WO2003098724A1 - Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production - Google Patents

Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production Download PDF

Info

Publication number
WO2003098724A1
WO2003098724A1 PCT/JP2003/006318 JP0306318W WO03098724A1 WO 2003098724 A1 WO2003098724 A1 WO 2003098724A1 JP 0306318 W JP0306318 W JP 0306318W WO 03098724 A1 WO03098724 A1 WO 03098724A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
electrode
support substrate
sheet
substrate
Prior art date
Application number
PCT/JP2003/006318
Other languages
English (en)
French (fr)
Inventor
Masatoshi Shimomura
Teruhisa Nagashima
Kazuo Hata
Original Assignee
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd. filed Critical Nippon Shokubai Co., Ltd.
Priority to JP2004506112A priority Critical patent/JP4580755B2/ja
Priority to CA002486931A priority patent/CA2486931A1/en
Priority to US10/515,227 priority patent/US7351492B2/en
Priority to EP03730535A priority patent/EP1551071A4/en
Priority to AU2003242351A priority patent/AU2003242351B2/en
Publication of WO2003098724A1 publication Critical patent/WO2003098724A1/ja
Priority to US11/987,979 priority patent/US20080118786A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • TECHNICAL FIELD The present invention relates to an electrode support substrate for a solid oxide fuel cell, and particularly to the size and distribution of pores over the entire surface of the electrode support substrate. Uniform and good gas passage / diffusion, and uniform and adhesive when forming electrodes or electrolytes on one side of the electrode support substrate by screen printing etc.
  • TECHNICAL FIELD The present invention relates to an electrode support substrate for a fuel cell capable of performing excellent electrode or electrolyte printing and a useful production method thereof.
  • an electrode support substrate is a substrate for electrode formation on which an anode electrode layer or a solid electrolyte membrane is formed on one surface, and the substrate itself has a function as an anode electrode.
  • a solid electrolyte layer and a force source electrode layer are sequentially formed to form a support substrate for forming a cell.
  • these are referred to as an electrode support substrate.
  • a typical structure of a solid oxide fuel cell has an anode electrode on one side and a force electrode on the other side of a flat solid electrolyte free-standing membrane.
  • a stack in which a large number of digitized cells are stacked is essential.
  • it is effective to make the solid electrolyte free-standing membrane dense and thin.
  • a solid electrolyte self-supporting membrane needs to be dense enough to reliably prevent the mixture of fuel gas and air, which are the power source, and to have excellent ionic conductivity, which minimizes the number of conductive ports. This is because it is required to be as thin and dense as possible.
  • the fuel cell has a structure in which a number of anode electrodes Z and a cell having a self-supporting solid electrolyte membrane / force electrode are alternately stacked with a separator for separating and circulating fuel gas and air.
  • the solid electrolyte self-supporting membrane is subject to a large laminating load, and is subjected to a considerable heat stress at an operating temperature of about 700 to 100 ° C, resulting in a high level of strength and heat resistance. Stress is required.
  • a ceramic sheet mainly composed of zirconia is mainly used as a material for a free-standing solid electrolyte membrane for a solid oxide fuel cell.
  • a cell is used in which a cathode electrode and a cathode electrode are formed on both sides by screen printing or the like.
  • the present inventors have been studying such a plate-shaped solid electrolyte self-supporting membrane for a solid oxide fuel cell for some time, and have studied physical properties and shape characteristics (eg, stacking load and heat stress). (4) Prevent cracking due to local stress by reducing lip, projections and glue), reduce the wall thickness as much as possible to reduce ion conduction loss, and surface roughness to improve the uniformity and adhesion of electrode printing. Research has been conducted in the direction of optimizing the quality, and prior to the publication of Japanese Patent Application Laid-Open Nos. 2000-0 — 2814 438, 2000-1 — 89252, and 2001-1 — 108 The disclosed technology was proposed in Publication No. 66 and other publications.
  • the solid electrolyte self-supporting membrane is made much thinner and more dense.
  • the shape characteristics that is, reducing the porosity, protrusions, paris, etc.
  • the present inventors have continued their research with the aim of improving the performance of the fuel cell, but this time, instead of modifying the ceramic sheet used as a self-supporting solid electrolyte membrane, the support membrane type cell was used.
  • the research was carried out in the direction of improving the electrode support substrate for use.
  • the self-supporting ceramic solid electrolyte membrane is more likely to crack due to the laminating load as it becomes thinner.Therefore, there is a limit even if it is made thinner, and there is also a limit to the reduction of ion conduction loss. Because there is.
  • an electrode supporting substrate is joined between the cells as a support material of the cell, or a sufficient amount of electrode is used. Or to have a thickness.
  • This substrate has conductivity for conducting electricity and, unlike the solid electrolyte self-supporting membrane, passes through a fuel gas or air serving as a power generation source or an exhaust gas (carbon dioxide gas, water vapor, etc.) generated by combustion of these. ⁇ Consisting of porous ceramic material so that it can be diffused.
  • anode electrodes have been formed on a porous electrode support substrate by screen printing, a solid electrolyte membrane has been formed thereon by coating, etc., and a force source electrode has been further formed thereon.
  • a method of forming a cell by screen printing or the like to further reduce the thickness of the solid electrolyte membrane and further reduce conduction loss is being studied.
  • the support substrate allows passage and expansion of fuel gas, It must be porous with enough pores to allow diffusion, and it is desirable that the distribution of the pores be uniform so that gas can pass and diffuse across the entire substrate without ample effort. It is.
  • the electrode supporting substrate is required to have appropriate conductivity as described above, and must be porous with sufficient pores to allow the passage and diffusion of fuel gas, etc. There are apertures. Therefore, in order to enable excellent electrode printing despite the existence of such openings, the surface characteristics defined by the above-mentioned dense solid electrolyte membrane are applied to the porous electrode support substrate as it is. This cannot be done, and the surface characteristics inherent to the electrode support substrate must be clarified.
  • the electrode support substrate is required to have appropriate conductivity as described above, and must be porous with enough pores to allow passage and diffusion of fuel gas and the like. There are countless apertures. Therefore, despite such a porous sheet, in order to suppress cracking or breakage of the support substrate due to local stress concentration when receiving a laminating load, the inside and outside of the punching process must be controlled. This is because it is necessary to suppress as much as possible the burrs formed on the periphery and the projections and lips that may be formed inside.
  • the electrode support substrate intended in the present invention must be a porous material that allows gas to pass and diffuse, so that it is effective for printing proper and preventing stress concentration on a dense sheet such as a solid electrolyte membrane. It is not possible to apply shape characteristics as they are.
  • the present invention has been made in view of the above-mentioned circumstances, and has as its object to provide a fuel cell or the like for an electrode support substrate on which electrode printing or solid electrolyte membrane is applied by screen printing or the like. On the other hand, it has stable, uniform and excellent gas passage / diffusion properties over the entire surface, and is capable of forming a uniform and highly adherent electrode printing or solid electrolyte membrane.
  • the electrode support substrate for a fuel cell according to the present invention which can solve the above problems has a porosity of 20 to 50%, a thickness of 0.2 to 3 mm, and a surface area of 50%. cm 2 or more of ceramic sheet, measured by a method in accordance with JISK640, the measured value of the air flow rate in a 4 cm 2 area arbitrarily selected from the total surface area The point is that the coefficient of variation is 5 to 20%.
  • the electrode support substrate for a fuel cell of the present invention has, in addition to the above-mentioned requirements, a laser optical type 3 for obtaining excellent adhesion and uniformity when printing an anode electrode or the like on the surface. It is preferable that the surface roughness measured by the dimensional shape measuring device is in the range of 1.0 to 40 xm in maximum roughness depth (Rmax: German standard "DIN 4768").
  • the electrode supporting substrate for a solid oxide fuel cell according to the present invention is used in a multi-layered state as described above, laser optics should be used to minimize cracks and breakage due to the stacking load during use. Equation
  • the burr height measured by the 3D shape measuring device is the sheet thickness. It is desirable that the maximum height of the ridge and / or protrusion is also measured by a laser one-optical three-dimensional shape measuring apparatus and is 1 Z3 or less of the sheet thickness. It is desirable.
  • the production method of the present invention is positioned as a production method capable of reliably obtaining a fuel cell electrode support substrate, particularly a fuel cell electrode support substrate having the above-mentioned characteristics.
  • Slurry for green sheet production as a precursor contains conductive component powder, aggregate component, pore-forming agent powder and binder.After milling, degassed under reduced pressure to reduce viscosity to 40 to 10 After adjusting to 0 boil (25 ° C), use a slurry maintained at room temperature while rotating the stirring blades in the slurry at a rotation speed of 5 to 30 rpm for 20 to 50 hours. The slurry is formed into a sheet by a doctor blade method, the obtained green sheet is cut into a predetermined shape, and then fired.
  • the slurry for green sheet production has a particle size distribution having one peak in the range of 0.2 to 2/111 and 3 to 50 m, respectively.
  • Content ratio of fine particles in the particle size range of 2 to 2 m to coarse particles in the particle size range of 3 to 50 xm is in the range of 20/80 to 90/10 by mass ratio. It is preferable to use 5 to 30 parts by mass of a binder with respect to 100 parts by mass of the total of the conductive component powder and the aggregate component powder, and the pore forming agent as the slurry. It is preferable to use a slurry containing 2 to 40 parts by mass of powder.
  • the cutting edge shape is It is desirable to use a corrugated punching blade, and more preferably And a come blade side or laminate had an angle of the waveform edge (0 ⁇ ), blade edge angle (ratio 2) of the blade cross section, formed by the center line passing through the surface and the cutting edge of the sheet side, which is a product (X)
  • the angle ( ⁇ ) and the angle (S 2 ) formed by the center line (X) passing through the cutting edge and the surface on the remaining sheet side satisfying the following relational expression are used.
  • ⁇ , ⁇ ⁇ 2 Brief description of drawings Fig.
  • FIG. 1 is a view showing a method for manufacturing an electrode support substrate for a fuel cell according to the present invention.
  • a frequency graph illustrating a preferred particle size distribution of a slurry for producing green bodies, which is preferably used in the present invention
  • FIG. 2 shows burrs formed on an electrode substrate measured by a laser optical three-dimensional shape measuring apparatus.
  • Fig. 3 is a cross-sectional explanatory view illustrating the shape of a laser beam.
  • FIG. 4 is an enlarged explanatory view illustrating projections that may occur on the surface of the electrode substrate, and FIG. 4 is a description illustrating examples of energy that may occur on the entire electrode substrate measured by a laser optical three-dimensional shape measuring apparatus.
  • FIG. 1 is a view showing a method for manufacturing an electrode support substrate for a fuel cell according to the present invention.
  • a frequency graph illustrating a preferred particle size distribution of a slurry for producing green bodies, which is preferably used in the present invention
  • FIG. 2 shows burrs formed on an electrode substrate
  • FIG. 5 is a view showing an example of a particle size distribution of a slurry preferably used when producing a green body which is a precursor of the electrode substrate according to the present invention
  • FIG. 6 is a view for a fuel cell according to the present invention.
  • FIG. 7 is an explanatory side view illustrating a preferred edge shape of a punching blade used for punching a green sheet when manufacturing an electrode substrate.
  • FIG. 7 is a cross-sectional explanatory view illustrating the edge shape of the punching blade.
  • FIG. 9 is a cross-sectional explanatory view showing another preferred example of the punching blade used in the present invention.
  • FIG. 9 shows a configuration of a punching device preferably used in the present invention and an example of a punching process.
  • FIG. 10 is a schematic cross-sectional explanatory view showing a configuration of a punching apparatus preferably used in the present invention and an example of a punching process.
  • FIG. 1 is a schematic cross-sectional explanatory view showing a configuration of a punching device preferably employed in the present invention and an example of a punching process
  • FIG. 12 is an explanatory diagram showing an outline of a ventilation resistance measuring apparatus used in an embodiment of the present invention. .
  • the present invention provides an electrode support substrate capable of reliably obtaining a dense, uniform, and high-adhesion electrode while ensuring gas passage and diffusion required for the electrode support substrate under the following problems. I have been working on it.
  • the ceramic constituting the substrate is a ceramic sheet having a porosity of 20 to 50%, a thickness of 0.2 to 3 mm, and a surface area of 50 cm 2 or more.
  • the coefficient of variation of the measured value of the air flow rate in a region of 4 cm 2 arbitrarily selected from the total surface area, measured by a method in accordance with JISK640, is 5 to 20%. For some, it was confirmed that the distribution of pores over the entire electrode supporting substrate was almost uniform, and that excellent gas passage / diffusion could be stably exhibited.
  • the electrode support substrate of the present invention must be porous, having conductivity, being excellent in thermal shock resistance and mechanical strength, and having sufficient gas passage and diffusion properties.
  • the specific configuration of the electrode supporting substrate that can be added will be described in detail below.
  • the electrode supporting substrate includes a conductive component for providing conductivity and a
  • the main constituent material is ceramic material, which is the skeleton component.
  • the above conductive component is an essential component for imparting conductivity to the substrate.
  • components serving as an anode electrode supporting substrate include fuel cell operation such as iron oxide, nickel oxide, and cobalt oxide.
  • Fuel cell operation such as iron oxide, nickel oxide, and cobalt oxide.
  • Metal oxides that change to conductive metals in the reducing atmosphere of time such as seria, yttria dope seria, samaria ado seria, placea dope seria, gadria dope seria
  • nickel oxide is the most versatile in consideration of cost and conductive characteristics.
  • the skeletal component is an important component for ensuring the strength required for the electrode support substrate, especially for withstanding thermal shock and stacking load, and for mitigating the difference in thermal expansion with the solid electrolyte. If it is a solid component, it may be used alone or in a composite such as zirconia, alumina, magnesia, titania, aluminum nitride, and mullite. Among these, the most versatile is the stabilized zirconia.
  • the stabilized zirconia includes zirconia and MgO, CaO, Sr r, and Ba as stabilizers.
  • oxides of alkaline earth metals such as ⁇ ; Y 2 ⁇ 3, L a 2 ⁇ 3, C e ⁇ 2, P r 2 ⁇ 3 N d 2 0 3, S m 2 O 3> E u 2 ⁇ 3 , G d 2 ⁇ 3, T b 2 ⁇ 3, D y 2 ⁇ 3, E r 2 O 3, T m 2 O 3> Y b 2 0 oxide of a rare earth element 3 such as; S c 2 0 3, B i 2 ⁇ 3, I n 2 ⁇ 3 Hitoshiryoku, Ku et one Wakashi selected those were dissolved two or more kinds of oxides, or even alumina as a dispersion strengthening agent to, titania, T a 2 ⁇ 5, N b 2 O 5, etc. dispersion strengthened Jirukonia or the like which is added is illustrated as a casting Shi preferred. Also, C e O, and B io O q have C a OS r ⁇ , B a ⁇ Y
  • T a 2 O 5 N b 2 ⁇ 5 of one is also rather has the added cell re ⁇ based or bismuth or two or more, furthermore, be used L a G a ⁇ 3-described galley preparative system Ceramic It is possible.
  • zirconia stabilized with 25 to 12 mol% of zirconium and zirconia stabilized with 3 15 mol% of scandium are particularly preferred.
  • the content ratio of the conductive component and the skeletal component is important for imparting appropriate conductivity and strength characteristics to the obtained electrode support substrate, and when the amount of the conductive component becomes relatively large, the conductivity of the substrate becomes large.
  • strength properties are reduced while the amount of the skeletal component is relatively small, while strength properties are enhanced by an increase in the amount of the skeleton component when the amount of the conductive component is relatively small. Therefore, the mixing ratio of the two should be appropriately determined in consideration of these balances, and the ratio slightly varies depending on the type of the conductive component, etc., but mainly the anode electrode supporting substrate.
  • the skeleton component is 60 to 20% by mass relative to the conductive component 40 to 80% by mass, and more generally, the skeleton component is 50 to 70% by mass. The range of the component 50 to 30% by mass is preferred.
  • the electrode support substrate of the present invention is composed of a conductive component and a skeletal component as described above.
  • the skeletal component ensures mechanical strength and heat resistance, and the conductive component imparts conductivity to the substrate. .
  • the electrode support substrate composed of these requires pores for passing and diffusing the fuel gas and the combustion exhaust gas, and the gas passes smoothly under a low pressure loss. To make the whole Therefore, the gas must have a porosity of 20% or more in an oxidizing atmosphere. If the porosity is less than 20%, the gas will be insufficiently passed and diffused, thereby lowering the power generation efficiency. A more preferred porosity is 25% or more, and more preferably 30% or more.
  • the porosity is too large, the strength characteristics and heat stress of the substrate will be reduced, and the substrate will be broken or deteriorated due to the laminated load or thermal shock when assembled as a stack.
  • the distribution state of the conductive component becomes sparse, and the conductivity tends to be insufficient. Therefore, at most 50% or less, preferably 45% or less, more preferably 40% or less is used. %.
  • the electrode supporting substrate of the present invention must have a thickness in the range of 0.2 to 3 mm, and if the thickness is less than 0.2 mm, it is too thin to secure the strength as the electrode supporting substrate. On the other hand, if the thickness is excessively larger than 3 mm, the strength is improved, but when a large number of these are laminated and put into practical use as a cell stack, the entire laminated structure becomes thicker, and the power generation device is formed. Therefore, it becomes difficult to meet the demand for compaction.
  • the preferred thickness for practical use as a fuel cell is 0.3 mm or more.
  • the size of the electrode supporting substrate according to the present invention depends on the application and the scale, but it is also important to secure a practical level of power generation, and for that purpose, a minimum necessary surface area should be secured. It is desirable to secure a sheet area (surface area on one side) of at least 50 cm 2, more preferably at least 100 cm 2 .
  • the variation coefficient of the measured value of air permeability in the region of 4 cm 2 arbitrarily selected from the entire surface of the substrate is 5%. It must be in the range of ⁇ 20% and exhibit almost uniform gas passage and diffusion properties as a whole. In order to allow the fuel gas and the reaction product gas to pass through promptly as the electrode support substrate, it is naturally preferable that the electrode support substrate has a uniform gas passage / diffusion property as a whole. It is desirable that the distribution of pores over the entire substrate is uniform.
  • the air permeability is a value measured in accordance with the air permeability measurement method defined in JISK640 (19997) concerning the test method for flexible urethane foam. Specifically, the substrate was cut into a 3 cm square (area 9 cm 2 ) with a diamond cutter, and one side (low pressure side) of this test piece was depressurized, and the other side (high pressure side).
  • a steady flow differential pressure measurement method is adopted in which air is introduced and air permeability is measured by increasing the pressure on the low pressure side.
  • 0.5 cm each of both ends of the test piece shall be used for holding the test piece, and the effective ventilation area shall be 4 cm 2 .
  • the standard deviation was calculated to relatively represent the fluctuation and variation of the airflow measurement values, and the variation coefficient obtained by dividing the standard deviation by the average value was used.
  • the coefficient of variation is defined as 5 to 20%, more preferably in the range of 5 to 15%, and even more preferably in the range of 5 to 13%.
  • the content exceeds 20%, cracks or cracks are generated in the substrate in most cases. This is because when the fuel gas passes through the substrate, it cannot be passed uniformly, causing a bias, and the fuel gas reaching the vicinity of the electrolyte becomes uneven depending on the location. It is considered that temperature distribution occurs due to the formation of few places.
  • the variation coefficient is 0%, but the variation coefficient obtained by the above method is at least 5%. Is defined as the lower limit.
  • the distribution of pores over the entire substrate is uniform, and the pore size is preferably 3 Hm or more and 2 O ⁇ m or less in average diameter.
  • the average diameter of the pores is less than 3 ⁇ m, the passage of gas will be insufficient and the diffusivity will be insufficient, which may cause the same problem as the case of insufficient porosity.
  • the average diameter is too large, the porosity will be excessive As in the case of Since it tends to become a foot, it is better to keep it to 20 m or less.
  • the coefficient of variation of the measured porosity and air permeability of the substrate, and more preferably the average diameter of the pores, are determined by the type and amount of the pore-forming agent used in the production of the substrate, the amount of the raw material powder, and the like. It can be adjusted depending on the particle size composition, the temperature at which the green sheet as a precursor of the substrate is fired, and the like, and specific methods thereof will be described later.
  • an anode electrode and an electrolyte layer are formed on one surface by screen printing or the like as described above, but a uniform and reliable electrode or electrolyte printing with high adhesion is performed.
  • the surface must be controlled to an appropriate surface roughness. According to experiments conducted by the present inventors, it was confirmed that the maximum roughness depth (Rmax: German standard “DIN 4768”) should be 10 m or more and 40 m or less. Was done.
  • the electrode supporting substrate of the present invention which is porous for ensuring gas passage and diffusion, has a surface roughness using a contact-type surface roughness measuring device, which is generally employed for dense sheets. Cannot accurately evaluate the quality of the surface properties, and it is assumed that the surface roughness measured in a non-contact state by a laser-optical three-dimensional shape measuring apparatus and that satisfies the above Rmax. It is desirable to do it.
  • R max when R max is less than 1, the electrode printing layer tends to have insufficient adhesion because the surface is too smooth, and the electrode printing layer separates from the substrate due to thermal shock during handling or operation. And there is a tendency for gas permeability and diffusivity to be insufficient.
  • R max exceeds 40 m, the thickness of the electrode layer becomes uneven at the time of electrode printing, or a part of the electrode constituent material is buried in the concave portion on the surface, and the electrode layer is formed on the surface of the electrode layer. Irregularities may occur, leading to an increase in conductive loss, and furthermore, during firing or as a fuel cell. During operation, cracks may occur in the electrode layer.
  • R max 2.0 m or more, 30 m or less, more preferably 20 m or less, in order to increase the adhesion of the electrode printing layer while minimizing the conductive hole. .
  • the non-contact type laser optical three-dimensional shape measuring apparatus was used for evaluating the surface roughness for the following reasons.
  • a contact type surface roughness measuring device such as a stylus type
  • the stylus is caught by the pores and the surface roughness is reduced. This is because it is difficult to measure the surface roughness smoothly, and since the pores opened on the surface are relatively deep, accurate surface roughness cannot be measured by the contact method.
  • the coefficient of variation of the measured value of the air permeability obtained by the above method is 5 to 20%, and preferably, the maximum roughness depth (R max) is set to an appropriate range.
  • R max the maximum roughness depth
  • the gas is porous and uniform in thickness, and the gas flow and diffusion over the entire surface are uniform, causing a gas flow drift and an extreme temperature distribution during operation. At the same time, it enables electrode printing with high adhesion.
  • the particle size of the raw material powder used in the production of Darin sheet which is a precursor of the ceramic constituting the electrode support substrate It is necessary to properly control the production conditions and firing conditions of the green sheet and green sheet, which will be described later.
  • the electrode supporting substrate of the present invention is stacked and assembled in a large number in the upward and downward directions, so that a large laminating load is applied, and furthermore, thermal shock and thermal stress due to heat during operation. Therefore, even if there are slight burrs or protrusions on the laminated surface, stress concentrates on those parts, causing cracks and cracks. When such cracks and cracks occur on the substrate, they form on the surface When cracks and cracks spread on the solid electrolyte membrane, the shielding effect of fuel gas and the like is lost, and the fuel cell can operate as a fuel cell. Disappears.
  • burrs, protrusions, and ridges on the substrate surface become large, not only the anode layer and solid electrolyte layer formed on the surface become non-uniform, but also the adhesion to the substrate becomes poor.
  • the burr height of the peripheral portion measured by the laser-optical three-dimensional shape measuring apparatus is 1 Z 2 or less of the sheet thickness.
  • the maximum protrusion height measured by the laser-optical three-dimensional shape measuring device is also less than 1/3 of the sheet thickness, and the maximum projection height also measured by the laser-optical three-dimensional shape measuring device.
  • the burr height is not more than 1/2 of the sheet thickness, more preferably not more than 1/3, and more preferably not more than 1 Z4. The lower one has almost no cracking or cracking even when subjected to a practical level of stacking load-heat stress, etc., and maintains the specified power generation performance as a fuel cell for a long time. It was confirmed that it could be done.
  • the burr height is, for example, as shown in FIG. 1, the maximum height and the minimum height in the vertical direction section from the outer periphery (or inner periphery) of the substrate cut surface. Means the difference from the part and is determined by a non-contact laser-optical three-dimensional shape measuring device.
  • the burr height obtained by the above method is suppressed to 1 Z 2 or less of the sheet thickness, local stress concentration due to load or thermal shock in a laminated state is minimized. Therefore, cracks and cracks can be minimized.
  • the maximum protrusion height and the maximum panel height on the substrate surface be as small as possible.
  • the standard is to reduce stress cracking and cracking when a stacking load is applied, and to reduce the likelihood of homogenizing the electrode layer and solid electrolyte membrane formed on the electrode surface.
  • the maximum projection height measured by the optical three-dimensional shape measurement device should be 1 Z 3 or less, more preferably 1/4 or less, more preferably 1 Z 5 or less of the sheet thickness, or It is desirable that the maximum panel height be 1 Z 3 or less, more preferably 1/4 or less, and even more preferably 1 Z 5 or less of the sheet thickness.
  • the above-mentioned protrusion is, for example, as shown in FIG. 2, a diameter of 2 to 15 mm (more generally, 5 to 10 mm) which is basically independently formed on the surface of the electrode sheet.
  • Means the degree of convexity For example, as shown in FIG. 3, it means continuous distortion in the form of a wave that tends to occur on the electrode sheet, especially at the peripheral edge. These distortions irradiate the sheet surface with one laser beam and reflect the reflected light. It can be obtained by three-dimensional analysis.
  • the shape of the ceramic sheet constituting the electrode support substrate of the present invention may be any of a circle, an ellipse, a square, a square having an R (R), and the like. It may have one or two or more holes, such as an ellipse, a square having a square R, or the like.
  • R an R
  • the electrode supporting substrate of the present invention comprises: a powder comprising a metal or a metal oxide serving as the conductive component; a metal oxide powder serving as a skeletal component; An organic or inorganic binder and a dispersing medium (solvent) and, if necessary, a dispersant and a plasticizer are mixed uniformly to form a paste, which is then used to form a paste.
  • Green sheet by applying a suitable thickness on a smooth sheet (for example, polyester sheet, etc.) by any means such as squeezing method or extrusion method, and drying it to volatilize and remove the dispersion medium (solvent). Get.
  • any type of pore-forming agent can be used as long as it can be burned off under the above-mentioned calcination conditions.
  • Natural organic powders such as talented starch or (meth) acrylic
  • a thermally decomposable or sublimable resin powder such as a crosslinked fine particle aggregate made of resin or the like, melaminocyanurate, or a carbonaceous powder such as Rikibon black activated carbon is used.
  • corn starch, aggregates of acrylic crosslinked fine particles, black iron, and the like are preferable since they can contain a large amount of conductive components as described later.
  • pore-forming agent powders is spherical or rugby pole-shaped in order to contain a large amount of conductive components and to promote uniform distribution of the conductive components in the ceramic substrate obtained by firing. It is also preferable that the powder or the fine particle aggregate itself has pores so that the conductive component can be contained in the powder or the fine particle aggregate.
  • the preferred particle size of the above-mentioned powder or crosslinked fine particle aggregate serving as a pore-forming agent is determined by a laser diffraction particle size distribution meter (manufactured by Shimadzu Corporation, trade name).
  • the average particle size measured by “SALD — 110”) is 0.5 to 100 tm, more preferably 3 to 50 Hm, and the 10% volume diameter is 0.1 to: L. 0 / im, more preferably in the range 1-5 / m.
  • SALD — 110 particularly preferred are crosslinked fine particle aggregates as exemplified above, for example, obtained by emulsion polymerization of a (meth) acrylic monomer as disclosed in JP-A-2000-530720.
  • the crosslinked polymer emulsion obtained by spray drying the obtained crosslinked polymer emulsion is a fine particle aggregate having an average particle diameter of 0.5 to 100 m in which crosslinked polymer fine particles having an average particle diameter of 0.01 to 30 m are mutually assembled. is there.
  • the pore-forming agent can be individually mixed with the raw material powder to form a slurry for forming a green sheet.
  • the pore-forming agent and the conductive component are mixed or combined. Then, it is also effective to mix it with other raw materials. That is,
  • Conductive component powder or its precursor compound and the pore-forming agent A method in which the conductive component powder and its precursor compound are uniformly adhered to the surface of the pore-forming agent powder by blending in a ratio and wet-mixing or dry-mixing.
  • a method as disclosed in Japanese Patent Application Laid-Open No. 7-22032 is diverted to convert the above-mentioned pore-forming agent powder and a precursor compound which generates a conductive component by thermal decomposition.
  • a method of mixing and volatilizing the solvent and dry-grinding with a mill or the like, or a method of volatilizing and removing the solvent while wet-milling can be adopted.
  • polymerizable monomer mixtures such as (meth) acrylic monomers are used.
  • Emulsion polymerization is performed to produce a fine particle aggregate having an average particle size of 0.5 to 100 xm in which crosslinked polymer fine particles having an average particle size of 0.01 to 30 m adhere to each other.
  • the use of the pore-forming agent containing a conductive component as described above can provide the following effects. That is, the pore-forming agent burns and disappears during green sheet baking, and pores are formed in that part. If a conductive component coexists in that part, pores exist near the conductive component after baking. Therefore, when the electrode is used as a fuel cell electrode support substrate, even if the conductive component undergoes volume expansion due to oxidation, the pores absorb the strain caused by the volume expansion, and the electrode support is formed. Prevents cracks and cracks that tend to occur on the substrate. As a result, it is possible to improve the heat shock resistance and the heat stress of the electrode support substrate.
  • the pore-forming agent is an important component for providing gas passage and diffusion to the electrode supporting substrate by burning out as described above and forming pores during heating and sintering.
  • the content be in the range of from not less than 40 parts by mass, more preferably not less than 5 parts by mass and not more than 30 parts by mass.
  • the amount of the pore-forming agent is insufficient, the pores formed by thermal decomposition during heating and firing tend to be insufficient, and it is difficult to obtain a satisfactory gas-passing / diffusing electrode supporting substrate.
  • sintering can be promoted by raising the sintering temperature or extending the sintering time, and the porosity can be reduced.However, sintering does not only take a long time but also consumes energy. Is also uneconomical because it increases significantly.
  • binder used for producing green sheets there is no particular limitation on the type of binder used for producing green sheets, and a conventionally known organic binder can be appropriately selected and used.
  • organic binder include an ethylene copolymer, a styrene copolymer, an acrylate or methacrylate copolymer, a vinyl acetate copolymer, a maleic acid copolymer, and vinyl butyral.
  • Alkyl acrylates having an alkyl group having 10 or less carbon atoms such as ethylhexyl acrylate; methyl methacrylate, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, octyl methacrylate Alkyl groups with 20 or less carbon atoms, such as relay, 2-ethylethyl methacrylate, decyl methyl acrylate, dodecyl methacrylate, lauryl methacrylate, cyclohexyl methacrylate Alkyl methacrylates having the following formulas; hydroxy such as hydroxypropyl acrylate, hydroxypropyl acrylate, hydroxymethacrylate, and hydroxypropyl acrylate; Acrylates or methacrylates having an alkyl group; dimethyl Aminoalkyl acrylates or aminoalkyl methacrylates, such as aminoethyl acrylate and dimethyla
  • Acrylate or methacrylate copolymer in particular, isobutyl methacrylate and / or 2-ethylhexyl methacrylate as a monomer component is 60% by mass or more. Containing copolymers are recommended as preferred.
  • the raw material powder total of conductive component, skeleton component and pore-forming agent
  • the ratio of the binder and the binder is in the range of not less than 100 parts by mass, not less than 5 parts by mass, not more than 30 parts by mass, more preferably not less than 10 parts by mass and not more than 20 parts by mass.
  • the amount of the binder used is insufficient, the strength and flexibility of the green sheet become insufficient.
  • the amount is too large, not only does it become difficult to adjust the viscosity of the slurry, but also Decomposition and release of the binder component during firing are large and intense, and it is difficult to obtain a green sheet having a uniform surface texture.
  • the dispersion medium used in the production of green sheets includes alcohols such as methanol, ethanol, 2-propanol, 1-butanol, 1-hexanol, and 1-hexanol; Ketones such as pentane, hexane, and butane; aliphatic hydrocarbons such as pentane, hexane, and butane; aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene; methyl acetate; Acetates such as ethyl acetate and butyl acetate can be appropriately selected and used.
  • These dispersion media can be used alone or, if necessary, in combination of two or more kinds. The most common of these dispersants are 2-propanol, toluene, and ethyl acetate.
  • a pore-forming material powder and a skeleton component powder containing the above-mentioned conductive component powder or its precursor compound, or a conductive component that may be supplemented as necessary The powder is uniformly mixed with a binder, a dispersing medium, and, if necessary, a dispersant for promoting deflocculation and dispersion of the raw material powder, a plasticizer, and the like, to obtain a slurry in a uniformly dispersed state.
  • dispersing agent used herein examples include: polyelectrolytes such as polyacrylic acid and polyacrylic acid ammonium; organic acids such as citric acid and tartaric acid; isobutylene or styrene and maleic anhydride. And its ammonium salts, amine salts, and copolymers of butadiene and maleic anhydride. Also, plasticizers have the effect of increasing the flexibility of green sheets. Specific examples include fluoric acid esters such as dibutyl phthalate and dioctyl phthalate; and glycols such as propylene glycol. ⁇ Glycol esters are exemplified.
  • the raw material powder as the skeleton component of the electrode supporting substrate according to the present invention has an average particle diameter of not less than 0.3, not more than 3 and 90% by volume and not more than 6 m, more preferably not more than 0.1.
  • the particle size of 90% by volume is not more than 3 im at ⁇ m or more and 1.5 m or less, and more preferably the particle size of 90% by volume is not less than 1.
  • the powder used as a raw material of the conductive component has an average particle diameter of not less than 0, 15 m or less, 90% by volume and a particle diameter of 30 im or less, more preferably an average particle diameter of 30 im or less.
  • the raw material powder constituting the skeletal component a powder having an average particle diameter exceeding 3 and having a particle diameter of 90% by volume exceeding 6 im is used, and the average particle diameter is used as the raw material powder constituting the conductive component. Is more than 15 m and a powder having a particle size of 90% by volume of more than 30 m is used, because not only porosity by calcination but also pores between particles are voids. It is difficult to obtain the expected thermal shock resistance and mechanical strength.
  • the average particle size When the powder having a mean particle size of less than 0.6 is used as the constituent material of the conductive component, the powder in the sintered body is used despite the use of the pore-forming agent. The pores become too small and gas permeability and diffusivity tend to be insufficient.
  • the surface roughness is properly measured by a laser-optical three-dimensional shape measuring apparatus.
  • a green sheet that is a precursor for ceramics must be manufactured.
  • Slurry for use includes conductive component powder, aggregate component powder, pore former powder, and binder.
  • the mixture After milling, the mixture is defoamed under reduced pressure to obtain a viscosity of 40 to 100 voids (25 After adjusting to C), the slurry was kept at room temperature while rotating the stirring blades in the slurry at a rotation speed of 5 to 30 rpm for 20 to 50 hours, and the slurry was used. Is formed into a sheet by the doctor blade method, and the resulting green sheet is cut into a predetermined shape. After, arbitrariness and the child to adopt a method of baked growth is desired.
  • the viscosity of the slurry should be adjusted to 40 to L0 Vois (25 ° C). If the viscosity is lower than 40 Vois, the fluidity of the slurry is too high. Board with a thickness of 1 mm or more, especially 2 mm or more If it exceeds 100 voids, it is difficult to reduce bubbles remaining in the slurry, especially fine bubbles of 1 m level, because the viscosity is too high. Become. From this point of view, a more preferred slurry viscosity is 50 to 80 voices (25).
  • the more preferred rotation speed is 5 to 20 rpm.
  • the shape of the stirring blade is not particularly limited, but an anchor-shaped stirring blade with little air mixing is preferable.
  • conductive component powder, aggregate component powder, and pores are used as slurry for the production of Darin sheet, which is a ceramic precursor.
  • Darin sheet which is a ceramic precursor.
  • a viscosity-adjusted slurry of the same composition milled in the same manner is added to a viscosity-adjusted slurry held at room temperature while rotating at a rotation speed of 30 rpm for 20 to 50 hours to obtain a slurry.
  • the viscosity is adjusted based on the total of 100 parts by mass of the conductive component powder and the aggregate component powder in the viscosity-adjusted slurry. It is preferable to add so that the total of the conductive component powder and the aggregate component powder in the unadjusted slurry is 95 to 105 parts by mass.
  • the equipment used for degassing under reduced pressure should have a capacity of 10 liters or more, preferably 30 liters or more, and more preferably 5 liters or more, equipped with a refrigerator and a recovery tank for solvent recovery. It is preferable to use a concentration-stirring deaerator with a volume of 0 liters or more. For this reason, it is difficult to obtain a substrate of sufficient quality intended in the present invention.
  • the particle size distribution in a slurry state used for manufacturing a green sheet that is a precursor of a ceramic serving as an electrode supporting substrate is also important.
  • the surface roughness of the supporting substrate is affected to some extent by the particle size composition of the raw material powder used, and if a coarser material is used, the surface roughness of the sintered body becomes relatively coarse, and When using, the surface roughness becomes relatively dense. If the conductive component material powder and the skeleton component material powder constituting the electrode supporting substrate have the above-mentioned preferred particle size configurations, the above-mentioned appropriate porosity can be obtained. In addition to this, it is easy to obtain a maximum roughness depth (Rmax) within a suitable range.
  • Rmax maximum roughness depth
  • the slurry state used for producing the unfired green sheet is a factor that most affects the porosity and surface roughness of the electrode supporting substrate. It is important to adjust the particle size distribution of the solid components in the process so as to satisfy the above-mentioned preferable requirements.
  • the particle size distribution of the solid components in the raw material powder and the slurry is a value measured by the following method.
  • the particle size distribution of the raw material powder was measured using a laser-diffraction type particle size distribution analyzer “SALD_1100” manufactured by Shimadzu Corporation.
  • An aqueous solution to which sodium phosphate is added is used as a dispersion medium, This is a measured value after adding 0.01 to 1% by mass of each raw material powder to about 100 cm 3 of the dispersion medium and ultrasonically dispersing for 3 to 10 minutes.
  • the particle size distribution of solid component in the solvent of the same composition as the solvent medium in the scan Rally is used as the dispersion medium, each slide rie in the dispersing medium 1 0 0 cm 3 0. 1 ⁇ 1 %, And similarly measured after dispersion by ultrasonication for 3 to 10 minutes, and can be obtained as, for example, a particle size distribution frequency graph as shown in FIG.
  • the relative A green body filled with relatively fine particles of 0.2 to 2 m is formed between relatively coarse particles of 3 to 50 m, and it is preferable to bake this green body.
  • a sintered body having roughness can be obtained.
  • the fine particles in the range of 0.2 to 2 ⁇ m and the coarse particles in the range of 3 to 50 / xm in a slurry state are used. Is in the range of 20/80 to 90/10 in terms of mass ratio, and more preferably in the range of 40/60 to 80Z20. Further, the preferred average particle size as a whole is in the range of 0.2 to 5 m, more preferably 0.3 to 3 m, and the particle size distribution in the slurry state is adjusted to the above preferred range. There are no particular restrictions on the means of doing so, but as a general method,
  • a part of the raw material powder is calcined in advance at 900 to 140 ° C for 1 to 20 hours to increase the particle size, and the powder that has not been calcined How to mix and use with
  • the above method can be used alone, or two or more types can be appropriately combined as needed.
  • the electrode supporting substrate of the present invention is obtained by subjecting the slurry composed of the ceramic raw material powder obtained above to a binder and a dispersion medium to a supporting plate or a carrier by a doctor blade method, a calendar method, an extrusion method, or the like. It is spread on a sheet to obtain an appropriate thickness, formed into a sheet, dried, and the dispersion medium is volatilized to obtain a green sheet, which is cut, punched, etc. After being adjusted to an appropriate size, it is placed on a porous setter on a shelf plate or sandwiched between sets, as disclosed in the reissued patent WO99 / 599336. In an air atmosphere, the temperature is 110 to 150 ° C. in the case of the anode electrode support substrate, and preferably 120 to 150 ° C. C, most preferably a method of heating and firing at about 125 to 140 for about 1 to 5 hours.
  • porous setter a [N i] unit with high air permeability is used so that a large amount of gas derived from the binder and the pore-forming agent can be smoothly released during firing of the green sheet.
  • a porous ceramic sheet production set made of a sheet-like ceramic body containing 0 to 90% by mass is suitably used.
  • the sheet thickness should be 0.3 mm or more, more preferably 0.5, in order to satisfy the required strength and minimize the power loss. It is better to be not less than mm and not more than 3 mm, and more preferably not more than l mm.
  • the burr height which is extremely important for preventing cracks and cracks when the electrode supporting substrate receives a laminating load or the like, is used when punching the green sheet into a predetermined size.
  • the shape significantly changes depending on the shape of the cutting edge of the punching blade.
  • a burr formed on a green sheet punching line is used as compared with the case of using a normal linear punching blade. It was confirmed that the height could be significantly reduced. The reason is considered as follows.
  • FIG. 5 is an explanatory view illustrating a punching blade 1 preferably used in the present invention, in which a cutting edge 1a is formed in a saw-tooth shape.
  • the cutting edge of the punching blade 1 should be such that the cutting edge that comes into contact with the green sheet surface at the beginning is as small as possible.
  • 1a is formed as sharp as possible, and the cutting edge angle ⁇ ⁇ (meaning the angle of the corrugated cutting edge when the blade is viewed from the side) is 30 to 120 degrees, more preferably 45 degrees.
  • the blade height h is 0.5 to 2 mm, more preferably 0.5 to 1 mm
  • the pitch p is 0.2 to 7 mm, more preferably 0.2 to 4 mm. It is desirable to set it to the degree.
  • a preferred sectional structure of the punching blade 1 is as shown in FIG. 6, and a blade angle ⁇ 2 (meaning a tip angle of a cross section in a thickness direction of the blade) is 20 to 70 degrees, more preferably 20 to 70 degrees. At 50 degrees, the blade thickness t is 0. The thickness is preferably from 3 to 1 mm, more preferably from 0.4 to 0.7 mm.
  • the cutting structure in FIG. 7 for example, to glycidyl Nshi preparative G to be punched, Standing on Ri angle 0 [of G x side to be punched product (usually the inner circumferential side), truncation It is better to form the ⁇ angle than the rising angle 0 2 on the G ⁇ side (usually the outer peripheral side).
  • ⁇ ! Preferred correct angle is 1 0-2 5 degrees of, Ri 1 0 - 2 0 degrees Dare rather still more preferably, 0 2 of the preferred correct angle 1 0-3 5 degrees, the preferred Ri good rather than 1 0 ⁇ 30 degrees.
  • the cutting edge portion having the same pitch and the same shape is shown as a repetitive structure.
  • the shape of the cutting edge portion and its repeating unit are not limited to the illustrated example, as long as the structure is suitable for suppressing burrs. Of course, it is also possible to change the shape, dimensions and the like appropriately.
  • the punching blade 1 In punching, it is preferable to lower the punching blade 1 in the vertical direction as much as possible with respect to the green sheet surface.
  • the durine sheet In this case, the durine sheet is sandwiched by a flexible support plate to prevent displacement. It is desirable to punch in a fixed state.
  • FIG. 8 to FIG. 11 are schematic cross-sectional explanatory views illustrating the structure of a punching member ⁇ used in the present invention and a punching method using the punching member.
  • the blade 1 is fixed, and a blade 4 made of soft rubber or the like is attached to the tip of the hard member 3.
  • the blade 1 is used as long as the blade 4 is not deformed by compression. So that it does not protrude from the end surface of the wire (see Fig. 8)].
  • the punching section is used in order to further secure the green sheet at the time of punching.
  • the elastic plate 6 is also laminated on the upper surface of the hard plate 5 in the sheet supporting member B arranged to face the material A, the elastic plate 6 is not necessarily required.
  • the green sheet G to be punched is placed on the supporting member B to perform the punching operation.
  • the sheet supporting member B is pressed from the state shown in FIG.
  • the punching member A is relatively approached from a substantially vertical direction toward the green sheet G placed above.
  • the punching blade 1 provided on the punching member A is provided so as not to protrude from the front surface of the splashing plate 4, so that when the punching member A approaches the green sheet G as described above, The upper surface of the sheet G first comes into contact with the sprout plate 4, and the green sheet G is sandwiched from above and below by the sprout plate 4 and the elastic plate 6 (see FIG. 9).
  • the sprung plate 4 made of a resilient material is compressed and deformed, and the punching blade 1 protrudes in the Darin sheet G direction.
  • the spring 1 is elastically deformed by the spring plate 4 and is supported and fixed by being urged from both sides by the elastic force of the elastic plate 6 from the lower surface, and the blade 1 advances in this state. (See Fig. 10).
  • the punching member A is retracted to retract the blade 1 from the green sheet G punching portion. Until the sheet is pulled out from the green sheet G, the holding force is maintained by the resilient force of the spring 4 and the elastic plate 6, and the punching blade 1 is released after the cutting blade 1 is pulled out. (See Fig. 11: In the figure, y indicates the punched part.)
  • the punching and pulling out of the punching blade 1 as it advances and retreats is performed with the green sheet G temporarily held and fixed. This not only prevents the reduction of the punching dimensional accuracy due to the dent, but also suppresses the occurrence of burrs as much as possible.
  • the height of burrs formed at the punched portion can be reduced.
  • the green sheet which is a precursor of the electrode supporting substrate according to the present invention, contains a large amount of a pore-forming agent as necessary to secure a predetermined porosity, and is a dense sintered body.
  • the burrs generated when punching to the specified dimensions are likely to be large.However, by using the above-described punching blade and punching method, the burrs can be reduced. It can be kept as small as possible.
  • the protrusions should be made as small as possible. As described above, for both the maximum protrusion height and the maximum cell height,
  • the burr height, the maximum protrusion height, and the maximum perimeter height are specified in terms of the ratio to the sheet thickness.These values tend to be relatively large as the sheet thickness increases. Because there is.
  • the biggest cause of the protrusion is that when a granular foreign substance is present on a shelf plate or a setter used at the time of firing, it is placed on the shelf plate or setter. Dali placed This is presumably because the foreign matter is caught on the sheet, and uniform shrinkage while remaining flat is hindered.
  • the biggest cause of swelling is that when the binders and pore-forming agents in the green sheet burn and burn off and sinter, the content is too large or when green sheets are over-fired. However, it is considered that this is caused by the fact that the combustion becomes difficult to progress evenly and the amount of decomposition and combustion per unit time varies, resulting in uneven generation of decomposition gas.
  • the amount of shrinkage (approximately 10% to 30% in length) generated when firing the green sheet is larger at the periphery than at the center of the sheet. It is easy to occur on the periphery of the gate.
  • the shelves used for baking should be sufficiently removed so that there is no attached or missing particles on the set.
  • Specific measures for minimizing emissions include minimizing the use of binders and pore-forming agents, and ensuring that cracked gases from binders are evenly radiated.
  • an effective method is to sandwich the porous sheet as a spacer between the green sheets and place a weighting spacer on the top to perform firing. It is mentioned as.
  • an anode electrode or a thin film electrolyte is formed on one surface of the substrate.
  • Gas-phase methods such as plasma spray method such as VSP, frame spray method, PVD (physical vapor deposition), magnetron sputtering method, electron beam PVD method; screen printing method, sol-gel method
  • a wet electrode method such as a slurry coating method can be used as appropriate.
  • the thickness of the anode electrode layer is usually 3 to 300 xm, preferably 5 to 300 xm. The thickness is adjusted to 100 m and the thickness of the electrolyte layer is usually 3 to 100 am, preferably 5 to 30 m.
  • 8 mol% yttrium oxide stabilized zirconia powder having an average particle diameter of 0.5 im and a 90 volume% diameter of 1. (hereinafter referred to as “8YSZ”) 40 mass% and nickel carbonate
  • the powder was mixed with nickel oxide powder having an average particle size of 4.5 m and a particle size of 90% by volume and a particle size of 8 ⁇ m by 60% by mass to produce a mixed powder as a raw material.
  • This slurry is formed into a sheet by the doctor blade method.
  • a green sheet for a setter having a thickness of about 0.5 mm was prepared, cut into predetermined dimensions, and placed on a 2O mm-thick alumina shelf board to form a sheet.
  • the mixture was fired at 5 ° C for 5 hours to obtain a porous set having a square of 17 cm on a side, a thickness of about 0.4 mm, and a porosity of 15%.
  • 3 mol% yttria-stabilized zirconia powder manufactured by Daiichi Tokimoto Co .; trade name “HSY_3.0”, particle size composition; 50 vol% diameter: 0.4 m, 90 vol % Diameter: 1.4111 (hereinafter referred to as “3YSZ”) was calcined at 1200 ° C. for 3 hours in an air atmosphere.
  • the particle size distribution of the obtained slurry was measured with a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation, trade name “SALD-110”), and the frequency graph of the particle size distribution was observed. At this time, peaks were observed at two points in the section of 0.2 to 0.3 m and in the section of 4 to 5 m, and fine particles in the range of 0.2 to 2 mm and 3 to 50 ii m Range of The content ratio of the coarse particles in the box was 8 2/18.
  • This slurry is placed in a vacuum defoaming machine, concentrated and defoamed to adjust the viscosity to 50 boise (25), and the anchor-type stirring blade immersed in the slurry is rotated at a rotation speed of 10 rpm. After rotating for 24 hours, finally pass through a 200-mesh filter and apply it to the polyethylene terephthalate (PET) film by the doctor blade method. At that time, a green sheet with a thickness of about 0.59 mm was produced by adjusting the gap between the blades.
  • PET polyethylene terephthalate
  • the cutting edge is corrugated (with Bruno sawtooth blade shape as shown in FIGS. 5-7, the cutting edge angle shed, but 6 0 °, alpha 2 is 4 5 °. 0 i 1 5 ., 0 2 3 0 °, blade width t is 0. 7 mm, using the blade height h l mm, the pitch p is 1. 1 mm for punching blade (manufactured by Nakayama paper containers materials Co.), FIG. It was punched into a square 15 cm on a side by the method shown in 8-11.
  • the upper and lower sides of the punched substrate green sheet are sandwiched between the setters prepared above so that the peripheral edge of the green sheet does not protrude, and a 20 mm-thick shelf plate (trade name “Tokai High Heat Industry Co., Ltd., (Dialite DC-1M)) and baked at 130 ° C for 3 hours to form a square with a side of about 12.5 cm and a thickness of about 0.5 mm An electrode supporting substrate was obtained.
  • a 20 mm-thick shelf plate trade name “Tokai High Heat Industry Co., Ltd., (Dialite DC-1M)
  • a green sheet for an electrode supporting substrate was prepared in the same manner as in Example 1 in the preparation of a green sheet for an electrode supporting substrate.
  • a slurry whose viscosity had been adjusted was prepared in a boiling manner, and a slurry whose viscosity had not been adjusted was added to the slurry whose viscosity had been adjusted.
  • 3 of the slurry whose viscosity has been adjusted It was added so that the total mass of the YSZ powder and the nickel oxide powder and the total mass of the 3 YSZ powder and the nickel oxide powder in the slurry whose viscosity had not been adjusted were the same.
  • the mixed slurry was similarly adjusted to a viscosity of 50 voices (25 ° C) by degassing under reduced pressure, and the stirring blades in the slurry were rotated for 20 hours at a rotation speed of 12 rpm.
  • the green sheet was held at room temperature while rotating, and sheet-formed using the obtained slurry for green sheet production to obtain a green sheet having a thickness of about 0.59 mm.
  • Example 3 Thereafter, punching and sintering were performed in the same manner as in Example 1 to obtain an electrode supporting substrate having a square shape of 12.5 cm on a side and a thickness of about 0.5 mm.
  • Example 3
  • Example 4 In the preparation of the green sheet for electrode support substrate 1) in Example 1 above, the slurry was adjusted to a viscosity of 60 voise by degassing under reduced pressure, and the stirring blade was rotated at a rotation speed of 18 rpm. After holding at room temperature while rotating for 30 hours, a 0.35 mm-thick green sheet was prepared by adjusting the doctor blade interval. Thus, an electrode supporting substrate having a square of about 12.5 cm on a side and a thickness of about 0.3 mm was obtained.
  • Example 4 Example 4
  • Example 5 1) 15 Parts by mass, 15 parts by mass of the powder not calcined, and nickel oxide (manufactured by Shodo Chemical Co., Ltd.) Particle size composition: 50 volume% diameter: 0.8 m, 90 volume% diameter: 2.1 II m) 70 parts by mass, 10 parts by mass of corn starch (manufactured by Kanto Chemical Co.)
  • a substrate was produced in the same manner as in Example 1 except that 15 parts by mass of a binder made of a methacrylic copolymer and 2 parts by mass of dibutyl phthalate as a plasticizer were used as in Example 1 above.
  • a green sheet was prepared, and punching and sintering were performed in the same manner to obtain an electrode support substrate having a square of about 12.5 cm on a side and a thickness of about 0.5 mm. .
  • Example 5 Example 5
  • Example 6 In the preparation of 1) green sheet for electrode supporting substrate in Example 1 above, commercially available 3YSZ powder (the same as above) was calcined at 1200 ° C for 3 hours in an air atmosphere. 20 parts by mass of the powder, 10 parts by mass of the uncalcined powder and 70 parts by mass of nickel oxide (manufactured by Kishida Chemical Co.), 10 parts by mass of corn starch (manufactured by Kanto Chemical Co.) The same procedure as in Example 1 was repeated except that 15 parts by weight of a binder composed of the same methacrylic copolymer as in Example 1 and 2 parts by weight of dibutyl phthalate as a plasticizer were used. A sheet was prepared, and punching and sintering were performed in the same manner to obtain an electrode supporting substrate having a square of about 12.5 cm on a side and a thickness of about 0.5 mm.
  • Example 6 Example 6
  • Example 1 In the preparation of the green sheet for the electrode supporting substrate in Example 1 above, a commercially available 3YSZ powder (the same as above) was calcined at 120 for 3 hours in an air atmosphere. 5 parts by mass, 15 parts by mass of the above calcined powder and 70 parts by mass of nickel oxide (manufactured by Shodo Chemical Co., Ltd.) were added to corn starch (Kanto Chemical Co., Ltd.).
  • Example 1 20 parts by weight, 15 parts by weight of a binder composed of the same methacrylic copolymer used in Example 1, and 2 parts by weight of dibutyl phthalate as a plasticizer Then, a green sheet for a substrate was prepared in the same manner as in Example 1, and punching and sintering were performed in the same manner as described above to obtain a square having a side of about 12.5 cm and a thickness of about 12.5 cm. A 0.5 mm electrode support substrate was obtained. Comparative Example 1
  • Example 1 after the viscosity was adjusted to 50 boises (25 ° C.), the slurry was immediately stirred into a filter of 200 mesh without being kept at room temperature. After that, the mixture was coated on a PET film by a doctor blade method, and a green sheet having a thickness of about 0.59 mm was prepared in the same manner. An electrode supporting substrate having a side of about 12.5 cm and a thickness of about 0.5 mm was manufactured. Comparative Example 2
  • Example 1 after the viscosity was adjusted to 120 voices (25 ° C), the stirring blade was immersed in the slurry, and the stirring blade in the slurry was rotated at a rotation speed of 10 rpm for 10 hours. After rotating, pass through a 200-mesh filter and apply it to the PET film by the doctor blade method. An electrode supporting substrate having a square of about 12.5 cm on a side and a thickness of about 0.5 mm was produced in the same manner as in Example 1. Comparative Example 3
  • Example 1 of 1) above for producing a green sheet for an electrode support substrate The same material was used except that the commercially available 3 YSZ powder (previously used) was not used and the calcined powder at 1200 ° C was not used but the above-mentioned 40 YSZ powder (previously) 40 parts by mass was used. Then, the slurry was prepared in the same manner as in 1) of Example 1 except that the slurry was prepared by placing the mixture in a pole mill into which a zirconia pole having a diameter of 5 mm was charged and kneading the mixture at about 5 O rpm for 3 hours. A green sheet of 0.59 mm was produced, and an electrode supporting substrate having a square shape of about 12.5 cm on a side and a thickness of about 0.5 mm was produced in the same manner as in Example 1. Comparative Example 4
  • Example 1 1 3 YSZ powder was calcined at 1200 ° C. for 3 hours without using 3 YSZ powder (the same as above) in the preparation of a green sheet for an electrode support substrate.
  • Parts by mass and calcined nickel oxide powder manufactured by Kishida Chemical Co., Ltd.
  • particle size composition 50% by volume diameter: 17 / m, 90% by volume diameter
  • the same material was used except that 60 parts by mass was used.
  • the slurry was put into a pole mill equipped with 20 mm diameter alumina poles, kneaded at about 40 rpm for 10 hours, and the slurry was made.
  • Example 5 Except for the preparation, a dari sheet having a thickness of about 0.59 mm was prepared in the same manner as in 1) of Example 1 described above, and further, as in Example 1 described above, about 1 A 0.5 cm square electrode support substrate with a thickness of about 0.5 mm was fabricated. Comparative Example 5
  • Comparative Example 1 the aging condition of the slurry was changed to 2 rpm ⁇ 2 hours, and in the punching step of the green sheet for a substrate in 2), the blade edge was linear and the blade thickness t was 0.7 mm, edge angle alpha 2 is one side 1 5 cm square of using 4 5 ° pieces cutting edge (manufactured by Nakayama paper containers materials Co.) Except for punching out the shape, punching and firing were performed in exactly the same manner to produce an electrode support substrate. Comparative Example 6
  • the electrode support substrate obtained above and having a square of about 12.5 cm on a side and a thickness of about 0.5 mm was attached to a ceramic grinding machine (manufactured by Malt Co., Ltd.) using a diamond cutter. It was cut into 16 squares with sides of 3 cm and used as breathable test pieces.
  • the test piece was set in a gas permeability tester (Ketotech, trade name “KES-F8-AP1”) equipped with an auxiliary tool for holding the sample.
  • This tester uses a plunger / cylinder piston movement to send a constant flow of air to the sample, discharge it into the atmosphere, and aspirate it. Pressure loss due to semiconductor
  • the air resistance (reciprocal of air permeability) of the material can be read directly on a digital panel. Although the size of the sample is 3 cm square, the effective area is 2 cm square (area: 4 cm 2 ) because both ends need to be 0.5 mm for holding.
  • An outline of the device is shown in Fig. 12 (where S is a sample, 11 is a compressor, 12 is a flow meter, and 13 is a differential pressure gauge).
  • the porosity of the electrode support substrate obtained above is measured with an automatic porosimeter (trade name “Autopore 1119240” manufactured by Shimadzu Corporation).
  • the maximum roughness depth (Rmax) of the front and back of each electrode support substrate was measured using a laser-optical non-contact three-dimensional shape measuring device. (Product name “Micro Focus Expert UBM-14 type”, manufactured by UBM) at a pitch of 0.1 mm.
  • burrs on the periphery of each support substrate, and protrusions and ridges on the surface are also measured.
  • Each test board was placed on two alumina boards (Nitsukato Co., Ltd., trade name "SSA-Sl”) with smooth surfaces and parallelism on the alumina base plate. Then, with a load of 0.2 kg Z cm 2 applied to the entire surface of the substrate from above, the temperature was raised from room temperature to 1000 ° C over 10 hours, and 1 hour at 100 ° C. Repeat the operation of holding and then lowering the temperature to room temperature 10 times to determine the frequency of cracks and cracks. The presence or absence of cracks and cracks is determined visually. 5) Observation of cell printing interface
  • 3 YSZ powder (as before) 50 parts by mass and nickel oxide (manufactured by Kishida Chemical Co., Ltd.) 50 parts by mass, turpentine 350 parts by mass, and ethyl cellulose 2 parts by mass as a binder were added to the planetary mill. The mixture was kneaded for 2 hours, and the resulting slurry was used as an anode paste.
  • Lao S n Os powder (manufactured by Seimi Chemical Co., Ltd.) was added to 100 parts by mass, turpentine oil 350 parts by mass, and ethyl cellulose 2 parts by mass as a binder were added, and the mixture was kneaded with a planetary mill for 2 hours to obtain.
  • the slurry was used as a power source paste.
  • the anodic base is printed on one surface of the electrode supporting substrate by screen printing, dried at 100 ° C. for 1 hour, and baked at 135 ° C. for 2 hours.
  • an anode layer was provided on the electrode supporting substrate, and an electrode supporting substrate with an anode layer (AS-A) was manufactured.
  • the above-mentioned electrolyte paste was printed on the anode layer of the electrode support substrate with an anode layer (AS-A) by screen printing, dried for 1 hour at 100 Ot :, and then dried at 135 for 2 hours. By baking for a time, the electrode supporting substrate is provided with an anode layer and an electrolyte layer. Hussel (AS—A—E) was prepared.
  • the above-mentioned cathode base is printed on the electrolyte layer of this half cell by screen printing, dried at 100 ° C. for 1 hour, and fired at 130 ° C. for 2 hours. Then, a cell (AS-AE-C) in which an anode layer, an electrolyte layer and a force source layer were provided on an electrode supporting substrate was fabricated. The electrode area of the cell was about 121 cm 2 .
  • an electrolyte membrane, an anode layer, and a force source layer are formed by screen printing to produce an anode-supported electrode support substrate (AS-A) and a half cell (AS-A-E).
  • AS-A anode-supported electrode support substrate
  • AS-A-E a half cell
  • Example 1 Example 2
  • Example 3 Example 3
  • Comparative example 4 Comparative example 5 Comparative example 6 Calcined NiO / calcined 3YSZ / starch NiO / 3YSZ + calcined 3YSZ / starch NiO / 3YSZ + calcined 3YSZ / starch
  • Support substrate thickness (mm) 0.5 0.5 0.5 0.5
  • Electrolyte / electrolyte interface Adhesion Adhesion Adhesion Adhesion Adhesion Adhesion Adhesion Adhesion Electrolyte thickness Almost uniform Almost uniform Almost uniform Almost uniform Almost uniform Almost uniform Power generation performance
  • Comparative example 1 Comparative example 2 Comparative example 3 Comparative example 4 Comparative example 5 Comparative example 6 Crack occurrence frequency
  • Electrolyte-electrolyte interface Adhesion Adhesion Adhesion Partial peel Adhesion Adhesion Adhesion Electrolyte thickness Almost uniform Almost uniform Almost uniform Nonuniform Almost uniform Almost uniform Power generation performance
  • the present invention is constituted as described above, and comprises a ceramic sheet having a suitable porosity, thickness and surface area.
  • a ceramic sheet having a suitable porosity, thickness and surface area.

Description

明 細 書 固体酸化物形燃料電池セル用電極支持基板およびその製法 技術分野 本発明は固体酸化物形燃料電池セル用の電極支持基板に関し 特に、 電極支持基板の全面に亘る気孔のサイズや分布状況が均 一で、 ガスの通過 · 拡散性が均一且つ良好であ り、 しかも、 電 極支持基板にスク リーン印刷などでその片面に電極あるいは電 解質形成を行なう際にも、 均質で密着性に優れた電極または電 解質印刷の可能な燃料電池セル用電極支持基板とその有用な製 法に関するものである。
なお本明細書において電極支持基板とは、 その片面にァノー ド電極層や固体電解質膜が形成される電極形成用基板、 および 該基板自体がアノー ド電極としての機能を兼備し、 その上に、 固体電解質層、 力ソー ド電極層を順次成膜してセルを構成する ための支持基板となるもので、 本発明ではこれら を電極支持基 板と称する。 背景技術 近年、 燃料電池はク リーンエネルギ一源として注目されてお り 、 その用途は家庭用発電から業務用発電、 更には自動車用発 電などを主体にして急速に改良研究および実用化研究が進め ら れている。
固体酸化物形燃料電池の代表的な構造は、 平板状固体電解質 自立膜の片面側にアノー ド電極、 他方面側に力ソー ド電極を設 けたセルを多数積層したスタ ッ クが基本であ り 、 燃料電池の発 電性能を高めるには、 固体電解質自立膜を緻密且つ薄肉化する こ とが有効である。 ちなみに固体電解質自立膜には、 発電源と なる燃料ガス と空気の混合を確実に阻止する緻密性と、 導電口 スを極力抑える こ とのできる優れたイオン導電性が必要であ り そのためには極力薄肉で且つ緻密質である こ とが求められるか らである。 しかも燃料電池は、 前述の如く アノー ド電極 Z固体 電解質自立膜/力ソー ド電極を有するセルおょぴ、 燃料ガスと 空気を分離 · 流通させるためのセパレ一夕 とを交互に多数積層 した構造のもので、 固体電解質自立膜には大きな積層荷重がか かる他、 作動温度は 7 0 0 〜 1 0 0 0 °C程度で相当の熱ス ト レ スを受けるので、 高レベルの強度と耐熱ス ト レス性が要求され る。
この様な要求特性から、 固体酸化物形燃料電池用の固体電解 質自立膜の素材と しては、 主と してジルコニァ主体のセラミ ツ ク シー トが使用されてお り 、 該シー トの両面にスク リーン印刷 などによってァノ一 ド電極とカソ一 ド電極を形成したセルが使 用されている。
本発明者らは、 こ う した固体酸化物形燃料電池用の平板状固 体電解質自立膜についてかねてよ り研究を進めてお り、 積層荷 重や熱ス ト レスに耐える物性と形状特性 (ゥネ リや突起、 ノ リ などの低減による局部応力による割れ防止) を確保しつつ、 ィ オン導電ロスを低減するため極力薄肉化し、 更には電極印刷の 均一性と密着性を高めるため表面粗さを適正化する方向で研究 を進め、 先に特開 2 0 0 0 — 2 8 1 4 3 8 号や同 2 0 0 1 — 8 9 2 5 2号、 同 2 0 0 1 — 1 0 8 6 6 号公報などに開示の技術 を提案した。
これらの技術で、 固体電解質自立膜を大幅に薄肉且つ緻密化 し得る と共に、 形状特性の改善、 即ちゥネリ 、 突起、 パリ など の低減によ り 、 セルを積層したときの耐積層荷重強度や耐熱ス ト レス性、 更には電極印刷の密着性や均質性も大幅に改善でき た。
本発明者らはその後も燃料電池の性能向上を期して研究を進 めているが、 今回は、 固体電解質自立膜と して用いるセラミ ツ クシ一 トの改質に代えて、 支持膜型セル用の電極支持基板を改 質する方向で研究を行なった。 ちなみにセラミ ッ ク質の固体電 解質自立膜は、 薄肉化するほど積層荷重によって割れを起こ し 易く なるため、 薄肉化するにしても自ずと限界があ り、 イ オン 導電ロスの低減にも限界があるか らである。
他方、 薄肉の固体電解質膜を使用する場合は、 実用に叶う構 造強度のセルを得るため、 セル間に該セルのサポー ト材と して 電極支持基板を接合した り、 あるいは電極に十分な厚さ を持た せた りする。 この基板は、 通電のための導電性を有する と共に 前記固体電解質自立膜とは異なって、 発電源となる燃料ガスや 空気、 或はこれらの燃焼によって生成する排ガス (炭酸ガスや 水蒸気など) を通過 · 拡散させ得るよう多孔質のセラミ ッ ク材 によって構成される。
そして最近では、 多孔質の電極支持基板にアノー ド電極をス ク リーン印刷によって形成し、 その上に固体電解質膜をコ一テ イ ング等によって形成した後、 更にその上に力ソー ド電極をス ク リーン印刷などによ り形成してセルとする こ とによ り 、 固体 電解質膜を一段と薄肉化し、 導電ロスを更に低減させる方法も 検討されている。
この様な方法を実現する際に最も問題となるのは、 電極支持 基板全体に亘つて均一で且つ優れたガス通過 · 拡散性を有する こ とである。 ちなみに該支持基板は、 燃料ガスなどの通過 · 拡 散を許す十分な空孔を有する多孔質のものでなければならず、 しかも基板全体に亘つてガスが万逼なく 通過 · 拡散し得るよう 気孔の分布状態が均一である こ とが望まれるからである。
また該電極支持基板に求め られる他の特性は、 その表面に優 れた印刷適性を与え、 如何に欠陥のない電極印刷を可能にする かという ことである。 ちなみに電極支持基板は、 前述の如く適 度の導電性が要求される と共に、 燃料ガスなどの通過 · 拡散を 許す十分な空孔を有する多孔質のものでなければならず、 その 表面に無数の開孔が存在する。 従って、 その様な開孔の存在に もかかわらず優れた電極印刷を可能にするには、 前述した緻密 質の固体電解質膜で規定される表面特性をそのまま多孔質の電 極支持基板に適用する こ とはできず、 電極支持基板に固有の表 面特性を明らかにしなければならない。
電極支持基板に求め られる更に他の特性は、 支持基板自体の 形状特性を改善し、 積層荷重や熱衝撃を受けたときに応力集中 個所となるバリや突起、 ゥネ リ などを如何に小さ くするかとい う こ とである。 ちなみに電極支持基板は、 前述の如く適度の導 電性が要求される と共に、 燃料ガスなどの通過 · 拡散を許す十 分な空孔を有する多孔質のものでなければならず、 その表面に も無数の開孔が存在する。 従って、 その様な多孔質シー トであ るにもかかわ らず、 積層荷重を受けた時の局部的な応力集中に よる支持基板の割れや破損を抑えるには、 打抜き加工時の内 · 外周縁に形成されるバリや、 内部に形成される こ とのある突起 ゃゥネリなどを可及的に抑える必要があるからである。 しかも 本発明で意図する電極支持基板は、 ガスの通過 · 拡散を許す多 孔質体でなければならないので、 固体電解質膜の如き緻密質シ 一トに対して印刷適正や応力集中防止に有効な形状特性をその まま当てはめるわけには行かない。 本発明は上記の様な事情に着目 してなされたものであって、 その目的は、 スク リ ーン印刷などによって電極印刷や固体電解 質膜が施される電極支持基板において、 燃料ガスなどに対し全 面に亘り安定して均一で且つ優れたガス通過 · 拡散性を有し、 更には、 均質で高密着性の電極印刷や固体電解質膜を形成する ことができ、 更に加えて、 セルスタ ック と して多層積層されて 大きな積層荷重を受けた時でも、 局部的な応力集中による割れ や破損などを生じ難い形状特性を備えた電極支持基板を提供す る ことにある。 発明の開示 上記課題を解決する こ とのできた本発明に係る燃料電池セル 用電極支持基板とは、 気孔率が 2 0 〜 5 0 %、 厚さが 0 . 2 〜 3 mm、 表面積が 5 0 c m 2以上のセラ ミ ッ ク シー トカゝ らな り J I S K 6 4 0 0 に準拠した方法で測定される、 全表面積 の中か ら任意に選ばれる 4 c m 2の領域における通気量の測定 値の変動係数が 5 〜 2 0 %である と ころに要旨がある。
本発明の燃料電池セル用電極支持基板は、 上記要件に加えて 表面にァノ一 ド電極などを印刷形成する際に優れた密着性や均 質性を得るための要件として、 レーザー光学式 3 次元形状測定 装置によっ て測定される表面粗さが、 最大粗さ深度 ( R max : ドイツ規格 「 D I N 4 7 6 8 」 ) で 1 . 0 〜 4 0 x mの範囲の ものが好ま しい。
更に本発明の固体酸化物形燃料電池セル用電極支持基板は, 前述した如く 多層積層状態で使用されるので、 使用時の積層荷 重による割れや破損を可及的に抑えるには、 レーザー光学式 3 次元形状測定装置によって測定されるバリ高さが、 シー ト厚さ の 1 Z 2 以下である こ とが望ましく 、 また、 同じく レーザ一光 学式 3 次元形状測定装置によって測定されるゥネリ及び/又は 突起の最大高さは、 シー ト厚さの 1 Z 3 以下である ことが望ま しい。
また本発明の製法は、 燃料電池セル用電極支持基板、 殊に上 記特性を備えた燃料電池セル用電極支持基板を確実に得る こ と のできる製法と して位置付けられる もので、 セラミ ック前駆体 となるグリ ーンシー ト製造用スラ リ ーと して、 導電成分粉末、 骨材成分、 気孔形成剤粉末およびバイ ンダーを含み、 ミ リ ング 後に減圧脱泡して粘度を 4 0 〜 1 0 0 ボイズ ( 2 5 °C ) に調整 した後、 ス ラ リー中の撹拌羽根を 5 〜 3 0 r p mの回転速度で 2 0 〜 5 0 時間回転させながら室温で保持されたスラリ ーを使 用し、 該スラ リ ーを ドクターブレー ド法でシ一 卜成形し、 得ら れるグリーンシー ト を所定の形状に切断した後、 焼成すると こ ろに特徴を有している。
上記製法を実施するに当たっては、 前記グリーンシー ト製造 用スラ リ ーと して、 粒度分布が、 0 . 2 〜 2 / 111と 3〜 5 0 mの範囲に夫々 1 つのピーク を有し、 0 . 2 〜 2 mの粒度範 囲の細粒物と 3 〜 5 0 x mの粒度範囲の粗粒物との含有比率が 質量比で 2 0 / 8 0 〜 9 0 / 1 0 の範囲である ものを使用する ことが望ま し く 、 更には該スラ リ ーと して、 導電成分粉末と骨 材成分粉末の総和 1 0 0質量部に対し、 バイ ンダーを 5 〜 3 0 質量部、 気孔形成剤粉末を 2 〜 4 0 質量部含有するスラ リーを 使用するのがよい。
また、 本発明で意図する前記好適バリ高さゃゥネリ及び Z又 は突起の好適高さを満たす電極支持基板を得るには、 前記ダリ ーンシー ト を製品形状に打抜き加工する際に、 刃先形状が波形 の打抜き刃を使用する こ とが望ま し く 、 よ り好ま しく は該打抜 き刃と して、 波形刃の側面か らみた角度 ( 0^ ) 、 刃断面の刃 先角度 ( ひ 2 ) 、 製品となるシー ト側の面と刃先を通る中心線 ( X ) とのなす角度 ( Θ 、 および残部シー ト側の面と刃先 を通る 中心線 ( X ) とのなす角度 ( S 2 ) が下記の関係式を満 たすものを使用する こ とによ り 、 ゥネリや突起の高さやバリ 高 さを可及的に低く抑える こ とができるので好ましい。 θ ,≤ θ 2 図面の簡単な説明 図 1 は、 本発明に係る燃料電池セル用電極支持基板を製造す る際に好ま しく 使用されるグリ ーン体製造用ス ラ リーの好ま し い粒度分布を例示する頻度グラフ、 図 2 は、 レーザー光学式 3 次元形状測定装置で測定した、 電極基板に形成されるバリ の形 状を例示する断面説明図、 図 3 は、 レーザー光学式 3次元形状 測定装置で測定した、 電極基板の表面に生じる こ とのある突起 を例示する拡大説明図、 図 4 は、 レーザー光学式 3次元形状測 定装置で測定した、 電極基板全体に生じる こ とのあるゥネリ を 例示する説明図である。
図 5 は、 本発明に係る電極基板の前駆体となるグリーン体を 製造する際に好ましく使用されるスラ リ ーの粒度分布の一例を 示す図、 図 6 は、 本発明に係る燃料電池セル用電極基板を製造 する際の、 グリ ーンシー トの打抜きに用い られる好ましい打抜 き刃の刃先形状を例示する側面説明図、 図 7 は、 同じく打抜き 刃の刃先形状を例示する断面説明図、 図 8 は、 本発明で用い ら れる打抜き刃の他の好ましい例を示す断面説明図、 図 9 は、 本 発明で好ま し く 採用される打抜き装置の構成と打抜き加工例を 示す概略断面説明図、 図 1 0 は、 .本発明で好ましく採用される 打抜き装置の構成と打抜き加工例を示す概略断面説明図、 図 1
1 は、 本発明で好ましく採用される打抜き装置の構成と打抜き 加工例を示す概略断面説明図、 図 1 2 は、 本発明の実施例で用 いた通気抵抗測定装置の概要を示す説明図である。
1 : 刃先部、 h : 刃高さ、 p : 刃先ピッチ、 t : 刃厚さ、 t , 2 , Θ い θ 2 : 刃先角度 発明を実施するための最良の形態 本発明者らは前述した様な解決課題の下で、 電極支持基板と して必要なガス通過 · 拡散性を確保しつつ、 特に緻密且つ均質 で高密着性の電極印刷を確実に得る こ とのできる電極支持基板 を提供すべく研究を進めてきた。 , その結果、 前述の如く 、 基板を構成するセラミ ッ ク と して、 気孔率が 2 0 〜 5 0 %、 厚さが 0 . 2 〜 3 m m、 表面積が 5 0 c m 2以上のセラミ ックシー トか らな り 、 J I S K 6 4 0 0 に準拠した方法によって測定される、 全表面積の中か ら任意 に選ばれる 4 c m 2の領域における通気量の測定値の変動係数 が 5 〜 2 0 %であるものは、 電極支持基板全体に亘る気孔の分 布状況がほぼ均一であ り、 安定して優れたガス通過 · 拡散性を 発揮し得る こ とが確認された。
本発明の電極支持基板は、 前述の如く 導電性を有する と共に 耐熱衝撃性や機械的強度に優れる と共に十分なガス通過 · 拡散 性を有する多孔質のものでなければならず、 それらの要求を満 足できる電極支持基板の具体的構成について、 以下、 詳細に説 明してい く 。
電極支持基板は、 導電性を与えるための導電成分と、 基板の 骨格成分となるセラミ ック質を主たる構成素材とする。 上記導 電成分は、 基板に導電性を与える上で必須の成分であ り 、 例え ばアノー ド電極支持基板の成分となる ものには、 酸化鉄、 酸化 ニッケル、 酸化コバル トの如き燃料電池稼動時の還元性雰囲気 で導電性金属に変化する金属酸化物 ; セリ ア、 イ ッ ト リ ア ドー プセリ ア、 サマ リ ア ド一プセ リ ア、 プラセア ドープセリ ア、 ガ ド リ ア ドープセリ アの如く還元性雰囲気で導電性を示す金属酸 化物 ; 白金、 パラジウム、 ルテニウムの如き導電性を示す貴金 属などが挙げられ、 これらは単独で使用し得る他、 必要によ り
2種以上を適宜組み合わせて使用できる。 これら導電成分の中 でも、 コス トや導電特性等を考慮して最も汎用性の高いのは酸 化ニッケルである。
また骨格成分は、 電極支持基板と して必要な強度、 特に熱衝 撃や積層荷重に耐える強度を確保する と共に固体電解質との熱 膨張差を緩和するために重要な成分で、 ジルコニァが固体電解 質成分である場合には、 ジルコニァ、 アルミナ、 マグネシア、 チタニア、 窒化アルミ、 ムライ トなどの単独も し く は複合物が 使用される。 これらの中でも最も汎用性の高いのは安定化ジル コニァであ り 、 該安定化ジルコニァと しては、 ジルコニァに、 安定化剤と して M g O、 C a O、 S r 〇 、 B a 〇等のアルカ リ 土類金属の酸化物 ; Y 23 、 L a 23 、 C e 〇 2 、 P r 23 N d 20 3 、 S m 2 O 3 > E u 23 、 G d 23 、 T b 23 、 D y 23 、 E r 2 O 3 , T m 2 O 3 > Y b 203等の希土類元素の 酸化物 ; S c 2 0 3 、 B i 23 、 I n 23等力、 ら選ばれる 1 種若しく は 2 種以上の酸化物を固溶させたもの、 あるいは更に これら に分散強化剤と してアルミ ナ、 チタニア、 T a 25 、 N b 2 O 5な どが添加された分散強化型ジルコニァ等が好ま し いものと して例示される。 また、 C e O ,や B i o O q に C a O S r 〇, B a 〇 Y
〇 3 L a a O 3 C e , 〇 P r 2 O 3 N b 2 O 3 S m 2 O
3 , E u 2 O 3 , G d 2 O T b 2 O 3 D r 2 O H o 2 O E r 2 O 3 , Y b 2 O 3 P b O , W O M o O V 9 〇 い
T a 2 O 5 N b 25の 1 種も し く は 2種以上を添加したセ リ ァ系またはビスマス系、 更には、 L a G a 〇 3の如きガレー ト 系セラミ ック も使用可能である。
これらの中でも特に好ましいのは、 2 5 〜 1 2 モル% のィ ッ ト リ ァで安定化されたジルコニァ、 3 1 5 モル%のスカ ン ジァで安定化されたジルコニァである。
上記導電成分と骨格成分の含有比率は 得られる電極支持基 板に適度の導電性と強度特性を与える上で重要であ り、 導電成 分量が相対的に多く なる と、 基板と しての導電性が向上する反 面、 骨格成分の量が相対的に少なく なつて強度特性が低下し、 逆に導電成分量が相対的に少なく なる と、 骨格成分量の増大に よ り強度特性は高まる。 よっ て両者の配合比率は、 これらの兼 合いを考慮して適正に決めるべきであ り、 その比率は導電成分 の種類等によっても若干変わってく るが、 主と してアノー ド電 極支持基板を意図する本発明においては、 導電成分 4 0 〜 8 0 質量%に対して骨格成分 6 0 〜 2 0質量%、 よ り一般的には、 導電成分 5 0 〜 7 0質量%に対して骨格成分 5 0 〜 3 0 質量% の範囲が好ま しい。
本発明の電極支持基板は、 上記の如く導電成分と骨格成分か らなる もので、 骨格成分によって機械的強度や耐熱ス ト レス性 が確保され、 導電成分によ り基板に導電性が与え られる。 そし て、 これらによ り構成される電極支持基板には、 前述の如く 燃 料ガスや燃焼排ガスを通過 · 拡散させるための細孔が必要であ り、 これらガスを低圧損下に円滑に通過させるには、 全体と し て酸化雰囲気での気孔率で 2 0 %以上を有する ものでなければ な らず、 2 0 %未満では前記ガスが通過 · 拡散不足となって発 電効率の低下を招く 。 よ り好ま しい気孔率は 2 5 %以上、 更に 好ま し く は 3 0 %以上である。
但し、 気孔率が大きく な り過ぎると、 基板と しての強度特性 や耐熱ス ト レス性が低下し、 スタ ック として組付けたときの積 層荷重や熱衝撃などで基板が割れたり劣化し易 く 、 あるいは更 に、 導電成分の分布状態が疎となって導電性不足になる傾向が 生じてく るので、 高く とも 5 0 %以下、 好ま し く は 4 5 %以下 更に好ましく は 4 0 %以下に抑えるのがよい。
また本発明の電極支持基板は、 厚さが 0 . 2 〜 3 mmの範囲 でなければならず、 0 . 2 m m未満では薄過ぎるため電極支持 基板と しての強度確保が困難にな り、 他方、 3 mmを超えて過 度に厚くする と、 強度は向上するもののこれを多数積層しセル スタ ック と して実用化する際に積層構造体全体が厚く な り 、 発 電装置と してコ ンパク ト化の要望に適合し難く なる。 燃料電池 用 と して実用化する際のよ り好ま しい厚さは 0 . 3 mm以上、
2 mm以下である。
更に本発明に係る電極支持基板のサイズは、 用途や規模にも よるが実用に叶う レベルの発電量を確保する こ とも重要であ り そのためには必要最低限の表面積を確保すべきであ り 、 シー ト 面積 (片面側の表面積) で 5 0 c m 2以上、 よ り好ま し く は 1 0 0 c m 2以上を確保する こ とが望ま しい。
そして、 こ う した気孔率と厚さ及び表面積を満たすこ とを条 件と して、 該基板の全表面か ら任意に選ばれる 4 c m 2の領域 における前記通気量測定値の変動係数が 5 〜 2 0 %の範囲に納 ま り、 全体と してほぼ均一なガスの通過 ' 拡散性を示すもので なければな らない。 電極支持基板と して、 燃料ガスや反応生成ガスを速やかに通 過させるには、 全体と して均一なガスの通過 · 拡散性を有する ものが好ましい こ とは当然であ り 、 そのためには、 基板全体に 亘る気孔の分布状態が均一である こ とが望ま しい。
しかし全体の気孔率を測定しただけでは、 基板内部に連続し た気孔であるのか基板内部で閉塞された気孔であるのかを特定 できず、 通気性に関する情報と しては不十分な場合がある。
通気性は電極支持基板の物性と して重要な因子である ことか ら、 通気性について検討を重ねた結果、 基板における全表面積 中の任意の特定面積領域で通気量に振れがある と、 基板の全表 面内で燃料ガスの偏在化が生じ、 その結果と して局所的に発電 量の多い箇所と少ない箇所ができて温度分布が発生し、 これが 基板に割れを生じさせる原因になる こ と、 またその振れを特定 する ことによって電極支持基板と して優れた特性を示すこ とを 見出した。
固体酸化物形燃料電池セル用電極指示基板と しての実用上の 大きさは 5 0 〜 : 1 0 0 0 c m 2程度、 よ り一般的には 1 0 0 〜 5 0 0 c m 2程度と予測されるので、 基板全体に亘る気孔の分 布状態の均一性を確認するための基準として、 基板の最小表面 積である 5 0 c m 2か らその 1 Z 1 0 以下である 4 c m 2を規 定した。 なお、 測定面積はよ り 小さ くする こ とによって基板全 体に亘る気孔の分布状態を観察できるため好ましいが、 1 辺が 1 . 5 c m (面積は 2 . 2 5 c m 2 ) の領域を測定しても、 4 c m 2の測定結果と有意差は認め られなかった。 該通気性分布 の測定に当たっては、 好ま しく は供試基板全面か ら少なく とも 5箇所を任意に選択して上記通気量を測定するのがよく 、 本発 明ではこの方法によって求め られる通気量測定値の変動係数を 5 〜 2 0 % と定めている。 なお通気量は、 軟質ウレタンフォーム試験方法に関する J I S K 6 4 0 0 ( 1 9 9 7 ) に定義される通気量の測定方法 に準拠して測定した値である。 具体的には、 基板を 3 c m平方 (面積 9 c m 2 ) にダイ ヤモン ドカ ッ ターで切 り 出し、 この試 験片の片面側 (低圧側) を減圧し、 他面側 (高圧側) に空気を 導入し、 低圧側の圧力増加によって通気性を測定する定常流差 圧測定方式を採用する。 尚、 試験片の両端 0 . 5 c mずつは試 験片保持のために使用 し、 有効通気面積は 4 c m 2 とする。 そ して得られる供試基板の通気量データ と しては、 通気量測定値 の振れ · バラツキを相対的に表わすため標準偏差を求め、 それ を平均値で割った変動係数を用いた。
本発明では、 該変動係数を 5 〜 2 0 % と定めてお り、 よ り好 ましく は 5 〜 1 5 %、 更に好ま し く は 5 〜 1 3 %の範囲である ちなみに、 変動係数が 2 0 %を超える と、 殆どの場合、 基板に ク ラックが入ったり割れが生じる。 これは、 燃料ガスが基板内 を通過する際に均一に通過できないで偏りが生じ、 電解質近傍 へ到達する燃料ガスが場所によって不均一とな り、 その結果、 局所的に発電量の多い箇所と少ない箇所ができて温度分布が発 生するためと考えている。
なお、 基板内の通気量が全表面で全く 同一であれば、 変動係 数は 0 %になるが、 上記方法によって求められる変動係数は最 低でも 5 %である ことか ら、 これを実際上の下限値と定めた。
また本発明においては、 基板全体に亘る気孔の分布状態が均 一である こ とが望ましく 、 且つ気孔のサイズは平均径で 3 H m 以上、 2 O ^ m以下である こ とが好ま しい。 ちなみに、 気孔の 平均径が 3 ^ m未満ではガスの通過 ' 拡散性不足となり、 気孔 率不足の場合と同様の問題を生じる こ とがあ り 、 逆に平均径が 大き過ぎる と、 気孔率過剰の場合と同様に強度劣化や導電性不 足になる傾向が生じてく るので、 2 0 m以下に抑えるのがよ い。
なお基板と しての上記気孔率や通気量測定値の変動係数、 更 には好ま しい気孔の平均径は、 基板を製造する際に使用する気 孔形成剤の種類や配合量、 原料粉末の粒度構成や基板の前駆体 となるグリ ーンシー トを焼成する際の温度などによって調整す る こ とができ、 それらの具体的な方法については後述する。
また本発明の電極支持基板には、 その片面に前述の如く スク リーン印刷などによってァノ一 ド電極や電解質層が形成される が、 高密着性の下で均質且つ確実な電極あるいは電解質印刷を 可能にするには、 その表面を適正な表面粗さに制御する必要が ある。 そして本発明者らが実験によって確認したところでは、 最大粗さ深度 ( R m a x : ドイ ツ規格 「 D I N 4 7 6 8 」 ) で 1 0 m以上、 4 0 m以下にするのがよいこ とが確認された。 しかも、 ガス通過 · 拡散性確保のため多孔質である本発明の電 極支持基板においては、 緻密質シー ト に対し一般的に採用され, る接触式表面粗さ測定装置を用いた表面粗さでは、 表面性状の 良否を正確に評価する こ とができず、 レーザ一光学式 3 次元形 状測定装置によ り非接触状態で測定される表面粗さで、 前記 R ma x を満たすものとする ことが望ま しい。
ちなみに、 R m ax 1 . 未満では、 表面が平滑に過ぎる ため電極印刷が密着性不足になる傾向があ り 、 取扱い時も し く は稼動時に受ける熱衝撃などによって電極印刷層が基板から剥 離する恐れがあ り 、 しかもガス通過 · 拡散性不足になる傾向が 生じてく る。 一方、 R m ax が 4 0 mを超える と、 電極印刷時 に電極層の厚さが不均一になった り 、 電極構成素材の一部が表 面の凹部に埋り込んで電極層表面に凹凸ができ、 導電ロスの増 大を招く原因にな り 、 更には、 焼成時も しく は燃料電池と して の稼動時に電極層にク ラッ ク を生じる恐れがでてく る。 導電口 スを可及的に低減しつつ電極印刷層の密着性を高める う えでよ り好ま しい R m a x 2 . 0 m以上、 3 0 m以下、 更に好ま し く は 2 0 m以下である。
なお本発明において、 表面粗さの評価に非接触式のレーザー 光学式 3 次元形状測定装置を用いたのは、 次の理由による。 即 ち、 多孔質で表面にも無数の細孔が開口 した本発明の電極支持 基板の場合、 触'針式などの接触式表面粗さ測定装置では、 触針 が細孔に引っ掛かって表面粗さ を円滑に計測し難く 、 しかも表 面に開口 した細孔は比較的深いため、 接触式では正確な表面粗 さ を測定できないからである。
何れにしても本発明では、 上記方法によって求め られる通気 量測定値の変動係数が 5〜 2 0 %であ り 、 好ま し く は更に、 最 大粗さ深度 ( R m ax ) を適正範囲 とする こ とによ り 、 多孔質で あ り ながら厚さが均一で且つ表面全域のガス通過 · 拡散性が均 質でガス流れが偏流を起こ した り稼動時に極端な温度分布を生 じる こ と もなく 、 しかも高密着性の電極印刷を可能にする。 こ の様なガス通気 · 拡散性の均質性と適度の表面粗さを確保する には、 電極支持基板を構成するセラミ ッ クの前駆体となるダリ 一ンシー ト製造に用いる原料粉末の粒度構成やグリ ーンシー ト の製造条件、 あるいは焼成条件などを適正にコ ン ト ロールする こ とが必要となるが、 それら については後述する。
また本発明の電極支持基板は、 前述の如く スタ ッ ク と して上 下方向に多数積層して組み付けられるので大きな積層荷重がか か り 、 しかも稼動時の熱によって熱衝撃や熱ス ト レスを受ける ので、 積層面に僅かなバリ や突起が存在していても、 その部分 に応力が集中 してクラッ クや割れを起こす原因になる。 そして 基板にその様なク ラックや割れが発生すると、 その表面に形成 されるァノー ド電極層等にも割れが波及して導電性が阻害され また固体電解質膜にク ラ ッ クや割れが波及する と燃料ガスなど の遮蔽効果が失われ、 燃料電池として稼動し得なく なる。 しか も、 基板表面のバリや突起、 ゥネリ が大きく なる と、 その表面 に形成されるアノー ド層や固体電解質層が不均一になるばか り でなく基板に対する密着性も乏しく なるので、 該基板周縁のバ リ を極力小さ く すると共に、 好ま しく は基板表面の突起ゃゥネ リ も極力小さ く し、 積層状態で生じる局部的な応力集中を可及 的に少なく抑える こ とが望ま しい。
そして本発明者らが実験によって確認したと ころ、 レーザ一 光学式 3 次元形状測定装置によって測定される周縁部のバリ 高 さが、 シー ト厚さの 1 Z 2 以下であ り 、 好まし く は更に、 同じ く レーザ一光学式 3次元形状測定装置によって測定される最大 突起高さが、 シー ト厚さの 1 / 3 以下、 同じく レーザ一光学式 3 次元形状測定装置によって測定される最大ゥネリ 高さが、 シ — ト厚さの 1 3以下である ものは、 安定して優れた耐積層荷 重性、 耐熱衝撃性、 耐熱ス ト レス性を示すと共に、 電極印刷や 固体電解質膜を形成する際の印刷適性においても優れた性能が 得られる こ とを確認した。
ちなみに、 基板周縁のバリ 高さがシー ト厚さの 1 / 2 を超え る と、 該基板を要素の一つと して使用 しスタ ッ ク と して組付け る際に、 大きなバリ の部分に組付け力や積層荷重の応力集中が 起こ り 、 燃料電池として稼動する前に該基板が電極層や固体電 解質膜と共に割れたり ク ラ ッ クが発生し、 或は組付け時点では 割れなどが生じない場合であっても、 稼動時の熱履歴を受けて 該応力集中部にク ラッ クや割れが起こ り 、 燃料電池の発電性能 を著し く 減退させる。 しかし、 該バリ高さがシー ト厚さの 1 / 2 以下、 よ り好ましく は 1 ノ 3 以下、 更に好ま しく は 1 Z 4以 下である ものは、 実用 レベルの積層荷重ゃ熱ス ト レスなどを受 けた場合でも殆どク ラッ クや割れを生じる こ とがなく 、 燃料電 池と して所定の発電性能を長期的に持続し得る ものになる こ と が確認された。
なお本発明においてバリ高さ とは、 例えば図 1 に例示する如 く 、 基板切断面の外周 (も し く は内周) 縁部か らの垂線方向区 間の最大高さ部と最低高さ部との差を意味し、 非接触式のレー ザ一光学式 3 次元形状測定装置によって求め られる。
何れにしても本発明では、 上記方法によって求め られるバリ 高さ をシー ト厚さの 1 Z 2 以下に抑えれば、 積層状態での荷重 や熱衝撃などによる局部的な応力集中が最小限に抑えられ、 ク ラ ッ クや割れの発生を最小限に抑える ことが可能となる。 この 様な表面粗さ を得るには、 電極基板を構成するセラミ ッ クの前 駆体となるグリーンシー ト を打抜き加工する際の刃先形状をェ 夫する こ とが重要となるが、 それについては後述する。
なお本発明では、 上記バリ 高さに加えて基板表面の最大突起 高さや最大ゥネリ高さ も極力小さ くする こ とが望ましい。 その 基準は、 同様に積層荷重を受けたときの応力集中を抑えてク ラ ッ クゃ割れを抑える と共に、 電極表面に形成される電極層や固 体電解質膜を均質化するため、 同様にレーザー光学式 3 次元形 状測定装置によって測定される最大突起高さを、 シ一 卜厚さの 1 Z 3 以下、 よ り好ま しく は 1 / 4以下、 更に好ま しく は 1 Z 5以下に、 また最大ゥネリ 高さをシー ト厚さの 1 Z 3以下、 よ り好まし く は 1 / 4以下、 更に好ましく は 1 Z 5 以下にする こ とが望ま しい。
なお上記突起とは、 例えば図 2 に示す如く 、 電極シー トの表 面に基本的には独立して生じている直径 2 〜 1 5 m m (よ り一 般的には 5 〜 1 0 m m ) 程度の凸部を意味し、 またゥネリ とは 例えば図 3 に示す如く 、 電極シー トの特に周縁部に生じ易い波 状に連続した歪みを意味してお り 、 これらは、 シー ト面にレ一 ザ一光を照射し、 その反射光を三次元解析する こ とによって求 める こ とができる。
本発明の電極支持基板を構成するセラミ ッ ク シ一トの形状と しては、 円形、 楕円形、 角形、 R (アール) を有する角形など 何れでもよく 、 これらのシー ト内に同様の円形、 楕円形、 角形 Rを有する角形などの穴を 1 つ若しく は 2 以上有するものであ つてもよい。 更にシー トの面積は特に制限されないが、 実用性 を考慮して一般的なのは 5 0 c m 2以上、 よ り好ま しく は 1 0 0 c m 2以上、 更に好ま し く は 2 0 0 c m 2以上である。 なお この面積とは、 シー ト内に穴がある場合は、 該穴の面積を含ん だ総面積を意味する。
次に、 本発明に係る電極支持基板の製造方法について説明す る。
本発明の電極支持基板は、 前記導電成分となる金属や金属酸 化物からなる粉末と、 骨格成分となる金属酸化物粉末、 および 多孔質化のために配合する気孔形成剤粉末を、 上記の様な方法 で有機質も しく は無機質バイ ンダーおよび分散媒 (溶剤) 、 必 要によ り分散剤や可塑剤などと共に均一に混合してペース ト状 と し、 これを ドクターブレー ド法、 カレンダ一口一ル法、 押出 し法など任意の手段で平滑なシー ト (例えばポリ エステルシー トなど) 上に適当な厚みで塗布し、 乾燥して分散媒 (溶剤) を 揮発除去する こ とによってグリーンシー ト を得る。
こ こで用い られる気孔形成剤と しては、 上記焼成条件下で焼 失するものであればその種類の如何は問わず、 小麦粉、 トウモ ロコシ澱粉 (コーンスターチ) 、 甘藷澱粉、 馬鈴薯澱粉、 タ ピ 才力澱粉などの天然有機質粉体、 も しく は (メタ) アク リ ル系 樹脂等からなる架橋微粒子集合体、 メ ラミ ンシァヌ レー トなど の熱分解性も し く は昇華性の樹脂粉体、 あるいは力一ボンブラ ックゃ活性炭などの炭素質粉体などが使用される。 中でも、 ト ゥモロコ シ澱粉やアク リル系架橋微粒子集合体、 力一ボンブラ ッ クなどは、 後述する如く導電成分を多く担持 ' 含有させる こ とができるので好ま しい。
これら気孔形成剤粉体の形状は、 導電成分を多く担持 ' 含有 せしめ、 焼成によって得られるセラミ ッ ク質基板内への導電成 分の均一分布を増進させるため、 球形も し く はラグビーポール 状である ことが望ま しく 、 また、 該粉体中あるいは微粒子集合 体内にも導電成分を含有せしめ得る様、 該粉体や微粒子集合体 自体も孔ゃ細孔を有する ものが好ましい。
気孔形成剤となる上記粉体や架橋微粒子集合体の好ましい粒 径は、 レーザー回折式粒度分布計 (島津製作所社製、 商品名
「 S A L D _ 1 1 0 0 」 ) で測定される平均粒径として 0 . 5 〜 1 0 0 t m、 よ り好ま しく は 3 〜 5 0 H m , 1 0 %体積径は 0 . 1 〜 : L 0 /i m、 よ り好ま し く は 1 〜 5 / mの範囲である。 中でも特に好ましいのは、 先に例示した様な架橋微粒子集合 体、 例えば特開 2 0 0 0 - 5 3 7 2 0号に開示されている如く (メタ) アク リル系モノマーを乳化重合して得られる架橋重合 体エマルシヨ ンを噴霧乾燥して得られる、 平均粒子径 0 . 0 1 〜 3 0 mの架橋重合体微粒子が相互に集合した平均粒子径 0 5 〜 1 0 0 mの微粒子集合体である。
本発明では、 上記気孔形成剤を個別に前記原料粉末と混合し てグリ ーンシー ト形成用のスラ リ ーとする こ と もできるが、 気 孔形成剤と前記導電成分を混合乃至複合しておいてか ら、 他の 原料と混合する こ とも有効である。 即ち、
1)導電成分粉末やその前駆体化合物と前記気孔形成剤を所定 比率で配合し、 湿式混合もしく は乾式混合する ことによって、 導電成分粉末やその前駆体化合物を気孔形成剤粉末表面に均一 に付着させる方法、
2)気孔形成剤の表面に、 スプレー法などによって導電成分粉 末やその前駆体化合物を均一に付着させる方法、
3)気孔形成用微粒子集合体の細孔や隙間に、 導電成分粉末や その前駆体化合物を含有させておく方法、
などを採用できる。
よ り具体的には、 特開平 7 — 2 2 0 3 2号公報に開示されて いる様な方法を転用 し、 上記気孔形成剤粉末と、 熱分解によ り 導電成分を生じる前駆体化合物を混合し、 溶剤を揮発させる と 共にミル等で乾式粉砕し、 あるいは湿式粉碎しつつ溶剤を揮発 除去する方法などが採用できる。
更には、 特開 2 0 0 0 — 5 3 7 2 0 号や同 2 0 0 1 — 8 1 2 6 3号公報に開示されている如く 、 (メタ)アク リル系等の重合 性モノマー混合物を乳化重合し、 平均粒子径 0 . 0 1 〜 3 0 mの架橋重合体微粒子が相互に付着し合った平均粒子径 0 . 5 〜 1 0 0 x mの微粒子集合体を製造し、 この微粒子集合体を、 熱分解によ り導電成分を生じる前駆体化合物を混合し、 これら を前記微粒子集合体の隙間に侵入させた後、 乾燥して溶剤を揮 発除去させる方法、 などが好ましく 採用される。
この様に導電成分を含有させた気孔形成剤を使用すると、 次 の様な効果を得る こ とができる。 即ち、 気孔形成剤はグリ ーン シー ト焼成時に燃焼 · 消失してその部分に気孔が形成されるが その部分に導電成分が共存する と、 焼成後は導電成分の近傍に 気孔が存在する こ とになり 、 燃料電池用電極支持基板として実 用化する際に、 導電成分が酸化によ り体積膨張を起こ しても、 上記気孔部分が体積膨張によって生じる歪を吸収し、 電極支持 基板に生じがちな割れやク ラッ クの発生を防止する。 その結果 電極支持基板の特に耐熱衝撃性や耐熱ス ト レス性を高める こ と が可能となる。
なお上記気孔形成剤は、 前述の如く加熱焼成時に焼失して気 孔を形成し、 電極支持基板にガス通過 · 拡散性を与えるための 重要な成分であ り、 多孔質体と して本発明で求め られる 2 0 % 以上、 5 0 %以下の気孔率を確保するには、 該気孔形成剤の配 合量を、 前記導電成分粉末と骨格成分粉末の総和 1 0 0 質量部 に対して 2 質量部以上、 4 0質量部以下、 よ り好ましく は 5 質 量部以上、 3 0 質量部以下の範囲とする こ とが望ましい。 ちな みに、 気孔形成剤の配合量が不足する と、 加熱焼成時の熱分解 によって形成される気孔が不足気味とな り 、 満足のいく ガス通 過 · 拡散性の電極支持基板が得られ難く な り 、 逆に気孔形成剤 の配合量が多過ぎる と、 加熱焼成時に形成される気孔が過度に 多く なつて焼結物が強度不足になる と共に、 平坦な基板が得ら れ難く なる。 この場合、 焼結温度を高めた り焼結時間を延長す る こ とによって焼結を進め、 気孔率を低下させる こ とも可能で あるが、 焼結に長時間を要するばか りでなく 消費エネルギーも 大幅に増大するので経済的でない。
グリ ーンシ一 ト を製造する際に用いるバイ ンダ一の種類にも 格別の制限はなく 、 従来から知られた有機質のバイ ンダーを適 宜選択して使用する こ とができる。 有機質バイ ンダーとしては 例えばエチレン系共重合体、 スチレン系共重合体、 ァク リ レー ト系またはメタ ク リ レー ト系共重合体、 酢酸ビニル系共重合体 マレイ ン酸系共重合体、 ビニルブチラ一ル系樹脂、 ビニルアル コール系樹脂、 ワックス類、 ェチルセルロース類などが例示さ れる。
これら の中でもグリ ーンシー ト の成形性や打抜き加工性、 強 度、 焼成時の熱分解性などの観点からは、 メチルァク リ レー ト ェチルァク リ レー ト、 プロ ピルァク リ レー ト、 プチルァク リ レ ー ト、 イ ソブチルァク リ レー ト、 シク ロへキシルァク リ レー ト
2 —ェチルへキシルァク リ レー トの如き炭素数 1 0以下のアル キル基を有するアルキルァク リ レー ト類 ; メチルメタク リ レー ト、 ェチルメタク リ レー ト、 ブチルメタク リ レー ト、 イ ソプチ ルメタク リ レー ト、 ォクチルメタク リ レー ト、 2 —ェチルへキ シルメタク リ レー 卜、 デシルメ夕ク リ レー ト、 ドデシルメタク リ レー ト、 ラウ リ ルメタク リ レー ト、 シク ロへキシルメタク リ レー トの如き炭素数 2 0以下のアルキル基を有するアルキルメ タク リ レー ト類 ; ヒ ドロキシェチルァク リ レー ト、 ヒ ド ロキシ プロ ピルァク リ レ一 ト、 ヒ ド ロキシメタク リ レー ト、 ヒ ドロキ シプロ ピルメ夕ク リ レー トの如きヒ ドロキシアルキル基を有す るァク リ レー トまたはメタク リ レー ト類 ; ジメチルアミ ノエチ ルァク リ レー ト、 ジメチルアミ ノエチルメタク リ レー トの如き アミ ノ アルキルァク リ レー トまたはアミ ノ アルキルメタク リ レ — ト類 ; アク リル酸、 メタク リ ル酸、 マレイ ン酸、 モノイ ソプ 口 ピルマレ一 トの如き力ルポキシル基含有モノマーの少なく と も 1 種を重合または共重合させる こ とによって得られる重合体 が例示され、 これらは単独で使用 し得る他、 必要によ り 2種以 上を適宜組み合わせて使用できる。
これらの中でも特に好ま しいのは、 数平均分子量が 5, 0 0 0〜 2 0 0 , 0 0 0 、 よ り好ま し く は 1 0, 0 0 0〜 1 0 0 , 0 0 0 の範囲のァク リ レー ト系またはメタク リ レ一 ト系共重合 体であ り 、 中でも、 モノマ一成分と してイ ソブチルメタク リ レ ー トおよび/または 2 ーェチルへキシルメタク リ レー ト を 6 0 質量%以上含む共重合体は好ましいものと して推奨される。
前記原料粉末 (導電成分、 骨格成分および気孔形成剤の総 和) とバイ ンダーの使用比率は、 前者 1 0 0 質量部に対して後 者 5 質量部以上、 3 0質量部以下、 よ り好ま しく は 1 0質量部 以上、 2 0 質量部以下の範囲が好適であ り 、 バイ ンダーの使用 量が不足する場合は、 グリーンシー トの強度や柔軟性が不十分 となり 、 逆に多過ぎる場合はスラ リ ーの粘度調節が困難になる ばかりでなく 、 焼成時のバイ ンダー成分の分解放出が多く且つ 激しく な り 、 表面性状の均質なグリーンシー トが得られ難く な る。
また、 グリ ーンシー ト製造時に使用される分散媒と しては、 メタ ノール、 エタ ノール、 2 一プロパノール、 1 ーブ夕 ノール 1 一へキサノール、 1 一へキサノールなどのアルコール類 ; 7 セ ト ン、 2 ーブ夕 ノ ン等のケ ト ン類 ; ペンタ ン、 へキサン、 へ ブタ ンなどの脂肪族炭化水素類 ; ベンゼン、 トルエン、 キシレ ン、 ェチルベンゼンなどの芳香族炭化水素類 ; 酢酸メチル、 酢 酸ェチル、 酢酸ブチルなどの酢酸エステル類などが適宜選択し て使用できる。 これらの分散媒も、 単独で使用し得る他、 必要 に応じて 2 種以上を適宜組み合わせて使用できる。 これら分散 媒の中でも最も一般的なのは 2 —プロパノール、 トルエン、 酢 酸ェチルなどである。
グリーンシー ト製造用のスラ リーの調製に当たっては、 前述 した導電成分粉末やその前駆体化合物を含有させた気孔形成材 粉末と骨格成分粉末、 或いは必要によ り補充される こ とのある 導電成分粉末を、 バイ ンダーと分散媒、 必要によ り原料粉末の 解膠や分散促進用の分散剤、 可塑剤などと共に均一に混合し、 均一分散状態のスラ リーとされる。
こ こで用い られる分散剤と しては、 ポリ アク リル酸、 ポリ ア ク リル酸アンモニゥムなどの高分子電解質 ; クェン酸、 酒石酸 などの有機酸 ; イ ソプチレンまたはスチレンと無水マレイ ン酸 との共重合体やそのアンモニゥム塩、 アミ ン塩、 ブタジエンと 無水マレイ ン酸との共重合体などが使用できる。 また可塑剤に は、 グリーンシー トの柔軟性を高める作用があ り 、 その具体例 としてはフ夕ル酸ジブチル、 フタル酸ジォクチルなどのフ夕ル 酸エステル類 ; プロピレングリ コールなどのグリ コール類ゃグ リ コールエステル類などが例示される。
本発明に係る電極支持基板の骨格成分となる前記原料粉末は 平均粒子径が 0 . 以上、 3 以下で 9 0体積%の粒径 が 6 m以下、 よ り好ましく は平均粒子径が 0 . 1 ^ m以上、 1 . 5 m以下で 9 0体積%の粒径が 3 i m以下、 更に好まし く は平均粒子径が 0 . 以上、 1 ^ 111以下で 9 0体積%の 粒径が 2 m以下のものが好ま しい。 また導電成分の原料とし て用いる前記粉末は、 平均粒子径が 0 . 以上、 1 5 m 以下で 9 0体積%の粒径が 3 0 i m以下の粉末、 よ り好ま し く は平均粒子径が 0 . 6 ^ m以上、 3 m以下で 9 0体積%の粒 径が 2 0 m以下、 更に好ま し く は平均粒子径が 0 . 6 ^ m以 上、 1 . 5 / m以下で 9 0体積%の粒径が 1 0 x m以下のもの が好ましい。 特に導電成分の構成素材と して酸化ニッケル粉末 を使用する場合、 9 0体積%の粒径が 6 ^ 01以下、 よ り好まし く は 3 m以下で、 粗大な粒子を極力含まないものを使用する のがよい。
骨格成分を構成する原料粉末として、 平均粒子径が 3 を 上回り 、 9 0体積%の粒子径が 6 i mを上回る粉末を使用 し、 且つ導電成分の構成素材となる原料粉末と して平均粒子径が 1 5 mを上回り 、 9 0体積%の粒子径が 3 0 mを上回る粉末 とを使用した場合、 仮焼による多孔質化だけでなく 、 粒子間間 隙も空孔となっているため、 所期の耐熱衝撃性や機械的強度が 得られ難く なる。 一方、 骨格成分の構成素材として平均粒子径 が 0 . を下回る粉末を使用 し、 且つ導電成分の構成素材 と して平均粒子径が 0 . 6 を下回る粉末を用いた場合、 気 孔形成剤の併用にもかかわらず、 焼結体中の細孔が小さ く な り 過ぎてガス通過 · 拡散性不足にな り 易 く なる。
但し、 本発明で最も重要となる前記通気量の測定値の変動係 数で 5 〜 2 0 %を確保しつつ、 適正な表面粗さ、 即ち、 レーザ 一光学式 3 次元形状測定装置によって測定される表面粗さで、 最大粗さ深度 ( R max) が 1 . 以上、 4 0 m以下とい う要件を満たす電極支持基板を確実に得るには、 セラミ ッ ク前 駆体となるグリーンシー ト製造用スラ リーと して、 導電成分粉 末、 骨材成分粉末、 気孔形成剤粉末およびバイ ンダーを含み、 ミ リ ン グ後に減圧脱泡 して粘度 を 4 0 〜 1 0 0 ボイ ズ ( 2 5 。C ) に調整した後、 ス ラ リ ー中の撹拌羽根を 5 〜 3 0 r p m の回転速度で 2 0 〜 5 0 時間回転させながら室温で保持したス ラ リーを使用 し、 該スラ リ ーを ドクターブレー ド法でシー ト成 形し、 得られるグリ ーンシ一 トを所定の形状に切断した後、 焼 成する方法を採用する こ とが望ま しい。
この方法を採用する と、 所定の粘度に調整されたスラ リ ー内 に存在する気泡をよ り効率よく 除去してスラ リ ー内に残存する 気泡、 特に 1 mレベルの微細な気泡を極力少なく する こ とが でき、 且つ、 焼成時に熱分解して基板に気孔を形成する気孔形 成材粉末を、 スラ リ ー内へよ り均一に分散させる こ とができ、 基板面内における通気性の分布を少なくできるか らである。 ま たスラ リーを熟成する効果も得られ易く 、 よ り安定したスラ リ 一とする こ とができる。
こ こで、 スラ リーの粘度は 4 0 〜 ; L 0 0 ボイズ ( 2 5 °C ) に 調整するのがよく 、 4 0 ボイズを下回る場—合は、 スラ リ ーの流 動性が高過ぎるため厚さが 1 m m以上、 特に 2 m m以上の基板 を作製する こ とが困難になり 、 逆に 1 0 0 ボイズを上回る場合 は、 粘度が高過ぎるためスラ リ ー内に残存する気泡、 特に 1 mレベルの微細な気泡を少なく する ことが困難になる。 こ う し た観点か ら、 よ り 好ま しいス ラ リ ー粘度は 5 0 〜 8 0 ボイ ズ ( 2 5 ) である。
また、 撹拌羽根の回転速度が 5 r p mを下回る場合は、 ス ラ リ ー内に存在する気泡の除去が不十分になる と共に、 気孔形成 材粉末を均一にスラ リー内へ分散し難く 、 保持時間を 5 0 時間 以上に延長しなければならなく なるので、 実用的でない。
一方、 回転速度が 3 0 r p mを上回る場合は、 撹拌中にスラ リー内へ空気が混入し易く な り 、 却って気泡が生じ易く なる。
こ う した観点から、 よ り好ま しい回転速度は 5 〜 2 0 r p m である。 撹拌羽根の形状は特に限定されないが、 空気混入の少 ない錨形の撹拌羽根が好ましい。
更に、 攪拌羽根の回転保持時間が 2 0 時間を下回る場合は、 スラ リ ー内に存在する気泡の除去が不十分になる と共に、 気孔 形成材粉末を均一にスラ リ ー内へ分散し難く な り 、 逆に 5 0 時 間を超えて過度に長く する と、 工程に長時間を要するため実用 にそぐわなく なる。
なお、 上記方法において、 グリ ーンシー ト ロ ッ ト間の通気性 のバラツキを少なく するには、 セラミ ッ ク前駆体となるダリ 一 ンシー ト製造用スラ リーとして、 導電成分粉末、 骨材成分粉末 気孔形成材粉末およびバイ ンダーを含み、 ミ リ ング後に減圧脱 泡して粘度を 4 0 〜 : L 0 0 ボイズ ( 2 5 °C ) に調整した後、 ス ラ リ 一中の撹拌羽根を 5 〜 3 0 r p mの回転速度で 2 0 〜 5 0 時間回転させながら室温で保持した粘度調整済スラ リーに、 同 様にしてミ リ ングした同組成の粘度未調整スラ リ ーを添加し、 得られる混合スラ リ ーを減圧脱泡して 4 0 〜 1 0 0 ボイズ ( 2 5 °C ) に調整した後、 スラ リ ー中の撹拌羽根を 5〜 3 0 r p m の回転速度で 2 0〜 5 0 時間回転させながら室温で保持する こ とによって得られるスラ リ ーを、 グリ ーンシー ト製造用スラ リ 一と して使用するのがよい。
この場合、 グリ ーンシー ト ロ ッ ト間のバラツキをよ り一層少 なくするには、 粘度調整済スラ リー中の導電成分粉末と骨材成 分粉末の合計 1 0 0 質量部に対して、 粘度未調整スラ リ ー中の 導電成分粉末と骨材成分粉末の合計が 9 5〜 1 0 5 質量部とな る様に添加する こ とが好ま しい。
なお、 減圧脱泡のために使用する機器は、 溶剤回収のための 冷凍機と回収タンクを備えた内容積が 1 0 リ ッ トル以上、 好ま しく は 3 0 リ ツ トル以上、 更に好ましく は 5 0 リ ツ トル以上の 濃縮撹拌脱泡機を使用するのがよく 、 通常の実験室で使用する 内容積が 1 0 リ ッ トル未満の減圧用コ ッ ク付きセパラブルフラ スコなどでは、 スケールの影響のためか、 本発明で意図する十 分な品質の基板が得られ難く なる。
また、 前述した特性を満足するには、 電極支持基板となるセ ラミ ックの前駆体となるグリ ーンシー トの製造に用いるスラ リ 一状態での粒度分布も重要であ り、 グリ ーンシー ト製造用原料 スラ リーの粒度分布で、 0 . 2〜 2 111と 3〜 5 0 2 111の範囲 に夫々 1 つのピーク を有するスラ リーを使用する こ とが重要に なる。
即ち支持基板の表面粗さは、 使用する前記原料粉末の粒度構 成によってある程度影響を受け、 粗めのものを使用する と焼結 体の表面粗さは相対的に粗く な り、 微細なものを使用する と表 面粗さは相対的に緻密になる。 そして、 電極支持基板を構成す る前記導電成分素材粉末および骨格成分素材粉末と して各々前 記好適粒度構成のものを使用すれば、 前述した適正な気孔率を 有する と共に、 最大粗さ深度 ( R max) についても好適範囲の ものが得られ易い。
しかし本発明者らが更に研究を重ねたと ころでは、 本発明で 規定する特に上記通気量測定値の変動係数や、 R max を満たす 焼結体を得る上でよ り重要なこ とは、 前述した原料粉末自体の 粒度構成よ り も、 焼結原料となるセラミ ッ クス成形体を得る際 のスラ リ ー中に含まれる固形成分の粒度分布であ り、 該粒度分 布が、 0 . 2 〜 2 ΠΙと 3 〜 5 0 x mの範囲に夫々 1 つのピー クを有するス ラ リーを用いてグリーンシー ト を作製してから焼 成すれば、 気孔率が 2 0 〜 5 0 %で且つ R max が 1 . 0〜 4 0 mの範囲に納まる焼結体 (即ち電極支持基板) がよ り確実に 得られる こ とを知った。
ちなみに、 上記スラ リーの調製に当たっては、 原料粉末を含 めた前記原料配合懸濁液をボールミル等にかけて均一に混練破 碎する方法が採用されるが、 該混練条件 (分散剤の種類や添加 量などを含む) によっては、 該スラ リ ー調製過程で原料粉末の 一部が 2 次凝集を起こ し、 一部は更に破砕されるので、 原料粉 末の粒度構成がそのままスラ リ 一中の固形成分の粒度構成と同 じになるわけではない。 よって、 本発明の電極支持基板を製造 する際には、 該電極支持基板の気孔率や表面粗さに最も影響を 及ぼす要因と して、 未焼成のグリーンシー トの製造に用いるス ラ リー状態での固形成分の粒度分布が、 上記好適要件を満たす 様に調整する こ とが重要となるのである。
なお上記原料粉末およびスラ リー中の固形成分の粒度分布と は、 下記の方法で測定した値をいう。 即ち原料粉末の粒度分布 は、 島津製作所製のレーザ一回折式粒度分布測定装置 「 S A L D _ 1 1 0 0 」 を使用 し、 蒸留水中に分散剤と して 0 . 2 質 量%のメ夕 リ ン酸ナ ト リ ウムを添加した水溶液を分散媒と し、 該分散媒約 1 0 0 c m 3中に各原料粉末 0 . 0 1 〜 1 質量% を 加え、 3〜 1 0 分間超音波処理して分散させた後の測定値であ り、 またスラ リ ー中の固形成分の粒度分布は、 ス ラ リー中の溶 媒と同じ組成の溶媒を分散媒と して使用 し、 該分散媒 1 0 0 c m 3中に各スラ リ ーを 0 . 1〜 1 質量% となる様に加え、 同様 に 3〜 1 0分間超音波処理して分散させた後の測定値であ り 、 例えば図 4 に示す様な粒度分布頻度グラフ と して求められる。
そして上記の如く スラ リー状態での粒度分布で、 0 . 2〜 2 mと 3〜 5 O ^ mの範囲に夫々 1 つのピーク を有するスラ リ 一を用いてグリ ーンシー トを作製する と、 相対的に粗大な 3〜 5 0 mの粒状物の間に、 相対的に微細な 0 . 2〜 2 mの粒 状物が充填されたグリーン体が形成され、 これを焼成する と好 ましい表面粗さを有する焼結体を得る こ とができる。
尚、 前記適正な表面粗さを確保する上でよ り好ましいのは、 スラ リー状態で前記 0 . 2〜 2 ^ mの範囲の細粒物と 3〜 5 0 /x mの範囲の粗粒物との含有比率が質量比率で 2 0 / 8 0〜 9 0 / 1 0 の範囲であ り、 よ り好ま しく は前者 4 0 / 6 0〜 8 0 Z 2 0 の範囲である。 また、 全体と しての好ま しい平均粒径は 0 . 2〜 5 m、 よ り好まし く は 0 . 3〜 3 mの範囲である スラ リ ー状態での粒度分布を前記好適範囲に調整するための 手段は特に制限されないが、 一般的な手法と しては
0原料となる粉体の一部を予め 9 0 0〜 1 4 0 0 °Cで 1〜 2 0時間程度仮焼する ことによ り粒径を大きく しておき、 仮焼し ていない粉体と混合して使用する方法、
i i)ポールミルで原料粉体などを混合する際に、 原料粉体の 添加を 2段階に分け、 一部は所定時間経過後に添加する こ とに よ り 、 破砕の程度を抑える方法、
i i i )ポールの直径が異なる 2種類のポールミルで原料粉体な どを混練する こ とで、 異なる粒径の 2 つのスラ リーを調製し、 該 2種のスラ リ ーを混合する方法、
などが例示され、 上記方法は単独で採用 し得る他、 必要によ り 2種以上を適宜組み合わせて実施する こ とができる。
そして本発明の電極支持基板は、 前述の様にして得たセラミ ックス原料粉末とバイ ンダーおよび分散媒か らなるスラ リーを ドクターブレー ド法、 カ レンダ一法、 押出し法等によって支持 板やキヤ リ ァシ一 ト上に適当な厚さ となる様に敷き延べてシー ト状に成形し、 これを乾燥し分散媒を揮発させてグリーンシー トを得、 これを切断、 パンチング等によ り適当なサイズに揃え た後、 再公表特許 W O 9 9 / 5 9 9 3 6号に開示されている如 く 、 棚板上の多孔質セッターに載置し、 あるいはセッ夕一で挟 持した状態で、 空気雰囲気下に、 アノー ド電極支持基板の場合 は 1 1 0 0 〜 1 5 0 0 °C、 好ま しく は 1 2 0 0 〜 1 4 5 0 。C、 最も好ましく は 1 2 5 0〜 1 4 0 0で程度で 1 〜 5 時間程度加 熱焼成する方法が採用される。
なお多孔質セッターとしては、 グリーンシー トの焼成時にバ ィ ンダ一や気孔形成剤に由来して大量に発生するガスの放出が 円滑に行われる様、 通気性の高い [ N i ] 単位を 4 0 〜 9 0 質 量%含有するシー ト状セラミ ッ クス体からなる多孔質セラミ ッ ク シ一 ト製造用セッ 夕一が好適に使用される。
本発明の電極支持基板を燃料電池用として実用化する場合は 要求強度を満たしつつ通電ロスを可及的に抑えるため、 シー ト 厚さ を 0 . 3 mm以上、 よ り好ま しく は 0 . 5 mm以上で、 3 mm以下、 よ り好ま しく は l mm以下とするのが良い。
と ころで、 本発明において電極支持基板が積層荷重などを受 けたときのク ラ ッ クや割れ防止に極めて重要となるバリ 高さは 前記グリーンシ一 卜 を所定サイズに打抜き加工する際に用いる 打抜き刃の刃先形状によって著し く変わ り 、 該刃先形状が波形 の打抜き刃を使用すれば、 通常の直線状打抜き刃を用いた場合 に比べて、 グリ ーンシー トの打抜き線に形成されるバリ 高さを 著し く 小さ く 抑え得る こ とが確認された。 その理由は次のよう に考え られる。
即ち、 直線状の打抜き刃を使用する と、 グリーンシー トが刃 によって切断されるときに、 刃先部全体が線状にグリーンシ一 ト に接触する こ とになり 、 打抜き方向へ線状に同時に引っ張ら れる応力が生じ、 グリーンシー トの破断面が打抜き方向へ力一 ルするよ う になるため、 大きなバリが形成され易く なる。 これ に対し波形の打抜き刃を使用する と、 刃先の一部 (即ち、 波型 の最高部) が点状にグリーンシー トに接触するため、 打抜き方 向へ引っ張られる応力が緩和され、 カールの程度が小さ く なつ てバリ 高さが著しく低め られる ものと考えられる。
例えば図 5 は、 本発明で好ま しく用い られる打抜き刃 1 を例 示する説明図であ り、 刃先部 1 aがノ コギリ 刃状に形成されて いる。 そして、 上述したよう にグリーンシー ト打抜き時のカー ルを極力抑えてバリ高さを小さ くするには、 打抜き刃 1 の最初 にグリ ーンシー ト表面に接する刃先部分が極力小さ く なるよう 刃先部 1 a を極力鋭利に形成する と共に、 刃先角度 《 〖 (刃を 側方か ら見た時の波形刃先部の角度を意味する) を 3 0 〜 1 2 0度、 よ り好ま しく は 4 5 〜 9 0度と し、 刃高さ h を 0 . 5 〜 2 mm、 よ り好ましく は 0 . 5 〜 l mm、 ピッチ p を 0 . 2 〜 7 mm、 よ り好ましく は 0 . 2 〜 4 mm程度とする こ とが望ま しい。
また打抜き刃 1 の好ましい断面構造は図 6 に示す通り であ り 刃先角度 α 2 (刃の厚さ方向断面の先端角度を意味する) が 2 0 〜 7 0 度、 よ り好ましく は 2 0 〜 5 0度で、 刃厚さ t が 0 . 3 〜 l m m、 よ り好ましく は 0 . 4 〜 0 . 7 m mであるものが よい。
更に好ま し く は、 刃先構造を例えば図 7 に示す如く 、 打抜か れるグリ ーンシー ト Gに対し、 打抜き製品となる G x側 (通常 は内周側) の立ち上 り角度 0 【 を、 切捨て G γ側 (通常は外周 側) の立ち上り 角度 0 2 よ り も銳角に形成するのがよい。 また Θ ! の好ま しい角度は 1 0 〜 2 5度、 更に好まし く は 1 0 〜 2 0度であ り 、 0 2 の好ま しい角度は 1 0 〜 3 5度、 よ り好ま し く は 1 0 〜 3 0 度である。 この様な角度を満たす刃先構造の打 抜き刃 1 を使用する ことで、 打抜き製品側の外周縁に形成され るバリ を一層小さ くする こ とができる。
なお図示例では、 同一ピッチ、 同一形状の繰り返し構造の刃 先部を示したが、 刃先部の形状やその繰り返し単位は図示例に 限定される訳ではなく 、 バリ抑制に適した構造である限り適当 に形状や寸法などを適当に変更して実施する こ と も勿論可能で ある。
また打抜きに当たっては、 打抜き刃 1 をグリーンシー ト面に 対して極力鉛直方向に降下させるのがよく 、 この場合、 ダリ ー ンシー ト を軟弹性の支持板で挟み、 位置ずれを起こさないよ う に固定した状態で打抜く こ とが望ましい。
例えば図 8 〜図 1 1 は、 本発明で使用する打抜き部材 Αの構 造と これを用いた打抜き法を例示する概略断面説明図であ り 、 刃型ホルダー 2 には、 硬質部材 3 によって打抜き刃 1 が固定さ れる と共に、 硬質部材 3 の先端部側には軟質ゴム等か らなるハ ネ出し板 4が取り付けられ、 刃 1 はハネ出し板 4が圧縮変形し ない限り該ハネ出し板 4 を貫通してその先端面か ら突出しない 様に設けられている (図 8参照) ] 。 なお図示例では、 打抜き 時のグリ ーンシー トの固定を一層確実にするため、 該打抜き部 材 Aに対面して配置されるシー ト支持部材 B における硬質板 5 の上面にも弾性板 6 を積層した構造のものを示したが、 弾性板 6 は必ずしも必要でない。 そして、 該支持部材 B上に打抜き対 象となるグリーンシー ト Gを配置して打抜き作業が行なわれる グリーンシー ト Gの打抜きを行なう に当たっては、 図 8 の状 態か ら、 シー ト支持部材 B上に載置されたグリ ーンシ一 卜 G面 に向けてその略垂直方向から打抜き部材 Aを相対的に接近させ る。 打抜き部材 Aに設けられた打抜き刃 1 は、 前述の如く ハネ 出し板 4 の前面から突出しない様に設けられているので、 上記 の様に打抜き部材 Aをグリ ーンシー ト Gに接近させると、 該シ ー ト Gの上面は先ずハネ出し板 4が当接し、 グリ ーンシー ト G はハネ出し板 4 と弾性板 6 によって上下方向か ら挟持される こ とになる (図 9参照) 。
その後さ らに打抜き部材 Aを降下させる と、 弹性材で構成さ れたハネ出し板 4が圧縮変形して打抜き刃 1 がダリ一ンシー ト G方向に突出してく るが、 同時にグリーンシー ト Gは、 ハネ出 し板 4 の弾性変形に伴う弹発力と、 下面側か らは弾性板 6 によ る弹発力によって両面側から付勢されて支持 · 固定され、 その 状態で刃 1 の進出による打抜きが行われる (図 1 0参照) 。
また打抜き刃 1 がグリ ーンシー ト Gを貫通して打抜かれた後 は、 打抜き部材 Aを後退させて該刃 1 をグリ ーンシー ト G打抜 き部から退避させるが、 この工程でも、 打抜き刃 1 がグリ ーン シー ト Gから引抜かれる までは、 ハネ出し板 4および弾性板 6 の弹発力によって挟持固定状態が維持され、 打抜き刃 1 が引抜 かれた後で開放される こ とになる (図 1 1 参照 : 図中 yは打抜 き部を表わす) 。
即ち打抜き刃 1 の進退に伴う打抜きと引抜きは、 グリーンシ ー ト Gが弹発的に挟持固定された状態で行われるので、 位置ズ レによる打抜き寸法精度の低下が防止されるばか りでなく 、 バ リ の発生も可及的に抑え られる。
かぐして本発明を実施するに当たっては、 特にグリーンシー ト を打抜き加工するための装置と して、 刃先部が波型のものを 使用する ことで、 打抜き部に形成されるバリ 高さを可及的に低 く する こ とができ、 それによ り積層荷重などを受けたときの該 バリ部への応力集中を可及的に抑え、 ク ラ ッ クや割れの発生を 最小限に抑える こ とが可能となる。 殊に本発明に係る電極支持 基板の前駆体となる上記グリ ーンシー トは、 所定の気孔率を確 保する こ との必要上多量の気孔形成剤が含まれてお り 、 緻密質 焼結体の製造に用いるグリーンシー トに比べて軟質である こ と か ら、 所定寸法への打抜き時に生じるバリ が大きく な り易いが 上記の様な打抜き刃と打抜き法を採用する こ とで、 バリ を可及 的に小さ く抑える こ とが可能となる。
なお、 積層荷重などを受けたときに起こるク ラ ッ クや.割れは 上記バリ以外にも、 基板表面に存在する大きな突起や、 ゥネリ などによっても起こ り得る。 従って、 耐ク ラ ッ ク性ゃ耐割れ性 を一段と高めるには、 上記パリ 高さの低減に加えて突起ゃゥネ リ も可及的に小さ く すべきであ り 、 その基準は前述の如く 最大 突起高さ と最大ゥネ リ高さのいずれについても、 シー ト厚さの
1 Z 3 以下、 よ り好まし く は 1 / 4以下、 更に好ましく は 1 / 5 以下である。 尚、 上記の様にバリ高さや最大突起高さ、 最大 ゥネリ 高さをシー ト厚さに対する比率で規定したのは、 それら の値は、 シー ト厚さが厚く なるほど相対的に大きく なる傾向が あるからである。
そして、 本発明に係る多孔質の電極支持基板を製造する際に 該突起が生じる最大の原因は、 焼成時に使用する棚板やセッタ —上に粒状の異物が存在したときに、 その上に載置されたダリ ーンシー トに対して該異物が引っ掛かり とな り 、 平坦なままで の均一な収縮が阻害されるためと考え られる。
またゥネリ が生じる最大の原因は、 グリーンシー ト中のパイ ンダーや気孔形成剤が燃焼 · 焼失して焼結する際に、 その含有 量が多過ぎた り 、 或いはグリ ーンシー ト を重ね焼きした時に、 燃焼が均等に進み難く なつて単位時間当た り の分解燃焼量にば らつきが生じ、 分解ガスの発生量にムラが生じるために起こる と考えられる。 そして、 該グリーンシー ト を焼成する際に生じ る収縮量 (長さ にして 1 0〜 3 0 %程度) は、 シー トの中心部 に較べて周縁部の方が大きいため、 ゥネリ はシ一 トの周縁部に 起こ り易い。
よって突起を最小限に抑えるための手段と しては、 焼成に用 いる棚板ゃセッ 夕一上に付着粒子や欠落粒子などが存在しない よう十分に除去 ' 清掃しておき、 またゥネ リ を最小限に抑える ための具体的な手段と しては、 バイ ンダーや気孔形成剤の使用 量を最小限に抑える と共に、 バイ ンダー等か らの分解ガスが均 一に放散されるよう、 特に重ね焼きする場合は多孔質のセッ夕 一をスぺ一サ一としてグリ ーンシー ト間に挟み込むと共に、 最 上部に重し用スぺ一サーを載置して焼成を行なう等が有効な方 法と して挙げられる。
本発明の電極支持基板を固体電解質型燃料電池用部材として 使用するに当たっては、 該基板の片面にアノー ド電極や薄膜電 解質の形成が行われるが、 それら電極や薄膜電解質の形成法は 特に制限されず、 V S P の如きプラズマ溶射法、 フ レーム溶射 法、 P V D (物理蒸着) 、 マグネ ト ロ ンスパッタ リ ング法、 電 子ビーム P V D法等の気相法 ; スク リ ーン印刷法、 ゾルーゲル 法、 スラ リ ーコー ト法等の湿式法を適宜使用する こ とができる ァノ一 ド電極層の厚さは通常 3〜 3 0 0 x m、, 好ましく は 5〜 1 0 0 mに、 また電解質層の厚さは通常 3 〜 1 0 0 a m、 好 ましく は 5 〜 3 0 mに調整される。 実施例 以下、 実施例及び比較例を挙げて本発明をよ り具体的に説明 するが、 本発明はも とよ り下記実施例によって制限を受ける も のではなく 、 前 · 後記の趣旨に適合し得る範囲で適当に変更し て実施する こ とも可能であ り 、 それらはいずれも本発明の技術 的範囲に包含される。 実施例 Ί
[セッ 夕一の作製]
平均粒子径が 0 . 5 i mで 9 0体積%径が 1 . の 8 モ ル%酸化イ ッ ト リ ウム安定化ジルコニァ粉末 (以下、 「 8 Y S Z」 と記す) 4 0質量% と、 炭酸ニッケル粉末を熱分解して得 た平均粒子径が 4 . 5 mで 9 0体積%径が 8 ^ mの酸化ニッ ケル粉末 6 0 質量% とを混合し、 原料となる混合粉末を製造し た。
この混合粉末 1 0 0質量部に、 モノマー単位としてイ ソプチ ルメタク リ レー ト 7 9 . 5質量%、 2 —ェチルへキシルメ夕ク リ レー ト 2 0 質量%およびメタク リル酸 0 . 5 質量%を用いて 得た共重合体からなるアク リル系バイ ンダー 1 2 質量部と、 溶 剤と して トルエン Z酢酸ェチル (質量比 : 2 / 1 ) 4 0 質量部 可塑剤と してジブチルフタ レー ト 2質量部を加え、 ポールミル によ り混練したのち脱泡し、 粘度調整する こ とによって、 4 0 ボイズのスラ リーを得た。
このス ラ リ ーを ドクターブレー ド法によ り シー ト状に成形し て厚さ約 0 . 5 mmのセッター用グリ ーンシー トを作製し、 こ れを所定の寸法に切断してから、 厚さ 2 O mmのアルミナ製棚 板上に載置して 1 4 0 0 °Cで 5 時間焼成し、 1 辺が 1 7 c mの 正方形で厚さ約 0 . 4 mm、 気孔率が 1 5 %の多孔質セッ夕一 を得た。
[電極支持基板の作製]
1)電極支持基板用グリーンシー 卜の作製
市販の 3 モル%イ ッ ト リ ア安定化ジルコニァ粉末 (第一稀元 素社製 ; 商品名 「 H S Y _ 3 . 0 」 、 粒度構成 ; 5 0 体積% 径 : 0 . 4 m、 9 0体積%径 : 1 . 4 111 ) (以下、 「 3 Y S Z」 と記す) を、 大気雰囲気下に 1 2 0 0 °Cで 3時間仮焼し た。 この仮焼粉末 (粒度構成 ; 5 0体積%径 : 1 4 ^ m、 9 0 体積%径 : 2 9 m ) 2 0質量部と、 仮焼していない上記ジル コニァ粉末 2 0 質量部、 および酸化ニッケル粉末 (キシダ化学 社製 ; 粒度構成 ; 5 0体積%径 : 0 . 6 m、 9 0体積%径 : 2 : 7 m) 6 0 質量部、 更に トウモロコシ澱粉 (関東化学社 製) 1 0 質量部、 バイ ンダー と してメ タ ク リ ル酸系共重合体 (分子量 ; 3 0 , 0 0 0 、 ガラス転移温度 ; — 8 °C ) 1 5質量 部、 可塑剤と してジブチルフタ レー ト 2 質量部、 分散媒と して トルエンノイ ソプロ ピルアルコールの混合溶剤 (質量比 : 3 / 2 ) 5 0 質量部を、 直径 1 5 mmのアルミナポールが装入され たボールミルに入れ、 約 6 0 r p mで 2 0 時間混練する こ とに よ り スラ リーを調製した。
得られたス ラ リ ーの粒度分布を、 レーザー回折式粒度分布測 定装置 (島津製作所製、 商品名 「 S A L D — 1 1 0 0」 ) によ り測定して粒度分布の頻度グラフを観察したと ころ、 0 . 2 〜 0 . 3 mの区間と 4 〜 5 mの区間の 2 力所にピークが観察 され、 0 . 2 〜 2 ΠΙの範囲にある細粒物と 3 〜 5 0 ii mの範 囲にある粗粒物の含有比率は 8 2 / 1 8 であった。
このスラ リ ーを減圧脱泡機に入れ、 濃縮 · 脱泡して粘度を 5 0 ボイズ ( 2 5 ) に調整し、 スラ リー中に浸された錨型撹拌 羽根を 1 0 r p mの回転速度で 2 4時間回転させた後、 最後に 2 0 0 メ ッ シュのフィ ルタ一に通して力 ら ドクターブレー ド法 によ り ポリ エチレンテレフ夕 レー ト ( P E T ) フィ ルム上に塗 ェし、 この時、 ブレー ドの隙間を調整する こ とで厚さ約 0 . 5 9 m mのグリ ーンシー トを作製した。
2)電極支持基板用グリーンシー トの打抜きと焼成
上記で得たグリーンシー ト を、 刃先が波型 (図 5 〜 7 に示し たようなノ コギリ刃状で、 刃先角度ひ , が 6 0 ° 、 α 2が 4 5 ° . 0 i が 1 5 。 、 0 2 が 3 0 ° 、 刃幅 t が 0 . 7 m m、 刃高さ hが l mm , ピ ッ チ p が 1 . 1 m mの打抜き刃 (中山紙器材料社 製) を使用 し、 図 8 〜 1 1 に示した様な方法で 1 辺が 1 5 c m の正方形に打抜いた。
打抜いた該基板グリーンシー トの上下を、 上記で作製したセ ッターでグリ ーンシー トの周縁がはみ出さない様に挟み、 厚さ 2 0 mmの棚板 (東海高熱工業社製、 商品名 「ダイヤライ ト D C一 M」 ) 上に載置し、 1 3 0 0 °Cで 3 時間焼成する こ とによ り、 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電 極支持基板を得た。 実施例 2
上記実施例 1 の 1)電極支持基板用グリ ーンシー トの作製に おいて、 実施例 1 と同様にしてポールミルで処理して得た粘度 未調整のスラ リ ーと、 減圧脱泡機で 5 0 ボイズに粘度調整され たスラ リ ーを用意し、 粘度調整されたスラ リーに粘度未調整の スラ リーを添加した。 この際、 粘度調整されたスラ リー中の 3 Y S Z粉末と酸化ニッケル粉末の合計質量と、 粘度未調整スラ リ ー中の 3 Y S Z粉末と酸化ニッケル粉末の合計質量が同じに なる様に添加した。
次いで、 混合ス ラ リ ーを同様に減圧脱泡によ り 5 0 ボイ ズ ( 2 5 °C ) の粘度に調整し、 ス ラ リー中の撹拌羽根を 1 2 r p mの回転速度で 2 0時間回転させながら室温で保持し、 得られ たグリ ーンシー ト製造用スラ リーを用いてシー ト成形し、 厚さ 約 0 . 5 9 m mのグリーンシー ト を得た。
以下も実施例 1 と同様にして打抜き加工および焼結を行い、 1 辺が 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持 基板を得た。 実施例 3
上記実施例 1 の 1)電極支持基板用グリ ーンシ一 卜 の作製に おいて、 ス ラ リ ーを減圧脱泡によ り 6 0 ボイズに粘度調整し、 撹拌羽根を 1 8 r p mの回転速度で 3 0 時間回転させながら室 温で保持した後、 ドクターブレー ドの間隔を調整する こ とで厚 さ 0 . 3 5 mmのグリーンシー トを作製した以外は、 前記実施 例 1 と全く 同様にして、 1 辺が約 1 2 . 5 c mの正方形で厚さ が約 0 . 3 m mの電極支持基板を得た。 実施例 4
上記実施例 1 の 1)電極支持基板用グリ ーンシー トの作製に おいて、 8 Y S Z粉末 (粒度構成 ; 5 0体積%径 : 0 . 5 〃 m 9 0体積%径 : 1 . 2 m) を大気雰囲気下に 1 2 0 0 °Cで 3 時間仮焼し、 この仮焼粉末 (粒度構成 ; 5 0体積%径 : 2 0 ^ m、 9 0体積%径 : 4 1 1!1 ) 1 5 質量部と、 仮焼していない 上記粉末 1 5 質量部、 および酸化ニッケル (正同化学工業社製 粒度構成 ; 5 0体積%径 : 0 . 8 m、 9 0体積%径 : 2 . 1 II m) 7 0 質量部に対して、 ト ウモロ コ シ澱粉 (関東化学社 製) 1 0 質量部、 前記実施例 1 と同様にメタク リル系共重合体 からなるバイ ンダー 1 5 質量部、 可塑剤と してジブチルフタ レ ー ト 2 質量部を使用 した以外は、 前記実施例 1 と同様にして基 板用グリーンシー ト を作製し、 以下も同様にして打抜き加工お よび焼結を行って、 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持基板を得た。 実施例 5
上記実施例 1 の 1)電極支持基板用グリ ーンシー トの作製に おいて、 市販の 3 Y S Z粉末 (同前) を大気雰囲気下に 1 2 0 0 °Cで 3 時間仮焼し、 この仮焼粉末 2 0質量部と、 仮焼してい ない上記粉末 1 0質量部、 および酸化ニッケル (キシダ化学社 製) 7 0 質量部に対して、 トウモロコシ澱粉 (関東化学社製) 1 0質量部、 前記実施例 1 と同様のメタク リル系共重合体から なるバイ ンダ一 1 5 質量部、 可塑剤と してジブチルフタ レー ト 2質量部を使用 した以外は、 前記実施例 1 と同様にして基板用 グリ ーンシー トを作製し、 以下も同様にして打抜き加工および 焼結を行って、 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持基板を得た。 実施例 6
上記実施例 1 の 1 )電極支持基板用グリ ー ンシー トの作製に おいて、 市販の 3 Y S Z粉末 (同前) を大気雰囲気下に 1 2 0 で 3 時間仮焼し、 この仮焼粉末 1 5質量部と、 仮焼してい ない上記粉末 1 5 質量部、 および酸化ニッケル (正同化学工業 社製) 7 0 質量部に対して、 ト ウモロ コ シ澱粉 (関東化学社 製) 2 0質量部、 前記実施例 1 で用いたのと同じメタク リ ル系 共重合体からなるバイ ンダー 1 5 質量部、 可塑剤と してジブチ ルフタ レー ト 2 質量部を使用 した以外は、 前記実施例 1 と同様 にして基板用グリーンシー ト を作製し、 以下も同様にして打抜 き加工および焼結を行って、 1 辺が約 1 2 . 5 c mの正方形で 厚さが約 0 . 5 mmの電極支持基板を得た。 比較例 1
上記実施例 1 において、 粘度を 5 0 ボイズ ( 2 5 °C ) に調整 した後、 スラ リ ーを室温で撹拌しながら保持する ことなく 、 直 ちに 2 0 0 メ ッ シュのフィ ルタ一に通してか ら ドクターブレ一 ド法によ り P E Tフィ ルム上に塗工し、 同様にして厚さ約 0 . 5 9 m mのグリーンシー トを作製し、 更に前記実施例 1 と同様 にして 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの 電極支持基板を作製した。 比較例 2
上記実施例 1 において、 粘度を 1 2 0 ボイ ズ ( 2 5 °C ) に調 整した後、 スラ リーに撹拌羽根を浸し、 スラ リー中の撹拌羽根 を 1 0 r p mの回転速度で 1 0 時間回転させた後、 2 0 0 メ ッ シュのフィルタ一に通してか ら ドクターブレー ド法によ り P E Tフィ ルム上に塗工し、 同様にして厚さ約 0 . 5 9 mmのダリ —ンシ一 トを作製し、 更に前記実施例 1 と同様にして 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持基板を 作製した。 比較例 3
上記実施例 1 の 1)電極支持基板用グリ ーンシー トの作製に おいて、 市販の 3 Y S Z粉末 (同前) の 1 2 0 0 °C仮焼粉末は 使用せず、 前記 3 Y S Z粉末 (同前) 4 0 質量部を用いた以外 は同様の材料を使用 し、 直径 5 m mのジルコニァポールが装入 されたポールミルに入れ、 約 5 O r p mで 3 時間混練してスラ リ ーを調製した以外は前記実施例 1 の 1)と同様にして、 厚さ 約 0 . 5 9 m mのグリーンシー トを作製し、 更に前記実施例 1 と同様にして 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持基板を作製した。 比較例 4
上記実施例 1 の 1)電極支持基板用グリ ーンシー トの作製に おいて、 3 Y S Z粉末 (同前) は使用せず、 前記 1 2 0 0 °Cで 3 時間仮焼した 3 Y S Z粉末 4 0 質量部と酸化ニッケル粉末 (キシダ化学社製) を大気雰囲気下に 1 1 0 0 °Cで 3時間仮焼 した粉末 (粒度構成 ; 5 0 体積%径 : 1 7 / m、 9 0 体積% 径 : 3 0 m ) 6 0 質量部を用いた以外は同様の材料を使用 し 直径 2 0 m mのアルミナポールが装入されたポールミルに入れ 約 4 0 r p mで 1 0 時間混練してスラ リ ーを調製した以外は前 記実施例 1 の 1)と同様に して、 厚さ約 0 . 5 9 mmのダリ 一 ンシー トを作製し、 更に前記実施例 1 と同様にして 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 mmの電極支持基板を作 製した。 比較例 5
前記比較例 1 において、 スラ リーの熟成条件を 2 r p m X 2 時間に変更し、 2)の基板用グリーンシー トの打抜き工程で、 刃 先が直線状で刃厚さ t が 0 , 7 mm、 刃先角度 α 2 が 4 5 ° の 片切り刃 (中山紙器材料社製) を用いて 1 辺が 1 5 c mの正方 形に打抜いた以外は全く 同様にして打抜き加工および焼成を行 つて電極支持基板を作製した。 比較例 6
前記比較例 1 の 1 )電極支持基板用グリ ーンシー トの作製に おいて、 メ夕ク リル酸系共重合体からなるバイ ンダーを 2 5 質 量部使用する と共に、 スラ リ ーの熟成条件を 2 r p m X 5 4時 間に変更し、 また同 2 )基板用グリ ーンシー ト焼成工程で電極 基板用グリ ーンシー ト上にセッ夕一を載せずに焼成し、 更に下 敷き用セッ タ一と しては 1 0 0 c m 2当た り直径約 0 . 5 〜 2 m mの大きさの付着粒子が 1 0個ほど認め られたセッタ一を使 用 した以外は、 前記実施例と同様にして電極支持基板を作製し た。 性能試験
上記実施例 1 〜 6 、 比較例 1 〜 6 で得た各電極支持基板を用 いて、 下記の性能評価試験を行い、 結果を表 1 〜 6 にまとめた 1 )通気性試験
上記で得た 1 辺が約 1 2 . 5 c mの正方形で厚さが約 0 . 5 m mの電極支持基板を、 セラミ ッ ク研削機 (マル ト一社製) に 取り付けたダイヤモン ドカ ッターで 1 辺が 3 c mの正方形 1 6 枚に切り 出して通気性の試験片と した。
この試験片をサンプル保持のために補助具を取り付けた通気 性試験機 (カ トーテッ ク社製、 商品名 「 K E S — F 8 — A P 1 」 ) にセッ ト した。 この試験機は、 プランジャー/シリ ンダ 一のピス ト ン運動によって一定流量の空気を試料片に送り 、 大 気中へ試料片を通して放出、 吸引する機構で、 1 サイ クル 1 0 秒以内に試料による圧力損失を半導体差圧ゲージで測定し、 試 料の通気抵抗 (通気性の逆数) をデジタルパネルメー夕で直読 できるものである。 尚、 試料片の寸法は 3 c m平方であるが、 保持のために両端 0 . 5 m mが必要であるため、 有効面積は 2 c m平方 (面積 ; 4 c m 2 ) である。 装置の概要を図 1 2 に示 す (図中、 S はサンプル、 1 1 はコ ンプレッサー、 1 2 は流量 計、 1 3 は差圧計である) 。
試料片 1 6 枚について夫々通気性を測定し、 平均値と標準偏 差とを求め、 更に変動係数を算出する。
2)気孔率の測定
上記で得た電極支持基板の気孔率を自動ポロシメータ (島津 製作所製、 商品名 「オー トポア 1119 2 4 0」 ) によって測定 する。
3)表面粗さ
各電極支持基板の表と裏 (グリ ーンシー ト作製時に P E T面 と接していた側を表とする) の最大粗さ深度 ( R max) を、 レ 一ザ一光学式非接触三次元形状測定装置 ( U B M社製、 商品名 「マイ ク ロフ ォーカスエキスパー ト U B M— 1 4型」 ) を使用 し、 ピッチ 0 . 1 m mで測定する。
また同時に各支持基板周縁のバリ と、 表面の突起およびゥネ リ も測定する。
4)荷重負荷試験
. アルミナ敷板上に、 表面が平滑で平行度を保った 2枚のアル ミナ板 (ニツカ ト一社製、 商品名 「 S S A— S l 」 ) に、 各供 試基板を挟んだ状態で配置し、 その上から基板全面に 0 . 2 k g Z c m 2の荷重を加えた状態で、 室温か ら 1 0 0 0 °Cまで 1 0時間かけて昇温し、 1 0 0 0 °Cで 1 時間保持してから室温ま で降温する操作を 1 0 回繰り返し、 ク ラッ クや割れの発生頻度 を求める。 ク ラ ッ クや割れ発生の有無は目視によって判断する 5)セル印刷界面の観察
各電極支持基板とアノー ド層および電解質層との界面状態を S E M写真によって観察した。
[セルの作製]
(a)ペース トの作製
1 0 モル%スカンジァ 1 モル%セリ ア安定化ジルコニァ粉末 (第一稀元素社製) 1 0 0質量部に、 テレビン油 3 5 0 質量部 とバイ ンダ一と してェチルセルロース 2 質量部を加え、 遊星ミ ルによ り 2 時間混練し、 得られたスラ リ ーを電解質べ一ス ト と した。
3 Y S Z粉末 (同前) 5 0 質量部と酸化ニッケル (キシダ化 学社製) 5 0 質量部に、 テレビン油 3 5 0 質量部とバイ ンダー と してェチルセルロース 2 質量部を加え、 遊星ミルによ り 2 時 間混練し、 得られたスラ リーをアノー ドペース ト とした。
また、 L a o S
Figure imgf000047_0001
n O s 粉末 (セイ ミ ケミカル社製) 1 0 0質量部に、 テレビン油 3 5 0 質量部とバイ ンダ一と してェ チルセルロース 2 質量部を加え、 遊星ミルで 2 時間混練し、 得 られたスラ リ ーを力ソー ドペース ト と した。
(b)セル作製
次いで、 上記電極支持基板の一方の面に、 上記アノー ドベー ス トをスク リ ーン印刷によって印刷し、 1 0 0 °Cで 1 時間乾燥 してから 1 3 5 0 °Cで 2時間焼成する こ とによ り、 電極支持基 板にア ノ ー ド層を設け、 ア ノ ー ド層付電極支持基板 ( A S — A ) を作製した。
更にこのアノー ド層付電極支持基板 ( A S — A) のアノー ド 層上に、 上記電解質ペース ト をスク リーン印刷によって印刷し 1 0 O t:で 1 時間乾燥してか ら 1 3 5 で 2 時間焼成する こ とによ り 、 電極支持基板にアノー ド層と電解質層を設けたハー フセル ( A S — A— E ) を作製した。
最後に、 このハーフセルの電解質層上に上記カ ソー ドベース ト をスク リーン印刷によって印刷し、 1 0 0 °Cで 1 時間乾燥し てか ら 1 3 0 0 で 2時間焼成する こ とによ り、 電極支持基板 上にアノー ド層、 電解質層および力ソー ド層を設けたセル ( A S — A— E — C ) を作製した。 該セルの電極面積は約 1 2 1 c m 2であった。
(c)前記各実施例、 比較例で得た 1 辺が約 1 2 . 5 c mの正 方形で厚さが約 0 . 5 mmの電極支持基板上に、 上記 [セルの 作製] に示した方法に従って電解質膜とアノー ド層、 更には力 ソー ド層をスク リ ーン印刷によって形成してアノー ド層付電極 支持基板 (A S — A) 、 およびハーフセル ( A S — A— E ) を 作製し、 夫々 の表面を目視観察する と共に、 印刷界面の状態を S E M写真観察する ことによ り 、 電極支持基板とアノー ド層と の界面の状態、 アノー ド層と電解質層との界面の状態、 および 電解質層の状態を調べる。
6)発電試験
更に、 上記 [セルの作製] に示した方法に従って作製したセ ル ( A S - A _ E — C ) を用いた単セル発電試験装置で、 燃料 と して加湿水素、 酸化剤と して空気を用い、 発電温度 8 0 0 °C で 2 4時間の発電試験を行い、 試験開始初期の最高出力密度と 試験開始から 2 4時間経過後の最高出力密度を求め、 最高出力 の低下率を算出する。 結果を表 1〜 6 に示す。 実施例 1 実施例 2 実施例 3
NiO/3YSZ +仮焼 3YSZ /澱粉 NiO/3YSZ +仮焼 3YSZ/澱粉 NiO/3YSZ +仮焼 3YSZ/澱 組成
60/20 + 20/10 60/20 + 20/10 60/20 + 20/10 スラリ-粒度分布
0.2-0.3 jU m と 4一 5 μ m 0.2-0.3 m と 4— 5 m 0.2-0.3 m と 4一 5 β m ピーク区間
細粒物 粗粒物
82/18 82/18 82/18 の含有比率
スラリー粘度(ホ。イス') 50 50 60
スラリ-室温保持条件 10rpm x 24 時間 12rpm x 20 時間 18rpm x 30 時間^ ク'リーンシート厚さ(mm) 0.59 0.59 0.35
打抜き型 波型 波型 波型 支持基板厚さ(mm) 0.5 0.5 0.3
気孔率(%) 25 23 27 ハ'リ高さノ基板厚さ 0.30 0.27 0.34
ゥネリ高さ 基板厚さ 0.13 0.11 0.17
突起高さ 基板厚さ 0.15 0.12 0.17
表 2
実施例 4 実施例 5 実施例 6
Ni0/8YSZ +仮焼 8YSZ/澱粉 NiO/3YSZ +仮焼 3YSZ/澱粉 NiO/3YSZ +仮焼 3YSZ/ 組成
70/15+15/10 70/20 + 10/10 70/15 +15/20 スラリ-粒度分布
0.2-0.3 U m と 5— 6 U m 0.2-0.3 m と 4-5 μ. m 0.2-0.3 m と 4一 5 μ. m ピーク区間
細粒物 粗粒物
86/14 82/18 Dec - 88 の含有比率
スラリ-粘度(ホ °イス') 50 70 50
スラリ-室温保持条件 1 Orpm x 24 時間 1 Orpm x 24時間 1 Orpm x 24 時間^ ク'リーンシート厚さ(mm) 0.59 0.59 0.59
打抜き型 波型 波型 波型 支持基板厚さ(mm) 0.5 0.5 0.5
気孔率(50 28 28 32 ハ'リ高さノ基板厚さ 0.41 0.32 0.36
ゥネリ高さ Z基板厚さ 0.11 0.15 0.13
突起高さ Z基板厚さ 0.12 0.17 0.14
表 3
比較例 1 比較例 2 比較例 3
NiO/3YSZ +仮焼 3YSZ/澱粉 NiO/3YSZ +仮焼 3YSZ/澱粉 NiO/3YSZ/澱粉 組成
60/20 + 20/10 60/20 + 20/10 60/40/10 スラリ-粒度分布
u . u . ju m . Π ゥ一 Π
0 m U . U . ju m (rr ピーク区間
細粒物 粗粒物 o / 1 p o / -f o
10
の含有比率
スラリ-粘度(ホ °イス') 50 120 40 スラリ -室温保持条件 なし 10rpm x 10 時間 50rpm x 3 時間 ク'リーンシート厚さ(mm) 0.59 0.59 0.59
打抜き型 波型 波型 波型 支持基板厚さ(mm) 0.5 0.5 0.5
気孔率(%) 25 29 28
ハ'リ高さノ基板厚さ 0.33 0.37 0.39 ゥネリ高さ Z基板厚さ 0.14 0.19 0.21 突起高さ 基板厚さ 0.15 0.26 0.12
表 4
比較例 4 比較例 5 比較例 6 仮焼 NiO/仮焼 3YSZ/澱粉 NiO/3YSZ +仮焼 3YSZ/澱粉 NiO/3YSZ+仮焼 3YSZ/澱 組成
60/40/10 60/20 + 20/10 60/20 + 20/10 スラリー粒度分布
7-8 jti m のみ 0.2-0.3 m と 4一 5 μ. m 0.2-0.3 jU m と 4— 5 μ m ピーク区間
細粒物 粗粒物
82/18 82/18 の含有比率
スラリ-粘度(ホ。イス') 80 50 50
スラリ-室温保持条件 40rpm x 0 時間 2rpm x 2 時間 2rpm x 54 時間 ク *リーンシート厚さ(mm) 0.59 0.59 0.59
打抜き型 波型 直線状 波型
支持基板厚さ(mm) 0.5 0.5 0.5
気孔率(%) 37 26 26
ハ'リ高さ 基板厚さ 0.24 0.68 0.42
ゥネリ高さ 基板厚さ 0.14 0.31 0.35
突起高さ/基板厚さ 0.19 0.28 0.38
表 5 実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 クラック発生頻度
0 0 0 0 5 0
(%/20枚中)
表面粗さ( U m)
g¾ IS Rmax 4.15 2.89 3.74 18.13 5.57 3.11 暴 [fi Rmax 3.97 3.13 3.61 22.09 3.96 3.83 通気†王言式験 (m L/min— kPa)
通気性最大値 33 28 62 41 30 30 通気性最小値 19 18 45 23 19 19 平均値 23 23 54 32 15 24 標準偏差 2.1 1.7 8.3 3.7 1.9 2.5 変動係数 9 7 15 12 13 10 アノード形成
基板 -ァノ -ト'界面 密着 密着 密着 密着 密着 密着 電解質形成
ァノ-に/電解質界面 密着 密着 密着 密着 密着 密着 電解質厚さの状態 ほぼ均一 ほぼ均一 ほぼ均一 ほぼ均一 ほぼ均一 ほぼ均一 発電性能
最高出力低下率(%) 8 6 7 11 14 9 試験後のクラック発生 なし なし なし なし なし なし
表 6
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 クラック発生頻度
0 5 10 45 26 36
(%/20枚中)
表面粗さ( jt m)
5¾ fii Rmax 4.36 3.84 4.75 47.3 3.42 3.86 暴 Rmax 4.19 4.33 4.96 45.8 3.06 4.11 通気性試験 (mL/min- kPa)
通気性最大値 35 30 33 43 35 33 通気性最小値 12 9 15 17 14 13 平均値 20 21 21 24 23 19 標準偏差 6.6 5.5 5.9 5.5 7.1 4.2 変動係数 33 26 28 23 31 22 ァノ—ド形成
基板-ァノ—に界面 密着 密着 剥離 一部剥離 密着 一部剥離 電解質形成
ァノ-トソ電解質界面 密着 密着 密着 一部剥離 密着 密着 電解質厚さの状態 ほぼ均一 ほぼ均一 ほぼ均一 不均一 ほぼ均一 ほぼ均一 発電性能
最高出力低下率(%) 35 23 28 31 18 20 試験後のクラック発生 あり あり あり あり あり あり
産業上の利用可能性 本発明は以上の様に構成されてお り 、 適度の気孔率と厚さお よび表面積を有するセラミ ッ ク シー トからな り 、 特に、 通気量 測定値の変動係数を所定範囲内に収める と共に、 レーザー光学 式三次元形状測定装置によって測定される表面粗さ を、 最大粗 さ深度と して特定範囲に制御する こ とによ り 、 均一で且つ優れ たガス通過 ' 拡散性を確保しつつ、 その表面に緻密且つ均一で 高密着性の電極印刷を形成する ことができ、 固体酸化物形燃料 電池セル用 と して卓越した性能を備えた電極支持基板を提供し 得る こ とになつた。
しかも、 同じく レーザ一光学式 3 次元形状測定装置によって 測定されるバリ高さ、 更にはゥネリ 及びノ又は突起の高さの上 限を定める こ とによって、 積層荷重がかかった時の局部的な応 力集中による割れや破損も抑え られ、 熱衝撃、 熱ス ト レス等に も耐える高性能の燃料電池を与える電極支持基板を提供できる

Claims

' 請求の範囲
1 . 気孔率が 2 0 〜 5 0 %、 厚さが 0 . 2 〜 3 mm、 表面 積が 5 0 c m 2以上のセラミ ッ ク シー トか らなり 、 J I S K
6 4 0 0 に準拠した方法によって測定される、 全表面積の中か ら任意に選ばれる 4 c m 2の領域における通気量の測定値の変 動係数が 5〜 2 0 %である こ とを特徴とする固体酸化物形燃料 電池セル用電極支持基板。
2 . レーザ一光学式 3 次元形状測定装置によって測定され る表面粗さが、 最大粗さ深度 ( R max : ドイ ツ規格 「 D I N 4
7 6 8 」 ) で 1 . 0 〜 4 0 x mである請求項 1 に記載の電極支 持基板。
3 . レーザ一光学式 3次元形状測定装置によって測定され るバリ高さが、 シー ト厚さの 1 Z 2以下である請求項 1 または 2 に記載の電極支持基板。
4 . レーザー光学式 3次元形状測定装置によって測定され るゥネ リ 及び/又は突起の最大高さが、 シー ト厚さの 1 Z 3以 下である請求項 1 〜 3 のいずれかに記載の電極支持基板。
5 . 請求項 1 〜 4 のいずれかに記載されたシー ト状多孔質 セラ ミ ッ クからなる固体酸化物形燃料電池セル用電極支持基板 を製造する方法であって、 セラミ ック前駆体となるグリ ーンシ — ト製造用スラ リーと して、 導電成分粉末、 骨材成分粉末、 気 孔形成剤粉末およびバイ ンダーを含み、 ミ リ ング後に減圧脱泡 して粘度を 4 0 〜 1 0 0 ボイズ ( 2 5 °C) に調整した後、 スラ リ ー中の撹拌羽根を 5 〜 3 0 r p mの回転速度で 2 0 〜 5 0 時 間回転させながら室温で保持したスラ リ ーを使用 し、 該スラ リ —を ドクターブレー ド法でシー ト成形し、 得られるグリ ーンシ ー ト を所定の形状に切断した後、 焼成する こ とを特徴とする固 体酸化物形燃料電池セル用電極支持基板の製法。
6 . 前記スラ リ ーの粒度分布が、 0 . 2 〜 2 111と 3〜 5 0 mの範囲に夫々 1 つのピークを有し、 0 . 2 〜 2 ΠΙの粒 度範囲の細粒物と 3 〜 5 0 mの粒度範囲の粗粒物との含有比 率が、 質量比で 2 0 8 0 〜 9 07 1 0 の範囲でぁる請求項 5 に記載の製法。
7 . 前記多孔質のセラミ ッ クからなる固体酸化物形燃料電 池セル用電極支持基板を製造する方法であって、 導電成分粉末 と骨格成分粉末の総和 1 0 0 質量部に対し、 バイ ンダー 5 〜 3 0 質量部と気孔形成剤粉末 2 〜 4 0質量部を含有するスラ リ一 を使用する請求項 5 または 6 に記載の製法。
8 . 前記グリ ーンシー トを、 刃先が波形の打抜き刃を用いて 所定の形状に打抜いた後、 これを焼成する請求項 5 〜 7 のいず れかに記載の製法。
9 . 前記打抜き刃と して、 波状刃の側面からみた角度 ( α t) 、 刃断面の刃先角度 ( ひ 2) 、 製品となるシー ト側の面と刃 先を通る 中心線 ( X ) とのなす角度 ( t ) 、 および残部シ一 ト側の面と刃先を通る中心線 ( X ) とのなす角度 ( 0 2 ) が下 記の関係式を満たすものを使用する請求項 8 に記載の製法。
Q! ^ S i^ l Z O 0 2 0 。 ≤ ひ 2= + ≤ 7 0 ° 、
<7 1 = ^ 2
PCT/JP2003/006318 2002-05-22 2003-05-21 Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production WO2003098724A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004506112A JP4580755B2 (ja) 2002-05-22 2003-05-21 固体酸化物形燃料電池セル用電極支持基板およびその製法
CA002486931A CA2486931A1 (en) 2002-05-22 2003-05-21 Solid oxide type fuel cell-use electrode support substrate and production method therefor
US10/515,227 US7351492B2 (en) 2002-05-22 2003-05-21 Solid oxide type fuel cell-use electrode support substrate and production method therefor
EP03730535A EP1551071A4 (en) 2002-05-22 2003-05-21 ELECTRODE SUPPORT SUBSTRATE USED AS SOLID OXIDE TYPE FUEL CELL AND PROCESS FOR PRODUCING THE SAME
AU2003242351A AU2003242351B2 (en) 2002-05-22 2003-05-21 Solid oxide type fuel cell-use electrode support substrate and production method therefor
US11/987,979 US20080118786A1 (en) 2002-05-22 2007-12-06 Electrode support substrate for solid oxide type fuel cell, and process for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-147601 2002-05-22
JP2002-147602 2002-05-22
JP2002147601 2002-05-22
JP2002147602 2002-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/987,979 Continuation US20080118786A1 (en) 2002-05-22 2007-12-06 Electrode support substrate for solid oxide type fuel cell, and process for producing the same

Publications (1)

Publication Number Publication Date
WO2003098724A1 true WO2003098724A1 (fr) 2003-11-27

Family

ID=29552342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006318 WO2003098724A1 (fr) 2002-05-22 2003-05-21 Substrat support d'electrode utilise comme pile a combustible de type oxyde solide et son procede de production

Country Status (6)

Country Link
US (2) US7351492B2 (ja)
EP (1) EP1551071A4 (ja)
JP (1) JP4580755B2 (ja)
AU (1) AU2003242351B2 (ja)
CA (1) CA2486931A1 (ja)
WO (1) WO2003098724A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158613A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 燃料電池セル及び燃料電池セルの製法並びに燃料電池
JP2005183017A (ja) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc プロトン伝導性電解質膜の製造方法とプロトン伝導性電解質膜、及びプロトン伝導性電解質膜を用いた燃料電池
EP1598892A1 (en) * 2004-05-11 2005-11-23 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP2005327512A (ja) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用アノード支持基板およびその製法
WO2006092912A1 (ja) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
JP2006290707A (ja) * 2005-04-14 2006-10-26 Nippon Shokubai Co Ltd ジルコニア系グリーンシート、ジルコニア系シートおよびその製法
EP1750317A1 (en) * 2004-05-17 2007-02-07 Nippon Shokubai Co.,Ltd. Anode supporting substrate for solid oxide fuel cell and process for producing the same
US7655346B2 (en) * 2005-05-12 2010-02-02 Shinko Electric Industries Co., Ltd. Electrode material and fuel cell
JP2010285314A (ja) * 2009-06-11 2010-12-24 Fujifilm Corp 光学部品保持部材およびその作製方法
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2012209266A (ja) * 2010-03-30 2012-10-25 Samsung Electro-Mechanics Co Ltd 金属酸化物−イットリア安定化ジルコニア複合体を含む固体酸化物燃料電池
JP2013143189A (ja) * 2012-01-06 2013-07-22 Noritake Co Ltd 電極形成材料とこれにより形成されるグリーンシート、多孔質電極および固体酸化物形燃料電池ならびに固体酸化物形燃料電池の製造方法
JP2014127382A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池用セパレータの歪み検出方法と歪み検出装置
JP2016195116A (ja) * 2016-04-28 2016-11-17 株式会社日本触媒 アノード支持型ハーフセル及びこれを用いたアノード支持型セル
KR101813346B1 (ko) * 2013-01-28 2017-12-28 다나카 기킨조쿠 고교 가부시키가이샤 가스 센서 전극 형성용 금속 페이스트

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648144B1 (ko) * 2005-09-15 2006-11-24 한국과학기술연구원 고성능 연료극지지형 고체산화물 연료전지
US20090297923A1 (en) * 2008-05-28 2009-12-03 Monika Backhaus-Ricoult Sol-gel derived high performance catalyst thin films for sensors, oxygen separation devices, and solid oxide fuel cells
EP2333883A1 (de) * 2009-11-18 2011-06-15 Forschungszentrum Jülich Gmbh (FJZ) Anode für eine Hochtemperatur-Brennstoffzelle sowie deren Herstellung
FR2958288B1 (fr) 2010-04-01 2012-10-05 Saint Gobain Ct Recherches Materiau a pores tubulaires
FR2958287B1 (fr) * 2010-04-01 2015-04-03 Saint Gobain Ct Recherches Microreacteur
US9784625B2 (en) 2010-11-30 2017-10-10 Bloom Energy Corporation Flaw detection method and apparatus for fuel cell components
US8802331B2 (en) 2010-11-30 2014-08-12 Bloom Energy Corporation Non-destructive testing methods for fuel cell interconnect manufacturing
WO2013155135A1 (en) 2012-04-13 2013-10-17 Bloom Energy Corporation Flaw detection method and apparatus for fuel cell components
US9618458B2 (en) 2013-01-08 2017-04-11 Bloom Energy Corporation Optical measurement method and apparatus for fuel cell components
US9678501B2 (en) 2013-01-08 2017-06-13 Bloom Energy Corporation Serialization of fuel cell components
US9958406B1 (en) 2013-12-06 2018-05-01 Bloom Energy Corporation Method of measurement and estimation of the coefficient of thermal expansion in components
TWI589610B (zh) * 2013-12-31 2017-07-01 財團法人工業技術研究院 聚電解質與儲能元件
US9945815B2 (en) 2014-07-10 2018-04-17 Bloom Energy Corporation Methods and systems for detecting defects in a fuel cell stack
JP6512293B2 (ja) 2015-09-18 2019-05-15 エルジー・ケム・リミテッド 固体酸化物燃料電池の電極スラリー、固体酸化物燃料電池の電極用グリーンシート、固体酸化物燃料電池の電極、固体酸化物燃料電池、及び固体酸化物燃料電池の電極の製造方法
CN115181502B (zh) 2016-12-21 2023-09-22 康宁股份有限公司 烧结系统和烧结制品
JP6879759B2 (ja) * 2017-02-09 2021-06-02 株式会社日本触媒 ジルコニア電解質およびその製造方法
JP6760418B2 (ja) * 2019-02-21 2020-09-23 日清紡ホールディングス株式会社 燃料電池セパレータ
CN113488663B (zh) * 2021-07-01 2022-07-26 重庆大学 具有三维可渗透光阳极的光催化燃料电池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290786A (ja) * 1993-03-31 1994-10-18 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai 溶融炭酸塩型燃料電池空気極用前駆グリーンシート
US5766788A (en) * 1995-02-22 1998-06-16 Tanaka Kikinzoku Kogyo K.K. Electrode composition material for polymer electrolyte fuel cell and process of preparing same
JPH11343123A (ja) * 1998-05-29 1999-12-14 Toto Ltd Ni又はNiO/YSZ複合粉末の製造方法およびそれらを用いた燃料極膜の成膜方法
EP1026134A1 (en) * 1998-05-20 2000-08-09 Nippon Shokubai Co., Ltd. Porous ceramic sheet, process for producing the same, and setter for use in the process
EP1063212A1 (en) * 1999-06-24 2000-12-27 Nippon Shokubai Co., Ltd. Ceramic sheet and process for producing the same
EP1081778A1 (en) * 1998-04-21 2001-03-07 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
JP2001114577A (ja) * 1999-10-19 2001-04-24 Nippon Shokubai Co Ltd 多孔質セラミック薄板および該薄板を用いたセラミックシートの製法
JP2001247373A (ja) * 2000-03-06 2001-09-11 Nippon Shokubai Co Ltd セラミックシートおよびその製法
JP2002015757A (ja) * 2000-06-29 2002-01-18 Nippon Shokubai Co Ltd 固体電解質膜形成用スラリーおよびこれを用いた固体電解質膜

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722032A (ja) 1993-06-28 1995-01-24 Tokyo Gas Co Ltd 平板型固体電解質燃料電池の燃料極板
JP3523075B2 (ja) 1998-08-04 2004-04-26 株式会社日本触媒 微粒子集合体およびその製法
JP2000281438A (ja) 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd ジルコニアシート及びその製法
JP2000353530A (ja) * 1999-04-08 2000-12-19 Toto Ltd NiO及び/又はNi/YSZ複合粉末の製造方法及びそれを用いた固体電解質型燃料電池の製造方法
JP3971056B2 (ja) * 1999-06-24 2007-09-05 株式会社日本触媒 セラミックシートの製法
JP3787247B2 (ja) * 1999-09-28 2006-06-21 株式会社日本触媒 セラミックシートの製法
JP2001081263A (ja) 1999-09-16 2001-03-27 Nippon Shokubai Co Ltd 担体材料
US6887361B1 (en) * 2001-03-22 2005-05-03 The Regents Of The University Of California Method for making thin-film ceramic membrane on non-shrinking continuous or porous substrates by electrophoretic deposition
US7638222B2 (en) 2001-03-28 2009-12-29 Hexis Ag Porous, gas permeable layer substructure for a thin, gas tight layer for use as a functional component in high temperature fuel cells

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06290786A (ja) * 1993-03-31 1994-10-18 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai 溶融炭酸塩型燃料電池空気極用前駆グリーンシート
US5766788A (en) * 1995-02-22 1998-06-16 Tanaka Kikinzoku Kogyo K.K. Electrode composition material for polymer electrolyte fuel cell and process of preparing same
EP1081778A1 (en) * 1998-04-21 2001-03-07 Toto Ltd. Solid electrolyte fuel cell and method of producing the same
EP1026134A1 (en) * 1998-05-20 2000-08-09 Nippon Shokubai Co., Ltd. Porous ceramic sheet, process for producing the same, and setter for use in the process
JPH11343123A (ja) * 1998-05-29 1999-12-14 Toto Ltd Ni又はNiO/YSZ複合粉末の製造方法およびそれらを用いた燃料極膜の成膜方法
EP1063212A1 (en) * 1999-06-24 2000-12-27 Nippon Shokubai Co., Ltd. Ceramic sheet and process for producing the same
JP2001114577A (ja) * 1999-10-19 2001-04-24 Nippon Shokubai Co Ltd 多孔質セラミック薄板および該薄板を用いたセラミックシートの製法
JP2001247373A (ja) * 2000-03-06 2001-09-11 Nippon Shokubai Co Ltd セラミックシートおよびその製法
JP2002015757A (ja) * 2000-06-29 2002-01-18 Nippon Shokubai Co Ltd 固体電解質膜形成用スラリーおよびこれを用いた固体電解質膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1551071A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158613A (ja) * 2003-11-27 2005-06-16 Kyocera Corp 燃料電池セル及び燃料電池セルの製法並びに燃料電池
JP2005183017A (ja) * 2003-12-16 2005-07-07 Konica Minolta Holdings Inc プロトン伝導性電解質膜の製造方法とプロトン伝導性電解質膜、及びプロトン伝導性電解質膜を用いた燃料電池
EP1598892A1 (en) * 2004-05-11 2005-11-23 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
US7235325B2 (en) 2004-05-11 2007-06-26 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
US7422822B2 (en) 2004-05-11 2008-09-09 Toho Gas Co., Ltd. Single cell for a solid oxide fuel cell
JP4580681B2 (ja) * 2004-05-12 2010-11-17 株式会社日本触媒 固体酸化物形燃料電池用アノード支持基板およびその製法
JP2005327512A (ja) * 2004-05-12 2005-11-24 Nippon Shokubai Co Ltd 固体酸化物形燃料電池用アノード支持基板およびその製法
EP1750317A1 (en) * 2004-05-17 2007-02-07 Nippon Shokubai Co.,Ltd. Anode supporting substrate for solid oxide fuel cell and process for producing the same
EP1750317A4 (en) * 2004-05-17 2007-10-31 Nippon Catalytic Chem Ind Anode support substrate for a solid oxide fuel cell and manufacturing process therefor
WO2006092912A1 (ja) * 2005-02-28 2006-09-08 The Tokyo Electric Power Company, Incorporated 固体酸化物形燃料電池用セル及び固体酸化物形燃料電池用セルの製造方法
JP2006290707A (ja) * 2005-04-14 2006-10-26 Nippon Shokubai Co Ltd ジルコニア系グリーンシート、ジルコニア系シートおよびその製法
JP4551806B2 (ja) * 2005-04-14 2010-09-29 株式会社日本触媒 ジルコニア系グリーンシート、ジルコニア系シートおよびその製法
US7655346B2 (en) * 2005-05-12 2010-02-02 Shinko Electric Industries Co., Ltd. Electrode material and fuel cell
JP2010285314A (ja) * 2009-06-11 2010-12-24 Fujifilm Corp 光学部品保持部材およびその作製方法
JP2012209266A (ja) * 2010-03-30 2012-10-25 Samsung Electro-Mechanics Co Ltd 金属酸化物−イットリア安定化ジルコニア複合体を含む固体酸化物燃料電池
JP2012204149A (ja) * 2011-03-25 2012-10-22 Nippon Shokubai Co Ltd アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2013143189A (ja) * 2012-01-06 2013-07-22 Noritake Co Ltd 電極形成材料とこれにより形成されるグリーンシート、多孔質電極および固体酸化物形燃料電池ならびに固体酸化物形燃料電池の製造方法
JP2014127382A (ja) * 2012-12-27 2014-07-07 Nissan Motor Co Ltd 燃料電池用セパレータの歪み検出方法と歪み検出装置
KR101813346B1 (ko) * 2013-01-28 2017-12-28 다나카 기킨조쿠 고교 가부시키가이샤 가스 센서 전극 형성용 금속 페이스트
JP2016195116A (ja) * 2016-04-28 2016-11-17 株式会社日本触媒 アノード支持型ハーフセル及びこれを用いたアノード支持型セル

Also Published As

Publication number Publication date
US20050142431A1 (en) 2005-06-30
CA2486931A1 (en) 2003-11-27
AU2003242351B2 (en) 2006-06-29
JPWO2003098724A1 (ja) 2005-09-22
US7351492B2 (en) 2008-04-01
JP4580755B2 (ja) 2010-11-17
EP1551071A1 (en) 2005-07-06
US20080118786A1 (en) 2008-05-22
AU2003242351A1 (en) 2003-12-02
EP1551071A4 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
WO2003098724A1 (fr) Substrat support d&#39;electrode utilise comme pile a combustible de type oxyde solide et son procede de production
JP5596755B2 (ja) 固体電解質シート
JP4808074B2 (ja) 表面粗化セラミックグリーンシートの製造方法
JP5498230B2 (ja) アノード支持型ハーフセルの製造方法
WO2011122010A1 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びに、固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
WO2005112154A1 (ja) 固体酸化物形燃料電池用アノード支持基板およびその製法
JP5932232B2 (ja) アノード支持型ハーフセル及びこれを用いたアノード支持型セル、並びにアノード支持型ハーフセルの製造方法
JP3971056B2 (ja) セラミックシートの製法
JP2007001860A (ja) 多孔質セラミック薄板および該薄板を用いたセラミックシートの製法
JP2006104058A (ja) セラミックシート
JP5484155B2 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル。
JP4580681B2 (ja) 固体酸化物形燃料電池用アノード支持基板およびその製法
JP5704990B2 (ja) 固体酸化物形燃料電池用電解質シートおよびその製造方法、並びにそれを用いた固体酸化物形燃料電池用セル
JP4653135B2 (ja) セラミックシート
JP2007323899A (ja) 固体酸化物形燃料電池用電解質シート及びその製法
JP6258882B2 (ja) 固体酸化物形燃料電池用グリーンシートおよびその製造方法
KR101809789B1 (ko) 치밀도가 향상된 무기 전해질막의 제조방법, 이를 위한 무기 전해질막 제조용 조성물 및 이를 통해 제조된 무기 전해질막
WO2004109827A1 (ja) 電気化学セル用基板および電気化学セル
JP2001009819A (ja) セラミックシート及びその製造法
JP3872238B2 (ja) 多孔質セラミック薄板の製造方法
JP2001089252A (ja) セラミックシートおよびその製法
JP5777371B2 (ja) 固体酸化物形燃料電池用電解質シート、並びにそれを用いた固体酸化物形燃料電池用単セル
JP6060297B2 (ja) アノード支持型ハーフセル及びこれを用いたアノード支持型セル
JP2005327511A (ja) 固体酸化物形燃料電池用アノード支持基板およびその製法
JP2014191940A (ja) 固体酸化物形燃料電池用薄膜電解質シート

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004506112

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2486931

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003730535

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003242351

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10515227

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003730535

Country of ref document: EP