚さ方向 における中心位置に対して表面 3側に位置している場合のみに限る意味ではない 次に、 半導体基板 1を研磨する工程について、 図 1 7〜図 2 1を参照して説明 する。 図 1 7〜2 1は、 半導体基板を研磨する工程を含む各工程を説明するため の図である。 なお、 実施例 1では、 半導体基板 1が厚さ 3 5 0 μ ιηから厚さ 5 0 μ mに薄型化される。
図 1 7に示すように、 上記切断起点領域形成後の半導体基板 1の表面 3に保護 フィルム 2 0が貼り付けられる。 保護フィルム 2 0は、 半導体基板 1の表面 3に 形成されている機能素子 1 9を保護すると共に、 半導体基板 1を保持するための ものである。 続いて、 図 1 8に示すように、 半導体基板 1の裏面 2 1が平面研削 され、 この平面研削後に裏面 2 1にケミカルエッチングが施されて、 半導体基板 1が 5 0 / mに薄型化される。 これにより、 すなわち半導体基板 1の裏面 2 1の 研磨により、 切断起点領域を起点として発生した割れ 1 5に裏面 2 1が達して、 機能素子 1 9それぞれを有する半導体チップ 2 5に半導体基板 1が分割される。 なお、 上記ケミ力ルェッチングとしては、 ウエットエッチング (H F · ΗΝ 0 3 ) やプラズマエッチング (H B r - C 1 2) 等が挙げられる。
そして、 図 1 9に示すように、 すべての半導体チップ 2 5の裏面を覆うよう拡 張フィルム 2 3が貼り付けられ、 その後、 図 2 0に示すように、 すべての半導体 チップ 2 5の機能素子 1 9を覆うよう貼り付けられていた保護フィルム 2 0が剥 がされる。 続いて、 図 2 1に示すように、 拡張フィルム 2 3がエキスパンドされ て各半導体チップ 2 5が互いに離間され、 吸着コレット 2 7により半導体チップ 2 5がピックアップされる。
以上説明したように、 実施例 1に係る基板の分割方法によれば、 デバイス製作 プロセスにおいて機能素子 1 9を半導体基板 1の表面 3に形成した後に、 半導体 基板 1の裏面 2 1を研磨することができる。 そして、 切断起点領域を形成するェ 程及び半導体基板を研磨する工程のそれぞれが奏する以下の効果により、 半導体 デバイスの小型化に対応するよう薄型化された半導体チップ 2 5を歩留まりょく 得ることが可能となる。
すなわち、 切断起点領域を形成する工程によれば、 半導体基板 1を切断すべき 所望の切断予定ラインから外れた不必要な割れや溶融が半導体基板 1の表面 3に 生じるのを防止することができ、 半導体基板 1を分離して得られる半導体チップ 2 5に不必要な割れや溶融が生じるのを防止することが可能となる。
また、 切断起点領域を形成する工程によれば、 切断予定ラインに沿う半導体基 板 1の表面 3は溶融しないため、 隣り合う機能素子 1 9の間隔を狭くすることが でき、 1枚の半導体基板 1から分離される半導体チップ 2 5の数を増加させるこ とが可能となる。
一方、 半導体基板を研磨する工程においては、 半導体基板 1の内部に切断起点 領域を形成した後に半導体基板 1が所定の厚さとなるよう半導体基板 1の裏面 2 1を平面研削するが、 このとき、 裏面 2 1力 切断起点領域を起点として発生し た割れ 1 5に達しても、 この割れ 1 5により切断された半導体基板 1の切断面は 互いに密着しているため、 平面研削による半導体基板 1のチッピングゃクラツキ ングを防止することができる。 したがって、 チッピングゃクラッキングの発生を 防止して、 半導体基板 1を薄型化し且つ半導体基板 1を分割することが可能とな る。
上述した半導体基板 1における切断面の密着は、 平面研削により生じる研削屑 の割れ 1 5内への入り込みを防止し、 半導体基板 1を分割することで得られる半 導体チップ 2 5の研削屑汚染を防止するという効果をも奏する。 同じく半導体基 板 1における切断面の密着は、 各半導体チップ 2 5が互いに離間している場合に 比べて平面研削による半導体チップ 2 5のチップ飛びを減少させるという効果を も奏する。 すなわち、 保護フィルム 2 0として保持力を抑えたものを使用するこ とができる。
また、 半導体基板を研磨する工程においては、 半導体基板 1の裏面 2 1にケミ 力ルェッチングを施すため、 半導体基板 1を分割することで得られる半導体チッ プ 2 5の裏面をより平滑化することができる。 さらに、 切断起点領域を起点とし て発生した割れ 1 5による半導体基板 1の切断面が互いに密着しているため、 図 2 2に示すように、 当該切断面の裏面側のエッジ部のみが選択的にエッチングさ れ面取り 2 9が形成される。 したがって、 半導体基板 1を分割することで得られ る半導体チップ 2 5の抗折強度を向上させることができる共に、 半導体チップ 2 5におけるチッピングゃクラッキングの発生を防止することが可能となる。 なお、 半導体基板を研磨する工程後の半導体チップ 2 5と溶融処理領域 1 3と の関係としては、 図 2 3 A〜図 2 5 Bに示すものがある.。 各図に示す半導体チッ プ 2 5には、 後述するそれぞれの効果が存在するため、 種々様々な目的に応じて 使い分けることができる。 ここで、 図 2 3 A、 図 2 4 A及び図 2 5 Aは、 半導体 基板を研磨する工程前に割れ 1 5が半導体基板 1の表面 3に達している場合であ り、 図 2 3 B、 図 2 4 B及び図 2 5 Bは、 半導体基板を研磨する工程前に割れ 1 5が半導体基板 1の表面 3に達していない場合である。 図 2 3 B、 図 2 4 B及び 図 2 5 Bの場合にも、 半導体基板を研磨する工程後には、 割れ 1 5が半導体基板 1 5の表面 3に達する。
図 2 3 A及び図 2 3 Bに示すように、 溶融処理領域 1 3が切断面内に残存する 半導体チップ 2 5は、 その切断面が溶融処理領域 1 3により保護されることとな り、 半導体チップ 2 5の抗折強度が向上する。
図 2 4 A及び図 2 4 Bに示すように、 溶融処理領域 1 3が切断面内に残存しな い半導体チップ 2 5は、 溶融処理領域 1 3が半導体デバイスに好影響を与えない ような場合に有効である。
図 2 5 A及び図 2 5 Bに示すように、 溶融処理領域 1 3が切断面の裏面側のェ ッジ部に残存する半導体チップ 2 5は、 当該ェッジ部が溶融処理領域 1 3により 保護されることとなり、 半導体チップ 2 5のエッジ部を面取りした場合と同様に 、 ェッジ部におけるチッピングゃクラッキングの発生を防止することができる。 また、 図 2 3 A、 図 2 4 A及び図 2 5 Aに示すように、 半導体基板を研磨する 工程前に割れ 1 5が半導体基板 1の表面 3に達している場合に比べ、 図 2 3 B、 図 2 4 B及び図 2 5 Bに示すように半導体基板を研磨する工程前に割れ 1 5が半 導体基板 1の表面 3に達していない場合の方が、 半導体基板を研磨する工程後に 得られる半導体チップ 2 5の切断面の直進性がより向上する。
ところで、 半導体基板を研磨する工程前に割れ 1 5が半導体基板 1の表面 3に 到達するか否かは、 溶融処理領域 1 3の表面 3からの深さに関係するのは勿論で ある力 溶融処理領域 1 3の大きさにも関係する。 すなわち、 溶融処理領域 1 3 の大きさを小さくすれば、 溶融処理領域 1 3の表面 3からの深さが浅い場合でも 、 割れ 1 5は半導体基板 1の表面 3に到達しない。 溶融処理領域 1 3の大きさは 、 例えば切断起点領域を形成する工程におけるパルスレーザ光の出力により制御 することができ、 パルスレーザ光の出力を上げれば大きくなり、 パルスレーザ光 の出力を下げれば小さくなる。 また、 半導体基板を研磨する工程において薄型化される半導体基板 1の所定の 厚さを考慮して、予め (例えば切断起点領域を形成する工程前に)、少なくとも当 該所定の厚さの分だけ半導体基板 1の周縁部 (外周部) に、 面取り加工により丸 みをつけておくことが好ましい。 図 2 6 A及び図 2 6 Bは、 実施例 1に係る半導 体基板を研磨する工程の前後における半導体基板 1の周縁部の断面図である。 半 導体基板を研磨する工程前における図 2 6 Aに示す半導体基板 1の厚さは 3 5 0 μ mであり、 半導体基板を研磨する工程後における図 2 6 Bに示す半導体基板 1 の厚さは 5 0 z mである。 図 2 6 Aに示すように、 半導体基板 1の周縁部には、 予め、 厚さ 5 0 ^ m毎に面取りによる丸みが複数 (ここでは 7つ) 形成され、 す なわち、 半導体基板 1の周縁部の断面形状は波型に形成される。 これにより、 図 2 6 Bに示すように、 半導体基板 1を研磨する工程後の半導体基板 1の周縁部は 、 面取りにより丸みをつけた状態となるため、 当該周縁部におけるチッビングや クラッキングの発生を防止することができ、 ひいては、 機械的な強度の向上によ つてハンドリングを容易とすることができる。
[実施例 2 ]
本発明に係る基板の分割方法の実施例 2について、 図 2 7〜図 3 5を参照して 説明する。 実施例 2は、 基板 1を絶縁基板であるサファイア基板 (厚さ 4 5 0 μ m、 外径 2インチ) とし (以下、 実施例 2では 「基板 1」 を 「サファイア基板 1 J という) 、 発光ダイォードとなる半導体チップを得る場合である。 なお、 図 2 8〜図 3 5は、 図 2 7に示すサファイア基板 1の XX— XXに沿った断面図である まず、 図 2 8に示すように、 サファイア基板 1の内部に集光点 Pを合わせてレ 一ザ光 Lを照射し、 サファイア基 ¾ 1の内部に改質領域 7を形成する。 このサフ アイァ基板 1の表面 3上には、 後の工程において複数の機能素子 1 9をマトリツ クス状に形成し、 この機能素子 1 9毎にサファイア基板 1の分割を行う。 そのた め、 各機能素子 1 9のサイズに合わせて表面 3側から見て格子状に切断予定ライ ンを設定し、 この切断予定ラインに沿って改質領域 7を形成して、 この改質領域 7を切断起点領域とする。
なお、 集光点 Pにおけるピークパワー密度が 1 X 1 0 8 (W/ c m 2) 以上で且 つパルス幅が 1 s以下の条件でサファイア基板 1にレーザ光を照射すると、 改 質領域 7としてクッラタ領域が形成される (溶融処理領域が形成される場合もあ る)。 また、 サファイア基板 1の (0 0 0 1 ) 面を表面 3として、 (1 1 2 0 ) 面 に沿った方向と当該方向に直交する方向とに改質領域 7を形成すれば、 後の工程 において、 この改質領域 7による切断起点領域を起点として、 より一層小さな力 で、 しかも精度良く基板を切断することが可能になる。 このことは、 (1 1 0 0 ) 面に沿った方向と当該方向に直交する方向とに改質領域 7を形成しても同様で ある。
改質領域 7による切断起点領域の形成後、 図 2 9に示すように、 サファイア基 板 1の表面 3上に、 n型窒化ガリウム系化合物半導体層 (以下 「n型層」 という ) 3 1を厚さ 6 mとなるまで結晶成長させ、 さらに、 n型層 3 1上に p型窒化 ガリウム系化合物半導体層 (以下 「p型層」 という) 3 2を厚さ 1 μ ηιとなるま で結晶成長させる。 そして、 格子状に形成された改質領域 7に沿って η型層 3 1 及び ρ型層 3 2を η型層 3 1の途中までエッチングすることで、 η型層 3 1及び ρ型層 3 2からなる複数の機能素子 1 9をマトリックス状に形成する。
なお、 サファイア基板 1の表面 3上に η型層 3 1及び; ρ型層 3 2を形成した後 に、 サファイア基板 1の内部に集光点 Ρを合わせてレーザ光 Lを照射し、 サファ ィァ基板 1の内部に改質領域 7を形成してもよい。 また、 レーザ光 Lの照射は、 サファイア基板 1の表面 3側から行ってもよいし、 裏面 2 1側から行ってもよい 。 η型層 3 1及び ρ型層 3 2の形成後に表面 3側からレーザ光 Lの照射を行う場 合にも、 レーザ光 Lはサファイア基板 1、 η型層 3 1及び ρ型層 3 2に対して光 透過性を有するため、 η型層 3 1及ぴ ρ型層 3 2が溶融するのを防止することが できる。 n型層 3 1及び p型層 3 2からなる機能素子 1 9の形成後、 図 3 0に示すよう に、 サファイア基板 1の表面 3側に保護フィルム 2 0を貼り付ける。 保護フィル ム 2 0は、 サファイア基板 1の表面 3に形成された機能素子 1 9を保護すると共 に、 サファイア基板 1を保持するためのものである。 続いて、 図 3 1に示すよう に、 サファイア基板 1の裏面 2 1を平面研削して、 サファイア基板 1を厚さ 1 5 0 / mとなるまで薄型化する。 このサファイア基板 1の裏面 2 1の研磨により、 改質領域 7による切断起点領域を起点として割れ 1 5が発生し、 この割れ 1 5が サファイア基板 1の表面 3と裏面 2 1とに達して、 11型層 3 1及び!)型層 3 2か らなる機能素子 1 9それぞれを有する半導体チップ 2 5にサファイア基板 1が分 割される。
そして、 図 3 2に示すように、 すべての半導体チップ 2 5の裏面を覆うよう、 拡張可能な拡張フィルム 2 3を貼り付けた後、 図 3 3に示すように、 保護フィル ム 2 0に紫外,線を照射することで、 保護フィルム 2 0の粘着層である U V硬化樹 脂を硬化させて、 図 3 4に示すように保護フィルム 2 0を剥がす。 続いて、 図 3 5に示すように、 拡張フィルム 2 3を外方側にエキスパンドして各半導体チップ
2 5を互いに分離し、 吸着コレツト等により半導体チップ 2 5をピックアップす る。 この後、 半導体チップ 2 5の n型層 3 1及び p型層 3 2に電極を取り付けて 発光ダイオードを作製する。
以上説明したように、 実施例 2に係る基板の分割方法によれば、 切断起点領域 を形成する工程においては、 サファイア基板 1の内部に集光点 Pを合わせてレー ザ光 Lを照射し、 サフアイァ基板 1の内部に多光子吸収という現象を発生させて 改質領域 7を形成するため、 この改質領域 7でもって、 サファイア基板 1を切断 すべき所望の切断予定ラインに沿うようサフアイァ基板 1の内部に切断起点領域 を形成することができる。 サファイア基板 1の内部に切断起点領域が形成される と、 自然に或いは比較的小さな力によって、 切断起点領域を起点と
ァ基板 1の厚さ方向に割れ 1 5が発生する。 そして、 サファイア基板 1を研磨する工程においては、 サファイア基板 1の内 部に切断起点領域を形成した後に、 サフアイァ基板 1が所定の厚さとなるようサ ファイア基板 1を研磨するが、 このとき、 研磨面が、 切断起点領域を起点として 発生した割れ 1 5に達しても、 この割れ 1 5により切断されたサファイア基板 1 の切断面は互いに密着した状態であるため、 研磨によるサファイア基板 1のチッ ピングゃクラッキングを防止することができる。
したがって、 チッピングゃクラッキングの発生を防止して、 サファイア基板 1 を薄型化し且つサファイア基板 1を分割することができ、 サファイア基板 1が薄 型化された半導体チップ 2 5を歩留まりよく得ることが可能となる。
なお、 サファイア基板 1に換えて A 1 N基板や G a A s基板を用いた場合の基 板の分割においても、 上記同様の効果を奏する。
産業上の利用可能性
以上説明したように、 本発明によれば、 チッビングやクラッキングの発生を防 止して、 基板を薄型化し且つ基板を分割することが可能になる。

Claims

言青求の範囲
1 . 基板の内部に集光点を合わせてレーザ光を照射し、 前記基板の内部に多光 子吸収による改質領域を形成し、 この改質領域によって、 前記基板の切断予定ラ インに沿って前記基板のレーザ光入射面から所定距離内側に切断起点領域を形成 する工程と、
前記切断起点領域を形成する工程後、 前記基板が所定の厚さとなるよう前記基 板を研磨する工程と、
を備えることを特徴とする基板の分割方法。
2 . 前記基板は半導体基板であることを特徴とする請求の範囲第 1項記載の基 板の分割方法。
3 . 前記改質領域は、 溶融処理した領域であることを特徴とする請求の範囲第 2項記載の基板の分割方法。
4 . 前記基板は絶縁基板であることを特徴とする請求の範囲第 1項記載の基板 の分割方法。
5 . 前記基板の表面には機能素子が形成されており、
前記基板を研磨する工程では前記基板の裏面を研磨する、
ことを特徴とする請求の範囲第 1項〜第 4項のいずれか 1項記載の基板の分割方 法。
6 . 前記基板を研磨する工程は、 前記基板の裏面にケミカルエッチングを施す 工程を含むことを特徴とする請求の範囲第 5項記載の基板の分割方法。
PCT/JP2003/002669 2002-03-12 2003-03-06 Method for dicing substrate WO2003077295A1 (en)

Priority Applications (28)

Application Number Priority Date Filing Date Title
US10/507,321 US8268704B2 (en) 2002-03-12 2003-03-06 Method for dicing substrate
EP17179800.2A EP3252806B1 (en) 2002-03-12 2003-03-06 Substrate dividing method
KR1020047014158A KR100715576B1 (ko) 2002-03-12 2003-03-06 기판의 분할 방법
AU2003211763A AU2003211763A1 (en) 2002-03-12 2003-03-06 Method for dicing substrate
ES03744003T ES2377521T3 (es) 2002-03-12 2003-03-06 Método para dividir un sustrato
JP2003575413A JP3762409B2 (ja) 2002-03-12 2003-03-06 基板の分割方法
AT03744003T ATE534142T1 (de) 2002-03-12 2003-03-06 Verfahren zum auftrennen eines substrats
EP03744003A EP1494271B1 (en) 2002-03-12 2003-03-06 Method for dicing substrate
EP19193330.8A EP3664131A3 (en) 2002-03-12 2003-03-06 Substrate dividing method
US11/332,228 US7566635B2 (en) 2002-03-12 2006-01-17 Substrate dividing method
US11/987,328 US8304325B2 (en) 2002-03-12 2007-11-29 Substrate dividing method
US12/762,444 US8314013B2 (en) 2002-03-12 2010-04-19 Semiconductor chip manufacturing method
US13/618,393 US8518800B2 (en) 2002-03-12 2012-09-14 Substrate dividing method
US13/618,637 US8518801B2 (en) 2002-03-12 2012-09-14 Substrate dividing method
US13/618,699 US8519511B2 (en) 2002-03-12 2012-09-14 Substrate dividing method
US13/953,443 US8889525B2 (en) 2002-03-12 2013-07-29 Substrate dividing method
US14/517,552 US9142458B2 (en) 2002-03-12 2014-10-17 Substrate dividing method
US14/793,181 US9287177B2 (en) 2002-03-12 2015-07-07 Substrate dividing method
US14/984,066 US9711405B2 (en) 2002-03-12 2015-12-30 Substrate dividing method
US15/226,662 US9543256B2 (en) 2002-03-12 2016-08-02 Substrate dividing method
US15/226,519 US9548246B2 (en) 2002-03-12 2016-08-02 Substrate dividing method
US15/226,417 US9543207B2 (en) 2002-03-12 2016-08-02 Substrate dividing method
US15/226,284 US9553023B2 (en) 2002-03-12 2016-08-02 Substrate dividing method
US15/617,431 US10068801B2 (en) 2002-03-12 2017-06-08 Substrate dividing method
US16/050,640 US10622255B2 (en) 2002-03-12 2018-07-31 Substrate dividing method
US16/806,552 US20200203225A1 (en) 2002-03-12 2020-03-02 Substrate dividing method
US17/202,807 US11424162B2 (en) 2002-03-12 2021-03-16 Substrate dividing method
US17/868,644 US20220352026A1 (en) 2002-03-12 2022-07-19 Substrate dividing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-67289 2002-03-12
JP2002067289 2002-03-12

Related Child Applications (8)

Application Number Title Priority Date Filing Date
US10/507,321 A-371-Of-International US8268704B2 (en) 2002-03-12 2003-03-06 Method for dicing substrate
US10507321 A-371-Of-International 2003-03-06
US11/332,228 Continuation US7566635B2 (en) 2002-03-12 2006-01-17 Substrate dividing method
US11/987,328 Division US8304325B2 (en) 2002-03-12 2007-11-29 Substrate dividing method
US12/762,444 Division US8314013B2 (en) 2002-03-12 2010-04-19 Semiconductor chip manufacturing method
US13/618,637 Continuation US8518801B2 (en) 2002-03-12 2012-09-14 Substrate dividing method
US13/618,393 Continuation US8518800B2 (en) 2002-03-12 2012-09-14 Substrate dividing method
US13/618,699 Continuation US8519511B2 (en) 2002-03-12 2012-09-14 Substrate dividing method

Publications (1)

Publication Number Publication Date
WO2003077295A1 true WO2003077295A1 (en) 2003-09-18

Family

ID=27800279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002669 WO2003077295A1 (en) 2002-03-12 2003-03-06 Method for dicing substrate

Country Status (11)

Country Link
US (20) US8268704B2 (ja)
EP (7) EP1494271B1 (ja)
JP (7) JP3762409B2 (ja)
KR (2) KR100715576B1 (ja)
CN (5) CN100355032C (ja)
AT (3) ATE518242T1 (ja)
AU (1) AU2003211763A1 (ja)
DE (1) DE60313900T2 (ja)
ES (3) ES2639733T3 (ja)
TW (1) TWI278027B (ja)
WO (1) WO2003077295A1 (ja)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349623A (ja) * 2003-05-26 2004-12-09 Disco Abrasive Syst Ltd 非金属基板の分割方法
JP2005252126A (ja) * 2004-03-08 2005-09-15 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2005268325A (ja) * 2004-03-16 2005-09-29 Hamamatsu Photonics Kk 加工対象物切断方法
JP2006012902A (ja) * 2004-06-22 2006-01-12 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2006156456A (ja) * 2004-11-25 2006-06-15 Tokyo Seimitsu Co Ltd フィルム剥離方法およびフィルム剥離装置
EP1811550A1 (en) * 2004-11-12 2007-07-25 Hamamatsu Photonics K.K. Laser processing method
WO2007099787A1 (ja) * 2006-03-03 2007-09-07 Tokyo Seimitsu Co., Ltd. ウェーハ加工方法
WO2007099986A1 (ja) * 2006-03-03 2007-09-07 Tokyo Seimitsu Co., Ltd. ウェーハ加工方法
CN100428418C (zh) * 2004-02-09 2008-10-22 株式会社迪斯科 晶片的分割方法
CN100446188C (zh) * 2004-07-23 2008-12-24 株式会社迪斯科 晶片分割方法和装置
CN100454607C (zh) * 2004-02-19 2009-01-21 精工爱普生株式会社 电光学装置的制造方法、电光学装置及电子器械
CN100466185C (zh) * 2004-03-30 2009-03-04 浜松光子学株式会社 激光加工方法及加工对象物
JP2009141123A (ja) * 2007-12-06 2009-06-25 Disco Abrasive Syst Ltd 基板への改質層形成方法
JP2009290148A (ja) * 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd ウエーハの分割方法
DE102008052006A1 (de) 2008-10-10 2010-04-22 3D-Micromac Ag Verfahren und Vorrichtung zur Herstellung von Proben für die Transmissionselektronenmikroskopie
JP2012033668A (ja) * 2010-07-30 2012-02-16 Mitsuboshi Diamond Industrial Co Ltd レーザ加工方法
JP2012104780A (ja) * 2010-11-15 2012-05-31 Disco Abrasive Syst Ltd 光デバイスウエーハの分割方法
CN102990227A (zh) * 2011-09-08 2013-03-27 技鼎股份有限公司 单一波长多层雷射加工的方法
JP2013157450A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157455A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157451A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157449A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013165229A (ja) * 2012-02-13 2013-08-22 Disco Abrasive Syst Ltd 光デバイスウェーハの分割方法
JP2013171846A (ja) * 2012-02-17 2013-09-02 Disco Abrasive Syst Ltd 光デバイスウェーハの分割方法
JP2013219271A (ja) * 2012-04-11 2013-10-24 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法
JP2013258365A (ja) * 2012-06-14 2013-12-26 Disco Abrasive Syst Ltd ウェーハの加工方法
KR20140043869A (ko) 2012-10-03 2014-04-11 가부시기가이샤 디스코 연삭 장치 및 연삭 방법
KR20140051772A (ko) * 2012-10-23 2014-05-02 가부시기가이샤 디스코 웨이퍼의 가공 방법
JP2014192215A (ja) * 2013-03-26 2014-10-06 Disco Abrasive Syst Ltd ウェーハの分割方法
JP2015065209A (ja) * 2013-09-24 2015-04-09 株式会社ディスコ ウェーハの分割方法
JP2015119109A (ja) * 2013-12-19 2015-06-25 国立大学法人東京工業大学 半導体装置の製造方法
KR20150085474A (ko) 2014-01-15 2015-07-23 가부시기가이샤 디스코 웨이퍼의 가공 방법
JP2015185831A (ja) * 2014-03-26 2015-10-22 旭化成株式会社 窒化物半導体発光素子
JP2016006903A (ja) * 2015-08-28 2016-01-14 株式会社東京精密 半導体基板の割断方法
KR20160021030A (ko) 2014-08-14 2016-02-24 가부시기가이샤 디스코 반송 장치
JP2016105515A (ja) * 2016-03-02 2016-06-09 株式会社東京精密 半導体基板の割断方法及び割断装置
JP2016106425A (ja) * 2016-03-02 2016-06-16 株式会社東京精密 半導体基板の微小亀裂形成方法及び微小亀裂形成装置
JP2016171350A (ja) * 2016-06-20 2016-09-23 株式会社東京精密 ウェーハ加工方法及びウェーハ加工装置
JP2016201551A (ja) * 2016-06-20 2016-12-01 株式会社東京精密 半導体基板の微小亀裂形成方法及び微小亀裂形成装置
JP2016213318A (ja) * 2015-05-08 2016-12-15 株式会社ディスコ ウエーハの加工方法
KR20170016285A (ko) 2015-08-03 2017-02-13 가부시기가이샤 디스코 피가공물의 가공 방법
US9583391B2 (en) 2015-07-06 2017-02-28 Disco Corporation Wafer processing method
JP2017050404A (ja) * 2015-09-02 2017-03-09 株式会社ディスコ ウエーハの加工方法
CN106654063A (zh) * 2016-12-28 2017-05-10 武汉华星光电技术有限公司 柔性oled显示面板的制作方法
JP2017108143A (ja) * 2017-01-06 2017-06-15 株式会社東京精密 分割起点形成方法及び分割起点形成装置
CN107039563A (zh) * 2015-10-06 2017-08-11 株式会社迪思科 光器件晶片的加工方法
KR20170128104A (ko) 2016-05-13 2017-11-22 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR20170129059A (ko) 2016-05-16 2017-11-24 가부시기가이샤 디스코 익스팬드 시트
DE102017209185A1 (de) 2016-06-01 2017-12-07 Disco Corporation Ausdehnungsfolie, Herstellungsverfahren für eine Ausdehnungsfolie und Verfahren zum Ausdehnen einer Ausdehnungsfolie
JP2017224826A (ja) * 2017-06-27 2017-12-21 株式会社東京精密 抗折強度の高い薄型チップの形成方法及び形成システム
JP2018006653A (ja) * 2016-07-06 2018-01-11 株式会社ディスコ 半導体デバイスチップの製造方法
KR20180018329A (ko) 2016-08-09 2018-02-21 가부시기가이샤 디스코 웨이퍼 가공 방법
JP2018046291A (ja) * 2017-11-22 2018-03-22 株式会社東京精密 抗折強度の高い薄型チップの製造システム及び製造方法
KR20180032179A (ko) 2016-09-21 2018-03-29 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR20180032184A (ko) 2016-09-21 2018-03-29 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR20180057643A (ko) 2015-09-29 2018-05-30 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
KR20180057692A (ko) 2015-09-29 2018-05-30 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
KR20180058760A (ko) 2015-09-29 2018-06-01 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
KR20180061011A (ko) 2016-11-28 2018-06-07 가부시기가이샤 디스코 웨이퍼의 가공 방법
JP2018133593A (ja) * 2018-05-22 2018-08-23 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2018142717A (ja) * 2018-04-20 2018-09-13 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2019012849A (ja) * 2018-10-03 2019-01-24 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2019012848A (ja) * 2018-10-03 2019-01-24 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2019096911A (ja) * 2019-03-13 2019-06-20 株式会社東京精密 レーザ加工システム
JP2019096910A (ja) * 2019-03-13 2019-06-20 株式会社東京精密 レーザ加工システム
JP2019161232A (ja) * 2019-04-22 2019-09-19 株式会社東京精密 レーザ加工システム
JP2019169719A (ja) * 2019-04-25 2019-10-03 株式会社東京精密 レーザ加工システム
JP2019192937A (ja) * 2019-07-05 2019-10-31 株式会社東京精密 ウェーハ加工システム及びウェーハ加工方法
US10475676B2 (en) 2017-05-23 2019-11-12 Disco Corporation Workpiece processing method
JP2020025142A (ja) * 2019-11-18 2020-02-13 株式会社東京精密 抗折強度の高いチップを得るためのウェーハ加工装置及びウェーハ加工方法
JP2020074454A (ja) * 2020-01-24 2020-05-14 株式会社東京精密 チップ強度の向上を図るレーザ加工システム及びレーザ加工方法
JP2020074414A (ja) * 2019-12-25 2020-05-14 株式会社東京精密 抗折強度の高いチップを得る半導体ウェーハのレーザ加工装置
JP2020080409A (ja) * 2020-01-24 2020-05-28 株式会社東京精密 レーザ加工システム及びレーザ加工方法
JP2020142964A (ja) * 2019-03-07 2020-09-10 株式会社Nsc ガラス基板製造方法
US11145533B2 (en) 2017-10-06 2021-10-12 Disco Corporation Expanding method
JP2022028781A (ja) * 2020-01-24 2022-02-16 株式会社東京精密 亀裂進展装置及び亀裂進展方法
JP2022031714A (ja) * 2020-01-24 2022-02-22 株式会社東京精密 亀裂進展装置及び亀裂進展方法

Families Citing this family (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659300B2 (ja) 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
ES2356817T3 (es) 2002-03-12 2011-04-13 Hamamatsu Photonics K.K. Método de corte de un objeto procesado.
EP1494271B1 (en) 2002-03-12 2011-11-16 Hamamatsu Photonics K.K. Method for dicing substrate
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
WO2004080643A1 (ja) 2003-03-12 2004-09-23 Hamamatsu Photonics K.K. レーザ加工方法
JP4342832B2 (ja) 2003-05-16 2009-10-14 株式会社東芝 半導体装置およびその製造方法
ES2523432T3 (es) * 2003-07-18 2014-11-25 Hamamatsu Photonics K.K. Chip semiconductor cortado
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP4598407B2 (ja) 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4601965B2 (ja) 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
WO2005098916A1 (ja) 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
JP4694795B2 (ja) * 2004-05-18 2011-06-08 株式会社ディスコ ウエーハの分割方法
US7459377B2 (en) * 2004-06-08 2008-12-02 Panasonic Corporation Method for dividing substrate
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
JP2006108532A (ja) * 2004-10-08 2006-04-20 Disco Abrasive Syst Ltd ウエーハの研削方法
JP4762653B2 (ja) * 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP2007134454A (ja) * 2005-11-09 2007-05-31 Toshiba Corp 半導体装置の製造方法
KR100858983B1 (ko) * 2005-11-16 2008-09-17 가부시키가이샤 덴소 반도체 장치 및 반도체 기판 다이싱 방법
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) * 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
JP2007317747A (ja) * 2006-05-23 2007-12-06 Seiko Epson Corp 基板分割方法及び液体噴射ヘッドの製造方法
US7897487B2 (en) * 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
JP5183892B2 (ja) 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
CN101516566B (zh) * 2006-09-19 2012-05-09 浜松光子学株式会社 激光加工方法和激光加工装置
JP4954653B2 (ja) 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
JP5101073B2 (ja) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
WO2008041604A1 (fr) * 2006-10-04 2008-04-10 Hamamatsu Photonics K.K. Procédé de traitement laser
JP4306717B2 (ja) * 2006-11-09 2009-08-05 セイコーエプソン株式会社 シリコンデバイスの製造方法及び液体噴射ヘッドの製造方法
US8530784B2 (en) * 2007-02-01 2013-09-10 Orbotech Ltd. Method and system of machining using a beam of photons
US7888236B2 (en) * 2007-05-14 2011-02-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and fabrication methods thereof
DE112008001389B4 (de) 2007-05-25 2024-01-18 Hamamatsu Photonics K.K. Schneidbearbeitungsverfahren
JP5336054B2 (ja) * 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP2009032970A (ja) * 2007-07-27 2009-02-12 Rohm Co Ltd 窒化物半導体素子の製造方法
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5134928B2 (ja) * 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5054496B2 (ja) * 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5231136B2 (ja) * 2008-08-22 2013-07-10 株式会社ディスコ 光デバイスウエーハの加工方法
JP5692969B2 (ja) 2008-09-01 2015-04-01 浜松ホトニクス株式会社 収差補正方法、この収差補正方法を用いたレーザ加工方法、この収差補正方法を用いたレーザ照射方法、収差補正装置、及び、収差補正プログラム
US20110300692A1 (en) * 2008-10-29 2011-12-08 Oerlikon Solar Ag, Trubbach Method for dividing a semiconductor film formed on a substrate into plural regions by multiple laser beam irradiation
KR101539246B1 (ko) * 2008-11-10 2015-07-24 삼성전자 주식회사 광추출 효율이 향상된 발광 장치의 제조 방법 및 그 방법으로 제조된 발광 장치
JP5254761B2 (ja) 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
JP5241527B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
CN102307699B (zh) 2009-02-09 2015-07-15 浜松光子学株式会社 加工对象物的切断方法
BR122019015544B1 (pt) 2009-02-25 2020-12-22 Nichia Corporation método para fabricar um elemento semicondutor, e, elemento semicondutor
KR101769158B1 (ko) 2009-04-07 2017-08-17 하마마츠 포토닉스 가부시키가이샤 레이저 가공 장치 및 레이저 가공 방법
JP5491761B2 (ja) 2009-04-20 2014-05-14 浜松ホトニクス株式会社 レーザ加工装置
JP5307612B2 (ja) * 2009-04-20 2013-10-02 株式会社ディスコ 光デバイスウエーハの加工方法
JP5340807B2 (ja) * 2009-05-21 2013-11-13 株式会社ディスコ 半導体ウエーハの加工方法
JP5340808B2 (ja) * 2009-05-21 2013-11-13 株式会社ディスコ 半導体ウエーハのレーザ加工方法
JP5340806B2 (ja) * 2009-05-21 2013-11-13 株式会社ディスコ 半導体ウエーハのレーザ加工方法
JP5537081B2 (ja) 2009-07-28 2014-07-02 浜松ホトニクス株式会社 加工対象物切断方法
JP5580826B2 (ja) 2009-08-11 2014-08-27 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP5379604B2 (ja) 2009-08-21 2013-12-25 浜松ホトニクス株式会社 レーザ加工方法及びチップ
JP2011077235A (ja) * 2009-09-30 2011-04-14 Nitto Denko Corp 素子保持用粘着シートおよび素子の製造方法
JP5595716B2 (ja) * 2009-11-18 2014-09-24 株式会社ディスコ 光デバイスウエーハの加工方法
JP2011114018A (ja) * 2009-11-24 2011-06-09 Disco Abrasive Syst Ltd 光デバイスの製造方法
JP5709370B2 (ja) * 2009-11-26 2015-04-30 株式会社ディスコ 切削装置及び切削方法
JP5149888B2 (ja) 2009-12-04 2013-02-20 リンテック株式会社 ステルスダイシング用粘着シート及び半導体装置の製造方法
DE102010009015A1 (de) * 2010-02-24 2011-08-25 OSRAM Opto Semiconductors GmbH, 93055 Verfahren zum Herstellen einer Mehrzahl von optoelektronischen Halbleiterchips
JP5710133B2 (ja) * 2010-03-16 2015-04-30 株式会社ディスコ ワークの分割方法
JP2011200926A (ja) * 2010-03-26 2011-10-13 Mitsuboshi Diamond Industrial Co Ltd レーザ加工方法及び脆性材料基板
JP5840828B2 (ja) * 2010-04-12 2016-01-06 株式会社ディスコ 光デバイスウエーハの加工方法
JP5670647B2 (ja) 2010-05-14 2015-02-18 浜松ホトニクス株式会社 加工対象物切断方法
US8950217B2 (en) 2010-05-14 2015-02-10 Hamamatsu Photonics K.K. Method of cutting object to be processed, method of cutting strengthened glass sheet and method of manufacturing strengthened glass member
JP5549403B2 (ja) * 2010-06-16 2014-07-16 富士通セミコンダクター株式会社 半導体装置の製造方法
EP2599577A4 (en) 2010-07-26 2016-06-15 Hamamatsu Photonics Kk LASER PROCESSING
JP5476476B2 (ja) 2010-07-26 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
JP5702556B2 (ja) 2010-07-26 2015-04-15 浜松ホトニクス株式会社 レーザ加工方法
JP5653110B2 (ja) 2010-07-26 2015-01-14 浜松ホトニクス株式会社 チップの製造方法
JP5509332B2 (ja) 2010-07-26 2014-06-04 浜松ホトニクス株式会社 インターポーザの製造方法
WO2012014717A1 (ja) 2010-07-26 2012-02-02 浜松ホトニクス株式会社 半導体デバイスの製造方法
WO2012014722A1 (ja) 2010-07-26 2012-02-02 浜松ホトニクス株式会社 基板加工方法
KR102000031B1 (ko) 2010-07-26 2019-07-15 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
CN103025478B (zh) 2010-07-26 2015-09-30 浜松光子学株式会社 基板加工方法
JP5574866B2 (ja) 2010-07-26 2014-08-20 浜松ホトニクス株式会社 レーザ加工方法
KR101825238B1 (ko) 2010-07-26 2018-02-02 하마마츠 포토닉스 가부시키가이샤 광 흡수 기판의 제조 방법, 및 그것을 제조하기 위한 성형형의 제조 방법
JP5693074B2 (ja) 2010-07-26 2015-04-01 浜松ホトニクス株式会社 レーザ加工方法
JP5584560B2 (ja) * 2010-08-31 2014-09-03 三星ダイヤモンド工業株式会社 レーザスクライブ方法
US8722516B2 (en) 2010-09-28 2014-05-13 Hamamatsu Photonics K.K. Laser processing method and method for manufacturing light-emitting device
JP2012089709A (ja) * 2010-10-20 2012-05-10 Disco Abrasive Syst Ltd ワークの分割方法
KR101688591B1 (ko) 2010-11-05 2016-12-22 삼성전자주식회사 반도체 칩의 제조 방법
JP2012104644A (ja) * 2010-11-10 2012-05-31 Tokyo Seimitsu Co Ltd ウェーハ破断方法およびウェーハ破断装置
JP5758116B2 (ja) * 2010-12-16 2015-08-05 株式会社ディスコ 分割方法
JP5819605B2 (ja) * 2010-12-17 2015-11-24 株式会社ディスコ 基板の分割方法
JP5480169B2 (ja) * 2011-01-13 2014-04-23 浜松ホトニクス株式会社 レーザ加工方法
JP5503580B2 (ja) * 2011-03-17 2014-05-28 古河電気工業株式会社 脆性ウェハ加工用粘着テープ
US8538576B2 (en) * 2011-04-05 2013-09-17 Asm Technology Singapore Pte. Ltd. Method of configuring a dicing device, and a dicing apparatus for dicing a workpiece
JP5753734B2 (ja) * 2011-05-19 2015-07-22 日本特殊陶業株式会社 配線基板、多数個取り配線基板、およびその製造方法
JP2013008831A (ja) * 2011-06-24 2013-01-10 Disco Abrasive Syst Ltd ウエーハの加工方法
EP2723506B1 (en) * 2011-06-27 2017-02-15 Koninklijke Philips N.V. Ultrasound transducer assembly and method of manufacturing the same
RU2469433C1 (ru) * 2011-07-13 2012-12-10 Юрий Георгиевич Шретер Способ лазерного отделения эпитаксиальной пленки или слоя эпитаксиальной пленки от ростовой подложки эпитаксиальной полупроводниковой структуры (варианты)
JP2013042119A (ja) * 2011-07-21 2013-02-28 Hamamatsu Photonics Kk 発光素子の製造方法
US8575758B2 (en) * 2011-08-04 2013-11-05 Texas Instruments Incorporated Laser-assisted cleaving of a reconstituted wafer for stacked die assemblies
US8569086B2 (en) * 2011-08-24 2013-10-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of dicing semiconductor devices
US20130095581A1 (en) * 2011-10-18 2013-04-18 Taiwan Semiconductor Manufacturing Company, Ltd. Thick window layer led manufacture
CN102515495B (zh) * 2011-12-13 2015-01-21 意力(广州)电子科技有限公司 面板玻璃多模加工方法及采用该方法加工的半成品
KR101909633B1 (ko) 2011-12-30 2018-12-19 삼성전자 주식회사 레이저 스크라이빙을 이용한 발광소자 칩 웨이퍼의 절단 방법
WO2013117667A1 (de) * 2012-02-10 2013-08-15 Arges Gmbh Kontrastierungsverfahren mittels laser sowie vorrichtung zur durchführung eines kontrasierungsverfahrens
KR101883843B1 (ko) * 2012-02-16 2018-08-01 엘지이노텍 주식회사 반도체 소자의 벽개면 형성 방법
US10052848B2 (en) * 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
JP2013219076A (ja) * 2012-04-04 2013-10-24 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法
WO2013150427A1 (en) * 2012-04-05 2013-10-10 Koninklijke Philips N.V. Led thin-film device partial singulation prior to substrate thinning or removal
JP6011002B2 (ja) * 2012-04-23 2016-10-19 セイコーエプソン株式会社 液体噴射ヘッドの製造方法、及び、液体噴射装置の製造方法
TWI581451B (zh) * 2012-05-21 2017-05-01 晶元光電股份有限公司 光電元件及其製造方法
US9266192B2 (en) 2012-05-29 2016-02-23 Electro Scientific Industries, Inc. Method and apparatus for processing workpieces
CN103456847B (zh) * 2012-06-01 2017-12-26 晶元光电股份有限公司 光电元件及其制造方法
JP2014011381A (ja) * 2012-07-02 2014-01-20 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2014013807A (ja) * 2012-07-04 2014-01-23 Disco Abrasive Syst Ltd ウエーハの加工方法
KR20140006484A (ko) * 2012-07-05 2014-01-16 삼성전자주식회사 반도체 발광소자의 제조방법
JP6013858B2 (ja) * 2012-10-01 2016-10-25 株式会社ディスコ ウェーハの加工方法
JP2014082317A (ja) * 2012-10-16 2014-05-08 Disco Abrasive Syst Ltd ウエーハの加工方法
JP6064519B2 (ja) * 2012-10-29 2017-01-25 三星ダイヤモンド工業株式会社 レーザー加工装置、および、パターン付き基板の加工条件設定方法
US20140145294A1 (en) * 2012-11-28 2014-05-29 Nxp B.V. Wafer separation
US8809166B2 (en) * 2012-12-20 2014-08-19 Nxp B.V. High die strength semiconductor wafer processing method and system
JP6062287B2 (ja) * 2013-03-01 2017-01-18 株式会社ディスコ ウエーハの加工方法
JP6113529B2 (ja) 2013-03-05 2017-04-12 株式会社ディスコ ウエーハの加工方法
KR101857336B1 (ko) 2013-04-04 2018-05-11 엘피케이에프 레이저 앤드 일렉트로닉스 악티엔게젤샤프트 기판을 분리시키기 위한 방법 및 장치
CN103400779B (zh) * 2013-07-09 2014-09-03 程君 一种半导体显示面板的制造方法
US10079327B2 (en) 2013-07-22 2018-09-18 Lumileds Llc Method of separating light emitting devices formed on a substrate wafer
US9102007B2 (en) * 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
US9102011B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for non-ablative, photoacoustic compression machining in transparent materials using filamentation by burst ultrafast laser pulses
CN103441103B (zh) * 2013-08-29 2016-06-01 华进半导体封装先导技术研发中心有限公司 晶圆切割方法
CN103441104B (zh) * 2013-08-29 2016-06-22 华进半导体封装先导技术研发中心有限公司 晶圆切割方法
JP6232230B2 (ja) * 2013-08-30 2017-11-15 株式会社ディスコ ウェーハの加工方法
DE102014013107A1 (de) 2013-10-08 2015-04-09 Siltectra Gmbh Neuartiges Waferherstellungsverfahren
US10017410B2 (en) 2013-10-25 2018-07-10 Rofin-Sinar Technologies Llc Method of fabricating a glass magnetic hard drive disk platter using filamentation by burst ultrafast laser pulses
US11053156B2 (en) 2013-11-19 2021-07-06 Rofin-Sinar Technologies Llc Method of closed form release for brittle materials using burst ultrafast laser pulses
US10005152B2 (en) 2013-11-19 2018-06-26 Rofin-Sinar Technologies Llc Method and apparatus for spiral cutting a glass tube using filamentation by burst ultrafast laser pulses
DE102013223637B4 (de) 2013-11-20 2018-02-01 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Behandeln eines lasertransparenten Substrats zum anschließenden Trennen des Substrats
US10144088B2 (en) 2013-12-03 2018-12-04 Rofin-Sinar Technologies Llc Method and apparatus for laser processing of silicon by filamentation of burst ultrafast laser pulses
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9209082B2 (en) 2014-01-03 2015-12-08 International Business Machines Corporation Methods of localized hardening of dicing channel by applying localized heat in wafer kerf
JP6251574B2 (ja) 2014-01-14 2017-12-20 株式会社ディスコ 切削方法
US9938187B2 (en) 2014-02-28 2018-04-10 Rofin-Sinar Technologies Llc Method and apparatus for material processing using multiple filamentation of burst ultrafast laser pulses
JP2015195106A (ja) 2014-03-31 2015-11-05 株式会社ジャパンディスプレイ 有機el表示装置及びその製造方法
JP6324796B2 (ja) * 2014-04-21 2018-05-16 株式会社ディスコ 単結晶基板の加工方法
WO2015178346A1 (ja) 2014-05-23 2015-11-26 リンテック株式会社 保護膜形成用複合シート
WO2015190230A1 (ja) 2014-06-10 2015-12-17 リンテック株式会社 ダイシングシート
WO2016027888A1 (ja) 2014-08-22 2016-02-25 リンテック株式会社 保護膜形成用シートおよび保護膜付き半導体チップの製造方法
US9601437B2 (en) * 2014-09-09 2017-03-21 Nxp B.V. Plasma etching and stealth dicing laser process
DE102014116957A1 (de) 2014-11-19 2016-05-19 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung
WO2016079275A1 (de) 2014-11-19 2016-05-26 Trumpf Laser- Und Systemtechnik Gmbh System zur asymmetrischen optischen strahlformung
DE102014116958B9 (de) 2014-11-19 2017-10-05 Trumpf Laser- Und Systemtechnik Gmbh Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung
JP6399913B2 (ja) 2014-12-04 2018-10-03 株式会社ディスコ ウエーハの生成方法
JP2016115800A (ja) * 2014-12-15 2016-06-23 株式会社ディスコ ウエーハの加工方法
DE102014119581A1 (de) * 2014-12-23 2016-06-23 Wink Stanzwerkzeuge Gmbh & Co. Kg Verfahren zur Herstellung von Stahlblechen für Stanzbleche
JP6399923B2 (ja) * 2014-12-24 2018-10-03 株式会社ディスコ 板状物のレーザー加工方法
CN107148663B (zh) 2014-12-25 2020-11-06 电化株式会社 激光切割用粘合片以及半导体装置的制造方法
JP6391471B2 (ja) * 2015-01-06 2018-09-19 株式会社ディスコ ウエーハの生成方法
US10391588B2 (en) 2015-01-13 2019-08-27 Rofin-Sinar Technologies Llc Method and system for scribing brittle material followed by chemical etching
JP6438791B2 (ja) * 2015-02-06 2018-12-19 リンテック株式会社 半導体装置の製造方法
JP6395632B2 (ja) 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395633B2 (ja) 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6495056B2 (ja) * 2015-03-06 2019-04-03 株式会社ディスコ 単結晶基板の加工方法
JP2016171214A (ja) 2015-03-12 2016-09-23 株式会社ディスコ 単結晶基板の加工方法
US9873170B2 (en) 2015-03-24 2018-01-23 Nichia Corporation Method of manufacturing light emitting element
JP6146455B2 (ja) * 2015-03-24 2017-06-14 日亜化学工業株式会社 発光素子の製造方法
JP6425606B2 (ja) 2015-04-06 2018-11-21 株式会社ディスコ ウエーハの生成方法
JP6494382B2 (ja) 2015-04-06 2019-04-03 株式会社ディスコ ウエーハの生成方法
JP6429715B2 (ja) 2015-04-06 2018-11-28 株式会社ディスコ ウエーハの生成方法
DE102015004603A1 (de) 2015-04-09 2016-10-13 Siltectra Gmbh Kombiniertes Waferherstellungsverfahren mit Laserbehandlung und temperaturinduzierten Spannungen
JP6472333B2 (ja) 2015-06-02 2019-02-20 株式会社ディスコ ウエーハの生成方法
JP2017005158A (ja) 2015-06-12 2017-01-05 株式会社ディスコ ウエーハの裏面研削方法
US10406634B2 (en) 2015-07-01 2019-09-10 Apple Inc. Enhancing strength in laser cutting of ceramic components
JP6482423B2 (ja) 2015-07-16 2019-03-13 株式会社ディスコ ウエーハの生成方法
JP6482425B2 (ja) 2015-07-21 2019-03-13 株式会社ディスコ ウエーハの薄化方法
JP6472347B2 (ja) 2015-07-21 2019-02-20 株式会社ディスコ ウエーハの薄化方法
JP6727948B2 (ja) 2015-07-24 2020-07-22 ソニーセミコンダクタソリューションズ株式会社 撮像素子、製造方法
CN107922259B (zh) * 2015-09-04 2021-05-07 Agc株式会社 玻璃板的制造方法、玻璃板、玻璃物品的制造方法、玻璃物品以及玻璃物品的制造装置
JP2017131949A (ja) * 2016-01-28 2017-08-03 浜松ホトニクス株式会社 レーザ加工装置、及び、レーザ加工方法
JP6644580B2 (ja) * 2016-02-24 2020-02-12 浜松ホトニクス株式会社 レーザ光照射装置及びレーザ光照射方法
JP6608732B2 (ja) * 2016-03-01 2019-11-20 株式会社ディスコ ウエーハの加工方法
JP6666173B2 (ja) * 2016-03-09 2020-03-13 株式会社ディスコ レーザー加工装置
WO2017155104A1 (ja) * 2016-03-10 2017-09-14 浜松ホトニクス株式会社 レーザ光照射装置及びレーザ光照射方法
JP6690983B2 (ja) 2016-04-11 2020-04-28 株式会社ディスコ ウエーハ生成方法及び実第2のオリエンテーションフラット検出方法
JP6633446B2 (ja) * 2016-04-27 2020-01-22 株式会社ディスコ ウエーハの加工方法
EP3467567B1 (en) 2016-05-27 2024-02-07 Hamamatsu Photonics K.K. Production method for fabry-perot interference filter
JP6341959B2 (ja) 2016-05-27 2018-06-13 浜松ホトニクス株式会社 ファブリペロー干渉フィルタの製造方法
DE102016111144B4 (de) * 2016-06-17 2024-03-07 Tdk Electronics Ag Verfahren zur Herstellung einer Vielzahl von Bauelementen und Bauelement
JP6276332B2 (ja) * 2016-07-04 2018-02-07 株式会社東京精密 ウェーハ加工システム
JP6276347B2 (ja) * 2016-08-18 2018-02-07 株式会社東京精密 ウェーハ加工システム
JP6276356B2 (ja) * 2016-09-21 2018-02-07 株式会社東京精密 ウェーハ加工方法
JP6276357B2 (ja) * 2016-09-21 2018-02-07 株式会社東京精密 ウェーハ加工方法
JP6821245B2 (ja) * 2016-10-11 2021-01-27 株式会社ディスコ ウェーハの加工方法
JP6980684B2 (ja) 2016-11-02 2021-12-15 リンテック株式会社 ダイシングシート
JP6986393B2 (ja) * 2016-11-15 2021-12-22 ビアメカニクス株式会社 基板の加工方法
DE102016224978B4 (de) * 2016-12-14 2022-12-29 Disco Corporation Substratbearbeitungsverfahren
DE102017200631B4 (de) * 2017-01-17 2022-12-29 Disco Corporation Verfahren zum Bearbeiten eines Substrats
JP6817822B2 (ja) * 2017-01-18 2021-01-20 株式会社ディスコ 加工方法
JP6276437B2 (ja) * 2017-02-16 2018-02-07 株式会社東京精密 抗折強度の高い薄型チップの形成方法及び形成システム
JP6858587B2 (ja) 2017-02-16 2021-04-14 株式会社ディスコ ウエーハ生成方法
JP6649308B2 (ja) 2017-03-22 2020-02-19 キオクシア株式会社 半導体装置およびその製造方法
JP6957187B2 (ja) * 2017-04-18 2021-11-02 浜松ホトニクス株式会社 チップの製造方法、及び、シリコンチップ
DE102017212858A1 (de) * 2017-07-26 2019-01-31 Disco Corporation Verfahren zum Bearbeiten eines Substrats
JP6980444B2 (ja) * 2017-07-28 2021-12-15 浜松ホトニクス株式会社 積層型素子の製造方法
KR102450776B1 (ko) * 2017-10-27 2022-10-05 삼성전자주식회사 레이저 가공 방법, 기판 다이싱 방법 및 이를 수행하기 위한 기판 가공 장치
JP6925945B2 (ja) * 2017-11-30 2021-08-25 株式会社ディスコ ウエーハの加工方法
CN108147363B (zh) * 2017-12-22 2019-09-20 烟台睿创微纳技术股份有限公司 一种mems晶圆芯片的分离方法
DE102018111227A1 (de) * 2018-05-09 2019-11-14 Osram Opto Semiconductors Gmbh Verfahren zum Durchtrennen eines epitaktisch gewachsenen Halbleiterkörpers und Halbleiterchip
JP6593663B2 (ja) * 2018-06-28 2019-10-23 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JPWO2020004210A1 (ja) * 2018-06-29 2021-07-08 リンテック株式会社 半導体チップの製造方法及び半導体装置の製造方法
JP7154860B2 (ja) 2018-07-31 2022-10-18 株式会社ディスコ ウエーハの加工方法
US11664276B2 (en) * 2018-11-30 2023-05-30 Texas Instruments Incorporated Front side laser-based wafer dicing
TWI681241B (zh) * 2018-12-04 2020-01-01 友達光電股份有限公司 顯示裝置製作方法及使用該方法製作的顯示裝置
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
KR20210020683A (ko) * 2019-08-16 2021-02-24 삼성전자주식회사 반도체 기판 및 이의 절단 방법
JP7358193B2 (ja) 2019-10-28 2023-10-10 株式会社ディスコ ウエーハの加工方法
JP7446672B2 (ja) 2020-02-21 2024-03-11 株式会社ディスコ ウエーハの加工方法
JP7446673B2 (ja) 2020-02-21 2024-03-11 株式会社ディスコ ウエーハの加工方法
JP7460274B2 (ja) 2020-02-21 2024-04-02 株式会社ディスコ ウエーハの加工方法
CN111298853B (zh) * 2020-02-27 2021-08-10 西人马联合测控(泉州)科技有限公司 芯片的切割成型方法以及晶圆
JP7370902B2 (ja) 2020-02-28 2023-10-30 株式会社ディスコ クラック検出方法
JP7401372B2 (ja) 2020-03-26 2023-12-19 株式会社ディスコ ウエーハの加工方法
CN111451646A (zh) * 2020-04-24 2020-07-28 苏州镭明激光科技有限公司 一种晶圆激光隐形切割的加工工艺
JP7442939B2 (ja) 2020-07-02 2024-03-05 株式会社ディスコ ウエーハの検査方法
CN113371989A (zh) * 2021-05-26 2021-09-10 苏州镭明激光科技有限公司 一种半导体芯片的裂片方法及裂片装置
JP2023023328A (ja) 2021-08-05 2023-02-16 株式会社ディスコ 検査装置
CN114815340A (zh) * 2022-05-19 2022-07-29 豪威半导体(上海)有限责任公司 Lcos显示器及其制作方法
US20230411169A1 (en) * 2022-06-15 2023-12-21 Western Digital Technologies, Inc. Semiconductor wafer thinned by horizontal stealth lasing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
EP0863231A1 (en) * 1997-03-04 1998-09-09 Ngk Insulators, Ltd. A process for dicing a preform made of an oxide single crystal, and a process for producing functional devices
JP2002224878A (ja) * 2000-10-26 2002-08-13 Toshiba Corp レーザ加工方法、レーザ加工装置および半導体装置の製造方法

Family Cites Families (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US456233A (en) * 1891-07-21 Lubricator
US3448510A (en) 1966-05-20 1969-06-10 Western Electric Co Methods and apparatus for separating articles initially in a compact array,and composite assemblies so formed
JPS4624989Y1 (ja) 1967-08-31 1971-08-28
US3629545A (en) 1967-12-19 1971-12-21 Western Electric Co Laser substrate parting
GB1246481A (en) 1968-03-29 1971-09-15 Pilkington Brothers Ltd Improvements in or relating to the cutting of glass
US3613974A (en) 1969-03-10 1971-10-19 Saint Gobain Apparatus for cutting glass
JPS4812599Y1 (ja) 1969-03-24 1973-04-05
JPS4812599B1 (ja) 1969-07-09 1973-04-21
US3610871A (en) 1970-02-19 1971-10-05 Western Electric Co Initiation of a controlled fracture
US3626141A (en) 1970-04-30 1971-12-07 Quantronix Corp Laser scribing apparatus
US3824678A (en) 1970-08-31 1974-07-23 North American Rockwell Process for laser scribing beam lead semiconductor wafers
US3790744A (en) * 1971-07-19 1974-02-05 American Can Co Method of forming a line of weakness in a multilayer laminate
US3909582A (en) 1971-07-19 1975-09-30 American Can Co Method of forming a line of weakness in a multilayer laminate
US3790051A (en) * 1971-09-07 1974-02-05 Radiant Energy Systems Semiconductor wafer fracturing technique employing a pressure controlled roller
US3800991A (en) 1972-04-10 1974-04-02 Ppg Industries Inc Method of and an apparatus for cutting glass
SE403280B (sv) 1972-10-12 1978-08-07 Glaverbel Sett och anordning att skera av glas- eller glaskristalliniskt material lengs en bestemd linje
JPS5628630B2 (ja) 1973-05-30 1981-07-03
JPS5628630Y2 (ja) 1974-10-30 1981-07-07
JPS5157283A (en) 1974-11-15 1976-05-19 Nippon Electric Co Handotaikibanno bunkatsuhoho
US3970819A (en) * 1974-11-25 1976-07-20 International Business Machines Corporation Backside laser dicing system
US4046985A (en) 1974-11-25 1977-09-06 International Business Machines Corporation Semiconductor wafer alignment apparatus
US4190759A (en) 1975-08-27 1980-02-26 Hitachi, Ltd. Processing of photomask
US4027137A (en) 1975-09-17 1977-05-31 International Business Machines Corporation Laser drilling nozzle
NL7609815A (nl) 1976-09-03 1978-03-07 Philips Nv Werkwijze voor het vervaardigen van een half- geleiderinrichting en halfgeleiderinrichting vervaardigd met behulp van de werkwijze.
JPS5333050A (en) 1976-09-08 1978-03-28 Hitachi Ltd Production of semiconductor element
US4092518A (en) * 1976-12-07 1978-05-30 Laser Technique S.A. Method of decorating a transparent plastics material article by means of a laser beam
JPS53141573A (en) 1977-05-16 1978-12-09 Toshiba Corp Pellet dividing method of semiconductor wafer
JPS53141673A (en) 1977-05-17 1978-12-09 Seiko Epson Corp Digital alarm watch with remaining time display using analogical pattern
JPS53114347A (en) 1977-12-07 1978-10-05 Toshiba Corp Working method for semiconductor device
JPS54161349U (ja) 1978-04-29 1979-11-12
JPS54161349A (en) 1978-06-10 1979-12-20 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional cross type waveguide passage
US4242152A (en) 1979-05-14 1980-12-30 National Semiconductor Corporation Method for adjusting the focus and power of a trimming laser
JPS5628630A (en) 1979-08-16 1981-03-20 Kawasaki Steel Corp Temperature controlling method of high temperature high pressure reacting cylinder
JPS6041478B2 (ja) 1979-09-10 1985-09-17 富士通株式会社 半導体レ−ザ素子の製造方法
JPS5676522A (en) 1979-11-29 1981-06-24 Toshiba Corp Formation of semiconductor thin film
JPS6043236B2 (ja) 1980-03-12 1985-09-27 松下電器産業株式会社 レ−ザ加工方法
JPS56169347A (en) 1980-05-31 1981-12-26 Toshiba Corp Laser scribing device
US4336439A (en) * 1980-10-02 1982-06-22 Coherent, Inc. Method and apparatus for laser scribing and cutting
US4392476A (en) 1980-12-23 1983-07-12 Lazare Kaplan & Sons, Inc. Method and apparatus for placing identifying indicia on the surface of precious stones including diamonds
DE3110235A1 (de) 1981-03-17 1982-10-21 Trumpf GmbH & Co, 7257 Ditzingen "verfahren und vorrichtung zum brennschneiden mittels eines laserstrahls"
JPS5836939A (ja) 1981-08-26 1983-03-04 Toshiba Corp ガラスウエハの切断方法
JPS5854648A (ja) * 1981-09-28 1983-03-31 Nippon Kogaku Kk <Nikon> 位置合わせ装置
JPS5857767A (ja) 1981-10-01 1983-04-06 Matsushita Electric Ind Co Ltd レ−ザ装置
US4475027A (en) 1981-11-17 1984-10-02 Allied Corporation Optical beam homogenizer
JPS58171783A (ja) 1982-04-02 1983-10-08 Hitachi Ltd 磁気バブルメモリチツプ
JPS58181492A (ja) 1982-04-02 1983-10-24 グレタ−ク・アクチエンゲゼルシヤフト 干渉性のある光ビ−ムの焦点合せの方法および装置
JPS5916344A (ja) 1982-07-19 1984-01-27 Toshiba Corp ウエハのレ−ザスクライブ装置
JPS6054151B2 (ja) 1982-10-22 1985-11-28 株式会社東芝 レ−ザ切断方法
JPS5976687U (ja) 1982-11-17 1984-05-24 プレスコンクリ−ト工業株式会社 プレキヤスト側溝
JPS59141233A (ja) 1983-02-02 1984-08-13 Nec Corp 半導体装置の製造方法
JPS59150691A (ja) 1983-02-15 1984-08-28 Matsushita Electric Ind Co Ltd レ−ザ加工機
JPH0611071B2 (ja) * 1983-09-07 1994-02-09 三洋電機株式会社 化合物半導体基板の分割方法
US4546231A (en) 1983-11-14 1985-10-08 Group Ii Manufacturing Ltd. Creation of a parting zone in a crystal structure
JPS59130438A (ja) 1983-11-28 1984-07-27 Hitachi Ltd 板状物の分離法
US4650619A (en) * 1983-12-29 1987-03-17 Toshiba Ceramics Co., Ltd. Method of machining a ceramic member
JPS60144985A (ja) 1983-12-30 1985-07-31 Fujitsu Ltd 半導体発光素子の製造方法
JPS60167351A (ja) 1984-02-09 1985-08-30 Mitsubishi Electric Corp 混成集積回路装置の製造方法
US4562333A (en) 1984-09-04 1985-12-31 General Electric Company Stress assisted cutting of high temperature embrittled materials
EP0180767B1 (en) 1984-10-11 1990-01-31 Hitachi, Ltd. Optical lens device
JPS6196439A (ja) 1984-10-17 1986-05-15 Toray Ind Inc レンズ欠点検査装置
JPS61112345A (ja) 1984-11-07 1986-05-30 Toshiba Corp 半導体装置の製造方法
JPS61121453A (ja) 1984-11-19 1986-06-09 Matsushita Electric Ind Co Ltd ぜい性薄板のブレイキング・エキスパンド方法
JPS61220339A (ja) 1985-03-26 1986-09-30 Nippon Telegr & Teleph Corp <Ntt> 半導体材料特性の制御方法
JPS61229487A (ja) * 1985-04-03 1986-10-13 Sasaki Glass Kk レ−ザビ−ムによるガラス切断方法
US4689491A (en) 1985-04-19 1987-08-25 Datasonics Corp. Semiconductor wafer scanning system
JPS624341A (ja) * 1985-06-29 1987-01-10 Toshiba Corp 半導体装置の製造方法
KR890004933B1 (ko) * 1985-07-31 1989-11-30 가부시기가이샤 히다찌세이사꾸쇼 터어보분자펌프
JPS6240986A (ja) 1985-08-20 1987-02-21 Fuji Electric Corp Res & Dev Ltd レ−ザ−加工方法
JPH0732281B2 (ja) 1985-10-25 1995-04-10 株式会社日立製作所 劈開装置及び劈開方法
AU584563B2 (en) 1986-01-31 1989-05-25 Ciba-Geigy Ag Laser marking of ceramic materials, glazes, glass ceramics and glasses
JPH0750811B2 (ja) 1986-06-17 1995-05-31 松下電器産業株式会社 半導体レ−ザの劈開方法
JPS6384789A (ja) 1986-09-26 1988-04-15 Semiconductor Energy Lab Co Ltd 光加工方法
FR2605310B1 (fr) 1986-10-16 1992-04-30 Comp Generale Electricite Procede de renforcement de pieces ceramiques par traitement au laser
US4815854A (en) * 1987-01-19 1989-03-28 Nec Corporation Method of alignment between mask and semiconductor wafer
JPH0688149B2 (ja) 1987-03-04 1994-11-09 株式会社半導体エネルギ−研究所 光加工方法
JPS63278692A (ja) 1987-05-07 1988-11-16 D S Sukiyanaa:Kk レ−ザ−加工装置に於ける自動焦点機構
JPS63293939A (ja) 1987-05-27 1988-11-30 Hitachi Ltd 半導体集積回路装置の製造方法
JPS6438209A (en) 1987-08-04 1989-02-08 Nec Corp Preparation of semiconductor device
JPS6438209U (ja) 1987-08-29 1989-03-07
JPH01112130A (ja) 1987-10-26 1989-04-28 Matsushita Electric Ind Co Ltd 赤外光ファイバの評価方法
US5300942A (en) 1987-12-31 1994-04-05 Projectavision Incorporated High efficiency light valve projection system with decreased perception of spaces between pixels and/or hines
JPH01108508U (ja) 1988-01-16 1989-07-21
US4981525A (en) * 1988-02-19 1991-01-01 Sanyo Electric Co., Ltd. Photovoltaic device
JPH0256987A (ja) * 1988-02-23 1990-02-26 Mitsubishi Electric Corp 混成集積回路の実装方法
FR2627409A1 (fr) 1988-02-24 1989-08-25 Lectra Systemes Sa Appareil de coupe laser muni d'un dispositif d'evacuation des fumees
JPH01225509A (ja) 1988-03-04 1989-09-08 Sumitomo Electric Ind Ltd 半導体基板の分割方法
JPH01225510A (ja) 1988-03-04 1989-09-08 Sumitomo Electric Ind Ltd 半導体基板の切断分割方法
JPH01133701U (ja) * 1988-03-07 1989-09-12
JPH0732281Y2 (ja) 1988-03-31 1995-07-26 株式会社東海理化電機製作所 オートマチツクシートベルト装置
US4908493A (en) 1988-05-31 1990-03-13 Midwest Research Institute Method and apparatus for optimizing the efficiency and quality of laser material processing
JP2680039B2 (ja) 1988-06-08 1997-11-19 株式会社日立製作所 光情報記録再生方法及び記録再生装置
US5017755A (en) 1988-10-26 1991-05-21 Kabushiki Kaisha Toshiba Method of repairing liquid crystal display and apparatus using the method
US4982166A (en) 1989-03-01 1991-01-01 Morrow Clifford E Method and apparatus for combining two lower power laser beams to produce a combined higher power beam
JP2507665B2 (ja) * 1989-05-09 1996-06-12 株式会社東芝 電子管用金属円筒部材の製造方法
US5151135A (en) 1989-09-15 1992-09-29 Amoco Corporation Method for cleaning surfaces using UV lasers
JP2810151B2 (ja) 1989-10-07 1998-10-15 ホーヤ株式会社 レーザマーキング方法
JPH03177051A (ja) 1989-12-05 1991-08-01 Kawasaki Steel Corp 半導体ウエハの切断方法およびその装置
JP2765746B2 (ja) 1990-03-27 1998-06-18 科学技術振興事業団 微細修飾・加工方法
JPH0757427B2 (ja) 1989-12-08 1995-06-21 三菱電機株式会社 レーザ切断加工機
JP2891264B2 (ja) 1990-02-09 1999-05-17 ローム 株式会社 半導体装置の製造方法
US5124927A (en) 1990-03-02 1992-06-23 International Business Machines Corp. Latent-image control of lithography tools
US5132505A (en) 1990-03-21 1992-07-21 U.S. Philips Corporation Method of cleaving a brittle plate and device for carrying out the method
JPH03276662A (ja) 1990-03-26 1991-12-06 Nippon Steel Corp ウエハ割断法
JP2578379B2 (ja) 1990-04-27 1997-02-05 株式会社アルファ ロック用電子制御回路
JP2620723B2 (ja) 1990-05-24 1997-06-18 サンケン電気株式会社 半導体装置の製造方法
JPH0437492A (ja) 1990-05-31 1992-02-07 Shunichi Maekawa 脆性材料の切断法
US5023877A (en) 1990-06-29 1991-06-11 The United States Of America As Represented By The Secretary Of The Air Force Miniature, optically pumped narrow line solid state laser
JP2610703B2 (ja) 1990-09-05 1997-05-14 住友電気工業株式会社 半導体素子の製造方法
TW207588B (ja) 1990-09-19 1993-06-11 Hitachi Seisakusyo Kk
JPH04143645A (ja) 1990-10-05 1992-05-18 Nuclear Fuel Ind Ltd 融点測定方法
JPH04143654A (ja) 1990-10-05 1992-05-18 Hitachi Ltd 超音波探触子の走査装置
JPH04167985A (ja) 1990-10-31 1992-06-16 Nagasaki Pref Gov ウェハの割断方法
FR2669427B1 (fr) 1990-11-16 1993-01-22 Thomson Csf Dispositif de controle d'alignement de deux voies optiques et systeme de designation laser equipe d'un tel dispositif de controle.
JPH04188847A (ja) 1990-11-22 1992-07-07 Mitsubishi Electric Corp 粘着テープ
US5211805A (en) 1990-12-19 1993-05-18 Rangaswamy Srinivasan Cutting of organic solids by continuous wave ultraviolet irradiation
JPH0639572A (ja) 1991-01-11 1994-02-15 Souei Tsusho Kk ウェハ割断装置
IL97479A (en) 1991-03-08 1994-01-25 Shafir Aaron Laser beam heating method and apparatus
JPH04300084A (ja) 1991-03-28 1992-10-23 Toshiba Corp レーザ加工機
JP3165192B2 (ja) 1991-03-28 2001-05-14 株式会社東芝 半導体集積回路装置の製造方法
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
JPH04339586A (ja) 1991-05-13 1992-11-26 Mitsubishi Electric Corp レーザ加工装置
JP3213338B2 (ja) * 1991-05-15 2001-10-02 株式会社リコー 薄膜半導体装置の製法
US5230184A (en) * 1991-07-05 1993-07-27 Motorola, Inc. Distributed polishing head
US5635976A (en) 1991-07-17 1997-06-03 Micronic Laser Systems Ab Method and apparatus for the production of a structure by focused laser radiation on a photosensitively coated substrate
JP3352712B2 (ja) 1991-12-18 2002-12-03 浩 天野 窒化ガリウム系半導体素子及びその製造方法
SG52223A1 (en) * 1992-01-08 1998-09-28 Murata Manufacturing Co Component supply method
JP2627696B2 (ja) 1992-01-17 1997-07-09 コマツ電子金属株式会社 Cz法における融液レベル制御装置および制御方法
RU2024441C1 (ru) * 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Способ резки неметаллических материалов
US5254149A (en) 1992-04-06 1993-10-19 Ford Motor Company Process for determining the quality of temper of a glass sheet using a laser beam
JP3101421B2 (ja) 1992-05-29 2000-10-23 富士通株式会社 整形金属パターンの製造方法
JP2924462B2 (ja) 1992-06-02 1999-07-26 富士ゼロックス株式会社 文書処理装置
JP3088193B2 (ja) * 1992-06-05 2000-09-18 三菱電機株式会社 Loc構造を有する半導体装置の製造方法並びにこれに使用するリードフレーム
US5812261A (en) 1992-07-08 1998-09-22 Active Impulse Systems, Inc. Method and device for measuring the thickness of opaque and transparent films
GB9216643D0 (en) * 1992-08-05 1992-09-16 Univ Loughborough Automatic operations on materials
US5265114C1 (en) 1992-09-10 2001-08-21 Electro Scient Ind Inc System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device
AU5872994A (en) 1992-12-18 1994-07-19 Firebird Traders Ltd. Process and apparatus for etching an image within a solid article
JP3255741B2 (ja) 1992-12-22 2002-02-12 リンテック株式会社 ウェハダイシング方法、およびこの方法に用いる放射線照射装置ならびにウェハ貼着用粘着シート
JP2720744B2 (ja) 1992-12-28 1998-03-04 三菱電機株式会社 レーザ加工機
US5382770A (en) * 1993-01-14 1995-01-17 Reliant Laser Corporation Mirror-based laser-processing system with visual tracking and position control of a moving laser spot
US5359176A (en) 1993-04-02 1994-10-25 International Business Machines Corporation Optics and environmental protection device for laser processing applications
US5321717A (en) 1993-04-05 1994-06-14 Yoshifumi Adachi Diode laser having minimal beam diameter and optics
US5637244A (en) * 1993-05-13 1997-06-10 Podarok International, Inc. Method and apparatus for creating an image by a pulsed laser beam inside a transparent material
EP0656241B1 (en) * 1993-06-04 1998-12-23 Seiko Epson Corporation Apparatus and method for laser machining
JPH0775955A (ja) 1993-06-17 1995-03-20 Disco Abrasive Syst Ltd 精密切削装置
US5580473A (en) 1993-06-21 1996-12-03 Sanyo Electric Co. Ltd. Methods of removing semiconductor film with energy beams
JPH0729855A (ja) 1993-07-12 1995-01-31 Sumitomo Electric Ind Ltd 半導体ウエハのエキスパンデイング方法
US5699145A (en) 1993-07-14 1997-12-16 Nikon Corporation Scanning type exposure apparatus
JPH0732281A (ja) 1993-07-19 1995-02-03 Toyoda Mach Works Ltd ロボット制御装置
JP2616247B2 (ja) 1993-07-24 1997-06-04 日本電気株式会社 半導体装置の製造方法
JPH0740336A (ja) 1993-07-30 1995-02-10 Sumitomo Electric Ind Ltd ダイヤモンドの加工方法
GB2281129B (en) * 1993-08-19 1997-04-09 United Distillers Plc Method of marking a body of glass
JPH0776167A (ja) 1993-09-08 1995-03-20 Miyachi Technos Kk レーザマーキング方法
US5376793A (en) 1993-09-15 1994-12-27 Stress Photonics, Inc. Forced-diffusion thermal imaging apparatus and method
DE4331262C2 (de) 1993-09-15 1996-05-15 Wissner Rolf Lasermaschine zur Bearbeitung eines Werkstücks und Verfahren zur Steuerung einer Lasermaschine
US5424548A (en) 1993-09-21 1995-06-13 International Business Machines Corp. Pattern specific calibration for E-beam lithography
US5393482A (en) 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
JP2760288B2 (ja) 1993-12-28 1998-05-28 日本電気株式会社 ビアホール形成法及びフィルム切断法
DE4404141A1 (de) * 1994-02-09 1995-08-10 Fraunhofer Ges Forschung Vorrichtung und Verfahren zur Laserstrahlformung, insbesondere bei der Laserstrahl-Oberflächenbearbeitung
US5631734A (en) 1994-02-10 1997-05-20 Affymetrix, Inc. Method and apparatus for detection of fluorescently labeled materials
US5521999A (en) 1994-03-17 1996-05-28 Eastman Kodak Company Optical system for a laser printer
JPH07263382A (ja) 1994-03-24 1995-10-13 Kawasaki Steel Corp ウェーハ固定用テープ
US5656186A (en) * 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
WO1995028175A1 (en) 1994-04-19 1995-10-26 Thomas Jefferson University Viral ribonucleocapsid as an immunological enhancer
JP3800616B2 (ja) * 1994-06-27 2006-07-26 株式会社ニコン 目標物移動装置、位置決め装置及び可動ステージ装置
JPH0866790A (ja) 1994-08-30 1996-03-12 Sony Corp レーザ加工装置
US5504772A (en) 1994-09-09 1996-04-02 Deacon Research Laser with electrically-controlled grating reflector
US5776220A (en) * 1994-09-19 1998-07-07 Corning Incorporated Method and apparatus for breaking brittle materials
US5622540A (en) * 1994-09-19 1997-04-22 Corning Incorporated Method for breaking a glass sheet
US5774222A (en) 1994-10-07 1998-06-30 Hitachi, Ltd. Manufacturing method of semiconductor substrative and method and apparatus for inspecting defects of patterns on an object to be inspected
JP3374880B2 (ja) 1994-10-26 2003-02-10 三菱電機株式会社 半導体装置の製造方法、及び半導体装置
JP3535241B2 (ja) 1994-11-18 2004-06-07 株式会社半導体エネルギー研究所 半導体デバイス及びその作製方法
JPH08148692A (ja) 1994-11-24 1996-06-07 Sony Corp 薄膜半導体装置の製造方法
US5543365A (en) 1994-12-02 1996-08-06 Texas Instruments Incorporated Wafer scribe technique using laser by forming polysilicon
JP2971003B2 (ja) 1994-12-22 1999-11-02 株式会社アドバンテスト レーザリペア装置のレンズの汚れを検出する装置
JPH08197271A (ja) 1995-01-27 1996-08-06 Ricoh Co Ltd 脆性材料の割断方法及び脆性材料の割断装置
US5841543A (en) 1995-03-09 1998-11-24 Texas Instruments Incorporated Method and apparatus for verifying the presence of a material applied to a substrate
JPH08264488A (ja) 1995-03-22 1996-10-11 Nec Corp ウェハスクライブ装置及び方法
JP3509985B2 (ja) 1995-03-24 2004-03-22 三菱電機株式会社 半導体デバイスのチップ分離方法
US5786560A (en) * 1995-03-31 1998-07-28 Panasonic Technologies, Inc. 3-dimensional micromachining with femtosecond laser pulses
KR0174773B1 (ko) 1995-03-31 1999-04-01 모리시다 요이치 반도체장치의 검사방법
JP2737744B2 (ja) 1995-04-26 1998-04-08 日本電気株式会社 ウエハプロービング装置
US5870133A (en) 1995-04-28 1999-02-09 Minolta Co., Ltd. Laser scanning device and light source thereof having temperature correction capability
US5663980A (en) 1995-05-22 1997-09-02 Adachi; Yoshi Semiconductor laser device having changeable wavelength, polarization mode, and beam shape image
JP3138613B2 (ja) 1995-05-24 2001-02-26 三菱電機株式会社 レーザ加工装置
JPH09150286A (ja) 1995-06-26 1997-06-10 Corning Inc 脆弱性材料切断方法および装置
KR100272785B1 (ko) 1995-06-27 2000-11-15 우찌가사끼 이사오 인쇄배선판용프리프래그,수지니스,수지조성물및상기물질을사용하여제조된인쇄배선판용적층판
JPH0917756A (ja) 1995-06-28 1997-01-17 Toshiba Corp 半導体用保護テープおよびその使用方法
KR970008386A (ko) 1995-07-07 1997-02-24 하라 세이지 기판의 할단(割斷)방법 및 그 할단장치
JPH0929472A (ja) 1995-07-14 1997-02-04 Hitachi Ltd 割断方法、割断装置及びチップ材料
JP2809303B2 (ja) 1995-07-28 1998-10-08 関西日本電気株式会社 ウェーハ割断方法
JPH09107168A (ja) 1995-08-07 1997-04-22 Mitsubishi Electric Corp 配線基板のレーザ加工方法、配線基板のレーザ加工装置及び配線基板加工用の炭酸ガスレーザ発振器
JP3923526B2 (ja) 1995-08-31 2007-06-06 コーニング インコーポレイテッド 壊れやすい材料の分断方法および装置
US6057525A (en) * 1995-09-05 2000-05-02 United States Enrichment Corporation Method and apparatus for precision laser micromachining
US5641416A (en) * 1995-10-25 1997-06-24 Micron Display Technology, Inc. Method for particulate-free energy beam cutting of a wafer of die assemblies
WO1997016387A1 (fr) 1995-11-03 1997-05-09 Anatoly Valentinovich Vasilev Procede de formation par laser d'une image dans des objets transparents
US5747769A (en) 1995-11-13 1998-05-05 General Electric Company Method of laser forming a slot
KR0171947B1 (ko) 1995-12-08 1999-03-20 김주용 반도체소자 제조를 위한 노광 방법 및 그를 이용한 노광장치
US5932119A (en) 1996-01-05 1999-08-03 Lazare Kaplan International, Inc. Laser marking system
MY118036A (en) * 1996-01-22 2004-08-30 Lintec Corp Wafer dicing/bonding sheet and process for producing semiconductor device
JP3592018B2 (ja) 1996-01-22 2004-11-24 日本テキサス・インスツルメンツ株式会社 ポリイミド接着シートおよびポリイミド用工程フィルム
JP3292021B2 (ja) 1996-01-30 2002-06-17 三菱電機株式会社 レーザ加工方法およびレーザ加工装置
JPH09213662A (ja) * 1996-01-31 1997-08-15 Toshiba Corp ウェーハの分割方法及び半導体装置の製造方法
JPH09216085A (ja) 1996-02-07 1997-08-19 Canon Inc 基板の切断方法及び切断装置
JP3027768U (ja) 1996-02-08 1996-08-13 株式会社アールイシダ 健康スリッパ
KR100479962B1 (ko) 1996-02-09 2005-05-16 어드밴스드 레이저 세퍼래이션 인터내셔널 비.브이. 반도체소자분리방법
US5925024A (en) 1996-02-16 1999-07-20 Joffe; Michael A Suction device with jet boost
JP2001500628A (ja) 1996-02-28 2001-01-16 ケニス シー ジョンソン マイクロリトグラフィ用マイクロレンズスキャナ及び広フィールド共焦顕微鏡
JPH09306839A (ja) 1996-03-12 1997-11-28 Sharp Corp 半導体の溶融結晶化方法及び不純物活性化方法
JP3660741B2 (ja) 1996-03-22 2005-06-15 株式会社日立製作所 電子回路装置の製造方法
JPH11217237A (ja) 1996-03-25 1999-08-10 Nippon Sheet Glass Co Ltd レーザ加工用ガラス基材及びレーザ加工方法
DE69722673T2 (de) 1996-03-25 2004-02-05 Nippon Sheet Glass Co., Ltd. Laserherstellungsverfahren für Glassubstrate und so hergestellte Mikrolinsenmatrizen
US5880777A (en) 1996-04-15 1999-03-09 Massachusetts Institute Of Technology Low-light-level imaging and image processing
US5807380A (en) 1996-04-26 1998-09-15 Dishler; Jon G. Optical guide and method for use in corrective laser eye surgery
JPH09298339A (ja) 1996-04-30 1997-11-18 Rohm Co Ltd 半導体レーザの製法
US6087617A (en) 1996-05-07 2000-07-11 Troitski; Igor Nikolaevich Computer graphics system for generating an image reproducible inside optically transparent material
JP3259014B2 (ja) 1996-07-24 2002-02-18 ミヤチテクノス株式会社 スキャニング式レーザマーキング方法及び装置
US5736709A (en) 1996-08-12 1998-04-07 Armco Inc. Descaling metal with a laser having a very short pulse width and high average power
JPH1071483A (ja) 1996-08-29 1998-03-17 Hitachi Constr Mach Co Ltd 脆性材料の割断方法
US6172757B1 (en) 1996-09-25 2001-01-09 Vanguard International Semiconductor Corporation Lever sensor for stepper field-by-field focus and leveling system
DK109197A (da) * 1996-09-30 1998-03-31 Force Instituttet Fremgangsmåde til bearbejdning af et materiale ved hjælp af en laserstråle
JPH10128567A (ja) * 1996-10-30 1998-05-19 Nec Kansai Ltd レーザ割断方法
DE19646332C2 (de) 1996-11-09 2000-08-10 Fraunhofer Ges Forschung Verfahren zur Veränderung des optischen Verhaltens an der Oberfläche und/oder innerhalb eines Werkstückes mittels eines Lasers
JPH10163780A (ja) 1996-12-04 1998-06-19 Ngk Insulators Ltd 圧電単結晶からなる振動子の製造方法
JP3468676B2 (ja) 1996-12-19 2003-11-17 リンテック株式会社 チップ体の製造方法
US5867324A (en) 1997-01-28 1999-02-02 Lightwave Electronics Corp. Side-pumped laser with shaped laser beam
JP3421523B2 (ja) 1997-01-30 2003-06-30 三洋電機株式会社 ウエハーの分割方法
US6312800B1 (en) * 1997-02-10 2001-11-06 Lintec Corporation Pressure sensitive adhesive sheet for producing a chip
US6529362B2 (en) 1997-03-06 2003-03-04 Applied Materials Inc. Monocrystalline ceramic electrostatic chuck
US5976392A (en) 1997-03-07 1999-11-02 Yageo Corporation Method for fabrication of thin film resistor
US6228114B1 (en) 1997-04-01 2001-05-08 Joseph Y. Lee Adjustable corneal ring
US6525716B1 (en) 1997-04-01 2003-02-25 Casio Computer Co., Ltd. Handwritten data input device having coordinate detection tablet
US6320641B1 (en) 1997-04-01 2001-11-20 Agris-Schoen Vision Systems, Inc. High-precision-resolution image acquisition apparatus and method
US6277067B1 (en) 1997-04-04 2001-08-21 Kerry L. Blair Method and portable colposcope useful in cervical cancer detection
US6467953B1 (en) * 1999-03-30 2002-10-22 Medical Solutions, Inc. Method and apparatus for monitoring temperature of intravenously delivered fluids and other medical items
JP3230572B2 (ja) 1997-05-19 2001-11-19 日亜化学工業株式会社 窒化物系化合物半導体素子の製造方法及び半導体発光素子
US6156030A (en) 1997-06-04 2000-12-05 Y-Beam Technologies, Inc. Method and apparatus for high precision variable rate material removal and modification
BE1011208A4 (fr) 1997-06-11 1999-06-01 Cuvelier Georges Procede de decalottage de pieces en verre.
JPH1110376A (ja) 1997-06-25 1999-01-19 Souei Tsusho Kk 割断加工方法
US6327090B1 (en) 1997-07-03 2001-12-04 Levelite Technology, Inc. Multiple laser beam generation
DE19728766C1 (de) * 1997-07-07 1998-12-17 Schott Rohrglas Gmbh Verwendung eines Verfahrens zur Herstellung einer Sollbruchstelle bei einem Glaskörper
JPH1128586A (ja) 1997-07-08 1999-02-02 Keyence Corp レーザマーキング装置
US6294439B1 (en) * 1997-07-23 2001-09-25 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP3707211B2 (ja) 1997-07-24 2005-10-19 富士電機ホールディングス株式会社 Iii族窒化物半導体薄膜の製造方法
JPH1167700A (ja) 1997-08-22 1999-03-09 Hamamatsu Photonics Kk 半導体ウェハの製造方法
JP3498895B2 (ja) 1997-09-25 2004-02-23 シャープ株式会社 基板の切断方法および表示パネルの製造方法
JP3208730B2 (ja) 1998-01-16 2001-09-17 住友重機械工業株式会社 光透過性材料のマーキング方法
US6392683B1 (en) 1997-09-26 2002-05-21 Sumitomo Heavy Industries, Ltd. Method for making marks in a transparent material by using a laser
JP3231708B2 (ja) 1997-09-26 2001-11-26 住友重機械工業株式会社 透明材料のマーキング方法
JP3292294B2 (ja) 1997-11-07 2002-06-17 住友重機械工業株式会社 レーザを用いたマーキング方法及びマーキング装置
JPH11121517A (ja) 1997-10-09 1999-04-30 Hitachi Ltd 半導体素子搭載装置および搭載方法
JPH11162889A (ja) 1997-11-25 1999-06-18 Sony Corp ウエハのブレーキング・延伸装置及び方法
JPH11156564A (ja) 1997-11-28 1999-06-15 Toshiba Ceramics Co Ltd 耐熱性透明体およびその製造方法
JP3076290B2 (ja) 1997-11-28 2000-08-14 山形日本電気株式会社 半導体チップのピックアップ装置およびその方法
JP3449201B2 (ja) 1997-11-28 2003-09-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
JP3532100B2 (ja) 1997-12-03 2004-05-31 日本碍子株式会社 レーザ割断方法
JPH11177176A (ja) 1997-12-10 1999-07-02 Hitachi Cable Ltd 半導体レーザ
SG71878A1 (en) 1997-12-11 2000-04-18 Sumitomo Chemical Co Propylene-based polymer composition and foamed article thereof
JP3604550B2 (ja) * 1997-12-16 2004-12-22 日亜化学工業株式会社 窒化物半導体素子の製造方法
US6005219A (en) 1997-12-18 1999-12-21 General Electric Company Ripstop laser shock peening
JPH11204551A (ja) 1998-01-19 1999-07-30 Sony Corp 半導体装置の製造方法
JP3352934B2 (ja) 1998-01-21 2002-12-03 理化学研究所 高強度超短パルスレーザー加工方法およびその装置
JP3455102B2 (ja) 1998-02-06 2003-10-14 三菱電機株式会社 半導体ウエハチップ分離方法
JP4132172B2 (ja) 1998-02-06 2008-08-13 浜松ホトニクス株式会社 パルスレーザ加工装置
US6641662B2 (en) * 1998-02-17 2003-11-04 The Trustees Of Columbia University In The City Of New York Method for fabricating ultra thin single-crystal metal oxide wave retarder plates and waveguide polarization mode converter using the same
JPH11240730A (ja) 1998-02-27 1999-09-07 Nec Kansai Ltd 脆性材料の割断方法
US6183092B1 (en) 1998-05-01 2001-02-06 Diane Troyer Laser projection apparatus with liquid-crystal light valves and scanning reading beam
US6057180A (en) 1998-06-05 2000-05-02 Electro Scientific Industries, Inc. Method of severing electrically conductive links with ultraviolet laser output
JP3152206B2 (ja) 1998-06-19 2001-04-03 日本電気株式会社 オートフォーカス装置及びオートフォーカス方法
JP2000015467A (ja) 1998-07-01 2000-01-18 Shin Meiwa Ind Co Ltd 光による被加工材の加工方法および加工装置
US6181728B1 (en) * 1998-07-02 2001-01-30 General Scanning, Inc. Controlling laser polarization
JP2000183358A (ja) 1998-07-17 2000-06-30 Sony Corp 薄膜半導体装置の製造方法
JP3784543B2 (ja) 1998-07-29 2006-06-14 Ntn株式会社 パターン修正装置および修正方法
JP3156776B2 (ja) * 1998-08-03 2001-04-16 日本電気株式会社 レーザ照射方法
JP3410371B2 (ja) 1998-08-18 2003-05-26 リンテック株式会社 ウエハ裏面研削時の表面保護シートおよびその利用方法
TW419867B (en) 1998-08-26 2001-01-21 Samsung Electronics Co Ltd Laser cutting apparatus and method
US6402004B1 (en) * 1998-09-16 2002-06-11 Hoya Corporation Cutting method for plate glass mother material
JP3605651B2 (ja) 1998-09-30 2004-12-22 日立化成工業株式会社 半導体装置の製造方法
JP2000124537A (ja) 1998-10-21 2000-04-28 Sharp Corp 半導体レーザチップの製造方法とその方法に用いられる製造装置
US6413839B1 (en) 1998-10-23 2002-07-02 Emcore Corporation Semiconductor device separation using a patterned laser projection
JP2000133859A (ja) 1998-10-27 2000-05-12 Sumitomo Heavy Ind Ltd レーザを用いたマーキング方法及びマーキング装置
US6172329B1 (en) * 1998-11-23 2001-01-09 Minnesota Mining And Manufacturing Company Ablated laser feature shape reproduction control
JP3178524B2 (ja) 1998-11-26 2001-06-18 住友重機械工業株式会社 レーザマーキング方法と装置及びマーキングされた部材
KR100338983B1 (ko) 1998-11-30 2002-07-18 윤종용 웨이퍼분리도구및이를이용하는웨이퍼분리방법
US6211488B1 (en) * 1998-12-01 2001-04-03 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
US6252197B1 (en) * 1998-12-01 2001-06-26 Accudyne Display And Semiconductor Systems, Inc. Method and apparatus for separating non-metallic substrates utilizing a supplemental mechanical force applicator
US6259058B1 (en) * 1998-12-01 2001-07-10 Accudyne Display And Semiconductor Systems, Inc. Apparatus for separating non-metallic substrates
US6420678B1 (en) * 1998-12-01 2002-07-16 Brian L. Hoekstra Method for separating non-metallic substrates
IL127388A0 (en) 1998-12-03 1999-10-28 Universal Crystal Ltd Material processing applications of lasers using optical breakdown
JP2000195828A (ja) 1998-12-25 2000-07-14 Denso Corp ウエハの切断分離方法およびウエハの切断分離装置
US6127005A (en) 1999-01-08 2000-10-03 Rutgers University Method of thermally glazing an article
JP2000219528A (ja) 1999-01-18 2000-08-08 Samsung Sdi Co Ltd ガラス基板の切断方法及びその装置
EP1022778A1 (en) * 1999-01-22 2000-07-26 Kabushiki Kaisha Toshiba Method of dividing a wafer and method of manufacturing a semiconductor device
JP3569147B2 (ja) 1999-01-26 2004-09-22 松下電器産業株式会社 基板の切断方法
JP2000210785A (ja) 1999-01-26 2000-08-02 Mitsubishi Heavy Ind Ltd 複数ビ―ムレ―ザ加工装置
TW476141B (en) * 1999-02-03 2002-02-11 Toshiba Corp Method of dicing a wafer and method of manufacturing a semiconductor device
JP4040819B2 (ja) 1999-02-03 2008-01-30 株式会社東芝 ウェーハの分割方法及び半導体装置の製造方法
JP2000237885A (ja) 1999-02-19 2000-09-05 Koike Sanso Kogyo Co Ltd レーザー切断方法
JP4119028B2 (ja) 1999-02-19 2008-07-16 小池酸素工業株式会社 レーザーピアシング方法
US6208020B1 (en) 1999-02-24 2001-03-27 Matsushita Electronics Corporation Leadframe for use in manufacturing a resin-molded semiconductor device
JP3426154B2 (ja) 1999-02-26 2003-07-14 科学技術振興事業団 グレーティング付き光導波路の製造方法
JP2000247671A (ja) 1999-03-04 2000-09-12 Takatori Corp ガラスの分断方法
TW445545B (en) 1999-03-10 2001-07-11 Mitsubishi Electric Corp Laser heat treatment method, laser heat treatment apparatus and semiconductor device
JP3648399B2 (ja) 1999-03-18 2005-05-18 株式会社東芝 半導体装置
JP2000278306A (ja) 1999-03-26 2000-10-06 Mitsubishi Electric Corp Atmリングネットワーク
US6285002B1 (en) 1999-05-10 2001-09-04 Bryan Kok Ann Ngoi Three dimensional micro machining with a modulated ultra-short laser pulse
JP2000323441A (ja) 1999-05-10 2000-11-24 Hitachi Cable Ltd セラミックス基板上に形成した光導波回路チップの切断方法
US6555781B2 (en) 1999-05-10 2003-04-29 Nanyang Technological University Ultrashort pulsed laser micromachining/submicromachining using an acoustooptic scanning device with dispersion compensation
JP3555500B2 (ja) 1999-05-21 2004-08-18 豊田合成株式会社 Iii族窒化物半導体及びその製造方法
US6420245B1 (en) 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
US6562698B2 (en) * 1999-06-08 2003-05-13 Kulicke & Soffa Investments, Inc. Dual laser cutting of wafers
JP2000349107A (ja) 1999-06-09 2000-12-15 Nitto Denko Corp 半導体封止チップモジュールの製造方法及びその固定シート
US6344402B1 (en) * 1999-07-28 2002-02-05 Disco Corporation Method of dicing workpiece
TW404871B (en) 1999-08-02 2000-09-11 Lg Electronics Inc Device and method for machining transparent medium by laser
JP2001047264A (ja) 1999-08-04 2001-02-20 Seiko Epson Corp 電気光学装置およびその製造方法ならびに電子機器
KR100578309B1 (ko) 1999-08-13 2006-05-11 삼성전자주식회사 레이저 커팅 장치 및 이를 이용한 유리 기판 커팅 방법
JP2001064029A (ja) 1999-08-27 2001-03-13 Toyo Commun Equip Co Ltd 多層ガラス基板及び、その切断方法
JP4493127B2 (ja) 1999-09-10 2010-06-30 シャープ株式会社 窒化物半導体チップの製造方法
US6229114B1 (en) * 1999-09-30 2001-05-08 Xerox Corporation Precision laser cutting of adhesive members
JP3932743B2 (ja) 1999-11-08 2007-06-20 株式会社デンソー 圧接型半導体装置の製造方法
JP4180206B2 (ja) 1999-11-12 2008-11-12 リンテック株式会社 半導体装置の製造方法
AU1790001A (en) * 1999-11-24 2001-06-04 Applied Photonics, Inc. Method and apparatus for separating non-metallic materials
US8217304B2 (en) 2001-03-29 2012-07-10 Gsi Group Corporation Methods and systems for thermal-based laser processing a multi-material device
JP5408829B2 (ja) 1999-12-28 2014-02-05 ゲットナー・ファンデーション・エルエルシー アクティブマトリックス基板の製造方法
US6612035B2 (en) 2000-01-05 2003-09-02 Patrick H. Brown Drywall cutting tool
JP2001196282A (ja) 2000-01-13 2001-07-19 Hitachi Ltd 半導体装置及びその製造方法
JP2001198056A (ja) 2000-01-20 2001-07-24 Sanyo Electric Co Ltd 電気掃除機
JP2001250798A (ja) 2000-03-06 2001-09-14 Sony Corp ケガキ線で材料を分割する方法及び装置
DE10015702A1 (de) 2000-03-29 2001-10-18 Vitro Laser Gmbh Verfahren zum Einbringen wenigstens einer Innengravur in einen flachen Körper und Vorrichtung zum Durchführen des Verfahrens
TW504425B (en) * 2000-03-30 2002-10-01 Electro Scient Ind Inc Laser system and method for single pass micromachining of multilayer workpieces
JP2001284292A (ja) * 2000-03-31 2001-10-12 Toyoda Gosei Co Ltd 半導体ウエハーのチップ分割方法
CN100337319C (zh) 2000-04-14 2007-09-12 S.O.I.Tec绝缘体上硅技术公司 在基体或坯料元件特别是由半导体材料制成的基体或坯料元件中切制出至少一个薄层的方法
US6333486B1 (en) 2000-04-25 2001-12-25 Igor Troitski Method and laser system for creation of laser-induced damages to produce high quality images
AU2001261402A1 (en) * 2000-05-11 2001-11-20 Ptg Precision Technology Center Limited Llc System for cutting brittle materials
JP4697823B2 (ja) 2000-05-16 2011-06-08 株式会社ディスコ 脆性基板の分割方法
TW443581U (en) 2000-05-20 2001-06-23 Chipmos Technologies Inc Wafer-sized semiconductor package structure
JP2001339638A (ja) 2000-05-26 2001-12-07 Hamamatsu Photonics Kk ストリークカメラ装置
JP2001345252A (ja) 2000-05-30 2001-12-14 Hyper Photon Systens Inc レーザ切断機
JP2001354439A (ja) 2000-06-12 2001-12-25 Matsushita Electric Ind Co Ltd ガラス基板の加工方法および高周波回路の製作方法
JP3650000B2 (ja) 2000-07-04 2005-05-18 三洋電機株式会社 窒化物系半導体レーザ素子および窒化物半導体レーザ装置の製造方法
US6399914B1 (en) 2000-07-10 2002-06-04 Igor Troitski Method and laser system for production of high quality laser-induced damage images by using material processing made before and during image creation
JP3906653B2 (ja) * 2000-07-18 2007-04-18 ソニー株式会社 画像表示装置及びその製造方法
US6376797B1 (en) 2000-07-26 2002-04-23 Ase Americas, Inc. Laser cutting of semiconductor materials
JP2002047025A (ja) 2000-07-31 2002-02-12 Seiko Epson Corp 基板の切断方法、およびこれを用いた電気光学装置の製造方法とこれに用いるレーザ切断装置および電気光学装置と電子機器
JP2002050589A (ja) 2000-08-03 2002-02-15 Sony Corp 半導体ウェーハの延伸分離方法及び装置
US6726631B2 (en) * 2000-08-08 2004-04-27 Ge Parallel Designs, Inc. Frequency and amplitude apodization of transducers
US6325855B1 (en) 2000-08-09 2001-12-04 Itt Manufacturing Enterprises, Inc. Gas collector for epitaxial reactors
JP3479833B2 (ja) 2000-08-22 2003-12-15 日本電気株式会社 レーザ修正方法および装置
JP4762458B2 (ja) 2000-09-13 2011-08-31 浜松ホトニクス株式会社 レーザ加工装置
JP3751970B2 (ja) 2000-09-13 2006-03-08 浜松ホトニクス株式会社 レーザ加工装置
JP3722731B2 (ja) 2000-09-13 2005-11-30 浜松ホトニクス株式会社 レーザ加工方法
JP3626442B2 (ja) 2000-09-13 2005-03-09 浜松ホトニクス株式会社 レーザ加工方法
JP4659300B2 (ja) * 2000-09-13 2011-03-30 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップの製造方法
JP3761565B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP4837320B2 (ja) 2000-09-13 2011-12-14 浜松ホトニクス株式会社 加工対象物切断方法
JP2003039184A (ja) 2000-09-13 2003-02-12 Hamamatsu Photonics Kk レーザ加工方法
JP3761567B2 (ja) 2000-09-13 2006-03-29 浜松ホトニクス株式会社 レーザ加工方法
JP2003001458A (ja) 2000-09-13 2003-01-08 Hamamatsu Photonics Kk レーザ加工方法
JP2002192371A (ja) 2000-09-13 2002-07-10 Hamamatsu Photonics Kk レーザ加工方法及びレーザ加工装置
JP4964376B2 (ja) 2000-09-13 2012-06-27 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
JP3408805B2 (ja) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 切断起点領域形成方法及び加工対象物切断方法
US20020046001A1 (en) 2000-10-16 2002-04-18 Applied Materials, Inc. Method, computer readable medium and apparatus for accessing a defect knowledge library of a defect source identification system
US6720522B2 (en) 2000-10-26 2004-04-13 Kabushiki Kaisha Toshiba Apparatus and method for laser beam machining, and method for manufacturing semiconductor devices using laser beam machining
JP3332910B2 (ja) 2000-11-15 2002-10-07 エヌイーシーマシナリー株式会社 ウェハシートのエキスパンダ
JP2002158276A (ja) 2000-11-20 2002-05-31 Hitachi Chem Co Ltd ウエハ貼着用粘着シートおよび半導体装置
US6875379B2 (en) * 2000-12-29 2005-04-05 Amkor Technology, Inc. Tool and method for forming an integrated optical circuit
US6545339B2 (en) 2001-01-12 2003-04-08 International Business Machines Corporation Semiconductor device incorporating elements formed of refractory metal-silicon-nitrogen and method for fabrication
JP2002226796A (ja) 2001-01-29 2002-08-14 Hitachi Chem Co Ltd ウェハ貼着用粘着シート及び半導体装置
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
US6527965B1 (en) 2001-02-09 2003-03-04 Nayna Networks, Inc. Method for fabricating improved mirror arrays for physical separation
US6770544B2 (en) * 2001-02-21 2004-08-03 Nec Machinery Corporation Substrate cutting method
SG179310A1 (en) * 2001-02-28 2012-04-27 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TW473896B (en) 2001-03-20 2002-01-21 Chipmos Technologies Inc A manufacturing process of semiconductor devices
US6932933B2 (en) 2001-03-30 2005-08-23 The Aerospace Corporation Ultraviolet method of embedding structures in photocerams
WO2002082540A1 (fr) 2001-03-30 2002-10-17 Fujitsu Limited Dispositif a semi-conducteurs, son procede de fabrication et substrat semi-conducteur connexe
KR100701013B1 (ko) 2001-05-21 2007-03-29 삼성전자주식회사 레이저 빔을 이용한 비금속 기판의 절단방법 및 장치
JP2002035985A (ja) 2001-05-21 2002-02-05 Sumitomo Heavy Ind Ltd レーザ加工装置及び加工方法
JP2003017790A (ja) 2001-07-03 2003-01-17 Matsushita Electric Ind Co Ltd 窒化物系半導体素子及び製造方法
JP2003046177A (ja) 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd 半導体レーザの製造方法
JP2003154517A (ja) 2001-11-21 2003-05-27 Seiko Epson Corp 脆性材料の割断加工方法およびその装置、並びに電子部品の製造方法
EP1329946A3 (en) 2001-12-11 2005-04-06 Sel Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including a laser crystallization step
US6608370B1 (en) * 2002-01-28 2003-08-19 Motorola, Inc. Semiconductor wafer having a thin die and tethers and methods of making the same
US6562696B1 (en) * 2002-03-06 2003-05-13 Taiwan Semiconductor Manufacturing Co., Ltd Method for forming an STI feature to avoid acidic etching of trench sidewalls
US6908784B1 (en) * 2002-03-06 2005-06-21 Micron Technology, Inc. Method for fabricating encapsulated semiconductor components
JP4358502B2 (ja) 2002-03-12 2009-11-04 浜松ホトニクス株式会社 半導体基板の切断方法
JP2003338468A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
JP3935186B2 (ja) 2002-03-12 2007-06-20 浜松ホトニクス株式会社 半導体基板の切断方法
ES2356817T3 (es) 2002-03-12 2011-04-13 Hamamatsu Photonics K.K. Método de corte de un objeto procesado.
JP4509720B2 (ja) 2002-03-12 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法
EP1494271B1 (en) * 2002-03-12 2011-11-16 Hamamatsu Photonics K.K. Method for dicing substrate
JP2003338636A (ja) 2002-03-12 2003-11-28 Hamamatsu Photonics Kk 発光素子の製造方法、発光ダイオード、及び半導体レーザ素子
TWI326626B (en) 2002-03-12 2010-07-01 Hamamatsu Photonics Kk Laser processing method
WO2003076118A1 (fr) 2002-03-12 2003-09-18 Hamamatsu Photonics K.K. Substrat semi-conducteur, puce a semi-conducteur et procede de fabrication d'un dispositif a semi-conducteur
JP2006135355A (ja) 2002-03-12 2006-05-25 Hamamatsu Photonics Kk 半導体基板の切断方法
JP3670267B2 (ja) 2002-03-12 2005-07-13 浜松ホトニクス株式会社 レーザ加工方法
US6787732B1 (en) 2002-04-02 2004-09-07 Seagate Technology Llc Method for laser-scribing brittle substrates and apparatus therefor
US6744009B1 (en) * 2002-04-02 2004-06-01 Seagate Technology Llc Combined laser-scribing and laser-breaking for shaping of brittle substrates
JP4111800B2 (ja) 2002-11-05 2008-07-02 アルパイン株式会社 車両間通信情報処理装置
TWI520269B (zh) 2002-12-03 2016-02-01 Hamamatsu Photonics Kk Cutting method of semiconductor substrate
AU2003289188A1 (en) * 2002-12-05 2004-06-23 Hamamatsu Photonics K.K. Laser processing device
JP2004188422A (ja) * 2002-12-06 2004-07-08 Hamamatsu Photonics Kk レーザ加工装置及びレーザ加工方法
JP4334864B2 (ja) 2002-12-27 2009-09-30 日本電波工業株式会社 薄板水晶ウェハ及び水晶振動子の製造方法
JP4188847B2 (ja) 2003-01-14 2008-12-03 富士フイルム株式会社 分析素子用カートリッジ
US7341007B2 (en) 2003-03-05 2008-03-11 Joel Vatsky Balancing damper
FR2852250B1 (fr) 2003-03-11 2009-07-24 Jean Luc Jouvin Fourreau de protection pour canule, un ensemble d'injection comportant un tel fourreau et aiguille equipee d'un tel fourreau
WO2004080643A1 (ja) * 2003-03-12 2004-09-23 Hamamatsu Photonics K.K. レーザ加工方法
GB2404280B (en) 2003-07-03 2006-09-27 Xsil Technology Ltd Die bonding
ES2523432T3 (es) 2003-07-18 2014-11-25 Hamamatsu Photonics K.K. Chip semiconductor cortado
JP4563097B2 (ja) 2003-09-10 2010-10-13 浜松ホトニクス株式会社 半導体基板の切断方法
JP2005086175A (ja) 2003-09-11 2005-03-31 Hamamatsu Photonics Kk 半導体薄膜の製造方法、半導体薄膜、半導体薄膜チップ、電子管、及び光検出素子
JP4300084B2 (ja) 2003-09-19 2009-07-22 株式会社リコー 画像形成装置
CN100461561C (zh) * 2004-01-07 2009-02-11 浜松光子学株式会社 半导体发光元件及其制造方法
JP4601965B2 (ja) * 2004-01-09 2010-12-22 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4598407B2 (ja) 2004-01-09 2010-12-15 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4509578B2 (ja) 2004-01-09 2010-07-21 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4536407B2 (ja) 2004-03-30 2010-09-01 浜松ホトニクス株式会社 レーザ加工方法及び加工対象物
WO2005098915A1 (ja) * 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
WO2005098916A1 (ja) 2004-03-30 2005-10-20 Hamamatsu Photonics K.K. レーザ加工方法及び半導体チップ
JP4733934B2 (ja) * 2004-06-22 2011-07-27 株式会社ディスコ ウエーハの加工方法
JP4634089B2 (ja) * 2004-07-30 2011-02-16 浜松ホトニクス株式会社 レーザ加工方法
US8604383B2 (en) * 2004-08-06 2013-12-10 Hamamatsu Photonics K.K. Laser processing method
JP4754801B2 (ja) 2004-10-13 2011-08-24 浜松ホトニクス株式会社 レーザ加工方法
JP4917257B2 (ja) * 2004-11-12 2012-04-18 浜松ホトニクス株式会社 レーザ加工方法
JP4781661B2 (ja) * 2004-11-12 2011-09-28 浜松ホトニクス株式会社 レーザ加工方法
JP4198123B2 (ja) * 2005-03-22 2008-12-17 浜松ホトニクス株式会社 レーザ加工方法
JP4776994B2 (ja) * 2005-07-04 2011-09-21 浜松ホトニクス株式会社 加工対象物切断方法
JP4749799B2 (ja) * 2005-08-12 2011-08-17 浜松ホトニクス株式会社 レーザ加工方法
JP4762653B2 (ja) 2005-09-16 2011-08-31 浜松ホトニクス株式会社 レーザ加工方法及びレーザ加工装置
JP4237745B2 (ja) 2005-11-18 2009-03-11 浜松ホトニクス株式会社 レーザ加工方法
JP4907965B2 (ja) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法
JP4804911B2 (ja) 2005-12-22 2011-11-02 浜松ホトニクス株式会社 レーザ加工装置
JP4907984B2 (ja) 2005-12-27 2012-04-04 浜松ホトニクス株式会社 レーザ加工方法及び半導体チップ
US7897487B2 (en) * 2006-07-03 2011-03-01 Hamamatsu Photonics K.K. Laser processing method and chip
JP5183892B2 (ja) * 2006-07-03 2013-04-17 浜松ホトニクス株式会社 レーザ加工方法
JP4954653B2 (ja) * 2006-09-19 2012-06-20 浜松ホトニクス株式会社 レーザ加工方法
CN101516566B (zh) 2006-09-19 2012-05-09 浜松光子学株式会社 激光加工方法和激光加工装置
JP5101073B2 (ja) 2006-10-02 2012-12-19 浜松ホトニクス株式会社 レーザ加工装置
JP4964554B2 (ja) * 2006-10-03 2012-07-04 浜松ホトニクス株式会社 レーザ加工方法
JP5132911B2 (ja) * 2006-10-03 2013-01-30 浜松ホトニクス株式会社 レーザ加工方法
WO2008041604A1 (fr) * 2006-10-04 2008-04-10 Hamamatsu Photonics K.K. Procédé de traitement laser
JP4812599B2 (ja) 2006-11-17 2011-11-09 倉敷紡績株式会社 染料濃度測定方法及び装置
JP5336054B2 (ja) 2007-07-18 2013-11-06 浜松ホトニクス株式会社 加工情報供給装置を備える加工情報供給システム
JP4402708B2 (ja) * 2007-08-03 2010-01-20 浜松ホトニクス株式会社 レーザ加工方法、レーザ加工装置及びその製造方法
JP5225639B2 (ja) 2007-09-06 2013-07-03 浜松ホトニクス株式会社 半導体レーザ素子の製造方法
JP5342772B2 (ja) * 2007-10-12 2013-11-13 浜松ホトニクス株式会社 加工対象物切断方法
JP5449665B2 (ja) 2007-10-30 2014-03-19 浜松ホトニクス株式会社 レーザ加工方法
JP5054496B2 (ja) 2007-11-30 2012-10-24 浜松ホトニクス株式会社 加工対象物切断方法
JP5134928B2 (ja) 2007-11-30 2013-01-30 浜松ホトニクス株式会社 加工対象物研削方法
JP5241525B2 (ja) 2009-01-09 2013-07-17 浜松ホトニクス株式会社 レーザ加工装置
JP5191958B2 (ja) 2009-06-19 2013-05-08 三菱電機ビルテクノサービス株式会社 エレベータ機器芯出し用基準線の設置方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111800A (ja) * 1990-08-31 1992-04-13 Nippon Sekiei Glass Kk 石英ガラス材料の切断加工方法
EP0863231A1 (en) * 1997-03-04 1998-09-09 Ngk Insulators, Ltd. A process for dicing a preform made of an oxide single crystal, and a process for producing functional devices
JP2002224878A (ja) * 2000-10-26 2002-08-13 Toshiba Corp レーザ加工方法、レーザ加工装置および半導体装置の製造方法

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4494728B2 (ja) * 2003-05-26 2010-06-30 株式会社ディスコ 非金属基板の分割方法
JP2004349623A (ja) * 2003-05-26 2004-12-09 Disco Abrasive Syst Ltd 非金属基板の分割方法
CN100428418C (zh) * 2004-02-09 2008-10-22 株式会社迪斯科 晶片的分割方法
CN100454607C (zh) * 2004-02-19 2009-01-21 精工爱普生株式会社 电光学装置的制造方法、电光学装置及电子器械
JP2005252126A (ja) * 2004-03-08 2005-09-15 Disco Abrasive Syst Ltd ウエーハの加工方法
JP2005268325A (ja) * 2004-03-16 2005-09-29 Hamamatsu Photonics Kk 加工対象物切断方法
JP4584607B2 (ja) * 2004-03-16 2010-11-24 浜松ホトニクス株式会社 加工対象物切断方法
CN100466185C (zh) * 2004-03-30 2009-03-04 浜松光子学株式会社 激光加工方法及加工对象物
JP2006012902A (ja) * 2004-06-22 2006-01-12 Disco Abrasive Syst Ltd ウエーハの加工方法
US7682858B2 (en) 2004-06-22 2010-03-23 Disco Corporation Wafer processing method including formation of a deteriorated layer
CN100446188C (zh) * 2004-07-23 2008-12-24 株式会社迪斯科 晶片分割方法和装置
US7939430B2 (en) 2004-11-12 2011-05-10 Hamamatsu Photonics K.K. Laser processing method
KR101283294B1 (ko) * 2004-11-12 2013-07-11 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
EP1811550A1 (en) * 2004-11-12 2007-07-25 Hamamatsu Photonics K.K. Laser processing method
EP1811550A4 (en) * 2004-11-12 2009-09-23 Hamamatsu Photonics Kk LASER PROCESSING PROCESS
JP4565977B2 (ja) * 2004-11-25 2010-10-20 株式会社東京精密 フィルム剥離方法およびフィルム剥離装置
JP2006156456A (ja) * 2004-11-25 2006-06-15 Tokyo Seimitsu Co Ltd フィルム剥離方法およびフィルム剥離装置
WO2007099787A1 (ja) * 2006-03-03 2007-09-07 Tokyo Seimitsu Co., Ltd. ウェーハ加工方法
JP2007235068A (ja) * 2006-03-03 2007-09-13 Tokyo Seimitsu Co Ltd ウェーハ加工方法
JP2007235069A (ja) * 2006-03-03 2007-09-13 Tokyo Seimitsu Co Ltd ウェーハ加工方法
US7981770B2 (en) 2006-03-03 2011-07-19 Tokyo Seimitsu Co., Ltd. Wafer machining method for preparing a wafer for dicing
WO2007099986A1 (ja) * 2006-03-03 2007-09-07 Tokyo Seimitsu Co., Ltd. ウェーハ加工方法
JP2009141123A (ja) * 2007-12-06 2009-06-25 Disco Abrasive Syst Ltd 基板への改質層形成方法
JP2009290148A (ja) * 2008-06-02 2009-12-10 Disco Abrasive Syst Ltd ウエーハの分割方法
DE102008052006A1 (de) 2008-10-10 2010-04-22 3D-Micromac Ag Verfahren und Vorrichtung zur Herstellung von Proben für die Transmissionselektronenmikroskopie
DE102008052006B4 (de) 2008-10-10 2018-12-20 3D-Micromac Ag Verfahren und Vorrichtung zur Herstellung von Proben für die Transmissionselektronenmikroskopie
JP2012033668A (ja) * 2010-07-30 2012-02-16 Mitsuboshi Diamond Industrial Co Ltd レーザ加工方法
JP2012104780A (ja) * 2010-11-15 2012-05-31 Disco Abrasive Syst Ltd 光デバイスウエーハの分割方法
CN102990227A (zh) * 2011-09-08 2013-03-27 技鼎股份有限公司 单一波长多层雷射加工的方法
JP2013157450A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157455A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157451A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013157449A (ja) * 2012-01-30 2013-08-15 Hamamatsu Photonics Kk 半導体デバイスの製造方法
JP2013165229A (ja) * 2012-02-13 2013-08-22 Disco Abrasive Syst Ltd 光デバイスウェーハの分割方法
JP2013171846A (ja) * 2012-02-17 2013-09-02 Disco Abrasive Syst Ltd 光デバイスウェーハの分割方法
JP2013219271A (ja) * 2012-04-11 2013-10-24 Disco Abrasive Syst Ltd 光デバイスウエーハの加工方法
JP2013258365A (ja) * 2012-06-14 2013-12-26 Disco Abrasive Syst Ltd ウェーハの加工方法
KR20140043869A (ko) 2012-10-03 2014-04-11 가부시기가이샤 디스코 연삭 장치 및 연삭 방법
KR20140051772A (ko) * 2012-10-23 2014-05-02 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR102001684B1 (ko) 2012-10-23 2019-07-18 가부시기가이샤 디스코 웨이퍼의 가공 방법
JP2014086550A (ja) * 2012-10-23 2014-05-12 Disco Abrasive Syst Ltd ウエーハの加工方法
TWI574314B (zh) * 2012-10-23 2017-03-11 Disco Corp Wafer processing method
JP2014192215A (ja) * 2013-03-26 2014-10-06 Disco Abrasive Syst Ltd ウェーハの分割方法
JP2015065209A (ja) * 2013-09-24 2015-04-09 株式会社ディスコ ウェーハの分割方法
JP2015119109A (ja) * 2013-12-19 2015-06-25 国立大学法人東京工業大学 半導体装置の製造方法
KR20150085474A (ko) 2014-01-15 2015-07-23 가부시기가이샤 디스코 웨이퍼의 가공 방법
JP2015185831A (ja) * 2014-03-26 2015-10-22 旭化成株式会社 窒化物半導体発光素子
KR20160021030A (ko) 2014-08-14 2016-02-24 가부시기가이샤 디스코 반송 장치
US9390958B2 (en) 2014-08-14 2016-07-12 Disco Corporation Transfer unit including suction openings configured to receive suction pads or seal members therein
JP2016213318A (ja) * 2015-05-08 2016-12-15 株式会社ディスコ ウエーハの加工方法
US9583391B2 (en) 2015-07-06 2017-02-28 Disco Corporation Wafer processing method
KR20170016285A (ko) 2015-08-03 2017-02-13 가부시기가이샤 디스코 피가공물의 가공 방법
KR20220153543A (ko) 2015-08-03 2022-11-18 가부시기가이샤 디스코 피가공물의 가공 방법
JP2016006903A (ja) * 2015-08-28 2016-01-14 株式会社東京精密 半導体基板の割断方法
JP2017050404A (ja) * 2015-09-02 2017-03-09 株式会社ディスコ ウエーハの加工方法
KR20180057692A (ko) 2015-09-29 2018-05-30 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법
DE112016004420T5 (de) 2015-09-29 2018-07-05 Hamamatsu Photonics K.K. Laserbearbeitungsverfahren und laserbearbeitungsvorrichtung
KR20180058760A (ko) 2015-09-29 2018-06-01 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
US11103959B2 (en) 2015-09-29 2021-08-31 Hamamatsu Photonics K.K. Laser processing method, and laser processing device
US10290545B2 (en) 2015-09-29 2019-05-14 Hamamatsu Photonics K.K. Laser processing method
US10755980B2 (en) 2015-09-29 2020-08-25 Hamamatsu Photonics K.K. Laser processing method
KR20180057643A (ko) 2015-09-29 2018-05-30 하마마츠 포토닉스 가부시키가이샤 레이저 가공 방법 및 레이저 가공 장치
CN107039563B (zh) * 2015-10-06 2021-01-12 株式会社迪思科 光器件晶片的加工方法
CN107039563A (zh) * 2015-10-06 2017-08-11 株式会社迪思科 光器件晶片的加工方法
JP2016105515A (ja) * 2016-03-02 2016-06-09 株式会社東京精密 半導体基板の割断方法及び割断装置
JP2016106425A (ja) * 2016-03-02 2016-06-16 株式会社東京精密 半導体基板の微小亀裂形成方法及び微小亀裂形成装置
KR20170128104A (ko) 2016-05-13 2017-11-22 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR20170129059A (ko) 2016-05-16 2017-11-24 가부시기가이샤 디스코 익스팬드 시트
DE102017209185A1 (de) 2016-06-01 2017-12-07 Disco Corporation Ausdehnungsfolie, Herstellungsverfahren für eine Ausdehnungsfolie und Verfahren zum Ausdehnen einer Ausdehnungsfolie
US10103055B2 (en) 2016-06-01 2018-10-16 Disco Corporation Expansion sheet, expansion sheet manufacturing method, and expansion sheet expanding method
JP2016171350A (ja) * 2016-06-20 2016-09-23 株式会社東京精密 ウェーハ加工方法及びウェーハ加工装置
JP2016201551A (ja) * 2016-06-20 2016-12-01 株式会社東京精密 半導体基板の微小亀裂形成方法及び微小亀裂形成装置
US9935008B2 (en) 2016-07-06 2018-04-03 Disco Corporation Semiconductor device chip manufacturing method
KR20180005604A (ko) * 2016-07-06 2018-01-16 가부시기가이샤 디스코 반도체 디바이스 칩의 제조 방법
KR102277934B1 (ko) 2016-07-06 2021-07-14 가부시기가이샤 디스코 반도체 디바이스 칩의 제조 방법
JP2018006653A (ja) * 2016-07-06 2018-01-11 株式会社ディスコ 半導体デバイスチップの製造方法
KR20180018329A (ko) 2016-08-09 2018-02-21 가부시기가이샤 디스코 웨이퍼 가공 방법
KR20180032179A (ko) 2016-09-21 2018-03-29 가부시기가이샤 디스코 웨이퍼의 가공 방법
KR20180032184A (ko) 2016-09-21 2018-03-29 가부시기가이샤 디스코 웨이퍼의 가공 방법
US10297501B2 (en) 2016-09-21 2019-05-21 Disco Corporation Method for dividing wafer into individual chips
KR20180061011A (ko) 2016-11-28 2018-06-07 가부시기가이샤 디스코 웨이퍼의 가공 방법
US10438898B2 (en) 2016-11-28 2019-10-08 Disco Corporation Wafer processing method
CN106654063A (zh) * 2016-12-28 2017-05-10 武汉华星光电技术有限公司 柔性oled显示面板的制作方法
JP2017108143A (ja) * 2017-01-06 2017-06-15 株式会社東京精密 分割起点形成方法及び分割起点形成装置
US10475676B2 (en) 2017-05-23 2019-11-12 Disco Corporation Workpiece processing method
JP2017224826A (ja) * 2017-06-27 2017-12-21 株式会社東京精密 抗折強度の高い薄型チップの形成方法及び形成システム
US11145533B2 (en) 2017-10-06 2021-10-12 Disco Corporation Expanding method
JP2018046291A (ja) * 2017-11-22 2018-03-22 株式会社東京精密 抗折強度の高い薄型チップの製造システム及び製造方法
JP2018142717A (ja) * 2018-04-20 2018-09-13 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2018133593A (ja) * 2018-05-22 2018-08-23 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2019012849A (ja) * 2018-10-03 2019-01-24 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2019012848A (ja) * 2018-10-03 2019-01-24 株式会社東京精密 ウェハ加工方法及びウェハ加工システム
JP2020142964A (ja) * 2019-03-07 2020-09-10 株式会社Nsc ガラス基板製造方法
JP7176695B2 (ja) 2019-03-07 2022-11-22 株式会社Nsc ガラス基板製造方法
JP2019096910A (ja) * 2019-03-13 2019-06-20 株式会社東京精密 レーザ加工システム
JP2019096911A (ja) * 2019-03-13 2019-06-20 株式会社東京精密 レーザ加工システム
JP2019161232A (ja) * 2019-04-22 2019-09-19 株式会社東京精密 レーザ加工システム
JP2019169719A (ja) * 2019-04-25 2019-10-03 株式会社東京精密 レーザ加工システム
JP2019192937A (ja) * 2019-07-05 2019-10-31 株式会社東京精密 ウェーハ加工システム及びウェーハ加工方法
JP2020025142A (ja) * 2019-11-18 2020-02-13 株式会社東京精密 抗折強度の高いチップを得るためのウェーハ加工装置及びウェーハ加工方法
JP2020074414A (ja) * 2019-12-25 2020-05-14 株式会社東京精密 抗折強度の高いチップを得る半導体ウェーハのレーザ加工装置
JP2022028781A (ja) * 2020-01-24 2022-02-16 株式会社東京精密 亀裂進展装置及び亀裂進展方法
JP2022031714A (ja) * 2020-01-24 2022-02-22 株式会社東京精密 亀裂進展装置及び亀裂進展方法
JP2020080409A (ja) * 2020-01-24 2020-05-28 株式会社東京精密 レーザ加工システム及びレーザ加工方法
JP2020074454A (ja) * 2020-01-24 2020-05-14 株式会社東京精密 チップ強度の向上を図るレーザ加工システム及びレーザ加工方法
JP7217409B2 (ja) 2020-01-24 2023-02-03 株式会社東京精密 亀裂進展装置及び亀裂進展方法
JP7290843B2 (ja) 2020-01-24 2023-06-14 株式会社東京精密 亀裂進展装置及び亀裂進展方法
JP7417837B2 (ja) 2020-01-24 2024-01-19 株式会社東京精密 亀裂進展装置及び亀裂進展方法

Also Published As

Publication number Publication date
US8268704B2 (en) 2012-09-18
EP2400539A2 (en) 2011-12-28
EP1632997B1 (en) 2007-05-16
JP4932955B2 (ja) 2012-05-16
US20160343674A1 (en) 2016-11-24
US8518800B2 (en) 2013-08-27
CN1643656A (zh) 2005-07-20
US11424162B2 (en) 2022-08-23
JP4358762B2 (ja) 2009-11-04
US8518801B2 (en) 2013-08-27
US20080090382A1 (en) 2008-04-17
ATE534142T1 (de) 2011-12-15
JP2010068009A (ja) 2010-03-25
EP1494271A4 (en) 2006-05-03
KR20040108660A (ko) 2004-12-24
US20130012000A1 (en) 2013-01-10
US8519511B2 (en) 2013-08-27
US20170271210A1 (en) 2017-09-21
US9548246B2 (en) 2017-01-17
DE60313900T2 (de) 2008-01-17
EP2194575A3 (en) 2013-02-13
CN1983557A (zh) 2007-06-20
JPWO2003077295A1 (ja) 2005-07-07
US20160343618A1 (en) 2016-11-24
KR20050075041A (ko) 2005-07-19
US20160343619A1 (en) 2016-11-24
KR100848408B1 (ko) 2008-07-28
TW200306622A (en) 2003-11-16
US9711405B2 (en) 2017-07-18
US9287177B2 (en) 2016-03-15
US20160111333A1 (en) 2016-04-21
US20200203225A1 (en) 2020-06-25
JP4995256B2 (ja) 2012-08-08
JP2005184032A (ja) 2005-07-07
US9142458B2 (en) 2015-09-22
US20130316517A1 (en) 2013-11-28
US20050272223A1 (en) 2005-12-08
US7566635B2 (en) 2009-07-28
EP2194575B1 (en) 2017-08-16
CN1728342A (zh) 2006-02-01
JP4908652B2 (ja) 2012-04-04
US10622255B2 (en) 2020-04-14
CN1983556A (zh) 2007-06-20
ATE362653T1 (de) 2007-06-15
US9553023B2 (en) 2017-01-24
EP2400539B1 (en) 2017-07-26
EP2400539A3 (en) 2013-02-13
JP2011243998A (ja) 2011-12-01
EP1632997A3 (en) 2006-05-03
US20060121697A1 (en) 2006-06-08
US8889525B2 (en) 2014-11-18
US10068801B2 (en) 2018-09-04
US20130015167A1 (en) 2013-01-17
US20150311119A1 (en) 2015-10-29
US20130009284A1 (en) 2013-01-10
JP4932956B2 (ja) 2012-05-16
EP3664131A3 (en) 2020-08-19
JP2011216912A (ja) 2011-10-27
JP2009206534A (ja) 2009-09-10
KR100715576B1 (ko) 2007-05-09
DE60313900D1 (de) 2007-06-28
EP1635390A2 (en) 2006-03-15
ES2639733T3 (es) 2017-10-30
CN100355032C (zh) 2007-12-12
ES2377521T3 (es) 2012-03-28
EP3252806A1 (en) 2017-12-06
EP3664131A2 (en) 2020-06-10
JP3762409B2 (ja) 2006-04-05
JP4908552B2 (ja) 2012-04-04
US20180350682A1 (en) 2018-12-06
US8314013B2 (en) 2012-11-20
US20160343617A1 (en) 2016-11-24
US9543207B2 (en) 2017-01-10
CN100355031C (zh) 2007-12-12
US20100203707A1 (en) 2010-08-12
EP1494271B1 (en) 2011-11-16
CN101335235B (zh) 2010-10-13
TWI278027B (en) 2007-04-01
EP3252806B1 (en) 2019-10-09
JP2011216913A (ja) 2011-10-27
CN101335235A (zh) 2008-12-31
EP1632997A2 (en) 2006-03-08
US9543256B2 (en) 2017-01-10
EP1494271A1 (en) 2005-01-05
EP1635390B1 (en) 2011-07-27
US20210210387A1 (en) 2021-07-08
AU2003211763A1 (en) 2003-09-22
ATE518242T1 (de) 2011-08-15
EP2194575A2 (en) 2010-06-09
CN100485901C (zh) 2009-05-06
EP1635390A3 (en) 2006-05-03
ES2285634T3 (es) 2007-11-16
US8304325B2 (en) 2012-11-06
US20150056785A1 (en) 2015-02-26
CN100485902C (zh) 2009-05-06
US20220352026A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
US20220352026A1 (en) Substrate dividing method
JP4409840B2 (ja) 加工対象物切断方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003575413

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047014158

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038058669

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003744003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047014158

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003744003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10507321

Country of ref document: US