WO2004009222A1 - Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device - Google Patents

Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device Download PDF

Info

Publication number
WO2004009222A1
WO2004009222A1 PCT/JP2003/007393 JP0307393W WO2004009222A1 WO 2004009222 A1 WO2004009222 A1 WO 2004009222A1 JP 0307393 W JP0307393 W JP 0307393W WO 2004009222 A1 WO2004009222 A1 WO 2004009222A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
reverse osmosis
osmosis membrane
wire
membrane
Prior art date
Application number
PCT/JP2003/007393
Other languages
French (fr)
Japanese (ja)
Inventor
Yuya Sato
Makio Tamura
Original Assignee
Organo Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corporation filed Critical Organo Corporation
Priority to AU2003242262A priority Critical patent/AU2003242262A1/en
Publication of WO2004009222A1 publication Critical patent/WO2004009222A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/143Specific spacers on the feed side
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a spiral membrane element, a reverse osmosis membrane module, and a reverse osmosis membrane device capable of performing a stable water flow treatment for a long period of time without pretreatment even for raw water having high turbidity such as industrial water. Things. Background art
  • a spiral membrane element using a reverse osmosis membrane (RO membrane) or nanofiltration membrane (NF membrane) as a permeable membrane has been used.
  • a method for separating ionic components and low molecular components from raw water is known.
  • a spiral membrane element that has been generally used in the past has a reverse osmosis membrane 91 superimposed on both sides of a permeated water spacer 92 and bonded on three sides.
  • the raw water 96 is supplied from one end face 9a of the spiral membrane element 90, flows along the raw water spacer 95, and flows from the other end face 9b of the spiral membrane element 90. It is discharged as concentrated water 98.
  • the raw water 96 passes through the reverse osmosis membrane 91 to become permeated water 97, and this permeated water 97 flows along the permeated water spacer 92. It flows into the inside of the permeated water collecting pipe 94 and is discharged from the end of the permeated water collecting pipe 94. In this way, the raw water sensor 95 disposed between the wound bag-like membranes 93 serves A road will be formed.
  • pretreatment is usually performed for the purpose of removing turbidity of raw water.
  • the reason for performing this pretreatment is that the thickness of the raw water sensor of the spiral type membrane element is usually 1 mm or less in order to make the contact area between the raw water and the reverse osmosis membrane as large as possible while securing the raw water flow path. It is so thin that turbidity is accumulated in the raw water space in the raw water flow path, and the raw water flow path is easily blocked.
  • the turbidity in the raw water is removed in advance to avoid an increase in the differential pressure of water flow and a decrease in the amount of permeated water and the quality of permeated water due to the accumulation of turbidity, and to ensure stable operation for a long period of time.
  • Pretreatment devices used for such a purpose include, for example, coagulation sedimentation treatment, filtration treatment, membrane treatment, etc., and installation thereof increases installation costs and operation costs.
  • a large installation area is required.
  • a spiral-type membrane element with a structure that can secure the raw water flow path with a thin raw water spacer like the conventional example and maintain the same level of desalination as the conventional one and that does not accumulate turbidity has been proposed. In this way, industrial water and tap water can be supplied without pre-treatment, simplifying the system, reducing the installation area, and reducing costs, resulting in extremely high industrial utility value.
  • JP-A-64-47404 discloses a spiral membrane element that uses a raw water spacer that is corrugated and has a meandering waveform. This meandering wave-shaped raw water spacer is not practical because it is difficult to mold and the flow path is likely to be crushed when spirally wound.
  • Japanese Unexamined Patent Publication No. 9-297970 describes that the first wire and the second wire And a structure in which a raw water spacer is arranged so that the first wire or the second wire is parallel to the longitudinal direction of the permeated water collecting pipe. ing.
  • the raw water flows almost linearly in a direction parallel to the longitudinal direction of the permeated water collecting pipe, so that the pressure loss is low, and the linear velocity of the raw water is increased.
  • the wire present in the direction perpendicular to the longitudinal direction of the water collection pipe blocks the flow path of raw water, so that turbidity accumulates in the wire and block the raw water flow path. Wake up.
  • Japanese Patent Application Laid-Open No. H10-1566152 consists of a wire extending in a zigzag manner from the inflow side X to the outflow side Y of raw water, and the wires face each other.
  • a first wire rod 81 extending along the membrane surface of one of the separation membranes 80, and a second wire rod 82 extending along the membrane surface of the other separation membrane, Between the adjacent first wires and between the adjacent second wires, the raw water flow continuously extending along the membrane surface of the separation membrane from the inflow side to the outflow side of the raw water.
  • the first wire rod and the second wire rod partially overlap with each other at 81 b and 82 a, and a raw water sensor having a structure to be joined at the overlapping portion is formed. It has been disclosed. According to the raw water spacer having this structure, although the blockage of the raw water flow path due to the turbidity is suppressed as compared with a conventional raw water spacer having a lattice structure, the first wire rod in FIG. The stagnation of raw water near the corner C of 81 cannot be eliminated even if it is affected by the flow of high flow velocity at the protruding portion B of the second wire rod 82. For this reason, the accumulation of turbidity also occurs during long-term use.
  • those having a mesh structure composed of the first wire and the second wire have a part of the corner in the raw water flow path. Or there is a part that becomes a bending point.
  • turbidity accumulates, and a rise in the differential pressure of water flow is unavoidable, leading to the omission of the conventional pretreatment of raw water.
  • a structure formed of only a wire extending linearly or substantially linearly from the inflow side to the outflow side of the raw water is the most suitable, it is difficult to manufacture industrially because it is not a structure that connects wires.
  • an object of the present invention is to provide a spiral-type membrane element in which turbidity hardly accumulates even when raw water having high turbidity such as industrial water is supplied without pretreatment, and which enables stable water passage treatment over a long period of time.
  • a reverse osmosis membrane module and a reverse osmosis membrane device are provided.
  • the present inventors have conducted intensive studies and as a result, have found that a spiral-type membrane element in which a bag-shaped separation membrane is wound on the outer peripheral surface of a permeated water collecting pipe together with a raw water spacer, the The turbidity accumulates mainly at the intersections and bends where the wires of the raw water spacer intersect. Therefore, the wires do not intersect and no bends are formed. Then, they found that the accumulation of suspended matter in the raw water spacer was significantly suppressed, and completed the present invention.
  • the present invention (1) is a spiral-wound membrane element formed by winding a bag-shaped separation membrane on the outer peripheral surface of a permeated water collecting pipe together with a raw water sensor, wherein the raw water sensor comprises: It is composed of a first wire and a second wire extending in a meandering shape with a gentle curve from the inflow side to the outflow side of the raw water, wherein the first wire is one of the opposing ones of the separation membranes. While extending along the membrane surface, one raw water flow path is formed between adjacent first wires, and the second wire is formed.
  • Extends along the other opposing membrane surface of the separation membrane forms another raw water flow path between adjacent second wires, and the first wire and the second wire are It is an object of the present invention to provide a spiral-type membrane element in which portions overlap and are joined at the overlapping portion.
  • the raw water flows from the inflow side to the outflow side while gently meandering or almost linearly between the wire rods meandering in a gentle curve along the membrane surface. Therefore, the accumulation of turbidity in the raw water flow path is greatly suppressed.
  • the meandering shape with the gentle curve is a shape having regularity without a bending point, and the ratio (H / L) of the amplitude H to the wavelength L is 0.02 to 2 and the wavelength is 1 to 100 wavelengths per meter of one wire rod.
  • the adoption of such a configuration makes it possible to meet the application or use conditions.
  • the present invention (3) is characterized by including the spiral-type membrane element. (By adopting such a configuration, the same effects as those of the invention can be obtained, and the module can be easily carried into a water treatment facility, and can be attached to a treatment line in the same form.
  • the present invention (4) is characterized in that It is an object of the present invention to provide a reverse osmosis membrane device characterized by comprising an osmosis membrane module, wherein the reverse osmosis membrane device of the present invention is used for desalination of seawater, ultrapure water, and water for various production processes.
  • Raw water with high turbidity such as water for use and water can be supplied without pretreatment, which simplifies the system, reduces the installation area, and reduces the cost.
  • the industrial utility value is extremely high.
  • FIG. 1 is a diagram showing a raw water sensor according to the present embodiment.
  • 2 (A) is a view taken along line A--A of FIG. 1
  • (B) is a view taken along line B--B of FIG. 1
  • FIG. 3 is a view of FIG.
  • FIG. 4 is an enlarged perspective view of a portion, wherein FIG. 4 (A) is a diagram showing a first wire constituting a raw ice spacer, and FIG. 4 (B) is a second diagram constituting a raw water spacer.
  • FIG. 5 is a view showing a wire rod
  • FIG. 5 is a view showing a raw water sensor in another embodiment
  • FIG. 6 is an example of a structure of a reverse osmosis membrane module in the embodiment.
  • FIG. 7 is a diagram showing an example of a reverse osmosis membrane device according to an embodiment of the present invention.
  • FIG. 8 is a diagram for explaining a conventional zigzag raw water spacer.
  • 1 is a schematic view of a conventional reverse osmosis membrane module.
  • the raw water spacer includes a plurality of first wires and a plurality of second wires extending in a meandering shape with a gentle curve from the inflow side to the outflow side of the raw water.
  • the cross-sectional shape of the first wire and the second wire is not particularly limited, and examples thereof include a circle, a triangle, and a rectangle.
  • the first wire and the second wire have the same dimensions and the same cross-sectional shape.
  • the shape meandering with a gentle curve for example, there is no meandering shape having no curved point and all curved lines except the inflection point.
  • An inflection point is an angular portion formed by a straight line and a straight line and having an angle.
  • the corners include those in which the corners are cut or the corners are slightly rounded. Therefore, the meandering shape with a gentle curve does not include the so-called zigzag shape as shown in FIG.
  • examples of the curved portion include a semi-circular shape that always has the same radius of curvature, a shape in which the radius of curvature changes continuously such as a partial arc of a circle and a sin curve, and the like.
  • the curve of this curve The rate radius is 10 mi! ⁇ 1000 thighs, preferably 20 ⁇ 500 thighs. If the radius of curvature is less than 100 thighs, the flow of raw water tends to stagnate, and turbidity will accumulate over a long period of use. It becomes difficult.
  • the meandering shape with a gentle curve is, for example, a regular shape having a repetitive shape having a predetermined size of wavelength and amplitude, or the wavelength or amplitude gradually changes in the longitudinal direction of the water collection pipe or in a direction perpendicular thereto. Irregular shapes may be used, but regular shapes are preferred in that they are easy to manufacture.
  • FIG. 1 is a diagram showing a raw water spacer according to this embodiment
  • FIG. 2 (A) is a diagram viewed along the line A—A in FIG. 1
  • (B) is a line B—B in FIG.
  • Fig. 3 is a perspective view showing a part of Fig. 1 in an enlarged scale
  • Fig. 4 (A) is a diagram showing a first wire constituting a raw water spacer
  • (B) ) Is a diagram showing the second wire constituting the raw water spacer.
  • the shape of raw water spacer-1 has regularity with no bending point, the curved part has a gentle meandering shape with continuously changing radius of curvature, and the wavelength L is 10 to 10 0 Marauder, preferably 20 to 500 marauder, amplitude H is 2 to 200 mm, preferably 10 to 100 thigh, and the ratio of amplitude H to wavelength L (H / L ) Is from 0.02 to 2, preferably from 0.05 to less than 0.5.
  • the wavelength is 1 to L0 wavelength per lm of one wire.
  • the raw water flows from the inflow side to the outflow side while gently meandering in the raw water flow path or almost linearly. This will prevent turbidity from accumulating in the raw water flow path and make it possible to manufacture raw water spacers.
  • the raw water spacer 1 in the present embodiment includes a plurality of first wires 11 and a plurality of second wires extending in the above-described shape from the inflow side X to the outflow side Y of the raw water.
  • the first wire rod 11 extends along one of the opposite film surfaces 21 of the separation films 20 and the adjacent first rod material 11 as shown in FIG.
  • One raw water channel 23 is formed from the inflow side X to the outflow side Y in a meandering shape with a gentle curve between the wires 1 1 and 1 1, and the raw water flows through this one raw water channel 23 It flows along the flow path formed on the membrane surface of the membrane 21.
  • the second wire rod 12 extends along the other opposing membrane surface 22 of the separation membrane 20, and forms a meandering shape with a gentle curve between the adjacent second wire rods 12, 12.
  • the other raw water flow path 24 is formed toward the outflow side Y, and the raw water also flows through the other raw water flow path 24 along the flow path formed on the membrane surface of the membrane 22.
  • the flow in the raw water flow path formed by the one raw water flow path 23 and the other raw water flow path 24 does not have a bending point or a part of a corner that hinders the flow in the flow path direction. The flow will be straight or nearly straight.
  • reference numeral 231 indicates a flow in one raw water flow path
  • reference numeral 241 indicates a flow in the other raw water flow path.
  • the projecting portions 11a, 11a on one side of the gentle curve of the first wire 11 It overlaps with the projections 12a, 12a- 'on the other side of the curve and is joined at this overlap.
  • the protrusion 11b, lib- 'on the other side of the gentle curve of the first wire rod 11 is the protrusion 12b, 1b on one side of the gentle curve of the second wire rod 12. 2 b-'overlapped and joined at this overlap. Therefore, as shown in FIG. 4, the distance between the adjacent first wires 11 and 11 and the distance between the adjacent second wires 12 and 12, that is, the flow path width V in FIG. In form, it is equal to twice the amplitude H. Therefore, if the amplitude width H is determined, the flow path width V is determined.
  • FIG. 5 is a view showing a raw water spacer in another embodiment.
  • the points that are different from the raw water spacers in Fig. 1 are mainly explained. That is, in FIG. 5, the difference from FIG. 1 is that the distance between adjacent first wires 51 and 51 and the distance between adjacent second wires 52 and 52, that is, the flow path The point is that the width V is equal to the amplitude H.
  • the first wire rod 51 and the second wire rod 52 are provided with lower projections 51 a and 52 a and gentle upper curves 51 b and 52 b in FIG.
  • the middle part of the protrusion 51 a, 51 b in the gentle curve of the first wire 51 and the middle part of the protrusion 52 a, 52 b in the gentle curve of the second wire 52 are formed. Intersect and overlap.
  • the lower protrusion 51a of the first wire 51 and the upper protrusion 52b of the second wire 52 overlap each other. Furthermore, the upper protrusion 51b of the first wire and the lower protrusion 52a of the second wire 52 overlap each other. These overlapping portions are joined to each other, thereby forming an integrated raw water sensor 1a.
  • the flow path width V is half the width of that in FIG.
  • One raw water flow path is formed from the inflow side X to the outflow side Y in a shape meandering with a gentle curve between, 51 and meandering between the adjacent second wires 52, 52 with a gentle curve
  • the other raw water flow path is formed from the inflow side X to the outflow side Y.
  • the flow in the raw water flow path formed by the one raw water flow path and the other raw water flow path tends to meander as compared to the raw water flow path 1 in FIG. Not to the point of accumulation.
  • the thickness of the raw water spacer is the sum of the diameter of the first wire and the diameter of the second wire, or slightly smaller than that, and is in the range of 0.4 to 3.0 mm. If the thickness is less than 0.4 thigh, the pressure difference in water flow will increase, and the accumulation of turbidity will easily occur. On the other hand, if the thickness exceeds 3.Omni, spiral In this case, the film area per element becomes too small, which is not practical.
  • the flow width V in the raw water spacer is not particularly limited, when the configuration shown in FIG. 1 is employed, the amplitude is twice as large as the amplitude H. When the configuration shown in FIG. It has the same dimensions as H.
  • the material of the raw water supplier is not particularly limited, but polypropylene and polyethylene are preferred in terms of moldability and cost.
  • the method for producing the raw water spacer is not particularly limited, and a known method can be applied. However, a molded product using a mold is preferable in terms of cost and precision.
  • the spiral membrane element of the present invention is formed by winding a bag-shaped separation membrane on the outer peripheral surface of a permeated water collecting pipe together with the raw water spacer.
  • the winding may be performed by winding one bag-shaped separation membrane, or by winding a plurality of bag-shaped separation membranes.
  • the spiral type membrane element of the present invention can be used for a membrane separation device such as a microfiltration device, an ultrafiltration device and a reverse osmosis membrane separation device.
  • the reverse osmosis membrane include a normal reverse osmosis membrane having a high removal rate of 90% or more against sodium chloride in saline, and a nanofiltration membrane or a loose reverse osmosis membrane having a low desalination rate.
  • the nanofiltration membrane and the loose reverse osmosis membrane have desalination performance, they have lower desalination performance than ordinary reverse osmosis membranes, and particularly have a performance of separating hardness components such as Ca and Mg.
  • the nanofiltration membrane and loose reverse osmosis membrane are sometimes called NF membrane.
  • the reverse osmosis membrane module of the present invention is not particularly limited as long as it has the spiral type membrane element.
  • a reverse osmosis membrane module having a structure shown in FIG. 6 can be mentioned. As shown in FIG.
  • a bag-shaped reverse osmosis membrane 61 is wound around the outer peripheral surface of the permeated water collecting pipe 60 in a spiral shape together with a raw water spacer, and the upper part thereof is covered with an exterior body 62.
  • a telescopic stop 64 having several radial ribs 63 is attached to both ends.
  • the permeated water collecting pipe 60, the reverse osmosis membrane 61, the outer body 62, and the telescopic stopper 64 form one spiral membrane element 65, and each permeated water collecting pipe 60 is connected to a connector ( (Not shown), and a plurality of spiral membrane elements 65 are loaded in the housing 66.
  • a gap 67 is formed between the outer periphery of the spiral membrane element 65 and the inner periphery of the housing 66, and the gap 67 is closed by a brine seal 68.
  • a raw water inflow pipe (not shown) for flowing raw water into the housing is provided at one end of the housing 66, and a treated water pipe (not shown) communicating with the permeated water collecting pipe 60 at the other end.
  • a non-permeated water pipe (not shown) is attached, and a reverse osmosis membrane module 69 is composed of the housing 66, its internal parts and piping (nozzle).
  • the raw water is injected by using a pump from one end of the housing 66, but as shown by the arrow in FIG.
  • the first spiral type membrane element 65 passes between the radial ribs 63 of the first telescope 64 and enters the first spiral type membrane element 65, and some raw water is supplied to the raw water space between the membranes of the spiral type membrane element 65.
  • the raw water passes through the spiral membrane element 65 one after another, and the raw water that has not passed through the reverse osmosis membrane is concentrated from the other end of the housing 66 as a concentrated water containing a high concentration of turbidity and ionic impurities.
  • the permeated water that has been taken out and has passed through the reverse osmosis membrane is taken out of the housing 66 through the permeated water collecting pipe 60 as permeated water.
  • the reverse osmosis membrane module of the present invention may be one in which a plurality of spiral type membrane elements are mounted as shown in FIG. 6, or one in which a spiral type membrane element is mounted, for example.
  • the reverse osmosis membrane device of the present invention is not particularly limited.
  • raw water supply means such as a pump, raw water inflow piping, concentrated water outflow piping, and permeated water outflow piping are provided.
  • Raw water directly supplied to the reverse osmosis membrane device of the present invention includes industrial water, tap water and recovered water.
  • the turbidity of the raw water is not particularly limited, but even if the turbidity is as high as about 2 degrees, no increase in the differential pressure of water due to the blockage of the turbidity occurs.
  • raw water contains coarse particles such as sand particles in the raw water, it includes treated water that has been passed through a coarse filter in advance and water to which a dispersant for preventing scale fouling has been added.
  • the addition of the dispersant can further suppress the accumulation of suspended matter on the membrane surface of the raw water substrate.
  • the dispersant include commercially available products “hypersperse MSI300J” and “hypersperse MDC200” (both manufactured by ARGO SCIENTIFIC).
  • a pretreatment device such as a coagulation sedimentation process, a filtration process, and a membrane process, which has been conventionally used for removing suspended matter in raw water. .
  • a pretreatment device such as a coagulation sedimentation process, a filtration process, and a membrane process, which has been conventionally used for removing suspended matter in raw water.
  • the reverse osmosis membrane device 70 has a raw water supply device 71, a first reverse osmosis membrane module 70A and a second reverse osmosis membrane module 70B arranged in this order.
  • 7 1 and the upstream reverse osmosis module 7 OA are connected by raw water supply piping 7 2, and the upstream reverse osmosis membrane module 7 OA and the downstream reverse osmosis module 70 B
  • Primary permeated water outflow pipe 73 which is supplied as water to be treated in the downstream equipment, is connected to the reverse reverse osmosis membrane module 70B. Equipped with return pipe 75 returning to 72.
  • the first-stage reverse osmosis membrane module 70A is a reverse osmosis membrane device according to the present invention which does not cause accumulation of turbidity
  • the second-stage reverse osmosis membrane module 70B is a conventional reverse osmosis membrane device.
  • raw water is supplied to the pre-stage reverse osmosis membrane module 7OA by raw water supply means 71.
  • the raw water is treated by the reverse osmosis membrane module 7 OA in the former stage, and the primary concentrated water is obtained from the concentrated water outlet pipe 76 and the primary permeated water is obtained from the primary permeated water outlet pipe 73.
  • the primary permeate is treated in the reverse reverse osmosis membrane module 70 B to obtain secondary permeate from the permeate discharge pipe 74, and the secondary concentrated water is returned from the return pipe 75 ′ to the raw water supply pipe 7. Returned to 2.
  • This secondary concentrated water is obtained by concentrating the permeated water already desalinated by the first-stage reverse osmosis membrane module 70OA in the second-stage reverse osmosis membrane module 70B, and has lower conductivity than the raw water. For this reason, it is possible to circulate the entire amount of the secondary concentrated water, and the water recovery rate can be improved.
  • the reverse osmosis membrane device 70 is a reverse osmosis membrane module capable of greatly suppressing the accumulation of turbidity in the present invention, instead of the pretreatment device used only for turbidity removal used in the conventional type device. Since the first stage is used, the reverse osmosis membrane is essentially used in two stages. Since the pretreatment apparatus in the conventional apparatus does not have a desalination function, the reverse osmosis membrane apparatus 70 has much better permeation water quality than the conventional reverse osmosis membrane apparatus.
  • amplitude H / wavelength L is 0.66
  • wavelength L is 15 awake
  • amplitude H is 10 hall
  • raw water channel width V is 20 bandages
  • thickness A raw water sensor A having a length of 1.0 mm was produced.
  • a spiral type membrane element A was produced using the raw water sensor A, and a reverse osmosis membrane module A having a structure as shown in FIG. 6 was produced.
  • the reverse osmosis membrane module A was one module containing one spiral membrane element.
  • the operation pressure is 0. ⁇ 5 MPa
  • concentrated water flow rate is 2. 7 m 3 / time
  • water temperature is at 2 5 ° C, 1 once every 8 hours, is attached in 6 0 seconds flushing (the concentrated water outlet pipe Fully open the valve to supply the raw water at a flow rate three times the flow rate of the raw water in the permeation treatment, and quickly supply it into the reverse osmosis membrane module to discharge the flushing wastewater from the concentrated water outflow pipe.
  • the durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module B having the following specifications.
  • Tables 1 and 2 show the performance evaluation results of reverse osmosis membrane module B.
  • the raw water spacer A instead of the raw water spacer A, it has the structure shown in Fig. 5, where the amplitude H / wavelength L is 0.66, the wavelength L is 15 ⁇ , the amplitude H is 10 mm, and the raw water channel width V Is 1
  • the reverse osmosis membrane module A was produced in the same manner as described above except that the raw water sensor B having a thickness of 1.0 was used.
  • the reverse osmosis membrane module B used in Example 2 was used as the first-stage reverse osmosis membrane module, and the 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was installed as the second-stage reverse osmosis membrane module. Were used.
  • the raw water sensor used for this ES-10 is a grid mesh.
  • Both the first and second reverse osmosis membrane modules have an operating pressure of 0.75 MPa, a concentrated water flow rate of 2.7 m 3 / hour, a water temperature of 25 ° C, and only the first reverse osmosis membrane module for 8 hours Flush for 60 seconds (same operation as in Example 1) once every time.
  • the durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module C having the following specifications.
  • Tables 1 and 2 show the performance evaluation results of reverse osmosis membrane module C.
  • the raw water spacer A In place of the raw water spacer A, it has the structure shown in Fig. 1, where the amplitude HZ wavelength L is 0.2, the wavelength L is 100, the amplitude H is 20 thighs, and the raw water channel width V is Four A reverse osmosis membrane module A was prepared in the same manner as above except that a raw water spacer C having a thickness of 0 mm and a thickness of 1.0 mm was used.
  • Example 2 The same as in Example 1 except that a known pretreatment device consisting of a membrane treatment was arranged at the front stage, and an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral type membrane element A.
  • ES-10 manufactured by Nitto Denko Corporation
  • Example 2 The procedure was performed in the same manner as in Example 1 except that an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral membrane element A. That is, industrial water having a turbidity of 2 degrees and a conductivity of 2 OmS / m was directly treated with a conventional commercial reverse osmosis membrane module without treating with a pretreatment device. The results are shown in Tables 1 and 2. In Comparative Example 2, the water flow differential pressure increased extremely around 800 hours, and permeated water could not be obtained. Therefore, the operation was stopped at this time.
  • ES-10 manufactured by Nitto Denko Corporation
  • the durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module D having the following specifications. Table 1 shows the results.
  • the reverse osmosis membrane module D was one module containing one spiral type membrane element.
  • the structure shown in FIG. 1 of JP-A-10-156152 that is, the structure shown in FIG. 8 described above, having a thickness of 1.0 mm ,
  • the angle of the bend point is 60 degrees, the distance between the bend points is 5 thighs of raw water spacer Except for using E, it was produced in the same manner as the reverse osmosis membrane module A.
  • Example 4 Slightly turbid adhesion (less than Examples 1 and 2) Comparative Example 1 Almost no turbid adhesion
  • Comparative Example 3 Suspended turbidity mainly at the inflection point In Examples 1 to 4, after 2000 hours, there was almost no increase in the differential water pressure, no decrease in the amount of permeated water, and high water quality of the permeated water Met. Comparative Example 1 shows a result comparable to that of the Example in the performance evaluation after 2000 hours. However, this requires the installation of a pre-treatment device, which requires extra space and cost. Therefore, Comparative Examples 2 and 3 are Comparative Examples 2 and 3, but Comparative Example 2 is one in which the adhesion of turbid matter is severe until the amount of permeated water becomes zero in about 800 hours. In 3), a significant increase in the pressure difference in water flow and a decrease in the amount of permeated water were observed at the time of 2000 hours, and it was presumed that the water could not be used in about 30000 to 40000 hours. Industrial applicability
  • the raw water gently or quasi-linearly meanders from the inflow side to the outflow side between the wires having a meandering shape with a gentle curve along the membrane surface. Flowing towards. For this reason, accumulation of turbid matter in the raw water flow channel is greatly suppressed.
  • ADVANTAGE OF THE INVENTION According to the reverse osmosis membrane module and reverse osmosis membrane apparatus of this invention, installation of the pretreatment apparatus conventionally used for the purpose of clarification in raw water can be omitted. For this reason, it has a remarkable effect in that the system can be simplified, the installation area is reduced, and the cost is reduced. Furthermore, even if raw water with high turbidity such as industrial water is supplied without pretreatment, turbidity is hard to accumulate, and stable water treatment can be performed for a long period of time.

Abstract

A spiral membrane element, comprising a bag-like separating membrane wound, together with a raw water spacer, on the outer peripheral surface of a permeated water collecting tube, the raw water spacer further comprising first wire materials and second wire materials extending from the inflow side to the outflow side of raw water in a gently meandering curved shape, wherein the first wire materials extend along one membrane face of the separating membrane and form one raw water passages between the adjacent first wire materials, and the second wire materials extend along the other membrane face of the separating membrane and form the other raw water passages between the adjacent second wire materials, and the first and second wire materials are partly overlapped with each other and joined to each other at the overlapped positions.

Description

明細 ^ スパイラル型膜エレメント、 逆浸透膜モジュール及び逆浸透膜装置 技術分野  Description ^ Spiral type membrane element, reverse osmosis membrane module and reverse osmosis membrane device
本発明は、 工業用水など濁度の高い原水であっても、 前処理すること なく、長期間に亘り安定な通水処理が可能なスパイラル型膜エレメント、 逆浸透膜モジュール及び逆浸透膜装置に関するものである。 背景技術  The present invention relates to a spiral membrane element, a reverse osmosis membrane module, and a reverse osmosis membrane device capable of performing a stable water flow treatment for a long period of time without pretreatment even for raw water having high turbidity such as industrial water. Things. Background art
従来、 海水の淡水化や、 超純水、 各種製造プロセス用水を得る方法と して、 逆浸透膜 (R O膜) やナノ濾過膜 (N F膜) を透過膜とするスパ ィラル型膜エレメントを用い、 原水中からイオン成分や低分子成分を分 離する方法が知られている。 第 9図に例示されるように、 従来から一般 的に使用されているスパイラル型膜エレメントは、 透過水スぺーサー 9 2の両面に逆浸透膜 9 1を重ね合わせて 3辺を接着することにより袋状 膜 9 3を形成し、該袋状膜 9 3の開口部を透過水集水管 9 4に取り付け、 網状の原水スぺーサー 9 5と共に、 透過水集水管 9 4の外周面にスパイ ラル状に卷回することにより構成されている。 そして、 原水 9 6はスパ イラル型膜エレメント 9 0の一方の端面側 9 aから供給され、 原水スぺ —サー 9 5に沿って流れ、 スパイラル型膜エレメント 9 0の他方の端面 側 9 bから濃縮水 9 8として排出される。 原水 9 6は原水スぺ一サー 9 5に沿って流れる過程で、 逆浸透膜 9 1を透過して透過水 9 7となり、 この透過水 9 7は透過水スぺ一サー 9 2に沿って透過水集水管 9 4の内 部に流れ込み、 透過水集水管 9 4の端部から排出される。 このように、 巻回された袋状膜 9 3間に配設される原水スぺ一サー 9 5により原水経 路が形成されることになる。 Conventionally, as a method for obtaining seawater desalination, ultrapure water, and water for various manufacturing processes, a spiral membrane element using a reverse osmosis membrane (RO membrane) or nanofiltration membrane (NF membrane) as a permeable membrane has been used. A method for separating ionic components and low molecular components from raw water is known. As illustrated in Fig. 9, a spiral membrane element that has been generally used in the past has a reverse osmosis membrane 91 superimposed on both sides of a permeated water spacer 92 and bonded on three sides. To form a bag-shaped membrane 93, and attach the opening of the bag-shaped membrane 93 to the permeated water collecting pipe 94, and spy on the outer peripheral surface of the permeated water collecting pipe 94 together with the mesh-shaped raw water spacer 95. It is formed by winding in a ral shape. The raw water 96 is supplied from one end face 9a of the spiral membrane element 90, flows along the raw water spacer 95, and flows from the other end face 9b of the spiral membrane element 90. It is discharged as concentrated water 98. In the process of flowing along the raw water spacer 95, the raw water 96 passes through the reverse osmosis membrane 91 to become permeated water 97, and this permeated water 97 flows along the permeated water spacer 92. It flows into the inside of the permeated water collecting pipe 94 and is discharged from the end of the permeated water collecting pipe 94. In this way, the raw water sensor 95 disposed between the wound bag-like membranes 93 serves A road will be formed.
このようなスパイラル型膜エレメントを用いて海水の淡水化や、 超純 水、 各種製造プロセス用水を得る場合、 通常、 原水の濁質などを除去す る目的で前処理が行われている。 この前処理を行う理由は、 スパイラル 型膜エレメントの原水スぺ一サ一の厚みは、 原水流路を確保しつつでき る限り原水と逆浸透膜との接触面積を大きくとるため通常 1 mm以下と薄 く、 濁質が原水流路にある原水スぺーサ一に蓄積され、 原水流路を閉塞 し易い構造となっている。 このため、 予め原水中の濁質を除去して濁質 蓄積による通水差圧の上昇や透過水量、 透過水質の低下を回避し、 長期 間に亘り安定な運転を行うためである。 このような除濁目的で用いられ る前処理装置は、 例えば、 凝集沈殿処理、 濾過処理及び膜処理などの各 装置を含むものであり、 これらの設置は、 設置コストや運転コストを上 昇させると共に、大きな設置面積を必要とするなどの問題を有していた。 このため、 従来例のような薄い原水スぺーサ一で原水流路を確保でき、 従来と同等程度の脱塩率を維持できると共に、 濁質が蓄積しない構造の スパイラル型膜エレメントが閧発されれば、 工業用水や水道水が前処理 なしで供給でき、 システムの簡略化、 設置面積の低減、 低コスト化が可 能となり、 産業上の利用価値は極めて高いものとなる。  When seawater desalination, ultrapure water, and water for various production processes are obtained using such a spiral-wound membrane element, pretreatment is usually performed for the purpose of removing turbidity of raw water. The reason for performing this pretreatment is that the thickness of the raw water sensor of the spiral type membrane element is usually 1 mm or less in order to make the contact area between the raw water and the reverse osmosis membrane as large as possible while securing the raw water flow path. It is so thin that turbidity is accumulated in the raw water space in the raw water flow path, and the raw water flow path is easily blocked. For this reason, the turbidity in the raw water is removed in advance to avoid an increase in the differential pressure of water flow and a decrease in the amount of permeated water and the quality of permeated water due to the accumulation of turbidity, and to ensure stable operation for a long period of time. Pretreatment devices used for such a purpose include, for example, coagulation sedimentation treatment, filtration treatment, membrane treatment, etc., and installation thereof increases installation costs and operation costs. In addition, there is a problem that a large installation area is required. For this reason, a spiral-type membrane element with a structure that can secure the raw water flow path with a thin raw water spacer like the conventional example and maintain the same level of desalination as the conventional one and that does not accumulate turbidity has been proposed. In this way, industrial water and tap water can be supplied without pre-treatment, simplifying the system, reducing the installation area, and reducing costs, resulting in extremely high industrial utility value.
一方、 スパイラル型膜エレメン卜の濁質による原水流路の閉塞を防止 するため、 従来の格子の網目状原水スぺーサ一の構造を改善した種々の 提案がなされている。 特開昭 6 4 - 4 7 4 0 4号公報には、 波板形であ つて該波形が蛇行する形状の原水スぺ一サーを用いるスパイラル型膜ェ レメントが開示されている。 この蛇行波形形状の原水スぺーサ一は成型 が困難であると共に、 スパイラル状に卷回する際、 流路が潰れる可能性 が大であり、 実用的ではない。  On the other hand, various proposals have been made to improve the structure of a conventional mesh-like raw water spacer in order to prevent the raw water flow path from being blocked by turbidity of the spiral membrane element. JP-A-64-47404 discloses a spiral membrane element that uses a raw water spacer that is corrugated and has a meandering waveform. This meandering wave-shaped raw water spacer is not practical because it is difficult to mold and the flow path is likely to be crushed when spirally wound.
特開平 9— 2 9 9 7 7 0号公報には、 第 1の線材と第 2の線材が互い に交差するように格子状に形成されてなり、 第 1の線材又は第 2の線材 が透過水集水管の長手方向と平行になるように原水スぺーサーを配置す る構造のものが開示されている。 この構造の原水スぺ一サ一によれば、 原水が透過水集水管の長手方向と平行な方向にほぼ直線状に流れるため、 圧力損失が低く、 且つ原水の線速が大きくなり、 原水中の濁質が蓄積し 難くなる反面、 集水管の長手方向に直角な方向に存在する線材が原水の 流路を遮るため、 当該線材に濁質が蓄積してしまい、 やはり原水流路の 閉塞を起こしてしまう。 Japanese Unexamined Patent Publication No. 9-297970 describes that the first wire and the second wire And a structure in which a raw water spacer is arranged so that the first wire or the second wire is parallel to the longitudinal direction of the permeated water collecting pipe. ing. According to the raw water system having this structure, the raw water flows almost linearly in a direction parallel to the longitudinal direction of the permeated water collecting pipe, so that the pressure loss is low, and the linear velocity of the raw water is increased. Although it is difficult for turbidity to accumulate, the wire present in the direction perpendicular to the longitudinal direction of the water collection pipe blocks the flow path of raw water, so that turbidity accumulates in the wire and block the raw water flow path. Wake up.
特開平 1 0— 1 5 6 1 5 2号公報には、 第 8図に示すように、 原水の 流入側 Xから流出側 Yに向かってジグザグ状に延在する線材よりなり、 線材は対面する分離膜のうち一方の分離膜 8 0の膜面に沿って延在する 第 1の線材 8 1と、 他方の分離膜の膜面に沿って延在する第 2の線材 8 2とからなり、 隣り合う第 1の線材同士間、 及び隣り合う第 2の線材同 士間には、 それそれ、 原水の流入側から流出側までの分離膜の膜面に沿 つて連続して延在する原水流路が形成されており、 該第 1の線材と第 2 の線材とは一部 8 1 b、 8 2 aが重なると共に、 この重なった箇所にお いて結合する構造の原水スぺ一サ一が開示されている。 この構造の原水 スぺーサ—によれば、 従来の格子の網目状の原水スぺーサ一に比べて濁 質による原水流路の閉塞は抑制されるものの、 第 8図における第 1の線 材 8 1のコーナー部 C付近における原水の淀みは、 例え第 2の線材 8 2 の突出部 Bにおける高流速の流れの影響を受けたとしても解消すること はできない。 このため、 長期間の使用においては濁質の蓄積がやはり起 つてしまう。  Japanese Patent Application Laid-Open No. H10-1566152, as shown in Fig. 8, consists of a wire extending in a zigzag manner from the inflow side X to the outflow side Y of raw water, and the wires face each other. A first wire rod 81 extending along the membrane surface of one of the separation membranes 80, and a second wire rod 82 extending along the membrane surface of the other separation membrane, Between the adjacent first wires and between the adjacent second wires, the raw water flow continuously extending along the membrane surface of the separation membrane from the inflow side to the outflow side of the raw water. The first wire rod and the second wire rod partially overlap with each other at 81 b and 82 a, and a raw water sensor having a structure to be joined at the overlapping portion is formed. It has been disclosed. According to the raw water spacer having this structure, although the blockage of the raw water flow path due to the turbidity is suppressed as compared with a conventional raw water spacer having a lattice structure, the first wire rod in FIG. The stagnation of raw water near the corner C of 81 cannot be eliminated even if it is affected by the flow of high flow velocity at the protruding portion B of the second wire rod 82. For this reason, the accumulation of turbidity also occurs during long-term use.
このように、 従来提案されている原水スぺ一サ一のうち、 第 1の線材 と第 2の線材とで構成される網目状構造のものは、 いずれも、 原水流路 内にコーナ一部あるいは屈曲点となる部分が存在し、 これが原水の淀み を発生させることになり、 長期間の使用においては濁質の蓄積が起って しまい、 通水差圧の上昇は避けられず、 従来行われていた原水の前処理 を省略するまでには至っていないのが現状である。 原水流路を確保しつ つ、 屈曲点のない流路を形成するという観点から、 原水の流入側から流 出側に向かって直線状又は略直線状に延在する線材のみで形成される構 造のものが最も好適なものであるが、線材同士を繋ぐ構造ではないため、 工業的に製作することは困難である。 As described above, among the conventionally proposed raw water sensors, those having a mesh structure composed of the first wire and the second wire have a part of the corner in the raw water flow path. Or there is a part that becomes a bending point, During use for a long period of time, turbidity accumulates, and a rise in the differential pressure of water flow is unavoidable, leading to the omission of the conventional pretreatment of raw water. There is no present. From the viewpoint of forming a flow path without bending points while securing a raw water flow path, a structure formed of only a wire extending linearly or substantially linearly from the inflow side to the outflow side of the raw water. Although the structure is the most suitable, it is difficult to manufacture industrially because it is not a structure that connects wires.
従って、 本発明の目的は、 工業用水など濁度の高い原水を前処理なし で供給しても、 濁質が蓄積し難く、 長期間に亘り安定な通水処理が可能 なスパイラル型膜エレメント、 逆浸透膜モジュール及び逆浸透膜装置を 提供することにある。  Accordingly, an object of the present invention is to provide a spiral-type membrane element in which turbidity hardly accumulates even when raw water having high turbidity such as industrial water is supplied without pretreatment, and which enables stable water passage treatment over a long period of time. A reverse osmosis membrane module and a reverse osmosis membrane device are provided.
発明の開示 Disclosure of the invention
かかる実情において、 本発明者らは鋭意検討を行った結果、 透過水集 水管の外周面に袋状の分離膜を原水スぺーサ一と共に卷回してなるスパ ィラル型膜エレメントにおいて、 原水中の濁質が蓄積するのは主に原水 スぺーサ—の線材が交差する交点部分や屈曲部分であること、 従って線 材を交差させず、 屈曲点を形成させないようにし、 原水の流れを直線的 にすれば、 原水スぺーサ一への濁質の蓄積が大幅に抑制されることなど を見出し、 本発明を完成するに至った。  Under these circumstances, the present inventors have conducted intensive studies and as a result, have found that a spiral-type membrane element in which a bag-shaped separation membrane is wound on the outer peripheral surface of a permeated water collecting pipe together with a raw water spacer, the The turbidity accumulates mainly at the intersections and bends where the wires of the raw water spacer intersect. Therefore, the wires do not intersect and no bends are formed. Then, they found that the accumulation of suspended matter in the raw water spacer was significantly suppressed, and completed the present invention.
すなわち、 本発明 ( 1 ) は、 透過水集水管の外周面に袋状の分離膜を 原水スぺ一サ一と共に卷回してなるスパイラル型膜エレメントであって、 該原水スぺーサ一は、 原水の流入側から流出側に向かって緩やかな曲線 で蛇行する形状で延在する第 1線材及び第 2線材からなるものであって、 該第 1線材は該分離膜のうちの対向する一方の膜面に沿って延在すると 共に、 隣接する第 1線材同士間で一方の原水流路を形成し、 該第 2線材 は該分離膜のうち対向する他方の膜面に沿って延在すると共に、 隣接す る第 2線材同士間で他方の原水流路を形成し、 該第 1線材と該第 2線材 とは一部が重なり、 該重なり箇所で結合されてなるスパイラル型膜エレ メントを提供するものである。 かかる構成を採ることにより、 原水は緩 やかな曲線で蛇行する形状の線材同士間を膜面に沿って、 緩やかに蛇行 しながらあるいはほぼ直線状に流入側から流出側に向かって流れる。 こ のため、 原水流路における濁質の蓄積が大幅に抑制される。 That is, the present invention (1) is a spiral-wound membrane element formed by winding a bag-shaped separation membrane on the outer peripheral surface of a permeated water collecting pipe together with a raw water sensor, wherein the raw water sensor comprises: It is composed of a first wire and a second wire extending in a meandering shape with a gentle curve from the inflow side to the outflow side of the raw water, wherein the first wire is one of the opposing ones of the separation membranes. While extending along the membrane surface, one raw water flow path is formed between adjacent first wires, and the second wire is formed. Extends along the other opposing membrane surface of the separation membrane, forms another raw water flow path between adjacent second wires, and the first wire and the second wire are It is an object of the present invention to provide a spiral-type membrane element in which portions overlap and are joined at the overlapping portion. By adopting such a configuration, the raw water flows from the inflow side to the outflow side while gently meandering or almost linearly between the wire rods meandering in a gentle curve along the membrane surface. Therefore, the accumulation of turbidity in the raw water flow path is greatly suppressed.
また、 本発明 ( 2 ) は、 前記緩やかな曲線で蛇行する形状は、 屈曲点 のない規則性を有する形状であって、 振幅 Hと波長 Lの比 (H / L ) が 0 . 0 2〜 2であり、 且つ 1本の線材 1 m当たり 1〜 1 0 0波長である ことを特徴とする前記スパイラル型膜エレメントを提供するものである ( かかる構成を採ることにより、 用途あるいは使用条件に見合った好適な 適宜の数値を選択して作製することができ、 前記発明の効果を確実に得 ることができる。 また、 本発明 ( 3 ) は、 前記スパイラル型膜エレメン トを備えることを特徴とする逆浸透膜モジュールを提供するものである ( かかる構成を採ることにより、 前記発明と同様の効果を奏する他、 水処 理施設内に搬入し易く、且つそのままの形態で処理ラインに装着できる。 本発明 (4 ) は、 前記逆浸透膜モジュールを備えることを特徴とする逆 浸透膜装置を提供するものである。 本発明の逆浸透膜装置を用いて海水 の淡水化や、 超純水、 各種製造プロセス用水を得る場合、 工業用水や水 道水など濁度の高い原水を前処理なしで供給でき、 システムの簡略化、 設置面積の低減、 低コスト化が可能となり、 産業上の利用価値は極めて f¾J » 図面の簡単な説明  Further, in the present invention (2), the meandering shape with the gentle curve is a shape having regularity without a bending point, and the ratio (H / L) of the amplitude H to the wavelength L is 0.02 to 2 and the wavelength is 1 to 100 wavelengths per meter of one wire rod. (The adoption of such a configuration makes it possible to meet the application or use conditions.) The present invention (3) is characterized by including the spiral-type membrane element. (By adopting such a configuration, the same effects as those of the invention can be obtained, and the module can be easily carried into a water treatment facility, and can be attached to a treatment line in the same form. The present invention (4) is characterized in that It is an object of the present invention to provide a reverse osmosis membrane device characterized by comprising an osmosis membrane module, wherein the reverse osmosis membrane device of the present invention is used for desalination of seawater, ultrapure water, and water for various production processes. Raw water with high turbidity such as water for use and water can be supplied without pretreatment, which simplifies the system, reduces the installation area, and reduces the cost. The industrial utility value is extremely high.
第 1図は本実施の形態例における原水スぺ一サーを示す図であり、 第 2図は (A ) は図 1の A— A線に沿って見た図、 (B ) は図 1の B— B 線に沿って見た図であり、 第 3図は第 1図の一部を拡大して示す斜視図 であり、第 4図は(A )は原氷スぺーサ一を構成する第 1線材を示す図、 ( B ) は原水スぺ一サ一を構成する第 2線材を示す図であり、 第 5図は 他の実施の形態例における原水スぺ一サ一を示す図であり、 第 6図は本 実施の形態例における逆浸透膜モジユールの構造の一例を示す図であり、 第 7図は本発明の実施の形態における逆浸透膜装置の一例を示す図であ り、 第 8図は従来のジグザグ状原水スぺーサーを説明する図であり、 第 9図は従来の逆浸透膜モジュールの概略図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a raw water sensor according to the present embodiment. 2 (A) is a view taken along line A--A of FIG. 1, (B) is a view taken along line B--B of FIG. 1, and FIG. 3 is a view of FIG. FIG. 4 is an enlarged perspective view of a portion, wherein FIG. 4 (A) is a diagram showing a first wire constituting a raw ice spacer, and FIG. 4 (B) is a second diagram constituting a raw water spacer. FIG. 5 is a view showing a wire rod, FIG. 5 is a view showing a raw water sensor in another embodiment, and FIG. 6 is an example of a structure of a reverse osmosis membrane module in the embodiment. FIG. 7 is a diagram showing an example of a reverse osmosis membrane device according to an embodiment of the present invention. FIG. 8 is a diagram for explaining a conventional zigzag raw water spacer. 1 is a schematic view of a conventional reverse osmosis membrane module. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 原水スぺーサ一は、 原水の流入側から流出側に向か つて緩やかな曲線で蛇行する形状で延在する複数の第 1線材及び複数の 第 2線材から構成される。 第 1線材及び第 2線材の断面形状としては、 特に制限されないが、 例えば円形、 三角形、 四角形などが挙げらる。 ま た、 第 1線材及び第 2線材は同一寸法、 同一断面形状のものが使用され る。  In the present invention, the raw water spacer includes a plurality of first wires and a plurality of second wires extending in a meandering shape with a gentle curve from the inflow side to the outflow side of the raw water. The cross-sectional shape of the first wire and the second wire is not particularly limited, and examples thereof include a circle, a triangle, and a rectangle. The first wire and the second wire have the same dimensions and the same cross-sectional shape.
緩やかな曲線で蛇行する形状としては、 例えば屈曲点がなく、 変曲点 を除き全て曲線部で構成される蛇行形状が例示される。 屈曲点とは、 直 線と直線で構成され角度を持った角部分を言う。 なお、 この角部分は角 が削られたような、 あるいは角部分が少しの丸みを有するものも含まれ る。 従って、 緩やかな曲線で蛇行する形状には、 いわゆる第 8図に示さ れるようなジグザク形状は含まれない。 また、 曲線部としては、 常に同 じ曲率半径で構成される半円形状、 円の一部の弧及び s i n曲線のよう に連続的に曲率半径が変化する形状などが挙げられる。 常に同じ曲率半 径で構成される半円形状、 若しくは円の一部の弧の場合、 この曲線の曲 率半径は、 1 0 mi!〜 1 0 0 0 0腿、 好ましくは 2 0腿〜 5 0 0 0腿がよ い。 曲率半径が 1 0腿未満では原水の流れに淀みが生じ易く、 長期間の 使用においては濁質の蓄積が起こるようになり、 1 0 0 0 0匪を越える と、 成形性が悪くなり製作し難くなる。 また、 緩やかな曲線で蛇行する 形状は、 例えば所定寸法の波長と振幅を有する繰り返し形態を採る規則 性形状のものや、 波長又は振幅が集水管の長手方向又はそれに直角な方 向に徐々に変化する不規則性形状であってもよいが、 規則性形状が製作 が容易な点で好適である。 As the shape meandering with a gentle curve, for example, there is no meandering shape having no curved point and all curved lines except the inflection point. An inflection point is an angular portion formed by a straight line and a straight line and having an angle. In addition, the corners include those in which the corners are cut or the corners are slightly rounded. Therefore, the meandering shape with a gentle curve does not include the so-called zigzag shape as shown in FIG. In addition, examples of the curved portion include a semi-circular shape that always has the same radius of curvature, a shape in which the radius of curvature changes continuously such as a partial arc of a circle and a sin curve, and the like. In the case of a semi-circular shape that always has the same radius of curvature, or a partial arc of a circle, the curve of this curve The rate radius is 10 mi! ~ 1000 thighs, preferably 20 ~ 500 thighs. If the radius of curvature is less than 100 thighs, the flow of raw water tends to stagnate, and turbidity will accumulate over a long period of use. It becomes difficult. In addition, the meandering shape with a gentle curve is, for example, a regular shape having a repetitive shape having a predetermined size of wavelength and amplitude, or the wavelength or amplitude gradually changes in the longitudinal direction of the water collection pipe or in a direction perpendicular thereto. Irregular shapes may be used, but regular shapes are preferred in that they are easy to manufacture.
緩やかな曲線で蛇行する形状の好ましい形態を第 1図〜第 4図を参照 して説明する。 第 1図は本形態例における原水スぺーサ一を示す図、 第 2図 (A ) は第 1図の A— A線に沿って見た図、 (B ) は第 1図の B— B線に沿って見た図、 第 3図は第 1図の一部を拡大して示す斜視図、 第 4図 (A ) は原水スぺーサ一を構成する第 1線材を示す図、 (B ) は原 水スぺーサーを構成する第 2線材を示す図である。 図中、 原水スぺーサ — 1の形状は、 屈曲点のない規則性を有し、 曲線部が連続的に曲率半径 が変化する緩やかな蛇行形状であって、 波長 Lは 1 0 〜 1 0 0 0匪、 好 ましくは 2 0 〜 5 0 0匪、 振幅 Hは 2 〜 2 0 0 mm、 好ましくは 1 0 〜 1 0 0腿であり、 且つ振幅 Hと波長 Lの比 (H/ L ) が 0 . 0 2 〜 2、 好 ましくは 0 . 0 5以上、 0 . 5未満の範囲である。 この場合、 1本の線 材 l m当たり 1〜 : L 0 0波長である。 振幅 Hと波長 Lの比 (H / L ) 、 振幅 H及び波長 Lが上記数値範囲にあれば、 原水は原水流路内を緩やか に蛇行しながらあるいはほぼ直線状に流入側から流出側に向かって流れ、 原水流路内に濁質が蓄積することが防止されると共に、 原水スぺーサー の製作が可能となる。  A preferred form of a meandering shape with a gentle curve will be described with reference to FIGS. FIG. 1 is a diagram showing a raw water spacer according to this embodiment, FIG. 2 (A) is a diagram viewed along the line A—A in FIG. 1, and (B) is a line B—B in FIG. Fig. 3 is a perspective view showing a part of Fig. 1 in an enlarged scale, Fig. 4 (A) is a diagram showing a first wire constituting a raw water spacer, (B) ) Is a diagram showing the second wire constituting the raw water spacer. In the figure, the shape of raw water spacer-1 has regularity with no bending point, the curved part has a gentle meandering shape with continuously changing radius of curvature, and the wavelength L is 10 to 10 0 Marauder, preferably 20 to 500 marauder, amplitude H is 2 to 200 mm, preferably 10 to 100 thigh, and the ratio of amplitude H to wavelength L (H / L ) Is from 0.02 to 2, preferably from 0.05 to less than 0.5. In this case, the wavelength is 1 to L0 wavelength per lm of one wire. If the ratio of the amplitude H to the wavelength L (H / L), and the amplitude H and the wavelength L are within the above numerical ranges, the raw water flows from the inflow side to the outflow side while gently meandering in the raw water flow path or almost linearly. This will prevent turbidity from accumulating in the raw water flow path and make it possible to manufacture raw water spacers.
本形態例における原水スぺーサー 1は、 原水の流入側 Xから流出側 Y に向かって前述の形状で延在する複数の第 1線材 1 1及び複数の第 2線 材 1 2からなるものであって、 第 2図に示すように、 第 1線材 1 1は分 離膜 2 0のうちの対向する一方の膜面 2 1に沿って延在され、 隣接する 第 1線材 1 1、 1 1間に緩やかな曲線で蛇行する形状に流入側 Xから流 出側 Yに向かって一方の原水流路 2 3が形成され、 原水はこの一方の原 水流路 2 3を膜 2 1の膜面に形成された流路に沿って流れる。 第 2線材 1 2は分離膜 2 0のうち対向する他方の膜面 2 2に沿って延在され、 隣 接する第 2線材 1 2、 1 2間に緩やかな曲線で蛇行する形状に流入側 X から流出側 Yに向かって他方の原水流路 2 4が形成され、 原水はこの他 方の原水流路 2 4を膜 2 2の膜面に形成された流路に沿っても流れる。 そして、 この一方の原水流路 2 3と他方の原水流路 2 4とで形成される 原水流路における流れは、 流路方向に流れを妨げる屈曲点やコーナ一部 が存在しないため、 実際の流れは直線又は直線に近いものになる。 第 3 図及び第 4図中、 符号 2 3 1は一方の原水流路の流れを示し、 符号 2 4 1は他方の原水流路の流れを示す。 The raw water spacer 1 in the present embodiment includes a plurality of first wires 11 and a plurality of second wires extending in the above-described shape from the inflow side X to the outflow side Y of the raw water. As shown in FIG. 2, the first wire rod 11 extends along one of the opposite film surfaces 21 of the separation films 20 and the adjacent first rod material 11 as shown in FIG. One raw water channel 23 is formed from the inflow side X to the outflow side Y in a meandering shape with a gentle curve between the wires 1 1 and 1 1, and the raw water flows through this one raw water channel 23 It flows along the flow path formed on the membrane surface of the membrane 21. The second wire rod 12 extends along the other opposing membrane surface 22 of the separation membrane 20, and forms a meandering shape with a gentle curve between the adjacent second wire rods 12, 12. The other raw water flow path 24 is formed toward the outflow side Y, and the raw water also flows through the other raw water flow path 24 along the flow path formed on the membrane surface of the membrane 22. The flow in the raw water flow path formed by the one raw water flow path 23 and the other raw water flow path 24 does not have a bending point or a part of a corner that hinders the flow in the flow path direction. The flow will be straight or nearly straight. In FIG. 3 and FIG. 4, reference numeral 231 indicates a flow in one raw water flow path, and reference numeral 241 indicates a flow in the other raw water flow path.
また、 第 1図及び第 3図に示すように、 第 1線材 1 1の緩やかな曲線 における一方の側の突出部 1 1 a、 1 1 a · ·は、 第 2線材 1 2の緩や かな曲線における他方の側の突出部 1 2 a、 1 2 a - ' と重なり、 この 重なり箇所で接合されている。 また、 第 1線材 1 1の緩やかな曲線にお ける他方の側の突出部 1 1 b、 l i b - 'は、 第 2線材 1 2の緩やかな 曲線における一方の側の突出部 1 2 b、 1 2 b - ' と重なり、 この重な り箇所で接合されている。 従って、 第 4図に示すように、 隣接する第 1 線材 1 1、 1 1間の距離、 及び隣接する第 2線材 1 2、 1 2間の距離、 すなわち、流路幅 Vは第 1図の形態においては、振幅 Hの 2倍に等しい。 このため、 振幅幅 Hが定まれば、 流路幅 Vが決定される。  In addition, as shown in FIGS. 1 and 3, the projecting portions 11a, 11a on one side of the gentle curve of the first wire 11 It overlaps with the projections 12a, 12a- 'on the other side of the curve and is joined at this overlap. In addition, the protrusion 11b, lib- 'on the other side of the gentle curve of the first wire rod 11 is the protrusion 12b, 1b on one side of the gentle curve of the second wire rod 12. 2 b-'overlapped and joined at this overlap. Therefore, as shown in FIG. 4, the distance between the adjacent first wires 11 and 11 and the distance between the adjacent second wires 12 and 12, that is, the flow path width V in FIG. In form, it is equal to twice the amplitude H. Therefore, if the amplitude width H is determined, the flow path width V is determined.
緩やかな曲線で蛇行する形状の好ましい他の形態を第 5図を参照して 説明する。第 5図は他の形態例における原水スぺーサーを示す図である。 第 5図において、 第 1図の原水スぺーサ一と異なる点について主に説明 する。 すなわち、 第 5図において、 第 1図と異なる点は隣接する第 1線 材 5 1、 5 1間の距離、 及び隣接する第 2線材 5 2、 5 2間の距離、 す なわち、 流路幅 Vを振幅 Hと等しくした点にある。 第 1線材 5 1、 第 2 線材 5 2には第 5図において緩やかな曲線における下側の突出部 5 1 a、 5 2 aと、 上側の 5 1 b、 5 2 bが設けられている。 そして、 第 1線材 5 1の緩やかな曲線における突出部 5 1 a、 5 1 bの中間部分と、 第 2 線材 5 2の緩やかな曲線における突出部 5 2 a、 5 2 bの中間部分とが 交差して重なっている。 また、 第 1線材 5 1の下側の突出部 5 1 aと第 2線材 5 2の上側の突出部 5 2 bとが重なり合つている。 更に、 第 1線 材の上側の突出部 5 1 bと第 2線材 5 2の下側の突出部 5 2 aとが重な り合っている。 そして、 これらの重なり合い部分がお互いに接合され、 これにより一体の原水スぺ一サ一 1 aが構成されている。 この原水スぺ —サ一 1 aを用いたスパイラル型膜エレメントにおいても、 流路幅 Vが 第 1図のものと比較して半分の幅であるものの、 同様に、 隣接する第 1 線材 5 1、 5 1間に緩やかな曲線で蛇行する形状に流入側 Xから流出側 Yに向かって一方の原水流路が形成され、 隣接する第 2線材 5 2、 5 2 間に緩やかな曲線で蛇行する形状に流入側 Xから流出側 Yに向かって他 方の原水流路が形成される。 .そして、 この一方の原水流路と他方の原水 流路とで形成される原水流路における流れは、 第 1図の原水スぺ一サー 1と比較すると蛇行する傾向にあるものの、 濁質の蓄積に至るほどでは ない。 Another preferred form of meandering with a gentle curve will be described with reference to FIG. FIG. 5 is a view showing a raw water spacer in another embodiment. In Fig. 5, the points that are different from the raw water spacers in Fig. 1 are mainly explained. That is, in FIG. 5, the difference from FIG. 1 is that the distance between adjacent first wires 51 and 51 and the distance between adjacent second wires 52 and 52, that is, the flow path The point is that the width V is equal to the amplitude H. The first wire rod 51 and the second wire rod 52 are provided with lower projections 51 a and 52 a and gentle upper curves 51 b and 52 b in FIG. Then, the middle part of the protrusion 51 a, 51 b in the gentle curve of the first wire 51 and the middle part of the protrusion 52 a, 52 b in the gentle curve of the second wire 52 are formed. Intersect and overlap. The lower protrusion 51a of the first wire 51 and the upper protrusion 52b of the second wire 52 overlap each other. Furthermore, the upper protrusion 51b of the first wire and the lower protrusion 52a of the second wire 52 overlap each other. These overlapping portions are joined to each other, thereby forming an integrated raw water sensor 1a. In the spiral-type membrane element using the raw water space 1a as well, although the flow path width V is half the width of that in FIG. 1, similarly, the adjacent first wire rod 5 1 One raw water flow path is formed from the inflow side X to the outflow side Y in a shape meandering with a gentle curve between, 51 and meandering between the adjacent second wires 52, 52 with a gentle curve In the shape, the other raw water flow path is formed from the inflow side X to the outflow side Y. The flow in the raw water flow path formed by the one raw water flow path and the other raw water flow path tends to meander as compared to the raw water flow path 1 in FIG. Not to the point of accumulation.
原水スぺーサ一の厚さは、 第 1線材の径と第 2線材の径を合わせたも の、 若しくはそれよりも若干薄いものであり、 0 . 4〜 3 . 0 mmの範囲 である。 厚さが 0 . 4腿未満では、 通水差圧の上昇を招くと共に、 濁質 の蓄積が生じ易くなる。 一方、 厚さが 3 . O mniを越えると、 スパイラル 状にした場合、 1エレメント当たりの膜面積が小さくなり過ぎてしまい、 実用的でない。 また、 原水スぺーサ一における流路幅 Vとしては、 特に 制限されなが、 第 1図の形態を採る場合、 振幅 Hの 2倍の寸法であり、 第 5図の形態を採る場合、 振幅 Hと同じ寸法である。 原水スぺ一サ一の 材質としては、特に制限されないが、ポリプロピレンやポリエチレンが、 成形性やコス ト面から好ましい。 また、 原水スぺーサ一の製造方法は、 特に制限されず、 公知の方法を適用できるが、 金型による成型品が、 コ ス ト面及び精度面からも好ましい。 The thickness of the raw water spacer is the sum of the diameter of the first wire and the diameter of the second wire, or slightly smaller than that, and is in the range of 0.4 to 3.0 mm. If the thickness is less than 0.4 thigh, the pressure difference in water flow will increase, and the accumulation of turbidity will easily occur. On the other hand, if the thickness exceeds 3.Omni, spiral In this case, the film area per element becomes too small, which is not practical. Although the flow width V in the raw water spacer is not particularly limited, when the configuration shown in FIG. 1 is employed, the amplitude is twice as large as the amplitude H. When the configuration shown in FIG. It has the same dimensions as H. The material of the raw water supplier is not particularly limited, but polypropylene and polyethylene are preferred in terms of moldability and cost. The method for producing the raw water spacer is not particularly limited, and a known method can be applied. However, a molded product using a mold is preferable in terms of cost and precision.
本発明のスパイラル型膜エレメントは、 透過水集水管の外周面に袋状 の分離膜を前記原水スぺ一サ一と共に卷回してなる。 巻回しは、 1枚の 袋状の分離膜を卷回したものであっても、 複数の袋状の分離膜を卷回し たもののいずれであってもよい。 本発明のスパイラル型膜エレメントは 精密濾過装置、 限外濾過装置及び逆浸透膜分離装置などの膜分離装置に 使用することができる。 逆浸透膜としては、 食塩水中の塩化ナトリウム に対する 9 0 %以上の高い除去率を有する通常の逆浸透膜、 及び低脱塩 率のナノ濾過膜やルーズ逆浸透膜が挙げられる。 ナノ濾過膜やルーズ逆 浸透膜は脱塩性能を有するものの、 通常の逆浸透膜よりも脱塩性能が低 いもので、特に C a、M g等の硬度成分の分離性能を有するものである。 なお、 ナノ濾過膜とルーズ逆浸透膜は N F膜と称されることがある。 本発明の逆浸透膜モジュールは、 前記スパイラル型膜エレメントを備 えるものであれば特に制限されず、 例えば第 6図に示す構造を有する逆 浸透膜モジュールが挙げられる。 第 6図に示したように、 透過水集水管 6 0の外周面に袋状の逆浸透膜 6 1を原水スぺ一サーと共にスパイラル 状に巻きつけ、 その上部を外装体 6 2で被覆する。 そしてスパイラル状 に卷きつけた逆浸透膜 6 1がせり出すのを防止するために、 数本の放射 状のリブ 6 3を有するテレスコープ止め 6 4が両端に取り付けられてい る。 これらの透過水集水管 6 0、 逆浸透膜 6 1、 外装体 6 2、 テレスコ ープ止め 6 4でひとつのスパイラル型膜エレメント 6 5を形成し、 夫々 の透過水集水管 6 0をコネクタ (図示せず) で連通して、 ハウジング 6 6内にスパイラル型膜エレメント 6 5を複数個装填する。 なお、 スパイ ラル型膜エレメント 6 5の外周とハンジング 6 6の内周の間に隙間 6 7 が形成されるが、 この隙間 6 7をブラインシール 6 8で閉塞してある。 なおハウジング 6 6の一端には原水をハウジング内部に流入するための 原水流入管 (図示せず) 、 また他端には透過水集水管 6 0に連通する処 理水管.(図示せず) および非透過水管 (図示せず) が付設され、 ハウジ ング 6 6、 その内部部品および配管 (ノズル) 等で逆浸透膜モジュール 6 9が構成される。 The spiral membrane element of the present invention is formed by winding a bag-shaped separation membrane on the outer peripheral surface of a permeated water collecting pipe together with the raw water spacer. The winding may be performed by winding one bag-shaped separation membrane, or by winding a plurality of bag-shaped separation membranes. The spiral type membrane element of the present invention can be used for a membrane separation device such as a microfiltration device, an ultrafiltration device and a reverse osmosis membrane separation device. Examples of the reverse osmosis membrane include a normal reverse osmosis membrane having a high removal rate of 90% or more against sodium chloride in saline, and a nanofiltration membrane or a loose reverse osmosis membrane having a low desalination rate. Although the nanofiltration membrane and the loose reverse osmosis membrane have desalination performance, they have lower desalination performance than ordinary reverse osmosis membranes, and particularly have a performance of separating hardness components such as Ca and Mg. The nanofiltration membrane and loose reverse osmosis membrane are sometimes called NF membrane. The reverse osmosis membrane module of the present invention is not particularly limited as long as it has the spiral type membrane element. For example, a reverse osmosis membrane module having a structure shown in FIG. 6 can be mentioned. As shown in FIG. 6, a bag-shaped reverse osmosis membrane 61 is wound around the outer peripheral surface of the permeated water collecting pipe 60 in a spiral shape together with a raw water spacer, and the upper part thereof is covered with an exterior body 62. . In order to prevent the reverse osmosis membrane 61 wound in a spiral form from protruding, a telescopic stop 64 having several radial ribs 63 is attached to both ends. You. The permeated water collecting pipe 60, the reverse osmosis membrane 61, the outer body 62, and the telescopic stopper 64 form one spiral membrane element 65, and each permeated water collecting pipe 60 is connected to a connector ( (Not shown), and a plurality of spiral membrane elements 65 are loaded in the housing 66. A gap 67 is formed between the outer periphery of the spiral membrane element 65 and the inner periphery of the housing 66, and the gap 67 is closed by a brine seal 68. A raw water inflow pipe (not shown) for flowing raw water into the housing is provided at one end of the housing 66, and a treated water pipe (not shown) communicating with the permeated water collecting pipe 60 at the other end. A non-permeated water pipe (not shown) is attached, and a reverse osmosis membrane module 69 is composed of the housing 66, its internal parts and piping (nozzle).
このような構造の逆浸透膜モジユール 6 9で原水を処理する場合は、 ハウジング 6 6の一端からポンプを用いて原水を圧入するが、 第 6図に おいて矢線で示したように原水はテレスコープ 1¾め 6 4の各放射状のリ ブ 6 3の間を通って最初のスパイラル型膜エレメント 6 5内に侵入し、 一部の原水はスパイラル型膜エレメント 6 5の膜間の原水スぺーサ一で 区画される原水流路を通り抜けて次のスパイラル型膜エレメント 6 5に 達し、 他部の原水は逆浸透膜 6 1を透過して透過水となり当該透過水は 透過水集水管 6 0に集水される。 このようにしてスパイラル型膜エレメ ント 6 5に次々に原水が通り抜けて、 逆浸透膜を透過しなかった原水は 濁質及びイオン性不純物を高濃度で含む濃縮水としてハウジング 6 6の 他端から取り出され、 また逆浸透膜を透過した透過水は透過水として透 過水集水管 6 0を介してハウジング 6 6外に取り出される。 なお、 本発 明の逆浸透膜モジュールは第 6図のように複数のスパイラル型膜ェレメ ントを装着するものの他、 例えばスパイラル型膜エレメント 1個装着す るものであってもよい。 本発明の逆浸透膜装置としては、 特に制限されないが、 例えば前記逆 浸透膜モジュールの 1又は 2以上、 ポンプ等の原水供給手段、 原水流入 配管、 濃縮水流出配管及び透過水流出配管を少なくとも備えるものであ る。 本発明の逆浸透膜装置に直接供給される原水としては、 工業用水、 水道水及び回収水が挙げられる。 原水の濁度としては、 特に制限されな いが、 濁度 2度程度の高い濁度のものであつても濁質の閉塞による通水 差圧の上昇などを生じることがない。 また、 原水には原水中に砂粒など の粗大粒子を含む場合、 予め目の粗いフィルタ一を通した処理水や、 ス ケールゃファゥリングを防止するための分散剤を添加したものも含まれ る。 分散剤の添加により、 原水スぺ一サーゃ膜面への濁質の蓄積を一層 抑制することができる。 分散剤としては、 例えば市販品の 「hyperspers e MSI300J、 「hypersperse MDC200」 (共に、 ARGO SCIENTIFIC社製) が 挙げられる。 本発明の逆浸透膜装置によれば、 従来、 原水中の濁質を除 去する目的で用いられていた凝集沈殿処理、 濾過処理及び膜処理などの 前処理装置の設置を省略することができる。 このため、 システムの簡略 ィ匕、 設置面積の低減、 低コスト化が図れる点で画期的な効果を奏する。 本発明の実施の形態における逆浸透膜装置の一例を第 7図を参照して 説明する。 第 7図において、 逆浸透膜装置 7 0は、 原水供給装置 7 1、 前段逆浸透膜モジュール 7 0 A及び後段逆浸透膜モジュール 7 0 Bをこ の順序で配置したものであり、 原水供給装置 7 1と前段逆浸透膜モジュ ール 7 O Aは原水供給配管 7 2で連結され、 前段逆浸透膜モジュール 7 O Aと後段逆浸透膜モジュール 7 0 Bは前段逆浸透膜モジュール 7 O A の透過水を後段の装置の被処理水として供給する一次透過水流出配管 7 3で連結され、 後段逆浸透膜モジュール 7 0 Bには透過水を排出する透 過氷流出配管 7 4及び濃縮水を原水供給配管 7 2に戻す戻り配管 7 5を 備える。 また、 前段逆浸透膜モジュール 7 0 Aには濃縮水流出配管 7 6 を備えている。 前段逆浸透膜モジュール 7 O Aは本発明に係る濁質の蓄 積を起こさない逆浸透膜装置であり、 後段逆浸透膜モジュール 7 0 Bは 従来の逆浸透膜装置である。 When treating raw water with the reverse osmosis membrane module 69 having such a structure, the raw water is injected by using a pump from one end of the housing 66, but as shown by the arrow in FIG. The first spiral type membrane element 65 passes between the radial ribs 63 of the first telescope 64 and enters the first spiral type membrane element 65, and some raw water is supplied to the raw water space between the membranes of the spiral type membrane element 65. After passing through the raw water flow path defined by the sagittal, it reaches the next spiral membrane element 65, and the other raw water permeates through the reverse osmosis membrane 61 and becomes permeated water, and the permeated water is a permeated water collecting pipe 60 The water is collected. In this way, the raw water passes through the spiral membrane element 65 one after another, and the raw water that has not passed through the reverse osmosis membrane is concentrated from the other end of the housing 66 as a concentrated water containing a high concentration of turbidity and ionic impurities. The permeated water that has been taken out and has passed through the reverse osmosis membrane is taken out of the housing 66 through the permeated water collecting pipe 60 as permeated water. In addition, the reverse osmosis membrane module of the present invention may be one in which a plurality of spiral type membrane elements are mounted as shown in FIG. 6, or one in which a spiral type membrane element is mounted, for example. The reverse osmosis membrane device of the present invention is not particularly limited. For example, at least one or more of the reverse osmosis membrane modules, raw water supply means such as a pump, raw water inflow piping, concentrated water outflow piping, and permeated water outflow piping are provided. It is. Raw water directly supplied to the reverse osmosis membrane device of the present invention includes industrial water, tap water and recovered water. The turbidity of the raw water is not particularly limited, but even if the turbidity is as high as about 2 degrees, no increase in the differential pressure of water due to the blockage of the turbidity occurs. In addition, when raw water contains coarse particles such as sand particles in the raw water, it includes treated water that has been passed through a coarse filter in advance and water to which a dispersant for preventing scale fouling has been added. The addition of the dispersant can further suppress the accumulation of suspended matter on the membrane surface of the raw water substrate. Examples of the dispersant include commercially available products “hypersperse MSI300J” and “hypersperse MDC200” (both manufactured by ARGO SCIENTIFIC). According to the reverse osmosis membrane device of the present invention, it is possible to omit the installation of a pretreatment device, such as a coagulation sedimentation process, a filtration process, and a membrane process, which has been conventionally used for removing suspended matter in raw water. . For this reason, an epoch-making effect is achieved in that the system can be simplified, the installation area can be reduced, and the cost can be reduced. An example of the reverse osmosis membrane device according to the embodiment of the present invention will be described with reference to FIG. In FIG. 7, the reverse osmosis membrane device 70 has a raw water supply device 71, a first reverse osmosis membrane module 70A and a second reverse osmosis membrane module 70B arranged in this order. 7 1 and the upstream reverse osmosis module 7 OA are connected by raw water supply piping 7 2, and the upstream reverse osmosis membrane module 7 OA and the downstream reverse osmosis module 70 B Primary permeated water outflow pipe 73, which is supplied as water to be treated in the downstream equipment, is connected to the reverse reverse osmosis membrane module 70B. Equipped with return pipe 75 returning to 72. Also, concentrated water outflow piping 7 6 It has. The first-stage reverse osmosis membrane module 70A is a reverse osmosis membrane device according to the present invention which does not cause accumulation of turbidity, and the second-stage reverse osmosis membrane module 70B is a conventional reverse osmosis membrane device.
次に、 本実施の形態例の逆浸透膜装置 7 0を用いて原水を処理する方 法を説明する。 先ず、 原水は原水供給手段 7 1により前段逆浸透膜モジ ユール 7 O Aに供給される。 原水は前段逆浸透膜モジュール 7 O Aで処 理され、 一次濃縮水を濃縮水流出配管 7 6から得ると共に一次透過水流 出配管 7 3から一次透過水を得る。 次いで、 この一次透過水は後段逆浸 透膜モジュール 7 0 Bで処理され、 透過水流出配管 7 4から二次透過水 を得ると共に、 二次濃縮水は戻り配管 7 5 'から原水供給配管 7 2に戻さ れる。 この二次濃縮水は既に前段逆浸透膜モジュール 7 O Aで脱塩され た透過水を後段逆浸透膜モジュール 7 0 Bで濃縮されたものであり、 原 水に比べて導電率が低い。 このため、 二次濃縮水の全量を循環させるこ とが可能となり、 水回収率を向上させることができる。 また、 逆浸透膜 装置 7 0は、 従来型の装置で使用されている濁質除去のみを目的とした 前処理装置の代わりに、 本発明における濁質の蓄積が大幅に抑制できる 逆浸透膜モジュールを前段に使用しているので、 実質的に逆浸透膜を 2 段使用することになる。 従来型の装置における前処理装置は当然脱塩機 能がないので、 逆浸透膜装置 7 0は従来型の逆浸透膜装置と比較して透 過水の水質も格段に優れる。  Next, a method of treating raw water using the reverse osmosis membrane device 70 of the present embodiment will be described. First, raw water is supplied to the pre-stage reverse osmosis membrane module 7OA by raw water supply means 71. The raw water is treated by the reverse osmosis membrane module 7 OA in the former stage, and the primary concentrated water is obtained from the concentrated water outlet pipe 76 and the primary permeated water is obtained from the primary permeated water outlet pipe 73. Next, the primary permeate is treated in the reverse reverse osmosis membrane module 70 B to obtain secondary permeate from the permeate discharge pipe 74, and the secondary concentrated water is returned from the return pipe 75 ′ to the raw water supply pipe 7. Returned to 2. This secondary concentrated water is obtained by concentrating the permeated water already desalinated by the first-stage reverse osmosis membrane module 70OA in the second-stage reverse osmosis membrane module 70B, and has lower conductivity than the raw water. For this reason, it is possible to circulate the entire amount of the secondary concentrated water, and the water recovery rate can be improved. Further, the reverse osmosis membrane device 70 is a reverse osmosis membrane module capable of greatly suppressing the accumulation of turbidity in the present invention, instead of the pretreatment device used only for turbidity removal used in the conventional type device. Since the first stage is used, the reverse osmosis membrane is essentially used in two stages. Since the pretreatment apparatus in the conventional apparatus does not have a desalination function, the reverse osmosis membrane apparatus 70 has much better permeation water quality than the conventional reverse osmosis membrane apparatus.
(実施例)  (Example)
実施例 1 Example 1
濁度 2度、 導電率 2 0 mS/mの工業用水を下記仕様の逆浸透膜モジユー ル Aに通水し、 下記運転条件下において、 2 0 0 0時間の耐久運転を行 つた。 逆浸透膜モジュール Aの性能評価は運転初期及び 2 0 0 0時間に おける通水差圧 (MPa)、 透過水量 ( 1 /分) 及び透過水の導電率 (mS/m) を測定することで行った。 また、 2 0 0 0時間後、 逆浸透膜モジュール を解体して原水流路内の濁質の付着状況を観察した。 測定値の結果を第 1表に、 原水流路の目視観察結果を第 2表に示す。 第 1表中、 通水差圧 及び透過水導電率は 2 5 °C換算値である。 Industrial water having a turbidity of 2 degrees and an electrical conductivity of 200 mS / m was passed through a reverse osmosis membrane module A having the following specifications, and a 200-hour endurance operation was performed under the following operating conditions. The performance evaluation of reverse osmosis membrane module A was conducted at the initial stage of operation and at the time of 2000 hours. Was measured. After 2000 hours, the reverse osmosis membrane module was disassembled, and the state of adhesion of suspended matter in the raw water flow path was observed. Table 1 shows the measurement results, and Table 2 shows the results of visual observations of the raw water flow channels. In Table 1, the water pressure difference and the permeate conductivity are values converted at 25 ° C.
(逆浸透膜モジュール A )  (Reverse osmosis membrane module A)
第 1図及び第 2図に示す構造のもので、 振幅 H /波長 Lが 0 . 6 6、 波長 Lが 1 5 醒、 振幅 Hが 1 0廳、 原水流路幅 Vが 2 0匪、 厚さが 1 . 0 mmの原水スぺ一サ一 Aを作製した。 次いで、 この原水スぺ一サ一 Aを 用いてスパイラル型膜エレメント Aを作製し、 更に第 6図に示すような 構造の逆浸透膜モジュール Aを作製した。 但し、 該逆浸透膜モジュール Aは 1個のスパイラル型膜エレメントを収納した 1個のモジュールとし た o  With the structure shown in Fig. 1 and Fig. 2, amplitude H / wavelength L is 0.66, wavelength L is 15 awake, amplitude H is 10 hall, raw water channel width V is 20 bandages, thickness A raw water sensor A having a length of 1.0 mm was produced. Next, a spiral type membrane element A was produced using the raw water sensor A, and a reverse osmosis membrane module A having a structure as shown in FIG. 6 was produced. However, the reverse osmosis membrane module A was one module containing one spiral membrane element.
(運転条件)  (Operating conditions)
操作圧力が 0 . Ί 5 MPa、 濃縮水流量が 2 . 7 m 3 /時間、 水温が 2 5 °C で、 8時間毎に 1回、 6 0秒間のフラッシング (濃縮水流出管に付設さ れている弁を全開して、 透過処理における原水供給流量の 3倍流量の原 水を急速に逆浸透膜モジュール内に供給し、 フラッシング排水を濃縮水 流出管から流出させる操作) を行う。 The operation pressure is 0. Ί 5 MPa, concentrated water flow rate is 2. 7 m 3 / time, water temperature is at 2 5 ° C, 1 once every 8 hours, is attached in 6 0 seconds flushing (the concentrated water outlet pipe Fully open the valve to supply the raw water at a flow rate three times the flow rate of the raw water in the permeation treatment, and quickly supply it into the reverse osmosis membrane module to discharge the flushing wastewater from the concentrated water outflow pipe.
実施例 2 Example 2
逆浸透膜モジュール Aの代わりに、 下記に示す仕様の逆浸透膜モジュ ール Bを用いた以外、 実施例 1と同様の運転条件で 2 0 0 0時間の耐久 運転を行った。 逆浸透膜モジュール Bの性能評価結果を第 1表及び第 2 に す。  The durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module B having the following specifications. Tables 1 and 2 show the performance evaluation results of reverse osmosis membrane module B.
(逆浸透膜モジュール B )  (Reverse osmosis membrane module B)
原水スぺーサー Aに代えて、 第 5図に示す構造のもので、 振幅 H /波 長 Lが 0 . 6 6、 波長 Lが 1 5麵、 振幅 Hが 1 0顧、 原水流路幅 Vが 1 0 顧、 厚さが 1 . 0醒の原水スぺ一サ一 Bを用いた以外、 前記逆浸透膜 モジュール Aと同様の方法で作製した。 Instead of the raw water spacer A, it has the structure shown in Fig. 5, where the amplitude H / wavelength L is 0.66, the wavelength L is 15 麵, the amplitude H is 10 mm, and the raw water channel width V Is 1 The reverse osmosis membrane module A was produced in the same manner as described above except that the raw water sensor B having a thickness of 1.0 was used.
実施例 3 Example 3
濁度 2度、 導電率 2 O mS/mの工業用水を下記仕様で且つ前述の第 7図 に示すフローの逆浸透膜装置に通水し、 下記運転条件下において 2 0 0 0時間の耐久運転を行った。 逆浸透膜装置の性能評価結果を第 1表及び 第 2表に示す。なお、第 1表の結果は、後段逆浸透膜装置の結果である。 (逆浸透膜装置)  Industrial water with a turbidity of 2 degrees and a conductivity of 2 O mS / m is passed through the reverse osmosis membrane device with the following specifications and the flow shown in Fig. 7, and has a durability of 200 hours under the following operating conditions. I drove. Tables 1 and 2 show the performance evaluation results of the reverse osmosis membrane device. The results in Table 1 are for the reverse-stage reverse osmosis membrane device. (Reverse osmosis membrane device)
前段逆浸透膜モジュールとして、 実施例 2で使用した逆浸透膜モジュ —ル Bを用い、 後段逆浸透膜モジュールとして、 8インチエレメント E S - 1 0 (日東電工社製) 1個を装着したモジュール 1個を用いた。 この E S - 1 0に用いられている原水スぺ一サ一は格子の網目状のものであ る。  The reverse osmosis membrane module B used in Example 2 was used as the first-stage reverse osmosis membrane module, and the 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was installed as the second-stage reverse osmosis membrane module. Were used. The raw water sensor used for this ES-10 is a grid mesh.
(運転条件)  (Operating conditions)
前段逆浸透膜モジュール及び後段逆浸透膜モジュール共に、 操作圧力 が 0 . 7 5 MPa、 濃縮水流量が 2 . 7 m 3 /時間、 水温が 2 5 °Cで、 前段 逆浸透膜モジュールのみ 8時間毎に 1回、 6 0秒間のフラッシング (実 施例 1と同様な操作) を行う。 Both the first and second reverse osmosis membrane modules have an operating pressure of 0.75 MPa, a concentrated water flow rate of 2.7 m 3 / hour, a water temperature of 25 ° C, and only the first reverse osmosis membrane module for 8 hours Flush for 60 seconds (same operation as in Example 1) once every time.
実施例 4 Example 4
逆浸透膜モジュール Aの代わりに、 下記に示す仕様の逆浸透膜モジュ —ル Cを用いた以外、 実施例 1と同様の運転条件で 2 0 0 0時間の耐久 運転を行った。 逆浸透膜モジュール Cの性能評価結果を第 1表及び第 2 表に示す。  The durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module C having the following specifications. Tables 1 and 2 show the performance evaluation results of reverse osmosis membrane module C.
(逆浸透膜モジュール C )  (Reverse osmosis membrane module C)
原水スぺーサー Aに代えて、 第 1図に示す構造のもので、 振幅 H Z波 長 Lが 0 . 2、 波長 Lが 1 0 0 顧、 振幅 Hが 2 0 腿、 原水流路幅 Vが 4 0 mm、 厚さが 1 . 0 mmの原水スぺーサ一 Cを用いた以外、 前記逆浸透膜 モジュール Aと同様の方法で作製した。 In place of the raw water spacer A, it has the structure shown in Fig. 1, where the amplitude HZ wavelength L is 0.2, the wavelength L is 100, the amplitude H is 20 thighs, and the raw water channel width V is Four A reverse osmosis membrane module A was prepared in the same manner as above except that a raw water spacer C having a thickness of 0 mm and a thickness of 1.0 mm was used.
比較例 1 Comparative Example 1
膜処理からなる公知の前処理装置を前段に配置したこと、 スパイラル 型膜エレメント Aの代わりに、 8インチエレメント E S - 1 0 (日東電工 社製) を用いたこと以外、 実施例 1と同様の方法で行った。 すなわち、 濁度 2度、 導電率 2 O mS/mの工業用水を、 前処理装置で処理し、 その処 理水を従来の市販の逆浸透膜モジュールで更に処理した。 その結果を第 1表及び第 2表に示す。  The same as in Example 1 except that a known pretreatment device consisting of a membrane treatment was arranged at the front stage, and an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral type membrane element A. Made by the way. That is, industrial water having a turbidity of 2 degrees and a conductivity of 2 OmS / m was treated with a pretreatment device, and the treated water was further treated with a conventional commercially available reverse osmosis membrane module. The results are shown in Tables 1 and 2.
比較例 2 Comparative Example 2
スパイラル型膜エレメント Aの代わりに、 8インチエレメント E S - 1 0 (日東電工社製) を用いた以外、 実施例 1と同様の方法で行った。 すなわち、 濁度 2度、 導電率 2 O mS/mの工業用水を、 前処理装置で処理 することなく直接従来の市販の逆浸透膜モジュールで処理した。 その結 果を第 1表及び第 2表に示す。なお、この比較例 2では 8 0 0時間頃に、 通水差圧が極端に上昇し、 透過水が得られなくなつたため、 この時点で 運転を停止した。  The procedure was performed in the same manner as in Example 1 except that an 8-inch element ES-10 (manufactured by Nitto Denko Corporation) was used instead of the spiral membrane element A. That is, industrial water having a turbidity of 2 degrees and a conductivity of 2 OmS / m was directly treated with a conventional commercial reverse osmosis membrane module without treating with a pretreatment device. The results are shown in Tables 1 and 2. In Comparative Example 2, the water flow differential pressure increased extremely around 800 hours, and permeated water could not be obtained. Therefore, the operation was stopped at this time.
比較例 3 Comparative Example 3
逆浸透膜モジユール Aに代えて、 下記仕様の逆浸透膜モジユール Dを 用いた以外、 実施例 1と同様の運転条件で 2 0 0 0時間の耐久運転を行 つた。 その結果を第 1表に示す。 なお、 該逆浸透膜モジュール Dは 1個 のスパイラル型膜エレメントを収納した 1個のモジュールとした。  The durability operation was performed for 2000 hours under the same operating conditions as in Example 1 except that the reverse osmosis membrane module A was replaced with a reverse osmosis membrane module D having the following specifications. Table 1 shows the results. The reverse osmosis membrane module D was one module containing one spiral type membrane element.
(逆浸透膜モジュール D )  (Reverse osmosis membrane module D)
原水スぺ一サー Aの代わりに、 特開平 1 0— 1 5 6 1 5 2号公報の図 1に示す構造、 すなわち前述の第 8図に示す構造のもので、 厚さが 1 . 0 mm、屈曲点部分の角度 έが 6 0度、屈曲点間の距離 5腿の原水スぺーサ 一 Eを用いた以外、前記逆浸透膜モジュール Aと同様の方法で作製した Instead of the raw water sensor A, the structure shown in FIG. 1 of JP-A-10-156152, that is, the structure shown in FIG. 8 described above, having a thickness of 1.0 mm , The angle of the bend point is 60 degrees, the distance between the bend points is 5 thighs of raw water spacer Except for using E, it was produced in the same manner as the reverse osmosis membrane module A.
第 1表 通水差圧〖MPa] 透過水量 [ 1/分] 透過水導電率 [mS/m] 運転初期 2000hr 運転初期 2000hr 運転初期 2000hr 実施例 1 0.015 0.021 18 15 0.40 0.55 実施例 2 0.015 0.022 18 15 0.40 0.55 実施例 3 0.020 0.020 20 20 0.03 0.03 実施例 4 0.013 0.018 18 15 0.40 0.55 比較例 1 0.020 0.022 20 20 0. 30 0.30 比較例 2 0.020 20 0.30 Table 1 Water differential pressure 〖MPa] Permeate water volume [1 / min] Permeate water conductivity [mS / m] Initial operation 2000hr Initial operation 2000hr Initial operation 2000hr Example 1 0.015 0.021 18 15 0.40 0.55 Example 2 0.015 0.022 18 15 0.40 0.55 Example 3 0.020 0.020 20 20 0.03 0.03 Example 4 0.013 0.018 18 15 0.40 0.55 Comparative example 1 0.020 0.022 20 20 0.30 0.30 Comparative example 2 0.020 20 0.30
比較例 3 0.020 0.075 19 8 0.35 1.90 第 2表 Comparative Example 3 0.020 0.075 19 8 0.35 1.90 Table 2
2000hr後の原水流路の目視観察結果 実施例 1. わずかながら濁質付着 Visual observation result of raw water flow channel after 2000 hours Example 1. Slightly turbid adhesion
実施例 2 わずかながら濁質付着 Example 2 Slightly turbid adhesion
実施例 3 (前段 R0) ほとんど濁質付着なし Example 3 (previous stage R0) Almost no turbidity adhered
実施例 3 (後段 R0) 濁質付着全くなし Example 3 (Second stage R0) No suspended matter attached
実施例 4 わずかながら濁質付着 (実施例 1, 2よりは少ない) 比較例 1 ほとんど濁質付着なし Example 4 Slightly turbid adhesion (less than Examples 1 and 2) Comparative Example 1 Almost no turbid adhesion
比較例 2 原水流路が完全に閉塞するほど濁質付着 Comparative Example 2 Turbidity adhered as raw water flow path was completely blocked
比較例 3 主に屈曲点部分に濁質蓄積 実施例 1〜4において、 2 0 0 0時間後、 通水差圧の上昇はほとんど なく、 透過水量の低下もなく、 透過水の水質も高いものであった。 比較 例 1は 2 0 0 0時間後の性能評価において、 実施例と遜色ない結果を示 しているが、 これは前処理装置を設置しており、 設置場所や設置コスト などが余分に必要となる。 従って、 実施例 1〜4の比較対象は比較例 2 及ぴ 3であるが、 比較例 2は約 8 0 0時間で透過水量がゼロになるまで 濁質の付着が激しいものであり、 比較例 3は 2 0 0 0時間の段階で大幅 な通水差圧の上昇、 透過水量の低下が見られ、 3 0 0 0〜 4 0 0 0時間 程度で使用不能になるものと推測された。 産業上の利用可能性 Comparative Example 3 Suspended turbidity mainly at the inflection point In Examples 1 to 4, after 2000 hours, there was almost no increase in the differential water pressure, no decrease in the amount of permeated water, and high water quality of the permeated water Met. Comparative Example 1 shows a result comparable to that of the Example in the performance evaluation after 2000 hours. However, this requires the installation of a pre-treatment device, which requires extra space and cost. Therefore, Comparative Examples 2 and 3 are Comparative Examples 2 and 3, but Comparative Example 2 is one in which the adhesion of turbid matter is severe until the amount of permeated water becomes zero in about 800 hours. In 3), a significant increase in the pressure difference in water flow and a decrease in the amount of permeated water were observed at the time of 2000 hours, and it was presumed that the water could not be used in about 30000 to 40000 hours. Industrial applicability
本発明のスパイラル型膜エレメン卜によれば、 原水は緩やかな曲線で 蛇行する形状の線材同士間を膜面に沿って、 緩やかに蛇行しながらある いはほぼ直線状に流入側から流出側に向かって流れる。 このため、 原水 流路における濁質の蓄積が大幅に抑制される。 本発明の逆浸透膜モジュ —ル及び逆浸透膜装置によれば、 従来、 原水中の除濁目的で用いられて いた前処理装置の設置を省略することができる。 このため、 システムの 簡略化、設置面積の低減、低コスト化が図れる点で顕著な効果を奏する。 更に工業用水など濁度の高い原水を前処理なしで供給しても、 濁質が蓄 積し難く、 長期間に亘り安定な通水処理が可能となる。  According to the spiral membrane element of the present invention, the raw water gently or quasi-linearly meanders from the inflow side to the outflow side between the wires having a meandering shape with a gentle curve along the membrane surface. Flowing towards. For this reason, accumulation of turbid matter in the raw water flow channel is greatly suppressed. ADVANTAGE OF THE INVENTION According to the reverse osmosis membrane module and reverse osmosis membrane apparatus of this invention, installation of the pretreatment apparatus conventionally used for the purpose of clarification in raw water can be omitted. For this reason, it has a remarkable effect in that the system can be simplified, the installation area is reduced, and the cost is reduced. Furthermore, even if raw water with high turbidity such as industrial water is supplied without pretreatment, turbidity is hard to accumulate, and stable water treatment can be performed for a long period of time.

Claims

請求の範囲 The scope of the claims
1 . 透過水集水管の外周面に袋状の分離膜を原水スぺーサ一と共に巻回 してなるスパイラル型膜エレメントであって、 該原水スぺ一サ一は、 原 水の流入側から流出側に向かって緩やかな曲線で蛇行する形状で延在す る第 1線材及ぴ第 2線材からなるものであって、 該第 1線材は該分離膜 のうちの対向する一方の膜面に沿って延在すると共に、 隣接する第 1線 材同士間で一方の原水流路を形成し、 該第 2線材は該分離膜のうち対向 する他方の膜面に沿って延在すると共に、 隣接する第 2線材同士間で他 方の原水流路を形成し、 該第 1線材と該第 2線材とは一部が重なり、 該 重なり箇所で結合されてなることを特徴とするスパイラル型膜エレメン h o 1. A spiral-type membrane element in which a bag-like separation membrane is wound around the outer surface of a permeated water collecting pipe together with a raw water spacer, and the raw water spacer is arranged from the raw water inflow side. It comprises a first wire and a second wire that extend in a meandering shape with a gentle curve toward the outflow side, and the first wire is attached to one of the opposed membrane surfaces of the separation membrane. And the first wire rod forms one raw water flow path between the adjacent first wire rods, and the second wire rod extends along the other opposing membrane surface of the separation membrane. A raw water flow path is formed between the second wires to be formed, and the first wire and the second wire are partially overlapped with each other and joined at the overlapping portion. ho
2 . 前記緩やかな曲線で蛇行する形状は、 屈曲点のない規則性を有する 形状であって、 振幅 Hと波長 Lの比 (H / L ) が 0 . 0 2〜2であり、 且つ 1本の線材 l m当たり 1〜 1 0 0波長であることを特徴とする請求 項 1記載のスパイラル型膜エレメント。  2. The meandering shape with the gentle curve has a regularity without a bending point, the ratio (H / L) of the amplitude H to the wavelength L is 0.02 to 2, and one The spiral type membrane element according to claim 1, wherein the wavelength is 1 to 100 wavelengths per lm of the wire.
3 . 請求項 1又は 2のスパイラル型膜エレメントを備えることを特徴と する逆浸透膜モジュール。  3. A reverse osmosis membrane module comprising the spiral membrane element according to claim 1 or 2.
4 . 請求項 3の逆浸透膜モジュールを備えることを特徴とする逆浸透膜 装置。  4. A reverse osmosis membrane device comprising the reverse osmosis membrane module according to claim 3.
PCT/JP2003/007393 2002-07-18 2003-06-11 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device WO2004009222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242262A AU2003242262A1 (en) 2002-07-18 2003-06-11 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002209460A JP2004050005A (en) 2002-07-18 2002-07-18 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
JP2002-209460 2002-07-18

Publications (1)

Publication Number Publication Date
WO2004009222A1 true WO2004009222A1 (en) 2004-01-29

Family

ID=30767683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007393 WO2004009222A1 (en) 2002-07-18 2003-06-11 Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device

Country Status (7)

Country Link
JP (1) JP2004050005A (en)
KR (1) KR20050025154A (en)
CN (1) CN1320948C (en)
AU (1) AU2003242262A1 (en)
MY (1) MY137069A (en)
TW (1) TWI239262B (en)
WO (1) WO2004009222A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7998348B2 (en) 2006-03-09 2011-08-16 Nitto Denko Corporation Spiral membrane element and process for producing the same
US8303815B2 (en) 2005-10-31 2012-11-06 Nitto Denko Corporation Spiral separation membrane element
US8361318B2 (en) 2004-03-26 2013-01-29 Nitto Denko Corporation Spiral type separation membrane element
WO2016207496A1 (en) 2015-06-24 2016-12-29 Tauzin Bénédicte Vincente Method for preparing an injectable cross-linked hydrogel, hydrogel obtained; and use of the obtained hydrogel
US9604179B2 (en) 2007-06-11 2017-03-28 Nitto Denko Corporation Spiral membrane element and method of producing the same
US20200331771A1 (en) * 2017-11-03 2020-10-22 Lg Chem, Ltd. Water-treatment filter module, and apparatus and method for manufacturing helical strand of water-treatment filter module

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688140B2 (en) * 2004-03-26 2011-05-25 日東電工株式会社 Spiral type separation membrane element
JP4488431B2 (en) * 2005-12-22 2010-06-23 日東電工株式会社 Spiral type separation membrane element
JP5828328B2 (en) * 2013-02-20 2015-12-02 栗田工業株式会社 Operation method of reverse osmosis membrane device and reverse osmosis membrane device
CN103316590A (en) * 2013-07-16 2013-09-25 北京倍杰特国际环境技术有限公司 Raw water separator for spiral membrane module, membrane module containing separator and reverse osmosis membrane device
NL2016462B1 (en) * 2016-03-21 2017-10-04 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Membrane filtration device and method for minimizing or reducing fouling in such device.
KR102046688B1 (en) * 2016-09-28 2019-12-02 주식회사 엘지화학 Reverse osmosis filter module for water treatment
JP6353957B2 (en) * 2016-11-18 2018-07-04 日東電工株式会社 Raw water channel spacer and spiral membrane element provided with the same
JP7133356B2 (en) * 2018-05-18 2022-09-08 日東電工株式会社 Channel spacer and spiral membrane element
KR20200064718A (en) 2018-11-29 2020-06-08 도레이첨단소재 주식회사 Membrane Module for Water-treatment
CN114126747A (en) * 2019-10-02 2022-03-01 株式会社Lg化学 Feed-side spacer and separation membrane element
KR102306146B1 (en) * 2019-11-28 2021-09-30 한국지질자원연구원 Blown membrane and that manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227701U (en) * 1985-08-01 1987-02-19
JPH10156152A (en) * 1996-12-03 1998-06-16 Kurita Water Ind Ltd Spiral membrane element
JP2000042378A (en) * 1999-08-20 2000-02-15 Toray Ind Inc Fluid separation element
EP1059114A2 (en) * 1999-06-08 2000-12-13 Nitto Denko Corporation Liquid separation membrane module and method of producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69942763D1 (en) * 1998-06-18 2010-10-28 Toray Industries SPIRAL REVERSE OSMOSEMEMBRANE ELEMENT, USE IN A REVERSE OSMOSEMBRANE MODULE, DEVICE AND METHOD FOR REVERSE OSMOSIS RUNNING USING THE MODULE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227701U (en) * 1985-08-01 1987-02-19
JPH10156152A (en) * 1996-12-03 1998-06-16 Kurita Water Ind Ltd Spiral membrane element
EP1059114A2 (en) * 1999-06-08 2000-12-13 Nitto Denko Corporation Liquid separation membrane module and method of producing the same
JP2000042378A (en) * 1999-08-20 2000-02-15 Toray Ind Inc Fluid separation element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8361318B2 (en) 2004-03-26 2013-01-29 Nitto Denko Corporation Spiral type separation membrane element
US8303815B2 (en) 2005-10-31 2012-11-06 Nitto Denko Corporation Spiral separation membrane element
US7998348B2 (en) 2006-03-09 2011-08-16 Nitto Denko Corporation Spiral membrane element and process for producing the same
US9604179B2 (en) 2007-06-11 2017-03-28 Nitto Denko Corporation Spiral membrane element and method of producing the same
WO2016207496A1 (en) 2015-06-24 2016-12-29 Tauzin Bénédicte Vincente Method for preparing an injectable cross-linked hydrogel, hydrogel obtained; and use of the obtained hydrogel
US20200331771A1 (en) * 2017-11-03 2020-10-22 Lg Chem, Ltd. Water-treatment filter module, and apparatus and method for manufacturing helical strand of water-treatment filter module
US11760658B2 (en) * 2017-11-03 2023-09-19 Lg Chem, Ltd. Water-treatment filter module, and apparatus and method for manufacturing helical strand of water-treatment filter module

Also Published As

Publication number Publication date
CN1320948C (en) 2007-06-13
TWI239262B (en) 2005-09-11
AU2003242262A1 (en) 2004-02-09
TW200401664A (en) 2004-02-01
CN1642625A (en) 2005-07-20
KR20050025154A (en) 2005-03-11
JP2004050005A (en) 2004-02-19
MY137069A (en) 2008-12-31

Similar Documents

Publication Publication Date Title
WO2004009222A1 (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane device
JP5838981B2 (en) Multi-stage reverse osmosis membrane device and operation method thereof
JP4251879B2 (en) Operation method of separation membrane module
JPH03504820A (en) Spiral-wound reverse osmosis membrane cell
US20040222158A1 (en) Nanofiltration system for water softening with internally staged spiral wound modules
WO1999065594A1 (en) Spiral reverse osmosis membrane element, reverse osmosis membrane module using it, device and method for reverse osmosis separation incorporating the module
WO2011094236A2 (en) Systems and methods for filtration
JP4225471B2 (en) Operation method of multistage separation membrane module
JP3230490B2 (en) Spiral reverse osmosis membrane element and separation device using the same
JP2004089763A (en) Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same
Kurth et al. Design considerations for implementing ceramics in new and existing polymeric UF systems
JP6399896B2 (en) Reverse osmosis processing equipment
JP2004050081A (en) Spiral membrane element, reverse osmosis membrane module, and reverse osmosis membrane apparatus
WO2004022206A1 (en) Separation membrane module and method of operating separation membrane module
Yaranal et al. An analysis of the effects of pressure-assisted osmotic backwashing on the high recovery reverse osmosis system
JP2000288356A (en) Reverse osmosis membrane separation apparatus and water producing method
US20130161258A1 (en) Sanitary brine seal
JP2004202409A (en) Separation membrane module, separation membrane apparatus and method for operating the same
JP2004089761A (en) Spiral membrane element, reverse osmosis membrane module and reverse osmosis membrane apparatus
JP7158254B2 (en) How to purify tap water
CN210645899U (en) Hose type filter based on ultrafiltration membrane tube filter element
WO2017183131A1 (en) Filtration equipment, desalination plant comprising filtration equipment, and filtration method
CN211255380U (en) EDR (electro-osmotic) water purification system with scale inhibition function and water purifier thereof
JP5076569B2 (en) Liquid separation membrane module
JP2008221108A (en) Liquid separation membrane module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038068273

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047016126

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1-2004-500357

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 1200500185

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 1020047016126

Country of ref document: KR

122 Ep: pct application non-entry in european phase