WO2004000135A2 - Method and apparatus for anastomosis including an anchoring sleeve - Google Patents

Method and apparatus for anastomosis including an anchoring sleeve Download PDF

Info

Publication number
WO2004000135A2
WO2004000135A2 PCT/US2003/011691 US0311691W WO2004000135A2 WO 2004000135 A2 WO2004000135 A2 WO 2004000135A2 US 0311691 W US0311691 W US 0311691W WO 2004000135 A2 WO2004000135 A2 WO 2004000135A2
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
sleeve
onion
onion portion
distal end
Prior art date
Application number
PCT/US2003/011691
Other languages
French (fr)
Other versions
WO2004000135A3 (en
Inventor
Scott Manzo
Original Assignee
Tyco Healthcare Group, Lp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tyco Healthcare Group, Lp filed Critical Tyco Healthcare Group, Lp
Priority to CA2489507A priority Critical patent/CA2489507C/en
Priority to US10/517,404 priority patent/US7510560B2/en
Priority to JP2004515636A priority patent/JP4364796B2/en
Priority to DE60333012T priority patent/DE60333012D1/en
Priority to AU2003279113A priority patent/AU2003279113B2/en
Priority to EP03761016A priority patent/EP1519688B1/en
Publication of WO2004000135A2 publication Critical patent/WO2004000135A2/en
Publication of WO2004000135A3 publication Critical patent/WO2004000135A3/en
Priority to US12/103,218 priority patent/US7993357B2/en
Priority to US13/187,875 priority patent/US20110282366A1/en
Priority to US13/187,825 priority patent/US8591535B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/42Gynaecological or obstetrical instruments or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3478Endoscopic needles, e.g. for infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B2017/1103Approximator
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22069Immobilising; Stabilising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B2017/348Means for supporting the trocar against the body or retaining the trocar inside the body
    • A61B2017/3482Means for supporting the trocar against the body or retaining the trocar inside the body inside
    • A61B2017/3484Anchoring means, e.g. spreading-out umbrella-like structure
    • A61B2017/3488Fixation to inner organ or inner body tissue

Definitions

  • the present disclosure relates to apparatus and methods for joining tissue portions and, more particularly to anastomotic devices and methods for positioning and joining body vessels using an anchoring sleeve.
  • Anastomosis is the joining of two hollow or tubular structures.
  • Certain body conduits are generally cylindrical in configuration and have a circular cross-section.
  • sutures are placed around the circumference of the conduit in order to maintain the patency of its lumen or channel.
  • the sutures made on top of the conduit i.e., on the side facing the surgeon
  • the sutures made underneath the conduit i.e., on the side facing away from the surgeon.
  • the complexity of joining two body vessels is made manifestly apparent in a surgical procedure referred to generally as a radical prostatectomy (i.e., a well established surgical procedure for patients with localized prostatic carcinoma).
  • radical prostatectomy procedures require the removal of cancerous tissue while preserving sexual function and continence in the patient.
  • radical prostatectomy approaches for the removal of prostate cancer the retropubic approach and the perineal approach.
  • the seminal vesicles which are behind the base of the bladder will be removed along with the prostate gland. Once the seminal vesicles are free, the entire prostate gland and the seminal vesicles are removed.
  • the bladder neck is then stitched closed to a small enough diameter so that it is about the same size as the stump of the urethra from which the prostate was detached.
  • the bladder neck is then pulled down into the pelvis and positioned against the urethral stump and stitched thereto. This stitching is done typically around a Foley catheter which has been inserted through the penis all the way into the bladder.
  • an inverted "U” shaped incision is made going right over the anus, with the center of the "U” about three centimeters above the margin of the anus.
  • the prostate gland is then freed from its surrounding structures by gentle dissection, and the urethra at the end of the prostate farthest from the bladder is isolated and divided.
  • the bladder neck is freed from the prostate, and, once the prostate gland has been removed and the bladder neck has been closed sufficiently so that the size of its opening approximates the size of the urethral opening, the urethra and the bladder neck are stitched together.
  • a Foley catheter is left in place postoperatively for about two weeks.
  • a suturing device including a shaft with portions defining an interior channel extending between a proximal and a distal end of the shaft.
  • This channel includes a generally axial lumen which extends to the proximal end of the shaft and a generally transverse lumen which extends from the axial lumen distally outwardly to an exit hole at the outer surface of the shaft.
  • a needle and suture can be back loaded into the transverse lumen of the channel while a generally non- compressible member can be movably mounted in the axial lumen of the channel.
  • a handle is provided with means operative to push the member distally through the lumen to deploy or expel the needle.
  • U.S. Pat. No. 4,911,164 issued to Roth, there is disclosed a suture guide with a curved distal portion.
  • the distal portion of the suture guide has a plurality of exterior axial grooves which can be used to align and guide a curved needle and attached suture.
  • the device is provided with a plurality of outwardly extendable members which engage the lumen of the urethra. These members make it possible to push the urethral stump into approximation with the bladder neck.
  • Apparatus and methods for performing a surgical anastomotic procedure are disclosed herein.
  • Apparatus according to the present disclosure include a tubular body having a proximal end, a distal end and an onion portion formed near the distal end of the tubular body for engaging a first body vessel.
  • the onion portion has a first position within a radial dimension of the tubular body and a second position outside the radial dimension of the tubular body.
  • the apparatus includes a sleeve having an expandable cuff for engaging the second body vessel.
  • the sleeve has a lumen for receiving the tubular body.
  • the apparatus includes a plunger assembly for being recalled in the tubular body.
  • the plunger assembly has a distal end arranged for deploying the onion portion from the first position to the second position.
  • the tubular body has a first position in which the onion sleeve portion is substantially co-linear with or within the radial dimension of the tubular body and a second position in which the onion sleeve portion is deployed transversely with respect to the tubular body.
  • the tubular body desirably has a radius and defines a central lumen having a radius.
  • the onion sleeve portion includes a plurality of longitudinally oriented slots defining a plurality of ribs.
  • the ribs desirably include at least one flexure line.
  • each rib includes a distal flexure line, a proximal flexure line and an intermediate flexure line between the distal and proximal flexure lines.
  • each intermediate flexure line is a double articulating joint.
  • the onion sleeve portion defines a radius about the intermediate flexure lines which is less than the radius of the tubular body.
  • At least one of the plurality of ribs includes a barb extending therefrom for engaging the first body vessel.
  • each barb does not extend beyond the radius of the tubular body while the onion sleeve portion is in the first position.
  • each barb is formed on the rib at a location between the proximal flexure line and the intermediate flexure line. It is contemplated that each barb is oriented in a substantially proximal direction when the onion sleeve portion is in the second position.
  • the onion portion has at least one expanded portion disposed outside the radial dimension of the tubular body when the onion portion is in the second position.
  • the onion portion may have two expanded portions for engaging the first body vessel therebetween.
  • each rib of the onion sleeve portion includes a distal flexure line, a proximal flexure line, a pair of central flexure lines, a first intermediate flexure line between the distal the pair of central flexure lines and a second intermediate flexure line between the proximal flexure lines and the central flexure lines.
  • each first intermediate flexure line is a double articulating joint. More preferably, the onion sleeve portion defines a radius about the first intermediate flexure lines which is less than the radius of the tubular body.
  • At least one of the plurality of ribs includes a barb extending therefrom, wherein each barb does not extend beyond the radius of the tubular body while the onion sleeve portion is in the first position. It is contemplated that each barb is formed on the rib at a location between the first intermediate flexure lines and the central flexure lines. Preferably, each barb is oriented in a substantially proximal direction when the onion sleeve portion is in the second position.
  • the head portion of the plunger assembly is provided with an engaging element configured and adapted to selectively couple with an engaging element provided at the distal end of the tubular body.
  • a preferred method of joining a first body vessel and a second body vessel comprises passing an apparatus through the second body vessel, the apparatus having an onion portion so that the onion portion is received in the first body vessel.
  • the onion portion is deployed so that the onion portion moves to a position outside the radial dimension of the tubular body.
  • the first body vessel and second body vessel are approximated and joined.
  • the method further includes the step of expanding an expandable cuff to engage the second body vessel.
  • the apparatus may include a sleeve having the expandable cuff and the method may include moving the tubular body and the sleeve with respect to one another so as to approximate the first and second body vessels.
  • the apparatus may have a plunger assembly for deploying the onion portion and the method may include advancing the plunger assembly so as to deploy the onion portion.
  • the position of the tubular body and sleeve are desirably secured with respect to one another.
  • FIG. 1 is a perspective view of an anastomosis apparatus, in accordance to an embodiment of the present disclosure, shown in an insertion condition;
  • FIG. 2 is a perspective view of the anastomosis apparatus of FIG. 1, shown in a deployed condition;
  • FIG. 3 is a partial cross-sectional perspective view of a portion of a urinary system with the anastomosis apparatus of FIG. 1, shown in the insertion condition, and illustrating the anastomosis apparatus being passed through a body lumen and entering a hollow body organ;
  • FIG. 4 is partial cross-sectional perspective view of the urinary system with the anastomosis apparatus of FIG. 1, with the radially expandable onion sleeve shown in a deployed condition within the hollow body organ and the radially expandable cuff shown in a deployed condition within the body lumen;
  • FIG. 5 is a cross-sectional side elevational view of the apparatus of FIG. 1, depicting the approximation of the hollow body organ to the body lumen;
  • FIG. 6 is a perspective view of an anastomosis apparatus, in accordance to another embodiment of the present disclosure, shown in an insertion condition;
  • FIG. 7 is a cross-sectional side elevational view of the anastomosis apparatus of FIG. 6, depicting the approximation of the hollow body organ to the body lumen.
  • proximal as is traditional will refer to the end of the surgical device or instrument of the present disclosure which is closest to the operator, while the term “distal” will refer to the end of the device or instrument which is furthest from the operator.
  • an anastomosis apparatus in accordance with the principles of the present disclosure, is shown generally as reference numeral 100.
  • apparatus 100 offers significant advantages to a radical prostatectomy procedure, it will be understood that the device is applicable for use in any anastomotic procedure where two body vessels are to be approximated and/or joined, including approximating and/or joining the urethra and bladder, intestinal portions of the body, blood vessels, and any other body vessels.
  • apparatus 100 includes a tubular body 102, a sleeve 104 slidably received about tubular body 102 and a plunger assembly 106 slidably received within tubular body 102.
  • Tubular body 102 includes a proximal end 108 and a distal end 110 and defines a central lumen 112 extending therethrough which central lumen 112 defines a central longitudinal axis "X".
  • Tubular body 102 includes an expandable anchor or onion sleeve portion 114 formed near distal end 110.
  • onion sleeve portion 114 includes a plurality of radially formed, longitudinally oriented, elongated slots 116.
  • Slots 116 define a plurality of longitudinally oriented ribs 118, each desirably having a plurality of transverse flexure lines 120 formed along the length thereof or being otherwise flexible.
  • ribs 118 include a distal and a proximal flexure line 120 A, 120B, respectively, and an intermediate flexure line 120C.
  • intermediate flexure line 120C is a double articulating flexure line, i.e., a flexure line which can be bent in two directions.
  • onion sleeve portion 114 has a biased retracted position, as seen in FIG.
  • a radius of onion sleeve portion 114, about intermediate flexure lines 120C is less than a radius of tubular body 102.
  • Onion sleeve portion 114 has an unbiased expanded position, as seen in FIG. 2, in which the radius of onion sleeve 114, about intermediate flexure lines 120C, is greater than the radius of tubular body 102.
  • the portion of each rib 118 between intermediate flexure line 120C and proximal flexure line 120B is disposed at an angle with respect to the longitudinal "X" axis.
  • Onion sleeve portion 114 of tubular body 102 further desirably includes at least one barb 122 extending outwardly from each rib 118 and in a proximal direction.
  • barbs 122 when onion sleeve portion 114 is in the retracted position, barbs 122 do not extend beyond the radial boundary of tubular sleeve 102. In this manner, barbs 122 do not interfere with the passage of tubular body 102 through sleeve 104.
  • barbs 122 when onion sleeve portion 114 is in the expanded position, it is preferred that barbs 122 are oriented substantially in a proximal direction and are substantially co-linear with the longitudinal "X" axis.
  • onion sleeve portion 114 and barbs 122 are made from a medical grade material, such as, for example, stainless steel or titanium, however, it is preferred that onion sleeve portion 114 and barbs 122 are made from a medical grade bio- absorbable material, such as, for example, polyglycolic acid (PGA) and/or polylactic acid (PLA).
  • PGA polyglycolic acid
  • PLA polylactic acid
  • Sleeve 104 includes a distal end 130 and a proximal end (not shown) defining a lumen 132 extending therethrough. It is envisioned that distal end 130 of sleeve 104 can be tapered in order to facilitate passage of sleeve 104 through the body lumen.
  • sleeve 104 includes an expandable cuff 134 provided near distal end 130 thereof.
  • expandable cuff 134 has a first position in which expandable cuff 134 has a radius which is less than or equal to a radius of sleeve 104 and a second position in which expandable cuff 134 has a radius which is greater than the radius of sleeve 104.
  • sleeve 104 is provided with an inflation/deflation lumen (not shown) extending along the length thereof and which is in fluid communication with expandable cuff 134 through at least one access opening (not shown) formed in sleeve 104.
  • the inflation/deflation lumen is coupled to a source of inflation fluid (not shown) and a fluid is injected through the inflation/deflation lumen in order to inflate and expand cuff 134 to an expanded condition and thereby anchor or fix the placement of sleeve 104 within the body lumen.
  • withdrawal of the fluid used to inflate and expand cuff 134 will cause cuff 134 to deflate and thereby allow sleeve 104 to be withdrawn from the body lumen.
  • Expandable cuff 134 is preferably fabricated from a medical grade polymer having suitable flexibility and structural integrity to withstand the forces associated with the inflation of cuff 134 and with the function of anchoring sleeve 104 within the body lumen.
  • At least one annular seal i.e., an O-ring, (not shown) is desirably provided between tubular body 102 and sleeve 104. The annular seal prevents or reduces the possibility of fluids from passing between tubular body 102 and sleeve 104.
  • Plunger assembly 106 includes a shaft 140 having a distal end 142, a proximal end (not shown) and a head portion 144 operatively coupled to distal end 142.
  • head portion 144 is preferably dimensioned to be received within central lumen 112 of tubular body 102. More preferably, head portion 144 defines a circular outer surface having an outer radius slightly smaller than the inner radius of tubular body 102 It is envisioned that the outer surface of head portion 144 is provided with a coupling element (not shown) configured and adapted to engage a corresponding coupling element (not shown) formed in either the inner surface of the distal end 110 of tubular body 102 or on the inner surface of end cap 124 of tubular body 102.
  • the coupling element formed on head portion 144 could be a helical thread which is configured and adapted to engage a corresponding helical thread formed on the inner surface of distal end 110 of the tubular body 102 at a location distal of onion sleeve portion 114. It is further contemplated that the coupling elements of head portion 144 and of distal end 110 of tubular body 102 may form a bayonet type coupling. As will be described in greater detail below, in use, as plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102, head portion 144 of plunger assembly 106 first engages the inner surface of ribs 118.
  • head portion 144 of plunger assembly 106 As head portion 144 of plunger assembly 106 is further distally advanced, past onion sleeve portion 114, head portion 144 presses ribs 118 radially outward. In so doing, onion sleeve 114 goes from the biased retracted position to the unbiased expanded position, as discussed above. Head portion 144 is then further advanced until the coupling element of head portion 144 engages the coupling element formed at distal end 110 of tubular body 102.
  • apparatus 100 be provided with a locking mechanism for securing tubular body 102 to sleeve 104 and to prevent their relative movement with respect to one another.
  • Apparatus 100 can be used in either the retropubic or the perineal prostatectomy approaches. With the prostate removed, the bladder neck "N" of the bladder “B” is first reconstructed by everting the inner mucosal lining of bladder “B” and suturing it down to the outer wall of bladder “B” using known surgical techniques.
  • bladder neck “N” is sized to properly accommodate and retain distal end 108 of tubular body 102 within bladder “B” using a standard tennis racket type closure (i.e., the opening of the bladder neck constituting the head of the tennis racket and a radial incision extending from the bladder neck constituting the handle portion of the tennis racket.
  • bladder neck “N” is sized to be approximately 7-8 mm in diameter.
  • apparatus 100 including tubular body 102 and sleeve 104, is passed trans-urethrally through urethra "U” until distal end 110 of tubular body 102 extends out of urethral stump “S” and into bladder “B” through bladder neck “N", as indicated by arrow "A” in FIG. 3.
  • distal end 110 of tubular body 102 is preferably positioned such that expandable onion sleeve portion 114 of tubular body 102 is positioned entirely within bladder "B”.
  • distal end 130 of sleeve 104 is preferably positioned such that expandable cuff 134 is positioned near urethral stump "S" of urethra "U”.
  • plunger assembly 106 With tubular body 102 positioned within bladder "B", plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102. As described above, as plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102, head portion 144 of plunger assembly 106 first engages the inner surface of ribs 118. As head portion 144 of plunger assembly 106 is further distally advanced, past onion sleeve portion 114, head portion 144 presses ribs 118 radially outward. In so doing, onion sleeve portion 114 is deployed from the biased retracted position to the unbiased expanded position.
  • barbs 122 of ribs 118 of onion sleeve portion 114 become oriented in a substantially proximal direction.
  • Head portion 144 is then further advanced until the coupling element of head portion 144 engages the coupling element formed at distal end 110 of tubular body 102.
  • plunger assembly 106 With head portion 144 of plunger assembly 106 coupled to distal end 110 of tubular body 102 and onion sleeve portion 114 in the expanded position, either plunger assembly 106 or both plunger assembly 106 and tubular body 102 are pulled in a proximal direction through urethra "U” as indicated by arrows "D". By pulling at least tubular body 102 in a proximal direction, barbs 122 of onion sleeve portion 114 are driven into the wall of bladder "B".
  • a fluid i.e., air, carbon dioxide, saline or the like
  • Inflation of cuff 134 results in the radial expansion of cuff 134 and in turn the pressing of cuff 134 against the inner surface of urethra "U", thus preventing axial movement of sleeve 104 through urethra "U”.
  • tubular body 102 With onion sleeve portion 114 of tubular body 102 anchored in bladder "B” and cuff 134 of sleeve 104 secured within urethra "U”, either tubular body 102, plunger assembly 106 or both tubular body 102 and plunger assembly 106 are withdrawn in a proximal direction through sleeve 104 in order to approximate bladder "B" to urethra "U".
  • tubular body 102 Once bladder “B” has been approximated into contact with urethra "U”, tubular body 102 is locked in position with respect to sleeve 104 thereby maintaining bladder "B" approximated with urethra "U”.
  • the body 102 may be fixed in relation to sleeve 104 using a latch, or any other known means.
  • tubular body 102 With tubular body 102 fixed in position with respect to sleeve 104, head portion 144 of plunger assembly 106 is disengaged from distal end 110 of tubular body 102 and plunger assembly 106 is withdrawn therefrom. It is envisioned that, with plunger assembly 106 removed from central lumen 112 of tubular body 102, that tubular body
  • 102 and sleeve 104 act like a Foley-type catheter to create a passage, defined by slots 116 and central lumen 112, through which body fluid (i.e., urine) is permitted to pass from bladder "B” and out through urethra "U".
  • body fluid i.e., urine
  • tubular body 102 and sleeve 104 are maintained within bladder "B" and urethra “U” for a period of several weeks or for a period of time sufficient for bladder neck "N” and urethral stump “S” to heal and "grow” together.
  • bladder neck "N” and urethral stump "S” have sufficiently healed, and barbs 122 sufficiently dissolved and absorbed within the body, onion sleeve portion 114 and cuff 134 are retracted and tubular body 102 and sleeve 104 are withdrawn from urethra "U".
  • the expandable anchor for engaging the first and/or second body vessel may comprise any expandable structure, including those disclosed in certain embodiments of the following PCT applications, all filed on an even date herewith: Application Entitled Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Member, invented by Russell Heinrich and Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable structure, including those disclosed in certain embodiments of the following PCT applications, all filed on an even date herewith: Application Entitled Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For
  • the joining member for joining the first and/or second body vessel may comprise any joining member, including those disclosed in certain embodiments of the following PCT Applications: Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchor For Engaging A Body Vessel And Deployable Sutures, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchor For Engaging A Body Vessel And Deployable Sutures, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Member, invented by Russell Heinrich and Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Anchor, invented by Russell Heinrich and Scott Manzo; the disclosures of which are all hereby incorporated by reference here
  • Apparatus 200 includes a tubular body 202, a sleeve 204 slidably received about tubular body 202 and a plunger assembly 206 slidably received within tubular body 202.
  • Tubular body 202 includes a distal end 210 and a proximal end (not shown) and defines a central lumen 212 extending therethrough which central lumen 212 defines a central longitudinal axis "X".
  • Tubular body 202 includes an expandable onion sleeve portion 214 formed near distal end 210.
  • onion sleeve portion 214 includes a plurality of radially formed, longitudinally oriented, elongated slots 216.
  • Slots 216 define a plurality of longitudinally oriented ribs 218, each having a plurality of transverse flexure lines 220 formed along the length thereof.
  • each rib 218 includes a distal flexure line 220A, a proximal flexure line 220B, a pair of central flexure lines 220C, 220D, a first intermediate flexure line 220E formed between distal flexure line 220A and central flexure line 220C and a second intermediate flexure line 220F formed between proximal flexure line 220B and central flexure line 220D.
  • flexure lines 220A-220F are configured and adapted such that onion sleeve portion 214 has a retracted position, as seen in FIG. 6, in which a radius of onion sleeve portion 214, about first intermediate flexure lines 220E, is less than a radius of tubular body 202.
  • Onion sleeve portion 214 has an unbiased position, as seen in FIG. 7, in which the radius of onion sleeve 214, about intermediate flexure lines 220E, is greater than the radius of the tubular body 202.
  • each rib 218 between first intermediate flexure line 220E and central flexure line 220C is orthogonal with respect to the longitudinal "X" axis.
  • the portion of each rib 218 between second intermediate flexure 220F and central flexure line 220D is orthogonal with respect to the longitudinal "X" axis.
  • Onion sleeve portion 214 of tubular body 202 further includes at least one barb 222 extending outwardly from each rib 218.
  • the at least one barb 222 is provided on the portion of rib 218 between first intermediate flexure line 220E and central flexure line 220C.
  • first intermediate flexure line 220E is a double articulating flexure line. Accordingly, when onion sleeve portion 214 is in the retracted position, barbs 222 do not extend beyond the radial boundary of tubular sleeve 202. In this manner, barbs 222 do not interfere with the passage of tubular body 202 through sleeve 204. Further, in accordance with the present disclosure, when onion sleeve portion 214 is in the expanded position, it is preferred that barbs 222 are oriented substantially in a proximal direction and are substantially parallel with the longitudinal "X" axis.
  • tubular body 202 As seen in FIGS. 6 and 7, distal end 210 of tubular body 202 is provided with a blunt end cap 224. However, it is envisioned that tubular body 202 can have a distal end 210 which opens into central lumen 212.
  • Sleeve 204 includes a distal end 230 and a proximal end (not shown) defining a lumen 232 extending therethrough. It is envisioned that distal end 230 of sleeve 204 can be tapered in order to facilitate passage of sleeve 204 through the body lumen.
  • sleeve 204 includes an expandable cuff 234 provided near distal end 230 thereof.
  • expandable cuff 234 has a first position in which expandable cuff 234 has a radius which is less than or equal to a radius of sleeve 204 and a second position in which expandable cuff 234 has a radius which is greater than the radius of sleeve 204.
  • sleeve 204 is provided with an inflation deflation lumen (not shown) extending along the length thereof and which is in fluid communication with expandable cuff 234 through at least one access opening (not shown) formed in sleeve 204.
  • the inflation/deflation lumen is coupled to a source of inflation fluid (not shown) and a fluid is injected through the inflation/deflation lumen in order to inflate and expand cuff 234 to an expanded condition and thereby anchor or fix the placement of sleeve 204 within the body lumen.
  • withdrawal of the fluid used to inflate and expand cuff 234 will cause cuff 234 to deflate and thereby allow sleeve 204 to be withdrawn from the body lumen.
  • At least one annular seal i.e., an O-ring, (not shown) may be provided between tubular body 202 and sleeve 204. Accordingly, it is envisioned that the annular seal prevents or reduces the possibility of fluids from passing between tubular body 202 and sleeve 204.
  • Plunger assembly 206 includes a shaft 240 having a distal end 242, a proximal end (not shown) and a head portion 244 operatively coupled to distal end 242.
  • head portion 244 is preferably dimensioned to be received within central lumen 212 of tubular body 202. More preferably, head portion 244 defines a circular outer surface having an outer radius slightly smaller than the inner radius of tubular body 202
  • head portion 244 is provided with a coupling element, similar to coupling element of head portion 144, configured and adapted to engage a corresponding coupling element formed in either the inner surface of the distal end 210 of tubular body 202 or on the inner surface of end cap 224 of tubular body 202.
  • head portion 244 of plunger assembly 206 In use, as plunger assembly 206 is distally advanced through central lumen 212 of tubular body 202, head portion 244 of plunger assembly 206 first engages the inner surface of ribs 218. As head portion 244 of plunger assembly 206 is further distally advanced, past onion sleeve portion 214, head portion 244 presses ribs 218 radially outward. In so doing, onion sleeve 214 goes from the biased retracted position to the unbiased expanded position, as discussed above. Head portion 244 is then further advanced until the coupling element of head portion 244 engages the coupling element formed at distal end 210 of tubular body 202. In other embodiments, other means are used to deploy the onion sleeve portion.
  • apparatus 200 be provided with a locking mechanism for securing tubular body 202 to sleeve 204 and to prevent their relative movement with respect to one another.
  • the body 202 and sleeve 204 may be secured using latch or any other means.
  • apparatus 200 including tubular body 202 and sleeve 204, is passed trans-urethrally through urethra "U” until distal end 210 of tubular body 202 extends out of urethral stump “S” and into bladder “B” through bladder neck “N".
  • distal end 210 of tubular body 202 is preferably positioned such that first intermediate flexure line 220E is positioned distally of bladder neck “N” and second intermediate flexure line 220F is positioned proximally of bladder neck "N”.
  • distal end 230 of sleeve 204 is preferably positioned such that expandable cuff 234 is positioned near urethral stump "S" of urethra "U”.
  • plunger assembly 206 is distally advanced through central lumen 212 of tubular body 202.
  • head portion 244 of plunger assembly 206 first engages the inner surface of ribs 218, in particular, the inner surface of ribs 218 disposed between first intermediate flexure line 220E and central flexure line 220C.
  • head portion 244 of plunger assembly 206 As head portion 244 of plunger assembly 206 is further distally advanced, past onion sleeve portion 214, head portion 244 presses ribs 118 radially outward. In so doing, onion sleeve portion 214 is deployed from the retracted position to the expanded position. As such, barbs 222 of ribs 218 of onion sleeve portion 214 become oriented in a substantially proximal direction. Head portion 244 is then further advanced until the coupling element of head portion 244 engages the coupling element formed at distal end 210 of tubular body 202.
  • shaft 240 of plunger assembly 206 is pulled in a proximal direction through tubular body 202, while holding tubular body 202 in a fixed position.
  • second intermediate flexure line 220F of onion sleeve portion 214 is expanded radially outward.
  • shaft 240 of plunger assembly 206 is moved in a proximal direction, with respect to tubular body 202, in order to return second intermediate flexure line 220F to the retracted position.
  • shaft 240 of plunger assembly 206 With sleeve 204 positioned near urethral stump “S”, a fluid is introduced into cuff 234 to thereby expand and inflate cuff 234. Inflation of cuff 234 results in the radial expansion of cuff 234 and in turn the pressing of cuff 234 against the inner surface of urethra "U", thus preventing axial movement of sleeve 204 through urethra "U".
  • tubular body 202 and sleeve 204 are maintained within bladder "B" and urethra "U” for a period of several weeks or for a period of time sufficient for bladder neck "N” and urethral stump “S” to heal and "grow” together.
  • the onion sleeve portion may be deployable by other means.
  • One end of the ribs may be attached to a sleeve that is moved proximally, bending the ribs outwardly.
  • the body has arms that are deployed outwardly by the head portion of the plunger assembly or by some other means. Therefore, the above description should not be construed as limiting, but merely as an exemplification of a preferred embodiment. Those skilled in the art will envision other modifications within the scope of the present disclosure.

Abstract

Apparatus for performing a surgical anastomosis include a tubular body (102) having an onion portion (114) formed near the distal end of the tubular body. The apparatus includes a sleeve (104) having a radius sized and dimensioned to slidably receive the tubular body therein. The apparatus includes a plunger assembly sized and dimensioned to be slidably received within the central lumen of the tubular body. The plunger assembly includes a distal end configured and adapted to deploy the onion portion.

Description

METHOD AND APPARATUS FOR ANASTOMOSIS INCLUDING AN ANCHORING SLEEVE
BACKGROUND
1. Technical Field
The present disclosure relates to apparatus and methods for joining tissue portions and, more particularly to anastomotic devices and methods for positioning and joining body vessels using an anchoring sleeve.
2. Background of Related Art
Anastomosis is the joining of two hollow or tubular structures. Certain body conduits are generally cylindrical in configuration and have a circular cross-section. When it is desired to suture such a conduit, typically for attachment to another body conduit, sutures are placed around the circumference of the conduit in order to maintain the patency of its lumen or channel. It can be appreciated that the sutures made on top of the conduit (i.e., on the side facing the surgeon) are made relatively more easily than the sutures made underneath the conduit (i.e., on the side facing away from the surgeon). The complexity of joining two body vessels is made manifestly apparent in a surgical procedure referred to generally as a radical prostatectomy (i.e., a well established surgical procedure for patients with localized prostatic carcinoma). In general, radical prostatectomy procedures require the removal of cancerous tissue while preserving sexual function and continence in the patient. There are two primary types of radical prostatectomy approaches for the removal of prostate cancer, the retropubic approach and the perineal approach.
In the retropubic approach, a long up-and-down incision is made in the midline of the abdomen from the navel to the pubic bone. After the lymph nodes have been removed for study by the pathologist and a determination has been made to proceed with the removal of the prostate gland, the space underneath the pubic bone is cleaned and dissected and the removal of the entire prostate gland is generally begun at the end that is farthest from the bladder, i.e., next to the external urethral sphincter. Next, the prostatic urethra is divided, the prostatic urethra and the prostate gland through which it goes are then pulled upwards toward the bladder while the dissection continues behind the prostate gland, separating it from the layer of tissue that is connected to the rectum on its other side. As the dissection continues between the, prostate and the rectum, the seminal vesicles, which are behind the base of the bladder will be removed along with the prostate gland. Once the seminal vesicles are free, the entire prostate gland and the seminal vesicles are removed. The bladder neck is then stitched closed to a small enough diameter so that it is about the same size as the stump of the urethra from which the prostate was detached. The bladder neck is then pulled down into the pelvis and positioned against the urethral stump and stitched thereto. This stitching is done typically around a Foley catheter which has been inserted through the penis all the way into the bladder.
In the perineal approach, an inverted "U" shaped incision is made going right over the anus, with the center of the "U" about three centimeters above the margin of the anus. The prostate gland is then freed from its surrounding structures by gentle dissection, and the urethra at the end of the prostate farthest from the bladder is isolated and divided. The bladder neck is freed from the prostate, and, once the prostate gland has been removed and the bladder neck has been closed sufficiently so that the size of its opening approximates the size of the urethral opening, the urethra and the bladder neck are stitched together. Once again, a Foley catheter is left in place postoperatively for about two weeks.
In each of the above described procedures, it is the attachment of the urethral stump to the bladder neck which is particularly difficult and complex. This difficulty is complicated by the tendency of the urethral stump to retract into adjacent tissue. As a result, considerable time and effort must be expended to re-expose the urethral stump and begin the re-anastomosis procedure. Further complicating this procedure is the fact that the urethral stump is hidden beneath the pubic bone thus requiring that the surgeon work at a difficult angle and in positions that are uncomfortable and limiting.
Various devices have been proposed for facilitating this procedure. In U.S. Pat. No. 5,591,179, issued to Edelstein, there is disclosed a suturing device including a shaft with portions defining an interior channel extending between a proximal and a distal end of the shaft. This channel includes a generally axial lumen which extends to the proximal end of the shaft and a generally transverse lumen which extends from the axial lumen distally outwardly to an exit hole at the outer surface of the shaft. A needle and suture can be back loaded into the transverse lumen of the channel while a generally non- compressible member can be movably mounted in the axial lumen of the channel. At the proximal end of the shaft a handle is provided with means operative to push the member distally through the lumen to deploy or expel the needle.
In U.S. Pat. No. 4,911,164, issued to Roth, there is disclosed a suture guide with a curved distal portion. The distal portion of the suture guide has a plurality of exterior axial grooves which can be used to align and guide a curved needle and attached suture. In order to drive the urethral stump to an accessible position, the device is provided with a plurality of outwardly extendable members which engage the lumen of the urethra. These members make it possible to push the urethral stump into approximation with the bladder neck.
In U.S. Pat. No. 5,047,039, issued to Avant et al., there is disclosed a surgical device for the ligation of a dorsal vein and subsequent anastomosis. This device contains a pair of enclosed needles each having an attached suture which needles may be driven from the shaft of the device into adjacent tissue. In general, none of the devices disclosed in the prior art references above is simple to use or makes the anastomosis of the urethral stump to the bladder neck easier. As such, each surgical procedure using prior art devices continues to be time consuming and requires great skill in order to be performed. Accordingly, the need exists for anastomosis devices which overcome the drawbacks of the prior art devices and which are quick and simple to use.
SUMMARY OF THE INVENTION
Apparatus and methods for performing a surgical anastomotic procedure are disclosed herein. Apparatus according to the present disclosure include a tubular body having a proximal end, a distal end and an onion portion formed near the distal end of the tubular body for engaging a first body vessel. The onion portion has a first position within a radial dimension of the tubular body and a second position outside the radial dimension of the tubular body. The apparatus includes a sleeve having an expandable cuff for engaging the second body vessel. The sleeve has a lumen for receiving the tubular body. The apparatus includes a plunger assembly for being recalled in the tubular body. The plunger assembly has a distal end arranged for deploying the onion portion from the first position to the second position.
Preferably, the tubular body has a first position in which the onion sleeve portion is substantially co-linear with or within the radial dimension of the tubular body and a second position in which the onion sleeve portion is deployed transversely with respect to the tubular body. The tubular body desirably has a radius and defines a central lumen having a radius.
In accordance with an embodiment of the present disclosure, the onion sleeve portion includes a plurality of longitudinally oriented slots defining a plurality of ribs. The ribs desirably include at least one flexure line. Preferably, each rib includes a distal flexure line, a proximal flexure line and an intermediate flexure line between the distal and proximal flexure lines. Most preferably, each intermediate flexure line is a double articulating joint. In is envisioned that the onion sleeve portion defines a radius about the intermediate flexure lines which is less than the radius of the tubular body.
In accordance with the present disclosure at least one of the plurality of ribs includes a barb extending therefrom for engaging the first body vessel. Preferably, each barb does not extend beyond the radius of the tubular body while the onion sleeve portion is in the first position. More preferably, each barb is formed on the rib at a location between the proximal flexure line and the intermediate flexure line. It is contemplated that each barb is oriented in a substantially proximal direction when the onion sleeve portion is in the second position.
In certain preferred embodiments, the onion portion has at least one expanded portion disposed outside the radial dimension of the tubular body when the onion portion is in the second position. The onion portion may have two expanded portions for engaging the first body vessel therebetween.
In accordance with an alternative embodiment of the present disclosure, it is envisioned that each rib of the onion sleeve portion includes a distal flexure line, a proximal flexure line, a pair of central flexure lines, a first intermediate flexure line between the distal the pair of central flexure lines and a second intermediate flexure line between the proximal flexure lines and the central flexure lines. Preferably, each first intermediate flexure line is a double articulating joint. More preferably, the onion sleeve portion defines a radius about the first intermediate flexure lines which is less than the radius of the tubular body. It is envisioned that at least one of the plurality of ribs includes a barb extending therefrom, wherein each barb does not extend beyond the radius of the tubular body while the onion sleeve portion is in the first position. It is contemplated that each barb is formed on the rib at a location between the first intermediate flexure lines and the central flexure lines. Preferably, each barb is oriented in a substantially proximal direction when the onion sleeve portion is in the second position.
It is further contemplated that the head portion of the plunger assembly is provided with an engaging element configured and adapted to selectively couple with an engaging element provided at the distal end of the tubular body.
A preferred method of joining a first body vessel and a second body vessel comprises passing an apparatus through the second body vessel, the apparatus having an onion portion so that the onion portion is received in the first body vessel. The onion portion is deployed so that the onion portion moves to a position outside the radial dimension of the tubular body. The first body vessel and second body vessel are approximated and joined.
The method further includes the step of expanding an expandable cuff to engage the second body vessel. The apparatus may include a sleeve having the expandable cuff and the method may include moving the tubular body and the sleeve with respect to one another so as to approximate the first and second body vessels. The apparatus may have a plunger assembly for deploying the onion portion and the method may include advancing the plunger assembly so as to deploy the onion portion. The position of the tubular body and sleeve are desirably secured with respect to one another.
These and other features of the apparatus and method disclosed herein, will become apparent through reference to the following description of embodiments, the accompanying drawings and the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the present disclosure.
FIG. 1 is a perspective view of an anastomosis apparatus, in accordance to an embodiment of the present disclosure, shown in an insertion condition; FIG. 2 is a perspective view of the anastomosis apparatus of FIG. 1, shown in a deployed condition;
FIG. 3 is a partial cross-sectional perspective view of a portion of a urinary system with the anastomosis apparatus of FIG. 1, shown in the insertion condition, and illustrating the anastomosis apparatus being passed through a body lumen and entering a hollow body organ;
FIG. 4 is partial cross-sectional perspective view of the urinary system with the anastomosis apparatus of FIG. 1, with the radially expandable onion sleeve shown in a deployed condition within the hollow body organ and the radially expandable cuff shown in a deployed condition within the body lumen;
FIG. 5 is a cross-sectional side elevational view of the apparatus of FIG. 1, depicting the approximation of the hollow body organ to the body lumen;
FIG. 6 is a perspective view of an anastomosis apparatus, in accordance to another embodiment of the present disclosure, shown in an insertion condition; and
FIG. 7 is a cross-sectional side elevational view of the anastomosis apparatus of FIG. 6, depicting the approximation of the hollow body organ to the body lumen.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Preferred embodiments of the presently disclosed anastomosis apparatus will now be described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. In the drawings and in the description which follows, the term "proximal", as is traditional will refer to the end of the surgical device or instrument of the present disclosure which is closest to the operator, while the term "distal" will refer to the end of the device or instrument which is furthest from the operator.
Referring now to FIGS. 1-5, an anastomosis apparatus, in accordance with the principles of the present disclosure, is shown generally as reference numeral 100. Although apparatus 100 offers significant advantages to a radical prostatectomy procedure, it will be understood that the device is applicable for use in any anastomotic procedure where two body vessels are to be approximated and/or joined, including approximating and/or joining the urethra and bladder, intestinal portions of the body, blood vessels, and any other body vessels.
As seen in FIG. 1, apparatus 100 includes a tubular body 102, a sleeve 104 slidably received about tubular body 102 and a plunger assembly 106 slidably received within tubular body 102. Tubular body 102 includes a proximal end 108 and a distal end 110 and defines a central lumen 112 extending therethrough which central lumen 112 defines a central longitudinal axis "X". Tubular body 102 includes an expandable anchor or onion sleeve portion 114 formed near distal end 110. In accordance with the present disclosure, onion sleeve portion 114 includes a plurality of radially formed, longitudinally oriented, elongated slots 116. Slots 116 define a plurality of longitudinally oriented ribs 118, each desirably having a plurality of transverse flexure lines 120 formed along the length thereof or being otherwise flexible. Preferably, ribs 118 include a distal and a proximal flexure line 120 A, 120B, respectively, and an intermediate flexure line 120C. In one preferred embodiment, intermediate flexure line 120C is a double articulating flexure line, i.e., a flexure line which can be bent in two directions. In accordance with the present disclosure, onion sleeve portion 114 has a biased retracted position, as seen in FIG. 1, in which a radius of onion sleeve portion 114, about intermediate flexure lines 120C, is less than a radius of tubular body 102. Onion sleeve portion 114 has an unbiased expanded position, as seen in FIG. 2, in which the radius of onion sleeve 114, about intermediate flexure lines 120C, is greater than the radius of tubular body 102. In the embodiment shown, when onion sleeve portion 114 is in the expanded position, the portion of each rib 118 between intermediate flexure line 120C and proximal flexure line 120B is disposed at an angle with respect to the longitudinal "X" axis.
Onion sleeve portion 114 of tubular body 102 further desirably includes at least one barb 122 extending outwardly from each rib 118 and in a proximal direction. In accordance with the present disclosure, when onion sleeve portion 114 is in the retracted position, barbs 122 do not extend beyond the radial boundary of tubular sleeve 102. In this manner, barbs 122 do not interfere with the passage of tubular body 102 through sleeve 104. Further, in accordance with the present disclosure, when onion sleeve portion 114 is in the expanded position, it is preferred that barbs 122 are oriented substantially in a proximal direction and are substantially co-linear with the longitudinal "X" axis. While barbs 122 are preferred for penetrating body tissue, it is envisioned that the outer surface of rib 118 can be roughened in order to increase the gripping effect of rib 118 when in contact with body tissue. It is contemplated that onion sleeve portion 114 and barbs 122 are made from a medical grade material, such as, for example, stainless steel or titanium, however, it is preferred that onion sleeve portion 114 and barbs 122 are made from a medical grade bio- absorbable material, such as, for example, polyglycolic acid (PGA) and/or polylactic acid (PLA). As seen in the figures, distal end 110 of tubular body 102 is provided with a blunt end cap 124. However, tubular body 102 may have a distal end which opens into central lumen 112.
Sleeve 104 includes a distal end 130 and a proximal end (not shown) defining a lumen 132 extending therethrough. It is envisioned that distal end 130 of sleeve 104 can be tapered in order to facilitate passage of sleeve 104 through the body lumen. In accordance with the present disclosure, sleeve 104 includes an expandable cuff 134 provided near distal end 130 thereof. Preferably, expandable cuff 134 has a first position in which expandable cuff 134 has a radius which is less than or equal to a radius of sleeve 104 and a second position in which expandable cuff 134 has a radius which is greater than the radius of sleeve 104.
It is envisioned that sleeve 104 is provided with an inflation/deflation lumen (not shown) extending along the length thereof and which is in fluid communication with expandable cuff 134 through at least one access opening (not shown) formed in sleeve 104. In use, the inflation/deflation lumen is coupled to a source of inflation fluid (not shown) and a fluid is injected through the inflation/deflation lumen in order to inflate and expand cuff 134 to an expanded condition and thereby anchor or fix the placement of sleeve 104 within the body lumen. Concomitantly, withdrawal of the fluid used to inflate and expand cuff 134 will cause cuff 134 to deflate and thereby allow sleeve 104 to be withdrawn from the body lumen.
Expandable cuff 134 is preferably fabricated from a medical grade polymer having suitable flexibility and structural integrity to withstand the forces associated with the inflation of cuff 134 and with the function of anchoring sleeve 104 within the body lumen. At least one annular seal, i.e., an O-ring, (not shown) is desirably provided between tubular body 102 and sleeve 104. The annular seal prevents or reduces the possibility of fluids from passing between tubular body 102 and sleeve 104.
Plunger assembly 106 includes a shaft 140 having a distal end 142, a proximal end (not shown) and a head portion 144 operatively coupled to distal end 142. In the embodiment shown, head portion 144 is preferably dimensioned to be received within central lumen 112 of tubular body 102. More preferably, head portion 144 defines a circular outer surface having an outer radius slightly smaller than the inner radius of tubular body 102 It is envisioned that the outer surface of head portion 144 is provided with a coupling element (not shown) configured and adapted to engage a corresponding coupling element (not shown) formed in either the inner surface of the distal end 110 of tubular body 102 or on the inner surface of end cap 124 of tubular body 102. It is contemplated that the coupling element formed on head portion 144 could be a helical thread which is configured and adapted to engage a corresponding helical thread formed on the inner surface of distal end 110 of the tubular body 102 at a location distal of onion sleeve portion 114. It is further contemplated that the coupling elements of head portion 144 and of distal end 110 of tubular body 102 may form a bayonet type coupling. As will be described in greater detail below, in use, as plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102, head portion 144 of plunger assembly 106 first engages the inner surface of ribs 118. As head portion 144 of plunger assembly 106 is further distally advanced, past onion sleeve portion 114, head portion 144 presses ribs 118 radially outward. In so doing, onion sleeve 114 goes from the biased retracted position to the unbiased expanded position, as discussed above. Head portion 144 is then further advanced until the coupling element of head portion 144 engages the coupling element formed at distal end 110 of tubular body 102.
It is envisioned that apparatus 100 be provided with a locking mechanism for securing tubular body 102 to sleeve 104 and to prevent their relative movement with respect to one another.
A preferred method of use and operation of anastomosis apparatus 100 in a radical anastomotic procedure will now be described in greater detail with reference to FIGS. 1-5 and in particular with reference to FIGS. 3-5. Apparatus 100 can be used in either the retropubic or the perineal prostatectomy approaches. With the prostate removed, the bladder neck "N" of the bladder "B" is first reconstructed by everting the inner mucosal lining of bladder "B" and suturing it down to the outer wall of bladder "B" using known surgical techniques. Likewise, urethral stump "S" of urethra "U" is reconstructed by everting the inner mucosal lining of urethral stump "S" and suturing it down to the outer wall of urethra "U", using known surgical techniques. Preferably, with bladder neck "N" reconstructed, bladder neck "N" is sized to properly accommodate and retain distal end 108 of tubular body 102 within bladder "B" using a standard tennis racket type closure (i.e., the opening of the bladder neck constituting the head of the tennis racket and a radial incision extending from the bladder neck constituting the handle portion of the tennis racket. Most preferably, bladder neck "N" is sized to be approximately 7-8 mm in diameter.
With bladder neck "N" reconstructed, apparatus 100, including tubular body 102 and sleeve 104, is passed trans-urethrally through urethra "U" until distal end 110 of tubular body 102 extends out of urethral stump "S" and into bladder "B" through bladder neck "N", as indicated by arrow "A" in FIG. 3. In particular, distal end 110 of tubular body 102 is preferably positioned such that expandable onion sleeve portion 114 of tubular body 102 is positioned entirely within bladder "B". In addition, distal end 130 of sleeve 104 is preferably positioned such that expandable cuff 134 is positioned near urethral stump "S" of urethra "U".
With tubular body 102 positioned within bladder "B", plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102. As described above, as plunger assembly 106 is distally advanced through central lumen 112 of tubular body 102, head portion 144 of plunger assembly 106 first engages the inner surface of ribs 118. As head portion 144 of plunger assembly 106 is further distally advanced, past onion sleeve portion 114, head portion 144 presses ribs 118 radially outward. In so doing, onion sleeve portion 114 is deployed from the biased retracted position to the unbiased expanded position. As such, barbs 122 of ribs 118 of onion sleeve portion 114 become oriented in a substantially proximal direction. Head portion 144 is then further advanced until the coupling element of head portion 144 engages the coupling element formed at distal end 110 of tubular body 102.
With head portion 144 of plunger assembly 106 coupled to distal end 110 of tubular body 102 and onion sleeve portion 114 in the expanded position, either plunger assembly 106 or both plunger assembly 106 and tubular body 102 are pulled in a proximal direction through urethra "U" as indicated by arrows "D". By pulling at least tubular body 102 in a proximal direction, barbs 122 of onion sleeve portion 114 are driven into the wall of bladder "B".
With sleeve 104 positioned near urethral stump "S", a fluid (i.e., air, carbon dioxide, saline or the like) is introduced into cuff 134 to thereby expand and inflate cuff 134. Inflation of cuff 134 results in the radial expansion of cuff 134 and in turn the pressing of cuff 134 against the inner surface of urethra "U", thus preventing axial movement of sleeve 104 through urethra "U".
With onion sleeve portion 114 of tubular body 102 anchored in bladder "B" and cuff 134 of sleeve 104 secured within urethra "U", either tubular body 102, plunger assembly 106 or both tubular body 102 and plunger assembly 106 are withdrawn in a proximal direction through sleeve 104 in order to approximate bladder "B" to urethra "U". Once bladder "B" has been approximated into contact with urethra "U", tubular body 102 is locked in position with respect to sleeve 104 thereby maintaining bladder "B" approximated with urethra "U". The body 102 may be fixed in relation to sleeve 104 using a latch, or any other known means.
With tubular body 102 fixed in position with respect to sleeve 104, head portion 144 of plunger assembly 106 is disengaged from distal end 110 of tubular body 102 and plunger assembly 106 is withdrawn therefrom. It is envisioned that, with plunger assembly 106 removed from central lumen 112 of tubular body 102, that tubular body
102 and sleeve 104 act like a Foley-type catheter to create a passage, defined by slots 116 and central lumen 112, through which body fluid (i.e., urine) is permitted to pass from bladder "B" and out through urethra "U".
In accordance with the present disclosure, it is preferred that tubular body 102 and sleeve 104 are maintained within bladder "B" and urethra "U" for a period of several weeks or for a period of time sufficient for bladder neck "N" and urethral stump "S" to heal and "grow" together. Once bladder neck "N" and urethral stump "S" have sufficiently healed, and barbs 122 sufficiently dissolved and absorbed within the body, onion sleeve portion 114 and cuff 134 are retracted and tubular body 102 and sleeve 104 are withdrawn from urethra "U".
The expandable anchor for engaging the first and/or second body vessel may comprise any expandable structure, including those disclosed in certain embodiments of the following PCT applications, all filed on an even date herewith: Application Entitled Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Member, invented by Russell Heinrich and Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable
Anchor, invented by Russell Heinrich and Scott Manzo (Ref. No. 2798); the disclosures of which are all hereby incorporated by reference herein, in their entirety.
The joining member for joining the first and/or second body vessel may comprise any joining member, including those disclosed in certain embodiments of the following PCT Applications: Method And Apparatus For Anastomosis Including An Anchoring Sleeve, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including Annular Joining Member, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchor For Engaging A Body Vessel And Deployable Sutures, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Anchor For Engaging A Body Vessel And Deployable Sutures, invented by Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Member, invented by Russell Heinrich and Scott Manzo; Method And Apparatus For Anastomosis Including An Expandable Anchor, invented by Russell Heinrich and Scott Manzo; the disclosures of which are all hereby incorporated by reference herein, in their entirety.
Turning now to FIGS. 7 and 8, an anastomosis apparatus, in accordance with an alternative embodiment of the disclosure, is shown generally as reference numeral 200. Apparatus 200 includes a tubular body 202, a sleeve 204 slidably received about tubular body 202 and a plunger assembly 206 slidably received within tubular body 202. Tubular body 202 includes a distal end 210 and a proximal end (not shown) and defines a central lumen 212 extending therethrough which central lumen 212 defines a central longitudinal axis "X". Tubular body 202 includes an expandable onion sleeve portion 214 formed near distal end 210. In accordance with the present disclosure, onion sleeve portion 214 includes a plurality of radially formed, longitudinally oriented, elongated slots 216. Slots 216 define a plurality of longitudinally oriented ribs 218, each having a plurality of transverse flexure lines 220 formed along the length thereof. Preferably, each rib 218 includes a distal flexure line 220A, a proximal flexure line 220B, a pair of central flexure lines 220C, 220D, a first intermediate flexure line 220E formed between distal flexure line 220A and central flexure line 220C and a second intermediate flexure line 220F formed between proximal flexure line 220B and central flexure line 220D.
In accordance with the present disclosure, flexure lines 220A-220F are configured and adapted such that onion sleeve portion 214 has a retracted position, as seen in FIG. 6, in which a radius of onion sleeve portion 214, about first intermediate flexure lines 220E, is less than a radius of tubular body 202. Onion sleeve portion 214 has an unbiased position, as seen in FIG. 7, in which the radius of onion sleeve 214, about intermediate flexure lines 220E, is greater than the radius of the tubular body 202. Preferably, when onion sleeve portion 214 is in the expanded position, the portion of each rib 218 between first intermediate flexure line 220E and central flexure line 220C is orthogonal with respect to the longitudinal "X" axis. Further, when onion sleeve portion 214 is in the expanded position, the portion of each rib 218 between second intermediate flexure 220F and central flexure line 220D is orthogonal with respect to the longitudinal "X" axis. Onion sleeve portion 214 of tubular body 202 further includes at least one barb 222 extending outwardly from each rib 218. Preferably, the at least one barb 222 is provided on the portion of rib 218 between first intermediate flexure line 220E and central flexure line 220C. Preferably, first intermediate flexure line 220E is a double articulating flexure line. Accordingly, when onion sleeve portion 214 is in the retracted position, barbs 222 do not extend beyond the radial boundary of tubular sleeve 202. In this manner, barbs 222 do not interfere with the passage of tubular body 202 through sleeve 204. Further, in accordance with the present disclosure, when onion sleeve portion 214 is in the expanded position, it is preferred that barbs 222 are oriented substantially in a proximal direction and are substantially parallel with the longitudinal "X" axis.
As seen in FIGS. 6 and 7, distal end 210 of tubular body 202 is provided with a blunt end cap 224. However, it is envisioned that tubular body 202 can have a distal end 210 which opens into central lumen 212.
Sleeve 204 includes a distal end 230 and a proximal end (not shown) defining a lumen 232 extending therethrough. It is envisioned that distal end 230 of sleeve 204 can be tapered in order to facilitate passage of sleeve 204 through the body lumen. In accordance with the present disclosure, sleeve 204 includes an expandable cuff 234 provided near distal end 230 thereof. Preferably, expandable cuff 234 has a first position in which expandable cuff 234 has a radius which is less than or equal to a radius of sleeve 204 and a second position in which expandable cuff 234 has a radius which is greater than the radius of sleeve 204.
It is envisioned that sleeve 204 is provided with an inflation deflation lumen (not shown) extending along the length thereof and which is in fluid communication with expandable cuff 234 through at least one access opening (not shown) formed in sleeve 204. In use, the inflation/deflation lumen is coupled to a source of inflation fluid (not shown) and a fluid is injected through the inflation/deflation lumen in order to inflate and expand cuff 234 to an expanded condition and thereby anchor or fix the placement of sleeve 204 within the body lumen. Concomitantly, withdrawal of the fluid used to inflate and expand cuff 234 will cause cuff 234 to deflate and thereby allow sleeve 204 to be withdrawn from the body lumen.
It is contemplated that at least one annular seal, i.e., an O-ring, (not shown) may be provided between tubular body 202 and sleeve 204. Accordingly, it is envisioned that the annular seal prevents or reduces the possibility of fluids from passing between tubular body 202 and sleeve 204.
Plunger assembly 206 includes a shaft 240 having a distal end 242, a proximal end (not shown) and a head portion 244 operatively coupled to distal end 242. In accordance with the present disclosure, head portion 244 is preferably dimensioned to be received within central lumen 212 of tubular body 202. More preferably, head portion 244 defines a circular outer surface having an outer radius slightly smaller than the inner radius of tubular body 202
It is envisioned that the outer surface of head portion 244 is provided with a coupling element, similar to coupling element of head portion 144, configured and adapted to engage a corresponding coupling element formed in either the inner surface of the distal end 210 of tubular body 202 or on the inner surface of end cap 224 of tubular body 202.
In use, as plunger assembly 206 is distally advanced through central lumen 212 of tubular body 202, head portion 244 of plunger assembly 206 first engages the inner surface of ribs 218. As head portion 244 of plunger assembly 206 is further distally advanced, past onion sleeve portion 214, head portion 244 presses ribs 218 radially outward. In so doing, onion sleeve 214 goes from the biased retracted position to the unbiased expanded position, as discussed above. Head portion 244 is then further advanced until the coupling element of head portion 244 engages the coupling element formed at distal end 210 of tubular body 202. In other embodiments, other means are used to deploy the onion sleeve portion.
It is envisioned that apparatus 200 be provided with a locking mechanism for securing tubular body 202 to sleeve 204 and to prevent their relative movement with respect to one another. The body 202 and sleeve 204 may be secured using latch or any other means.
With bladder neck "N" reconstructed, apparatus 200, including tubular body 202 and sleeve 204, is passed trans-urethrally through urethra "U" until distal end 210 of tubular body 202 extends out of urethral stump "S" and into bladder "B" through bladder neck "N". In particular, distal end 210 of tubular body 202 is preferably positioned such that first intermediate flexure line 220E is positioned distally of bladder neck "N" and second intermediate flexure line 220F is positioned proximally of bladder neck "N". In addition, distal end 230 of sleeve 204 is preferably positioned such that expandable cuff 234 is positioned near urethral stump "S" of urethra "U". With tubular body 202 so positioned with respect to bladder neck "N", plunger assembly 206 is distally advanced through central lumen 212 of tubular body 202. As described above, as plunger assembly 206 is distally advanced through central lumen 212 of tubular body 202, head portion 244 of plunger assembly 206 first engages the inner surface of ribs 218, in particular, the inner surface of ribs 218 disposed between first intermediate flexure line 220E and central flexure line 220C. As head portion 244 of plunger assembly 206 is further distally advanced, past onion sleeve portion 214, head portion 244 presses ribs 118 radially outward. In so doing, onion sleeve portion 214 is deployed from the retracted position to the expanded position. As such, barbs 222 of ribs 218 of onion sleeve portion 214 become oriented in a substantially proximal direction. Head portion 244 is then further advanced until the coupling element of head portion 244 engages the coupling element formed at distal end 210 of tubular body 202.
With head portion 244 of plunger assembly 206 coupled to distal end 210 of tubular body 202 and onion sleeve portion 214 in the expanded position, shaft 240 of plunger assembly 206 is pulled in a proximal direction through tubular body 202, while holding tubular body 202 in a fixed position. By pulling shaft 240 in a proximal direction and holding tubular body 202 in a fixed position, second intermediate flexure line 220F of onion sleeve portion 214 is expanded radially outward.
With barbs 222 oriented in a proximal direction, as shaft 240 is pulled in a proximal direction, onion sleeve portion 214, being a double onion, acts like a clamp to close down about bladder neck "N". In so doing, barbs 222 are driven through bladder neck "N" while rib 218, between central flexure line 220D and second intermediate flexure line 220F, acts to support the exterior surface of bladder neck "N". It is envisioned that the portion of each rib 218, between central flexure line 220D and second intermediate flexure line 220F, is provided with an opening for accommodating passage of barbs 222 therethrough during the clamping process. With barbs 222 anchored in the wall of bladder neck "N", shaft 240 of plunger assembly 206 is moved in a proximal direction, with respect to tubular body 202, in order to return second intermediate flexure line 220F to the retracted position. With sleeve 204 positioned near urethral stump "S", a fluid is introduced into cuff 234 to thereby expand and inflate cuff 234. Inflation of cuff 234 results in the radial expansion of cuff 234 and in turn the pressing of cuff 234 against the inner surface of urethra "U", thus preventing axial movement of sleeve 204 through urethra "U". With onion sleeve portion 214 of tubular body 202 anchored in bladder "B" and cuff 234 of sleeve 204 secured within urethra "U", either tubular body 202, plunger assembly 206 or both tubular body 202 and plunger assembly 206 are withdrawn in a proximal direction through sleeve 204 in order to approximate bladder "B" to urethra "U". Once bladder "B" has been approximated into contact with urethra "U", tubular body 202 is locked in position with respect to sleeve 204 thereby maintaining bladder "B" approximated with urethra "U".
With tubular body 202 fixed in position with respect to sleeve 204, head portion 244 of plunger assembly 206 is disengaged from distal end 210 of tubular body 202 and plunger assembly 206 is withdrawn therefrom. In accordance with the present disclosure, it is preferred that tubular body 202 and sleeve 204 are maintained within bladder "B" and urethra "U" for a period of several weeks or for a period of time sufficient for bladder neck "N" and urethral stump "S" to heal and "grow" together. Once bladder neck "N" and urethral stump "S" have sufficiently healed, and barbs 222 sufficiently dissolved and absorbed within the body, onion sleeve portion 214 and cuff 234 are retracted and tubular body 202 and sleeve 204 withdrawn from urethra "U".
While apparatus in accordance with the present disclosure have been described as being used in connection with radical prostatectomy procedures, it is envisioned that apparatus having similar structures and modes of operation can be used in various other surgical procedures. It will be understood that various modifications may be made to the embodiments of the presently disclosed anastomosis devices and methods disclosed herein. For example, the onion sleeve portion may be deployable by other means. One end of the ribs may be attached to a sleeve that is moved proximally, bending the ribs outwardly. In other embodiments, the body has arms that are deployed outwardly by the head portion of the plunger assembly or by some other means. Therefore, the above description should not be construed as limiting, but merely as an exemplification of a preferred embodiment. Those skilled in the art will envision other modifications within the scope of the present disclosure.

Claims

IN THE CLAIMSWhat is claimed is:
1. An apparatus for joining a first body vessel and a second body vessel, comprising: a) a tubular body having a proximal end, a distal end, and an onion portion formed near the distal end of the tubular body for engaging the first body vessel, the onion portion having a first position within a radial dimension of the tubular body and a second position outside the radial dimension of the tubular body; b) a sleeve having an expandable cuff for engaging the second body vessel, the sleeve having a lumen for receiving the tubular body; and c) a plunger assembly for being received in the tubular body, the plunger assembly having a distal end arranged for deploying the onion portion from the first position to the second position.
2. The apparatus of claim 1, wherein the onion portion comprises a plurality of ribs defining a plurality of longitudinally oriented slots.
3. The apparatus of claim 2, wherein each of the ribs has at least one flexure line defined therein.
4. The apparatus of claim 3, wherein each of the ribs has a proximal flexure line, a distal flexure line, and an intermediate flexure line defined therein.
5. The apparatus of claim 4, wherein the intermediate flexure line comprises a double articulating joint.
6. The apparatus of claim 1 , wherein the onion portion has a plurality of barbs for engaging the first body vessel, the barbs being arranged to face in a proximal direction when the onion portion is in the second position.
7. The apparatus of claim 1, wherein the onion portion has at least one expanded portion disposed outside the radial dimension of the tubular body when the onion portion is in the second position for engaging the first body vessel.
8. The apparatus of claim 7, wherein the onion portion has a pair of expanded portions disposed outside the radial dimension of the tubular body when the onion portion is in the second position for engaging the first body vessel between the pair of expanded portions.
9. The apparatus of claim 8, wherein the onion portion comprises a plurality of ribs, each of the ribs having a proximal flexure line, a distal flexure line, a pair of central flexure lines, a first intermediate flexure line between the central flexure lines and the distal flexure line, and a second intermediate flexure line between the central flexure lines and the proximal flexure line.
10. The apparatus of claim 9, wherein the first and second intermediate flexure line comprise double articulating joints.
11. The apparatus of claim 10, wherein the onion portion defines a radius about the first and second intermediate flexure lines that is less than the radial dimension of the tubular body.
12. The apparatus of claim 1 , wherein the distal end of the plunger assembly has an engaging element adapted to selectively couple with an engaging element provided at the distal end of the tubular body.
13. A method of joining a first body vessel and a second body vessel, comprising: a) passing an apparatus through the second body vessel, the apparatus having a tubular body and an onion portion, so that the onion portion is received in the first body vessel; b) deploying the onion portion so that the onion portion moves to a position outside the radial dimension of the tubular body; and c) approximating and joining the first body vessel and the second body vessel.
14. The method of claim 13, wherein the step of approximating includes deploying an expandable cuff so as to engage the second body vessel.
15. The method of claim 14, wherein onion portion being disposed on the tubular body, and a sleeve, the sleeve having the expandable cuff, and the method further comprises moving the tubular body and the sleeve with respect to one another so as to approximate the first and second body vessels.
16. The method of claim 13, wherein the apparatus has a tubular body, the onion portion being disposed on the tubular body, and a plunger assembly for deploying the onion portion, and wherein the method includes advancing the plunger assembly so as to deploy the onion portion.
17. The method of claim 15, further comprising securing the position of the tubular body and sleeve with respect to one another.
PCT/US2003/011691 2002-06-20 2003-04-16 Method and apparatus for anastomosis including an anchoring sleeve WO2004000135A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2489507A CA2489507C (en) 2002-06-20 2003-04-16 Method and apparatus for anastomosis including an anchoring sleeve
US10/517,404 US7510560B2 (en) 2002-06-20 2003-04-16 Method and apparatus for anastomosis including an anchoring sleeve
JP2004515636A JP4364796B2 (en) 2002-06-20 2003-04-16 Method and apparatus for joining comprising a fixing sleeve
DE60333012T DE60333012D1 (en) 2002-06-20 2003-04-16 DEVICE FOR ANASTOMOSIS WITH AN ANCHORING SLEEVE
AU2003279113A AU2003279113B2 (en) 2002-06-20 2003-04-16 Method and apparatus for anastomosis including an anchoring sleeve
EP03761016A EP1519688B1 (en) 2002-06-20 2003-04-16 Apparatus for anastomosis including an anchoring sleeve
US12/103,218 US7993357B2 (en) 2002-06-20 2008-04-15 Method and apparatus for anastomosis including an anchoring sleeve
US13/187,875 US20110282366A1 (en) 2002-06-20 2011-07-21 Method and Apparatus for Anastomosis Including an Anchoring Sleeve
US13/187,825 US8591535B2 (en) 2002-06-20 2011-07-21 Method and apparatus for anastomosis including an anchoring sleeve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US39078002P 2002-06-20 2002-06-20
US60/390,780 2002-06-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10517404 A-371-Of-International 2003-04-16
US12/103,218 Continuation US7993357B2 (en) 2002-06-20 2008-04-15 Method and apparatus for anastomosis including an anchoring sleeve

Publications (2)

Publication Number Publication Date
WO2004000135A2 true WO2004000135A2 (en) 2003-12-31
WO2004000135A3 WO2004000135A3 (en) 2004-04-15

Family

ID=30000618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/011691 WO2004000135A2 (en) 2002-06-20 2003-04-16 Method and apparatus for anastomosis including an anchoring sleeve

Country Status (7)

Country Link
US (4) US7510560B2 (en)
EP (1) EP1519688B1 (en)
JP (2) JP4364796B2 (en)
CA (1) CA2489507C (en)
DE (1) DE60333012D1 (en)
ES (1) ES2346522T3 (en)
WO (1) WO2004000135A2 (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1700056A2 (en) * 2003-12-12 2006-09-13 Novare Surgical Systems, Inc. Device and method for performing multiple anastomoses
WO2007013070A1 (en) * 2005-07-25 2007-02-01 Endogun Medical Systems Ltd. Anastomosis device and system
WO2007056051A2 (en) * 2005-11-07 2007-05-18 Ethicon Endo-Surgery, Inc. Instrument for effecting anastomosis of respective tissues defining two body lumens
EP1866023A2 (en) * 2005-03-21 2007-12-19 Barry Gellman Tissue approximation device
US7497854B2 (en) 2004-05-07 2009-03-03 Ethicon Endo-Surgery, Inc. Method and instrument for effecting anastomosis of respective tissues defining two body lumens
US7510560B2 (en) 2002-06-20 2009-03-31 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an anchoring sleeve
US7520883B2 (en) 2002-06-20 2009-04-21 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an anchoring sleeve
WO2009130457A1 (en) * 2008-04-23 2009-10-29 In Vivo Technology Limited Expanding medical collet
US7648515B2 (en) 2002-04-16 2010-01-19 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US7717928B2 (en) 2005-05-20 2010-05-18 Ams Research Corporation Anastomosis device configurations and methods
US7771443B2 (en) 2005-05-20 2010-08-10 Ams Research Corporation Anastomosis device approximating structure configurations
US7780687B2 (en) 2002-04-17 2010-08-24 Tyco Healthcare Group Lp Method and apparatus for anastomosis including expandable anchor
US7850649B2 (en) 2007-11-09 2010-12-14 Ams Research Corporation Mechanical volume control for injection devices
US7993264B2 (en) 2006-11-09 2011-08-09 Ams Research Corporation Orientation adapter for injection tube in flexible endoscope
US7998155B2 (en) 2002-06-20 2011-08-16 Tyco Healthcare Group Lp Method and apparatus for anastomosis including annular joining member
US7998154B2 (en) 2002-06-19 2011-08-16 Tyco Healthcare Group Lp Method and apparatus for radical prostatectomy anastomosis
EP2385032A1 (en) * 2002-11-08 2011-11-09 Takeda Pharmaceutical Company Limited GPR40 Receptor function regulator
US8066725B2 (en) 2006-10-17 2011-11-29 Ams Research Corporation Anastomosis device having improved safety features
US8083804B2 (en) 2002-06-19 2011-12-27 Tyco Healthcare Group Lp Method and apparatus for anastomosis including annular joining member
US8177799B2 (en) 2002-06-19 2012-05-15 Tyco Healthcare Lp Method and apparatus for anastomosis
US8277466B2 (en) 2006-11-14 2012-10-02 Ams Research Corporation Anastomosis device and method
US8388349B2 (en) 2009-01-14 2013-03-05 Ams Research Corporation Anastomosis deployment force training tool
US8491525B2 (en) 2006-11-17 2013-07-23 Ams Research Corporation Systems, apparatus and associated methods for needleless delivery of therapeutic fluids
US8529590B2 (en) 2002-08-22 2013-09-10 Ams Research Corporation Anastomosis device and related methods
US8636756B2 (en) 2005-02-18 2014-01-28 Ams Research Corporation Anastomosis device and surgical tool actuation mechanism configurations
US8747386B2 (en) 2010-12-16 2014-06-10 Ams Research Corporation Anastomosis device and related methods
US8764775B2 (en) 2002-08-22 2014-07-01 Ams Research Corporation Anastomosis device and related methods
EP2558004A4 (en) * 2010-04-16 2015-04-29 Univ Utah Res Found Methods, devices, and apparatus for performing a vascular anastomosis
US9307991B2 (en) 2002-08-22 2016-04-12 Ams Research, Llc Anastomosis device and related methods
US9381335B2 (en) 2012-03-21 2016-07-05 Ams Research Corporation Bladder wall drug delivery system

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080177288A1 (en) * 2007-01-19 2008-07-24 Carlson Mark A Remote Suturing Device
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US8075572B2 (en) 2007-04-26 2011-12-13 Ethicon Endo-Surgery, Inc. Surgical suturing apparatus
US8100922B2 (en) 2007-04-27 2012-01-24 Ethicon Endo-Surgery, Inc. Curved needle suturing tool
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8568410B2 (en) 2007-08-31 2013-10-29 Ethicon Endo-Surgery, Inc. Electrical ablation surgical instruments
US7875054B2 (en) * 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US8480657B2 (en) 2007-10-31 2013-07-09 Ethicon Endo-Surgery, Inc. Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
US20090112059A1 (en) 2007-10-31 2009-04-30 Nobis Rudolph H Apparatus and methods for closing a gastrotomy
US8262680B2 (en) 2008-03-10 2012-09-11 Ethicon Endo-Surgery, Inc. Anastomotic device
JP2011524188A (en) * 2008-05-28 2011-09-01 シームヴァード リミテッド Anastomosis instrument
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8679003B2 (en) 2008-05-30 2014-03-25 Ethicon Endo-Surgery, Inc. Surgical device and endoscope including same
US8070759B2 (en) 2008-05-30 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical fastening device
US8652150B2 (en) 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device
US8114072B2 (en) 2008-05-30 2012-02-14 Ethicon Endo-Surgery, Inc. Electrical ablation device
US8317806B2 (en) 2008-05-30 2012-11-27 Ethicon Endo-Surgery, Inc. Endoscopic suturing tension controlling and indication devices
US8906035B2 (en) 2008-06-04 2014-12-09 Ethicon Endo-Surgery, Inc. Endoscopic drop off bag
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US8361112B2 (en) 2008-06-27 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical suture arrangement
US8262563B2 (en) 2008-07-14 2012-09-11 Ethicon Endo-Surgery, Inc. Endoscopic translumenal articulatable steerable overtube
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US20110118767A1 (en) * 2008-07-30 2011-05-19 Ams Research Corporation Method and Apparatus for Determining Status of Approximation Structures on Anastomosis Device
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8529563B2 (en) 2008-08-25 2013-09-10 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8241204B2 (en) 2008-08-29 2012-08-14 Ethicon Endo-Surgery, Inc. Articulating end cap
US8480689B2 (en) 2008-09-02 2013-07-09 Ethicon Endo-Surgery, Inc. Suturing device
US8409200B2 (en) 2008-09-03 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8114119B2 (en) 2008-09-09 2012-02-14 Ethicon Endo-Surgery, Inc. Surgical grasping device
US8337394B2 (en) 2008-10-01 2012-12-25 Ethicon Endo-Surgery, Inc. Overtube with expandable tip
US8157834B2 (en) 2008-11-25 2012-04-17 Ethicon Endo-Surgery, Inc. Rotational coupling device for surgical instrument with flexible actuators
US8172772B2 (en) 2008-12-11 2012-05-08 Ethicon Endo-Surgery, Inc. Specimen retrieval device
US8828031B2 (en) 2009-01-12 2014-09-09 Ethicon Endo-Surgery, Inc. Apparatus for forming an anastomosis
US8361066B2 (en) 2009-01-12 2013-01-29 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8252057B2 (en) 2009-01-30 2012-08-28 Ethicon Endo-Surgery, Inc. Surgical access device
US9226772B2 (en) 2009-01-30 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical device
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US20110098704A1 (en) 2009-10-28 2011-04-28 Ethicon Endo-Surgery, Inc. Electrical ablation devices
US8608652B2 (en) 2009-11-05 2013-12-17 Ethicon Endo-Surgery, Inc. Vaginal entry surgical devices, kit, system, and method
US8353487B2 (en) 2009-12-17 2013-01-15 Ethicon Endo-Surgery, Inc. User interface support devices for endoscopic surgical instruments
US8496574B2 (en) 2009-12-17 2013-07-30 Ethicon Endo-Surgery, Inc. Selectively positionable camera for surgical guide tube assembly
US8506564B2 (en) 2009-12-18 2013-08-13 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9028483B2 (en) 2009-12-18 2015-05-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
US9005198B2 (en) 2010-01-29 2015-04-14 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an electrode
CN101803937B (en) * 2010-03-26 2011-11-09 孙颖浩 Supporting probe for ureter in minimally invasive surgery
US20120158025A1 (en) * 2010-12-15 2012-06-21 Christopher Anderson Anastomosis device and related methods
US10092291B2 (en) 2011-01-25 2018-10-09 Ethicon Endo-Surgery, Inc. Surgical instrument with selectively rigidizable features
US9314620B2 (en) 2011-02-28 2016-04-19 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9254169B2 (en) 2011-02-28 2016-02-09 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
US9233241B2 (en) 2011-02-28 2016-01-12 Ethicon Endo-Surgery, Inc. Electrical ablation devices and methods
WO2012125785A1 (en) 2011-03-17 2012-09-20 Ethicon Endo-Surgery, Inc. Hand held surgical device for manipulating an internal magnet assembly within a patient
WO2013025436A1 (en) 2011-08-12 2013-02-21 Boston Scientific Scimed, Inc. Anastomosis kit for radical prostatectomy procedure
US8986199B2 (en) 2012-02-17 2015-03-24 Ethicon Endo-Surgery, Inc. Apparatus and methods for cleaning the lens of an endoscope
US9427255B2 (en) 2012-05-14 2016-08-30 Ethicon Endo-Surgery, Inc. Apparatus for introducing a steerable camera assembly into a patient
US9078662B2 (en) 2012-07-03 2015-07-14 Ethicon Endo-Surgery, Inc. Endoscopic cap electrode and method for using the same
US9545290B2 (en) 2012-07-30 2017-01-17 Ethicon Endo-Surgery, Inc. Needle probe guide
US9572623B2 (en) 2012-08-02 2017-02-21 Ethicon Endo-Surgery, Inc. Reusable electrode and disposable sheath
US10314649B2 (en) 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US20140081305A1 (en) * 2012-09-06 2014-03-20 Indian Wells Medical, Inc. Hollow Organ Coring Tool with Collapsing Anvil and Method of Use
US10098527B2 (en) 2013-02-27 2018-10-16 Ethidcon Endo-Surgery, Inc. System for performing a minimally invasive surgical procedure
WO2016128840A1 (en) * 2015-02-09 2016-08-18 Coraflo Ltd. A flow and delivery apparatus
CN105640604B (en) * 2015-12-25 2017-12-15 有研亿金新材料有限公司 A kind of art medium vessels rapid abutting joint servicing unit
CN114948038B (en) * 2022-07-28 2022-09-30 北京大学第三医院(北京大学第三临床医学院) Automatic anastomosis device for minimally invasive blood vessels through catheters

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245083B1 (en) * 1998-09-25 2001-06-12 Cryolife, Inc. Sutureless anastomotic technique using a bioadhesive and device therefor

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) * 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US3713447A (en) * 1971-08-16 1973-01-30 E Adair Suprapubic shunt
US4553543A (en) * 1984-03-05 1985-11-19 Amarasinghe Disamodha C Suturing assembly and method
US4608965A (en) * 1985-03-27 1986-09-02 Anspach Jr William E Endoscope retainer and tissue retracting device
US4699147A (en) * 1985-09-25 1987-10-13 Cordis Corporation Intraventricular multielectrode cardial mapping probe and method for using same
US4848367A (en) * 1987-02-11 1989-07-18 Odis L. Avant Method of effecting dorsal vein ligation
US5478353A (en) * 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US4803984A (en) * 1987-07-06 1989-02-14 Montefiore Hospital Association Of Western Pennsylvania Method for performing small vessel anastomosis
SU1616624A1 (en) * 1987-07-14 1990-12-30 Предприятие П/Я А-3697 Surgical suturing apparatus
US4911164A (en) * 1988-04-26 1990-03-27 Roth Robert A Surgical tool and method of use
US5425739A (en) * 1989-03-09 1995-06-20 Avatar Design And Development, Inc. Anastomosis stent and stent selection system
US5197971A (en) * 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5366462A (en) * 1990-08-28 1994-11-22 Robert L. Kaster Method of side-to-end vascular anastomotic stapling
US5047039A (en) * 1990-09-14 1991-09-10 Odis Lynn Avant Method and apparatus for effecting dorsal vein ligation and tubular anastomosis and laparoscopic prostatectomy
US5073169A (en) * 1990-10-02 1991-12-17 Steve Raiken Trocar support
US5122156A (en) * 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US5312456A (en) * 1991-01-31 1994-05-17 Carnegie Mellon University Micromechanical barb and method for making the same
US5632761A (en) * 1991-05-29 1997-05-27 Origin Medsystems, Inc. Inflatable devices for separating layers of tissue, and methods of using
GB9111972D0 (en) * 1991-06-04 1991-07-24 Clinical Product Dev Ltd Medical/surgical devices
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
HU211761B (en) * 1991-11-06 1995-12-28 Cziffer Approximator for single usual especially for the sawing and the replacement of damaged nerves
FR2685208B1 (en) * 1991-12-23 1998-02-27 Ela Medical Sa VENTRICULAR CANNULA DEVICE.
US5234448A (en) * 1992-02-28 1993-08-10 Shadyside Hospital Method and apparatus for connecting and closing severed blood vessels
US5364408A (en) * 1992-09-04 1994-11-15 Laurus Medical Corporation Endoscopic suture system
US5578044A (en) * 1992-09-04 1996-11-26 Laurus Medical Corporation Endoscopic suture system
US5540704A (en) * 1992-09-04 1996-07-30 Laurus Medical Corporation Endoscopic suture system
US6048351A (en) * 1992-09-04 2000-04-11 Scimed Life Systems, Inc. Transvaginal suturing system
US5713889A (en) * 1992-10-20 1998-02-03 Chang; Hau Hsien Urethral stump carrier for radical retropubic prostatectomy
US5591206A (en) * 1993-09-30 1997-01-07 Moufarr+E,Gra E+Ee Ge; Richard Method and device for closing wounds
DK145593A (en) * 1993-12-23 1995-06-24 Joergen A Rygaard Surgical double instrument for performing connection mlm. arteries (end-to-side anastomosis)
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5464415A (en) * 1994-03-15 1995-11-07 Chen; Te-Chuan Sutureless intestinal anastomosis gun
US5540701A (en) * 1994-05-20 1996-07-30 Hugh Sharkey Passive fixation anastomosis method and device
US5545171A (en) * 1994-09-22 1996-08-13 Vidamed, Inc. Anastomosis catheter
US5554162A (en) * 1994-12-02 1996-09-10 Delange; Gregory S. Method and device for surgically joining luminal structures
US5695504A (en) * 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5904697A (en) * 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5591179A (en) * 1995-04-19 1997-01-07 Applied Medical Resources Corporation Anastomosis suturing device and method
US5702412A (en) * 1995-10-03 1997-12-30 Cedars-Sinai Medical Center Method and devices for performing vascular anastomosis
US5716370A (en) * 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US5980483A (en) * 1996-05-21 1999-11-09 Dimitri; Mauro Drainage catheter for continent urinary neo-bladders
US5707380A (en) * 1996-07-23 1998-01-13 United States Surgical Corporation Anastomosis instrument and method
US5833698A (en) * 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US6024748A (en) * 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US5868763A (en) * 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US6149658A (en) * 1997-01-09 2000-11-21 Coalescent Surgical, Inc. Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5944730A (en) * 1997-05-19 1999-08-31 Cardio Medical Solutions, Inc. Device and method for assisting end-to-side anastomosis
US6063114A (en) * 1997-09-04 2000-05-16 Kensey Nash Corporation Connector system for vessels, ducts, lumens or hollow organs and methods of use
US5868762A (en) * 1997-09-25 1999-02-09 Sub-Q, Inc. Percutaneous hemostatic suturing device and method
JP4205306B2 (en) * 1997-09-26 2009-01-07 クリオライフ,インコーポレイティド Technique for anastomosing using bioadhesive without stitching and apparatus therefor
US6280460B1 (en) * 1998-02-13 2001-08-28 Heartport, Inc. Devices and methods for performing vascular anastomosis
US5951576A (en) * 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
US6051007A (en) * 1998-03-02 2000-04-18 Corvascular, Inc. Sternal closure device and instruments therefor
US6176864B1 (en) * 1998-03-09 2001-01-23 Corvascular, Inc. Anastomosis device and method
AU744956B2 (en) * 1998-03-20 2002-03-07 Boston Scientific Limited Endoscopic suture systems
US6080167A (en) * 1998-04-28 2000-06-27 Lyell; Mark S. Anastomotic instrument
US6203553B1 (en) * 1999-09-08 2001-03-20 United States Surgical Stapling apparatus and method for heart valve replacement
US6152937A (en) * 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6695859B1 (en) * 1999-04-05 2004-02-24 Coalescent Surgical, Inc. Apparatus and methods for anastomosis
US6529756B1 (en) * 1999-11-22 2003-03-04 Scimed Life Systems, Inc. Apparatus for mapping and coagulating soft tissue in or around body orifices
US7648515B2 (en) 2002-04-16 2010-01-19 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
AU2003223623A1 (en) 2002-06-19 2004-01-06 Tyco Healthcare Group, Lp Method and apparatus for anastomosis including annular joining member
JP4384033B2 (en) * 2002-06-19 2009-12-16 タイコ ヘルスケア グループ エルピー Method and apparatus for anastomosis
DE60333012D1 (en) 2002-06-20 2010-07-29 Tyco Healthcare DEVICE FOR ANASTOMOSIS WITH AN ANCHORING SLEEVE
EP1524941B1 (en) 2002-06-20 2011-01-12 Tyco Healthcare Group LP Apparatus for anastomosis including an anchoring sleeve
WO2004000093A2 (en) 2002-06-20 2003-12-31 Tyco Healthcare Group, Lp Method and apparatus for anastomosis including annular joining member
US7175660B2 (en) * 2002-08-29 2007-02-13 Mitralsolutions, Inc. Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen
US7572267B2 (en) 2003-04-16 2009-08-11 Tyco Healthcare Group Lp Method and apparatus for radical prostatectomy anastomosis including an anchor for engaging a body vessel and deployable sutures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245083B1 (en) * 1998-09-25 2001-06-12 Cryolife, Inc. Sutureless anastomotic technique using a bioadhesive and device therefor

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775616B2 (en) 2002-04-16 2017-10-03 Covidien Lp Methods and apparatus for anastomosis including expandable anchor
US9775615B2 (en) 2002-04-16 2017-10-03 Covidien Lp Methods and apparatus for anastomosis including expandable anchor
US8715304B2 (en) 2002-04-16 2014-05-06 Covidien Lp Method and apparatus for anastomosis including an expandable anchor
US8709024B2 (en) 2002-04-16 2014-04-29 Covidien Lp Methods and apparatus for anastomosis including an expandable anchor
US7648515B2 (en) 2002-04-16 2010-01-19 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an expandable anchor
US7780687B2 (en) 2002-04-17 2010-08-24 Tyco Healthcare Group Lp Method and apparatus for anastomosis including expandable anchor
US8480694B2 (en) 2002-04-17 2013-07-09 Covidien Lp Method and apparatus for anastomosis including an expandable anchor
US8486095B2 (en) 2002-06-19 2013-07-16 Covidien Lp Method and apparatus for radical prostatectomy anastomosis
US7998154B2 (en) 2002-06-19 2011-08-16 Tyco Healthcare Group Lp Method and apparatus for radical prostatectomy anastomosis
US9066718B2 (en) 2002-06-19 2015-06-30 Covidien Lp Method and apparatus for anastomosis
US8083804B2 (en) 2002-06-19 2011-12-27 Tyco Healthcare Group Lp Method and apparatus for anastomosis including annular joining member
US8177799B2 (en) 2002-06-19 2012-05-15 Tyco Healthcare Lp Method and apparatus for anastomosis
US8591535B2 (en) 2002-06-20 2013-11-26 Covidien Lp Method and apparatus for anastomosis including an anchoring sleeve
US7520883B2 (en) 2002-06-20 2009-04-21 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an anchoring sleeve
US7510560B2 (en) 2002-06-20 2009-03-31 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an anchoring sleeve
US8109950B2 (en) 2002-06-20 2012-02-07 Tyco Healthcare Group Lp Method and apparatus for anastomosis including an anchoring sleeve
US7998155B2 (en) 2002-06-20 2011-08-16 Tyco Healthcare Group Lp Method and apparatus for anastomosis including annular joining member
US7993357B2 (en) 2002-06-20 2011-08-09 Tyco Healthcare Group Method and apparatus for anastomosis including an anchoring sleeve
US8529590B2 (en) 2002-08-22 2013-09-10 Ams Research Corporation Anastomosis device and related methods
US8551126B2 (en) 2002-08-22 2013-10-08 Ams Research Corporation Anastomosis device and related methods
US8764775B2 (en) 2002-08-22 2014-07-01 Ams Research Corporation Anastomosis device and related methods
US9307991B2 (en) 2002-08-22 2016-04-12 Ams Research, Llc Anastomosis device and related methods
EP2385032A1 (en) * 2002-11-08 2011-11-09 Takeda Pharmaceutical Company Limited GPR40 Receptor function regulator
EP1700056A4 (en) * 2003-12-12 2010-07-07 Novare Surgical Systems Inc Device and method for performing multiple anastomoses
US9259224B2 (en) 2003-12-12 2016-02-16 Vitalitec International, Inc. Device and method for performing multiple anastomoses
US8080023B2 (en) 2003-12-12 2011-12-20 Vitalitec International, Inc. Device and method for performing multiple anastomoses
EP1700056A2 (en) * 2003-12-12 2006-09-13 Novare Surgical Systems, Inc. Device and method for performing multiple anastomoses
US7497854B2 (en) 2004-05-07 2009-03-03 Ethicon Endo-Surgery, Inc. Method and instrument for effecting anastomosis of respective tissues defining two body lumens
US7500972B2 (en) 2004-05-07 2009-03-10 Ethicon Endo-Surgery, Inc. Device for alternately holding, or effecting relative longitudinal movement, of members of a medical instrument
US7500980B2 (en) 2004-05-07 2009-03-10 Ethicon Endo-Surgery, Inc. Method and instrument for effecting anastomosis of respective tissues defining two body lumens
US7559938B2 (en) 2004-05-07 2009-07-14 Ethicon Endo-Surgery, Inc. Instrument for effecting anastomosis of respective tissues defining two body lumens
US7713278B2 (en) 2004-05-07 2010-05-11 Ethicon Endo-Surgery, Inc. Method and instrument for effecting anastomosis of respective tissues defining two body lumens
US7553317B2 (en) 2004-05-07 2009-06-30 Ethicon Endo-Surgery, Inc. Instrument for effecting anastomosis of respective tissues defining two body lumens
US7559939B2 (en) 2004-05-07 2009-07-14 Ethicon Endo-Surgery, Inc. Instrument for effecting anastomosis of respective tissues defining two body lumens
US8636756B2 (en) 2005-02-18 2014-01-28 Ams Research Corporation Anastomosis device and surgical tool actuation mechanism configurations
EP1866023A2 (en) * 2005-03-21 2007-12-19 Barry Gellman Tissue approximation device
EP1866023A4 (en) * 2005-03-21 2010-05-05 Boston Scient Ltd Tissue approximation device
US7585308B2 (en) 2005-03-30 2009-09-08 Ethicon Endo-Surgery, Inc. Handle system and method for use in anastomotic procedures
US7789890B2 (en) 2005-03-30 2010-09-07 Ethicon Endo-Surgery, Inc. Harness and balloon catheter assembly and method for use in anastomosis procedures
US7708748B2 (en) 2005-03-30 2010-05-04 Ethicon Endo-Surgery, Inc. Anastomosis device
US7824421B2 (en) 2005-03-30 2010-11-02 Ethicon Endo-Surgery, Inc. Anchors for use in anastomotic procedures
US8425540B2 (en) 2005-05-20 2013-04-23 Ams Research Corporation Anastomosis device approximating structure configurations
US8277467B2 (en) 2005-05-20 2012-10-02 Ams Research Corporation Anastomosis device configurations and methods
US7717928B2 (en) 2005-05-20 2010-05-18 Ams Research Corporation Anastomosis device configurations and methods
US7771443B2 (en) 2005-05-20 2010-08-10 Ams Research Corporation Anastomosis device approximating structure configurations
WO2007013070A1 (en) * 2005-07-25 2007-02-01 Endogun Medical Systems Ltd. Anastomosis device and system
WO2007056051A2 (en) * 2005-11-07 2007-05-18 Ethicon Endo-Surgery, Inc. Instrument for effecting anastomosis of respective tissues defining two body lumens
WO2007056051A3 (en) * 2005-11-07 2007-10-25 Ethicon Endo Surgery Inc Instrument for effecting anastomosis of respective tissues defining two body lumens
US8066725B2 (en) 2006-10-17 2011-11-29 Ams Research Corporation Anastomosis device having improved safety features
US7993264B2 (en) 2006-11-09 2011-08-09 Ams Research Corporation Orientation adapter for injection tube in flexible endoscope
US8277466B2 (en) 2006-11-14 2012-10-02 Ams Research Corporation Anastomosis device and method
US8663257B2 (en) 2006-11-14 2014-03-04 Ams Research Corporation Anastomosis device and method
US8491525B2 (en) 2006-11-17 2013-07-23 Ams Research Corporation Systems, apparatus and associated methods for needleless delivery of therapeutic fluids
US7850649B2 (en) 2007-11-09 2010-12-14 Ams Research Corporation Mechanical volume control for injection devices
US9706900B2 (en) 2007-11-19 2017-07-18 Ams Research Corporation Systems, apparatus and associated methods for needleless delivery of therapeutic fluids
WO2009130457A1 (en) * 2008-04-23 2009-10-29 In Vivo Technology Limited Expanding medical collet
US8388349B2 (en) 2009-01-14 2013-03-05 Ams Research Corporation Anastomosis deployment force training tool
EP2558004A4 (en) * 2010-04-16 2015-04-29 Univ Utah Res Found Methods, devices, and apparatus for performing a vascular anastomosis
US9642623B2 (en) 2010-04-16 2017-05-09 The University Of Utah Research Foundation Methods, devices and apparatus for performing a vascular anastomosis
US8747386B2 (en) 2010-12-16 2014-06-10 Ams Research Corporation Anastomosis device and related methods
US9381335B2 (en) 2012-03-21 2016-07-05 Ams Research Corporation Bladder wall drug delivery system

Also Published As

Publication number Publication date
CA2489507A1 (en) 2003-12-31
US7510560B2 (en) 2009-03-31
US8591535B2 (en) 2013-11-26
US20050192602A1 (en) 2005-09-01
US7993357B2 (en) 2011-08-09
ES2346522T3 (en) 2010-10-18
US20110276069A1 (en) 2011-11-10
US20080215063A1 (en) 2008-09-04
WO2004000135A3 (en) 2004-04-15
DE60333012D1 (en) 2010-07-29
AU2003279113A1 (en) 2004-01-06
JP4364796B2 (en) 2009-11-18
JP2005529707A (en) 2005-10-06
CA2489507C (en) 2010-10-19
US20110282366A1 (en) 2011-11-17
EP1519688A2 (en) 2005-04-06
JP2009261971A (en) 2009-11-12
EP1519688B1 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CA2489507C (en) Method and apparatus for anastomosis including an anchoring sleeve
US7998155B2 (en) Method and apparatus for anastomosis including annular joining member
US8349019B2 (en) Method and apparatus for anastomosis including annular joining member
US9066718B2 (en) Method and apparatus for anastomosis
US8109950B2 (en) Method and apparatus for anastomosis including an anchoring sleeve
US7998154B2 (en) Method and apparatus for radical prostatectomy anastomosis
AU2003279113B2 (en) Method and apparatus for anastomosis including an anchoring sleeve

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10517404

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003279113

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2489507

Country of ref document: CA

Ref document number: 2004515636

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003761016

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003761016

Country of ref document: EP