WO2003107414A1 - Method for testing and adjusting a lamp heating installation - Google Patents

Method for testing and adjusting a lamp heating installation Download PDF

Info

Publication number
WO2003107414A1
WO2003107414A1 PCT/FR2003/001771 FR0301771W WO03107414A1 WO 2003107414 A1 WO2003107414 A1 WO 2003107414A1 FR 0301771 W FR0301771 W FR 0301771W WO 03107414 A1 WO03107414 A1 WO 03107414A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
test
installation
heating
temperature
Prior art date
Application number
PCT/FR2003/001771
Other languages
French (fr)
Inventor
Franck Julien
Jérôme CIRES
Vincent Ripoche
Original Assignee
Stmicroelectronics Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics Sa filed Critical Stmicroelectronics Sa
Priority to AU2003255670A priority Critical patent/AU2003255670A1/en
Publication of WO2003107414A1 publication Critical patent/WO2003107414A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/34Circuits for electrically characterising or monitoring manufacturing processes, e. g. whole test die, wafers filled with test structures, on-board-devices incorporated on each die, process control monitors or pad structures thereof, devices in scribe line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • lamp-heated installations are used to raise the temperature of an element to be treated very quickly and very precisely, for example a silicon wafer. These installations are intended to carry out so-called rapid thermal annealing or RTP treatments.
  • Figure 1 very schematically shows such an installation.
  • a silicon wafer 1 is placed on a ring 2, itself mounted on a cylinder 3.
  • a reflector 4 Under the wafer is arranged a reflector 4.
  • a set of lamps 6 is placed above the wafer, for example a hundred lamps arranged in concentric circles, these lamps can be supplied independently by adjacent circles or groups of circles.
  • the reflector 4 is intended to collect the infrared radiation emitted by the silicon wafer 1.
  • Means are provided for rotating the cylinder 3 and therefore the wafer 1.
  • servo-control means comprising pyrometric probes 8, for example six in number, mounted in the reflector 4.
  • the signals from the probes 8 are transmitted by optical fibers 9 to a controller 10 which serves to control the energy supplied by the lamp assembly 6.
  • This control connection is illustrated by a simple bus 11. It will be understood that there is connections to annular lamp assemblies. Since it is desired to reach very uniform and very precise temperatures over the entire upper face of the wafer, it is important that the temperature indications given by the probes 8 are well known and very precise. However, in practice, the probes are subject to drifts and variations from one probe to another.
  • a verification and calibration phase is carried out periodically in several temperature ranges.
  • a test plate 1 is placed in the installation which is subjected to an RTP.
  • RTP For example, there will be a temperature rise of a few seconds and then heating for a period of a few tens of seconds.
  • the test plate is such that, after having been subjected to the treatment, it can be analyzed point by point, the analysis indicating at what temperature its various points have been subjected.
  • the temperature probes 8 can be adjusted by a corrective action on the control device 10. For heating operations at high temperature, of the order of 1000 to 1200 ° C.
  • arsenic-doped test wafers are used.
  • the measurement of the layer resistance ( ⁇ / D) at different points on the board gives an indication of the heating undergone by the points considered. Plates are also used on which a thermal oxide is grown. The variations in oxide thickness also give an indication of the heating undergone.
  • lamp heating installations more and more in relatively low temperature ranges, for example of the order of 600 to 800 ° C.
  • these temperatures are used to make alloy anneals for the formation of silicides such as TiSi2 and CoSi2, this of course constituting only one example of possible application.
  • the wafers implanted with arsenic do not give sufficiently sensitive results (the variation in layer resistance as a function of the heating undergone is too small).
  • New types of test wafers have therefore been developed, for example a titanium-coated silicon wafer so that, as a result of heating, a siliciding phenomenon occurs.
  • this does not make it possible to obtain precise and sufficiently sensitive tests, the results not depending only on the heating.
  • the applicant has sought to develop a new type of test plate whose results are significant in the temperature range from 600 to 800 ° C., that is to say that a great variation in the parameter studied is observed. for a small temperature variation.
  • Another object of the present invention is to provide such a test structure with very low dispersion, that is to say which, if the wafer is heated uniformly, gives the same results at all points of the wafer.
  • the present invention provides for using a test plate which has undergone boron implantation and which can be used in a temperature range of the order of 700 to 750 ° C., which gives a good adjustment if applying in a wide range of temperatures, for example of the order of 600 to 800 ° C.
  • the present invention provides a method for testing a lamp heating installation (RTP) of silicon wafer or the like intended to operate in a range of 600 to 800 ° C. consisting in placing a test wafer in the installation, in subjecting it to a heat treatment, then in verifying the results of the treatment and in particular the temperatures reached at level of the wafer by analyzing this wafer after treatment.
  • the test wafer is a silicon wafer having undergone a surface implantation of boron and the temperatures reached by the test wafer are determined by measuring at different points of this wafer the layer resistance.
  • the boron implantation is carried out at a dose of 5.10 14 to 5.10 15 ions / cm 2 , at an energy of 5 to 15 keV.
  • the boron implantation is carried out at a dose of 10 15 ions / cm 2 , at an energy of 10 keV.
  • the heat treatment of the test wafer is carried out under a nitrogen atmosphere.
  • the test wafer is subjected to annealing at a temperature of the order of 710 to 750 ° C, preferably at 730 ° C.
  • the present invention also relates to a method for adjusting a lamp heating installation using the above test method, in which, after the operation of testing and measuring the results, these results are used to adjust the temperature probes temperature themselves intended to control the energy applied to heating lamps, by heating zone.
  • the present invention also relates to a lamp heating installation adjusted by the above adjustment method.
  • FIG. 1 schematically shows a lamp heating installation
  • FIG. 2 illustrates the characteristics of a test plate according to the invention.
  • the present invention proposes to use as test wafer a very slightly doped type N silicon wafer having undergone boron implantation in a range of 5.10 14 to 5.10 15 ions per cm 2 under an implantation energy of 5 to 15 keV.
  • the following examples will be given for a silicon wafer having undergone boron implantation at 10 15 ions / cm 2 under an energy of 10 keV.
  • This wafer is for example heated for two seconds to raise its temperature to 400 ° C and then for 20 seconds to raise and maintain its temperature at a desired value.
  • the heat treatment is carried out in the presence of nitrogen, at atmospheric pressure.
  • the flow rate is for example 10 liters of nitrogen per minute.
  • the wafer is only covered with a layer of native oxide of a very small thickness, typically of the order of 1 to 1.5 nm.
  • curve 20 illustrates the resistance per square of a wafer according to the invention as a function of the treatment temperature to which it has been subjected. It can be seen that the resistances measured for wafers having undergone respective rapid thermal annealing (RTP) treatments at temperatures having values chosen between 710 and 750 ° C. are between 1400 and 1050 ⁇ / D, a resistance value being characteristic treatment at a specific temperature. It can also be seen that the resistance variation is substantially linear and significant, of the order of 8.5 ⁇ / D per ° C. This sensitivity is much higher than that of platelets. currently known test, especially in the temperature range considered.
  • RTP rapid thermal annealing
  • curve 22 illustrates the dispersion of the resistance measured.
  • This dispersion is defined as the difference between the largest resistance value and the lowest resistance value measured on the same test plate, divided by the average resistance value. It can be seen that this dispersion is of the order of 4% and above all that it is constant whatever the treatment temperature. This means that the result obtained for one temperature can be extrapolated to other temperatures.
  • test plate For the adjustment of a lamp-heated installation, the test plate will be placed in the installation, it will be subjected to an RTP which should normally bring it to a chosen temperature, then the resistance per square obtained will be measured. We can thus deduce the actual temperature that the wafer has reached in its various zones.
  • the probes 8 can be recalibrated so that the installation provides reliable results.
  • a fixed test protocol will be provided, in which the installation will be adjusted for a temperature fixed in advance, for example 730 ° C. It will then be known that the installation is adjusted for a fairly wide temperature range, for example from 600 to 800 ° C.
  • the invention relates to a precise test and calibration method for a lamp heating installation.
  • the present invention also relates to a lamp heating device having been adjusted by the method according to the present invention using the boron-doped test plate according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The invention concerns a method for testing a silicon wafer lamp heating installation (RTP) or the like designed to operate in a range of 600 to 800 °C which consists in: depositing in the installation a testing wafer, subjecting it to a heat treatment, then verifying the treatment results and in particular the temperatures reached at the wafer by analyzing said wafer after treatment. The invention is characterized in that the test wafer is a silicon wafer subjected to a surface boron implantation and the temperatures reached by the test wafer are determined by measuring sheet resistance in various points of said wafer.

Description

PROCEDE DE TEST ET DE REGLAGE D'UNE INSTALLATION DE CHAUFFAGE METHOD FOR TESTING AND ADJUSTING A HEATING SYSTEM
PAR LAMPESBY LAMPS
Dans de nombreux domaines, on utilise des installations à chauffage par lampes pour élever en température très rapidement et de façon très précise la surface d'un élément à traiter, par exemple une plaquette de silicium. Ces installations sont destinées à effectuer des traitements dits de recuit thermique rapide ou RTP.In many fields, lamp-heated installations are used to raise the temperature of an element to be treated very quickly and very precisely, for example a silicon wafer. These installations are intended to carry out so-called rapid thermal annealing or RTP treatments.
La figure 1 représente très schëmatiquement une telle installation. Une plaquette de silicium 1 est placée sur un anneau 2 , lui-même monté sur un cylindre 3. Sous la plaquette est disposé un réflecteur 4. Un ensemble de lampes 6 est placé au-dessus de la plaquette, par exemple une centaine de lampes disposées en cercles concentriques, ces lampes pouvant être alimentées indépendamment par cercles ou groupes de cercles adjacents. Le réflecteur 4 est destiné à collecter les radiations infrarouges émises par la plaquette de silicium 1. Des moyens sont prévus pour entraîner en rotation le cylindre 3 et donc la plaquette 1.Figure 1 very schematically shows such an installation. A silicon wafer 1 is placed on a ring 2, itself mounted on a cylinder 3. Under the wafer is arranged a reflector 4. A set of lamps 6 is placed above the wafer, for example a hundred lamps arranged in concentric circles, these lamps can be supplied independently by adjacent circles or groups of circles. The reflector 4 is intended to collect the infrared radiation emitted by the silicon wafer 1. Means are provided for rotating the cylinder 3 and therefore the wafer 1.
Il importe que la plaquette soit chauffée très uniformément sur toute sa surface. Pour cela, on prévoit des moyens d'asservissement comprenant des sondes pyrométriques 8, par exemple au nombre de six, montées dans le réflecteur 4. Les signaux des sondes 8 sont transmis par des fibres optiques 9 à un contrôleur 10 qui sert à asservir 1 ' énergie fournie par l'ensemble de lampes 6. Cette connexion d'asservissement est illustrée par un simple bus 11. On comprendra qu'il existe des connexions vers des ensembles annulaires de lampes. Etant donné que l'on veut atteindre des températures très uniformes et très précises sur toute la face supérieure de la tranche, il importe que les indications de température données par les sondes 8 soient bien connues et bien précises. Or, en pratique, les sondes sont soumises à des dérives et à des variations d'une sonde à 1 'autre .It is important that the wafer is heated very uniformly over its entire surface. For this, provision is made for servo-control means comprising pyrometric probes 8, for example six in number, mounted in the reflector 4. The signals from the probes 8 are transmitted by optical fibers 9 to a controller 10 which serves to control the energy supplied by the lamp assembly 6. This control connection is illustrated by a simple bus 11. It will be understood that there is connections to annular lamp assemblies. Since it is desired to reach very uniform and very precise temperatures over the entire upper face of the wafer, it is important that the temperature indications given by the probes 8 are well known and very precise. However, in practice, the probes are subject to drifts and variations from one probe to another.
Ainsi, de façon classique, dans une installation de chauffage par lampes du type de celle de la figure 1, on procède périodiquement à une phase de vérification et d'étalonnage dans plusieurs gammes de températures. Pour cela, on place dans l'installation une plaquette de test 1 que l'on soumet à un RTP. Par exemple, on procédera à une montée en température de quelques secondes puis à un chauffage d'une durée de quelques dizaines de secondes. La plaquette de test est telle que, après avoir été soumise au traitement, elle peut être analysée point par point, l'analyse indiquant à quelle température ses différents points ont été soumis. Une fois cette analyse effectuée, on comprend que 1 ' on peut régler les sondes de température 8 par une action correctrice sur l'appareil de contrôle 10. Pour des opérations de chauffage à haute température, de l'ordre de 1000 à 1200°C, couramment utilisées dans le domaine des semiconducteurs pour réaliser des activations de dopants, on utilise des plaquettes de test dopées à 1 ' arsenic. La mesure de la résistance de couche (Ω/D) en différents points de la plaquette donne une indication de l'echauffement subi par les points considérés. On utilise également des plaquettes sur lesquelles on fait croître un oxyde thermique. Les variations d'épaisseur d'oxyde donnent également une indication de l'echauffement subi. Toutefois, on tend à utiliser de plus en plus les installations de chauffage par lampes dans des plages de températures relativement basses, par exemple de l'ordre de 600 à 800°C. Par exemple, dans le domaine de la fabrication des semiconducteurs, ces températures sont utilisées pour réaliser des recuits d'alliage pour la formation de siliciures tels que TiSi2 et CoSi2, ceci ne constituant bien entendu qu'un exemple d'application possible. Dans ces plages de températures, les plaquettes implantées à l'arsenic ne donnent pas de résultats suffisamment sensibles (la variation de résistance de couche en fonction de l'echauffement subi est trop faible) . De même, il n'est pas possible dans ces plages de températures d'obtenir des croissances d'oxyde significatives. On a donc développé de nouveaux types de plaquettes de test, par exemple une plaquette de silicium revêtue de titane de sorte que, par suite d'un chauffage, un phénomène de siliciuration se produit. Toutefois, ceci ne permet pas d'obtenir des tests précis et suffisamment sensibles, les résultats ne dépendant pas que de l'echauffement. Ainsi, la demanderesse a cherché à développer un nouveau type de plaquette de test dont les résultats soient significatifs dans la plage de températures de 600 à 800°C, c'est-à-dire que l'on observe une grande variation du paramètre étudié pour une faible variation de température.Thus, conventionally, in a lamp heating installation of the type of that of FIG. 1, a verification and calibration phase is carried out periodically in several temperature ranges. For this, a test plate 1 is placed in the installation which is subjected to an RTP. For example, there will be a temperature rise of a few seconds and then heating for a period of a few tens of seconds. The test plate is such that, after having been subjected to the treatment, it can be analyzed point by point, the analysis indicating at what temperature its various points have been subjected. Once this analysis has been carried out, it will be understood that the temperature probes 8 can be adjusted by a corrective action on the control device 10. For heating operations at high temperature, of the order of 1000 to 1200 ° C. , commonly used in the semiconductor field to carry out dopant activations, arsenic-doped test wafers are used. The measurement of the layer resistance (Ω / D) at different points on the board gives an indication of the heating undergone by the points considered. Plates are also used on which a thermal oxide is grown. The variations in oxide thickness also give an indication of the heating undergone. However, there is a tendency to use lamp heating installations more and more in relatively low temperature ranges, for example of the order of 600 to 800 ° C. For example, in the field of semiconductor manufacturing, these temperatures are used to make alloy anneals for the formation of silicides such as TiSi2 and CoSi2, this of course constituting only one example of possible application. In these temperature ranges, the wafers implanted with arsenic do not give sufficiently sensitive results (the variation in layer resistance as a function of the heating undergone is too small). Likewise, it is not possible in these temperature ranges to obtain significant oxide growths. New types of test wafers have therefore been developed, for example a titanium-coated silicon wafer so that, as a result of heating, a siliciding phenomenon occurs. However, this does not make it possible to obtain precise and sufficiently sensitive tests, the results not depending only on the heating. Thus, the applicant has sought to develop a new type of test plate whose results are significant in the temperature range from 600 to 800 ° C., that is to say that a great variation in the parameter studied is observed. for a small temperature variation.
Un autre objet de la présente invention est de prévoir une telle structure de test à très faible dispersion, c'est-à- dire qui, si la plaquette est chauffée uniformément, donne de mêmes résultats en tous les points de la plaquette.Another object of the present invention is to provide such a test structure with very low dispersion, that is to say which, if the wafer is heated uniformly, gives the same results at all points of the wafer.
Pour atteindre ces objets, la présente invention prévoit d'utiliser une plaquette de test ayant subi une implantation de bore et pouvant être utilisée dans une plage de températures de l'ordre de 700 à 750°C, ce qui donne un bon réglage s' appliquant dans une large plage de températures, par exemple de l'ordre de 600 à 800°C.To achieve these objects, the present invention provides for using a test plate which has undergone boron implantation and which can be used in a temperature range of the order of 700 to 750 ° C., which gives a good adjustment if applying in a wide range of temperatures, for example of the order of 600 to 800 ° C.
Plus particulièrement la présente invention prévoit un procédé de test d'une installation de chauffage par lampes (RTP) de plaquette de silicium ou analogue destinée à fonctionner dans une plage de 600 à 800°C consistant à disposer dans l'installation une plaquette de test, à la soumettre à un traitement thermique, puis à vérifier les résultats du traitement et notamment les températures atteintes au niveau de la plaquette en analysant cette plaquette après traitement. Selon l'invention, la plaquette de test est une plaquette de silicium ayant subi une implantation superficielle de bore et les températures atteintes par la plaquette de test sont déterminées en mesurant en différents points de cette plaquette la résistance de couche.More particularly, the present invention provides a method for testing a lamp heating installation (RTP) of silicon wafer or the like intended to operate in a range of 600 to 800 ° C. consisting in placing a test wafer in the installation, in subjecting it to a heat treatment, then in verifying the results of the treatment and in particular the temperatures reached at level of the wafer by analyzing this wafer after treatment. According to the invention, the test wafer is a silicon wafer having undergone a surface implantation of boron and the temperatures reached by the test wafer are determined by measuring at different points of this wafer the layer resistance.
Selon un mode de réalisation de la présente invention, 1'implantation de bore est effectuée à une dose de 5.1014 à 5.1015 ions/cm2, sous une énergie de 5 à 15 keV.According to an embodiment of the present invention, the boron implantation is carried out at a dose of 5.10 14 to 5.10 15 ions / cm 2 , at an energy of 5 to 15 keV.
Selon un mode de réalisation de la présente invention, 1 'implantation de bore est effectuée à une dose de 1015 ions/cm2, sous une énergie de 10 keV.According to an embodiment of the present invention, the boron implantation is carried out at a dose of 10 15 ions / cm 2 , at an energy of 10 keV.
Selon un mode de réalisation de la présente invention, le traitement thermique de la plaquette de test est réalisé sous une atmosphère d'azote. Selon un mode de réalisation de la présente invention, la plaquette de test est soumise à un recuit à une température de l'ordre de 710 à 750°C, de préférence à 730°C.According to an embodiment of the present invention, the heat treatment of the test wafer is carried out under a nitrogen atmosphere. According to an embodiment of the present invention, the test wafer is subjected to annealing at a temperature of the order of 710 to 750 ° C, preferably at 730 ° C.
La présente invention vise aussi un procédé de réglage d'une installation de chauffage par lampes utilisant le procédé de test ci-dessus, dans lequel, après l'opération de test et de mesure des résultats, ces résultats sont utilisés pour régler des sondes de température elles-mêmes destinées à asservir l'énergie appliquée à des lampes de chauffage, par zone de chauffage.The present invention also relates to a method for adjusting a lamp heating installation using the above test method, in which, after the operation of testing and measuring the results, these results are used to adjust the temperature probes temperature themselves intended to control the energy applied to heating lamps, by heating zone.
La présente invention vise aussi une installation de chauffage par lampes réglée par le procédé de réglage ci-dessus.The present invention also relates to a lamp heating installation adjusted by the above adjustment method.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1 représente de façon schématique une installation de chauffage par lampes ; et la figure 2 illustre des caractéristiques d'une plaquette de test selon l'invention. La présente invention propose d'utiliser comme plaquette de test une plaquette de silicium de type N très peu dopée ayant subi une implantation de bore dans une plage de 5.1014 à 5.1015 ions par cm2 sous une énergie d'implantation de 5 à 15 keV. Les exemples ci-après seront donnés pour une plaquette de silicium ayant subi une implantation de bore à 1015 ions/cm2 sous une énergie de 10 keV. Cette plaquette est par exemple chauffée pendant deux secondes pour monter sa température à 400°C puis pendant 20 secondes pour monter et maintenir sa température à une valeur souhaitée. De préférence, le traitement thermique est effectué en présence d'azote, à pression atmosphérique. Le débit est par exemple de 10 litres d'azote par minute. La plaquette est seulement recouverte d'une couche d'oxyde natif d'une très faible épaisseur, typiquement de l'ordre de 1 à 1,5 nm. Une fois que la plaquette a subi le traitement thermique, on l'analyse en de nombreux points par un analyseur de résistance à quatre pointes fournissant de façon classique une indication de la résistance par carré du point ou zone étudié. Typiquement, dans le cas de la fabrication de circuits intégrés, les plaquettes de silicium auront des diamètres de 150 à 400 millimètres. En figure 2, la courbe 20 illustre la résistance par carré d'une plaquette selon l'invention en fonction de la température de traitement à laquelle elle a été soumise. On voit que les résistances mesurées pour des plaquettes ayant subi des traitements de recuit thermique rapide (RTP) respectifs à des températures ayant des valeurs choisies entre 710 et 750°C sont comprises entre 1400 et 1050 Ω/D, une valeur de résistance étant caractéristique d'un traitement à une température déterminée. On voit également que la variation de résistance est sensiblement linéaire et importante, de l'ordre de 8,5 Ω/D par °C. Cette sensibilité est beaucoup plus élevée que celle des plaquettes de test actuellement connues, notamment dans la plage de températures considérée.These objects, characteristics and advantages, as well as others of the present invention will be explained in detail in the following description of particular embodiments given without limitation in relation to the attached figures among which: Figure 1 schematically shows a lamp heating installation; and FIG. 2 illustrates the characteristics of a test plate according to the invention. The present invention proposes to use as test wafer a very slightly doped type N silicon wafer having undergone boron implantation in a range of 5.10 14 to 5.10 15 ions per cm 2 under an implantation energy of 5 to 15 keV. The following examples will be given for a silicon wafer having undergone boron implantation at 10 15 ions / cm 2 under an energy of 10 keV. This wafer is for example heated for two seconds to raise its temperature to 400 ° C and then for 20 seconds to raise and maintain its temperature at a desired value. Preferably, the heat treatment is carried out in the presence of nitrogen, at atmospheric pressure. The flow rate is for example 10 liters of nitrogen per minute. The wafer is only covered with a layer of native oxide of a very small thickness, typically of the order of 1 to 1.5 nm. Once the wafer has undergone the heat treatment, it is analyzed at numerous points by a four-point resistance analyzer conventionally providing an indication of the resistance per square of the point or zone studied. Typically, in the case of the manufacture of integrated circuits, the silicon wafers will have diameters of 150 to 400 millimeters. In FIG. 2, curve 20 illustrates the resistance per square of a wafer according to the invention as a function of the treatment temperature to which it has been subjected. It can be seen that the resistances measured for wafers having undergone respective rapid thermal annealing (RTP) treatments at temperatures having values chosen between 710 and 750 ° C. are between 1400 and 1050 Ω / D, a resistance value being characteristic treatment at a specific temperature. It can also be seen that the resistance variation is substantially linear and significant, of the order of 8.5 Ω / D per ° C. This sensitivity is much higher than that of platelets. currently known test, especially in the temperature range considered.
En outre, en figure 2, la courbe 22 illustre la dispersion de résistance mesurée. Cette dispersion est définie comme étant la différence entre la plus grande valeur de résistance et la plus faible valeur de résistance mesurée sur une même plaquette de test, divisée par la valeur moyenne de la résistance . On voit que cette dispersion est de 1 ' ordre de 4% et surtout qu'elle est constante quelle que soit la température de traitement. Ceci signifie que le résultat obtenu pour une température est extrapolable à d'autres températures.In addition, in FIG. 2, curve 22 illustrates the dispersion of the resistance measured. This dispersion is defined as the difference between the largest resistance value and the lowest resistance value measured on the same test plate, divided by the average resistance value. It can be seen that this dispersion is of the order of 4% and above all that it is constant whatever the treatment temperature. This means that the result obtained for one temperature can be extrapolated to other temperatures.
Pour le réglage d'une installation à chauffage par lampes, on placera la plaquette de test dans l'installation, on la soumettra à un RTP devant normalement l'amener à une tempe- rature choisie, puis on mesurera la résistance par carré obtenue. On pourra ainsi en déduire la température réelle que la plaquette a atteinte dans ses diverses zones.For the adjustment of a lamp-heated installation, the test plate will be placed in the installation, it will be subjected to an RTP which should normally bring it to a chosen temperature, then the resistance per square obtained will be measured. We can thus deduce the actual temperature that the wafer has reached in its various zones.
Une fois ce résultat connu, on pourra réétalonner les sondes 8 pour que l'installation fournisse de façon sûre des résultats prévus. En pratique on prévoira un protocole de test fixe, dans lequel on réglera l'installation pour une température fixée à l'avance, par exemple 730°C. On saura alors que l'installation est réglée pour une assez large plage de températures, par exemple de 600 à 800°C. Ainsi, l'invention vise un procédé de test et d'étalonnage précis d'une installation de chauffage par lampes.Once this result is known, the probes 8 can be recalibrated so that the installation provides reliable results. In practice, a fixed test protocol will be provided, in which the installation will be adjusted for a temperature fixed in advance, for example 730 ° C. It will then be known that the installation is adjusted for a fairly wide temperature range, for example from 600 to 800 ° C. Thus, the invention relates to a precise test and calibration method for a lamp heating installation.
Bien entendu, la présente invention vise également un appareil de chauffage par lampes ayant été réglé par le procédé selon la présente invention en utilisant la plaquette de test dopée au bore selon l'invention.Of course, the present invention also relates to a lamp heating device having been adjusted by the method according to the present invention using the boron-doped test plate according to the invention.
Bien que la présente invention ait été décrite en relation avec un exemple particulier d'installation de chauffage par lampes, on notera qu'elle s'applique à tout type d'installation de chauffage rapide. Par ailleurs, bien que l'invention ait été décrite plus particulièrement dans le cas où l'installation de chauffage par lampes est destinée à chauffer des plaquettes de silicium dans le but de fabriquer des circuits semiconducteurs, on notera qu'elle s'applique à tout autre type de substrat et d'application. Although the present invention has been described in relation to a particular example of a lamp heating installation, it should be noted that it applies to any type of rapid heating installation. Furthermore, although the invention has been described more particularly in the case where the lamp heating installation is intended to heat silicon wafers for the purpose of manufacturing semiconductor circuits, it will be noted that it applies to any other type of substrate and application.

Claims

REVENDICATIONS
1. Procédé de test d'une installation de chauffage par lampes (RTP) de plaquette de silicium ou analogue destinée à fonctionner dans une plage de 600 à 800°C consistant à disposer dans l'installation une plaquette de test, à la soumettre à un traitement thermique, puis à vérifier les résultats du traitement et notamment les températures atteintes au niveau de la plaquette en analysant cette plaquette après traitement, caractérisé en ce que la plaquette de test est une plaquette de silicium ayant subi une implantation superficielle de bore et en ce que les températures atteintes par la plaquette de test sont déterminées en mesurant en différents points de cette plaquette la résistance de couche.1. Method for testing a lamp heating installation (RTP) of a silicon wafer or the like intended to operate in a range of 600 to 800 ° C., consisting in placing a test wafer in the installation, subjecting it to a heat treatment, then to verify the results of the treatment and in particular the temperatures reached in the wafer by analyzing this wafer after treatment, characterized in that the test wafer is a silicon wafer having undergone a surface implantation of boron and in that the temperatures reached by the test wafer are determined by measuring the layer resistance at different points on this wafer.
2. Plaquette de test pour la mise en oeuvre du procédé selon la revendication 1, caractérisée en ce que l'implantation de bore est effectuée à une dose de 5.1014 à 5.1015 ions/cm2, sous une énergie de 5 à 15 keV.2. Test plate for implementing the method according to claim 1, characterized in that the boron implantation is carried out at a dose of 5.10 14 to 5.10 15 ions / cm 2 , with an energy of 5 to 15 keV .
3. Plaquette de test pour la mise en oeuvre du procédé selon la revendication 1, caractérisée en ce que l'implantation de bore est effectuée à une dose de 1015 ions/cm2, sous une énergie de 10 keV. 3. Test plate for implementing the method according to claim 1, characterized in that the boron implantation is carried out at a dose of 10 15 ions / cm 2 , at an energy of 10 keV.
4. Procédé de test selon la revendication 1, caractérisé en ce que le traitement thermique de la plaquette de test est réalisé sous une atmosphère d'azote.4. Test method according to claim 1, characterized in that the heat treatment of the test plate is carried out under a nitrogen atmosphere.
5. Procédé de test selon la revendication 1, caractérisé en ce que la plaquette de test est soumise à un recuit à une température de l'ordre de 710 à 750°C, de préférence à 730°C.5. Test method according to claim 1, characterized in that the test plate is subjected to annealing at a temperature of the order of 710 to 750 ° C, preferably at 730 ° C.
6. Procédé de réglage d'une installation de chauffage par lampes utilisant le procédé de test selon la revendication 1, caractérisé en ce que, après l'opération de test et de mesure des résultats, ces résultats sont utilisés pour régler des sondes de tempé- rature elles-mêmes destinées à asservir l'énergie appliquée à des lampes de chauffage, par zone de chauffage.6. Method for adjusting a heating installation by lamps using the test method according to claim 1, characterized in that, after the test and measurement of the results operation, these results are used to adjust the temperature probes - erasures themselves intended to control the energy applied to heating lamps, by heating zone.
7. Installation de chauffage par lampes caractérisée en ce qu'elle est réglée par le procédé de réglage de la revendication 6. 7. Installation for heating by lamps, characterized in that it is regulated by the adjustment method of claim 6.
PCT/FR2003/001771 2002-06-14 2003-06-12 Method for testing and adjusting a lamp heating installation WO2003107414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003255670A AU2003255670A1 (en) 2002-06-14 2003-06-12 Method for testing and adjusting a lamp heating installation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0207385A FR2841040B1 (en) 2002-06-14 2002-06-14 METHOD FOR TESTING AND ADJUSTING A LAMP HEATING SYSTEM
FR02/07385 2002-06-14

Publications (1)

Publication Number Publication Date
WO2003107414A1 true WO2003107414A1 (en) 2003-12-24

Family

ID=29595268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/001771 WO2003107414A1 (en) 2002-06-14 2003-06-12 Method for testing and adjusting a lamp heating installation

Country Status (3)

Country Link
AU (1) AU2003255670A1 (en)
FR (1) FR2841040B1 (en)
WO (1) WO2003107414A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368303B2 (en) 2004-10-20 2008-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method for temperature control in a rapid thermal processing system
CN115692236A (en) * 2022-12-16 2023-02-03 广州粤芯半导体技术有限公司 Method for detecting RTA temperature in silicade process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970313A (en) * 1997-12-19 1999-10-19 Advanced Micro Devices, Inc. Monitoring wafer temperature during thermal processing of wafers by measuring sheet resistance of a test wafer
US6015717A (en) * 1998-03-13 2000-01-18 Advanced Micro Devices, Inc. Method for monitoring rapid thermal process integrity
US6065869A (en) * 1999-03-02 2000-05-23 United Silicon Incorporated Method of in-line temperature monitoring
US6136613A (en) * 1998-04-21 2000-10-24 United Silicon Incorporated Method for recycling monitoring control wafers
US6247842B1 (en) * 1999-06-15 2001-06-19 National Semiconductor Corporation Method of wafer temperature measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970313A (en) * 1997-12-19 1999-10-19 Advanced Micro Devices, Inc. Monitoring wafer temperature during thermal processing of wafers by measuring sheet resistance of a test wafer
US6033922A (en) * 1997-12-19 2000-03-07 Advanced Micro Devices, Inc. Monitoring wafer temperature during thermal processing of wafers by measuring sheet resistance of a test wafer
US6015717A (en) * 1998-03-13 2000-01-18 Advanced Micro Devices, Inc. Method for monitoring rapid thermal process integrity
US6136613A (en) * 1998-04-21 2000-10-24 United Silicon Incorporated Method for recycling monitoring control wafers
US6065869A (en) * 1999-03-02 2000-05-23 United Silicon Incorporated Method of in-line temperature monitoring
US6247842B1 (en) * 1999-06-15 2001-06-19 National Semiconductor Corporation Method of wafer temperature measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368303B2 (en) 2004-10-20 2008-05-06 Taiwan Semiconductor Manufacturing Company, Ltd. Method for temperature control in a rapid thermal processing system
CN115692236A (en) * 2022-12-16 2023-02-03 广州粤芯半导体技术有限公司 Method for detecting RTA temperature in silicade process

Also Published As

Publication number Publication date
AU2003255670A1 (en) 2003-12-31
FR2841040B1 (en) 2005-06-24
FR2841040A1 (en) 2003-12-19

Similar Documents

Publication Publication Date Title
DE69930649T2 (en) VOTING OF A SUBSTRATE TEMPERATURE MEASUREMENT SYSTEM
EP2135050B1 (en) Radiometric thermometer
EP2697632B1 (en) Method for determining interstitial oxygen concentration
US4598249A (en) Method using surface photovoltage (SPV) measurements for revealing heavy metal contamination of semiconductor material
US20030064571A1 (en) Process for producing polysilicon film
JPH07248264A (en) Method and equipment for thermometry using ion implantation wafer
FR2776375A1 (en) Characterization of an ion implantation process especially for monitoring ion implantation of silicon wafers in IC manufacture
FR2985812A1 (en) METHOD AND DEVICE FOR TESTING SEMICONDUCTOR SUBSTRATES FOR RADIO FREQUENCY APPLICATIONS
US20060019415A1 (en) Rapid thermal anneal equipment and method using sichrome film
JPS5833701B2 (en) How to characterize semiconductor wafers
WO2003107414A1 (en) Method for testing and adjusting a lamp heating installation
FR2656690A1 (en) METHOD AND APPARATUS FOR MEASURING THE TEMPERATURE OF A SEMICONDUCTOR PASTILLE BY DETECTING THE OPTICAL TRANSMISSION
CN101724911B (en) Surface heat treatment process used before measuring electrical resistivity of P-type silicon epitaxial slice
EP2122315B1 (en) Methods for making a contact temperature sensor and method for calibrating said sensor
FR2941816A1 (en) METHOD OF CHARACTERIZING A METHOD FOR ION IMPLANTATION
US6759260B2 (en) Metal oxide temperature monitor
EP2596523B1 (en) Device and process for forming, on a nanowire made of a semiconductor, an alloy of this semiconductor with a metal or metalloid
FR3059821B1 (en) TEMPERATURE MEASURING METHOD
EP0787839B1 (en) Process for calibrating the temperature of an epitaxy reactor
US11600538B2 (en) SiC epitaxial wafer and method for producing SiC epitaxial wafer
CN111900099B (en) Temperature monitoring method of annealing equipment
TWI741259B (en) Temperature measuring device and method for measuring a temperature
Adams et al. In‐Situ Optical Wafer Temperature Measurement
FR3089014A1 (en) METHOD FOR DETERMINING A SQUARE RESISTANCE OF A SEMICONDUCTOR SUBSTRATE AFTER ION IMPLANTATION BY PLASMA IMMERSION AND BEFORE THERMAL ANNEALING
CN113405683A (en) Wafer temperature measuring method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP