WO2003088330A1 - Projection optical system, exposure system and exposure method - Google Patents

Projection optical system, exposure system and exposure method Download PDF

Info

Publication number
WO2003088330A1
WO2003088330A1 PCT/JP2003/004142 JP0304142W WO03088330A1 WO 2003088330 A1 WO2003088330 A1 WO 2003088330A1 JP 0304142 W JP0304142 W JP 0304142W WO 03088330 A1 WO03088330 A1 WO 03088330A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
projection optical
axis
crystal
fluorite
Prior art date
Application number
PCT/JP2003/004142
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Omura
Toshihiko Ozawa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU2003221102A priority Critical patent/AU2003221102A1/en
Publication of WO2003088330A1 publication Critical patent/WO2003088330A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • G03F7/70966Birefringence

Definitions

  • the present invention relates to a projection optical system, an exposure apparatus, and an exposure method, and more particularly to a projection optical system suitable for an exposure apparatus used when a micro device such as a semiconductor element or a liquid crystal display element is manufactured in a photolithography process. It is. Background art
  • the pattern of the photomask (also referred to as a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected.
  • a method of reducing exposure transfer onto a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used.
  • the exposure wavelength keeps shifting to shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
  • the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser, 193 nm, is entering the stage of practical use. Further, the wavelength 1 5 7 nm of F 2 laser and the wavelength 1 4 6 nm of K r 2 laser and foremost, the wave length 1 2 6 nm of A r 2, single The first class, the wavelength band so-called vacuum ultraviolet region A projection exposure apparatus using a light source for supplying light has also been proposed. In addition, since higher resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development for shortening the exposure wavelength, but also development of a projection optical system with a larger numerical aperture Has also been made.
  • NA numerical aperture
  • Optical materials with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited.
  • synthetic quartz glass can be used as a lens material, but chromatic aberration cannot be sufficiently corrected with one type of lens material.
  • Lens Calcium iodide crystals (fluorite) are used.
  • the projecting projection optical system as a light source an F 2 laser, the lens material available is limited to substantially calcium fluoride crystal (fluorite).
  • the present invention has been made in view of the above-mentioned problems. For example, even when a crystalline material having intrinsic birefringence such as fluorite is used, good optical properties are obtained without substantially being affected by birefringence. It is an object to provide a projection optical system having high performance. Further, according to the present invention, there is provided an exposure apparatus and an exposure method capable of performing high-resolution and high-accuracy projection exposure using a projection optical system having good optical performance substantially without being affected by birefringence. The purpose is to provide the law. Disclosure of the invention
  • a projection optical system that includes a crystal transmission member formed of a crystalline material and forms an image of a first surface on a second surface.
  • the present invention provides a projection optical system including a light transmissive phase correcting member for correcting a phase difference between mutually orthogonal polarization components generated due to the above.
  • the polarization components orthogonal to each other the R polarization component oscillating in the direction including the above normal line (radiation direction R) in the plane with the optical axis as the normal line, and the oscillation direction orthogonal to the R polarization component are considered.
  • a polarized light component a polarized light component having a vibration direction in the circumferential direction 0 around the normal line.
  • the phase correction member is formed of a uniaxial crystal and has an optical axis substantially coincident with an optical axis of an optical system.
  • the crystal transmission member is formed of fluorite (C a F 2 ) and has a crystal axis [111] or the crystal axis [111].
  • a pair of light transmitting members formed so that a crystal axis optically equivalent to the crystal axis [11 1] and an optical axis of the optical system substantially coincide with each other; and the phase correction member has a refractive index with respect to ordinary light.
  • Ne is the refractive index with respect to extraordinary light
  • it is formed of a negative uniaxial crystal satisfying Ne ⁇ No, and is formed so that its optical axis substantially coincides with the optical axis.
  • the phase correction member is formed of a negative uniaxial crystal that satisfies Ne ⁇ No. It is preferable that the optical axis is formed so as to substantially coincide with the optical axis. It is preferable that the negative uniaxial crystal is quartz (Si 2 ) or Leicauff (LiCaAlF 6 ).
  • the crystal transmission member is made of fluorite (CaF 2 ), and the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] substantially coincides with the optical axis of the optical system.
  • the phase correction member is a positive uniaxial member that satisfies Ne> No.
  • the optical axis is formed of a crystalline crystal and that its optical axis substantially coincides with the optical axis.
  • the positive uniaxial crystal is magnesium fluoride (MgF 2 ).
  • the crystal transmission member is formed of fluorite (CaF 2 ), and the crystal axis [110] or a crystal axis optically equivalent to the crystal axis [110] and the optical axis of the optical system are different.
  • the phase correction member has a pair of light transmitting members formed so as to substantially coincide with each other.
  • the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, a negative value satisfying Ne ⁇ No is satisfied.
  • the optical axis is formed of a uniaxial crystal and that its optical axis substantially coincides with the optical axis.
  • the negative uniaxial crystal is preferably a crystal (S i 0 2) or Raikafu (L i C aA 1 F 6 ).
  • the phase correction member is disposed near the first surface, near the second surface, or near a surface optically conjugate with the first surface. Have been. Further, it is preferable that the phase correction member is arranged at a pupil position of the optical system or in the vicinity thereof. Note that, in the phase correction member, the distance between the first surface and the second surface is L, the first surface, the second surface, a surface optically conjugate with the first surface, or Assuming that the distance from the pupil position to the phase correction member is D, the arrangement is preferably such that IDZLI ⁇ 0.15 is satisfied. Further, it is preferable that a plurality of the phase correction members are provided.
  • At least one concave reflecting mirror is further provided, wherein the concave reflecting mirror is configured such that a light beam traveling toward the concave reflecting mirror and a light beam reflected from the concave reflecting mirror are formed.
  • a reciprocating optical path that passes therethrough is formed, and the phase correction member is disposed in the forward and backward optical paths.
  • the concave reflecting mirror is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
  • the projection optical system is a re-imaging optical system that forms an intermediate image of the first surface in an optical path between the first surface and the second surface, and the phase correction member includes the intermediate image. It is located near the formation position of. Further, the projection optical system includes one concave reflecting mirror, and forms a double-image catadioptric refraction that forms an intermediate image of the first surface in an optical path between the first surface and the second surface. It is an optical system, and it is preferable that the concave reflecting mirror is disposed in an optical path between the first surface and the intermediate image.
  • the projection optical system includes one concave reflecting mirror, and forms an intermediate image of the first surface in an optical path between the first surface and the second surface. It is an optical system, and it is preferable that the optical axes of all the light transmitting members and the concave reflecting mirror that constitute the projection optical system are set substantially parallel to each other.
  • the projection optical system includes one concave reflecting mirror, and forms a first intermediate image and a second intermediate image of the first surface in an optical path between the first surface and the second surface. It is a reflection-refractive optical system of the image forming type, and it is preferable that the concave reflecting mirror is arranged in an optical path between the first intermediate image and the second intermediate image.
  • all optical members constituting the projection optical system are light transmitting members.
  • the projection optical system has a single optical axis extending linearly, and all the optical members constituting the projection optical system have the optical axis of the single optical axis. It is preferable that they are arranged so as to substantially coincide with one optical axis.
  • the projection optical system is an optical system that is substantially telecentric on both the first surface side and the second surface side, and the phase correction member is formed of a uniaxial crystal and has an optical axis that is an optical system. It is preferable that it is formed so as to substantially coincide with the optical axis and has a parallel plane shape. Further, it is preferable that an image of the first surface is formed on the second surface based on light having a wavelength of 200 nm or less.
  • an illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask is placed on a photosensitive substrate set on the second surface.
  • an exposure apparatus comprising the projection optical system according to the first invention for forming.
  • the mask set on the first surface is illuminated, and the image of the pattern formed on the mask is set on the second surface via the projection optical system of the first invention.
  • An exposure method is provided, which comprises projecting and exposing on a photosensitive substrate.
  • FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite.
  • 2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIGS. 3A to 3C are diagrams for explaining the first method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIGS. 4A to 4C are diagrams for explaining the second method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • FIG. 5 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [111].
  • FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100].
  • FIG. 7 is a diagram showing a phase map at the pupil of the projection optical system including the fluorite pair lens with the crystal axis [111] and the fluorite pair with the crystal axis [100].
  • FIG. 8 is a diagram showing a phase map at a pupil of a projection optical system including a plane-parallel plate formed of a positive uniaxial crystal.
  • FIG. 9 is a diagram showing a phase map at a pupil of a projection optical system including a plane-parallel plate formed of a negative uniaxial crystal.
  • FIG. 10 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111] and a plane-parallel plate formed of a negative uniaxial crystal.
  • FIG. 11 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100] and a plane-parallel plate formed of a positive uniaxial crystal.
  • FIG. 12 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to an embodiment of the present invention.
  • FIG. 13 is a diagram schematically showing a configuration of a projection optical system according to Example 1 of the present embodiment.
  • FIG. 14 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the first embodiment.
  • FIG. 15 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the first embodiment.
  • FIG. 16 is a diagram schematically showing a configuration of a projection optical system according to a third modification of the first embodiment.
  • FIG. 17 is a diagram schematically showing a configuration of a projection optical system according to a fourth modification of the first embodiment.
  • FIG. 18 is a diagram schematically showing a configuration of a projection optical system according to a fifth modification of the first embodiment.
  • FIG. 19 is a diagram schematically showing a configuration of a projection optical system according to Example 2 of the present embodiment.
  • FIG. 20 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the second embodiment.
  • FIG. 21 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the second embodiment.
  • FIG. 22 is a diagram schematically showing a configuration of a projection optical system according to Example 3 of the present embodiment.
  • FIG. 23 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the third embodiment.
  • FIG. 24 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the third embodiment.
  • FIG. 25 is a diagram schematically showing a configuration of a projection optical system according to Example 4 of the present embodiment.
  • FIG. 26 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fourth embodiment.
  • FIG. 27 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fourth embodiment.
  • FIG. 28 is a diagram schematically showing a configuration of a projection optical system according to Example 5 of the present embodiment.
  • FIG. 29 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fifth embodiment.
  • FIG. 30 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fifth embodiment.
  • FIG. 31 is a flowchart of a method for obtaining a semiconductor device as a micro device.
  • FIG. 32 is a flowchart of a method for obtaining a liquid crystal display element as a micro device.
  • FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite.
  • the crystal axis of fluorite is defined based on a cubic XYZ coordinate system. That is, the crystal axis [100] is defined along the + X axis, the crystal axis [010] is defined along the + Y axis, and the crystal axis [001] is defined along the + Z axis. .
  • the crystal axis [101] is in a direction at 45 degrees to the crystal axis [100] and the crystal axis [001] in the XZ plane, and the direction is 45 degrees to the crystal axis [100] and the crystal axis [010] in the XY plane.
  • the crystal axis [1 10] is defined in the YZ plane, and the crystal axis [01 1] is defined in a direction forming 45 degrees with the crystal axis [010] and the crystal axis [001] in the YZ plane. Furthermore, the crystal axis [1 1 1] is defined in a direction that forms an equal acute angle to the + X axis, the + Y axis, and the + Z axis.
  • FIG. 1 shows only the crystal axis in the space defined by the + X axis, + Y axis, and + Z axis
  • the crystal axis is similarly defined in other spaces.
  • the crystal axes indicated by solid lines in FIG. 1 [100], [010], [00]
  • fluorite has crystal axes [1 10], [-1 10], [10
  • birefringence 6 nm / cm. These birefringence values are substantially larger than the permissible value of random birefringence of 1 nm / cm, and the effect of birefringence accumulates through multiple lenses to the extent that it is not random. there is a possibility.
  • FIGS.2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light ray (the angle between the light ray and the optical axis).
  • Figs.2A to 2C five concentric circles indicated by broken lines in the figure represent 10 degrees on one scale. You. Therefore, the innermost circle represents a region with an incident angle of 10 degrees with respect to the optical axis, and the outermost circle represents a region with an incident angle of 50 degrees with respect to the optical axis.
  • a black circle indicates a region having a relatively large refractive index and no birefringence
  • a white circle indicates a region having a relatively small refractive index and no birefringence.
  • a thick circle and a long double arrow indicate the direction of a relatively large refractive index in a birefringent area
  • a thin circle and a short double arrow indicate a relatively small refractive index direction in a birefringent area. The following notation is the same in FIGS. 3A to 3C below.
  • the region corresponding to the crystal axis [11 1] coincident with the optical axis is a region having a relatively small refractive index and no birefringence.
  • the regions corresponding to the crystal axes [100], [010], and [001] are regions having a relatively large refractive index and no birefringence.
  • the regions corresponding to the crystal axes [1 10], [101], [01 1] are birefringent regions having a relatively small refractive index for circumferentially polarized light and a relatively large refractive index for radially polarized light. Becomes Thus, each fluorite lens is maximally affected by birefringence in the range of 35.26 degrees from the optical axis (the angle between the crystal axis [1 1 1] and the crystal axis [1 10]). You can see.
  • the optical axis and the crystal axis [100] (or the crystal axis [100]) of a pair of fluorite lenses are used. And a pair of fluorite lenses are relatively rotated about the optical axis by about 45 degrees.
  • the crystal axes that are optically equivalent to the crystal axis [100] are the crystal axes [010] and [001].
  • FIGS. 3A to 3C are diagrams for explaining the first method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light ray (the angle between the light ray and the optical axis). I have.
  • the distribution of the birefringence in one fluorite lens is as shown in FIG. 3A
  • the distribution of the birefringence in the other fluorite lens is in FIG. 3B.
  • FIG. 3C the distribution of the birefringence of the entire pair of fluorite lenses is as shown in FIG. 3C.
  • the region corresponding to the crystal axis [100] coinciding with the optical axis has a birefringence having a relatively large refractive index. It is an area without.
  • the regions corresponding to the crystal axes [1 1 1], [1-11], [1-1 1-1], [1 1-1] are the regions with relatively small refractive index and no birefringence. Become. Furthermore, the regions corresponding to the crystal axes [101], [10-1], [1 10], [1-10] have relatively large refractive indices for circumferentially polarized light and have relatively large refractive indices for radially polarized light.
  • to relatively rotate one fluorite lens and the other fluorite lens about the optical axis by about 45 degrees means that one fluorite lens and the other fluorite lens A predetermined crystal axis (eg, crystal axis [0 1 0], [00 1], [0 1 1] or [0 1–1]) oriented in a different direction from the optical axis of the fluorite lens Means about 45 degrees relative to.
  • the relative angle of the crystal axis [010] of one fluorite lens and the crystal axis [010] of the other fluorite lens about the optical axis is about 45 degrees. means.
  • relatively rotating about the optical axis by about 45 degrees means that relatively rotating about the optical axis is about 45 degrees + (nX 90 degrees). This is equivalent to rotating relatively by 45 degrees, 135 degrees, 225 degrees, or 315 degrees (where n is an integer).
  • Rotating one fluorite lens and the other fluorite lens relatively by about 60 degrees about the optical axis means that one fluorite lens and the other fluorite lens A predetermined crystal axis oriented in a direction different from the optical axis of the lens (for example, the crystal axis [—11 1], [11-1], or [1 1 1 1])
  • the relative angle is about 60 degrees.
  • the relative angle of the crystal axis [—111] of one fluorite lens and the crystal axis [111] of the other fluorite lens about the optical axis is about Means 60 degrees.
  • the optical axis and the crystal axis [110] (or the crystal axis [110]) of a pair of fluorite lenses are used. And a pair of fluorite lenses are relatively rotated about the optical axis by about 90 degrees.
  • the crystal axis that is optically equivalent to the crystal axis [1 10] is the crystal axis [1-110], [10 1], [-101], [0 1 1], [01-1] It is.
  • FIGS. 4A to 4C are diagrams for explaining the second method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
  • the distribution of birefringence in one fluorite lens is as shown in FIG. 4A
  • the distribution of birefringence in the other fluorite lens is in FIG. 4B.
  • the distribution of the birefringence indices in the entire pair of fluorite lenses is as shown in FIG. 4C.
  • the region corresponding to the crystal axis [1 10] which is coincident with the optical axis corresponds to the polarization in one direction.
  • the birefringence region has a relatively large refractive index and a relatively small refractive index for polarized light in the other direction (a direction orthogonal to one direction).
  • the region corresponding to the crystal axes [100] and [0 10] is a region with a relatively large refractive index and no birefringence.
  • the region corresponding to the crystal axes [1 1 1] and [1 1 1] is a region with a relatively small refractive index and no birefringence.
  • One fluorite lens and the other The relative rotation of the fluorite lens by about 90 degrees about the optical axis means that a given crystal axis oriented in a direction different from the optical axis of one fluorite lens and the other fluorite lens (eg, Means that the relative angle of the crystal axes [001], [—1 1 1], [—1 10], or [1 1 1 1]) around the optical axis is about 90 degrees .
  • the relative angle about the optical axis between the crystal axis [001] of one fluorite lens and the crystal axis [001] of the other fluorite lens is about 90 degrees.
  • relatively rotating about the optical axis by about 90 degrees means relatively rotating about the optical axis by about 90 degrees + (nX 180 degrees). Has the same meaning as rotating by 90 degrees and 270 degrees ' ⁇ ' (where n is an integer.
  • the progression of a pair of fluorite lenses hereinafter, referred to as “fluorite parent lens of crystal axis [11 1]) whose optical axis and crystal axis [1 11] are aligned and rotated relative to each other by 60 degrees.
  • a pair of fluorite lenses with the phase axis aligned with the crystal axis [100] and rotated relative to each other by 45 degrees (hereinafter referred to as “fluorite pair lens with crystal axis [100]”) U) is orthogonal to the fast axis.
  • birefringence distribution with a fast axis in the radial direction remains in the fluorite pair lens with the crystal axis [100], and advances in the circumferential direction with the fluorite pair lens with the crystal axis [1 1 1].
  • a birefringent distribution with a phase axis remains.
  • the phase of one polarized light will lead or lag the other, but the polarization direction of the one with the leading phase is called the fast axis, and the polarization direction of the one with the late phase is called the slow axis. .
  • the optical axis of the pair of fluorite lenses and the crystal axis [1 1 1] are matched and the fluorite pair lens of the crystal axis [1 1 1] is rotated by 60 degrees and the light of the pair of fluorite lenses is rotated. It can be seen that the effect of the birefringence can be further reduced by combining the fluorite pair lens with the crystal axis [100] rotated by 45 degrees with the axis coincident with the crystal axis [100]. ⁇
  • uniaxial crystal parallel A flat plate has the property of providing a phase difference between polarization components orthogonal to each other.
  • an R-polarized component and an R-polarized component that oscillate in a direction including the normal (radiation direction R) in a plane whose normal is the optical axis.
  • a polarization component having a vibration direction orthogonal to the polarization component (a polarization component having a vibration direction in the circumferential direction 0 around the normal).
  • the phase difference between mutually orthogonal polarization components generated due to the crystal transmission member formed of the crystalline material for example, due to the birefringence of the fluorite lens formed of fluorite
  • the phase difference between the generated R-polarized component and the zero-polarized component is determined by the action of a phase correction member such as a plane parallel plate formed of a uniaxial crystal (the position between the R-polarized component and the zero-polarized component). (Operation of giving a phase difference).
  • the effect of birefringence can be reduced favorably by the use of the phase correction member, and the effect of birefringence is substantially reduced Receiving Good optical performance can be ensured without breaking.
  • the uniaxial crystal parallel plate is formed so that its optical axis substantially coincides with the optical axis of the optical system.
  • FIG. 5 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111].
  • FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100].
  • Fig. 7 shows the crystal axis
  • FIG. 3 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens of [1 1 1] and a fluorite pair lens of a crystal axis [100].
  • the birefringence of the fluorite pair lens with the crystal axis [100] is This indicates that the birefringence distribution has a slow axis in the circumferential direction and a fast axis in the radial direction.
  • the fluorite pair lens of the crystal axis [1 1 1] and the fluorite pair lens of the crystal axis [100] are used. It can be seen that the effect of birefringence caused by the fluorite lens can be favorably reduced by the combination with the stone base lens.
  • FIG. 8 is a diagram showing a phase map at a pupil of a projection optical system including a parallel plane plate formed of a positive uniaxial crystal (hereinafter, referred to as “positive uniaxial crystal parallel plane plate”).
  • FIG. 9 shows a plane-parallel plate made of a negative uniaxial crystal (hereinafter referred to as “negative uniaxial connection”).
  • FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a crystal parallel plane plate.
  • FIG. 10 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111] and a negative uniaxial crystal parallel plane plate.
  • FIG. 11 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [100] and a positive uniaxial crystal parallel plane plate.
  • the negative uniaxial crystal for example as crystal (S i 0 2) and Raikafu (L i C a A 1 F 6), the refractive index and No for ordinary, the refractive index for the extraordinary light and Ne When Ne ⁇ ⁇ No is satisfied.
  • a positive uniaxial crystal satisfies Ne> No, for example, magnesium fluoride (MgF 2 ).
  • Negative uniaxial crystal less light is transmitted with a wavelength of size less than 200 nm, Raikafu (L i C aA l F 6 ) is its leading candidate.
  • the projection optical system including the positive uniaxial crystal parallel plane plate has the same structure as the projection optical system including the fluorite pair lens with the crystal axis [111]. It can be seen that a birefringent distribution having a fast axis in the circumferential direction and a slow axis in the radial direction is generated by the action of the positive uniaxial crystal parallel plane plate.
  • the crystal axis in the case of a projection optical system including a negative uniaxial crystal parallel plane plate, the crystal axis
  • the birefringence has a slow axis in the circumferential direction and a fast axis in the radial direction due to the action of the negative uniaxial crystal parallel plane plate. It can be seen that a folding distribution occurs.
  • the crystal axis [111] and the negative uniaxial crystal parallel plane plate As in the case of combining the fluorite pair lens of [111] and the fluorite pair lens of the crystal axis [100], the effect of the birefringence caused by the fluorite lens can be reduced well.
  • the crystal axis [1 1 1] This is very advantageous because it can achieve the same effect as the combination of a fluorite pair lens and a fluorite pair lens with a crystal axis of [100].
  • the internal distortion of the fluorite lens can be kept small, and its workability is also improved.
  • the crystal axis [100] by combining a fluorite pair lens with a crystal axis [100] and a positive uniaxial crystal parallel plane plate, the crystal axis [100] It can be seen that the effect of the birefringence caused by the fluorite lens can be reduced favorably, as in the case of combining the fluorite pair lens with the fluorite pair lens with the crystal axis [11 1]. Further, although not shown in the drawings, the present invention has a birefringence distribution similar to that of the fluorite pair lens having the crystal axis [111], and the negative uniaxial crystal parallel to the fluorite bay lens having the crystal axis [110].
  • the effect of birefringence caused by the fluorite lens can be reduced in the same way as when the fluorite pair lens with the crystal axis [1 10] and the fluorite pair lens with the crystal axis [100] are combined. Good reduction can be achieved.
  • FIG. 12 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system according to the embodiment of the present invention.
  • the Z axis is parallel to the optical axis AX of the projection optical system PL
  • the Y axis is parallel to the plane of FIG. 12 in the plane perpendicular to the optical axis AX
  • the plane is perpendicular to the optical axis AX.
  • the X axis is set perpendicular to the paper of Fig. 12.
  • a light source LS for supplying illumination light in the ultraviolet region for example, includes a A r F excimer laser primary light source (wavelength 193 nm) or F 2 laser primary light source (wavelength 157 nm) ing.
  • the light emitted from the light source LS illuminates a reticle (mask) R on which a predetermined pattern is formed, via an illumination optical system IL.
  • the optical path between the light source LS and the illumination optical system IL is sealed by casing (not shown), and the space from the light source LS to the optical member closest to the reticle side in the illumination optical system IL is exposed. It has been replaced with an inert gas such as helium gas or nitrogen, which has a low light absorption rate, or has been maintained in a nearly vacuum state.
  • the reticle R is held parallel to the XY plane on the reticle stage RS via a reticle holder RH.
  • a pattern to be transferred is formed on the reticle R. For example, a rectangular pattern region having a long side along the X direction and a short side along the Y direction in the entire pattern region is illuminated.
  • the reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. And the position is controlled.
  • a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL.
  • the wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R.
  • a pattern image is formed on the substrate.
  • the wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. It is configured to be measured and position controlled.
  • the projection optical system PL is disposed between the optical member arranged closest to the reticle side and the optical member arranged closest to the edge side of the optical members constituting the projection optical system PL.
  • the inside of the projection optical system PL is configured to maintain an airtight state, and the gas inside the projection optical system PL is replaced with an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
  • a reticle R and a reticle stage RS are disposed in a narrow optical path between the illumination optical system IL and the projection optical system PL, but a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. ) Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state.
  • an inert gas such as nitrogen or helium gas
  • the wafer W and wafer stage WS are arranged.
  • An inert gas such as nitrogen or helium gas is filled in a casing (not shown) that hermetically surrounds the throat, or is maintained in a substantially vacuum state.
  • an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source LS to the wafer W.
  • the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area) defined by the projection optical system PL are rectangular with short sides along the Y direction. Therefore, while controlling the position of reticle R and wafer W using a drive system and an interferometer (RIF, WIF), etc., the reticle stage along the short side direction of the rectangular exposure area and illumination area, that is, along the Y direction.
  • RIF interferometer
  • the wafer W has a width equal to the long side of the exposure area and the wafer W A reticle pattern is scanned and exposed in an area having a length corresponding to the scanning amount (moving amount).
  • the reticle R pattern is sequentially formed on each exposure area of the wafer W by performing the batch exposure while controlling the wafer W two-dimensionally in a plane orthogonal to the optical axis AX of the projection optical system PL. Exposed.
  • FIG. 13 is a diagram schematically showing a configuration of a projection optical system according to Example 1 of the present embodiment.
  • the projection optical system of the first embodiment includes a refraction-type first imaging optical system G for forming a first intermediate image of a pattern of a reticle R disposed on a first surface.
  • a first optical path bending mirror Ml is arranged near the position where the first intermediate image formed by the first imaging optical system G1 is formed. The first optical path bending mirror Ml deflects the light beam toward the first intermediate image or the light beam from the first intermediate image toward the catadioptric second imaging optical system G2.
  • the second imaging optical system G2 has a concave reflecting mirror CM and two negative lenses, and based on the light flux from the first intermediate image, a second intermediate image (first An image of the intermediate image (a secondary image of the pattern) is formed near the formation position of the first intermediate image.
  • a second optical path bending mirror M2 is arranged near the position where the second intermediate image formed by the second imaging optical system G2 is formed.
  • the second optical path bending mirror M2 deflects the light beam toward the second intermediate image or the light beam from the second intermediate image toward the refraction type third imaging optical system G3.
  • the reflecting surface of the first optical path bending mirror M1 and the reflecting surface of the second optical path bending mirror M2 are positioned so as not to spatially overlap.
  • the third imaging optical system G3 converts a reduced image of the reticle R pattern (the image of the second intermediate image and the final image of the projection optical system) based on the light flux from the second intermediate image, It is formed on the wafer W arranged on the second surface.
  • the first imaging optical system G1 has an optical axis AX1 extending linearly
  • the third imaging optical system G3 has an optical axis AX3 extending linearly
  • the optical axis AX1 And the optical axis AX3 are set so as to coincide with the reference optical axis AX which is a common single optical axis.
  • the second imaging optical system G2 also has a linearly extending optical axis AX2, and this optical axis AX2 is set to be orthogonal to the reference optical axis AX.
  • both the first optical path bending mirror Ml and the second optical path bending mirror M2 have a planar reflecting surface, and are integrally formed as one optical member (one optical path bending mirror) having two reflecting surfaces. It is configured.
  • the line of intersection of these two reflecting surfaces is AX 1 of the first imaging optical system G 1, AX 2 of the second imaging optical system G 2, and third imaging It is set to intersect AX 3 of optical system G 3 at one point.
  • the projection optical system according to the first embodiment includes one concave reflecting mirror CM, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set.
  • This is a three-time imaging type catadioptric optical system that forms a first intermediate image and a second intermediate image of the reticle R.
  • the concave reflecting mirror CM is disposed in an optical path between the first intermediate image and the second intermediate image, and is a reciprocating beam through which light traveling toward the concave reflecting mirror CM and light reflected from the concave reflecting mirror CM pass. An optical path is formed.
  • the concave reflecting mirror CM is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
  • the projection optical system of each embodiment including the first embodiment is an optical system that is almost telecentric on both the reticle R side (first surface side) and the wafer W side (second surface side).
  • a telecentric optical system on both sides, even if there is a slight misalignment in the position of the reticle R (object position) or the position of the wafer W (image position) along the optical axis direction, An image can be formed at a magnification, and no image displacement occurs in a direction perpendicular to the optical axis.
  • the phase correction member PC 0304142 is an optical system that is almost telecentric on both the reticle R side (first surface side) and the wafer W side (second surface side).
  • the phase correction member PC is arranged near the reticle R in the optical path between the reticle and the first imaging optical system G1. More specifically, all the fluorite lenses constituting the projection optical system are formed such that the crystal axis [111] and the optical axes (AX1 to AX3) are almost coincident.
  • the phase correction member PC is a plane parallel plate made of a negative uniaxial crystal such as crystal (Si 2 ) or Leicauff (LiCaA 1 F 6 ) (ie, a negative uniaxial crystal parallel plane).
  • the optical axis is formed so as to substantially coincide with the optical axis AX1 of the first imaging optical system G1.
  • the influence of the birefringence of the fluorite lens constituting the projection optical system is caused by the phase difference imparting action of the phase correcting member PC formed of the negative uniaxial crystal parallel plane plate.
  • the phase difference is adjusted according to the incident angle in the phase correction member PC using a uniaxial crystal, the phase correction member placed near the reticle R (first surface) in the telecentric projection optical system on both sides
  • the phase difference in the pupil can be corrected uniformly over the entire area of the visual field.
  • the optical axis of the phase correction member PC is not formed so as to substantially coincide with the optical axis of the optical system.
  • the optical axes of all the fluorite lenses need not be substantially coincident with the crystal axis [111], but may be substantially coincident with the crystal axis [100] or the crystal axis [1 10].
  • the phase correction member PC is formed of a negative uniaxial crystal or a positive uniaxial crystal as necessary.
  • the relationship between the crystal axis orientation of the fluorite lens and the characteristics of the phase correction member PC is the same in each of the following examples and modifications.
  • FIG. 14 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the first embodiment.
  • FIG. 15 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the first embodiment.
  • FIG. 16 is a diagram schematically showing a configuration of a projection optical system according to a third modification of the first embodiment.
  • Fig. 17 shows the first implementation TJP03 / 04142
  • FIG. 22 is a drawing schematically showing a configuration of a projection optical system according to a fourth modification of the example.
  • FIG. 18 is a view schematically showing a configuration of a projection optical system according to a fifth modification of the first embodiment.
  • the projection optical systems according to the first to fifth modifications have a configuration similar to that of the projection optical system according to the first embodiment. This is different from the first embodiment.
  • the phase correction member PC is disposed in the optical path between the first imaging optical system G1 and the first optical path bending mirror Ml. .
  • the phase correction member PC is arranged near the formation position of the first intermediate image, that is, near the plane optically conjugate with the reticle R. Therefore, similarly to the first embodiment, the phase difference correction in the pupil is performed over the entire field of view by the action of the phase correction member PC arranged near the optically conjugate surface with the reticle R (first surface). It can be performed evenly over the whole area.
  • the phase correction member PC is arranged near the wafer W in the optical path between the third imaging optical system G3 and the wafer W. Therefore, similarly to the first embodiment, the phase difference correction in the pupil is evenly performed over the entire field of view by the action of the position correction member PC arranged near the wafer W (second surface). It can be carried out.
  • a phase correction member PC is provided in the optical path between the second imaging optical system G2 and the optical path bending mirrors Ml and M2, that is, to the concave reflecting mirror CM. It is arranged in the reciprocating optical path through which the light beam going and the light beam reflected from the concave reflector CM pass.
  • the phase correction member PC in the reciprocating optical path, the correction effect can be enhanced.
  • the concave reflecting mirror CM is used at approximately the same magnification and is arranged at or near the pupil position of the projection optical system, the phase difference correction in the pupil can be performed uniformly over the entire field of view. it can.
  • the phase correction member PC is arranged at or near the pupil position in the optical path of the first imaging optical system G1. In this case, the phase difference in the visual field can be adjusted by the action of the phase correction member PC arranged at or near the pupil position.
  • the phase correction member PC It is arranged at or near the pupil position in the optical path of the system G3.
  • the phase difference in the visual field can be adjusted by the action of the phase correction member PC arranged at or near the pupil position as in the fourth modification.
  • the projection optical system includes only one phase correction member PC.
  • the present invention is not limited to this, and the projection optical system may include a plurality of phase correction members PC. Modifications including are also possible. This is the same in the following embodiments and related modifications.
  • FIG. 19 is a diagram schematically showing a configuration of a projection optical system according to Example 2 of the present embodiment.
  • the projection optical system of the second embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle pattern.
  • the first imaging optical system G1 has a concave reflecting mirror CM and a plurality of lenses, and forms an approximately equal-magnification intermediate image based on the light beam from the reticle R.
  • a first optical path bending mirror M1 is arranged near a position where an intermediate image formed by the first imaging optical system G1 is formed. The first optical path bending mirror M1 deflects the light beam from the intermediate image toward the second optical path bending mirror M2.
  • the second optical path bending mirror M2 deflects the light beam from the intermediate image toward the refraction type second imaging optical system G2.
  • the second imaging optical system G2 forms the final image of the pattern of the reticle R on the wafer W based on the light flux from the intermediate image.
  • the first imaging optical system G1 and the second imaging optical system G2 both have linearly extending optical axes AX1 and AX2, respectively, and the optical axis AX1 and the optical axis AX2 are mutually separated. They are set almost parallel.
  • the projection optical system of the second embodiment includes one concave reflecting mirror CM, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set.
  • This is a double-imaging type catadioptric optical system that forms an intermediate image of the reticle R at the same time.
  • the concave reflector CM is disposed in the optical path between the reticle R and the intermediate image, and forms a reciprocating optical path through which the light beam traveling toward the concave mirror CM and the light beam reflected from the concave mirror CM pass. I have.
  • the optical axes of all the lenses (light transmitting members) constituting the projection optical system and the optical axis of the concave reflecting mirror CM are set substantially parallel to each other.
  • concave reflector C M is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
  • the phase correction member PC is arranged near the reticle R in the optical path between the reticle scale and the first imaging optical system G1
  • the first embodiment As in the example, the phase difference correction in the pupil can be performed uniformly over the entire area in the visual field.
  • FIG. 20 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the second embodiment.
  • FIG. 21 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the second embodiment.
  • the projection optical system according to the first and second modifications of the second embodiment has a configuration similar to that of the projection optical system according to the second embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the second embodiment.
  • a phase shift occurs in a reciprocating optical path through which the light beam traveling toward the concave reflector CM and the light beam reflected from the concave reflector CM pass.
  • phase difference correction in the pupil is performed in the entire field of view! : Can be performed evenly.
  • a position complementing member PC is located near the wafer W in the optical path between the second imaging optical system G2 and the wafer W. Since they are arranged, the phase difference in the pupil can be corrected evenly over the entire field of view.
  • FIG. 22 is a diagram schematically showing a configuration of a projection optical system according to Example 3 of the present embodiment.
  • the projection optical system according to the third embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle pattern.
  • the first imaging optical system G1 has a concave reflecting mirror CM, a plurality of lenses, and a first optical path bending mirror Ml, and forms an approximately equal-magnification intermediate image based on the light beam from the reticle R.
  • a second optical path bending mirror M2 is arranged near a position where an intermediate image formed by the first imaging optical system G1 is formed.
  • the second optical path bending mirror M2 deflects the light beam toward the intermediate image or the light beam from the intermediate image toward the refraction type second imaging optical system G2.
  • the second imaging optical system G 2 is P03 04142
  • the first imaging optical system G1 has an optical axis AX1 bent in an L-shape by a first optical path bending mirror Ml, and the second imaging optical system G2 has a linearly extending optical axis. Has AX 2. Further, the first optical path bending mirror Ml and the second optical path bending mirror M2 both have a planar reflecting surface, and are integrally formed as one optical member (one optical path bending mirror) having two reflecting surfaces. It is configured.
  • the projection optical system according to the third embodiment includes one concave reflecting mirror CM, and is arranged in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set.
  • This is a double-imaging type catadioptric optical system that forms an intermediate image of the reticle R at the same time.
  • the concave reflector CM is disposed in the optical path between the reticle R and the intermediate image, and forms a reciprocating optical path through which the light beam traveling toward the concave reflector CM and the light beam reflected from the concave mirror CM pass. I have.
  • the concave reflecting mirror CM is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
  • the phase correction member PC is arranged near the reticle R in the optical path between the reticle R and the first imaging optical system G1. As in the embodiment and the second embodiment, the phase difference in the pupil can be corrected uniformly over the entire field of view.
  • FIG. 23 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the third embodiment.
  • FIG. 24 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the third embodiment.
  • the projection optical systems of the first modification and the second modification of the third embodiment have a configuration similar to that of the projection optical system of the third embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the third embodiment.
  • the first modified example of the third embodiment as shown in FIG. 23, since the lens is arranged at or near the pupil position in the optical path of the second imaging optical system G2, The phase difference in the visual field can be adjusted by the action of the complementary member PC.
  • the first phase correction member PC1 is disposed near the reticle R, and the second phase correction member PC2 is positioned at or near the pupil position.
  • the phase difference correction in the pupil by the action of the first phase correction member PC 1 The phase difference can be adjusted evenly over the entire area, and the phase difference in the field of view can be adjusted by the operation of the second phase correction member PC2.
  • FIG. 25 is a diagram schematically showing a configuration of a projection optical system according to Example 4 of the present embodiment.
  • the projection optical system of the fourth embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle scale pattern, and a luminous flux from the intermediate image.
  • a refraction-type second imaging optical system G2 for forming a final image of the pattern of the reticle R on the wafer W based on the information.
  • the first imaging optical system G 1 has a concave reflecting mirror CM 1, a convex reflecting mirror CM 2, and a plurality of lenses, and forms an approximately 1 ⁇ intermediate image based on a light beam from the reticle R.
  • the first imaging optical system G1 has a linearly extending optical axis AX1
  • the second imaging optical system G2 has a linearly extending optical axis AX2
  • the optical axis AX1 And the optical axis AX2 are set to coincide with the reference optical axis AX, which is a common single optical axis.
  • the fourth embodiment since all the optical members are arranged along a single linear optical axis, it is very advantageous from the viewpoint of adjusting the optical system.
  • the projection optical system of the fourth embodiment includes one concave reflecting mirror CM1, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set.
  • This is a double-imaging catadioptric optical system that forms an intermediate image of the reticle R.
  • the phase correction member PC is disposed near the reticle R in the optical path between the reticle R and the first imaging optical system G1. Examples As in the third embodiment, the phase difference correction in the pupil can be performed uniformly over the entire field of view.
  • FIG. 26 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fourth embodiment.
  • FIG. 27 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fourth embodiment.
  • the projection optical systems of the first and second modifications of the fourth embodiment have a configuration similar to that of the projection optical system of the fourth embodiment, but the arrangement of a phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the fourth embodiment.
  • the first modified example of the fourth embodiment as shown in FIG. 26, since the lens is arranged at or near the pupil position in the optical path of the second imaging optical system G2, Complement The phase difference in the field of view can be adjusted by the action of the positive member PC.
  • the phase correction member PC is arranged near the wafer W, the phase difference correction in the pupil is performed over the entire field of view. Can be performed equally.
  • FIG. 28 is a diagram schematically showing a configuration of a projection optical system according to Example 5 of the present embodiment.
  • the projection optical system of the fifth embodiment is a refraction type optical system in which all optical members are lenses (light transmitting members), and all the optical members are linear single lenses. It is arranged along the optical axis AX.
  • the phase correction member PC is arranged near the reticle R, the phase difference correction in the pupil is performed in the same manner as in the first to fourth embodiments. Can be performed uniformly over the entire field of view.
  • FIG. 29 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fifth embodiment.
  • FIG. 30 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fifth embodiment.
  • the projection optical systems of the first and second modifications of the fifth embodiment have a configuration similar to that of the projection optical system of the fifth embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the fifth embodiment.
  • the first modified example of the fifth embodiment as shown in FIG. 29, since it is arranged at or near the pupil position of the optical system, the position within the visual field is obtained by the action of the phase correction member PC. The phase difference can be adjusted.
  • the second modification of the fifth embodiment as shown in FIG. 30, since the phase correction member PC is arranged near the wafer W, the phase difference correction in the pupil is performed over the entire field of view. Can be performed evenly over
  • fluorite is used as the birefringent optical material.
  • the present invention is not limited to this.
  • barium fluoride (BaF 2 ) may be used.
  • the crystal axis orientation such as barium fluoride (B a F 2) are also determined in accordance with the onset bright.
  • the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step).
  • micro devices semiconductor elements, Imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.
  • FIG. 1 An example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment will be described with reference to the flowchart of FIG. This will be described with reference to FIG.
  • a metal film is deposited on one lot of wafers.
  • a photoresist is applied on the metal film on the wafer of the lot.
  • an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system.
  • step 304 after developing the photoresist on the one lot of wafers, in step 305, etching is performed on the one lot of wafers by using the resist pattern as a mask.
  • a circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
  • a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like.
  • a semiconductor device manufacturing method a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput.
  • steps 301 to 305 a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed.
  • a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
  • a liquid crystal display element as a microdepth can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate).
  • a predetermined pattern circuit pattern, electrode pattern, etc.
  • a plate glass substrate.
  • a so-called optical liquid crystal is used to transfer and expose a mask pattern onto a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. The process is executed.
  • a photosensitive substrate eg, a glass substrate coated with a resist
  • a predetermined pattern including a large number of electrodes and the like is formed. Thereafter, the exposed substrate is subjected to various processes such as an imaging process, an etching process, and a resist stripping process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402. I do.
  • a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or , G, B are formed as a color filter in which a plurality of sets of three stripe filters are arranged in the horizontal scanning line direction.
  • a cell assembling step 403 is performed.
  • the liquid crystal is formed by using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the panel (liquid crystal cell).
  • a liquid crystal is placed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. To produce a liquid crystal panel (liquid crystal cell).
  • a module assembling step 404 components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element.
  • the present invention is applied to the projection optical system mounted on the exposure apparatus.
  • the present invention is not limited to this, and may be applied to other general projection optical systems. Can also be applied.
  • the present invention is not limited to this, but using a 1 9 3 nm A r F excimer one The primary light source or 1 5 7 nm F 2 laser primary light sources you supplying wavelength light supplying wave wavelength light of,
  • the present invention is not limited to this.
  • another appropriate light source that supplies light having a wavelength of 200 nm or less can be used.
  • a crystal transmission member such as a fluorite lens constituting a projection optical system is formed by a phase difference imparting action of a phase correction member formed of a parallel plane plate formed of a uniaxial crystal.
  • the effect of birefringence can be reduced favorably, and a projection optical system having good optical performance substantially without being affected by birefringence can be realized.
  • the exposure apparatus and the exposure method using the projection optical system of the present invention having good optical performance substantially without being affected by birefringence, high-resolution and high-precision projection exposure is performed. be able to. Further, by using an exposure apparatus equipped with the projection optical system of the present invention, a good microphone opening device can be manufactured by high-precision projection exposure through a high-resolution projection optical system.

Abstract

An projection optical system having good optical features without being substantially affected by double refraction even when a crystal material showing an intrinsic double refraction such as fluorite is used. The projection optical system includes a crystal transmitting member formed of a crystal material to form an image on a first plane (R) onto a second plane (W). A light transmitting phase correcting member (PC) is provided for correcting the phase difference between mutually orthogonal polarization components produced due to a crystal transmitting member. The phase correcting member is formed of a uniaxial crystal with its optical axis almost agreeing with the optical axis (AX1) of an optical system.

Description

明 細 書 投影光学系、 露光装置および露光方法 技術分野  Description Projection optical system, exposure apparatus and exposure method
本発明は、 投影光学系、 露光装置および露光方法に関し、 特に半導体素子や液 晶表示素子などのマイクロデバイスをフォトリソグラフィ工程で製造する際に使 用される露光装置に好適な投影光学系に関するものである。 背景技術  The present invention relates to a projection optical system, an exposure apparatus, and an exposure method, and more particularly to a projection optical system suitable for an exposure apparatus used when a micro device such as a semiconductor element or a liquid crystal display element is manufactured in a photolithography process. It is. Background art
半導体集積回路や液晶ディスプレイ等の電子デバイス (マイクロデバイス) の 微細パターンの形成に際して、 形成すべきパターンを 4〜 5倍程度に比例拡大し て描画したフォトマスク (レチクルとも呼ぶ) のパターンを、 投影露光装置を用 いてウェハ等の感光性基板 (被露光基板) 上に縮小露光転写する方法が用いられ ている。 この種の投影露光装置では、 半導体集積回路の微細化に対応するために、 その露光波長が短波長側へシフトし続けている。  When forming micropatterns for electronic devices (microdevices) such as semiconductor integrated circuits and liquid crystal displays, the pattern of the photomask (also referred to as a reticle) drawn by enlarging the pattern to be formed by about 4 to 5 times is projected. A method of reducing exposure transfer onto a photosensitive substrate (substrate to be exposed) such as a wafer using an exposure apparatus is used. In this type of projection exposure apparatus, the exposure wavelength keeps shifting to shorter wavelengths in order to cope with miniaturization of semiconductor integrated circuits.
現在、 露光波長は K r Fエキシマレ一ザ一の 2 4 8 n mが主流となっているが、 より短波長の A r Fエキシマレーザーの 1 9 3 n mも実用化段階に入りつつある。 さらに、 波長 1 5 7 n mの F 2レーザーや波長 1 4 6 n mの K r 2レーザ一、 波 長 1 2 6 n mの A r 2レ一ザ一等の、 いわゆる真空紫外域と呼ばれる波長帯の光 を供給する光源を使用する投影露光装置の提案も行なわれている。 また、 投影光 学系の大開口数 (NA) 化によっても高解像度化が可能であるため、 露光波長の 短波長化のための開発だけでなく、 より大きい開口数を有する投影光学系の開発 もなされている。 At present, the exposure wavelength of the KrF excimer laser is 248 nm, but the shorter wavelength of the ArF excimer laser, 193 nm, is entering the stage of practical use. Further, the wavelength 1 5 7 nm of F 2 laser and the wavelength 1 4 6 nm of K r 2 laser and foremost, the wave length 1 2 6 nm of A r 2, single The first class, the wavelength band so-called vacuum ultraviolet region A projection exposure apparatus using a light source for supplying light has also been proposed. In addition, since higher resolution can be achieved by increasing the numerical aperture (NA) of the projection optical system, not only development for shortening the exposure wavelength, but also development of a projection optical system with a larger numerical aperture Has also been made.
このように波長の短い紫外域の露光光に対しては、 透過率や均一性の良好な光 学材料 (レンズ材料) は限定される。 A r Fエキシマレ一ザ一を光源とする投影 光学系では、 レンズ材料として合成石英ガラスも使用可能であるが、 1種類のレ ンズ材料では色収差の補正を十分に行うことができないので、 一部のレンズにフ ッ化カルシウム結晶 (蛍石) が用いられる。 一方、 F 2レーザーを光源とする投 影光学系では、 使用可能なレンズ材料は実質上フッ化カルシウム結晶 (蛍石) に 限定される。 Optical materials (lens materials) with good transmittance and uniformity for exposure light in the ultraviolet region having such a short wavelength are limited. In a projection optical system that uses an ArF excimer laser as a light source, synthetic quartz glass can be used as a lens material, but chromatic aberration cannot be sufficiently corrected with one type of lens material. Lens Calcium iodide crystals (fluorite) are used. On the other hand, the projecting projection optical system as a light source an F 2 laser, the lens material available is limited to substantially calcium fluoride crystal (fluorite).
最近、 このように波長の短い紫外線に対しては、 立方晶系に属する結晶材料で あるフッ化カルシウム結晶 (蛍石) においても、 固有複屈折が存在することが報 告されている。 電子デバイスの製造に用いられる投影光学系のような超高精度の 光学系においては、 レンズ材料の複屈折に伴って生じる収差は致命的であり、 複 屈折の影響を実質的に回避したレンズ構成およびレンズ設計の採用が不可欠であ る。  Recently, it has been reported that intrinsic birefringence exists for calcium fluoride crystal (fluorite), which is a crystal material belonging to the cubic system, for ultraviolet rays having such a short wavelength. In an ultra-high-precision optical system such as a projection optical system used in the manufacture of electronic devices, aberrations caused by the birefringence of the lens material are fatal, and a lens configuration that substantially avoids the effects of birefringence It is essential to adopt lens design.
本発明は、 前述の課題に鑑みてなされたものであり、 たとえば蛍石のような固 有複屈折を示す結晶材料を用いても、 複屈折の影響を実質的に受けることなく良 好な光学性能を有する投影光学系を提供することを目的とする。 また、 本発明で は、 複屈折の影響を実質的に受けることなく良好な光学性能を有する投影光学系 を用いて、 高解像で高精度な投影露光を行うことのできる露光装置および露光方 法を提供することを目的とする。 発明の開示  The present invention has been made in view of the above-mentioned problems. For example, even when a crystalline material having intrinsic birefringence such as fluorite is used, good optical properties are obtained without substantially being affected by birefringence. It is an object to provide a projection optical system having high performance. Further, according to the present invention, there is provided an exposure apparatus and an exposure method capable of performing high-resolution and high-accuracy projection exposure using a projection optical system having good optical performance substantially without being affected by birefringence. The purpose is to provide the law. Disclosure of the invention
前記課題を解決するために、 本発明の第 1発明では、 結晶材料で形成された結 晶透過部材を含み、 第 1面の像を第 2面に形成する投影光学系において、 前記結晶透過部材に起因して発生する互いに直交する偏光成分の間の位相差を 補正するための光透過性の位相補正部材を備えていることを特徴とする投影光学 系を提供する。 なお、 互いに直交する偏光成分としては、 光軸を法線とする面内 において上記法線を含む方向 (放射方向 R) に振動する R偏光成分と、 当該 R偏 光成分と直交した振動方向を持つ Θ偏光成分 (上記法線を軸とした円周方向 0に 振動方向を有する偏光成分) とを採用することが好ましい。  According to a first aspect of the present invention, there is provided a projection optical system that includes a crystal transmission member formed of a crystalline material and forms an image of a first surface on a second surface. The present invention provides a projection optical system including a light transmissive phase correcting member for correcting a phase difference between mutually orthogonal polarization components generated due to the above. As the polarization components orthogonal to each other, the R polarization component oscillating in the direction including the above normal line (radiation direction R) in the plane with the optical axis as the normal line, and the oscillation direction orthogonal to the R polarization component are considered. It is preferable to employ a polarized light component (a polarized light component having a vibration direction in the circumferential direction 0 around the normal line).
第 1発明の好ましい態様によれば、 前記位相補正部材は、 一軸性結晶で形成さ れ且つその光学軸が光学系の光軸とほぼ一致するように形成されている。 また、 前記結晶透過部材は、 蛍石 (C a F 2) で形成され、 結晶軸 [ 1 1 1 ] または該 結晶軸 [11 1] と光学的に等価な結晶軸と光学系の光軸とがほぼ一致するよう に形成された一対の光透過部材を有し、 前記位相補正部材は、 常光に対する屈折 率を Noとし、 異常光に対する屈折率を Neとするとき、 Ne<Noを満足する 負の一軸性結晶で形成され且つその光学軸が前記光軸とほぼ一致するように形成 されている。 According to a preferred aspect of the first invention, the phase correction member is formed of a uniaxial crystal and has an optical axis substantially coincident with an optical axis of an optical system. Further, the crystal transmission member is formed of fluorite (C a F 2 ) and has a crystal axis [111] or the crystal axis [111]. A pair of light transmitting members formed so that a crystal axis optically equivalent to the crystal axis [11 1] and an optical axis of the optical system substantially coincide with each other; and the phase correction member has a refractive index with respect to ordinary light. When No is defined and Ne is the refractive index with respect to extraordinary light, it is formed of a negative uniaxial crystal satisfying Ne <No, and is formed so that its optical axis substantially coincides with the optical axis.
あるいは、 前記結晶透過部材のすベては、 蛍石 (C aF2) で形成され、 結晶 軸 [1 1 1] または該結晶軸 [11 1] と光学的に等価な結晶軸と光学系の光軸 とがほぼ一致するように形成され、 前記位相補正部材は、 常光に対する屈折率を Noとし、 異常光に対する屈折率を Neとするとき、 Ne<Noを満足する負の 一軸性結晶で形成され且つその光学軸が前記光軸とほぼ一致するように形成され ていることが好ましい。 なお、 前記負の一軸性結晶は、 水晶 (S i〇2) または ライカフ (L i C aA l F6) であることが好ましい。 Alternatively, all of the crystal transmission members are formed of fluorite (C aF 2 ), and the crystal axis [11 1] or a crystal axis optically equivalent to the crystal axis [11 1] and the optical system When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is formed of a negative uniaxial crystal that satisfies Ne <No. It is preferable that the optical axis is formed so as to substantially coincide with the optical axis. It is preferable that the negative uniaxial crystal is quartz (Si 2 ) or Leicauff (LiCaAlF 6 ).
あるいは、 前記結晶透過部材は、 蛍石 (C aF2) で形成され、 結晶軸 [10 0] または該結晶軸 [100] と光学的に等価な結晶軸と光学系の光軸とがほぼ 一致するように形成された一対の光透過部材を有し、 前記位相補正部材は、 常光 に対する屈折率を Noとし、 異常光に対する屈折率を Neとするとき、 Ne>N oを満足する正の一軸性結晶で形成され且つその光学軸が前記光軸とほぼ一致す るように形成されていることが好ましい。 なお、 前記正の一軸性結晶は、 フッ化 マグネシウム (MgF2) であることが好ましい。 Alternatively, the crystal transmission member is made of fluorite (CaF 2 ), and the crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] substantially coincides with the optical axis of the optical system. When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is a positive uniaxial member that satisfies Ne> No. It is preferable that the optical axis is formed of a crystalline crystal and that its optical axis substantially coincides with the optical axis. Preferably, the positive uniaxial crystal is magnesium fluoride (MgF 2 ).
あるいは、 前記結晶透過部材は、 蛍石 (C aF2) で形成され、 結晶軸 [ 1 1 0] または該結晶軸 [1 10] と光学的に等価な結晶軸と光学系の光軸とがほぼ 一致するように形成された一対の光透過部材を有し、 前記位相補正部材は、 常光 に対する屈折率を Noとし、 異常光に対する屈折率を Neとするとき、 Ne<N oを満足する負の一軸性結晶で形成され且つその光学軸が前記光軸とほぼ一致す るように形成されていることが好ましい。 なお、 前記負の一軸性結晶は、 水晶 (S i 02) またはライカフ (L i C aA 1 F6) であることが好ましい。 Alternatively, the crystal transmission member is formed of fluorite (CaF 2 ), and the crystal axis [110] or a crystal axis optically equivalent to the crystal axis [110] and the optical axis of the optical system are different. The phase correction member has a pair of light transmitting members formed so as to substantially coincide with each other. When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, a negative value satisfying Ne <No is satisfied. It is preferable that the optical axis is formed of a uniaxial crystal and that its optical axis substantially coincides with the optical axis. Incidentally, the negative uniaxial crystal is preferably a crystal (S i 0 2) or Raikafu (L i C aA 1 F 6 ).
また、 第 1発明の好ましい態様によれば、 前記位相補正部材は、 前記第 1面の 近傍、 前記第 2面の近傍、 あるいは前記第 1面と光学的に共役な面の近傍に配置 されている。 また、 前記位相補正部材は、 光学系の瞳位置またはその近傍に配置 されていることが好ましい。 なお、 前記位相補正部材は、 前記第 1面と前記第 2 面との間の距離を Lとし、 前記第 1面、 前記第 2面、 前記第 1面と光学的に共役 な面、 または前記瞳位置から前記位相補正部材までの距離を Dとするとき、 I D Z L I≤0 . 1 5を満足するように配置されることが好ましい。 さらに、 前記位 相補正部材を複数個備えていることが好ましい。 According to a preferred aspect of the first invention, the phase correction member is disposed near the first surface, near the second surface, or near a surface optically conjugate with the first surface. Have been. Further, it is preferable that the phase correction member is arranged at a pupil position of the optical system or in the vicinity thereof. Note that, in the phase correction member, the distance between the first surface and the second surface is L, the first surface, the second surface, a surface optically conjugate with the first surface, or Assuming that the distance from the pupil position to the phase correction member is D, the arrangement is preferably such that IDZLI ≦ 0.15 is satisfied. Further, it is preferable that a plurality of the phase correction members are provided.
さらに、 第 1発明の好ましい態様によれば、 少なくとも 1つの凹面反射鏡をさ らに備え、 前記凹面反射鏡は、 前記凹面反射鏡へ向かう光線と前記凹面反射鏡か ら反射される光線とが通過する往復光路を形成し、 前記位相補正部材は、 前記往 復光路中に配置されている。 この場合、 前記凹面反射鏡は、 ほぼ等倍に用いられ、 且つ光学系の瞳位置またはその近傍に配置されていることが好ましい。  Further, according to a preferred aspect of the first invention, at least one concave reflecting mirror is further provided, wherein the concave reflecting mirror is configured such that a light beam traveling toward the concave reflecting mirror and a light beam reflected from the concave reflecting mirror are formed. A reciprocating optical path that passes therethrough is formed, and the phase correction member is disposed in the forward and backward optical paths. In this case, it is preferable that the concave reflecting mirror is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
前記投影光学系は、 前記第 1面と前記第 2面との間の光路中に前記第 1面の中 間像を形成する再結像光学系であり、 前記位相補正部材は、 前記中間像の形成位 置の近傍に配置されている。 また、 前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間の光路中に前記第 1面の中間像を形成する 2回結 像型の反射屈折光学系であり、 前記凹面反射鏡は、 前記第 1面と前記中間像との 間の光路中に配置されていることが好ましい。  The projection optical system is a re-imaging optical system that forms an intermediate image of the first surface in an optical path between the first surface and the second surface, and the phase correction member includes the intermediate image. It is located near the formation position of. Further, the projection optical system includes one concave reflecting mirror, and forms a double-image catadioptric refraction that forms an intermediate image of the first surface in an optical path between the first surface and the second surface. It is an optical system, and it is preferable that the concave reflecting mirror is disposed in an optical path between the first surface and the intermediate image.
あるいは、 前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間の光路中に前記第 1面の中間像を形成する 2回結像型の反射屈折光学 系であり、 前記投影光学系を構成するすべての光透過部材の光軸および前記凹面 反射鏡の光軸は、 互いにほぼ平行に設定されていることが好ましい。 あるいは、 前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間の 光路中に前記第 1面の第 1中間像および第 2中間像を形成する 3回結像型の反射 屈折光学系であり、 前記凹面反射鏡は、 前記第 1中間像と前記第 2中間像との間 の光路中に配置されていることが好ましい。  Alternatively, the projection optical system includes one concave reflecting mirror, and forms an intermediate image of the first surface in an optical path between the first surface and the second surface. It is an optical system, and it is preferable that the optical axes of all the light transmitting members and the concave reflecting mirror that constitute the projection optical system are set substantially parallel to each other. Alternatively, the projection optical system includes one concave reflecting mirror, and forms a first intermediate image and a second intermediate image of the first surface in an optical path between the first surface and the second surface. It is a reflection-refractive optical system of the image forming type, and it is preferable that the concave reflecting mirror is arranged in an optical path between the first intermediate image and the second intermediate image.
また、 第 1発明の好ましい態様によれば、 前記投影光学系を構成するすべての 光学部材は、 光透過部材である。 また、 前記投影光学系は、 直線状に延びる単一 光軸を有し、 前記投影光学系を構成するすべての光学部材は、 その光軸が前記単 一光軸とほぼ一致するように配置されていることが好ましい。 さらに、 前記投影 光学系は、 前記第 1面側および前記第 2面側の双方にほぼテレセントリックな光 学系であり、 前記位相補正部材は、 一軸性結晶で形成され且つその光学軸が光学 系の光軸とほぼ一致するように形成され、 平行平面状の形態を有することが好ま しい。 また、 2 0 0 n m以下の波長を有する光に基づいて前記第 1面の像を前記 第 2面に形成することが好ましい。 Further, according to a preferred aspect of the first invention, all optical members constituting the projection optical system are light transmitting members. Further, the projection optical system has a single optical axis extending linearly, and all the optical members constituting the projection optical system have the optical axis of the single optical axis. It is preferable that they are arranged so as to substantially coincide with one optical axis. Further, the projection optical system is an optical system that is substantially telecentric on both the first surface side and the second surface side, and the phase correction member is formed of a uniaxial crystal and has an optical axis that is an optical system. It is preferable that it is formed so as to substantially coincide with the optical axis and has a parallel plane shape. Further, it is preferable that an image of the first surface is formed on the second surface based on light having a wavelength of 200 nm or less.
本発明の第 2発明では、 前記第 1面に設定されたマスクを照明するための照明 系と、 前記マスクに形成されたパターンの像を前記第 2面に設定された感光性基 板上に形成するための第 1発明の投影光学系とを備えていることを特徴とする露 光装置を提供する。  In the second invention of the present invention, an illumination system for illuminating the mask set on the first surface, and an image of a pattern formed on the mask is placed on a photosensitive substrate set on the second surface. There is provided an exposure apparatus comprising the projection optical system according to the first invention for forming.
本発明の第 3発明では、 前記第 1面に設定されたマスクを照明し、 第 1発明の 投影光学系を介して前記マスクに形成されたパターンの像を前記第 2面に設定さ れた感光性基板上に投影露光することを特徴とする露光方法を提供する。 図面の簡単な説明  In the third invention of the present invention, the mask set on the first surface is illuminated, and the image of the pattern formed on the mask is set on the second surface via the projection optical system of the first invention. An exposure method is provided, which comprises projecting and exposing on a photosensitive substrate. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 蛍石の結晶軸方位について説明する図である。  FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite.
第 2 A図〜第 2 C図は、 Burnet t らの手法を説明する図であって、 光線の入射 角に対する複屈折率の分布を示している。  2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light beam.
第 3 A図〜第 3 C図は、 本発明において提案する第 1手法を説明する図であつ て、 光線の入射角に対する複屈折率の分布を示している。  FIGS. 3A to 3C are diagrams for explaining the first method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
第 4 A図〜第 4 C図は、 本発明において提案する第 2手法を説明する図であつ て、 光線の入射角に対する複屈折率の分布を示している。  FIGS. 4A to 4C are diagrams for explaining the second method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam.
第 5図は、 結晶軸 [ 1 1 1 ] の蛍石ペアレンズを含む投影光学系の瞳での位相 マップを示す図である。  FIG. 5 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [111].
第 6図は、 結晶軸 [ 1 0 0 ] の蛍石ペアレンズを含む投影光学系の瞳での位相 マップを示す図である。  FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100].
第 7図は、 結晶軸 [ 1 1 1 ] の蛍石ペアレンズと結晶軸 [ 1 0 0 ] の蛍石ペア を含む投影光学系の瞳での位相マップを示す図である。 第 8図は、 正の一軸性結晶で形成された平行平面板を含む投影光学系の瞳での 位相マップを示す図である。 FIG. 7 is a diagram showing a phase map at the pupil of the projection optical system including the fluorite pair lens with the crystal axis [111] and the fluorite pair with the crystal axis [100]. FIG. 8 is a diagram showing a phase map at a pupil of a projection optical system including a plane-parallel plate formed of a positive uniaxial crystal.
第 9図は、 負の一軸性結晶で形成された平行平面板を含む投影光学系の瞳での 位相マップを示す図である。  FIG. 9 is a diagram showing a phase map at a pupil of a projection optical system including a plane-parallel plate formed of a negative uniaxial crystal.
第 1 0図は、 結晶軸 [ 1 1 1 ] の蛍石ペアレンズと負の一軸性結晶で形成され た平行平面板とを含む投影光学系の瞳での位相マップを示す図である。  FIG. 10 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111] and a plane-parallel plate formed of a negative uniaxial crystal.
第 1 1図は、 結晶軸 [ 1 0 0 ] の蛍石ペアレンズと正の一軸性結晶で形成され た平行平面板とを含む投影光学系の瞳での位相マップを示す図である。  FIG. 11 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100] and a plane-parallel plate formed of a positive uniaxial crystal.
第 1 2図は、 本発明の実施形態にかかる投影光学系を備えた露光装置の構成を 概略的に示す図である。  FIG. 12 is a view schematically showing a configuration of an exposure apparatus having a projection optical system according to an embodiment of the present invention.
第 1 3図は、 本実施形態の第 1実施例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 13 is a diagram schematically showing a configuration of a projection optical system according to Example 1 of the present embodiment.
第 1 4図は、 第 1実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 14 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the first embodiment.
第 1 5図は、 第 1実施例の第 2変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 15 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the first embodiment.
第 1 6図は、 第 1実施例の第 3変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 16 is a diagram schematically showing a configuration of a projection optical system according to a third modification of the first embodiment.
第 1 7図は、 第 1実施例の第 4変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 17 is a diagram schematically showing a configuration of a projection optical system according to a fourth modification of the first embodiment.
第 1 8図は、 第 1実施例の第 5変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 18 is a diagram schematically showing a configuration of a projection optical system according to a fifth modification of the first embodiment.
第 1 9図は、 本実施形態の第 2実施例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 19 is a diagram schematically showing a configuration of a projection optical system according to Example 2 of the present embodiment.
第 2 0図は、 第 2実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 20 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the second embodiment.
第 2 1図は、 第 2実施例の第 2変形例にかかる投影光学系の構成を概略的に示 す図である。 2 FIG. 21 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the second embodiment. Two
- 7 - 第 2 2図は、 本実施形態の第 3実施例にかかる投影光学系の構成を概略的に示 す図である。  -7-FIG. 22 is a diagram schematically showing a configuration of a projection optical system according to Example 3 of the present embodiment.
第 2 3図は、 第 3実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 23 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the third embodiment.
第 2 4図は、 第 3実施例の第 2変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 24 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the third embodiment.
第 2 5図は、 本実施形態の第 4実施例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 25 is a diagram schematically showing a configuration of a projection optical system according to Example 4 of the present embodiment.
第 2 6図は、 第 4実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 26 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fourth embodiment.
第 2 7図は、 第 4実施例の第 2変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 27 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fourth embodiment.
第 2 8図は、 本実施形態の第 5実施例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 28 is a diagram schematically showing a configuration of a projection optical system according to Example 5 of the present embodiment.
第 2 9図は、 第 5実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 29 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fifth embodiment.
第 3 0図は、 第 5実施例の第 2変形例にかかる投影光学系の構成を概略的に示 す図である。  FIG. 30 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fifth embodiment.
第 3 1図は、 マイクロデバイスとしての半導体デバイスを得る際の手法のフロ 一チャートである。  FIG. 31 is a flowchart of a method for obtaining a semiconductor device as a micro device.
第 3 2図は、 マイクロデバイスとしての液晶表示素子を得る際の手法のフロー チヤ一卜である。 発明を実施するための最良の形態  FIG. 32 is a flowchart of a method for obtaining a liquid crystal display element as a micro device. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 蛍石の結晶軸方位について説明する図である。 第 1図を参照すると、 蛍石の結晶軸は、 立方晶系の X Y Z座標系に基づいて規定される。 すなわち、 + X軸に沿って結晶軸 [ 1 0 0 ] が、 + Y軸に沿って結晶軸 [ 0 1 0 ] が、 + Z軸 に沿って結晶軸 [ 0 0 1 ] がそれぞれ規定される。 また、 XZ平面において結晶軸 [100] および結晶軸 [001] と 45度を なす方向に結晶軸 [101] が、 XY平面において結晶軸 [100] および結晶 軸 [010] と 45度をなす方向に結晶軸 [1 10] が、 YZ平面において結晶 軸 [010] および結晶軸 [001] と 45度をなす方向に結晶軸 [01 1] が それぞれ規定される。 さらに、 +X軸、 +Y軸および +Z軸に対して等しい鋭角 をなす方向に結晶軸 [1 1 1] が規定される。 FIG. 1 is a diagram for explaining the crystal axis orientation of fluorite. Referring to FIG. 1, the crystal axis of fluorite is defined based on a cubic XYZ coordinate system. That is, the crystal axis [100] is defined along the + X axis, the crystal axis [010] is defined along the + Y axis, and the crystal axis [001] is defined along the + Z axis. . In addition, the crystal axis [101] is in a direction at 45 degrees to the crystal axis [100] and the crystal axis [001] in the XZ plane, and the direction is 45 degrees to the crystal axis [100] and the crystal axis [010] in the XY plane. The crystal axis [1 10] is defined in the YZ plane, and the crystal axis [01 1] is defined in a direction forming 45 degrees with the crystal axis [010] and the crystal axis [001] in the YZ plane. Furthermore, the crystal axis [1 1 1] is defined in a direction that forms an equal acute angle to the + X axis, the + Y axis, and the + Z axis.
なお、 第 1図では、 +X軸、 +Y軸および +Z軸で規定される空間における結 晶軸のみを図示しているが、 他の空間においても同様に結晶軸が規定される。 蛍 石では、 第 1図中実線で示す結晶軸 [1 1 1] 方向、 およびこれと等価な不図示 の結晶軸 [一 1 1 1], [1 - 1 1], [1 1一 1] 方向では、 複屈折がほぼ零 (最 小) である。 同様に、 第 1図中実線で示す結晶軸 [100], [010], [00 Although FIG. 1 shows only the crystal axis in the space defined by the + X axis, + Y axis, and + Z axis, the crystal axis is similarly defined in other spaces. In the case of fluorite, the direction of the crystal axis [1 1 1] shown by the solid line in Fig. 1 and the equivalent crystal axes [1 1 1 1], [1-1 1], [1 1 1 1] In the direction, the birefringence is almost zero (minimum). Similarly, the crystal axes indicated by solid lines in FIG. 1 [100], [010], [00]
1] 方向においても、 複屈折がほぼ零 (最小) である。 一方、 第 1図中破線で示 す結晶軸 [1 10], [10 1], [01 1], およびこれと等価な不図示の結晶軸In the 1] direction, birefringence is almost zero (minimum). On the other hand, the crystal axes [1 10], [10 1], [01 1] indicated by broken lines in FIG.
[一 1 10], [一 1 01], [01— 1] 方向では、 複屈折が最大である。 In the [1-110], [1-101], and [01-1] directions, the birefringence is maximum.
ところで、 2001年 5月 15日に開かれたリソグラフィに関するシンポジュ ゥム (2nd International Symposium on 157nm Lithography) において、 米国 N By the way, at the 2nd International Symposium on 157nm Lithography (May 15, 2001)
I S Tの John H. Burnett らにより、 蛍石には固有複屈折 (intrinsic birefringence) が存在することを実験および理論の両面から確認したことが発 表された。 この発表によれば、 蛍石は、 結晶軸 [1 10], [- 1 10], [10John H. Burnett et al. Of IST reported that both empirical and theoretical studies have confirmed the existence of intrinsic birefringence in fluorite. According to this announcement, fluorite has crystal axes [1 10], [-1 10], [10
1], [- 101], [01 1], [01 - 1] の 6方向において、 波長 157 nmの 光に対して最大で 6. 5 nmZcm、 波長 193 nmの光に対して最大で 3. 6 nm/c mの複屈折の値を有する。 これらの複屈折の値はランダムな複屈折の許 容値とされる 1 nm/ cmよりも実質的に大きい値であり、 しかもランダムでな い分だけ複数のレンズを通して複屈折の影響が蓄積する可能性がある。 1], [-101], [01 1], and [01-1] in the six directions, a maximum of 6.5 nmZcm for light with a wavelength of 157 nm, and a maximum of 3. It has a value of birefringence of 6 nm / cm. These birefringence values are substantially larger than the permissible value of random birefringence of 1 nm / cm, and the effect of birefringence accumulates through multiple lenses to the extent that it is not random. there is a possibility.
Burnett らは、 上述の発表において、 複屈折の影響を低減する手法を開示して いる。 第 2 A図〜第 2 C図は、 Burnett らの手法を説明する図であって、 光線の 入射角 (光線と光軸とのなす角度) に対する複屈折率の分布を示している。 第 2 A図〜第 2 C図では、 図中破線で示す 5つの同心円が 1目盛り 10度を表してい る。 したがって、 最も内側の円が光軸に対して入射角 10度の領域を、 最も外側 の円が光軸に対して入射角 50度の領域を表している。 Burnett et al. In the above-mentioned presentation disclosed a method for reducing the effects of birefringence. 2A to 2C are diagrams for explaining the method of Burnett et al., And show the distribution of the birefringence index with respect to the incident angle of a light ray (the angle between the light ray and the optical axis). In Figs.2A to 2C, five concentric circles indicated by broken lines in the figure represent 10 degrees on one scale. You. Therefore, the innermost circle represents a region with an incident angle of 10 degrees with respect to the optical axis, and the outermost circle represents a region with an incident angle of 50 degrees with respect to the optical axis.
また、 黒丸は比較的大きな屈折率を有する複屈折のない領域を、 白丸は比較的 小さな屈折率を有する複屈折のない領域を表している。 一方、 太い円および長い 両矢印は複屈折のある領域における比較的大きな屈折率の方向を、 細い円および 短い両矢印は複屈折のある領域における比較的小さな屈折率の方向を表している。 以降の第 3 A図〜第 3 C図においても、 上述の表記は同様である。  A black circle indicates a region having a relatively large refractive index and no birefringence, and a white circle indicates a region having a relatively small refractive index and no birefringence. On the other hand, a thick circle and a long double arrow indicate the direction of a relatively large refractive index in a birefringent area, and a thin circle and a short double arrow indicate a relatively small refractive index direction in a birefringent area. The following notation is the same in FIGS. 3A to 3C below.
Burnett らの手法では、 一対の蛍石レンズ (蛍石で形成されたレンズ) の光軸 と結晶軸 [1 1 1] (または該結晶軸 [1 1 1] と光学的に等価な結晶軸) とを 一致させ、 且つ光軸を中心として一対の蛍石レンズを 60度だけ相対的に回転さ せる。 したがって、 一方の蛍石レンズにおける複屈折率の分布は第 2 A図に示す ようになり、 他方の蛍石レンズにおける複屈折率の分布は第 2 B図に示すように なる。 その結果、 一対の蛍石レンズ全体における複屈折率の分布は、 第 2 C図に 示すようになる。  In the method of Burnett et al., The optical axis and crystal axis [1 1 1] of a pair of fluorite lenses (a lens formed of fluorite) (or a crystal axis optically equivalent to the crystal axis [1 1 1]) And a pair of fluorite lenses are relatively rotated about the optical axis by 60 degrees. Therefore, the distribution of birefringence in one fluorite lens is as shown in FIG. 2A, and the distribution of birefringence in the other fluorite lens is as shown in FIG. 2B. As a result, the distribution of birefringence in the entire pair of fluorite lenses is as shown in FIG. 2C.
この場合、 第 2 A図および第 2 B図を参照すると、 光軸と一致している結晶軸 [11 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のない領域と なる。 また、 結晶軸 [100], [010], [001] に対応する領域は、 比較的 大きな屈折率を有する複屈折のない領域となる。 さらに、 結晶軸 [1 10], [1 01], [01 1] に対応する領域は、 周方向の偏光に対する屈折率が比較的小さ く径方向の偏光に対する屈折率が比較的大きい複屈折領域となる。 このように、 個々の蛍石レンズでは、 光軸から 35. 26度 (結晶軸 [1 1 1] と結晶軸 [1 10] とのなす角度) の領域において、 複屈折の影響を最大に受けることがわか る。  In this case, referring to FIGS. 2A and 2B, the region corresponding to the crystal axis [11 1] coincident with the optical axis is a region having a relatively small refractive index and no birefringence. The regions corresponding to the crystal axes [100], [010], and [001] are regions having a relatively large refractive index and no birefringence. Further, the regions corresponding to the crystal axes [1 10], [101], [01 1] are birefringent regions having a relatively small refractive index for circumferentially polarized light and a relatively large refractive index for radially polarized light. Becomes Thus, each fluorite lens is maximally affected by birefringence in the range of 35.26 degrees from the optical axis (the angle between the crystal axis [1 1 1] and the crystal axis [1 10]). You can see.
一方、 第 2 C図を参照すると、 一対の蛍石レンズを 60度だけ相対的に回転さ せることにより、 一対の蛍石レンズ全体では、 複屈折が最大である結晶軸 [1 1 0], [101], [01 1] の影響が薄められることがわかる。 そして、 光軸から 35. 26度の領域において、 径方向の偏光に対する屈折率よりも周方向の偏光 に対する屈折率が小さい複屈折領域が残ることになる。 換言すれば、 Burnett ら の手法を用いることにより、 光軸に関して回転対称な分布が残るが、 複屈折の影 響をかなり低減することができる。 On the other hand, referring to FIG. 2C, by rotating the pair of fluorite lenses relatively by 60 degrees, the crystal axis [1 110], It can be seen that the effects of [101] and [01 1] are reduced. Then, in a region at 35.26 degrees from the optical axis, a birefringent region having a smaller refractive index for circumferentially polarized light than that for radially polarized light remains. In other words, Burnett et al. By using this method, the distribution that is rotationally symmetric with respect to the optical axis remains, but the effect of birefringence can be significantly reduced.
また、 本発明において提案する第 1手法では、 一対の蛍石レンズ (一般には蛍 石で形成された透過部材) の光軸と結晶軸 [ 1 00] (または該結晶軸 [ 1 0 0] と光学的に等価な結晶軸) とを一致させ、 且つ光軸を中心として一対の蛍石 レンズを約 45度だけ相対的に回転させる。 ここで、 結晶軸 [100] と光学的 に等価な結晶軸とは、 結晶軸 [010], [001] である。  In the first method proposed in the present invention, the optical axis and the crystal axis [100] (or the crystal axis [100]) of a pair of fluorite lenses (generally, a transmission member formed of fluorite) are used. And a pair of fluorite lenses are relatively rotated about the optical axis by about 45 degrees. Here, the crystal axes that are optically equivalent to the crystal axis [100] are the crystal axes [010] and [001].
第 3 A図〜第 3 C図は、 本発明において提案する第 1手法を説明する図であつ て、 光線の入射角 (光線と光軸とのなす角度) に対する複屈折率の分布を示して いる。 本発明において提案する第 1手法では、 一方の蛍石レンズにおける複屈折 率の分布は第 3 A図に示すようになり、 他方の蛍石レンズにおける複屈折率の分 布は第 3 B図に示すようになる。 その結果、 一対の蛍石レンズ全体における複屈 折率の分布は、 第 3 C図に示すようになる。  FIGS. 3A to 3C are diagrams for explaining the first method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light ray (the angle between the light ray and the optical axis). I have. In the first method proposed in the present invention, the distribution of the birefringence in one fluorite lens is as shown in FIG. 3A, and the distribution of the birefringence in the other fluorite lens is in FIG. 3B. As shown. As a result, the distribution of the birefringence of the entire pair of fluorite lenses is as shown in FIG. 3C.
第 3 A図および第 3 B図を参照すると、 本発明において提案する第 1手法では、 光軸と一致している結晶軸 [100] に対応する領域は、 比較的大きな屈折率を 有する複屈折のない領域となる。 また、 結晶軸 [1 1 1], [1— 11], [一 1 1 - 1], [1 1 - 1] に対応する領域は、 比較的小さな屈折率を有する複屈折のな い領域となる。 さらに、 結晶軸 [101], [10- 1], [1 10], [1 - 10] に対応する領域は、 周方向の偏光に対する屈折率が比較的大きく径方向の偏光に 対する屈折率が比較的小さい複屈折領域となる。 このように、 個々の蛍石レンズ では、 光軸から 45度 (結晶軸 [100] と結晶軸 [101] とのなす角度) の 領域において、 複屈折率の影響を最大に受けることがわかる。  Referring to FIGS. 3A and 3B, in the first method proposed in the present invention, the region corresponding to the crystal axis [100] coinciding with the optical axis has a birefringence having a relatively large refractive index. It is an area without. The regions corresponding to the crystal axes [1 1 1], [1-11], [1-1 1-1], [1 1-1] are the regions with relatively small refractive index and no birefringence. Become. Furthermore, the regions corresponding to the crystal axes [101], [10-1], [1 10], [1-10] have relatively large refractive indices for circumferentially polarized light and have relatively large refractive indices for radially polarized light. This results in a relatively small birefringent region. Thus, it can be seen that the individual fluorite lenses are most affected by the birefringence in the range of 45 degrees from the optical axis (the angle between the crystal axis [100] and the crystal axis [101]).
一方、 第 3 C図を参照すると、 一対の蛍石レンズを 45度だけ相対的に回転さ せることにより、 一対の蛍石レンズ全体では、 複屈折が最大である結晶軸 [10 1], [10- 1], [1 10], [1 _ 10] の影響がかなり薄められ、 光軸から 4 5度の領域において径方向の偏光に対する屈折率よりも周方向の偏光に対する屈 折率が大きい複屈折領域が残ることになる。 換言すれば、 本発明において提案す る第 1手法を用いることにより、 光軸に関して回転対称な分布が残るが、 複屈折 の影響をかなり低減することができる。 On the other hand, referring to FIG. 3C, by rotating the pair of fluorite lenses relatively by 45 degrees, the crystal axes of the pair of fluorite lenses having the maximum birefringence [10 1], [ The effects of 10-1], [1 10], and [1 _ 10] are considerably reduced, and the refractive index for circumferentially polarized light is larger than that for radially polarized light in the region at 45 degrees from the optical axis. A birefringent region will remain. In other words, by using the first method proposed in the present invention, a distribution which is rotationally symmetric with respect to the optical axis remains, Can be significantly reduced.
なお、 本発明において提案する第 1手法において、 一方の蛍石レンズと他方の 蛍石レンズとを光軸を中心として約 45度だけ相対的に回転させるとは、 一方の 蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所 定の結晶軸 (たとえば結晶軸 [0 1 0], [00 1], [0 1 1] または [0 1— 1]) 同士の光軸を中心とした相対的な角度が約 45度であることを意味する。 具体的には、 たとえば一方の蛍石レンズにおける結晶軸 [010] と、 他方の蛍 石レンズにおける結晶軸 [010] との光軸を中心とした相対的な角度が約 45 度であることを意味する。  In the first method proposed in the present invention, to relatively rotate one fluorite lens and the other fluorite lens about the optical axis by about 45 degrees means that one fluorite lens and the other fluorite lens A predetermined crystal axis (eg, crystal axis [0 1 0], [00 1], [0 1 1] or [0 1–1]) oriented in a different direction from the optical axis of the fluorite lens Means about 45 degrees relative to. Specifically, for example, the relative angle of the crystal axis [010] of one fluorite lens and the crystal axis [010] of the other fluorite lens about the optical axis is about 45 degrees. means.
また、 第.3 A図および第 3 B図からも明らかな通り、 結晶軸 [100] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 90度の周期 で現れる。 したがって、 本発明において提案する第 1手法において、 光軸を中心 として約 45度だけ相対的に回転させるということは、 光軸を中心として約 45 度 + (nX 90度) だけ相対的に回転させること、 すなわち 45度、 135度、 225度、 または 315度 · · ·だけ相対的に回転させることと同じ意味である (ここで、 nは整数である)。  In addition, as is clear from FIGS. 3A and 3B, when the crystal axis [100] is used as the optical axis, the rotational asymmetry of the effect of birefringence around the optical axis is 90 degrees. Appears with a period. Therefore, in the first method proposed in the present invention, relatively rotating about the optical axis by about 45 degrees means that relatively rotating about the optical axis is about 45 degrees + (nX 90 degrees). This is equivalent to rotating relatively by 45 degrees, 135 degrees, 225 degrees, or 315 degrees (where n is an integer).
一方、 Burnett らの手法において、 一方の蛍石レンズと他方の蛍石レンズとを 光軸を中心として約 60度だけ相対的に回転させるとは、 一方の蛍石レンズおよ び他方の蛍石レンズにおける光軸とは異なる方向に向けられる所定の結晶軸 (た とえば結晶軸 [— 11 1]、 [1 1 - 1], または [1一 1 1]) 同士の光軸を中心 とした相対的な角度が約 60度であることを意味する。 具体的には、 たとえば一 方の蛍石レンズにおける結晶軸 [— 1 11] と、 他方の蛍石レンズにおける結晶 軸 [一 1 1 1] との光軸を中心とした相対的な角度が約 60度であることを意味 する。  On the other hand, in the method of Burnett et al., Rotating one fluorite lens and the other fluorite lens relatively by about 60 degrees about the optical axis means that one fluorite lens and the other fluorite lens A predetermined crystal axis oriented in a direction different from the optical axis of the lens (for example, the crystal axis [—11 1], [11-1], or [1 1 1 1]) This means that the relative angle is about 60 degrees. Specifically, for example, the relative angle of the crystal axis [—111] of one fluorite lens and the crystal axis [111] of the other fluorite lens about the optical axis is about Means 60 degrees.
また、 第 2 A図および第 2B図からも明らかな通り、 結晶軸 [1 1 1] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 120度の周 期で現れる。 したがって、 Burnett らの手法において、 光軸を中心として約 60 度だけ相対的に回転させるということは、 光軸を中心として約 60度 + (nX l 20度) だけ相対的に回転させること、 すなわち 60度、 180度、 または 30 0度 · · 'だけ相対的に回転させることと同じ意味である (ここで、 nは整数で ある)。 Also, as is clear from FIGS. 2A and 2B, when the crystal axis [1 1 1] is the optical axis, the rotational asymmetry of the effect of birefringence around the optical axis is 120 degrees. Appears periodically. Therefore, in the method of Burnett et al., Relative rotation about the optical axis by about 60 degrees is equivalent to about 60 degrees + (nXl (20 degrees) is equivalent to rotating relatively by 60 degrees, 180 degrees, or 300 degrees (where n is an integer).
また、 本発明において提案する第 2手法では、 一対の蛍石レンズ (一般には蛍 石で形成された透過部材) の光軸と結晶軸 [1 1 0] (または該結晶軸 [ 1 1 0] と光学的に等価な結晶軸) とを一致させ、 且つ光軸を中心として一対の蛍石 レンズを約 90度だけ相対的に回転させる。 ここで、 結晶軸 [1 10] と光学的 に等価な結晶軸とは、 結晶軸 [一 1 10], [10 1], [ - 10 1], [0 1 1], [01 - 1] である。  In the second method proposed in the present invention, the optical axis and the crystal axis [110] (or the crystal axis [110]) of a pair of fluorite lenses (generally, a transmission member formed of fluorite) are used. And a pair of fluorite lenses are relatively rotated about the optical axis by about 90 degrees. Here, the crystal axis that is optically equivalent to the crystal axis [1 10] is the crystal axis [1-110], [10 1], [-101], [0 1 1], [01-1] It is.
第 4 A図〜第 4 C図は、 本発明において提案する第 2手法を説明する図であつ て、 光線の入射角に対する複屈折率の分布を示している。 本発明において提案す る第 2手法では、 一方の蛍石レンズにおける複屈折率の分布は第 4 A図に示すよ うになり、 他方の蛍石レンズにおける複屈折率の分布は第 4 B図に示すようにな る。 その結果、 一対の蛍石レンズ全体における複屈折率の分布は、 第 4 C図に示 すようになる。  FIGS. 4A to 4C are diagrams for explaining the second method proposed in the present invention, and show the distribution of the birefringence index with respect to the incident angle of a light beam. In the second method proposed in the present invention, the distribution of birefringence in one fluorite lens is as shown in FIG. 4A, and the distribution of birefringence in the other fluorite lens is in FIG. 4B. As shown. As a result, the distribution of the birefringence indices in the entire pair of fluorite lenses is as shown in FIG. 4C.
第 4 A図および第 4 B図を参照すると、 本発明において提案する第 2手法では、 光軸と一致している結晶軸 [1 10] に対応する領域は、 一方の方向の偏光に対 する屈折率が比較的大きく他方の方向 (一方の方向に直交する方向) の偏光に対 する屈折率が比較的小さい複屈折領域となる。 結晶軸 [100], [0 10] に対 応する領域は、 比較的大きな屈折率を有する複屈折のない領域となる。 さらに、 結晶軸 [1 1 1], [1 1— 1] に対応する領域は、 比較的小さな屈折率を有する 複屈折のない領域となる。  Referring to FIGS. 4A and 4B, in the second method proposed in the present invention, the region corresponding to the crystal axis [1 10] which is coincident with the optical axis corresponds to the polarization in one direction. The birefringence region has a relatively large refractive index and a relatively small refractive index for polarized light in the other direction (a direction orthogonal to one direction). The region corresponding to the crystal axes [100] and [0 10] is a region with a relatively large refractive index and no birefringence. Furthermore, the region corresponding to the crystal axes [1 1 1] and [1 1 1] is a region with a relatively small refractive index and no birefringence.
一方、 第 4C図を参照すると、 一対の蛍石レンズを 90度だけ相対的に回転さ せることにより、 一対の蛍石レンズ全体では、 複屈折が最大である結晶軸 [11 0] の影響がほとんどなく、 光軸付近は中間的な屈折率を有する複屈折のない領 域となる。 すなわち、 本発明において提案する第 2手法を用いることにより、 複 屈折の影響を実質的に受けることなく、 良好な結像性能を確保することができる なお、 本発明において提案する第 2手法において、 一方の蛍石レンズと他方の 蛍石レンズとを光軸を中心として約 90度だけ相対的に回転させるとは、 一方の 蛍石レンズおよび他方の蛍石レンズにおける光軸とは異なる方向に向けられる所 定の結晶軸 (たとえば結晶軸 [001]、 [— 1 1 1]、 [— 1 10]、 または [1 一 1 1]) 同士の光軸を中心とした相対的な角度が約 90度であることを意味す る。 具体的には、 たとえば一方の蛍石レンズにおける結晶軸 [001] と、 他方 の蛍石レンズにおける結晶軸 [001] との光軸を中心とした相対的な角度が約 90度であることを意味する。 On the other hand, referring to FIG. 4C, by rotating the pair of fluorite lenses relative to each other by 90 degrees, the influence of the crystal axis [110] where the birefringence is the maximum in the pair of fluorite lenses as a whole is reduced. Nearly, there is no birefringence near the optical axis with an intermediate refractive index. That is, by using the second method proposed in the present invention, good imaging performance can be secured without being substantially affected by birefringence.In the second method proposed in the present invention, One fluorite lens and the other The relative rotation of the fluorite lens by about 90 degrees about the optical axis means that a given crystal axis oriented in a direction different from the optical axis of one fluorite lens and the other fluorite lens (eg, Means that the relative angle of the crystal axes [001], [—1 1 1], [—1 10], or [1 1 1 1]) around the optical axis is about 90 degrees . Specifically, for example, the relative angle about the optical axis between the crystal axis [001] of one fluorite lens and the crystal axis [001] of the other fluorite lens is about 90 degrees. means.
また、 第 4A図および第 4B図からも明らかな通り、 結晶軸 [110] を光軸 とする場合には、 光軸を中心とした複屈折の影響の回転非対称性が 180度の周 期で現れる。 したがって、 本発明において提案する第 2手法において、 光軸を中 心として約 90度だけ相対的に回転させるということは、 光軸を中心としてほぼ 90度+ (nX 180度) だけ相対的に回転させること、 すなわち 90度、 27 0度 ' · 'だけ相対的に回転させることと同じ意味である (ここで、 nは整数で あるノ。  In addition, as is clear from FIGS. 4A and 4B, when the crystal axis [110] is used as the optical axis, the rotational asymmetry of the effect of the birefringence around the optical axis becomes 180 degrees. appear. Therefore, in the second method proposed in the present invention, relatively rotating about the optical axis by about 90 degrees means relatively rotating about the optical axis by about 90 degrees + (nX 180 degrees). Has the same meaning as rotating by 90 degrees and 270 degrees '·' (where n is an integer.
上述の説明の通り、 一対の蛍石レンズの光軸と結晶軸 [1 1 1] とを一致させ、 且つ光軸を中心として一対の蛍石レンズを 60度だけ相対的に回転させることに より、 あるいは一対の蛍石レンズの光軸と結晶軸 [100] とを一致させ、 且つ 光軸を中心として一対の蛍石レンズを 45度だけ相対的に回転させることにより、 あるいは一対の蛍石レンズの光軸と結晶軸 [1 10] とを一致させ、 且つ光軸を 中心として一対の蛍石レンズを 90度だけ相対的に回転させることにより、 複屈 折の影響をかなり低減することができる。  As described above, by aligning the optical axis of the pair of fluorite lenses with the crystal axis [1 1 1] and rotating the pair of fluorite lenses relatively by 60 degrees about the optical axis, Or by aligning the optical axis of the pair of fluorite lenses with the crystal axis [100] and relatively rotating the pair of fluorite lenses by 45 degrees about the optical axis, or the pair of fluorite lenses The effect of birefringence can be significantly reduced by aligning the optical axis of the fluorite with the crystal axis [1 10] and rotating the pair of fluorite lenses relatively by 90 degrees about the optical axis. .
ここで、 一対の蛍石レンズの光軸と結晶軸 [1 1 1] とを一致させて 60度相 対回転させたときに残存する回転対称な分布と、 一対の蛍石レンズの光軸と結晶 軸 [100] とを一致させて 45度相対回転させたときに残存する回転対称な分 布とは逆向きである。 換言すれば、 光軸と結晶軸 [1 11] とを一致させて 60 度相対回転させた一対の蛍石レンズ (以下、 「結晶軸 [1 1 1] の蛍石ペアレン ズ」 という) における進相軸と、 結晶軸 [100] とを一致させて 45度相対回 転させた一対の蛍石レンズ (以下、 「結晶軸 [100] の蛍石ペアレンズ」 とい う) における進相軸とは直交する。 Here, a rotationally symmetric distribution remaining when the optical axis of the pair of fluorite lenses and the crystal axis [1 1 1] are matched and rotated by 60 degrees, and the optical axis of the pair of fluorite lenses It is opposite to the rotationally symmetric distribution that remains when the crystal axis [100] is aligned and rotated 45 degrees relative to each other. In other words, the progression of a pair of fluorite lenses (hereinafter, referred to as “fluorite parent lens of crystal axis [11 1]) whose optical axis and crystal axis [1 11] are aligned and rotated relative to each other by 60 degrees. A pair of fluorite lenses with the phase axis aligned with the crystal axis [100] and rotated relative to each other by 45 degrees (hereinafter referred to as “fluorite pair lens with crystal axis [100]”) U) is orthogonal to the fast axis.
さらに別の表現をすれば、 結晶軸 [100] の蛍石ペアレンズでは径方向に進 相軸がある複屈折分布が残り、 結晶軸 [1 1 1] の蛍石ペアレンズでは周方向に 進相軸がある複屈折分布が残る。 なお、 試料に複屈折が存在する場合、 屈折率の 差により当該試料を通過する振動面 (偏光面) の直交した 2つの直線偏光の光の 位相が変化する。 すなわち一方の偏光に対して他方の偏光の位相が進んだり遅れ たりすることになるが、 位相が進む方の偏光方向を進相軸と呼び、 位相が遅れる 方の偏光方向を遅相軸と呼ぶ。  In other words, birefringence distribution with a fast axis in the radial direction remains in the fluorite pair lens with the crystal axis [100], and advances in the circumferential direction with the fluorite pair lens with the crystal axis [1 1 1]. A birefringent distribution with a phase axis remains. When birefringence exists in a sample, the phase of two linearly polarized lights orthogonal to the vibrating plane (polarization plane) passing through the sample changes due to the difference in the refractive index. In other words, the phase of one polarized light will lead or lag the other, but the polarization direction of the one with the leading phase is called the fast axis, and the polarization direction of the one with the late phase is called the slow axis. .
こうして、 一対の蛍石レンズの光軸と結晶軸 [1 1 1] とを一致させて 60度 相対回転させた結晶軸 [1 1 1] の蛍石ペアレンズと、 一対の蛍石レンズの光軸 と結晶軸 [100] とを一致させて 45度相対回転させた結晶軸 [100] の蛍 石ペアレンズとの組み合わせにより、 複屈折の影響をさらに良好に低減すること ができることがわかる。 ■  Thus, the optical axis of the pair of fluorite lenses and the crystal axis [1 1 1] are matched and the fluorite pair lens of the crystal axis [1 1 1] is rotated by 60 degrees and the light of the pair of fluorite lenses is rotated. It can be seen that the effect of the birefringence can be further reduced by combining the fluorite pair lens with the crystal axis [100] rotated by 45 degrees with the axis coincident with the crystal axis [100]. ■
ところで、 ライカフ (L i C aA l F6) や水晶 (S i 02) やフッ化マグネ シゥム (MgF2) のような一軸性結晶で形成された平行平面板 (以下、 「一軸 性結晶平行平面板」 という) は、 互いに直交する偏光成分の間に位相差を付与す るという特性を有する。 換言すれば、 一軸性結晶平行平面板を光が透過すると、 たとえば光軸を法線とする面内においてこの法線を含む方向 (放射方向 R) に振 動する R偏光成分と、 R偏光成分と直交した振動方向を持 偏光成分 (上記法 線を軸とした円周方向 0に振動方向を有する偏光成分) との間に位相差が付与さ れる。 Incidentally, Raikafu (L i C aA l F 6 ) and crystal (S i 0 2) and fluoride magnesite Shiumu (MgF 2) uniaxial parallel plane plate formed of crystals such as (hereinafter, "uniaxial crystal parallel A flat plate has the property of providing a phase difference between polarization components orthogonal to each other. In other words, when light passes through the uniaxial crystal parallel plane plate, for example, an R-polarized component and an R-polarized component that oscillate in a direction including the normal (radiation direction R) in a plane whose normal is the optical axis. And a polarization component having a vibration direction orthogonal to the polarization component (a polarization component having a vibration direction in the circumferential direction 0 around the normal).
そこで、 本発明では、 結晶材料で形成された結晶透過部材に起因して発生する 互いに直交する偏光成分の間の位相差、 たとえば蛍石で形成された蛍石レンズの 複屈折性に起因して発生する R偏光成分と 0偏光成分との間の位相差を、 たとえ ば一軸性結晶で形成された平行平面板のような位相補正部材の作用 (R偏光成分 と 0偏光成分との間に位相差を付与する作用) により補正する。 その結果、 本発 明では、 たとえば複数の蛍石レンズを含む投影光学系の場合、 位相補正部材の作 用により複屈折の影響を良好に低減することができ、 複屈折の影響を実質的に受 けることなく良好な光学性能を確保することができる。 なお、 一軸性結晶平行平 面板は、 その光学軸が光学系の光軸とほぼ一致するように形成されていることが 好ましい。 この構成により、 光学系の瞳において光軸に関して回転対称な位相差 を付与することができ、 たとえば蛍石レンズの複屈折の影響を良好に低減するこ とができる。 Therefore, in the present invention, the phase difference between mutually orthogonal polarization components generated due to the crystal transmission member formed of the crystalline material, for example, due to the birefringence of the fluorite lens formed of fluorite The phase difference between the generated R-polarized component and the zero-polarized component is determined by the action of a phase correction member such as a plane parallel plate formed of a uniaxial crystal (the position between the R-polarized component and the zero-polarized component). (Operation of giving a phase difference). As a result, according to the present invention, for example, in the case of a projection optical system including a plurality of fluorite lenses, the effect of birefringence can be reduced favorably by the use of the phase correction member, and the effect of birefringence is substantially reduced Receiving Good optical performance can be ensured without breaking. In addition, it is preferable that the uniaxial crystal parallel plate is formed so that its optical axis substantially coincides with the optical axis of the optical system. With this configuration, a phase difference that is rotationally symmetric with respect to the optical axis can be provided in the pupil of the optical system, and for example, the influence of the birefringence of the fluorite lens can be favorably reduced.
第 5図は、 結晶軸 [1 11] の蛍石ペアレンズを含む投影光学系の瞳での位相 マップを示す図である。 また、 第 6図は、 結晶軸 [100] の蛍石ペアレンズを 含む投影光学系の瞳での位相マップを示す図である。 さらに、 第 7図は、 結晶軸  FIG. 5 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111]. FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis of [100]. Fig. 7 shows the crystal axis
[1 1 1] の蛍石ペアレンズと結晶軸 [100] の蛍石ペアレンズとを含む投影 光学系の瞳での位相マップを示す図である。  FIG. 3 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens of [1 1 1] and a fluorite pair lens of a crystal axis [100].
第 5図の瞳位相マップを参照すると、 上述したように、 結晶軸 [1 1 1] の蛍 石ペアレンズを含む投影光学系の場合、 結晶軸 [1 1 1] の蛍石ペアレンズの複 屈折に起因して、 周方向に進相軸があり且つ径方向に遅相軸がある複屈折分布に なることがわかる。 一方、 第 6図の瞳位相マップを参照すると、 上述したように、 結晶軸 [100] の蛍石ペアレンズを含む投影光学系の場合、 結晶軸 [100] の蛍石ペアレンズの複屈折に起因して、 周方向に遅相軸があり且つ径方向に進相 軸がある複屈折分布になることがわかる。  Referring to the pupil phase map in FIG. 5, as described above, in the case of the projection optical system including the fluorite pair lens with the crystal axis [111], the complex of the fluorite pair lens with the crystal axis [111] is assumed. It can be seen that birefringence distribution has a fast axis in the circumferential direction and a slow axis in the radial direction due to refraction. On the other hand, referring to the pupil phase map in FIG. 6, as described above, in the projection optical system including the fluorite pair lens with the crystal axis [100], the birefringence of the fluorite pair lens with the crystal axis [100] is This indicates that the birefringence distribution has a slow axis in the circumferential direction and a fast axis in the radial direction.
したがって、 第 7図の瞳位相マップを参照すると、 上述したように、 結晶軸 Therefore, referring to the pupil phase map in FIG. 7, as described above, the crystal axis
[1 1 1] の蛍石ペアレンズと結晶軸 [100] の蛍石ペアレンズとを含む投影 光学系の場合、 結晶軸 [1 1 1] の蛍石ペアレンズと結晶軸 [100] の蛍石べ ァレンズとの組み合わせにより、 蛍石レンズに起因する複屈折の影響を良好に低 減することができることがわかる。 なお、 図示を省略したが、 結晶軸 [1 10] の蛍石ペアレンズを含む投影光学系の場合、 結晶軸 [1 1 1] の蛍石ペアレンズ を含む投影光学系の場合と同様に、 結晶軸 [1 10] の蛍石ペアレンズの複屈折 に起因して、 周方向に進相軸があり且つ径方向に遅相軸がある複屈折分布になる。 第 8図は、 正の一軸性結晶で形成された平行平面板 (以下、 「正の一軸性結晶 平行平面板」 という) を含む投影光学系の瞳での位相マップを示す図である。 ま た、 第 9図は、 負の一軸性結晶で形成された平行平面板 (以下、 「負の一軸性結 晶平行平面板」 という) を含む投影光学系の瞳での位相マップを示す図である。 さらに、 第 10図は、 結晶軸 [1 1 1] の蛍石ペアレンズと負の一軸性結晶平行 平面板とを含む投影光学系の瞳での位相マップを示す図である。 In the case of the projection optical system including the fluorite pair lens of [1 1 1] and the fluorite pair lens of the crystal axis [100], the fluorite pair lens of the crystal axis [1 1 1] and the fluorite pair of the crystal axis [100] are used. It can be seen that the effect of birefringence caused by the fluorite lens can be favorably reduced by the combination with the stone base lens. Although not shown, in the case of the projection optical system including the fluorite pair lens with the crystal axis [1 10], like the projection optical system including the fluorite pair lens with the crystal axis [1 11], Due to the birefringence of the fluorite pair lens with the crystal axis [1 10], the birefringence distribution has a fast axis in the circumferential direction and a slow axis in the radial direction. FIG. 8 is a diagram showing a phase map at a pupil of a projection optical system including a parallel plane plate formed of a positive uniaxial crystal (hereinafter, referred to as “positive uniaxial crystal parallel plane plate”). Fig. 9 shows a plane-parallel plate made of a negative uniaxial crystal (hereinafter referred to as “negative uniaxial connection”). FIG. 6 is a diagram showing a phase map at a pupil of a projection optical system including a crystal parallel plane plate. Further, FIG. 10 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [111] and a negative uniaxial crystal parallel plane plate.
また、 第 1 1図は、 結晶軸 [100] の蛍石ペアレンズと正の一軸性結晶平行 平面板とを含む投影光学系の瞳での位相マップを示す図である。 なお、 負の一軸 性結晶は、 たとえば水晶 (S i 02) やライカフ (L i C a A 1 F6) のように、 常光に対する屈折率を Noとし、 異常光に対する屈折率を Neとするとき、 Ne^ <Noを満足する。 逆に、 正の一軸性結晶は、 たとえばフッ化マグネシウム (M gF2) のように、 Ne>Noを満足する。 200 nm以下の波長を有する光が 透過する負の一軸性結晶は少なく、 ライカフ (L i C aA l F6) はその有力候 補である。 FIG. 11 is a diagram showing a phase map at a pupil of a projection optical system including a fluorite pair lens having a crystal axis [100] and a positive uniaxial crystal parallel plane plate. The negative uniaxial crystal, for example as crystal (S i 0 2) and Raikafu (L i C a A 1 F 6), the refractive index and No for ordinary, the refractive index for the extraordinary light and Ne When Ne ^ <No is satisfied. Conversely, a positive uniaxial crystal satisfies Ne> No, for example, magnesium fluoride (MgF 2 ). Negative uniaxial crystal less light is transmitted with a wavelength of size less than 200 nm, Raikafu (L i C aA l F 6 ) is its leading candidate.
第 8図の瞳位相マップを参照すると、 正の一軸性結晶平行平面板を含む投影光 学系の場合、 結晶軸 [1 1 1] の蛍石ペアレンズを含む投影光学系の場合と同様 に、 正の一軸性結晶平行平面板の作用により、 周方向に進相軸があり且つ径方向 に遅相軸がある複屈折分布が発生することがわかる。 一方、 第 9図の瞳位相マツ プを参照すると、 負の一軸性結晶平行平面板を含む投影光学系の場合、 結晶軸  Referring to the pupil phase map in FIG. 8, the projection optical system including the positive uniaxial crystal parallel plane plate has the same structure as the projection optical system including the fluorite pair lens with the crystal axis [111]. It can be seen that a birefringent distribution having a fast axis in the circumferential direction and a slow axis in the radial direction is generated by the action of the positive uniaxial crystal parallel plane plate. On the other hand, referring to the pupil phase map in FIG. 9, in the case of a projection optical system including a negative uniaxial crystal parallel plane plate, the crystal axis
[100] の蛍石ペアレンズを含む投影光学系の場合と同様に、 負の一軸性結晶 平行平面板の作用により、 周方向に遅相軸があり且つ径方向に進相軸がある複屈 折分布が発生することがわかる。  As in the case of the projection optical system including the [100] fluorite pair lens, the birefringence has a slow axis in the circumferential direction and a fast axis in the radial direction due to the action of the negative uniaxial crystal parallel plane plate. It can be seen that a folding distribution occurs.
したがって、 本発明では、 第 10図の瞳位相マップに示すように、 結晶軸 [1 1 1] の蛍石ペアレンズと負の一軸性結晶平行平面板とを組み合わせることによ り、 結晶軸 [111] の蛍石ペアレンズと結晶軸 [100] の蛍石ペアレンズと を組み合わせた場合と同様に、 蛍石レンズに起因する複屈折の影響を良好に低減 することができることがわかる。 一般に、 光軸と結晶軸 [100] とを一致させ て蛍石レンズを形成する手法はあまり試みられたことがなく、 内部歪を小さく抑 えることが困難であり、 加工性もあまり良くない。  Therefore, in the present invention, as shown in the pupil phase map of FIG. 10, by combining the fluorite pair lens with the crystal axis [111] and the negative uniaxial crystal parallel plane plate, the crystal axis [ As in the case of combining the fluorite pair lens of [111] and the fluorite pair lens of the crystal axis [100], the effect of the birefringence caused by the fluorite lens can be reduced well. In general, there have been few attempts to form a fluorite lens by aligning the optical axis with the crystal axis [100], and it is difficult to reduce internal distortion to a small extent, and the workability is not very good.
この態様では、 内部歪を小さく抑えることが困難で且つ加工性もあまり良くな い結晶軸 [100] の蛍石ペアレンズを使用することなく、 結晶軸 [1 1 1] の 蛍石ペアレンズと結晶軸 [100] の蛍石ペアレンズとの組み合わせによる効果 と同等の効果を得ることができるので、 非常に有利である。 特に、 投影光学系を 構成するすべての蛍石レンズにおいて光軸と結晶軸 [1 1 1] とを一致させ、 こ れらの蛍石レンズと負の一軸性結晶平行平面板とを組み合わせることにより、 蛍 石レンズにおける内部歪を小さく抑えることができ、 その加工性も良好になる。 また、 本発明では、 第 1 1図の瞳位相マップに示すように、 結晶軸 [100] の蛍石ペアレンズと正の一軸性結晶平行平面板とを組み合わせることにより、 結 晶軸 [100] の蛍石ペアレンズと結晶軸 [11 1] の蛍石ペアレンズとを組み 合わせた場合と同様に、 蛍石レンズに起因する複屈折の影響を良好に低減するこ とができることがわかる。 さらに、 本発明では、 図示を省略したが、 結晶軸 [1 1 1] の蛍石ペアレンズと類似の複屈折分布を呈する結晶軸 [1 10] の蛍石べ ァレンズと負の一軸性結晶平行平面板とを組み合わせることにより、 結晶軸 [1 10] の蛍石ペアレンズと結晶軸 [100] の蛍石ペアレンズとを組み合わせた 場合と同様に、 蛍石レンズに起因する複屈折の影響を良好に低減することができ る。 In this embodiment, it is difficult to reduce the internal strain and the workability is not so good. Without using the fluorite pair lens with the crystal axis [100], the crystal axis [1 1 1] This is very advantageous because it can achieve the same effect as the combination of a fluorite pair lens and a fluorite pair lens with a crystal axis of [100]. In particular, by aligning the optical axis with the crystal axis [1 1 1] in all fluorite lenses constituting the projection optical system and combining these fluorite lenses with a negative uniaxial crystal parallel plane plate, However, the internal distortion of the fluorite lens can be kept small, and its workability is also improved. Further, in the present invention, as shown in the pupil phase map of FIG. 11, by combining a fluorite pair lens with a crystal axis [100] and a positive uniaxial crystal parallel plane plate, the crystal axis [100] It can be seen that the effect of the birefringence caused by the fluorite lens can be reduced favorably, as in the case of combining the fluorite pair lens with the fluorite pair lens with the crystal axis [11 1]. Further, although not shown in the drawings, the present invention has a birefringence distribution similar to that of the fluorite pair lens having the crystal axis [111], and the negative uniaxial crystal parallel to the fluorite bay lens having the crystal axis [110]. By combining with a flat plate, the effect of birefringence caused by the fluorite lens can be reduced in the same way as when the fluorite pair lens with the crystal axis [1 10] and the fluorite pair lens with the crystal axis [100] are combined. Good reduction can be achieved.
本発明の実施形態を、 添付図面に基づいて説明する。  An embodiment of the present invention will be described with reference to the accompanying drawings.
第 12図は、 本発明の実施形態にかかる投影光学系を備えた露光装置の構成を 概略的に示す図である。 なお、 第 12図において、 投影光学系 PLの光軸 AXに 平行に Z軸を、 光軸 AXに垂直な面内において第 12図の紙面に平行に Y軸を、 光軸 AXに垂直な面内において第 12図の紙面に垂直に X軸を設定している。 第 12図に示す露光装置は、 紫外領域の照明光を供給するための光源 LSとし て、 たとえば A r Fエキシマレーザ一光源 (波長 193 nm) または F2レーザ 一光源 (波長 157 nm) を備えている。 光源 L Sから射出された光は、 照明光 学系 I Lを介して、 所定のパターンが形成されたレチクル (マスク) Rを照明す る。 なお、 光源 LSと照明光学系 I Lとの間の光路はケ一シング (不図示) で密 封されており、 光源 L Sから照明光学系 I L中の最もレチクル側の光学部材まで の空間は、 露光光の吸収率が低い気体であるヘリウムガスや窒素などの不活性ガ スで置換されているか、 あるいはほぼ真空状態に保持されている。 画 42 FIG. 12 is a diagram schematically showing a configuration of an exposure apparatus including a projection optical system according to the embodiment of the present invention. In FIG. 12, the Z axis is parallel to the optical axis AX of the projection optical system PL, the Y axis is parallel to the plane of FIG. 12 in the plane perpendicular to the optical axis AX, and the plane is perpendicular to the optical axis AX. In Fig. 12, the X axis is set perpendicular to the paper of Fig. 12. The exposure apparatus shown in FIG. 12, as a light source LS for supplying illumination light in the ultraviolet region, for example, includes a A r F excimer laser primary light source (wavelength 193 nm) or F 2 laser primary light source (wavelength 157 nm) ing. The light emitted from the light source LS illuminates a reticle (mask) R on which a predetermined pattern is formed, via an illumination optical system IL. The optical path between the light source LS and the illumination optical system IL is sealed by casing (not shown), and the space from the light source LS to the optical member closest to the reticle side in the illumination optical system IL is exposed. It has been replaced with an inert gas such as helium gas or nitrogen, which has a low light absorption rate, or has been maintained in a nearly vacuum state. Picture 42
- 18 - レチクル Rは、 レチクルホルダ R Hを介して、 レチクルステージ R S上におい て X Y平面に平行に保持されている。 レチクル Rには転写すべきパターンが形成 されており、 たとえばパターン領域全体のうち X方向に沿って長辺を有し且つ Y 方向に沿って短辺を有する矩形状のパターン領域が照明される。 レチクルステ一 ジ R Sは、 図示を省略した駆動系の作用により、 レチクル面 (すなわち X Y平 面) に沿って二次元的に移動可能であり、 その位置座標はレチクル移動鏡 R Mを 用いた干渉計 R I Fによって計測され且つ位置制御されるように構成されている。 レチクル Rに形成されたパターンからの光は、 投影光学系 P Lを介して、 感光 性基板であるウェハ W上にレチクルパターン像を形成する。 ウェハ Wは、 ウェハ テ一ブル (ウェハホルダ) WTを介して、 ウェハステージ W S上において XY平 面に平行に保持されている。 そして、 レチクル R上での矩形状の照明領域に光学 的に対応するように、 ウェハ W上では X方向に沿って長辺を有し且つ Y方向に沿 つて短辺を有する矩形状の露光領域にパターン像が形成される。 ウェハステージ W Sは、 図示を省略した駆動系の作用によりウェハ面 (すなわち X Y平面) に沿 つて二次元的に移動可能であり、 その位置座標はウェハ移動鏡 WMを用いた干渉 計 W I Fによつて計測され且つ位置制御されるように構成されている。  -18-The reticle R is held parallel to the XY plane on the reticle stage RS via a reticle holder RH. A pattern to be transferred is formed on the reticle R. For example, a rectangular pattern region having a long side along the X direction and a short side along the Y direction in the entire pattern region is illuminated. The reticle stage RS can be moved two-dimensionally along the reticle plane (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer RIF using a reticle moving mirror RM. And the position is controlled. Light from the pattern formed on the reticle R forms a reticle pattern image on the wafer W as a photosensitive substrate via the projection optical system PL. The wafer W is held in parallel with the XY plane on the wafer stage WS via a wafer table (wafer holder) WT. Then, on the wafer W, a rectangular exposure area having a long side along the X direction and a short side along the Y direction so as to optically correspond to the rectangular illumination area on the reticle R. A pattern image is formed on the substrate. The wafer stage WS can be moved two-dimensionally along the wafer surface (that is, the XY plane) by the action of a drive system (not shown), and its position coordinates are determined by an interferometer WIF using a wafer moving mirror WM. It is configured to be measured and position controlled.
また、 図示の露光装置では、 投影光学系 P Lを構成する光学部材のうち最もレ チクル側に配置された光学部材と最もゥェ八側に配置された光学部材との間で投 影光学系 P Lの内部が気密状態を保つように構成され、 投影光学系 P Lの内部の 気体はへリウムガスや窒素などの不活性ガスで置換されているか、 あるいはほぼ 真空状態に保持されている。  In the illustrated exposure apparatus, the projection optical system PL is disposed between the optical member arranged closest to the reticle side and the optical member arranged closest to the edge side of the optical members constituting the projection optical system PL. The inside of the projection optical system PL is configured to maintain an airtight state, and the gas inside the projection optical system PL is replaced with an inert gas such as helium gas or nitrogen, or is maintained in a substantially vacuum state.
さらに、 照明光学系 I Lと投影光学系 P Lとの間の狭い光路には、 レチクル R およびレチクルステージ R Sなどが配置されているが、 レチクル Rおよびレチク ルステージ R Sなどを密封包囲するケーシング (不図示) の内部に窒素やへリウ ムガスなどの不活性ガスが充填されているか、 あるいはほぼ真空状態に保持され ている。  Further, a reticle R and a reticle stage RS are disposed in a narrow optical path between the illumination optical system IL and the projection optical system PL, but a casing (not shown) that hermetically surrounds the reticle R and the reticle stage RS. ) Is filled with an inert gas such as nitrogen or helium gas, or is kept almost in a vacuum state.
また、 投影光学系 P Lとウェハ Wとの間の狭い光路には、 ウェハ Wおよびゥェ ハステ一ジ W Sなどが配置されているが、 ゥェハ Wおよびウェハステージ W Sな どを密封包囲するケーシング (不図示) の内部に窒素やヘリウムガスなどの不活 性ガスが充填されているか、 あるいはほぼ真空状態に保持されている。 このよう に、 光源 L Sからウェハ Wまでの光路の全体に亘つて、 露光光がほとんど吸収さ れることのない雰囲気が形成されている。 In the narrow optical path between the projection optical system PL and the wafer W, the wafer W and wafer stage WS are arranged. An inert gas such as nitrogen or helium gas is filled in a casing (not shown) that hermetically surrounds the throat, or is maintained in a substantially vacuum state. Thus, an atmosphere in which the exposure light is hardly absorbed is formed over the entire optical path from the light source LS to the wafer W.
上述したように、 投影光学系 P Lによって規定されるレチクル R上の照明領域 およびウェハ W上の露光領域 (すなわち実効露光領域) は、 Y方向に沿って短辺 を有する矩形状である。 したがって、 駆動系および干渉計 (R I F、 W I F ) な どを用いてレチクル Rおよびウェハ Wの位置制御を行いながら、 矩形状の露光領 域および照明領域の短辺方向すなわち Y方向に沿ってレチクルステージ R Sとゥ ェハステージ W Sとを、 ひいてはレチクル Rとウェハ Wとを同期的に移動 (走 査) させることにより、 ウェハ W上には露光領域の長辺に等しい幅を有し且つゥ ェハ Wの走査量 (移動量) に応じた長さを有する領域に対してレチクルパターン が走査露光される。 あるいは、 投影光学系 P Lの光軸 A Xと直交する平面内にお いてウェハ Wを二次元的に駆動制御しながら一括露光を行うことにより、 ウェハ Wの各露光領域にはレチクル Rのパターンが逐次露光される。  As described above, the illumination area on the reticle R and the exposure area on the wafer W (that is, the effective exposure area) defined by the projection optical system PL are rectangular with short sides along the Y direction. Therefore, while controlling the position of reticle R and wafer W using a drive system and an interferometer (RIF, WIF), etc., the reticle stage along the short side direction of the rectangular exposure area and illumination area, that is, along the Y direction. By moving (scanning) the RS and the wafer stage WS and thus the reticle R and the wafer W synchronously, the wafer W has a width equal to the long side of the exposure area and the wafer W A reticle pattern is scanned and exposed in an area having a length corresponding to the scanning amount (moving amount). Alternatively, the reticle R pattern is sequentially formed on each exposure area of the wafer W by performing the batch exposure while controlling the wafer W two-dimensionally in a plane orthogonal to the optical axis AX of the projection optical system PL. Exposed.
第 1 3図は、 本実施形態の第 1実施例にかかる投影光学系の構成を概略的に示 す図である。 第 1 3図を参照すると、 第 1実施例の投影光学系は、 第 1面に配置 されたレチクル Rのパターンの第 1中間像を形成するための屈折型の第 1結像光 学系 G 1を備えている。 第 1結像光学系 G 1が形成する第 1中間像の形成位置の 近傍には、 第 1光路折り曲げ鏡 M lが配置されている。 第 1光路折り曲げ鏡 M l は、 第 1中間像へ向かう光束または第 1中間像からの光束を、 反射屈折型の第 2 結像光学系 G 2に向かつて偏向する。  FIG. 13 is a diagram schematically showing a configuration of a projection optical system according to Example 1 of the present embodiment. Referring to FIG. 13, the projection optical system of the first embodiment includes a refraction-type first imaging optical system G for forming a first intermediate image of a pattern of a reticle R disposed on a first surface. Has one. A first optical path bending mirror Ml is arranged near the position where the first intermediate image formed by the first imaging optical system G1 is formed. The first optical path bending mirror Ml deflects the light beam toward the first intermediate image or the light beam from the first intermediate image toward the catadioptric second imaging optical system G2.
第 2結像光学系 G 2は、 凹面反射鏡 C Mと 2つの負レンズとを有し、 第 1中間 像からの光束に基づいて第 1中間像とほぼ等倍の第 2中間像 (第 1中間像の像で あってパターンの 2次像) を第 1中間像の形成位置の近傍に形成する。 第 2結像 光学系 G 2が形成する第 2中間像の形成位置の近傍には、 第 2光路折り曲げ鏡 M 2が配置されている。 第 2光路折り曲げ鏡 M 2は、 第 2中間像へ向かう光束また は第 2中間像からの光束を屈折型の第 3結像光学系 G 3に向かって偏向する。 こ こで、 第 1光路折り曲げ鏡 M 1の反射面と第 2光路折り曲げ鏡 M 2の反射面とは、 空間的に重複しないように位置決めされている。 The second imaging optical system G2 has a concave reflecting mirror CM and two negative lenses, and based on the light flux from the first intermediate image, a second intermediate image (first An image of the intermediate image (a secondary image of the pattern) is formed near the formation position of the first intermediate image. A second optical path bending mirror M2 is arranged near the position where the second intermediate image formed by the second imaging optical system G2 is formed. The second optical path bending mirror M2 deflects the light beam toward the second intermediate image or the light beam from the second intermediate image toward the refraction type third imaging optical system G3. This Here, the reflecting surface of the first optical path bending mirror M1 and the reflecting surface of the second optical path bending mirror M2 are positioned so as not to spatially overlap.
第 3結像光学系 G 3は、 第 2中間像からの光束に基づいて、 レチクル Rのパ夕 ーンの縮小像 (第 2中間像の像であって投影光学系の最終像) を、 第 2面に配置 されたウェハ W上に形成する。 なお、 第 1結像光学系 G 1は直線状に延びた光軸 A X 1を有し、 第 3結像光学系 G 3は直線状に延びた光軸 A X 3を有し、 光軸 A X 1と光軸 A X 3とは共通の単一光軸である基準光軸 A Xと一致するように設定 されている。  The third imaging optical system G3 converts a reduced image of the reticle R pattern (the image of the second intermediate image and the final image of the projection optical system) based on the light flux from the second intermediate image, It is formed on the wafer W arranged on the second surface. Note that the first imaging optical system G1 has an optical axis AX1 extending linearly, the third imaging optical system G3 has an optical axis AX3 extending linearly, and the optical axis AX1 And the optical axis AX3 are set so as to coincide with the reference optical axis AX which is a common single optical axis.
一方、 第 2結像光学系 G 2も直線状に延びた光軸 A X 2を有し、 この光軸 A X 2は基準光軸 A Xと直交するように設定されている。 さらに、 第 1光路折り曲げ 鏡 M lおよび第 2光路折り曲げ鏡 M 2はともに平面状の反射面を有し、 2つの反 射面を有する 1つの光学部材 (1つの光路折り曲げ鏡) として一体的に構成され ている。 この 2つの反射面の交線 (厳密にはその仮想延長面の交線) が第 1結像 光学系 G 1の A X 1、 第 2結像光学系 G 2の A X 2、 および第 3結像光学系 G 3 の A X 3と一点で交わるように設定されている。  On the other hand, the second imaging optical system G2 also has a linearly extending optical axis AX2, and this optical axis AX2 is set to be orthogonal to the reference optical axis AX. Further, both the first optical path bending mirror Ml and the second optical path bending mirror M2 have a planar reflecting surface, and are integrally formed as one optical member (one optical path bending mirror) having two reflecting surfaces. It is configured. The line of intersection of these two reflecting surfaces (strictly, the line of intersection of the virtual extension surface) is AX 1 of the first imaging optical system G 1, AX 2 of the second imaging optical system G 2, and third imaging It is set to intersect AX 3 of optical system G 3 at one point.
以上のように、 第 1実施例の投影光学系は、 1つの凹面反射鏡 C Mを備え、 レ チクル Rが設定された第 1面とウェハ Wが設定された第 2面との間の光路中にレ チクル Rの第 1中間像および第 2中間像を形成する 3回結像型の反射屈折光学系 である。 また、 凹面反射鏡 C Mは、 第 1中間像と第 2中間像との間の光路中に配 置され、 凹面反射鏡 C Mへ向かう光線と凹面反射鏡 C Mから反射される光線とが 通過する往復光路を形成している。 さらに、 凹面反射鏡 C Mは、 ほぼ等倍に用い られ、 且つ光学系の瞳位置またはその近傍に配置されている。  As described above, the projection optical system according to the first embodiment includes one concave reflecting mirror CM, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set. This is a three-time imaging type catadioptric optical system that forms a first intermediate image and a second intermediate image of the reticle R. The concave reflecting mirror CM is disposed in an optical path between the first intermediate image and the second intermediate image, and is a reciprocating beam through which light traveling toward the concave reflecting mirror CM and light reflected from the concave reflecting mirror CM pass. An optical path is formed. Further, the concave reflecting mirror CM is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system.
なお、 第 1実施例を含む各実施例の投影光学系は、 レチクル R側 (第 1面側) およびウェハ W側 (第 2面側) の双方にほぼテレセントリックな光学系である。 両側にテレゼントリックな光学系に構成することにより、 光軸方向に沿ってレチ クル Rの位置 (物体位置) またはウェハ Wの位置 (像位置) に多少の位置ずれが ある場合にも適正な倍率で像を結像することができ、 光軸と直交する方向には像 の位置ずれを生じさせない。 また、 この場合、 位相補正部材 P Cは、 面加工上の 0304142 The projection optical system of each embodiment including the first embodiment is an optical system that is almost telecentric on both the reticle R side (first surface side) and the wafer W side (second surface side). By constructing a telecentric optical system on both sides, even if there is a slight misalignment in the position of the reticle R (object position) or the position of the wafer W (image position) along the optical axis direction, An image can be formed at a magnification, and no image displacement occurs in a direction perpendicular to the optical axis. In this case, the phase correction member PC 0304142
-21- 難易度が高くなるため、 平行平面板の形態を有することが望ましい。  -21- Because of the difficulty, it is desirable to have the form of a parallel plane plate.
第 1実施例では、 第 13図に示すように、 位相補正部材 PCが、 レチクル と 第 1結像光学系 G 1との光路中においてレチクル Rの近傍に配置されている。 さ らに具体的には、 投影光学系を構成するすべての蛍石レンズは、 結晶軸 [1 1 1] と光軸 (AX 1〜AX3) とがほぼ一致するように形成されている。 そして、 位相補正部材 PCは、 水晶 (S i〇2) やライカフ (L i C aA 1 F6) のよう な負の一軸性結晶で形成された平行平面板 (すなわち負の一軸性結晶平行平面 板) であって、 その光学軸は第 1結像光学系 G1の光軸 AX1とほぼ一致するよ うに形成されている。 In the first embodiment, as shown in FIG. 13, the phase correction member PC is arranged near the reticle R in the optical path between the reticle and the first imaging optical system G1. More specifically, all the fluorite lenses constituting the projection optical system are formed such that the crystal axis [111] and the optical axes (AX1 to AX3) are almost coincident. The phase correction member PC is a plane parallel plate made of a negative uniaxial crystal such as crystal (Si 2 ) or Leicauff (LiCaA 1 F 6 ) (ie, a negative uniaxial crystal parallel plane). The optical axis is formed so as to substantially coincide with the optical axis AX1 of the first imaging optical system G1.
その結果、 第 1実施例では、 前述したように、 負の一軸性結晶平行平面板から なる位相補正部材 P Cの位相差付与作用により、 投影光学系を構成する蛍石レン ズの複屈折の影響を良好に低減することができ、 ひいては複屈折の影響を実質的 に受けることなく良好な光学性能を有する投影光学系を実現することができる。 また、 一軸性結晶を利用した位相補正部材 P Cでは入射角度に応じて位相差を調 整するので、 両側にテレセントリックな投影光学系においてレチクル R (第 1 面) の近傍に配置された位相補正部材 PCの作用により、 瞳内の位相差補正を視 野内の全域に亘つて均等に行うことができる。  As a result, in the first embodiment, as described above, the influence of the birefringence of the fluorite lens constituting the projection optical system is caused by the phase difference imparting action of the phase correcting member PC formed of the negative uniaxial crystal parallel plane plate. Can be satisfactorily reduced, and a projection optical system having good optical performance substantially without being affected by birefringence can be realized. In addition, since the phase difference is adjusted according to the incident angle in the phase correction member PC using a uniaxial crystal, the phase correction member placed near the reticle R (first surface) in the telecentric projection optical system on both sides By the action of the PC, the phase difference in the pupil can be corrected uniformly over the entire area of the visual field.
なお、 第 1実施例において、 位相補正部材 PCの光学軸が光学系の光軸とほぼ 一致するように形成されていない構成も可能である。 また、 すべての蛍石レンズ の光軸が結晶軸 [1 1 1] とほぼ一致している必要はなく、 結晶軸 [100] や 結晶軸 [1 10] とほぼ一致していてもよい。 この場合、 位相補正部材 PCは、 必要に応じて、 負の一軸性結晶または正の一軸性結晶で形成されることになる。 なお、 蛍石レンズの結晶軸方位と位相補正部材 PCの特性との関係については、 以下の各実施例および各変形例においても同様である。  In the first embodiment, a configuration is also possible in which the optical axis of the phase correction member PC is not formed so as to substantially coincide with the optical axis of the optical system. Also, the optical axes of all the fluorite lenses need not be substantially coincident with the crystal axis [111], but may be substantially coincident with the crystal axis [100] or the crystal axis [1 10]. In this case, the phase correction member PC is formed of a negative uniaxial crystal or a positive uniaxial crystal as necessary. The relationship between the crystal axis orientation of the fluorite lens and the characteristics of the phase correction member PC is the same in each of the following examples and modifications.
第 14図は、 第 1実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。 また、 第 15図は、 第 1実施例の第 2変形例にかかる投影光学系の 構成を概略的に示す図である。 さらに、 第 16図は、 第 1実施例の第 3変形例に かかる投影光学系の構成を概略的に示す図である。 また、 第 17図は、 第 1実施 TJP03/04142 FIG. 14 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the first embodiment. FIG. 15 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the first embodiment. FIG. 16 is a diagram schematically showing a configuration of a projection optical system according to a third modification of the first embodiment. Fig. 17 shows the first implementation TJP03 / 04142
-22- 例の第 4変形例にかかる投影光学系の構成を概略的に示す図である。 さらに、 第 18図は、 第 1実施例の第 5変形例にかかる投影光学系の構成を概略的に示す図 である。  FIG. 22 is a drawing schematically showing a configuration of a projection optical system according to a fourth modification of the example. FIG. 18 is a view schematically showing a configuration of a projection optical system according to a fifth modification of the first embodiment.
第 1変形例〜第 5変形例の投影光学系は、 第 1実施例の投影光学系と類似の構 成を有するが、 一軸性結晶平行平面板からなる位相補正部材 P Cの配置位置だけ が第 1実施例と相違している。 具体的に、 第 1変形例では、 第 14図に示すよう に、 位相補正部材 PCが、 第 1結像光学系 G 1と第 1光路折り曲げ鏡 Mlとの間 の光路中に配置されている。 換言すれば、 位相補正部材 PCが、 第 1中間像の形 成位置の近傍、 すなわちレチクル Rと光学的に共役な面の近傍に配置されている。 したがって、 第 1実施例と同様に、 レチクル R (第 1面) と光学的に共役な面の 近傍に配置された位相補正部材 PCの作用により、 瞳内の位相差補正を視野内の 全域に亘つて均等に行うことができる。  The projection optical systems according to the first to fifth modifications have a configuration similar to that of the projection optical system according to the first embodiment. This is different from the first embodiment. Specifically, in the first modified example, as shown in FIG. 14, the phase correction member PC is disposed in the optical path between the first imaging optical system G1 and the first optical path bending mirror Ml. . In other words, the phase correction member PC is arranged near the formation position of the first intermediate image, that is, near the plane optically conjugate with the reticle R. Therefore, similarly to the first embodiment, the phase difference correction in the pupil is performed over the entire field of view by the action of the phase correction member PC arranged near the optically conjugate surface with the reticle R (first surface). It can be performed evenly over the whole area.
第 2変形例では、 第 15図に示すように、 位相補正部材 PCが、 第 3結像光学 系 G 3とウェハ Wとの間の光路中においてウェハ Wの近傍に配置されている。 し たがって、 第 1実施例と同様に、 ウェハ W (第 2面) の近傍に配置された位相補 正部材 PCの作用により、 瞳内の位相差補正を視野内の全域に亘つて均等に行う ことができる。 第 3変形例では、 第 16図に示すように、 位相補正部材 PCが、 第 2結像光学系 G2と光路折り曲げ鏡 Mlおよび M2との間の光路中に、 すなわ ち凹面反射鏡 CMへ向かう光線と凹面反射鏡 CMから反射される光線とが通過す る往復光路中に配置されている。  In the second modification, as shown in FIG. 15, the phase correction member PC is arranged near the wafer W in the optical path between the third imaging optical system G3 and the wafer W. Therefore, similarly to the first embodiment, the phase difference correction in the pupil is evenly performed over the entire field of view by the action of the position correction member PC arranged near the wafer W (second surface). It can be carried out. In the third modification, as shown in FIG. 16, a phase correction member PC is provided in the optical path between the second imaging optical system G2 and the optical path bending mirrors Ml and M2, that is, to the concave reflecting mirror CM. It is arranged in the reciprocating optical path through which the light beam going and the light beam reflected from the concave reflector CM pass.
このように、 往復光路中に位相補正部材 PCを配置することにより、 補正効力 を高めることができる。 特に、 凹面反射鏡 CMがほぼ等倍に用いられ、 且つ投影 光学系の瞳位置またはその近傍に配置されているので、 瞳内の位相差補正を視野 内の全域に亘つて均等に行うことができる。 第 4変形例では、 第 17図に示すよ うに、 位相補正部材 PCが、 第 1結像光学系 G1の光路中において瞳位置または その近傍に配置されている。 この場合、 瞳位置またはその近傍に配置された位相 補正部材 P Cの作用により、 視野内の位相差を調整することが可能になる。  Thus, by arranging the phase correction member PC in the reciprocating optical path, the correction effect can be enhanced. In particular, since the concave reflecting mirror CM is used at approximately the same magnification and is arranged at or near the pupil position of the projection optical system, the phase difference correction in the pupil can be performed uniformly over the entire field of view. it can. In the fourth modification, as shown in FIG. 17, the phase correction member PC is arranged at or near the pupil position in the optical path of the first imaging optical system G1. In this case, the phase difference in the visual field can be adjusted by the action of the phase correction member PC arranged at or near the pupil position.
第 5変形例では、 第 18図に示すように、 位相補正部材 PCが、 第 3結像光学 系 G 3の光路中において瞳位置またはその近傍に配置されている。 この場合、 第 4変形例と同様に瞳位置またはその近傍に配置された位相補正部材 P Cの作用に より、 視野内の位相差を調整することが可能になる。 なお、 上述の第 1実施例お よびその変形例では投影光学系が位相補正部材 P Cを 1つだけ含んでいるが、 こ れに限定されることなく、 投影光学系が複数の位相補正部材 P Cを含む変形例も 可能である。 この点は、 以下の各実施例および関連する各変形例においても同様 である。 In the fifth modification, as shown in FIG. 18, the phase correction member PC It is arranged at or near the pupil position in the optical path of the system G3. In this case, the phase difference in the visual field can be adjusted by the action of the phase correction member PC arranged at or near the pupil position as in the fourth modification. In the first embodiment and its modifications, the projection optical system includes only one phase correction member PC. However, the present invention is not limited to this, and the projection optical system may include a plurality of phase correction members PC. Modifications including are also possible. This is the same in the following embodiments and related modifications.
第 1 9図は、 本実施形態の第 2実施例にかかる投影光学系の構成を概略的に示 す図である。 第 1 9図を参照すると、 第 2実施例の投影光学系は、 レチクル の パターンの中間像を形成するための反射屈折型の第 1結像光学系 G 1を備えてい る。 第 1結像光学系 G 1は、 凹面反射鏡 C Mと複数のレンズとを有し、 レチクル Rからの光束に基づいてほぼ等倍の中間像を形成する。 第 1結像光学系 G 1が形 成する中間像の形成位置の近傍には、 第 1光路折り曲げ鏡 M 1が配置されている。 第 1光路折り曲げ鏡 M 1は、 中間像からの光束を第 2光路折り曲げ鏡 M 2に向 かって偏向する。 さらに、 第 2光路折り曲げ鏡 M 2は、 中間像からの光束を屈折 型の第 2結像光学系 G 2に向かって偏向する。 第 2結像光学系 G 2は、 中間像か らの光束に基づいて、 レチクル Rのパターンの最終像をゥェハ W上に形成する。 なお、 第 1結像光学系 G 1および第 2結像光学系 G 2はともに直線状に延びた光 軸 A X 1および A X 2をそれぞれ有し、 光軸 A X 1と光軸 AX 2とは互いにほぼ 平行に設定されている。  FIG. 19 is a diagram schematically showing a configuration of a projection optical system according to Example 2 of the present embodiment. Referring to FIG. 19, the projection optical system of the second embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle pattern. The first imaging optical system G1 has a concave reflecting mirror CM and a plurality of lenses, and forms an approximately equal-magnification intermediate image based on the light beam from the reticle R. A first optical path bending mirror M1 is arranged near a position where an intermediate image formed by the first imaging optical system G1 is formed. The first optical path bending mirror M1 deflects the light beam from the intermediate image toward the second optical path bending mirror M2. Further, the second optical path bending mirror M2 deflects the light beam from the intermediate image toward the refraction type second imaging optical system G2. The second imaging optical system G2 forms the final image of the pattern of the reticle R on the wafer W based on the light flux from the intermediate image. Note that the first imaging optical system G1 and the second imaging optical system G2 both have linearly extending optical axes AX1 and AX2, respectively, and the optical axis AX1 and the optical axis AX2 are mutually separated. They are set almost parallel.
以上のように、 第 2実施例の投影光学系は、 1つの凹面反射鏡 C Mを備え、 レ チクル Rが設定された第 1面とウェハ Wが設定された第 2面との間の光路中にレ チクル Rの中間像を形成する 2回結像型の反射屈折光学系である。 そして、 凹面 反射鏡 C Mは、 レチクル Rと中間像との間の光路中に配置され、 凹面反射鏡 C M へ向かう光線と凹面反射鏡 C Mから反射される光線とが通過する往復光路を形成 している。  As described above, the projection optical system of the second embodiment includes one concave reflecting mirror CM, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set. This is a double-imaging type catadioptric optical system that forms an intermediate image of the reticle R at the same time. The concave reflector CM is disposed in the optical path between the reticle R and the intermediate image, and forms a reciprocating optical path through which the light beam traveling toward the concave mirror CM and the light beam reflected from the concave mirror CM pass. I have.
また、 投影光学系を構成するすべてのレンズ (光透過部材) の光軸および凹面 反射鏡 C Mの光軸は、 互いにほぼ平行に設定されている。 さらに、 凹面反射鏡 C Mは、 ほぼ等倍に用いられ、 且つ光学系の瞳位置またはその近傍に配置されてい る。 第 2実施例では、 第 1 9図に示すように、 位相補正部材 P Cがレチクル尺と 第 1結像光学系 G 1との光路中においてレチクル Rの近傍に配置されているので、 第 1実施例と同様に、 瞳内の位相差補正を視野内の全域に亘つて均等に行うこと ができる。 Further, the optical axes of all the lenses (light transmitting members) constituting the projection optical system and the optical axis of the concave reflecting mirror CM are set substantially parallel to each other. In addition, concave reflector C M is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system. In the second embodiment, as shown in FIG. 19, since the phase correction member PC is arranged near the reticle R in the optical path between the reticle scale and the first imaging optical system G1, the first embodiment As in the example, the phase difference correction in the pupil can be performed uniformly over the entire area in the visual field.
第 2 0図は、 第 2実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。 また、 第 2 1図は、 第 2実施例の第 2変形例にかかる投影光学系の 構成を概略的に示す図である。 第 2実施例の第 1変形例および第 2変形例の投影 光学系は、 第 2実施例の投影光学系と類似の構成を有するが、 一軸性結晶平行平 面板からなる位相補正部材 P Cの配置位置だけが第 2実施例と相違している。 具体的に、 第 2実施例の第 1変形例では、 第 2 0図に示すように、 凹面反射鏡 C Mへ向かう光線と凹面反射鏡 C Mから反射される光線とが通過する往復光路中 に位相補正部材 P Cが配置されているので、 補正効力を高めることができる。 ま た、 凹面反射鏡 C Mがほぼ等倍に用いられ、 且つ投影光学系の瞳位置またはその 近傍に配置されているので、 瞳内の位相差補正を視野内の全域に!:つて均等に行 うことができる。 第 2実施例の第 2変形例では、 第 2 1図に示すように、 位相補 正部材 P Cが、 第 2結像光学系 G 2とウェハ Wとの間の光路中においてウェハ W の近傍に配置されているので、 瞳内の位相差補正を視野内の全域に亘つて均等に 行うことができる。  FIG. 20 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the second embodiment. FIG. 21 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the second embodiment. The projection optical system according to the first and second modifications of the second embodiment has a configuration similar to that of the projection optical system according to the second embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the second embodiment. Specifically, in the first modified example of the second embodiment, as shown in FIG. 20, a phase shift occurs in a reciprocating optical path through which the light beam traveling toward the concave reflector CM and the light beam reflected from the concave reflector CM pass. Since the correction member PC is arranged, the correction effect can be enhanced. In addition, since the concave reflecting mirror CM is used at approximately the same magnification and is arranged at or near the pupil position of the projection optical system, phase difference correction in the pupil is performed in the entire field of view! : Can be performed evenly. In the second modified example of the second embodiment, as shown in FIG. 21, a position complementing member PC is located near the wafer W in the optical path between the second imaging optical system G2 and the wafer W. Since they are arranged, the phase difference in the pupil can be corrected evenly over the entire field of view.
第 2 2図は、 本実施形態の第 3実施例にかかる投影光学系の構成を概略的に示 す図である。 第 2 2図を参照すると、 第 3実施例の投影光学系は、 レチクル の パターンの中間像を形成するための反射屈折型の第 1結像光学系 G 1を備えてい る。 第 1結像光学系 G 1は、 凹面反射鏡 C Mと複数のレンズと第 1光路折り曲げ 鏡 M lとを有し、 レチクル Rからの光束に基づいてほぼ等倍の中間像を形成する。 第 1結像光学系 G 1が形成する中間像の形成位置の近傍には、 第 2光路折り曲げ 鏡 M 2が配置されている。  FIG. 22 is a diagram schematically showing a configuration of a projection optical system according to Example 3 of the present embodiment. Referring to FIG. 22, the projection optical system according to the third embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle pattern. The first imaging optical system G1 has a concave reflecting mirror CM, a plurality of lenses, and a first optical path bending mirror Ml, and forms an approximately equal-magnification intermediate image based on the light beam from the reticle R. A second optical path bending mirror M2 is arranged near a position where an intermediate image formed by the first imaging optical system G1 is formed.
さらに、 第 2光路折り曲げ鏡 M 2は、 中間像へ向かう光束または中間像からの 光束を屈折型の第 2結像光学系 G 2に向かって偏向する。 第 2結像光学系 G 2は、 P03 04142 Further, the second optical path bending mirror M2 deflects the light beam toward the intermediate image or the light beam from the intermediate image toward the refraction type second imaging optical system G2. The second imaging optical system G 2 is P03 04142
- 25 - 中間像からの光束に基づいて、 レチクル Rのパターンの最終像をウェハ W上に形 成する。 なお、 第 1結像光学系 G 1は第 1光路折り曲げ鏡 M lによって L字状に 折り曲げられた光軸 A X 1を有し、 第 2結像光学系 G 2は直線状に延びた光軸 A X 2を有する。 また、 第 1光路折り曲げ鏡 M lおよび第 2光路折り曲げ鏡 M 2は ともに平面状の反射面を有し、 2つの反射面を有する 1つの光学部材 (1つの光 路折り曲げ鏡) として一体的に構成されている。  -25-Based on the luminous flux from the intermediate image, a final image of the pattern of the reticle R is formed on the wafer W. The first imaging optical system G1 has an optical axis AX1 bent in an L-shape by a first optical path bending mirror Ml, and the second imaging optical system G2 has a linearly extending optical axis. Has AX 2. Further, the first optical path bending mirror Ml and the second optical path bending mirror M2 both have a planar reflecting surface, and are integrally formed as one optical member (one optical path bending mirror) having two reflecting surfaces. It is configured.
以上のように、 第 3実施例の投影光学系は、 1つの凹面反射鏡 C Mを備え、 レ チクル Rが設定された第 1面とウェハ Wが設定された第 2面との間の光路中にレ チクル Rの中間像を形成する 2回結像型の反射屈折光学系である。 そして、 凹面 反射鏡 C Mは、 レチクル Rと中間像との間の光路中に配置され、 凹面反射鏡 C M へ向かう光線と凹面反射鏡 C Mから反射される光線とが通過する往復光路を形成 している。  As described above, the projection optical system according to the third embodiment includes one concave reflecting mirror CM, and is arranged in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set. This is a double-imaging type catadioptric optical system that forms an intermediate image of the reticle R at the same time. The concave reflector CM is disposed in the optical path between the reticle R and the intermediate image, and forms a reciprocating optical path through which the light beam traveling toward the concave reflector CM and the light beam reflected from the concave mirror CM pass. I have.
また、 凹面反射鏡 C Mは、 ほぼ等倍に用いられ、 且つ光学系の瞳位置またはそ の近傍に配置されている。 第 3実施例では、 第 2 2図に示すように、 位相補正部 材 P Cがレチクル Rと第 1結像光学系 G 1との光路中においてレチクル Rの近傍 に配置されているので、 第 1実施例および第 2実施例と同様に、 瞳内の位相差補 正を視野内の全域に亘つて均等に行うことができる。  The concave reflecting mirror CM is used at approximately the same magnification, and is arranged at or near the pupil position of the optical system. In the third embodiment, as shown in FIG. 22, the phase correction member PC is arranged near the reticle R in the optical path between the reticle R and the first imaging optical system G1. As in the embodiment and the second embodiment, the phase difference in the pupil can be corrected uniformly over the entire field of view.
第 2 3図は、 第 3実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。 また、 第 2 4図は、 第 3実施例の第 2変形例にかかる投影光学系の 構成を概略的に示す図である。 第 3実施例の第 1変形例および第 2変形例の投影 光学系は、 第 3実施例の投影光学系と類似の構成を有するが、 一軸性結晶平行平 面板からなる位相補正部材 P Cの配置位置だけが第 3実施例と相違している。 具体的に、 第 3実施例の第 1変形例では、 第 2 3図に示すように、 第 2結像光 学系 G 2の光路中において瞳位置またはその近傍に配置されているので、 位相補 正部材 P Cの作用により視野内の位相差を調整することが可能になる。 第 3実施 例の第 2変形例では、 第 2 4図に示すように、 第 1位相補正部材 P C 1がレチク ル Rの近傍に配置され、 第 2位相補正部材 P C 2が瞳位置またはその近傍に配置 されているので、 第 1位相補正部材 P C 1の作用により瞳内の位相差補正を視野 内の全域に亘つて均等に行うことができ、 第 2位相補正部材 P C 2の作用により 視野内の位相差を調整することが可能になる。 FIG. 23 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the third embodiment. FIG. 24 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the third embodiment. The projection optical systems of the first modification and the second modification of the third embodiment have a configuration similar to that of the projection optical system of the third embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the third embodiment. Specifically, in the first modified example of the third embodiment, as shown in FIG. 23, since the lens is arranged at or near the pupil position in the optical path of the second imaging optical system G2, The phase difference in the visual field can be adjusted by the action of the complementary member PC. In the second modification of the third embodiment, as shown in FIG. 24, the first phase correction member PC1 is disposed near the reticle R, and the second phase correction member PC2 is positioned at or near the pupil position. The phase difference correction in the pupil by the action of the first phase correction member PC 1 The phase difference can be adjusted evenly over the entire area, and the phase difference in the field of view can be adjusted by the operation of the second phase correction member PC2.
第 2 5図は、 本実施形態の第 4実施例にかかる投影光学系の構成を概略的に示 す図である。 第 2 5図を参照すると、 第 4実施例の投影光学系は、 レチクル尺の パターンの中間像を形成するための反射屈折型の第 1結像光学系 G 1と、 中間像 からの光束に基づいてレチクル Rのパターンの最終像をウェハ W上に形成するた めの屈折型の第 2結像光学系 G 2とを備えている。 第 1結像光学系 G 1は、 凹面 反射鏡 C M 1と凸面反射鏡 C M 2と複数のレンズとを有し、 レチクル Rからの光 束に基づいてほぼ等倍の中間像を形成する。  FIG. 25 is a diagram schematically showing a configuration of a projection optical system according to Example 4 of the present embodiment. Referring to FIG. 25, the projection optical system of the fourth embodiment includes a catadioptric first imaging optical system G1 for forming an intermediate image of a reticle scale pattern, and a luminous flux from the intermediate image. And a refraction-type second imaging optical system G2 for forming a final image of the pattern of the reticle R on the wafer W based on the information. The first imaging optical system G 1 has a concave reflecting mirror CM 1, a convex reflecting mirror CM 2, and a plurality of lenses, and forms an approximately 1 × intermediate image based on a light beam from the reticle R.
なお、 第 1結像光学系 G 1は直線状に延びた光軸 A X 1を有し、 第 2結像光学 系 G 2は直線状に延びた光軸 A X 2を有し、 光軸 A X 1と光軸 A X 2とは共通の 単一光軸である基準光軸 A Xと一致するように設定されている。 このように、 第 4実施例では、 すべての光学部材が直線状の単一光軸に沿って配置されているの で、 光学系の調整などの観点から非常に有利である。  The first imaging optical system G1 has a linearly extending optical axis AX1, the second imaging optical system G2 has a linearly extending optical axis AX2, and the optical axis AX1 And the optical axis AX2 are set to coincide with the reference optical axis AX, which is a common single optical axis. As described above, in the fourth embodiment, since all the optical members are arranged along a single linear optical axis, it is very advantageous from the viewpoint of adjusting the optical system.
以上のように、 第 4実施例の投影光学系は、 1つの凹面反射鏡 C M 1を備え、 レチクル Rが設定された第 1面とウェハ Wが設定された第 2面との間の光路中に レチクル Rの中間像を形成する 2回結像型の反射屈折光学系である。 第 4実施例 では、 第 2 5図に示すように、 位相補正部材 P Cがレチクル Rと第 1結像光学系 G 1との光路中においてレチクル Rの近傍に配置されているので、 第 1実施例〜 第 3実施例と同様に、 瞳内の位相差補正を視野内の全域に亘つて均等に行うこと ができる。  As described above, the projection optical system of the fourth embodiment includes one concave reflecting mirror CM1, and is provided in the optical path between the first surface on which the reticle R is set and the second surface on which the wafer W is set. This is a double-imaging catadioptric optical system that forms an intermediate image of the reticle R. In the fourth embodiment, as shown in FIG. 25, the phase correction member PC is disposed near the reticle R in the optical path between the reticle R and the first imaging optical system G1. Examples As in the third embodiment, the phase difference correction in the pupil can be performed uniformly over the entire field of view.
第 2 6図は、 第 4実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。 また、 第 2 7図は、 第 4実施例の第 2変形例にかかる投影光学系の 構成を概略的に示す図である。 第 4実施例の第 1変形例および第 2変形例の投影 光学系は、 第 4実施例の投影光学系と類似の構成を有するが、 一軸性結晶平行平 面板からなる位相補正部材 P Cの配置位置だけが第 4実施例と相違している。 具体的に、 第 4実施例の第 1変形例では、 第 2 6図に示すように、 第 2結像光 学系 G 2の光路中において瞳位置またはその近傍に配置されているので、 位相補 正部材 P Cの作用により視野内の位相差を調整することが可能になる。 第 4実施 例の第 2変形例では、 第 2 7図に示すように、 位相補正部材 P Cがウェハ Wの近 傍に配置されているので、 瞳内の位相差補正を視野内の全域に亘つて均等に行う ことができる。 FIG. 26 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fourth embodiment. FIG. 27 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fourth embodiment. The projection optical systems of the first and second modifications of the fourth embodiment have a configuration similar to that of the projection optical system of the fourth embodiment, but the arrangement of a phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the fourth embodiment. Specifically, in the first modified example of the fourth embodiment, as shown in FIG. 26, since the lens is arranged at or near the pupil position in the optical path of the second imaging optical system G2, Complement The phase difference in the field of view can be adjusted by the action of the positive member PC. In the second modification of the fourth embodiment, as shown in FIG. 27, since the phase correction member PC is arranged near the wafer W, the phase difference correction in the pupil is performed over the entire field of view. Can be performed equally.
第 2 8図は、 本実施形態の第 5実施例にかかる投影光学系の構成を概略的に示 す図である。 第 2 8図を参照すると、 第 5実施例の投影光学系は、 すべての光学 部材がレンズ (光透過部材) である屈折型の光学系であって、 すべての光学部材 が直線状の単一光軸 A Xに沿って配置されている。 第 5実施例では、 第 2 8図に 示すように、 位相補正部材 P Cがレチクル Rの近傍に配置されているので、 第 1 実施例〜第 4実施例と同様に、 瞳内の位相差補正を視野内の全域に亘つて均等に 行うことができる。  FIG. 28 is a diagram schematically showing a configuration of a projection optical system according to Example 5 of the present embodiment. Referring to FIG. 28, the projection optical system of the fifth embodiment is a refraction type optical system in which all optical members are lenses (light transmitting members), and all the optical members are linear single lenses. It is arranged along the optical axis AX. In the fifth embodiment, as shown in FIG. 28, since the phase correction member PC is arranged near the reticle R, the phase difference correction in the pupil is performed in the same manner as in the first to fourth embodiments. Can be performed uniformly over the entire field of view.
第 2 9図は、 第 5実施例の第 1変形例にかかる投影光学系の構成を概略的に示 す図である。 また、 第 3 0図は、 第 5実施例の第 2変形例にかかる投影光学系の 構成を概略的に示す図である。 第 5実施例の第 1変形例および第 2変形例の投影 光学系は、 第 5実施例の投影光学系と類似の構成を有するが、 一軸性結晶平行平 面板からなる位相補正部材 P Cの配置位置だけが第 5実施例と相違している。 具体的に、 第 5実施例の第 1変形例では、 第 2 9図に示すように、 光学系の瞳 位置またはその近傍に配置されているので、 位相補正部材 P Cの作用により視野 内の位相差を調整することが可能になる。 一方、 第 5実施例の第 2変形例では、 第 3 0図に示すように、 位相補正部材 P Cがウェハ Wの近傍に配置されているの で、 瞳内の位相差補正を視野内の全域に亘つて均等に行うことができる。  FIG. 29 is a diagram schematically showing a configuration of a projection optical system according to a first modification of the fifth embodiment. FIG. 30 is a diagram schematically showing a configuration of a projection optical system according to a second modification of the fifth embodiment. The projection optical systems of the first and second modifications of the fifth embodiment have a configuration similar to that of the projection optical system of the fifth embodiment, but the arrangement of the phase correction member PC formed of a uniaxial crystal parallel flat plate. Only the position is different from the fifth embodiment. Specifically, in the first modified example of the fifth embodiment, as shown in FIG. 29, since it is arranged at or near the pupil position of the optical system, the position within the visual field is obtained by the action of the phase correction member PC. The phase difference can be adjusted. On the other hand, in the second modification of the fifth embodiment, as shown in FIG. 30, since the phase correction member PC is arranged near the wafer W, the phase difference correction in the pupil is performed over the entire field of view. Can be performed evenly over
なお、 上述の実施形態では、 複屈折性の光学材料として蛍石を用いているが、 これに限定されることなく、 たとえばフッ化バリウム (B a F 2) などを用いる こともできる。 この場合、 フッ化バリウム (B a F 2 ) などの結晶軸方位も本発 明に従って決定されることが好ましい。 In the above-described embodiment, fluorite is used as the birefringent optical material. However, the present invention is not limited to this. For example, barium fluoride (BaF 2 ) may be used. In this case, it is preferable that the crystal axis orientation such as barium fluoride (B a F 2) are also determined in accordance with the onset bright.
上述の実施形態の露光装置では、 照明装置によってレチクル (マスク) を照明 し (照明工程)、 投影光学系を用いてマスクに形成された転写用のパターンを感 光性基板に露光する (露光工程) ことにより、 マイクロデバイス (半導体素子、 撮像素子、 液晶表示素子、 薄膜磁気ヘッド等) を製造することができる。 以下、 本実施形態の露光装置を用いて感光性基板としてのウェハ等に所定の回路パター ンを形成することによって、 マイクロデバイスとしての半導体デバイスを得る際 の手法の一例につき第 3 1図のフローチャートを参照して説明する。 In the exposure apparatus according to the above-described embodiment, the reticle (mask) is illuminated by the illumination device (illumination step), and the transfer pattern formed on the mask is exposed on the photosensitive substrate using the projection optical system (exposure step). ) By this, micro devices (semiconductor elements, Imaging devices, liquid crystal display devices, thin-film magnetic heads, etc.). Hereinafter, an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment will be described with reference to the flowchart of FIG. This will be described with reference to FIG.
先ず、 第 3 1図のステップ 3 0 1において、 1ロットのウェハ上に金属膜が蒸 着される。 次のステップ 3 0 2において、 その 1ロットのウェハ上の金属膜上に フォトレジストが塗布される。 その後.、 ステップ 3 0 3において、 本実施形態の 露光装置を用いて、 マスク上のパターンの像がその投影光学系を介して、 その 1 ロットのウェハ上の各ショット領域に順次露光転写される。 その後、 ステップ 3 0 4において、 その 1ロッ卜のウェハ上のフォトレジストの現像が行われた後、 ステップ 3 0 5において、 その 1ロットのウェハ上でレジストパターンをマスク としてエッチングを行うことによって、 マスク上のパターンに対応する回路パ夕 —ンが、 各ウェハ上の各ショット領域に形成される。  First, in step 301 of FIG. 31, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the wafer of the lot. Then, in step 303, using the exposure apparatus of the present embodiment, an image of the pattern on the mask is sequentially exposed and transferred to each shot area on the one lot of wafers via the projection optical system. . Then, in step 304, after developing the photoresist on the one lot of wafers, in step 305, etching is performed on the one lot of wafers by using the resist pattern as a mask. A circuit pattern corresponding to the pattern on the mask is formed in each shot area on each wafer.
その後、 更に上のレイヤの回路パターンの形成等を行うことによって、 半導体 素子等のデバイスが製造される。 上述の半導体デバイス製造方法によれば、 極め て微細な回路パターンを有する半導体デバイスをスループット良く得ることがで きる。 なお、 ステップ 3 0 1〜ステップ 3 0 5では、 ウェハ上に金属を蒸着し、 その金属膜上にレジストを塗布、 そして露光、 現像、 エッチングの各工程を行つ ているが、 これらの工程に先立って、 ウェハ上にシリコンの酸化膜を形成後、 そ のシリコンの酸化膜上にレジストを塗布、 そして露光、 現像、 エッチング等の各 工程を行っても良いことはいうまでもない。  Thereafter, a device such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer and the like. According to the above-described semiconductor device manufacturing method, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput. In steps 301 to 305, a metal is vapor-deposited on the wafer, a resist is applied on the metal film, and the respective steps of exposure, development, and etching are performed. Prior to forming a silicon oxide film on the wafer in advance, it is needless to say that a resist may be applied on the silicon oxide film, and each step of exposure, development, etching and the like may be performed.
また、 本実施形態の露光装置では、 プレート (ガラス基板) 上に所定のパター ン (回路パターン、 電極パターン等) を形成することによって、 マイクロデパイ スとしての液晶表示素子を得ることもできる。 以下、 第 3 2図のフローチャート を参照して、 このときの手法の一例につき説明する。 第 3 2図において、 パター ン形成工程 4 0 1では、 本実施形態の露光装置を用いてマスクのパターンを感光 性基板 (レジストが塗布されたガラス基板等) に転写露光する、 所謂光リソダラ フイエ程が実行される。 この光リソグラフィー工程によって、 感光性基板上には 4142 Further, in the exposure apparatus of the present embodiment, a liquid crystal display element as a microdepth can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 32, in a pattern forming step 401, a so-called optical liquid crystal is used to transfer and expose a mask pattern onto a photosensitive substrate (eg, a glass substrate coated with a resist) using the exposure apparatus of the present embodiment. The process is executed. By this photolithography process, on the photosensitive substrate 4142
- 29 - 多数の電極等を含む所定パターンが形成される。 その後、 露光された基板は、 現 像工程、 エッチング工程、 レジスト剥離工程等の各工程を経ることによって、 基 板上に所定のパターンが形成され、 次のカラ一フィルター形成工程 4 0 2へ移行 する。  A predetermined pattern including a large number of electrodes and the like is formed. Thereafter, the exposed substrate is subjected to various processes such as an imaging process, an etching process, and a resist stripping process, so that a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming process 402. I do.
次に、 カラ一フィル夕一形成工程 4 0 2では、 R (Red)、 G (Green) , B (Blue) に対応した 3つのドットの組がマトリックス状に多数配列されたり、 ま たは R、 G、 Bの 3本のストライプのフィルターの組を複数水平走査線方向に配 列されたりしたカラ一フィルターを形成する。 そして、 カラーフィルター形成ェ 程 4 0 2の後に、 セル組み立て工程 4 0 3が実行される。 セル組み立て工程 4 0 3では、 パターン形成工程 4 0 1にて得られた所定パターンを有する基板、 およ びカラ一フィルター形成工程 4 0 2にて得られたカラーフィルタ一等を用いて液 晶パネル (液晶セル) を組み立てる。 セル組み立て工程 4 0 3では、 例えば、 パ ターン形成工程 4 0 1にて得られた所定パターンを有する基板とカラーフィルタ 一形成工程 4 0 2にて得られたカラーフィル夕一との間に液晶を注入して、 液晶 パネル (液晶セル) を製造する。  Next, in the color fill formation process 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix, or , G, B are formed as a color filter in which a plurality of sets of three stripe filters are arranged in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembling step 403 is performed. In the cell assembling step 403, the liquid crystal is formed by using the substrate having the predetermined pattern obtained in the pattern forming step 401, the color filter obtained in the color filter forming step 402, and the like. Assemble the panel (liquid crystal cell). In the cell assembling step 403, for example, a liquid crystal is placed between the substrate having the predetermined pattern obtained in the pattern forming step 401 and the color filter obtained in the color filter forming step 402. To produce a liquid crystal panel (liquid crystal cell).
その後、 モジュール組み立て工程 4 0 4にて、 組み立てられた液晶パネル (液 晶セル) の表示動作を行わせる電気回路、 バックライト等の各部品を取り付けて 液晶表示素子として完成させる。 上述の液晶表示素子の製造方法によれば、 極め て微細な回路パターンを有する液晶表示素子をスループット良く得ることができ る。  Then, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
なお、 上述の実施形態では、 露光装置に搭載される投影光学系に対して本発明 を適用しているが、 これに限定されることなく、 他の一般的な投影光学系に対し て本発明を適用することもできる。 また、 上述の実施形態では、 1 9 3 n mの波 長光を供給する A r Fエキシマレ一ザ一光源または 1 5 7 n mの波長光を供給す る F 2 レーザ一光源を用いているが、 これに限定されることなく、 たとえば 2 0 0 n m以下の波長光を供給する他の適当な光源を用いることもできる。 産業上の利用の可能性 以上説明したように、 本発明では、 たとえば一軸性結晶で形成された平行平面 板からなる位相補正部材の位相差付与作用により、 投影光学系を構成する蛍石レ ンズのような結晶透過部材の複屈折の影響を良好に低減することができ、 ひいて は複屈折の影響を実質的に受けることなく良好な光学性能を有する投影光学系を 実現することができる。 In the above-described embodiment, the present invention is applied to the projection optical system mounted on the exposure apparatus. However, the present invention is not limited to this, and may be applied to other general projection optical systems. Can also be applied. Further, in the embodiment described above, but using a 1 9 3 nm A r F excimer one The primary light source or 1 5 7 nm F 2 laser primary light sources you supplying wavelength light supplying wave wavelength light of, However, the present invention is not limited to this. For example, another appropriate light source that supplies light having a wavelength of 200 nm or less can be used. Industrial applicability As described above, in the present invention, for example, a crystal transmission member such as a fluorite lens constituting a projection optical system is formed by a phase difference imparting action of a phase correction member formed of a parallel plane plate formed of a uniaxial crystal. The effect of birefringence can be reduced favorably, and a projection optical system having good optical performance substantially without being affected by birefringence can be realized.
したがって、 本発明では、 複屈折の影響を実質的に受けることなく良好な光学 性能を有する本発明の投影光学系を用いた露光装置および露光方法において、 高 解像で高精度な投影露光を行うことができる。 また、 本発明の投影光学系を搭載 した露光装置を用いて、 高解像な投影光学系を介した高精度な投影露光により、 良好なマイク口デバイスを製造することができる。  Therefore, according to the present invention, in the exposure apparatus and the exposure method using the projection optical system of the present invention having good optical performance substantially without being affected by birefringence, high-resolution and high-precision projection exposure is performed. be able to. Further, by using an exposure apparatus equipped with the projection optical system of the present invention, a good microphone opening device can be manufactured by high-precision projection exposure through a high-resolution projection optical system.

Claims

請 求 の 範 囲 The scope of the claims
1. 結晶材料で形成された結晶透過部材を含み、 第 1面の像を第 2面に形成す る投影光学系において、 1. A projection optical system including a crystal transmission member formed of a crystalline material and forming an image of a first surface on a second surface,
前記結晶透過部材に起因して発生する互いに直交する偏光成分の間の位相差を 補正するための光透過性の位相補正部材を備えていることを特徴とする投影光学 系。  A projection optical system comprising: a light transmissive phase correction member for correcting a phase difference between mutually orthogonal polarization components generated by the crystal transmission member.
2. 請求の範囲第 1項に記載の投影光学系において、 2. In the projection optical system according to claim 1,
前記位相補正部材は、 一軸性結晶で形成され且つその光学軸が光学系の光軸と ほぼ一致するように形成されていることを特徴とする投影光学系。  The projection optical system, wherein the phase correction member is formed of a uniaxial crystal and has an optical axis substantially coincident with an optical axis of the optical system.
3 · 請求の範囲第 1項または第 2項に記載の投影光学系において、 3.In the projection optical system according to claim 1 or 2,
前記結晶透過部材は、 蛍石 (C aF2) で形成され、 結晶軸 [1 1 1] または 該結晶軸 [1 1 1] と光学的に等価な結晶軸と光学系の光軸とがほぼ一致するよ うに形成された一対の光透過部材を有し、 The crystal transmission member is formed of fluorite (CaF 2 ), and a crystal axis [111] or a crystal axis optically equivalent to the crystal axis [111] and an optical axis of the optical system are almost equal. A pair of light transmitting members formed so as to coincide with each other;
前記位相補正部材は、 常光に対する屈折率を Noとし、 異常光に対する屈折率 を Neとするとき、 Neぐ Noを満足する負の一軸性結晶で形成され且つその光 学軸が前記光軸とほぼ一致するように形成されていることを特徴とする投影光学 系。  When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is formed of a negative uniaxial crystal satisfying Ne and No, and its optical axis is substantially equal to the optical axis. A projection optical system characterized by being formed so as to match.
4. 請求の範囲第 1項または第 2項に記載の投影光学系において、 4. In the projection optical system according to claim 1 or 2,
前記結晶透過部材のすベては、 蛍石 (C aF2) で形成され、 結晶軸 [ 1 1All of the crystal permeable members are formed of fluorite (C aF 2 ) and have a crystal axis [1 1
13 または該結晶軸 [111] と光学的に等価な結晶軸と光学系の光軸とがほぼ 一致するように形成され、 13 or the crystal axis optically equivalent to the crystal axis [111] and the optical axis of the optical system are formed so as to substantially coincide with each other;
前記位相補正部材は、 常光に対する屈折率を Noとし、 異常光に対する屈折率 を Neとするとき、 Neぐ Noを満足する負の一軸性結晶で形成され且つその光 学軸が前記光軸とほぼ一致するように形成されていることを特徴とする投影光学 When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is formed of a negative uniaxial crystal satisfying Ne and No, and its optical axis is substantially equal to the optical axis. Projection optics characterized by being formed to coincide
5. 請求の範囲第 3項または第 4項に記載の投影光学系において、 前記負の一軸性結晶は、 水晶.(S i 02) またはライカフ (L i C a A 1 F 6) であることを特徴とする投影光学系。 5. The projection optical system according to claim 3 or 4, wherein the negative uniaxial crystal is quartz (S i 0 2 ) or Leicaf (L i Ca A 1 F 6 ). A projection optical system, characterized in that:
6. 請求の範囲第 1項または第 2項に記載の投影光学系において、 6. In the projection optical system according to claim 1 or 2,
前記結晶透過部材は、 蛍石 (C aF2) で形成され、 結晶軸 [100] または 該結晶軸 [100] と光学的に等価な結晶軸と光学系の光軸とがほぼ一致するよ うに形成された一対の光透過部材を有し、 The crystal transmission member is formed of fluorite (CaF 2 ), and has a crystal axis [100] or a crystal axis optically equivalent to the crystal axis [100] and an optical axis of an optical system so as to substantially coincide with each other. Having a pair of light transmitting members formed,
前記位相補正部材は、 常光に対する屈折率を Noとし、 異常光に対する屈折率 を Neとするとき、 Ne>Noを満足する正の一軸性結晶で形成され且つその光 学軸が前記光軸とほぼ一致するように形成されていることを特徴とする投影光学 系。  When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is formed of a positive uniaxial crystal satisfying Ne> No, and its optical axis is substantially equal to the optical axis. A projection optical system characterized by being formed so as to match.
7. 請求の範囲第 6項に記載の投影光学系において、 7. The projection optical system according to claim 6, wherein
前記正の一軸性結晶は、 フッ化マグネシウム (MgF2) であることを特徴と する投影光学系。 The projection optical system, wherein the positive uniaxial crystal is magnesium fluoride (MgF 2 ).
8. 請求の範囲第 1項または第 2項に記載の投影光学系において、 8. In the projection optical system according to claim 1 or 2,
前記結晶透過部材は、 蛍石 (C aF2) で形成され、 結晶軸 [11 0] または 該結晶軸 [110] と光学的に等価な結晶軸と光学系の光軸とがほぼ一致するよ うに形成された一対の光透過部材を有し、 The crystal transmission member is made of fluorite (CaF 2 ), and the crystal axis [110] or a crystal axis optically equivalent to the crystal axis [110] and the optical axis of the optical system substantially coincide with each other. Having a pair of light transmitting members formed like
前記位相補正部材は、 常光に対する屈折率を Noとし、 異常光に対する屈折率 を Neとするとき、 Ne<Noを満足する負の一軸性結晶で形成され且つその光 学軸が前記光軸とほぼ一致するように形成されていることを特徴とする投影光学 系。 When the refractive index for ordinary light is No and the refractive index for extraordinary light is Ne, the phase correction member is formed of a negative uniaxial crystal satisfying Ne <No, and its optical axis is substantially equal to the optical axis. A projection optical system characterized by being formed so as to match.
9 . 請求の範囲第 8項に記載の投影光学系において、 9. The projection optical system according to claim 8, wherein
前記負の一軸性結晶は、 水晶 (S i〇2 ) またはライカフ (L i C a A 1 F 6) であることを特徴とする投影光学系。 The negative uniaxial crystal, quartz (S I_〇 2) or Raikafu projection optical system, characterized in that the (L i C a A 1 F 6).
1 0 . 請求の範囲第 1項乃至第 9項のいずれか 1項に記載の投影光学系におい て、 10. The projection optical system according to any one of claims 1 to 9, wherein
前記位相補正部材は、 前記第 1面の近傍、 前記第 2面の近傍、 あるいは前記第 1面と光学的に共役な面の近傍に配置されていることを特徴とする投影光学系。  The projection optical system, wherein the phase correction member is disposed near the first surface, near the second surface, or near a surface optically conjugate with the first surface.
1 1 . 請求の範囲第 1項乃至第 1 0項のいずれか 1項に記載の投影光学系にお いて、 11. The projection optical system according to any one of claims 1 to 10, wherein
前記位相補正部材は、 光学系の瞳位置またはその近傍に配置されていることを 特徴とする投影光学系。  The said phase correction member is arrange | positioned in the pupil position of an optical system, or its vicinity, The projection optical system characterized by the above-mentioned.
1 . 請求の範囲第 1項乃至第 1 1項のいずれか 1項に記載の投影光学系にお いて、 1. In the projection optical system according to any one of claims 1 to 11,
前記位相補正部材を複数個備えていることを特徴とする投影光学系。  A projection optical system comprising a plurality of the phase correction members.
1 3 . 請求の範囲第 1項乃至第 1 2項のいずれか 1項に記載の投影光学系にお いて、 13. In the projection optical system according to any one of claims 1 to 12,
少なくとも 1つの凹面反射鏡をさらに備え、  Further comprising at least one concave reflector,
前記凹面反射鏡は、 前記凹面反射鏡へ向かう光線と前記凹面反射鏡から反射さ れる光線とが通過する往復光路を形成し、  The concave reflecting mirror forms a reciprocating optical path through which light rays traveling toward the concave reflecting mirror and light rays reflected from the concave reflecting mirror pass.
前記位相補正部材は、 前記往復光路中に配置されていることを特徴とする投影 光学系。  The projection optical system, wherein the phase correction member is disposed in the reciprocating optical path.
1 4 . 請求の範囲第 1 3項に記載の投影光学系において、 14. The projection optical system according to claim 13, wherein:
前記凹面反射鏡は、 ほぼ等倍に用いられ、 且つ光学系の瞳位置またはその近傍 に配置されていることを特徴とする投影光学系。 The concave reflecting mirror is used at approximately the same magnification, and at or near a pupil position of an optical system. A projection optical system, wherein
1 5 . 請求の範囲第 1項乃至第 1 4項のいずれか 1項に記載の投影光学系にお いて、 15. In the projection optical system according to any one of claims 1 to 14,
前記投影光学系は、 前記第 1面と前記第 2面との間の光路中に前記第 1面の中 間像を形成する再結像光学系であり、  The projection optical system is a re-imaging optical system that forms an intermediate image of the first surface in an optical path between the first surface and the second surface,
前記位相補正部材は、 前記中間像の形成位置の近傍に配置されていることを特 徴とする投影光学系。  The projection optical system, wherein the phase correction member is arranged near a position where the intermediate image is formed.
1 6 . 請求の範囲第 1項乃至第 1 5項のいずれか 1項に記載の投影光学系にお いて、 16. The projection optical system according to any one of claims 1 to 15, wherein
前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間 の光路中に前記第 1面の中間像を形成する 2回結像型の反射屈折光学系であり、 前記凹面反射鏡は、 前記第 1面と前記中間像との間の光路中に配置されている ことを特徴とする投影光学系。  The projection optical system includes one concave reflecting mirror, and forms a double image catadioptric optical system that forms an intermediate image of the first surface in an optical path between the first surface and the second surface. Wherein the concave reflecting mirror is disposed in an optical path between the first surface and the intermediate image.
1 7 . 請求の範囲第 1項乃至第 1 5項のいずれか 1項に記載の投影光学系にお いて、 17. The projection optical system according to any one of claims 1 to 15, wherein
前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間 の光路中に前記第 1面の中間像を形成する 2回結像型の反射屈折光学系であり、 前記投影光学系を構成するすべての光透過部材の光軸および前記凹面反射鏡の 光軸は、 互いにほぼ平行に設定されていることを特徴とする投影光学系。  The projection optical system includes one concave reflecting mirror, and forms a double image catadioptric optical system that forms an intermediate image of the first surface in an optical path between the first surface and the second surface. Wherein the optical axes of all the light transmitting members constituting the projection optical system and the optical axes of the concave reflecting mirrors are set substantially parallel to each other.
1 8 . 請求の範囲第 1項乃至第 1 5項のいずれか 1項に記載の投影光学系にお いて、 18. In the projection optical system according to any one of claims 1 to 15,
前記投影光学系は、 1つの凹面反射鏡を備え、 前記第 1面と前記第 2面との間 の光路中に前記第 1面の第 1中間像および第 2中間像を形成する 3回結像型の反 射屈折光学系であり、 前記凹面反射鏡は、 前記第 1中間像と前記第 2中間像との間の光路中に配置さ れていることを特徴とする投影光学系。 The projection optical system includes one concave reflecting mirror, and forms a first intermediate image and a second intermediate image of the first surface in an optical path between the first surface and the second surface. It is an image type refracting optical system, The projection optical system, wherein the concave reflecting mirror is arranged in an optical path between the first intermediate image and the second intermediate image.
1 9 . 請求の範囲第 1項乃至第 1 2項のいずれか 1項に記載の投影光学系にお いて、 1 9. In the projection optical system according to any one of claims 1 to 12,
前記投影光学系を構成するすべての光学部材は、 光透過部材であることを特徴 とする投影光学系。  A projection optical system, wherein all optical members constituting the projection optical system are light transmitting members.
2 0 . 請求の範囲第 1項乃至第 1 9項のいずれか 1項に記載の投影光学系にお いて、 20. In the projection optical system according to any one of claims 1 to 19,
前記投影光学系は、 直線状に延びる単一光軸を有し、  The projection optical system has a single optical axis extending linearly,
前記投影光学系を構成するすべての光学部材は、 その光軸が前記単一光軸とほ ぼ一致するように配置されていることを特徴とする投影光学系。  The projection optical system, wherein all optical members constituting the projection optical system are arranged so that their optical axes substantially coincide with the single optical axis.
2 1 . 請求の範囲第 1項乃至第 2 0項のいずれか 1項に記載の投影光学系にお いて、 21. In the projection optical system according to any one of claims 1 to 20,
前記投影光学系は、 前記第 1面側および前記第 2面側の双方にほぼテレセント リックな光学系であり、  The projection optical system is an optical system that is substantially telecentric on both the first surface side and the second surface side,
前記位相補正部材は、 一軸性結晶で形成され且つその光学軸が光学系の光軸と ほぼ一致するように形成され、 平行平面状の形態を有することを特徴とする投影 光学系。  The projection optical system, wherein the phase correction member is formed of a uniaxial crystal and has an optical axis substantially coincident with an optical axis of the optical system, and has a parallel plane form.
2 2 . 請求の範囲第 1項乃至第 2 1項のいずれか 1項に記載の投影光学系にお いて、 22. In the projection optical system according to any one of claims 1 to 21,
2 0 0 n m以下の波長を有する光に基づいて前記第 1面の像を前記第 2面に形 成することを特徴とする投影光学系。  A projection optical system, wherein an image of the first surface is formed on the second surface based on light having a wavelength of 200 nm or less.
2 3 . 前記第 1面に設定されたマスクを照明するための照明系と、 前記マスク に形成されたパターンの像を前記第 2面に設定された感光性基板上に形成するた めの請求の範囲第 1項乃至第 2 2項のいずれか 1項に記載の投影光学系とを備え ていることを特徴とする露光装置。 2 3. An illumination system for illuminating the mask set on the first surface, and the mask And a projection optical system according to any one of claims 1 to 22 for forming an image of a pattern formed on a photosensitive substrate set on the second surface. An exposure apparatus, comprising:
2 4 . 前記第 1面に設定されたマスクを照明し、 請求の範囲第 1項乃至第 2 2 項のいずれか 1項に記載の投影光学系を介して前記マスクに形成されたパ夕一ン の像を前記第 2面に設定された感光性基板上に投影露光することを特徴とする露 光方法。 24. A mask set on the first surface is illuminated, and a mask formed on the mask via the projection optical system according to any one of claims 1 to 22. An exposure image projected onto a photosensitive substrate set on the second surface.
PCT/JP2003/004142 2002-04-03 2003-03-31 Projection optical system, exposure system and exposure method WO2003088330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003221102A AU2003221102A1 (en) 2002-04-03 2003-03-31 Projection optical system, exposure system and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002101096A JP2003297729A (en) 2002-04-03 2002-04-03 Projection optical system, exposure apparatus, and method of exposure
JP2002-101096 2002-04-03

Publications (1)

Publication Number Publication Date
WO2003088330A1 true WO2003088330A1 (en) 2003-10-23

Family

ID=29241644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004142 WO2003088330A1 (en) 2002-04-03 2003-03-31 Projection optical system, exposure system and exposure method

Country Status (4)

Country Link
JP (1) JP2003297729A (en)
AU (1) AU2003221102A1 (en)
TW (1) TW200402603A (en)
WO (1) WO2003088330A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6917458B2 (en) 2001-06-01 2005-07-12 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US7859748B2 (en) 2000-01-14 2010-12-28 Carl Zeiss Smt Gmbh Microlithographic reduction projection catadioptric objective
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005059645A2 (en) * 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal elements
KR20070105976A (en) * 2005-02-25 2007-10-31 칼 짜이스 에스엠티 아게 Optical system, in particular objective or illumination system for a microlithographic projection exposure apparatus
JP2008016516A (en) 2006-07-03 2008-01-24 Canon Inc Exposure apparatus
US7525640B2 (en) * 2006-11-07 2009-04-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP5165700B2 (en) 2007-02-28 2013-03-21 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective with pupil correction
JP2010097986A (en) * 2008-10-14 2010-04-30 Nikon Corp Projection optical system, exposure apparatus, and device manufacturing method
JP2012004465A (en) 2010-06-19 2012-01-05 Nikon Corp Illumination optical system, exposure equipment, and device manufacturing method
JP5567098B2 (en) * 2012-10-31 2014-08-06 カール・ツァイス・エスエムティー・ゲーエムベーハー Catadioptric projection objective with pupil correction
JP2013102177A (en) * 2012-12-25 2013-05-23 Nikon Corp Projection optical system
US10732336B2 (en) * 2017-02-02 2020-08-04 Corning Incorporated Method of assembling optical systems and minimizing retardance distortions in optical assemblies

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107060A (en) * 1994-10-06 1996-04-23 Nikon Corp Optical member and projection optical system for photolithography
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same
JP2000356701A (en) * 1999-06-15 2000-12-26 Tsuguo Fukuda Optical member for vacuum ultraviolet region comprising colquiriite type fluoride mixed crystal and coating material for optical member
EP1063684A1 (en) * 1999-01-06 2000-12-27 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
EP1168028A2 (en) * 2000-06-19 2002-01-02 Nikon Corporation Projection optical system, manufacturing method thereof, and projection exposure apparatus
EP1191378A1 (en) * 2000-03-03 2002-03-27 Nikon Corporation Reflection/refraction optical system and projection exposure apparatus comprising the optical system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08107060A (en) * 1994-10-06 1996-04-23 Nikon Corp Optical member and projection optical system for photolithography
JPH1154411A (en) * 1997-07-29 1999-02-26 Canon Inc Projection optical system and projection aligner using the same
EP1063684A1 (en) * 1999-01-06 2000-12-27 Nikon Corporation Projection optical system, method for producing the same, and projection exposure apparatus using the same
JP2000331927A (en) * 1999-03-12 2000-11-30 Canon Inc Projection optical system and projection aligner using the same
JP2000356701A (en) * 1999-06-15 2000-12-26 Tsuguo Fukuda Optical member for vacuum ultraviolet region comprising colquiriite type fluoride mixed crystal and coating material for optical member
EP1191378A1 (en) * 2000-03-03 2002-03-27 Nikon Corporation Reflection/refraction optical system and projection exposure apparatus comprising the optical system
EP1168028A2 (en) * 2000-06-19 2002-01-02 Nikon Corporation Projection optical system, manufacturing method thereof, and projection exposure apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BURNETT JOHN H. ET AL.: "Intrinsic birefringence in calcium fluoride and barium fluoride", PHYSICAL REVIEW B. (241102 (R)), vol. 64, 29 November 2001 (2001-11-29), XP002218846 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859748B2 (en) 2000-01-14 2010-12-28 Carl Zeiss Smt Gmbh Microlithographic reduction projection catadioptric objective
US7075696B2 (en) 2001-06-01 2006-07-11 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US7009769B2 (en) 2001-06-01 2006-03-07 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6947192B2 (en) 2001-06-01 2005-09-20 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6917458B2 (en) 2001-06-01 2005-07-12 Asml Netherlands B.V. Correction of birefringence in cubic crystalline optical systems
US6970232B2 (en) 2001-10-30 2005-11-29 Asml Netherlands B.V. Structures and methods for reducing aberration in integrated circuit fabrication systems
US7738172B2 (en) 2001-10-30 2010-06-15 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US7453641B2 (en) 2001-10-30 2008-11-18 Asml Netherlands B.V. Structures and methods for reducing aberration in optical systems
US6995908B2 (en) 2001-10-30 2006-02-07 Asml Netherlands B.V. Methods for reducing aberration in optical systems
US7072102B2 (en) 2002-08-22 2006-07-04 Asml Netherlands B.V. Methods for reducing polarization aberration in optical systems
US7075720B2 (en) 2002-08-22 2006-07-11 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in optical systems
US6958864B2 (en) 2002-08-22 2005-10-25 Asml Netherlands B.V. Structures and methods for reducing polarization aberration in integrated circuit fabrication systems
US7782538B2 (en) 2003-12-15 2010-08-24 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
US9772478B2 (en) 2004-01-14 2017-09-26 Carl Zeiss Smt Gmbh Catadioptric projection objective with parallel, offset optical axes
US8908269B2 (en) 2004-01-14 2014-12-09 Carl Zeiss Smt Gmbh Immersion catadioptric projection objective having two intermediate images
US8913316B2 (en) 2004-05-17 2014-12-16 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9019596B2 (en) 2004-05-17 2015-04-28 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9134618B2 (en) 2004-05-17 2015-09-15 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images
US9726979B2 (en) 2004-05-17 2017-08-08 Carl Zeiss Smt Gmbh Catadioptric projection objective with intermediate images

Also Published As

Publication number Publication date
JP2003297729A (en) 2003-10-17
AU2003221102A1 (en) 2003-10-27
TW200402603A (en) 2004-02-16

Similar Documents

Publication Publication Date Title
US6775063B2 (en) Optical system and exposure apparatus having the optical system
JP4333078B2 (en) Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method
WO2003088330A1 (en) Projection optical system, exposure system and exposure method
US20030011893A1 (en) Optical system and exposure apparatus equipped with the optical system
JP2003309059A (en) Projection optical system and manufacturing method thereof, projection aligner, and exposure method
KR20030082452A (en) Projective optical system, exposure apparatus and exposure method
JP2004205698A (en) Projection optical system, exposure device and exposing method
JP2003161882A (en) Projection optical system, exposure apparatus and exposing method
JP2004333761A (en) Catadioptric projection optical system, projection aligner, and exposure method
JPWO2003036361A1 (en) Projection optical system and exposure apparatus provided with the projection optical system
JPWO2003003429A1 (en) Projection optical system, exposure apparatus and method
WO2002097508A1 (en) Optical system and exposure system provided with the optical system
JP2004317534A (en) Catadioptric image-formation optical system, exposure device, and exposure method
JP4706171B2 (en) Catadioptric projection optical system, exposure apparatus and exposure method
WO2003001271A1 (en) Optical system and exposure system provided with the optical system
JP2005115127A (en) Catadioptric projection optical system, exposure device and exposing method
WO2003040785A1 (en) Optical element, method of manufacturing the optical element, optical system, exposure device, and method of manufacturing micro device
JP4547714B2 (en) Projection optical system, exposure apparatus, and exposure method
WO2003007046A1 (en) Optical system and exposure apparatus having the optical system
JP2005195713A (en) Projection optical system, exposure device, and exposure method
JP5786919B2 (en) Projection optical system, exposure apparatus and exposure method
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method
JP2004004415A (en) Projection optical system, exposure device, and exposure method
JP2011049571A (en) Catadioptric projection optical system, exposure device and exposure method
JP2005064310A (en) Optical system, aberration adjusting method therefor, aligner and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase