WO2004017944A1 - Liposomal gemcitabine compositions for better drug delivery - Google Patents

Liposomal gemcitabine compositions for better drug delivery Download PDF

Info

Publication number
WO2004017944A1
WO2004017944A1 PCT/US2003/025293 US0325293W WO2004017944A1 WO 2004017944 A1 WO2004017944 A1 WO 2004017944A1 US 0325293 W US0325293 W US 0325293W WO 2004017944 A1 WO2004017944 A1 WO 2004017944A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
gemcitabine
liposome
cardiolipin
liposomes
Prior art date
Application number
PCT/US2003/025293
Other languages
French (fr)
Inventor
Jia-Ai Zhang
Imran Ahmad
Lan Ma
Original Assignee
Neopharm, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neopharm, Inc. filed Critical Neopharm, Inc.
Priority to AU2003268087A priority Critical patent/AU2003268087A1/en
Publication of WO2004017944A1 publication Critical patent/WO2004017944A1/en
Priority to US11/062,654 priority patent/US20050249795A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • A61K31/7072Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid having two oxo groups directly attached to the pyrimidine ring, e.g. uridine, uridylic acid, thymidine, zidovudine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids

Definitions

  • This invention pertains to formulations and methods for making and using gemcitabine-containing liposomes.
  • Gemcitabine is a nucleoside analogue that exhibits antitumor activity.
  • Gemcitabine exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase) and also blocking the progression of cells through the Gi/S-phase boundary.
  • Gemcitabine is metabolized intracellularly by nucleoside kinases to the active diphosphate (dFdCDP) and triphosphate (dFdCTP) nucleosides.
  • dFdCDP active diphosphate
  • dFdCTP triphosphate
  • the cytotoxic effect of gemcitabine is attributed to a combination of two actions of the diphosphate and the triphosphate nucleosides, which leads to inhibition of DNA synthesis.
  • gemcitabine diphosphate inhibits ribonucleotide reductase, which is responsible for catalyzing the reactions that generate the deoxynucleoside triphosphates for DNA synthesis. Inhibition of this enzyme by the diphosphate nucleoside causes a reduction in the concentrations of deoxynucleotides, including dCTP.
  • gemcitabine triphosphate competes with dCTP for incorporation into DNA. The reduction in the intracellular concentration of dCTP (by the action of the diphosphate) enhances the incorporation of gemcitabine triphosphate into DNA (self-potentiation). After the gemcitabine nucleotide is incorporated into DNA, only one additional nucleotide is added to the growing DNA strands.
  • DNA polymerase epsilon is unable to remove the gemcitabine nucleotide and repair the growing DNA strands (masked chain termination).
  • gemcitabine induces internucleosomal DNA fragmentation, one of the characeristics of programmed cell death.
  • Gemzar® The U.S. Food and Drug Administration (FDA) first approved gemcitabine hydrochloride for sale in the United States in 1996 as an injectable formulation under the tradename Gemzar®.
  • the clinical formulation is supplied in a sterile form for intravenous use only.
  • Vials of Gemzar® contain either 200 mg or 1 g of gemcitabine HC1 (expressed as free base) formulated with mannitol (200 mg or 1 g, respectively) and sodium acetate (12.5 mg or 62.5 mg, respectively) as a sterile lyophilized powder. Hydrochloric acid and/or sodium hydroxide may have been added for pH adjustment.
  • Gemcitabine demonstrates dose-dependent synergistic activity with cisplatin in vitro.
  • gemcitabine showed activity in combination with cisplatin against the LX-1 and CALU-6 human lung xenografts, but minimal activity was seen with the NCI-H460 or NCI-H520 xenografts.
  • Gemcitabine was synergistic with cisplatin in the Lewis lung murine xenograft. Sequential exposure to gemcitabine 4 hours before cisplatin produced the greatest interaction.
  • GEMZAR® is indicated as in combination with cisplatin for the first-line treatment of patients with locally advanced (Stage IIIA or IIIB) or metastatic (Stage IV) NSCLC.
  • GEMZAR® is also available as first-line treatment of the treatment of locally advanced (nonresectable Stage II or Stage III) or metastatic pancreatic cancer (Stage IV) in patients.
  • the toxicity of gemcitabine limits the dosage of drug that can be administered to patients.
  • Gemcitabine HCL also has very short half-life in patients. The half-life and volume of distribution depends on age, gender and duration for infusion.
  • the development of multidrug resistance in cells exposed to gemcitabine can limit its effectiveness. Consequently, formulations of gemcitabine are needed that sufficiently prolong half-life of gemcitabine and maximize its therapeutic efficacy for example, by minimizing the multidrug resistance of treated cells and limiting its toxicity.
  • the present invention provides for novel gemcitabine compositions, their preparation methods, and their use in treating proliferative diseases such as cancer, particularly in mammals, especially in humans.
  • the compositions of the present invention include liposome-entrapped gemcitabine in which the liposome can contain any of a variety of neutral or charged liposome-forming materials and/or cardiolipin.
  • the liposome-forming materials are amphiphilic molecules such as phosphatidylcholine (PC), cholesterol, phosphatidylglycerol (PG), phosphatidylserine (PS), and the like.
  • the cardiolipin in the liposomes can be derived from natural sources or synthetic. Depending on their composition, the liposomes can carry net negative or positive charges or can be neutral. Preferred liposomes also contain a- tocopherol.
  • the term "Gemcitabine” as used herein means Gemcitabine hydrochloride, Gemcitabine free base and Gemcitabine derivatives.
  • the liposomal compositions can be used advantageously in conjunction with secondary therapeutic agents other than gemcitabine, including antineoplastic, antifungal, antibiotic among other active agents, particularly cisplatin, antisense oligonucleotides, oxaliplatin, paclitaxel, vinorelbine, epirubicin.
  • the liposomes can be multilamellar vesicles, unilamellar vesicles, or their mixtures as desired.
  • the invention specifically contemplates methods in which a therapeutically effective amount of the inventive liposomes in a pharmaceutically acceptable excipient are administered to a mammal, such as a human.
  • the composition and method present one or more of the following advantages: 1) achieve a strong electrostatic interaction between lipids and gemcitabine, 2) avoidance of solubility problems, 3) high gemcitabine and liposome stability, 4) ability to administer gemcitabine as a bolus or short infusion in a high concentration, 5) prolong half-life of gemcitabine, 6) reduced gemcitabine toxicity, 7) increased therapeutic efficacy of gemcitabine, and 8) modulation of multidrug resistance in cancer cells.
  • the invention provides a composition including liposomal Gemcitabine and a negatively charged phosholipid (e.g., a first liposome- forming material), and the use of such a composition to treat cellular proliferative diseases.
  • the Gemcitabine in the composition can be Gemcitabine hydrochloride, Gemcitabine free base, one or more Gemcitabine derivatives, or a mixture thereof.
  • the negatively-charged phospholipids can be selected from among a variety of phospholipids having a negative charge, desirably the selection of the negatively charged phospholipids permits the Gemcitabine to become complexed with the negatively-charged phospholipids through electrostatic interaction.
  • cardiolipin which can be, for example, natural cardiolipin, synthetic cardiolipin, or a mixture thereof.
  • the cardiolipin can be or comprise a portion of the negatively-charged phospholipid within the composition, and it is desirable for all or a portion of the cardiolipin to be complexed with the Gemcitabine within the composition.
  • the liposomal formulation including the Gemcitabine includes a negatively-charged phosopholipid
  • the liposomes within the composition can have a net negative or a net positive charge, or they can be neutral.
  • the charge of the liposomes can be influenced, for example, by the presence of other liposome-forming material.
  • the liposomes can include a second liposome-forming material, for example, one or more lipids such as phosphatidylcholine, cholesterol, ⁇ -tocopherol, phosphatidylglycerol and phosphatidyl serine.
  • lipids such as phosphatidylcholine, cholesterol, ⁇ -tocopherol, phosphatidylglycerol and phosphatidyl serine.
  • positively charged liposomes can be formed from a mixture of phosphatidylcholine, cholesterol and stearyl amine.
  • negatively charged liposomes can be formed from phosphatidylcholine, cholesterol, and phosphatidyl serine.
  • the liposomes within the composition can be multilamellar vesicles, unilamellar vesicles, or a mixture thereof. Moreover, the liposomes can be of varying size or substantially uniform in size. For example the liposomes can have a size of about 1 mm or less, and more preferably are in the micron or sub-micron range. For example, the liposomes can have a diameter of about 5 ⁇ m or less, such as about 1 ⁇ m or less, or even 0.5 ⁇ m or less, such as about 0.2 ⁇ m or less or even about 0.1 ⁇ m or less.
  • the liposomes for use in the present invention can be formed by known techniques.
  • gemcitabine is dissolved in an organic solvent with negatively charged phospholipids, such as cardiolipin (CL) and other phospholipids as desired and pharmaceutical excipients allowed forming complexes with gemcitabine.
  • the cardiolipin/gemcitabine-containing mixture can be evaporated to form a film in order to facilitate electrostatic interaction and complex formation.
  • solutions containing any additional desired additional lipophilic ingredients can be added to the film and the gemcitabine/lipids complexes dissolved or thoroughly dispersed in the solution. The solution can then be evaporated to form a second lipid film.
  • a polar solvent such as an aqueous solvent can then be added to the lipid film and the resulting mixture vigorously homogenized to produce the present inventive liposomes.
  • all of the lipophilic ingredients can be dissolved in a suitable solvent that can then be evaporated to form a lipophilic film.
  • a polar solvent such as an aqueous solvent can then be added to the lipid film and the resulting mixture vigorously homogenized to produce the present inventive liposomes.
  • gemcitabine can be dissolved in a suitable aqueous solvent or buffers. The aqueous of gemcitabine can then be added to the lipid film and the resulting mixture vigorously homogenized to produce liposomes, emulsions and micelles, as desired.
  • the dosage form can be conveniently packaged in a single vial to which a suitable aqueous solution can be added to form the liposomes.
  • a two vial system can be prepared in which the lipophilic ingredients are contained as a film in one vial and aqueous ingredients containing gemcitabine are provided in a second vial.
  • the aqueous gemcitabine-containing ingredients can be transferred to the vial containing the lipid film and the liposomes formed by standard methods.
  • the liposomes, once formed, can be filtered through suitable filters to control their size distribution.
  • Suitable filters include those that can be used to obtain the desired size range of liposomes from a filtrate.
  • the liposomes can be formed and thereafter filtered through a 5 micron filter to obtain liposomes having a diameter of about 5 microns or less.
  • 1 ⁇ m, 500 nm, 100 nm or other suitable filters can be used to obtain liposomes of desired size.
  • the present inventive liposomes are stable and can be filtered through microbial retentative filters to have a sterile pharmaceutical product.
  • gemcitabine is dissolved in a suitable solvent. Suitable solvents are those in which gemcitabine is soluble and which can be evaporated without leaving a pharmaceutically unacceptable residue.
  • cardiolipin can be purified from natural sources or can be chemically synthesized, such as tetramyristylcardiolipin, by such methods as are known in the art. Cardiolipin can be dissolved in a suitable solvent as described above for gemcitabine and the solutions mixed or the cardiolipin can be dissolved directly with gemcitabine.
  • any suitable liposome-forming material can be used in the present liposomes.
  • Suitable liposome forming materials include synthetic, semi-synthetic (modified natural) or naturally occurring compounds having a hydrophilic portion and a hydrophobic portion. Such compounds are amphiphilic molecules and can have net positive, negative, or neutral charges.
  • the hydrophobic portion of liposome forming compounds can include one or more nonpolar, aliphatic chains, for example, palmitoyl groups.
  • suitable liposome-forming compounds include phospholipids, sterols, fatty acids, and the like.
  • Preferred liposome forming compounds include cardiolipin, phosphatidylcholine (PC), cholesterol, phosphatidylglycerol (PG), phosphatidylserine (PS), and -tocopherol.
  • the liposome-forming material can be dissolved in a suitable solvent, which can be a low polarity solvent such as chloroform, or a non- polar solvent, such as n-hexane.
  • a suitable solvent can be a low polarity solvent such as chloroform, or a non- polar solvent, such as n-hexane.
  • Other lipophilic ingredients can be admixed with the aforementioned ingredients, the ingredients can then be mixed with gemcitabine and the solvent evaporated to produce a homogeneous lipid film.
  • Solvent evaporation can be by any suitable means that preserves the stability of gemcitabine and other lipophilic ingredients.
  • Liposomes can then be formed by adding a polar solution, preferably an aqueous solution, such as a saline solution, to the lipid film and dispersing the film by vigorous mixing.
  • a polar solution preferably an aqueous solution, such as a saline solution
  • the polar solution can contain gemcitabine.
  • the solution can be pure water or it can contain salts, buffers, or other soluble active agents.
  • Any method of mixing can be used provided that the chosen method induces sufficient shearing forces between the lipid film and polar solvent to strongly homogenize the mixture and form liposomes.
  • mixing can be by vortexing, magnetic stirring, and/or sonicating.
  • Multilamellar liposomes can be formed simply by vortexing the solution. Where unilamellar liposomes are desired a sonication or filtration step is included in the process.
  • any suitable method of forming liposomes can be used so long as it provides liposome entrapped gemcitabine.
  • solvent evaporation methods that do not involve formation of a dry lipid film can be used.
  • liposomes can be prepared by forming an emulsion in an aqueous and organic phase and evaporating the organic solvent. Reverse-phase evaporation, infusion procedures, and detergent dilution, can be used to produce the liposomes.
  • the present invention is intended to encompass liposome-entrapped gemcitabine, without regard to the procedure for making the liposomes.
  • the preferred liposome entrapped gemcitabine compositions contains suitable amounts of gemcitabine.
  • Suitable amounts can include from 1 to 50 wt.% gemcitabine, and more preferably 2 to 25 wt.% gemcitabine.
  • Preferred compositions also contain cardiolipin, cholesterol, phosphatidylcholine and ⁇ -tocopherol in suitable amounts.
  • the inventive compositions can contain any suitable amount of cardiolipin. Suitable amounts can include from 1 to 50 wt.% cardiolipin, and more preferably 2 to 25 wt.% cardiolipin.
  • the inventive compositions can contain any suitable amount of phosphatidylcholine. Suitable amounts of phosphatidylcholine can include from 1 to 95 wt.% phosphatidylcholine, and more preferably 20 to 75 wt.% phosphatidylcholine.
  • Preferred liposomes of the present invention also contain suitable amounts of ⁇ - tocopherol or other suitable antioxidants. Suitable amounts range from 0.001 wt.% to 10 wt.% ⁇ -tocopherol, such as, for example, 5 wt.% ⁇ -tocopherol. For reference, wt.% refers to the relative mass of each ingredient in the final composition without regard to the amount of added water.
  • the present invention provides gemcitabine liposome preparations which can be stored for extended periods of time without substantial leakage from the liposomes of internally encapsulated materials.
  • the present invention provides a gemcitabine liposome preparations, which can be dehydrated, stored for extended periods of time while dehydrated, and then rehydrated when and where they are to be used, without losing a substantial portion of loaded gemcitabine during the dehydration, storage and rehydration processes.
  • the invention in accordance with one of its aspects, provides gemcitabine liposome preparations which have been dehydrated in the presence of one or more protective sugars.
  • the liposomes are dehydrated with the one or more sugars being present at both the inside and outside surfaces of the liposome membranes.
  • the sugars are selected from the group consisting of trehalose, maltose, lactose, sucrose, glucose, and dextran, with the most preferred sugars from a performance point of view being trehalose and sucrose.
  • disaccharide sugars have been found to work better than monosaccharide sugars, with the disaccharide sugars trehalose and sucrose being most effective. Other more complicated sugars can also be used.
  • the dehydration is preferably achieved under vacuum and can take place either with or without prior freezing of the liposome preparation.
  • the liposomes are preferably dehydrated using standard freeze-drying equipment or equivalent apparatus, that is, they are preferably dehydrated under reduced pressure. If desired, the liposomes and their surrounding medium can be frozen in liquid nitrogen before being dehydrated. Alternatively, the liposomes can also be dehydrated without prior freezing, by simply being placed under reduced pressure.
  • the invention includes pharmaceutical preparations that in addition to the liposomal gemcitabine preparation, also include non-toxic, inert pharmaceutically suitable excipients and processes for the production of these preparations.
  • the invention also includes pharmaceutical preparations in dosage units. This means that the preparations are in the form of individual parts, for example capsules, softgel capsules, pills, suppositories, ampoules and vials, of which the content of liposome entrapped gemcitabine corresponds to a fraction or a multiple of an individual dose.
  • the dosage units can contain, for example, 1, 2, 3 or 4 individual doses or 1/2, 1/3 or 1/4 of an individual dose.
  • An individual dose preferably contains the amount of gemcitabine which is given in one administration and which usually corresponds to a whole, a half or a third or a quarter of a daily dose.
  • the abovementioned pharmaceutical preparations are manufactured in the usual manner according to known methods, for example by mixing liposomal gemcitabine with an excipient or excipients.
  • non-toxic, inert pharmaceutically suitable excipients there are to be understood solid, semi-solid or liquid diluents, fillers, solubilizers, stabilizer and formulation auxiliaries of all kinds.
  • the active compound or its pharmaceutical preparations administered locally, orally, parenterally, intraperitoneally and/or rectally, preferably parenterally, especially intravenously.
  • Suitable amounts are therapeutically effective amounts that do not have excessive toxicity, as determined in empirical studies. Accordingly, any pharmaceutical preparation suitable to the desired route of administration, e.g., tablets, dragees, capsules, pills, granules, suppositories, solutions, suspensions and emulsions, pastes, ointments, gels, creams, lotions, powders and sprays, can be used. Suppositories can contain, in addition to the liposome-entrapped gemcitabine, suitable water-soluble or water-insoluble excipients.
  • Suitable excipients are those in which the inventive liposomal entrapped gemcitabine are sufficiently stable to allow for therapeutic use, for example polyethylene glycols, certain fats, and esters or mixtures of these substances.
  • Ointments, pastes, creams and gels can contain suitable excipients in which the liposome-entrapped gemcitabine is stable and can contain additives such as eucalyptus oil and sweeteners like saccharin.
  • the present invention also includes the use of the active compound according to the invention and of pharmaceutical preparations which contain the active compound according to the invention in human and veterinary medicine for the prevention, amelioration and/or cure of diseases, in particular those diseases caused by cellular proliferation, such as cancer.
  • the composition can be used to treat cancer in any patient in need of such treatment, which is typically a mammalian patient, such as a cow, horse, pig, dog or cat.
  • a mammalian patient such as a cow, horse, pig, dog or cat.
  • dog lymphoma can be treated effectively with the present gemcitabine formulation.
  • the present formulation is particularly preferred for use in the treatment of human patients, particularly for cancer and other diseases caused by cellular proliferation.
  • cancers treatable by this invention include, but not limited to lung cancer (including, but not limited to unresectable, advanced non small cell lung cancer); breast cancer; testicular cancer; ovarian cancer; gastro intestinal cancers including colon, rectal, pancreatic, and gastric cancers, hepatocellular carcinoma; head and neck cancers; prostate cancer; renal cell carcinoma; adenocarcinoma; sarcomas; lymphomas; leukemias; and mycosis fugoides; melanoma; high grade glioma, glioblastoma and brain cancers.
  • lung cancer including, but not limited to unresectable, advanced non small cell lung cancer
  • breast cancer testicular cancer
  • ovarian cancer gastro intestinal cancers including colon, rectal, pancreatic, and gastric cancers, hepatocellular carcinoma
  • head and neck cancers prostate cancer
  • renal cell carcinoma adenocarcinoma
  • sarcomas sarcomas
  • lymphomas leukemias
  • the gemcitabine should preferably be present in the abovementioned pharmaceutical preparations in a concentration of about 0.1 to 50, preferably of about 0.5 to 25, percent by weight of the total mixture. Depending, in part, on the route of administration, the usual initial dose of gemcitabine is about 600-1500mg/m 2 . In a human, for example, preferably, about 800-1300 mg/m 2 is administered. However, it can be necessary to deviate from the dosages mentioned and in particular to do so as a function of the nature and body weight of the subject to be treated, the nature and the severity of the illness, the nature of the preparation and if the administration of the medicine, and the time or interval over which the administration takes place.
  • the present composition provides a method of modulating multidrug resistance in cancer cells that are subjected to gemcitabine.
  • the present liposomal compositions reduce the tendency of cancer cells subjected to chemotherapy with gemcitabine to develop resistance thereto, and reduces the tendency of treated cells of developing resistance to other therapeutic agents, such as cisplatin, vindesine, taxol, 5-fluorouracil (5-FU) or leucovorin, for example.
  • other agents can be advantageously employed with the present treatment either in the form of a combination active with gemcitabine or by separate administration.
  • Preferred agents other than gemcitabine include antineoplastic, antifungal, and antibiotic among other active agents; particularly cisplatin, antisense oligonucleotides (especially an oligonucleotide antisense to raf (e.g., 5'- GTGCTCCATTGATGC-3' (SEQ ID NO:l)), such as liposomal formulation of anti-c- raf oligonucleotides (see, e.g., U.S. Patents 6,126,965 and 6,559,129), oxaliplatin, paclitaxel, vinorelbine, epirubicin.
  • antisense oligonucleotides especially an oligonucleotide antisense to raf (e.g., 5'- GTGCTCCATTGATGC-3' (SEQ ID NO:l)
  • liposomal formulation of anti-c- raf oligonucleotides see, e.g., U
  • the present liposomal compositions reduce the irritation, local tissue necrosis, and/or thrombophlebitis.
  • the extravasation injuries is significantly reduced since the free gemcitabine is not in contact with the tissue directly.
  • EXAMPLE 1 This is an example of lipid formulation according to the invention, with gemcitabine hydrochloride.
  • Lipids (85-500 ⁇ mole) were dissolved in organic solvent. The mixture was stirred gently and the solvents were evaporated under vacuum at 40-60°C to form a thin dry film of lipids.
  • Gemcitabine hydrochloride (70 ⁇ mole) was dissolved in 5 ml of 30 mM acetate buffer, pH 3.0. Liposomes were formed by adding the drug solution to the lipid film and aggressively mixing the components by votexing. The liposomes formed then were extruded through two stacked 0.2 ⁇ m and 0.1 ⁇ m pore size polycarbonate filters to reduce the particle size.
  • the liposome mean diameter was determined using dynamic light scattering (DLS) technique with a icomp 380 Submicron Particle Sizer (Particle Sizing Systems, Santa Barbara, CA) equipped with auto dilution function.
  • the gemcitabine binding efficiency in the liposome was determined by centrifuging an aliquot of the subject liposomes at 58,000 rpm for 2 hours at 4°C. Thereafter the drug was analyzed using high pressure liquid chromatography (HPLC). Generally the binding efficiency of gemcitabine in liposomes between 15-80% of the initial input dose.
  • Gemcitabine free base (76 ⁇ mole) was dissolved in organic solvent containing lipids (150-380 ⁇ mole). The mixture was stirred gently and the solvents evaporated under vacuum at 40°C to form a thin dry film of lipids and drug.
  • Liposomes were formed by adding 5 ml of 30 mM acetate buffer, pH 3.0 or 5 ml of 20% sucrose pH adjusted to 8.5 with NaOH and mixing the components by votexing. The liposomes formed then were extruded through two stacked 0.2 ⁇ m and 0.1 ⁇ m pore size polycarbonate filters to reduce the particle size.
  • the liposome mean diameter was determined using dynamic light scattering (DLS) technique with aNicomp 380 Submicron Particle Sizer (Particle Sizing Systems, Santa Barbara, CA) equipped with auto dilution function.
  • the gemcitabine binding efficiency in the liposome was determined by centrifuging an aliquot of the subject liposomes at 58,000 rpm for 2 hours at 4°C. Thereafter the drug was analyzed using high pressure liquid chromatography (HPLC). Generally the binding efficiency of gemcitabine in liposomes was between 20-80% of the initial input dose. Data for several formulations are presented in Table 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention is for novel compositions and methods for treating cancer, particularly, for treating cancer in mammals and more particularly in humans. The therapeutic compositions of the present invention include liposome entrapped gemcitabine in which the liposome can contain any of a variety of neutral or charged liposome-forming compounds including cardiolipin.

Description

LIPOSOMAI- GEMCITABINE COMPOSITIONS FOR BETTER DRUG DELIVERY
FIELD OF THE INVENTION
[0001] This invention pertains to formulations and methods for making and using gemcitabine-containing liposomes.
DESCRIPTION OF THE BACKGROUND
[0002] Gemcitabine is a nucleoside analogue that exhibits antitumor activity. Gemcitabine exhibits cell phase specificity, primarily killing cells undergoing DNA synthesis (S-phase) and also blocking the progression of cells through the Gi/S-phase boundary. Gemcitabine is metabolized intracellularly by nucleoside kinases to the active diphosphate (dFdCDP) and triphosphate (dFdCTP) nucleosides. The cytotoxic effect of gemcitabine is attributed to a combination of two actions of the diphosphate and the triphosphate nucleosides, which leads to inhibition of DNA synthesis. First, gemcitabine diphosphate inhibits ribonucleotide reductase, which is responsible for catalyzing the reactions that generate the deoxynucleoside triphosphates for DNA synthesis. Inhibition of this enzyme by the diphosphate nucleoside causes a reduction in the concentrations of deoxynucleotides, including dCTP. Second, gemcitabine triphosphate competes with dCTP for incorporation into DNA. The reduction in the intracellular concentration of dCTP (by the action of the diphosphate) enhances the incorporation of gemcitabine triphosphate into DNA (self-potentiation). After the gemcitabine nucleotide is incorporated into DNA, only one additional nucleotide is added to the growing DNA strands. After this addition, there is inhibition of further DNA synthesis. DNA polymerase epsilon is unable to remove the gemcitabine nucleotide and repair the growing DNA strands (masked chain termination). In CEM T lymphoblastoid cells, gemcitabine induces internucleosomal DNA fragmentation, one of the characeristics of programmed cell death.
[0003] The U.S. Food and Drug Administration (FDA) first approved gemcitabine hydrochloride for sale in the United States in 1996 as an injectable formulation under the tradename Gemzar®. The clinical formulation is supplied in a sterile form for intravenous use only. Vials of Gemzar® contain either 200 mg or 1 g of gemcitabine HC1 (expressed as free base) formulated with mannitol (200 mg or 1 g, respectively) and sodium acetate (12.5 mg or 62.5 mg, respectively) as a sterile lyophilized powder. Hydrochloric acid and/or sodium hydroxide may have been added for pH adjustment. [0004] Gemcitabine demonstrates dose-dependent synergistic activity with cisplatin in vitro. No effect of cisplatin on gemcitabine triphosphate accumulation or DNA double-strand breaks was observed. In vivo, gemcitabine showed activity in combination with cisplatin against the LX-1 and CALU-6 human lung xenografts, but minimal activity was seen with the NCI-H460 or NCI-H520 xenografts. Gemcitabine was synergistic with cisplatin in the Lewis lung murine xenograft. Sequential exposure to gemcitabine 4 hours before cisplatin produced the greatest interaction. [0005] GEMZAR® is indicated as in combination with cisplatin for the first-line treatment of patients with locally advanced (Stage IIIA or IIIB) or metastatic (Stage IV) NSCLC. GEMZAR® is also available as first-line treatment of the treatment of locally advanced (nonresectable Stage II or Stage III) or metastatic pancreatic cancer (Stage IV) in patients. However, the toxicity of gemcitabine limits the dosage of drug that can be administered to patients. Gemcitabine HCL also has very short half-life in patients. The half-life and volume of distribution depends on age, gender and duration for infusion. Moreover, the development of multidrug resistance in cells exposed to gemcitabine can limit its effectiveness. Consequently, formulations of gemcitabine are needed that sufficiently prolong half-life of gemcitabine and maximize its therapeutic efficacy for example, by minimizing the multidrug resistance of treated cells and limiting its toxicity.
SUMMARY OF THE INVENTION )
[0006] The present invention provides for novel gemcitabine compositions, their preparation methods, and their use in treating proliferative diseases such as cancer, particularly in mammals, especially in humans. The compositions of the present invention include liposome-entrapped gemcitabine in which the liposome can contain any of a variety of neutral or charged liposome-forming materials and/or cardiolipin. The liposome-forming materials are amphiphilic molecules such as phosphatidylcholine (PC), cholesterol, phosphatidylglycerol (PG), phosphatidylserine (PS), and the like. The cardiolipin in the liposomes can be derived from natural sources or synthetic. Depending on their composition, the liposomes can carry net negative or positive charges or can be neutral. Preferred liposomes also contain a- tocopherol. [0007] The term "Gemcitabine" as used herein means Gemcitabine hydrochloride, Gemcitabine free base and Gemcitabine derivatives.
[0008] The liposomal compositions can be used advantageously in conjunction with secondary therapeutic agents other than gemcitabine, including antineoplastic, antifungal, antibiotic among other active agents, particularly cisplatin, antisense oligonucleotides, oxaliplatin, paclitaxel, vinorelbine, epirubicin. The liposomes can be multilamellar vesicles, unilamellar vesicles, or their mixtures as desired. The invention specifically contemplates methods in which a therapeutically effective amount of the inventive liposomes in a pharmaceutically acceptable excipient are administered to a mammal, such as a human.
[0009] Desirably, the composition and method present one or more of the following advantages: 1) achieve a strong electrostatic interaction between lipids and gemcitabine, 2) avoidance of solubility problems, 3) high gemcitabine and liposome stability, 4) ability to administer gemcitabine as a bolus or short infusion in a high concentration, 5) prolong half-life of gemcitabine, 6) reduced gemcitabine toxicity, 7) increased therapeutic efficacy of gemcitabine, and 8) modulation of multidrug resistance in cancer cells. These and other properties and advantages of the present invention will be apparent upon reading the following detailed description.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0010] In one embodiment, the invention provides a composition including liposomal Gemcitabine and a negatively charged phosholipid (e.g., a first liposome- forming material), and the use of such a composition to treat cellular proliferative diseases. The Gemcitabine in the composition can be Gemcitabine hydrochloride, Gemcitabine free base, one or more Gemcitabine derivatives, or a mixture thereof. [0011] While the negatively-charged phospholipids can be selected from among a variety of phospholipids having a negative charge, desirably the selection of the negatively charged phospholipids permits the Gemcitabine to become complexed with the negatively-charged phospholipids through electrostatic interaction. One preferred negatively charged phospholipid for inclusion in the formulation is cardiolipin, which can be, for example, natural cardiolipin, synthetic cardiolipin, or a mixture thereof. The cardiolipin can be or comprise a portion of the negatively-charged phospholipid within the composition, and it is desirable for all or a portion of the cardiolipin to be complexed with the Gemcitabine within the composition. [0012] While the liposomal formulation including the Gemcitabine includes a negatively-charged phosopholipid, the liposomes within the composition can have a net negative or a net positive charge, or they can be neutral. The charge of the liposomes can be influenced, for example, by the presence of other liposome-forming material. In this respect, in addition to the negatively-charged phospholipid (e.g. a cardiolipin), the liposomes can include a second liposome-forming material, for example, one or more lipids such as phosphatidylcholine, cholesterol, α-tocopherol, phosphatidylglycerol and phosphatidyl serine. For example, at neutral pH, positively charged liposomes can be formed from a mixture of phosphatidylcholine, cholesterol and stearyl amine. Alternatively, negatively charged liposomes can be formed from phosphatidylcholine, cholesterol, and phosphatidyl serine. [0013] The liposomes within the composition can be multilamellar vesicles, unilamellar vesicles, or a mixture thereof. Moreover, the liposomes can be of varying size or substantially uniform in size. For example the liposomes can have a size of about 1 mm or less, and more preferably are in the micron or sub-micron range. For example, the liposomes can have a diameter of about 5 μm or less, such as about 1 μm or less, or even 0.5 μm or less, such as about 0.2 μm or less or even about 0.1 μm or less.
[0014] Generally, the liposomes for use in the present invention can be formed by known techniques. For example, in one preferred technique gemcitabine is dissolved in an organic solvent with negatively charged phospholipids, such as cardiolipin (CL) and other phospholipids as desired and pharmaceutical excipients allowed forming complexes with gemcitabine. The cardiolipin/gemcitabine-containing mixture can be evaporated to form a film in order to facilitate electrostatic interaction and complex formation. Thereafter, solutions containing any additional desired additional lipophilic ingredients can be added to the film and the gemcitabine/lipids complexes dissolved or thoroughly dispersed in the solution. The solution can then be evaporated to form a second lipid film. A polar solvent such as an aqueous solvent can then be added to the lipid film and the resulting mixture vigorously homogenized to produce the present inventive liposomes. In another preferred technique, all of the lipophilic ingredients can be dissolved in a suitable solvent that can then be evaporated to form a lipophilic film. A polar solvent such as an aqueous solvent can then be added to the lipid film and the resulting mixture vigorously homogenized to produce the present inventive liposomes. In yet another alternative method, gemcitabine can be dissolved in a suitable aqueous solvent or buffers. The aqueous of gemcitabine can then be added to the lipid film and the resulting mixture vigorously homogenized to produce liposomes, emulsions and micelles, as desired.
[0015] Where the gemcitabine is dissolved in the lipid film as described above, the dosage form can be conveniently packaged in a single vial to which a suitable aqueous solution can be added to form the liposomes. Alternatively, a two vial system can be prepared in which the lipophilic ingredients are contained as a film in one vial and aqueous ingredients containing gemcitabine are provided in a second vial. The aqueous gemcitabine-containing ingredients can be transferred to the vial containing the lipid film and the liposomes formed by standard methods. [0016] In a preferred embodiment, the liposomes, once formed, can be filtered through suitable filters to control their size distribution. Suitable filters include those that can be used to obtain the desired size range of liposomes from a filtrate. For example, the liposomes can be formed and thereafter filtered through a 5 micron filter to obtain liposomes having a diameter of about 5 microns or less. Alternatively, 1 μm, 500 nm, 100 nm or other suitable filters can be used to obtain liposomes of desired size. The present inventive liposomes are stable and can be filtered through microbial retentative filters to have a sterile pharmaceutical product. [0017] In accordance with the invention gemcitabine is dissolved in a suitable solvent. Suitable solvents are those in which gemcitabine is soluble and which can be evaporated without leaving a pharmaceutically unacceptable residue. For example, non-polar or slightly polar solvents may be used, such as ethanol, methanol, chloroform, methylene chloride or acetone. [0018] Any suitable negatively charged lipid and cardiolipin preparation can be used in the present invention. For example, cardiolipin can be purified from natural sources or can be chemically synthesized, such as tetramyristylcardiolipin, by such methods as are known in the art. Cardiolipin can be dissolved in a suitable solvent as described above for gemcitabine and the solutions mixed or the cardiolipin can be dissolved directly with gemcitabine.
[0019] In addition to cardiolipin or other negatively-charged phospholipid, any suitable liposome-forming material can be used in the present liposomes. Suitable liposome forming materials include synthetic, semi-synthetic (modified natural) or naturally occurring compounds having a hydrophilic portion and a hydrophobic portion. Such compounds are amphiphilic molecules and can have net positive, negative, or neutral charges. The hydrophobic portion of liposome forming compounds can include one or more nonpolar, aliphatic chains, for example, palmitoyl groups. Examples of suitable liposome-forming compounds include phospholipids, sterols, fatty acids, and the like. Preferred liposome forming compounds include cardiolipin, phosphatidylcholine (PC), cholesterol, phosphatidylglycerol (PG), phosphatidylserine (PS), and -tocopherol. Phosphatidylethanolamine (PE), phosphatidic acid (PA), phosphatidylinositol (PI), sphingomyelin (SM), ganglioside GMi and polymer modified lipids, such as PEG modified lipids or a combination thereof also can be included. [0020] As described above for the negatively-charged phospholipids (e.g., cardiolipin) and gemcitabine, the liposome-forming material can be dissolved in a suitable solvent, which can be a low polarity solvent such as chloroform, or a non- polar solvent, such as n-hexane. Other lipophilic ingredients can be admixed with the aforementioned ingredients, the ingredients can then be mixed with gemcitabine and the solvent evaporated to produce a homogeneous lipid film. Solvent evaporation can be by any suitable means that preserves the stability of gemcitabine and other lipophilic ingredients. [0021] Liposomes can then be formed by adding a polar solution, preferably an aqueous solution, such as a saline solution, to the lipid film and dispersing the film by vigorous mixing. Optionally, the polar solution can contain gemcitabine. The solution can be pure water or it can contain salts, buffers, or other soluble active agents. Any method of mixing can be used provided that the chosen method induces sufficient shearing forces between the lipid film and polar solvent to strongly homogenize the mixture and form liposomes. For example, mixing can be by vortexing, magnetic stirring, and/or sonicating. Multilamellar liposomes can be formed simply by vortexing the solution. Where unilamellar liposomes are desired a sonication or filtration step is included in the process.
[0022] More generally, any suitable method of forming liposomes can be used so long as it provides liposome entrapped gemcitabine. Thus, solvent evaporation methods that do not involve formation of a dry lipid film can be used. For example, liposomes can be prepared by forming an emulsion in an aqueous and organic phase and evaporating the organic solvent. Reverse-phase evaporation, infusion procedures, and detergent dilution, can be used to produce the liposomes. The present invention is intended to encompass liposome-entrapped gemcitabine, without regard to the procedure for making the liposomes. [0023] The preferred liposome entrapped gemcitabine compositions contains suitable amounts of gemcitabine. Suitable amounts can include from 1 to 50 wt.% gemcitabine, and more preferably 2 to 25 wt.% gemcitabine. Preferred compositions also contain cardiolipin, cholesterol, phosphatidylcholine and α-tocopherol in suitable amounts. The inventive compositions can contain any suitable amount of cardiolipin. Suitable amounts can include from 1 to 50 wt.% cardiolipin, and more preferably 2 to 25 wt.% cardiolipin. The inventive compositions can contain any suitable amount of phosphatidylcholine. Suitable amounts of phosphatidylcholine can include from 1 to 95 wt.% phosphatidylcholine, and more preferably 20 to 75 wt.% phosphatidylcholine. Preferred liposomes of the present invention also contain suitable amounts of α- tocopherol or other suitable antioxidants. Suitable amounts range from 0.001 wt.% to 10 wt.% α-tocopherol, such as, for example, 5 wt.% α-tocopherol. For reference, wt.% refers to the relative mass of each ingredient in the final composition without regard to the amount of added water.
[0024] To improve shelf-life and preserve liposome stability, the present invention provides gemcitabine liposome preparations which can be stored for extended periods of time without substantial leakage from the liposomes of internally encapsulated materials. [0025] The present invention provides a gemcitabine liposome preparations, which can be dehydrated, stored for extended periods of time while dehydrated, and then rehydrated when and where they are to be used, without losing a substantial portion of loaded gemcitabine during the dehydration, storage and rehydration processes. To achieve these and other objects, the invention, in accordance with one of its aspects, provides gemcitabine liposome preparations which have been dehydrated in the presence of one or more protective sugars. In certain preferred embodiments of the invention, the liposomes are dehydrated with the one or more sugars being present at both the inside and outside surfaces of the liposome membranes. In other preferred embodiments, the sugars are selected from the group consisting of trehalose, maltose, lactose, sucrose, glucose, and dextran, with the most preferred sugars from a performance point of view being trehalose and sucrose. In general, disaccharide sugars have been found to work better than monosaccharide sugars, with the disaccharide sugars trehalose and sucrose being most effective. Other more complicated sugars can also be used. For example, aminoglycosides, including streptomycin and dihydrostreptomycin, have been found to protect liposomes during dehydration. [0026] The dehydration is preferably achieved under vacuum and can take place either with or without prior freezing of the liposome preparation. The liposomes are preferably dehydrated using standard freeze-drying equipment or equivalent apparatus, that is, they are preferably dehydrated under reduced pressure. If desired, the liposomes and their surrounding medium can be frozen in liquid nitrogen before being dehydrated. Alternatively, the liposomes can also be dehydrated without prior freezing, by simply being placed under reduced pressure. [0027] It has been found that invented liposomes having a concentration gradient across their membranes can be dehydrated in the presence of one or more sugars, stored in their dehydrated condition, subsequently rehydrated, and the concentration gradient then used to create a transmembrane potential which will load gemcitabine into the liposomes. Alternatively, the concentration gradient can be created after the liposomes have been dehydrated, stored, and rehydrated. [0028] When the dehydrated liposomes are to be used, rehydration is accomplished by adding diluent, such as water for injection, normal saline, 5% dextrose in normal saline (D5W). The gemcitabine liposomes can be resuspended into the aqueous solution by gentle swirling of the solution. The rehydration can be performed at room temperature or at other temperatures appropriate to the composition of the liposomes and their internal contents.
[0029] The invention includes pharmaceutical preparations that in addition to the liposomal gemcitabine preparation, also include non-toxic, inert pharmaceutically suitable excipients and processes for the production of these preparations. The invention also includes pharmaceutical preparations in dosage units. This means that the preparations are in the form of individual parts, for example capsules, softgel capsules, pills, suppositories, ampoules and vials, of which the content of liposome entrapped gemcitabine corresponds to a fraction or a multiple of an individual dose. The dosage units can contain, for example, 1, 2, 3 or 4 individual doses or 1/2, 1/3 or 1/4 of an individual dose. An individual dose preferably contains the amount of gemcitabine which is given in one administration and which usually corresponds to a whole, a half or a third or a quarter of a daily dose. [0030] The abovementioned pharmaceutical preparations are manufactured in the usual manner according to known methods, for example by mixing liposomal gemcitabine with an excipient or excipients. By non-toxic, inert pharmaceutically suitable excipients there are to be understood solid, semi-solid or liquid diluents, fillers, solubilizers, stabilizer and formulation auxiliaries of all kinds. [0031] The active compound or its pharmaceutical preparations administered locally, orally, parenterally, intraperitoneally and/or rectally, preferably parenterally, especially intravenously. Suitable amounts are therapeutically effective amounts that do not have excessive toxicity, as determined in empirical studies. Accordingly, any pharmaceutical preparation suitable to the desired route of administration, e.g., tablets, dragees, capsules, pills, granules, suppositories, solutions, suspensions and emulsions, pastes, ointments, gels, creams, lotions, powders and sprays, can be used. Suppositories can contain, in addition to the liposome-entrapped gemcitabine, suitable water-soluble or water-insoluble excipients. Suitable excipients are those in which the inventive liposomal entrapped gemcitabine are sufficiently stable to allow for therapeutic use, for example polyethylene glycols, certain fats, and esters or mixtures of these substances. Ointments, pastes, creams and gels can contain suitable excipients in which the liposome-entrapped gemcitabine is stable and can contain additives such as eucalyptus oil and sweeteners like saccharin. [0032] The present invention also includes the use of the active compound according to the invention and of pharmaceutical preparations which contain the active compound according to the invention in human and veterinary medicine for the prevention, amelioration and/or cure of diseases, in particular those diseases caused by cellular proliferation, such as cancer. The composition can be used to treat cancer in any patient in need of such treatment, which is typically a mammalian patient, such as a cow, horse, pig, dog or cat. For example, dog lymphoma can be treated effectively with the present gemcitabine formulation. However, the present formulation is particularly preferred for use in the treatment of human patients, particularly for cancer and other diseases caused by cellular proliferation. Examples of cancers treatable by this invention include, but not limited to lung cancer (including, but not limited to unresectable, advanced non small cell lung cancer); breast cancer; testicular cancer; ovarian cancer; gastro intestinal cancers including colon, rectal, pancreatic, and gastric cancers, hepatocellular carcinoma; head and neck cancers; prostate cancer; renal cell carcinoma; adenocarcinoma; sarcomas; lymphomas; leukemias; and mycosis fugoides; melanoma; high grade glioma, glioblastoma and brain cancers. [0033] The gemcitabine should preferably be present in the abovementioned pharmaceutical preparations in a concentration of about 0.1 to 50, preferably of about 0.5 to 25, percent by weight of the total mixture. Depending, in part, on the route of administration, the usual initial dose of gemcitabine is about 600-1500mg/m2. In a human, for example, preferably, about 800-1300 mg/m2 is administered. However, it can be necessary to deviate from the dosages mentioned and in particular to do so as a function of the nature and body weight of the subject to be treated, the nature and the severity of the illness, the nature of the preparation and if the administration of the medicine, and the time or interval over which the administration takes place. Thus it can suffice in some cases to manage with less than the abovementioned amount of active compound while in other cases the abovementioned amount of active compound can be exceeded. However, determining an optimal dosage is within the ordinary skill of a practitioner in this field, and the particular required optimum dosage and the type of administration of the gemcitabine can be determined by one skilled in the art, by available methods.
[0034] One significant advantage of the present composition is that it provides a method of modulating multidrug resistance in cancer cells that are subjected to gemcitabine. In particular, the present liposomal compositions reduce the tendency of cancer cells subjected to chemotherapy with gemcitabine to develop resistance thereto, and reduces the tendency of treated cells of developing resistance to other therapeutic agents, such as cisplatin, vindesine, taxol, 5-fluorouracil (5-FU) or leucovorin, for example. Thus, other agents can be advantageously employed with the present treatment either in the form of a combination active with gemcitabine or by separate administration. Preferred agents other than gemcitabine include antineoplastic, antifungal, and antibiotic among other active agents; particularly cisplatin, antisense oligonucleotides (especially an oligonucleotide antisense to raf (e.g., 5'- GTGCTCCATTGATGC-3' (SEQ ID NO:l)), such as liposomal formulation of anti-c- raf oligonucleotides (see, e.g., U.S. Patents 6,126,965 and 6,559,129), oxaliplatin, paclitaxel, vinorelbine, epirubicin. Another advantage of the present composition is that the present liposomal compositions reduce the irritation, local tissue necrosis, and/or thrombophlebitis. By using the present liposomal compositions, the extravasation injuries is significantly reduced since the free gemcitabine is not in contact with the tissue directly.
EXAMPLE 1 [0035] This is an example of lipid formulation according to the invention, with gemcitabine hydrochloride.
[0036] Lipids (85-500 μmole) were dissolved in organic solvent. The mixture was stirred gently and the solvents were evaporated under vacuum at 40-60°C to form a thin dry film of lipids. Gemcitabine hydrochloride (70 μmole) was dissolved in 5 ml of 30 mM acetate buffer, pH 3.0. Liposomes were formed by adding the drug solution to the lipid film and aggressively mixing the components by votexing. The liposomes formed then were extruded through two stacked 0.2 μm and 0.1 μm pore size polycarbonate filters to reduce the particle size. The liposome mean diameter was determined using dynamic light scattering (DLS) technique with a icomp 380 Submicron Particle Sizer (Particle Sizing Systems, Santa Barbara, CA) equipped with auto dilution function. The gemcitabine binding efficiency in the liposome was determined by centrifuging an aliquot of the subject liposomes at 58,000 rpm for 2 hours at 4°C. Thereafter the drug was analyzed using high pressure liquid chromatography (HPLC). Generally the binding efficiency of gemcitabine in liposomes between 15-80% of the initial input dose.
[0037] Data for several formulations are presented in Table 1, and Figure 1 shows the effect of the molar ratio between DOPG and gemcitabine hydrochloride on the gemcitabine binding efficiency in the liposomes. Gemcitabine binding increased with an increasing molar ratio of DOPG to gemcitabine from 0.5:1 to 5:1. However the drug percent binding reached a plateau once the lipid to drug molar ratio exceeded 5:1.
Table 1
Figure imgf000012_0001
EXAMPLE 2
[0038] This is an example of lipid formulation according to the invention, with gemcitabine free base.
[0039] Gemcitabine free base (76 μmole) was dissolved in organic solvent containing lipids (150-380 μmole). The mixture was stirred gently and the solvents evaporated under vacuum at 40°C to form a thin dry film of lipids and drug. Liposomes were formed by adding 5 ml of 30 mM acetate buffer, pH 3.0 or 5 ml of 20% sucrose pH adjusted to 8.5 with NaOH and mixing the components by votexing. The liposomes formed then were extruded through two stacked 0.2 μm and 0.1 μm pore size polycarbonate filters to reduce the particle size. The liposome mean diameter was determined using dynamic light scattering (DLS) technique with aNicomp 380 Submicron Particle Sizer (Particle Sizing Systems, Santa Barbara, CA) equipped with auto dilution function. The gemcitabine binding efficiency in the liposome was determined by centrifuging an aliquot of the subject liposomes at 58,000 rpm for 2 hours at 4°C. Thereafter the drug was analyzed using high pressure liquid chromatography (HPLC). Generally the binding efficiency of gemcitabine in liposomes was between 20-80% of the initial input dose. Data for several formulations are presented in Table 2.
Table 2
Figure imgf000013_0001
[0040] All of the references cited herein, including patents, patent applications, and publications, are hereby incorporated in their entireties by reference. [0041] While this invention has been described with an emphasis upon preferred embodiments, variations of the preferred embodiments can be used, and it is intended that the invention can be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications encompassed within the spirit and scope of the invention as defined by the claims.

Claims

WHAT IS CLAIMED IS:
1. A method of treating a cellular proliferative disease, comprising administering to a patient in need of such treatment a pharmaceutical composition comprising a therapeutically effective amount of liposomal Gemcitabine and a negatively charged phospholipid.
2. The method of claim 1, wherein the composition further comprises a pharmaceutically acceptable excipient.
3. The method of claim 1 or 2, wherein the Gemcitabine is gemcitabine hydrochloride, gemcitabine free base, a gemcitabine derivative, or a mixture thereof.
4. The method of any of claims 1-3, wherein said negatively charged lipid comprises a cardiolipin selected from the group consisting of natural cardiolipin and synthetic cardiolipin.
5. The method any of claims 1-4, wherein said liposome bears a negative charge.
6. The method any of claims 1-4, wherein said liposome bears a positive charge
7. The method of any of claims 1-6, wherein at least a portion of said gemcitabine is complexed with negatively charged lipid through electrostatic interaction.
8. The method of any of claims 1-7, wherein said liposomes are a mixture of multilamellar vesicles and unilamellar vesicles.
9. The method of any of claims 1-8, wherein said pharmaceutical composition further comprises one or more therapeutic agents other than gemcitabine.
10. The method of claim 9, wherein one or more of said agents is an antineoplastic, antifungal, or antibiotic agent.
11. A liposomal composition comprising gemcitabine, a first liposome forming material comprising cardiolipin, and a second liposome forming material.
12. The composition of claim 11, wherein the Gemcitabine is gemcitabine hydrochloride, gemcitabine free base, a gemcitabine derivative, or a mixture thereof.
13. The composition of claim 11 or 12, wherein a portion of said cardiolipin is complexed with said gemcitabine.
14. The composition of any of claims 11-13, wherein said liposome entrapped gemcitabine comprises vesicles having a size of about 5 μm or less.
15. The composition of any of claims 11-13, wherein said liposome entrapped gemcitabine comprises vesicles having a size of about 1 μm or less.
16. The composition of any of claims 11-13, wherein said liposome entrapped gemcitabine comprises vesicles having a size of about 0.5 μm or less.
17. The composition of any of claims 11-13, wherein said liposome entrapped gemcitabine comprises vesicles having a size of about 0.1 μm or less.
18. The composition of any of claims 11-17, wherein said second liposome- forming material is a lipid selected from the group consisting of phosphatidylcholine, cholesterol, α-tocopherol, phosphatidylglycerol and phosphatidyl serine.
19. The composition of any of claims 11-18, wherein said cardiolipin is selected from the group consisting of natural cardiolipin and synthetic cardiolipin.
20. The composition of any of claims 11-19, wherein said liposome bears a negative charge.
21. The composition of any of claims 11-19, wherein said liposome bears a positive charge.
22. The composition of any of claims 11-19, wherein said liposome is neutral.
23. The composition of any of claims 11-22, wherein said liposome is a mixture of multilamellar vesicles and unilamellar vesicles.
24. The composition of any of claims 11-23, wherein said pharmaceutical composition further comprises one or more therapeutic agents other than gemcitabine.
25. The composition of claim 24, wherein one or more of said agents is an antineoplastic, antifungal, or antibiotic agent.
26. The composition of claim 24, wherein one or more of said agents is cisplatin, an antisense oligonucleotide, oxaliplatin, paclitaxel, vinorelbine, or epirubicin.
27. The composition of claim 24, wherein one of more of said agents is an oligonucleotide antisense to raf.
28. The composition of any of claims 11-27, further comprising one or more pharmaceutical acceptable excipients.
29. The composition of claim 28, wherein one or more of said excipients enhances shelf-life of the composition.
30. The composition of claim 28, wherein one or more of said excipients improves the stability of the composition.
31. The composition of any of claims 28-30, wherein one or more of said excipients is a sugar
32. The composition of claim 31, wherein the sugar is selected from the group consisting of trehalose, maltose, sucrose, glucose, lactose, and dextran.
33. The composition of claim 31 or 32 wherein the sugar is trehalose.
34. The composition of claim 31 or 32 wherein the sugar is sucrose.
35. The composition of claim 31 wherein the sugar is an aminoglycoside.
36. The composition of claim 35 wherein the aminoglycoside is streptomycin.
37. The composition of claim 35 wherein the aminoglycoside is dihydrostreptomycin.
38. A method for the treatment of a cellular proliferative disease comprising administering a therapeutically effective amount of the composition of any of claims 11 -37 a patient in need thereof.
39. The method of any of claims 1-10 or 38, wherein said patient is human.
40. The method of any of claims 1-10 or 38-39, wherein said a cellular proliferative disease is cancer.
41. The method of claim 40, wherein the cancer is lymphoma, ovarian cancer, breast cancer, pancreatic cancer, lung cancer, or colon cancer.
PCT/US2003/025293 2002-08-23 2003-08-13 Liposomal gemcitabine compositions for better drug delivery WO2004017944A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003268087A AU2003268087A1 (en) 2002-08-23 2003-08-13 Liposomal gemcitabine compositions for better drug delivery
US11/062,654 US20050249795A1 (en) 2002-08-23 2005-02-22 Gemcitabine compositions for better drug delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40537802P 2002-08-23 2002-08-23
US60/405,378 2002-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/062,654 Continuation-In-Part US20050249795A1 (en) 2002-08-23 2005-02-22 Gemcitabine compositions for better drug delivery

Publications (1)

Publication Number Publication Date
WO2004017944A1 true WO2004017944A1 (en) 2004-03-04

Family

ID=31946865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/025293 WO2004017944A1 (en) 2002-08-23 2003-08-13 Liposomal gemcitabine compositions for better drug delivery

Country Status (3)

Country Link
US (1) US20050249795A1 (en)
AU (1) AU2003268087A1 (en)
WO (1) WO2004017944A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032136A1 (en) * 2004-09-20 2006-03-30 British Columbia Cancer Agency Branch Free or liposomal gemcitabine alone or in combination with free or liposomal idarubicin
WO2006102533A2 (en) * 2005-03-23 2006-09-28 Neopharm, Inc. Pharmaceutically active lipid-based formulation of nucleoside-lipid conjugates
WO2010124525A1 (en) 2009-04-27 2010-11-04 因华生技制药股份有限公司 Self micro-emulsifying oral pharmaceutical composition of hydrophilic drug and preparation method thereof
WO2011062503A1 (en) * 2009-11-20 2011-05-26 Clavis Pharma As Parenteral formulations of gemcitabine derivatives
CN102846547A (en) * 2012-07-26 2013-01-02 江苏豪森药业股份有限公司 Gemcitabine or its salt liposome and preparation method thereof

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262173B2 (en) * 1997-03-21 2007-08-28 Georgetown University Chemosensitizing with liposomes containing oligonucleotides
WO2002058622A2 (en) * 2000-11-09 2002-08-01 Neopharm, Inc. Sn-38 lipid complexes and methods of use
WO2003018018A2 (en) * 2001-08-24 2003-03-06 Neopharm, Inc. Vinorelbine compositions and methods of use
EA200400658A1 (en) * 2001-11-09 2004-10-28 Неофарм, Инк. METHOD OF TREATMENT OF TUMORS EXPRESSING A RECEPTOR FOR IL-13 (OPTIONS)
US7138512B2 (en) * 2002-04-10 2006-11-21 Georgetown University Gene SHINC-2 and diagnostic and therapeutic uses thereof
AU2003240934A1 (en) * 2002-05-29 2003-12-19 Neopharm, Inc. Method for determining oligonucleotide concentration
US7718189B2 (en) 2002-10-29 2010-05-18 Transave, Inc. Sustained release of antiinfectives
WO2004071466A2 (en) * 2003-02-11 2004-08-26 Neopharm, Inc. Manufacturing process for liposomal preparations
WO2004087758A2 (en) * 2003-03-26 2004-10-14 Neopharm, Inc. Il 13 receptor alpha 2 antibody and methods of use
US20060165744A1 (en) * 2003-05-22 2006-07-27 Neopharm, Inc Combination liposomal formulations
US20060078560A1 (en) * 2003-06-23 2006-04-13 Neopharm, Inc. Method of inducing apoptosis and inhibiting cardiolipin synthesis
CA2523032A1 (en) 2005-10-07 2007-04-07 Immunovaccine Technologies Inc. Vaccines for cancer therapy
ES2594368T3 (en) 2005-12-08 2016-12-19 Insmed Incorporated Lipid-based compositions of anti-infectives to treat lung infections
EP1920765A1 (en) * 2006-11-07 2008-05-14 Medigene AG Liposome preparation by single-pass process
US20100196455A1 (en) 2007-05-04 2010-08-05 Transave, Inc. Compositions of Multicationic Drugs for Reducing Interactions with Polyanionic Biomolecules and Methods of Use Thereof
US9114081B2 (en) 2007-05-07 2015-08-25 Insmed Incorporated Methods of treating pulmonary disorders with liposomal amikacin formulations
US9333214B2 (en) 2007-05-07 2016-05-10 Insmed Incorporated Method for treating pulmonary disorders with liposomal amikacin formulations
US9119783B2 (en) 2007-05-07 2015-09-01 Insmed Incorporated Method of treating pulmonary disorders with liposomal amikacin formulations
CN101827613A (en) 2007-09-27 2010-09-08 免疫疫苗技术有限公司 Use of liposomes in a carrier comprising a continuous hydrophobic phase for delivery of polynucleotides in vivo
US8216607B2 (en) * 2008-03-17 2012-07-10 Roger Williams Hospital Combination of ceramide and gemcitabine for inducing cell death and uses thereof in treating cancer
EP2296696B1 (en) 2008-06-05 2014-08-27 ImmunoVaccine Technologies Inc. Compositions comprising liposomes, an antigen, a polynucleotide and a carrier comprising a continuous phase of a hydrophobic substance
RU2011142620A (en) * 2009-03-25 2013-04-27 Новартис Аг PHARMACEUTICAL COMPOSITION CONTAINING A MEDICINE AND SIRNA
WO2012138739A2 (en) * 2011-04-06 2012-10-11 Chemo-Enhanced Llc Compositions and methods for treating cancer
ES2855474T3 (en) 2011-10-06 2021-09-23 Immunovaccine Technologies Inc Liposome compositions comprising an adjuvant that activates or increases TLR2 activity and uses thereof
JP6402097B2 (en) 2012-05-21 2018-10-10 インスメッド インコーポレイテッド System for treating pulmonary infections
US10124066B2 (en) 2012-11-29 2018-11-13 Insmed Incorporated Stabilized vancomycin formulations
CA2936345A1 (en) 2013-01-14 2014-07-17 Chemo-Enhanced Llc Compositions and methods for treating cancer
EP2964201B1 (en) * 2013-03-05 2024-02-14 The Regents of the University of California Lipid bilayer coated mesoporous silica nanoparticles with a high loading capacity for one or more anticancer agents
EP3138558B1 (en) * 2014-04-30 2023-06-07 FUJIFILM Corporation Liposome composition and production method therefor
JP6263609B2 (en) * 2014-04-30 2018-01-17 富士フイルム株式会社 Liposome composition and production method thereof
EP3138555B1 (en) * 2014-04-30 2020-10-28 FUJIFILM Corporation Liposome composition and production method therefor
PT3142643T (en) 2014-05-15 2019-10-28 Insmed Inc Methods for treating pulmonary non-tuberculous mycobacterial infections
MA43183A (en) * 2015-11-02 2018-09-12 Fujifilm Corp ANTITUMOR THERAPEUTIC AGENT CONTAINING A LIPOSOMAL COMPOSITION BASED ON GEMCITABINE AND ASSOCIATED KIT
CA3010711A1 (en) 2016-01-08 2017-07-13 The Regents Of The University Of California Mesoporous silica nanoparticles with lipid bilayer coating for cargo delivery
US20200108089A1 (en) * 2017-03-19 2020-04-09 Suzhou Sirnaomics Biopharmaceuticals Co., Ltd. Gemcitabine Derivatives for Cancer Therapy
EP3773505A4 (en) 2018-03-30 2021-12-22 Insmed Incorporated Methods for continuous manufacture of liposomal drug products
WO2023179423A1 (en) * 2022-03-25 2023-09-28 四川科伦药物研究院有限公司 Gemcitabine liposome pharmaceutical composition, preparation method therefor and use thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419348A (en) * 1981-04-27 1983-12-06 Georgetown University Anthracycline glycoside compositions, their use and preparation
EP0286418A1 (en) * 1987-04-10 1988-10-12 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Anti-retroviral agents and delivery systems for the same
US4952408A (en) * 1988-05-23 1990-08-28 Georgetown University Liposome-encapsulated vinca alkaloids and their use in combatting tumors
US5246708A (en) * 1987-10-28 1993-09-21 Pro-Neuron, Inc. Methods for promoting wound healing with deoxyribonucleosides
EP0750910A1 (en) * 1994-03-11 1997-01-02 Yoshitomi Pharmaceutical Industries, Ltd. Liposome preparation
WO1999049716A2 (en) * 1998-03-27 1999-10-07 Clemens Unger Method for producing liposomal formulations of active agents by high-pressure homogenisation
US6126965A (en) * 1997-03-21 2000-10-03 Georgetown University School Of Medicine Liposomes containing oligonucleotides
US6146659A (en) * 1998-07-01 2000-11-14 Neopharm, Inc. Method of administering liposomal encapsulated taxane
WO2002032400A1 (en) * 2000-10-16 2002-04-25 Neopharm, Inc. Liposomal formulation of mitoxantrone

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437479B1 (en) * 1988-10-05 1994-06-22 Vestar, Inc. Method of making liposomes with improved stability during drying
US5356633A (en) * 1989-10-20 1994-10-18 Liposome Technology, Inc. Method of treatment of inflamed tissues
DE69329073T2 (en) * 1992-03-23 2001-01-18 Georgetown University Washingt TAXOL ENCLOSED IN LIPOSOMES AND METHOD OF USE
US7262173B2 (en) * 1997-03-21 2007-08-28 Georgetown University Chemosensitizing with liposomes containing oligonucleotides
US6559129B1 (en) * 1997-03-21 2003-05-06 Georgetown University Cationic liposomal delivery system and therapeutic use thereof
US20030229040A1 (en) * 1997-03-21 2003-12-11 Georgetown University Cationic liposomal delivery system and therapeutic use thereof
US5910880A (en) * 1997-08-20 1999-06-08 Micron Technology, Inc. Semiconductor circuit components and capacitors
US6461637B1 (en) * 2000-09-01 2002-10-08 Neopharm, Inc. Method of administering liposomal encapsulated taxane
WO2002058622A2 (en) * 2000-11-09 2002-08-01 Neopharm, Inc. Sn-38 lipid complexes and methods of use
DE60203260T2 (en) * 2001-01-16 2006-02-02 Glaxo Group Ltd., Greenford PHARMACEUTICAL COMBINATION CONTAINING A 4-CHINA-ZININAMINE AND PACLITAXEL, CARBOPLATIN OR VINORELBINE FOR THE TREATMENT OF CANCER
WO2002059337A1 (en) * 2001-01-26 2002-08-01 Georgetown University School Of Medicine Anti-apoptopic gene scc-s2 and diagnostic and therapeutic uses thereof
US6703400B2 (en) * 2001-02-23 2004-03-09 Schering Corporation Methods for treating multidrug resistance
AU2002305151A1 (en) * 2001-04-06 2002-10-21 Georgetown University Gene scc-112 and diagnostic and therapeutic uses thereof
WO2002081639A2 (en) * 2001-04-06 2002-10-17 Georgetown University Gene brcc2 and diagnostic and therapeutic uses thereof
WO2002081642A2 (en) * 2001-04-06 2002-10-17 Georgetown University Gene brcc-3 and diagnostic and therapeutic uses thereof
EP1390472A4 (en) * 2001-05-29 2004-11-17 Sirna Therapeutics Inc Nucleic acid treatment of diseases or conditions related to levels of ras, her2 and hiv
WO2003030864A1 (en) * 2001-05-29 2003-04-17 Neopharm, Inc. Liposomal formulation of irinotecan
EA200400658A1 (en) * 2001-11-09 2004-10-28 Неофарм, Инк. METHOD OF TREATMENT OF TUMORS EXPRESSING A RECEPTOR FOR IL-13 (OPTIONS)
US7244565B2 (en) * 2002-04-10 2007-07-17 Georgetown University Gene shinc-3 and diagnostic and therapeutic uses thereof
US7138512B2 (en) * 2002-04-10 2006-11-21 Georgetown University Gene SHINC-2 and diagnostic and therapeutic uses thereof
WO2003099213A2 (en) * 2002-05-20 2003-12-04 Neopharm, Inc. Method for reducing platelet count
US20030228317A1 (en) * 2002-05-22 2003-12-11 Prafulla Gokhale Gene BRCC-1 and diagnostic and therapeutic uses thereof
EA200401565A1 (en) * 2002-05-24 2005-04-28 Неофарм, Инк. METHOD FOR OBTAINING CARDIOLYPINE OR ANALOGUE OF CARDIOLIPINE (OPTIONS), METHOD FOR OBTAINING LIPOSOME AND COMPOSITION OF CARDIOLIPINE FOR TREATING DISEASES (OPTIONS)
JP2006518701A (en) * 2002-05-24 2006-08-17 ネオファーム、インコーポレイティッド Cardiolipin composition, process for its production and use
AU2003240934A1 (en) * 2002-05-29 2003-12-19 Neopharm, Inc. Method for determining oligonucleotide concentration
WO2004035032A2 (en) * 2002-08-20 2004-04-29 Neopharm, Inc. Pharmaceutical formulations of camptothecine derivatives
US20050277611A1 (en) * 2002-10-16 2005-12-15 Neopharm, Inc. Cationic cardiolipin analoges and its use thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419348A (en) * 1981-04-27 1983-12-06 Georgetown University Anthracycline glycoside compositions, their use and preparation
EP0286418A1 (en) * 1987-04-10 1988-10-12 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Anti-retroviral agents and delivery systems for the same
US5246708A (en) * 1987-10-28 1993-09-21 Pro-Neuron, Inc. Methods for promoting wound healing with deoxyribonucleosides
US4952408A (en) * 1988-05-23 1990-08-28 Georgetown University Liposome-encapsulated vinca alkaloids and their use in combatting tumors
EP0750910A1 (en) * 1994-03-11 1997-01-02 Yoshitomi Pharmaceutical Industries, Ltd. Liposome preparation
US6126965A (en) * 1997-03-21 2000-10-03 Georgetown University School Of Medicine Liposomes containing oligonucleotides
WO1999049716A2 (en) * 1998-03-27 1999-10-07 Clemens Unger Method for producing liposomal formulations of active agents by high-pressure homogenisation
US6146659A (en) * 1998-07-01 2000-11-14 Neopharm, Inc. Method of administering liposomal encapsulated taxane
WO2002032400A1 (en) * 2000-10-16 2002-04-25 Neopharm, Inc. Liposomal formulation of mitoxantrone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOKHALE PC ET AL: "AN IMPROVED METHOD OF ENCAPSULATION OF DOXORUBICIN IN LIPOSOMES: PHARMACOLOGICAL, TOXIGOLOGICAL AND THERAPEUTIC EVALUATION", BRITISH JOURNAL OF CANCER, LONDON, GB, vol. 74, no. 1, July 1996 (1996-07-01), pages 43 - 48, XP000961424, ISSN: 0007-0920 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032136A1 (en) * 2004-09-20 2006-03-30 British Columbia Cancer Agency Branch Free or liposomal gemcitabine alone or in combination with free or liposomal idarubicin
WO2006102533A2 (en) * 2005-03-23 2006-09-28 Neopharm, Inc. Pharmaceutically active lipid-based formulation of nucleoside-lipid conjugates
WO2006102533A3 (en) * 2005-03-23 2007-12-13 Neopharm Inc Pharmaceutically active lipid-based formulation of nucleoside-lipid conjugates
WO2010124525A1 (en) 2009-04-27 2010-11-04 因华生技制药股份有限公司 Self micro-emulsifying oral pharmaceutical composition of hydrophilic drug and preparation method thereof
EP3045165A2 (en) 2009-04-27 2016-07-20 Innopharmax,inc. Self micro-emulsifying oral pharmaceutical composition of hydrophilic drug and preparation method thereof
WO2011062503A1 (en) * 2009-11-20 2011-05-26 Clavis Pharma As Parenteral formulations of gemcitabine derivatives
CN102846547A (en) * 2012-07-26 2013-01-02 江苏豪森药业股份有限公司 Gemcitabine or its salt liposome and preparation method thereof

Also Published As

Publication number Publication date
US20050249795A1 (en) 2005-11-10
AU2003268087A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US20050249795A1 (en) Gemcitabine compositions for better drug delivery
US7122553B2 (en) Liposomal formulation of irinotecan
US20050238706A1 (en) Pharmaceutically active lipid based formulation of SN-38
US20030219476A1 (en) Liposomal formulation of mitoxantrone
WO2007028341A1 (en) Nano anticancer micelles of vinca alkaloids entrapped in polyethylene glycolylated phospholipids
KR20010023522A (en) A method of administering liposomal encapsulated taxane
JP2008534525A (en) Nanomicelle formulation of anthracycline antitumor antibiotic encapsulated in polyethylene glycol derivative of phospholipid
Liu et al. Effective co-encapsulation of doxorubicin and irinotecan for synergistic therapy using liposomes prepared with triethylammonium sucrose octasulfate as drug trapping agent
US20180221289A1 (en) Phospholipid-cholesteryl ester nanoformulations and related methods
US20160166507A1 (en) Nanoemulsions of hydrophobic platinum derivatives
US20140105829A1 (en) Therapeutic nanoemulsion formulation for the targeted delivery of docetaxel and methods of making and using the same
DE60025494T2 (en) EPOTHILONE COMPOSITIONS
US20180153818A1 (en) Phospholipid-coated therapeutic agent nanoparticles and related methods
JP2018527289A (en) Phospholipid coated therapeutic nanoparticles and related methods
US20040228911A1 (en) Vinorelbine compositions and methods of use
CN114306240A (en) Gemcitabine or liposome of salt thereof, preparation method and application thereof
CN107569508A (en) A kind of Pharmaceutical composition for treating hemopoietic system proliferative diseases
EP1313449B1 (en) Amphotericin b structured emulsion
CN109998999A (en) A kind of Etoposide lipid nanometer suspension and its lyophilized preparation and preparation method and application
US20220087975A1 (en) Liposome composition comprising liposomal prodrug of mitomycin c and method of manufacture
WO2001070220A1 (en) A method of administering liposomal encapsulated taxane
CN116981441A (en) Oral liposome compositions
ZA200100454B (en) A method of administering liposomal encapsulated taxane.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11062654

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP