WO2004026144A1 - Apparatus for suturing a blood vessel - Google Patents

Apparatus for suturing a blood vessel Download PDF

Info

Publication number
WO2004026144A1
WO2004026144A1 PCT/GB2003/004172 GB0304172W WO2004026144A1 WO 2004026144 A1 WO2004026144 A1 WO 2004026144A1 GB 0304172 W GB0304172 W GB 0304172W WO 2004026144 A1 WO2004026144 A1 WO 2004026144A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular member
dilator
suturing device
recited
central
Prior art date
Application number
PCT/GB2003/004172
Other languages
French (fr)
Inventor
David T. Green
Original Assignee
Green David T
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/252,808 external-priority patent/US7041119B2/en
Application filed by Green David T filed Critical Green David T
Priority to DE60325398T priority Critical patent/DE60325398D1/en
Priority to JP2004537339A priority patent/JP2006500095A/en
Priority to AU2003269195A priority patent/AU2003269195A1/en
Priority to EP03750973A priority patent/EP1549225B1/en
Publication of WO2004026144A1 publication Critical patent/WO2004026144A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0482Needle or suture guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00371Multiple actuation, e.g. pushing of two buttons, or two working tips becoming operational
    • A61B2017/0038Simultaneous actuation of two tools by pushing one button or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00637Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for sealing trocar wounds through abdominal wall
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00663Type of implements the implement being a suture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0469Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
    • A61B2017/0472Multiple-needled, e.g. double-needled, instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B2017/06057Double-armed sutures, i.e. sutures having a needle attached to each end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06066Needles, e.g. needle tip configurations
    • A61B2017/06076Needles, e.g. needle tip configurations helically or spirally coiled

Definitions

  • the subject invention is directed to an apparatus and method for closing incisions in blood vessels, and more particularly, to an apparatus and method for percutaneously applying a suture to the wall of a blood vessel to close a surgical incision formed therein.
  • Surgical procedures requiring the introduction of a catheter into a blood vessel are well known in the art. Such procedures involve piercing the wall of the blood vessel, inserting an introducer sheath into the opening in the blood vessel, and maneuvering the catheter through the sheath to a target site within the blood vessel. At the conclusion of the procedure, it is necessary to seal the puncture wound in the wall of the blood vessel. It is common to accomplish this by applying direct pressure to the puncture site until homeostasis is achieved. This technique is time consuming, uncomfortable and can cause thrombosis, thereby presenting a danger to the patient.
  • the subject invention is directed to a new and useful apparatus for percutaneously applying sutures, and more particularly, to an apparatus for closing an incision in the wall of a blood vessel in a relatively short amount of time and with relative ease as compared to prior art devices of its type.
  • the subject apparatus includes an elongated tubular body defining opposed proximal and distal end portions and having a longitudinal axis extending therethrough.
  • the body includes an inner tubular member, an outer tubular member and a central tubular member disposed between the inner and outer tubular members.
  • the inner tubular member and the central tubular member are mounted for movement relative to the outer tubular member about the longitudinal axis of the body.
  • the inner tubular member has an arcuate needle carrying channel formed at the distal end thereof for carrying a pair of arcuate suture needles in back-to-back orientation within a plane extending generally perpendicular to the longitudinal axis of the body.
  • the central tubular member has a distal driving stem extending into the arcuate channel of the inner tubular member and positioned between the pair of suture needles for sequentially driving the suture needles from the arcuate channel of the inner tubular member upon rotation of the central tubular member relative to the inner tubular member.
  • the outer tubular member has a pair of diametrically opposed tissue reception areas formed in the distal end of the tube wall.
  • An arcuate needle reception channel is also formed at the distal end of the outer tubular member for receiving the pair of arcuate suture needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member by the driving stem of the central tubular member, through tissue gathered in the tissue reception areas.
  • the apparatus further a vascular dilator having an elongated body portion and a tapered distal tip portion.
  • the elongated body portion is slidably disposed within the inner tubular member and has an annular groove formed therein adjacent to the distal tip portion.
  • the distal tip portion extends beyond the distal end of the inner tubular member for positioning the suturing device at an incision in the wall of a blood vessel.
  • the dilator is mounted for movement between an extended position in which the annular groove is exposed allowing tissue to prolapse therein so as to provide tactile feedback and a retracted position in which the prolapsed tissue within the annular groove is urged in a proximal direction and gathered within the tissue receiving recesses of the outer tubular member.
  • the suturing apparatus includes a handle portion that is operatively associated the proximal end portion of the outer tubular member, the central tubular member and the inner tubular member for co-axially supporting the outer tubular member, the central tubular member and the inner tubular member.
  • the suturing apparatus includes a mechanism for biasing the dilator in the retracted position and a device for securing the dilator in the extended position.
  • the mechanism for biasing the dilator in the retracted position includes a spring element, for example, a helical spring or a leaf spring which is engaged with the proximal end of the dilator.
  • the device for securing the dilator in the extended position preferably includes a pin which inserted into a hole formed in the handle portion and engages with the proximal end of the dilator so as to prevent axial movement of the dilator.
  • the securing pin is adapted and configured for preventing rotation of the inner tubular member and the central tubular member relative to the outer tubular member.
  • an actuator is operatively associated with the handle portion for effectuating the relative movement of the inner tubular member and the central tubular member relative to the outer tubular member so as to cause sequential passing of the suture needles from the arcuate channel of the inner tubular member to the arcuate channel of the outer tubular member.
  • means are formed within the needle receiving channel of the outer tubular member for securely retaining the suture needles therein, and tissue gripping features are formed on exterior distal surfaces of the outer tubular member.
  • the inner tubular member, the central tubular member and the outer tubular member include cooperating overlying cam slots, and a cam pin extends through the overlying cooperating cam slots to cause the inner tubular member and the central tubular member to rotate relative to the outer tubular member.
  • a proximal retaining pin is operatively associated with a proximal portion of the elongated tabular body for maintaining the relative axial positions of the outer tubular member, the central tubular inner tubular member and the inner tubular member.
  • the cam pin is operatively connected to the actuator, the actuator is mounted for movement relative to a handle member, and the retaining pin is operatively connected to the handle member.
  • the subject invention is also directed to a method of suturing the wall of a blood vessel which includes the steps of positioning an elongated tubular body having a longitudinal axis extending therethrough adjacent an incision in the wall of a blood vessel, with the body including a first tubular member and a second tubular member, the first tubular member mounted for movement relative to the second tubular member about the longitudinal axis of the tubular body, and carrying first and second suture needles connected to one another by an elongated suture.
  • the method further includes the sequential steps of passing the first suture needle from the first tubular member, through the wall of the blood vessel, to the second tubular member, and then subsequently passing the second suture needle from the first tubular member, through the wall of the blood vessel, to the second tubular member.
  • the method further includes the steps of withdrawing the elongated tubular body from the wall of the blood vessel, and then tying a knot in the suture to close the incision in the wall of the blood vessel.
  • the subject invention is further directed to a suturing device that includes an inner tubular member having an arcuate channel formed at a distal end thereof for carrying a pair of arcuate suture needles in back-to-back orientation, a central tubular member having a distal driving stem extending into the channel of the inner tubular member and positioned between the pair of suture needles for sequentially driving the suture needles from the channel of the inner tubular member upon rotation of the central tubular member relative to the inner tubular member, and an outer tubular member having a channel formed at a distal end thereof for receiving the pair of arcuate suture needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member by the driving stem of the central tubular member.
  • the device includes a vascular dilator having an elongated body portion disposed within the inner tubular member and a tapered distal tip portion dimensioned to extend beyond the distal end of the inner tubular member for introducing the suturing device into a blood vessel.
  • the vascular dilator is slidably disposed within the inner tubular member and may have a central lumen extending therethrough to accommodate a guidewire.
  • An annular groove is formed between the tapered distal tip portion of the dilator and the elongated body portion of the dilator. This groove will provide a tactile indication to a surgeon as the wall of the blood vessel engages the groove when the device has reached its operating position.
  • one or more elongated grooves are formed in an exterior surface of the elongated body of the vascular dilator for directing blood flow from the distal tip portion of the dilator to a location remote from the blood vessel for observation.
  • This feature allows the surgeon or an assisting observer to determine whether the device is properly positioned for operation.
  • the grooves direct blood flow to observation ports formed in the tubular body portion of the suturing device, or to a proximal end of the suturing device.
  • Fig. 1 is a perspective view of a vascular suturing device constructed in accordance with a preferred embodiment of the subject invention
  • Fig. 2 is a top plan view of the vascular suturing device of Fig. 1 ;
  • Fig. 3 is a side elevational view of the vascular suturing device of Fig. 1;
  • Fig. 4 is an exploded perspective view of the vascular suturing device of Fig. 1 with parts separated for ease of illustration;
  • Fig. 5 is an enlarged localized perspective view of the distal end portion of the vascular suturing device of Fig. 1;
  • Fig. 6 is a cross-sectional view of the vascular suturing device taken along line 6-6 of Fig. 5;
  • Fig. 7 is a cross-sectional view of the vascular suturing device taken along line 7-7 of Fig. 1;
  • Fig. 8 is a cross-sectional view of the vascular suturing device taken along line 8-8 of Fig. 1;
  • Fig. 9 is a top plan view of the outer tubular member of the vascular suturing device of Fig. 1 illustrating the elongated cam slot defined therein and the arcuate needle receiving channel formed at the distal end thereof;
  • Fig. 10 is an enlarged side elevational view of the distal end portion of the outer tubular member of Fig. 9 as viewed along line 10-10 of Fig. 9;
  • Fig. 11 is an enlarged front elevational view of the distal end portion of the outer tabular member of Fig. 9 as viewed along line 11-11 of Fig. 9;
  • Fig. 12 is a top plan view of the central tubular member of the vascular suturing device of Fig.1 illustrating the stepped cam slot defined therein and the needle driving stem formed at the distal end thereof;
  • Fig. 13 is an enlarged cross-sectional view of the central tabular member of Fig. 12 taken along line 13-13 of Fig. 12;
  • Fig. 14 is an enlarged front elevational view of the distal end portion of the central tubular member of Fig. 12 as viewed along line 14-14 of Fig. 12;
  • Fig. 15 is a top plan view of the inner tubular member of the vascular suturing device of Fig.1 illustrating the stepped cam slot defined therein and the arcuate needle carrying channel formed at the distal end thereof;
  • Fig. 16 is an enlarged side-elevational view of the distal end portion of the inner tabular member of Fig. 15 as viewed along line 16-16 of Fig. 15;
  • Fig. 17 is an enlarged front elevational view of the distal end portion of the inner tubular member of Fig. 15 as viewed along line 17-17 of Fig. 15;
  • Fig. 18 illustrates a tabular cannula extended through an incision in the wall of a blood vessel, as a flexible stylet is introduced therethrough;
  • Fig. 19 illustrates a flexible stylet extended into the blood vessel as the tubular cannula is removed from the incision site;
  • Fig. 20 illustrates the percutaneous introduction of the vascular suturing device of the subject invention to the incision site of the blood vessel along the path of the stylet positioned in Fig. 19;
  • Fig. 21 is an enlarged partial cross-sectional view of the distal portion of the vascular suturing device of the subject invention with the wall of the blood vessel engaged thereby;
  • Fig. 22 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating the initial position of the cam pin within the cam slots of the tubular members;
  • Fig. 23 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 illustrating the initial back-to-back orientation of the suturing needles disposed in the arcuate needle carrying channel of the inner tabular member;
  • Fig. 24 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a second position of the cam pin within the cam slots of the tabular members;
  • Fig. 25 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the inner tabular member rotates in a counter clock-wise direction relative to the outer tubular member so as to clamp the wall of the blood vessel between grasping surfaces of the inner and outer tubular members;
  • Fig. 26 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a third position of the cam pin within the cam slots of the tubular members;
  • Fig. 27 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the first suturing needle is driven from the needle carrying channel of the inner tubular member by the needle driving stem of the central tabular member, through the clamped blood vessel wall and into the needle receiving channel of the outer tubular member;
  • Fig. 28 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a fourth position of the cam pin within the cam slots of the tabular members;
  • Fig.29 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the driving stem of the central tubular member and the inner tabular member are rotated in a clock-wise direction relative to the outer tubular member so as to position the driving stem behind the second suturing needle and to clamp the blood vessel wall between grasping surfaces of the inner and outer tabular members;
  • Fig. 30 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a fifth position of the cam pin within the cam slots of the tubular members;
  • Fig. 31 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the second suturing needle is driven from the needle carrying channel of the inner tubular member by the needle driving stem of the central tubular member, through the clamped blood vessel wall and into the needle receiving channel of the outer tabular member;
  • Fig. 32 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a sixth position of the cam pin within the cam slots of the tabular members;
  • Fig. 33 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the driving stem of the central tubular member and the inner tabular member are rotated in a counter clock-wise direction relative to the outer tubular member so as to release the clamped blood vessel wall;
  • Fig. 34 illustrates the removal of the vascular suturing device of the subject invention as it is withdrawn from the incision site carrying the suturing needles therewith;
  • Fig. 35 is a perspective view of another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which includes an integral vascular introducer;
  • Fig. 36 is an enlarged perspective view of the distal end portion of the vascular suturing device of Fig. 35 with the vascular introducer separated from the instrument for ease of illustration;
  • Fig. 37 is an enlarged perspective view of the distal end portion of the vascular suturing device of Fig. 35 with the walls of the tabular members broken away to reveal the vascular introducer disposed therein;
  • Fig. 38 illustrates the percutaneous introduction of the vascular suturing device of Fig. 35 to the incision site of the blood vessel along a path defined by a guidewire extending through a central bore formed in the vascular introducer;
  • Fig. 39 illustrates the distal end portion of the vascular suturing device of Fig. 35 with the vascular introducer extending through the incision in the wall of a blood vessel, such that the wall of the blood vessel protrudes into a cavity formed in the vascular introducer to provide a tactile indication to the surgeon to confirm the location of the device;
  • Fig. 40 is a perspective view of the distal end portion of yet another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which includes an integral vascular introducer configured to allow visual observation of arterial blood flow to confirm the location of the device, with the vascular introducer separated from the instrument for ease of illustration;
  • Fig. 41 is a cross-sectional view taken along line 41-41 of Fig. 40 illustrating;
  • Fig. 42 is a perspective view of the distal end portion of the vascular suturing device of Fig. 40 illustrating the pathway for arterial blood flow;
  • Fig. 43 illustrates the distal end portion of the vascular suturing device of Fig. 42 with the vascular introducer extending partially through the incision in the wall of a blood vessel along a guidewire;
  • Fig.44 illustrates the distal end portion of the vascular suturing device of Fig. 42, with the vascular introducer extending through the incision in the wall of a blood vessel to a location where the wall of the blood vessel protrudes into the tissue engagement areas and arterial blood flows through channels formed in the body of the introducer to ports in the device which to facilitate visual confirm of the location of the device at the incision site;
  • Fig. 45 is a perspective view of a variant of the vascular suturing device of Fig. 40, wherein the blood observation ports are provided at the rear end of the device;
  • Fig. 46 is an enlarged localized perspective view of the rear end portion of the device illustrating the channels formed in the proximal end portion of the vascular introducer which, in this embodiment, extends through the entirety of the tubular body portion of the device;
  • Fig. 47 is a perspective view of a vascular suturing device constructed in accordance with an alternative embodiment of the subject invention.
  • Fig. 48 is an enlarged localized perspective view of the rear end portion of the suturing device of Fig. 47 illustrating the helical spring and retaining pin associated with the proximal end of the vascular introducer;
  • Fig. 49 is an exploded perspective view of the vascular suturing device of Fig. 47 with parts separated for ease of illustration;
  • Fig. 50 illustrates the percutaneous introduction of the vascular suturing device of Fig. 47 to the incision site of the blood vessel along a path defined by a guidewire extending through a central bore fonned in the vascular introducer;
  • Fig. 51 illustrates the distal end portion of the vascular suturing device of Fig. 47 with the vascular introducer in the extended position and projecting through the incision in the wall of a blood vessel, such that the wall of the blood vessel protrudes into an annular cavity formed in the vascular introducer to provide a tactile indication to the surgeon to confinn the location of the device;
  • Fig. 52 illustrates the vascular suturing device positioned at the incision site of the blood vessel, wherein the retaining pin which secures the introducer in the extended position has been removed allowing the spring element to urge the dilator in the retracted position;
  • Fig. 53 illustrates the distal end portion of the vascular suturing device of
  • vascular introducer extending through the incision in the wall of a blood vessel and in the retracted position such that the vessel wall is retained between the distal tip portion of the introducer and the inner tabular member and tissue is gathered within the tissue receiving areas formed in the outer tubular member;
  • Fig. 54 is an enlarged localized perspective view of the rear end portion of an alternative embodiment of the vascular suturing device of the subject invention illustrating a leaf spring element and retaining pin associated with the proximal end of the vascular introducer; and Fig. 55 is an enlarged localized perspective view of the rear end portion of an the vascular suturing device of Fig. 54 wherein the retaining pin has been removed and the leaf spring element is urging the introducer in the retracted position.
  • vascular suturing device 10 constructed in accordance with a preferred embodiment of the subject invention and designated generally by reference numeral 10.
  • distal shall refer to the end of the vascular suturing device that is nearest to the surgical site
  • proximal shall refer to the end of the vascular suturing device that is farthest from the surgical site.
  • vascular suturing device 10 includes a proximal handle portion 12 having a stationary support portion 14 and a translating actuation portion 16.
  • handle portion 12 are preferably formed from a high strength thermoplastic material such as, for example, Lexan ® .
  • Support portion 14 is ergonomically configured to be positioned on a patient's leg during a vascular closure procedure.
  • An elongated tubular body portion 18 extends from a bore 15 in support portion 14, through an elongate passage 17 in actuation portion 16, and includes a distal suture applying portion 20, which is shown specifically in the localized view of Fig. 5. It is envisioned that the distal suture applying portion could be constructed as a replaceable cartridge configured for mounting at the distal end of the body portion.
  • Body portion 18 has three relatively movable concentric tubular members which are illustrated in Fig. 4 in an unassembled condition. These members include an outer tubular member 22, an inner tabular 26 and a central tabular member 24 disposed between the inner and outer tubular members 22 and 26.
  • One or more of the tubular components of body portion 18 are preferably formed from stainless steel, or a similar bio-compatible material.
  • a proximal positioning pin 28 extends through a countersunk transverse bore 30 in support portion 14 for engaging an aperture 34 in the proximal end portion of outer tubular member 22 (see Fig. 9). Positioning pin 28 also engages a relatively large arcuate slot 36 in the proximal potion of central tubular member 24 (see Figs. 12 and 13), and a relatively small arcuate slot 38 in the proximal portion of inner tubular member 26 (see Fig. 15). Proximal positioning pin 28 is adapted and configured to maintain the relative axial positions of the three tubular members.
  • a distal cam pin 40 extends through a countersunk transverse bore 45 in actuation portion 16 for engaging a linear cam slot 42 formed in outer tabular member 22 (see Fig. 9).
  • Cam pin 40 also engages a first stepped cam slot 44 in central tubular member 24 (see Fig. 12), and a second stepped cam slot 46 is inner tabular member 26 (see Fig. 15).
  • Distal cam pin 40 is adapted and configured to effectuate the relative axial rotation of the three concentric tubular members of body portion 18 as it translates in a distal direction through the cooperating superimposed, overlying cam slots 42, 44 and 46, of tubular members 22, 24 and 26, respectively, under the guidance of the translating actuation portion 16.
  • the distal suture applying portion 20 of suturing apparatus 10 is defined in part by a U-shaped annular channel 52 formed at the distal end of outer tubular member 22 (see Fig. 11), and in part by a U- shaped annular channel 56 formed at the distal end of inner tubular member 26 (see Fig. 17).
  • the arcuate channel 56 of inner tabular member 26 defines a needle carrying channel for carrying a pair of curved suture needles 50a and 50b disposed in back-to-back orientation in a plane extending perpendicular to the longitudinal axis of the tubular body portion 18.
  • the arcuate channel 52 of outer tubular member defines a needle receiving channel for receiving suture needles 50a and 50b after they have been sequentially driven through the wall of a blood vessel during a vascular suturing procedure.
  • a depending distal wall portion 62 of outer tabular member 22 (see Fig. 10) abuts the upturned wall of needle carrying channel 56 to enclose the curved suture needles therein.
  • Fig. 5 illustrates the position of the distal driving stem 54 of central tubular member 22 (see Fig. 14) which extends into the needle carrying channel 56 of inner tabular member 26 between the adjacent rear ends of the suture needles 50a and 50b for sequentially driving the suture needles therefrom during a vascular suturing procedure.
  • Fig. 5 also illustrates the diametrically opposed tissue reception areas 60a and 60b that are formed at the distal end of body portion 18 for receiving or gathering-up the wall of a blood vessel.
  • the terminal radial edges of arcuate channels 52 and 56 are provided with ridged or textured gripping surfaces 57 that extend generally perpendicular to the edges of the channels for gripping the wall of a blood vessel during a suturing procedure.
  • the relatively movable concentric tubular members of body portion 18 are uniquely configured to operate in conjunction with one another during a vascular suturing procedure.
  • the outer tubular member 22 has a uniform cross-sectional configuration along its length, as does the inner tubular member 26.
  • the central tabular member 24 is partially tapered or truncated along a portion of its length so as to accommodate the structural features of the inner tubular member 26 as it is received therein.
  • the distal end portion of outer tubular member 22 has diametrically opposed recesses 72a and 72b which define part of the tissue reception areas 60a and 60b shown in Fig. 5.
  • Fig. 16 illustrates an undercut 76 formed at the distal end of inner tabular member 26 which also defines part of the tissue engagement areas 60a and 60b.
  • Fig. 4 also illustrates the sutare 80 that extends between the two curved suture needles 50a and 50b disposed within needle carrying channel 56.
  • Suture 80 may be of braided or monofilament construction, and can be absorbable or non- absorbable. It is normally stored within the space defined by the truncated area of central tubular member 24, and can extend to the exterior of the instrument through an aperture (not shown) formed in tubular body 18 such that the free ends thereof are easily accessible by the surgeon.
  • outer tubular member 22 has a linear cam slot 42 for cooperating with cam pin 40 and an aperture 34 for receiving positioning pin 28. Consequently, axial movement of actuator 16 during a suturing procedure does not cause any rotational movement of outer tubular member 22.
  • inner tubular member 26 has a stepped cam slot 46 for cooperating with cam pin 40 and a relatively short arcuate slot 38 for accommodating positioning pin 28.
  • Cam slot 46 has four inflection points defining five distinct slot sections for effectuating the rotational movement of inner tubular member 26 relative to the outer tabular member 22, and more particularly, for
  • cam slot 46 has a first helical section 46a that facilitates rotational movement of the inner tubular member 26 in a first direction through a first angle of rotation; a first linear section 46b corresponding to a first dwell period in which the inner tabular member 26 does not rotate about its axis; a second helical section 46c that facilitates rotational movement of the inner tabular member 26 in a second direction through a second angle of rotation; a second linear section 46d corresponding to a second dwell period in which the inner tubular member 26 does not rotate about its axis; and a third helical section 46e that facilitates rotational movement of the inner tabular member 26 in the first direction through a third angle of rotation.
  • the central tabular member 24 has a stepped cam slot 44 for cooperating with cam pin 40 and a relatively long arcuate slot 36 for accommodating positioning pin 28.
  • Cam slot 44 has two inflection points defining three distinct slot sections for effectuating the rotational movement of inner tubular member 24 relative to the outer tubular member 22, and more particularly, for sequentially driving the curved suture needles 50a and 50b from needle carrying channel 56 of inner tubular member 26.
  • cam slot 44 has a first helical section 44a that facilitates rotational movement of the central tubular member 24 in a first direction through a first angle of rotation during which the driving stem 54 drives a first curved suture needle from needle carrying channel 56; a second helical section 44b that facilitates rotational movement of the central tubular member 24 in a second direction through a second angle of rotation during which the driving stem 54 drives a second curved sutare needle from needle carrying channel 56; and a third helical section 44c that facilitates rotational movement of the central tabular member 24 in the first direction through a third angle of rotation to reposition the driving stem 54 of central tabular member 44 in a neutral position within needle carrying channel 56 of inner tubular member 26.
  • a tubular cannula 90 is utilized to facilitate the percutaneous introduction of a flexible stylet 92 into the lumen of the blood vessel A, as illustrated in Fig. 18.
  • the tabular cannula 90 is removed from the incision site.
  • the vascular suturing device 10 of the subject invention with the aide of an optional tapered nose piece 95, is percutaneously introduced to the surgical site as it is guided along the stylet by way of the central lumen of body portion 18, as illustrated in Figs. 20 and 21.
  • cam pin 40 upon commencing the vascular suturing procedure of the subject invention, the cam pin 40 is in an initial position within the superimposed cam slots 42, 44 and 46 of tabular members 22, 24 and 26, respectively. This corresponds to the initial position of the suturing needles 50a and 50b within the arcuate needle carrying channel 56 of the inner tubular member 26, with the distal driving stem 54 of central tubular member 24 disposed therebetween. Thereafter, when, through manipulation of actuation handle 16 relative to stationary handle portion 14, cam pin 40 is moved to the second position of Fig. 24, it has translated through the first helical section 46a of cam slot 46 in inner tubular member 26 to the first inflection point.
  • cam pin 40 When the cam pin 40 is disposed in the third position of Fig. 26, it has traveled through the first linear section 46b of cam slot 46 in inner tabular member 26 to the second inflection point thereof, and through the remainder of the first helical section 44a of cam slot 44 in central tubular member 24 to the first inflection point thereof. This causes the inner tubular member 26 to remain stationary during the first dwell period, and causes the central tubular member 24 to continue to rotate in a counter-clockwise direction relative to the inner tubular member 26.
  • the first suturing needle 50a is driven from the needle carrying channel 56 of the inner tubular member 26 by the needle driving stem 54 of the central tubular member 24, through the clamped blood vessel wall and into the needle receiving channel 52 of the outer tubular member 22, where it is captured by a retention structure 55a, such as a protuberance depending from the wall of channel 52, as shown in Fig. 27.
  • a retention structure 55a such as a protuberance depending from the wall of channel 52, as shown in Fig. 27.
  • the cam pin 40 is disposed in the fourth position of Fig.28, it has traveled through the second helical section 46c of cam slot 46 of inner tabular member 26 to the third inflection point thereof, and partially through the second helical section 44b of cam slot 44 in central tabular member 24.
  • the inner tubular member 26 rotates in a clockwise direction relative to the outer tubular member 22 so as to clamp the blood vessel wall within tissue engagement area 60b between adjacent grasping surfaces of the outer and inner tubular members 22 and 26, as shown in Fig. 29.
  • the central tabular member 26 rotates in a clockwise direction so as to move into a driving position behind the second curved suturing needle 50b in needle carrying channel 56 of inner tabular member 26.
  • the retention structures 55a and 55b are shown as protuberances, other structures may be provided to retain the suture needles.
  • the width of the channel could gradually reduce in size to capture the sutare needles.
  • vascular suturing device 10 of the subject invention is withdrawn from the incision site carrying the captured suturing needles 50a and 50b therewith. Thereafter, the free ends of sutare 80 are gathered by the surgeon and a knot is tied therein so as to close the punctare wound in the wall of the blood vessel.
  • Figs. 35 through 37 there is illustrated another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which is designated generally by reference numeral 100.
  • Suturing device 100 is substantially similar to suturing device 10 in that it includes an outer tubular member 122, a central tubular member 124 and an inner tubular member 126.
  • the inner tubular member 126 has an arcuate channel 156 formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation (see Fig. 37).
  • the central tabular member 124 has a distal driving stem 154 extending into the channel of the inner tubular member 126 and positioned between the pair of sutare needles for sequentially driving the suture needles from the channel of the inner tabular member 126 upon rotation of the central tabular member 124 relative to the inner tubular member 126.
  • the outer tabular member 122 has an arcuate channel 152 formed at a distal end thereof for receiving the pair of arcuate suture needles after the sutare needles have been sequentially driven from the arcuate channel of the inner tabular member 126 by the driving stem of the central tubular member 124.
  • suturing device 100 also includes a handle portion 112 having a stationary handle 114 and an actuator 116 that is operatively associated with a proximal end portion of the outer tabular member 122, the central tabular member 124 and the inner tabular member 126.
  • Actuator 116 effectuates the relative movement of the inner tubular member 126 and the central tubular member 124 relative to the outer tubular member 122 so as to cause sequential passing of the suture needles from the arcuate channel of the inner tabular member 126 to the arcuate channel of the outer tubular member 122.
  • Suturing device 100 differs from sutaring device 10 in that it includes an integral vascular dilator 190 that functions to guide the introduction of suturing device 100 through an incision in the wall of a blood vessel.
  • Vascular dilator 190 is formed from the same or similar material as the other components of the sutaring device and includes an elongated body portion 192 disposed within the central lumen of body portion 118, and more particularly, within the center bore of inner tubular member 126.
  • Vascular dilator 190 further includes a tapered distal tip portion 194 dimensioned to extend beyond the distal end of the inner tabular member 126 for positioning the distal end of the sutaring device at the incision in the wall of a blood vessel.
  • Vascular dilator 190 is preferably fixedly secured to the inner tabular member 126 of the suturing device 100 by way of a lock, pin, glue or other similar means.
  • Vascular dilator 190 has a central lumen 193 extending therethrough to accommodate a guidewire 185, as illustrated in Fig. 38.
  • the body portion 192 of dilator 190 is provided with an elongated storage channel 195 for accommodating the elongated sutare 180 that is associated with the curved needles 150a, 150b, as best seen in Fig. 37.
  • An annular groove 196 is formed between the tapered distal tip portion 194 of dilator 190 and the elongated body portion 192 of dilator 190. As illustrated in Fig. 39, annular groove 196 is configured and positioned to accept and become enveloped by the wall of the blood vessel.
  • Sutaring device 200 is substantially similar to sutaring device 100 in that it includes an integral vascular dilator 290 having an elongated body portion 292 disposed within the central bore of inner tubular member 226 and a tapered distal tip portion 294 dimensioned to extend beyond the distal end of the inner tubular member 222.
  • Dilator 290 also includes a guidewire bore 293 for guidewire 285, a suture storage channel 295 for suture 280 and an annular tissue envelopment groove 296 for tactile position indication, as described above with reference to Fig. 39.
  • the vascular dilator 290 includes a system for providing the surgeon or an assisting observer with a visual indication that the device has reached its operating position at the incision site in the wall of the blood vessel to be sutured.
  • the visual position indication system utilizes observable blood flow, and includes at least one but preferably three circumferentially spaced apart longitudinal grooves 298a-298c formed in the exterior surface of the body portion 292 of vascular dilator 290.
  • the three longitudinal grooves extend from the annular groove 296 which communicates with correspondingly positioned and aligned inlet slots that are formed in the base of tapered distal portion 294 of dilator 290, of which inlet slot 297a is one that is shown.
  • Grooves 298a-298c communicate with and deliver arterial/venous blood flow to corresponding observation port(s) 299 formed in the tubular body portion 218 of suturing device 200, remote form the incision site, as illustrated in Fig. 44.
  • This feature or system allows the surgeon or an assisting observer to determine whether the distal end of sutaring device 200 is properly positioned at the incision site for a suturing operation.
  • the vascular dilator 290 of suturing device 200 is guided into through the incision in the wall of a blood vessel along guidewire 285 extending through bore 293.
  • the distal portion 294 passes through the incision, blood flow through the incision is obstructed, as seen in Fig. 43.
  • the distal end portion 294 extends a sufficient distance through the wall of the blood vessel such that the three inlet slots (e.g., inlet slot 297a) are positioned within the blood vessel, blood will surge through the inlet slots,, and into the corresponding and aligned longitudinal grooves 298-298c communicating with annular groove 296.
  • the blood will then flow to the observation port(s) 299, whereupon the surgeon or an assistant will observe that the distal end of the instrument is in an operational position for sutaring the blood vessel to close the incision therein.
  • the wall of the blood vessel envelopes the annular channel 296 in dilator 290 to provide a tactile sensation or indication to the surgeon, and in addition, the wall of the blood vessel is gathered within the opposed U-shaped tissue engagement areas 260a, 260b fonned in the distal end portions of the inner and outer tabular members 226 and 222.
  • the portions of the longitudinal grooves 298a-298c that extend through the annular groove 296 are enveloped by the wall of the blood vessel.
  • the blood will remain within the longitudinal grooves and will not escape through the tissue engagement areas 260a, 260b.
  • Figs. 45 and 46 there is illustrated a variant of vascular sutaring device 200.
  • the three longitudinal grooves 298a-298c formed in the body portion 292 of dilator 290 extend to the proximal end of body portion 218 so that the flow of blood may be observed at the rear end of handle portion 212.
  • Sutaring device 300 is substantially similar to sutaring devices 10, 100 and 200 in that it includes an outer tabular member 322, a central tubular member 324 and an inner tabular member 326. As shown in Figs. 51 and 53, the inner tubular member 326 has an arcuate needle carrying channel 356 formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation.
  • the central tubular member 324 has a distal driving stem 354 extending into the channel of the inner tubular member 326 and positioned between the pair of sutare needles for sequentially driving the suture needles from the channel of the inner tubular member 326 upon rotation of the central tubular member 324 relative to the inner tubular member 326.
  • the outer tabular member 322 has an arcuate needle reception channel 352 formed at a distal end thereof for receiving the pair of arcuate sutare needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member 326 by the driving stem of the central tubular member 324.
  • the outer tubular member 322 also has a pair of diametrically opposed tissue receiving recesses 372a and 372b formed in the distal end thereof in which tissue is to be gathered for sutaring.
  • sutaring device 300 also includes a handle portion 312 having a stationary handle 314 and an actuator 316 that is operatively associated with a proximal end portion of the outer tabular member 322, the central tabular member 324 and the inner tabular member 326.
  • Actuator 316 effectuates the relative movement of the inner tubular member 326 and the central tubular member 324 relative to the outer tubular member 322 so as to cause sequential passing of the suture needles from the arcuate channel of the inner tabular member 326 to the arcuate channel of the outer tubular member 322.
  • the relative movement of the tubular members is accomplished by cooperative overlying cam slots, and a cam pin that extends through the cooperative overlying cam slots to cause the inner tabular member and the central tubular member to rotate relative to the outer tubular member, as described hereinabove with respect to sutaring device 10.
  • Sutaring device 300 differs from sutaring device 10 in that it includes an integral vascular dilator 390 that functions to guide the introduction of sutaring device 300 through an incision in the wall of a blood vessel. Still further, unlike the previously described suturing devices, suturing device 300 includes a helical spring 381 for biasing the dilator 390 in a retracted position and a retaining pin 383 for securing the dilator 390 in the extended position and for preventing the inner tubular member 326 and central tubular member 324 from rotating relative to the outer tubular member 322.
  • Vascular dilator 390 is formed from the same or similar material as the other components of the sutaring device and includes an elongated body portion 392 disposed within the central lumen of inner tubular member 326. Vascular dilator 390 further includes a tapered distal tip portion 394 that is dimensioned to extend beyond the distal end of the inner tubular member 326 for positioning the distal end of the suturing device 300 at the incision in the wall of a blood vessel.
  • Vascular dilator 390 is mounted for slidable movement within the central lumen of the inner tabular member 326 of the sutaring device 300 between and extended position and a retracted position.
  • An annular groove 396 is formed in the body portion 392 of the dilator adjacent to the tapered distal tip portion 394.
  • vascular dilator 390 has a central lumen 393 extending therethrough to accommodate a guidewire 385.
  • annular groove 396 is exposed, i.e., the annular groove 396 is positioned beyond the distal end of the inner tubular member 326.
  • the distal tip portion 394 of the dilator 390 is positioned as close as practical to the distal end of the inner tubular member 326 and the annular groove 396 is concealed within the central lumen of the inner tubular member 326.
  • annular groove 396 is configured and positioned to accept and become enveloped by the wall of the blood vessel. Consequently, the surgeon holding suturing device 300 will be provided with a tactile sensation, indicating that the suturing device 300 has reached its operating position against the wall of the blood vessel.
  • sutaring device 300 includes helical spring 381 and retaining pin 383, which are operatively associated with the proximal end of the dilator 390.
  • Helical spring 381 is used to bias the dilator 390 in the retracted position.
  • Retaining pin 383 perfonns two functions; first, it secures the dilator 390 in the extended position and second, it functions as a lockout mechanism which prevents the axial movement of the actuator 316 thereby preventing the rotation of the inner tubular member 326 and central tubular member 324 relative to the outer tubular member 322.
  • a separate device could be used for each function.
  • the vascular dilator 390 of suturing device 200 is guided into through the incision in the wall of a blood vessel along guidewire 285 extending through bore 293.
  • retaining pin 383 is engaged within aperture 385 and therefore, the dilator 390 is secured in the extended position and the actuator 316 is prevented from moving relative to the stationary support member 314 (see Fig. 51).
  • the exposed annular groove 396 reaches the wall of the blood vessel, the surgeon holding suturing device 300 will be provided with a tactile sensation, indicating that the suturing device 300 has reached its operating position against the wall of the blood vessel.
  • the wall of the blood vessel envelopes (i.e., prolapses into) the annular channel 396 in dilator 390 to provide the tactile sensation. Additionally, the wall of the blood vessel is gathered within the opposed U-shaped tissue receiving recesses 372a and 372b formed in the distal end portion of the outer tubular member 322. At this point, the surgeon removes retaining pin 383 from within aperture
  • helical spring 381 urges the dilator 390 into the retracted position.
  • the wall of the blood vessel which has been enveloped within annular channel 396 and has been gathered in tissue engagement areas 372a and 372b is further urged into the tissue engagement areas 372a and 372b and is held therein by virtue of being captured between the distal tip portion 394 of dilator 390 and the inner and outer tabular members 326 and 322, respectively.
  • the surgeon operates the sutaring device 300 in a manner which is similar to the previously described embodiments.
  • Sutaring device 400 is substantially similar to sutaring device 300 in that it includes an integral vascular dilator 490 having an elongated body portion 492 which is slidably disposed within the central bore of an inner tubular member.
  • the mechanism used for biasing dilator 490 in the retracted position includes a leaf spring 481 rather than a helical spring element.
  • Leaf spring 481 is attached to the stationary handle 414 at opposed longitudinal ends thereof.
  • a retaining pin 483 operatively associated with the distal end of dilator 490 and actaator 416 is used to secure the dilator 490 in the extended position and function as a lockout mechanism while the sutaring device 400 is being inserted into the incision formed in the blood vessel wall.

Abstract

A vascular suturing device (10) is disclosed which includes an elongated tubular body defining opposed proximal and distal end portions and having a longitudinal axis extending therethrough, the body including an inner tubular member (26), an outer tubular member (22) and a central tubular member (24) disposed between the inner and outer tubular members. The inner tubular member and the central tubular member are mounted for movement relative to the outer member about the longitudinal axis of the body for sequentially driving a pair of suture needles (50a,b) through the wall of a blood vessel to close an incision formed therein. A vascular dilator (190) having a tapered distal tip portion (194) is slidably supported within the inner tubular member and is dimensioned to extend beyond the distal end of the inner tubular member for positioning the suturing device at the incision in the wall of the blood vessel. The dilator is configured to move axially between an extended position and a retracted position. A biasing element and a retaining pin are associated with a proximal end of the dilator. The biasing element is adapted and configured for urging the dilator in the retracted position and the retaining pin is positioned so as to secure the dilator in the extended position. The dilator may include means for directing blood flow from a distal tip portion of the dilator to a location remote from the blood vessel (e.g. obervations ports) for observation to confirm the position of the suturing device within the blood vessel.

Description

APPARATUS FOR SUTURING A BLOOD VESSEL
BACKGROUND OF THE INVENTION 1. Field of the Invention
The subject invention is directed to an apparatus and method for closing incisions in blood vessels, and more particularly, to an apparatus and method for percutaneously applying a suture to the wall of a blood vessel to close a surgical incision formed therein. 2. Background of the Related Art
Surgical procedures requiring the introduction of a catheter into a blood vessel, such as the femoral or iliac artery, are well known in the art. Such procedures involve piercing the wall of the blood vessel, inserting an introducer sheath into the opening in the blood vessel, and maneuvering the catheter through the sheath to a target site within the blood vessel. At the conclusion of the procedure, it is necessary to seal the puncture wound in the wall of the blood vessel. It is common to accomplish this by applying direct pressure to the puncture site until homeostasis is achieved. This technique is time consuming, uncomfortable and can cause thrombosis, thereby presenting a danger to the patient.
Consequently, surgical instruments have been developed for suturing a puncture wound in a blood vessel, examples of which are disclosed in U.S. Patent No. 5,746,755 to Wood et al., U.S. Patent No. 5,836,955 to Beulna et al., U.S Patent No. 5,921,994 to Andreas et al., and U.S. Patent No. 5,980,539 to Kontos. While these instruments provide improvements over common compression techniques, they remain difficult to use and unable to accomplish the desired task within a relatively short amount of time.
Therefore, it would be beneficial to provide an apparatus and method for suturing a puncture wound in the wall of a blood vessel in a relatively short amount of time and with relative ease.
SUMMARY OF THE INVENTION
The subject invention is directed to a new and useful apparatus for percutaneously applying sutures, and more particularly, to an apparatus for closing an incision in the wall of a blood vessel in a relatively short amount of time and with relative ease as compared to prior art devices of its type.
The subject apparatus includes an elongated tubular body defining opposed proximal and distal end portions and having a longitudinal axis extending therethrough. The body includes an inner tubular member, an outer tubular member and a central tubular member disposed between the inner and outer tubular members. The inner tubular member and the central tubular member are mounted for movement relative to the outer tubular member about the longitudinal axis of the body. The inner tubular member has an arcuate needle carrying channel formed at the distal end thereof for carrying a pair of arcuate suture needles in back-to-back orientation within a plane extending generally perpendicular to the longitudinal axis of the body. The central tubular member has a distal driving stem extending into the arcuate channel of the inner tubular member and positioned between the pair of suture needles for sequentially driving the suture needles from the arcuate channel of the inner tubular member upon rotation of the central tubular member relative to the inner tubular member. The outer tubular member has a pair of diametrically opposed tissue reception areas formed in the distal end of the tube wall. An arcuate needle reception channel is also formed at the distal end of the outer tubular member for receiving the pair of arcuate suture needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member by the driving stem of the central tubular member, through tissue gathered in the tissue reception areas. The apparatus further a vascular dilator having an elongated body portion and a tapered distal tip portion. The elongated body portion is slidably disposed within the inner tubular member and has an annular groove formed therein adjacent to the distal tip portion. The distal tip portion extends beyond the distal end of the inner tubular member for positioning the suturing device at an incision in the wall of a blood vessel. The dilator is mounted for movement between an extended position in which the annular groove is exposed allowing tissue to prolapse therein so as to provide tactile feedback and a retracted position in which the prolapsed tissue within the annular groove is urged in a proximal direction and gathered within the tissue receiving recesses of the outer tubular member.
Preferably, the suturing apparatus includes a handle portion that is operatively associated the proximal end portion of the outer tubular member, the central tubular member and the inner tubular member for co-axially supporting the outer tubular member, the central tubular member and the inner tubular member.
It is envisioned that the suturing apparatus includes a mechanism for biasing the dilator in the retracted position and a device for securing the dilator in the extended position. In a preferred embodiment, the mechanism for biasing the dilator in the retracted position includes a spring element, for example, a helical spring or a leaf spring which is engaged with the proximal end of the dilator. The device for securing the dilator in the extended position preferably includes a pin which inserted into a hole formed in the handle portion and engages with the proximal end of the dilator so as to prevent axial movement of the dilator.
Preferably, the securing pin is adapted and configured for preventing rotation of the inner tubular member and the central tubular member relative to the outer tubular member.
It is further envisioned that an actuator is operatively associated with the handle portion for effectuating the relative movement of the inner tubular member and the central tubular member relative to the outer tubular member so as to cause sequential passing of the suture needles from the arcuate channel of the inner tubular member to the arcuate channel of the outer tubular member. Preferably, means are formed within the needle receiving channel of the outer tubular member for securely retaining the suture needles therein, and tissue gripping features are formed on exterior distal surfaces of the outer tubular member.
In accordance with a preferred embodiment of the subject invention, the inner tubular member, the central tubular member and the outer tubular member include cooperating overlying cam slots, and a cam pin extends through the overlying cooperating cam slots to cause the inner tubular member and the central tubular member to rotate relative to the outer tubular member. In addition, a proximal retaining pin is operatively associated with a proximal portion of the elongated tabular body for maintaining the relative axial positions of the outer tubular member, the central tubular inner tubular member and the inner tubular member. The cam pin is operatively connected to the actuator, the actuator is mounted for movement relative to a handle member, and the retaining pin is operatively connected to the handle member.
The subject invention is also directed to a method of suturing the wall of a blood vessel which includes the steps of positioning an elongated tubular body having a longitudinal axis extending therethrough adjacent an incision in the wall of a blood vessel, with the body including a first tubular member and a second tubular member, the first tubular member mounted for movement relative to the second tubular member about the longitudinal axis of the tubular body, and carrying first and second suture needles connected to one another by an elongated suture. The method further includes the sequential steps of passing the first suture needle from the first tubular member, through the wall of the blood vessel, to the second tubular member, and then subsequently passing the second suture needle from the first tubular member, through the wall of the blood vessel, to the second tubular member. The method further includes the steps of withdrawing the elongated tubular body from the wall of the blood vessel, and then tying a knot in the suture to close the incision in the wall of the blood vessel.
The subject invention is further directed to a suturing device that includes an inner tubular member having an arcuate channel formed at a distal end thereof for carrying a pair of arcuate suture needles in back-to-back orientation, a central tubular member having a distal driving stem extending into the channel of the inner tubular member and positioned between the pair of suture needles for sequentially driving the suture needles from the channel of the inner tubular member upon rotation of the central tubular member relative to the inner tubular member, and an outer tubular member having a channel formed at a distal end thereof for receiving the pair of arcuate suture needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member by the driving stem of the central tubular member. In addition, the device includes a vascular dilator having an elongated body portion disposed within the inner tubular member and a tapered distal tip portion dimensioned to extend beyond the distal end of the inner tubular member for introducing the suturing device into a blood vessel. The vascular dilator is slidably disposed within the inner tubular member and may have a central lumen extending therethrough to accommodate a guidewire. An annular groove is formed between the tapered distal tip portion of the dilator and the elongated body portion of the dilator. This groove will provide a tactile indication to a surgeon as the wall of the blood vessel engages the groove when the device has reached its operating position. Preferably, one or more elongated grooves are formed in an exterior surface of the elongated body of the vascular dilator for directing blood flow from the distal tip portion of the dilator to a location remote from the blood vessel for observation. This feature allows the surgeon or an assisting observer to determine whether the device is properly positioned for operation. The grooves direct blood flow to observation ports formed in the tubular body portion of the suturing device, or to a proximal end of the suturing device.
These and other aspects of the suturing apparatus and method of the subject invention and the method of using the same will become more readily apparent to those having ordinary skill in the art from the following detailed description of the invention taken in conjunction with the drawings described hereinbelow.
BRIEF DESCRIPTION OF THE DRAWINGS
So that those having ordinary skill in the art to which the subject invention pertains will more readily understand how to make and use the suturing apparatus of the subject invention, preferred embodiments thereof will be described in detail hereinbelow with reference to the drawings, wherein:
Fig. 1 is a perspective view of a vascular suturing device constructed in accordance with a preferred embodiment of the subject invention; Fig. 2 is a top plan view of the vascular suturing device of Fig. 1 ;
Fig. 3 is a side elevational view of the vascular suturing device of Fig. 1;
Fig. 4 is an exploded perspective view of the vascular suturing device of Fig. 1 with parts separated for ease of illustration;
Fig. 5 is an enlarged localized perspective view of the distal end portion of the vascular suturing device of Fig. 1;
Fig. 6 is a cross-sectional view of the vascular suturing device taken along line 6-6 of Fig. 5;
Fig. 7 is a cross-sectional view of the vascular suturing device taken along line 7-7 of Fig. 1; Fig. 8 is a cross-sectional view of the vascular suturing device taken along line 8-8 of Fig. 1;
Fig. 9 is a top plan view of the outer tubular member of the vascular suturing device of Fig. 1 illustrating the elongated cam slot defined therein and the arcuate needle receiving channel formed at the distal end thereof;
Fig. 10 is an enlarged side elevational view of the distal end portion of the outer tubular member of Fig. 9 as viewed along line 10-10 of Fig. 9;
Fig. 11 is an enlarged front elevational view of the distal end portion of the outer tabular member of Fig. 9 as viewed along line 11-11 of Fig. 9; Fig. 12 is a top plan view of the central tubular member of the vascular suturing device of Fig.1 illustrating the stepped cam slot defined therein and the needle driving stem formed at the distal end thereof;
Fig. 13 is an enlarged cross-sectional view of the central tabular member of Fig. 12 taken along line 13-13 of Fig. 12; Fig. 14 is an enlarged front elevational view of the distal end portion of the central tubular member of Fig. 12 as viewed along line 14-14 of Fig. 12;
Fig. 15 is a top plan view of the inner tubular member of the vascular suturing device of Fig.1 illustrating the stepped cam slot defined therein and the arcuate needle carrying channel formed at the distal end thereof; Fig. 16 is an enlarged side-elevational view of the distal end portion of the inner tabular member of Fig. 15 as viewed along line 16-16 of Fig. 15;
Fig. 17 is an enlarged front elevational view of the distal end portion of the inner tubular member of Fig. 15 as viewed along line 17-17 of Fig. 15; Fig. 18 illustrates a tabular cannula extended through an incision in the wall of a blood vessel, as a flexible stylet is introduced therethrough;
Fig. 19 illustrates a flexible stylet extended into the blood vessel as the tubular cannula is removed from the incision site; Fig. 20 illustrates the percutaneous introduction of the vascular suturing device of the subject invention to the incision site of the blood vessel along the path of the stylet positioned in Fig. 19;
Fig. 21 is an enlarged partial cross-sectional view of the distal portion of the vascular suturing device of the subject invention with the wall of the blood vessel engaged thereby;
Fig. 22 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating the initial position of the cam pin within the cam slots of the tubular members;
Fig. 23 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 illustrating the initial back-to-back orientation of the suturing needles disposed in the arcuate needle carrying channel of the inner tabular member;
Fig. 24 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a second position of the cam pin within the cam slots of the tabular members;
Fig. 25 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the inner tabular member rotates in a counter clock-wise direction relative to the outer tubular member so as to clamp the wall of the blood vessel between grasping surfaces of the inner and outer tubular members;
Fig. 26 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a third position of the cam pin within the cam slots of the tubular members;
Fig. 27 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the first suturing needle is driven from the needle carrying channel of the inner tubular member by the needle driving stem of the central tabular member, through the clamped blood vessel wall and into the needle receiving channel of the outer tubular member;
Fig. 28 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a fourth position of the cam pin within the cam slots of the tabular members; Fig.29 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the driving stem of the central tubular member and the inner tabular member are rotated in a clock-wise direction relative to the outer tubular member so as to position the driving stem behind the second suturing needle and to clamp the blood vessel wall between grasping surfaces of the inner and outer tabular members;
Fig. 30 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a fifth position of the cam pin within the cam slots of the tubular members; Fig. 31 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the second suturing needle is driven from the needle carrying channel of the inner tubular member by the needle driving stem of the central tubular member, through the clamped blood vessel wall and into the needle receiving channel of the outer tabular member;
Fig. 32 is a top plan view of the vascular suturing device of the subject invention as viewed along line 22-22 of Fig. 20 illustrating a sixth position of the cam pin within the cam slots of the tabular members; Fig. 33 is an enlarged front elevational view of the distal end of the vascular suturing device of the subject invention as viewed along line 23-23 of Fig. 20 when the driving stem of the central tubular member and the inner tabular member are rotated in a counter clock-wise direction relative to the outer tubular member so as to release the clamped blood vessel wall; Fig. 34 illustrates the removal of the vascular suturing device of the subject invention as it is withdrawn from the incision site carrying the suturing needles therewith;
Fig. 35 is a perspective view of another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which includes an integral vascular introducer;
Fig. 36 is an enlarged perspective view of the distal end portion of the vascular suturing device of Fig. 35 with the vascular introducer separated from the instrument for ease of illustration; Fig. 37 is an enlarged perspective view of the distal end portion of the vascular suturing device of Fig. 35 with the walls of the tabular members broken away to reveal the vascular introducer disposed therein;
Fig. 38 illustrates the percutaneous introduction of the vascular suturing device of Fig. 35 to the incision site of the blood vessel along a path defined by a guidewire extending through a central bore formed in the vascular introducer;
Fig. 39 illustrates the distal end portion of the vascular suturing device of Fig. 35 with the vascular introducer extending through the incision in the wall of a blood vessel, such that the wall of the blood vessel protrudes into a cavity formed in the vascular introducer to provide a tactile indication to the surgeon to confirm the location of the device;
Fig. 40 is a perspective view of the distal end portion of yet another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which includes an integral vascular introducer configured to allow visual observation of arterial blood flow to confirm the location of the device, with the vascular introducer separated from the instrument for ease of illustration;
Fig. 41 is a cross-sectional view taken along line 41-41 of Fig. 40 illustrating; Fig. 42 is a perspective view of the distal end portion of the vascular suturing device of Fig. 40 illustrating the pathway for arterial blood flow;
Fig. 43 illustrates the distal end portion of the vascular suturing device of Fig. 42 with the vascular introducer extending partially through the incision in the wall of a blood vessel along a guidewire; Fig.44 illustrates the distal end portion of the vascular suturing device of Fig. 42, with the vascular introducer extending through the incision in the wall of a blood vessel to a location where the wall of the blood vessel protrudes into the tissue engagement areas and arterial blood flows through channels formed in the body of the introducer to ports in the device which to facilitate visual confirm of the location of the device at the incision site;
Fig. 45 is a perspective view of a variant of the vascular suturing device of Fig. 40, wherein the blood observation ports are provided at the rear end of the device; Fig. 46 is an enlarged localized perspective view of the rear end portion of the device illustrating the channels formed in the proximal end portion of the vascular introducer which, in this embodiment, extends through the entirety of the tubular body portion of the device;
Fig. 47 is a perspective view of a vascular suturing device constructed in accordance with an alternative embodiment of the subject invention;
Fig. 48 is an enlarged localized perspective view of the rear end portion of the suturing device of Fig. 47 illustrating the helical spring and retaining pin associated with the proximal end of the vascular introducer;
Fig. 49 is an exploded perspective view of the vascular suturing device of Fig. 47 with parts separated for ease of illustration;
Fig. 50 illustrates the percutaneous introduction of the vascular suturing device of Fig. 47 to the incision site of the blood vessel along a path defined by a guidewire extending through a central bore fonned in the vascular introducer; Fig. 51 illustrates the distal end portion of the vascular suturing device of Fig. 47 with the vascular introducer in the extended position and projecting through the incision in the wall of a blood vessel, such that the wall of the blood vessel protrudes into an annular cavity formed in the vascular introducer to provide a tactile indication to the surgeon to confinn the location of the device;
Fig. 52 illustrates the vascular suturing device positioned at the incision site of the blood vessel, wherein the retaining pin which secures the introducer in the extended position has been removed allowing the spring element to urge the dilator in the retracted position; Fig. 53 illustrates the distal end portion of the vascular suturing device of
Fig. 47, with the vascular introducer extending through the incision in the wall of a blood vessel and in the retracted position such that the vessel wall is retained between the distal tip portion of the introducer and the inner tabular member and tissue is gathered within the tissue receiving areas formed in the outer tubular member;
Fig. 54 is an enlarged localized perspective view of the rear end portion of an alternative embodiment of the vascular suturing device of the subject invention illustrating a leaf spring element and retaining pin associated with the proximal end of the vascular introducer; and Fig. 55 is an enlarged localized perspective view of the rear end portion of an the vascular suturing device of Fig. 54 wherein the retaining pin has been removed and the leaf spring element is urging the introducer in the retracted position. DETAILED DESCRIPTION OF PREFFERED EMBODIMENTS
Referring now to the drawings wherein like reference numerals identify similar structural elements of the apparatus disclosed herein, there is illustrated in Fig. 1 a vascular suturing device constructed in accordance with a preferred embodiment of the subject invention and designated generally by reference numeral 10. In the specification that follows the term "distal" shall refer to the end of the vascular suturing device that is nearest to the surgical site, while the term "proximal" shall refer to the end of the vascular suturing device that is farthest from the surgical site. Referring now to Figs. 1-3, 7 and 8, vascular suturing device 10 includes a proximal handle portion 12 having a stationary support portion 14 and a translating actuation portion 16. The components of handle portion 12 are preferably formed from a high strength thermoplastic material such as, for example, Lexan®. Support portion 14 is ergonomically configured to be positioned on a patient's leg during a vascular closure procedure. An elongated tubular body portion 18 extends from a bore 15 in support portion 14, through an elongate passage 17 in actuation portion 16, and includes a distal suture applying portion 20, which is shown specifically in the localized view of Fig. 5. It is envisioned that the distal suture applying portion could be constructed as a replaceable cartridge configured for mounting at the distal end of the body portion.
Body portion 18 has three relatively movable concentric tubular members which are illustrated in Fig. 4 in an unassembled condition. These members include an outer tubular member 22, an inner tabular 26 and a central tabular member 24 disposed between the inner and outer tubular members 22 and 26. One or more of the tubular components of body portion 18 are preferably formed from stainless steel, or a similar bio-compatible material.
As best seen in Figs. 3 and 7, a proximal positioning pin 28 extends through a countersunk transverse bore 30 in support portion 14 for engaging an aperture 34 in the proximal end portion of outer tubular member 22 (see Fig. 9). Positioning pin 28 also engages a relatively large arcuate slot 36 in the proximal potion of central tubular member 24 (see Figs. 12 and 13), and a relatively small arcuate slot 38 in the proximal portion of inner tubular member 26 (see Fig. 15). Proximal positioning pin 28 is adapted and configured to maintain the relative axial positions of the three tubular members.
As best seen in Figs. 3 and 8, a distal cam pin 40 extends through a countersunk transverse bore 45 in actuation portion 16 for engaging a linear cam slot 42 formed in outer tabular member 22 (see Fig. 9). Cam pin 40 also engages a first stepped cam slot 44 in central tubular member 24 (see Fig. 12), and a second stepped cam slot 46 is inner tabular member 26 (see Fig. 15). Distal cam pin 40 is adapted and configured to effectuate the relative axial rotation of the three concentric tubular members of body portion 18 as it translates in a distal direction through the cooperating superimposed, overlying cam slots 42, 44 and 46, of tubular members 22, 24 and 26, respectively, under the guidance of the translating actuation portion 16.
Referring now to Figs. 4 and 5, the distal suture applying portion 20 of suturing apparatus 10 is defined in part by a U-shaped annular channel 52 formed at the distal end of outer tubular member 22 (see Fig. 11), and in part by a U- shaped annular channel 56 formed at the distal end of inner tubular member 26 (see Fig. 17). As discussed in greater detail hereinbelow, the arcuate channel 56 of inner tabular member 26 defines a needle carrying channel for carrying a pair of curved suture needles 50a and 50b disposed in back-to-back orientation in a plane extending perpendicular to the longitudinal axis of the tubular body portion 18. The arcuate channel 52 of outer tubular member defines a needle receiving channel for receiving suture needles 50a and 50b after they have been sequentially driven through the wall of a blood vessel during a vascular suturing procedure.
As best seen in Fig. 5, a depending distal wall portion 62 of outer tabular member 22 (see Fig. 10) abuts the upturned wall of needle carrying channel 56 to enclose the curved suture needles therein. In addition, Fig. 5 illustrates the position of the distal driving stem 54 of central tubular member 22 (see Fig. 14) which extends into the needle carrying channel 56 of inner tabular member 26 between the adjacent rear ends of the suture needles 50a and 50b for sequentially driving the suture needles therefrom during a vascular suturing procedure. Fig. 5 also illustrates the diametrically opposed tissue reception areas 60a and 60b that are formed at the distal end of body portion 18 for receiving or gathering-up the wall of a blood vessel. In addition, as illustrated in Figs. 5 and 6, the terminal radial edges of arcuate channels 52 and 56 are provided with ridged or textured gripping surfaces 57 that extend generally perpendicular to the edges of the channels for gripping the wall of a blood vessel during a suturing procedure.
Referring now to Fig. 4, the relatively movable concentric tubular members of body portion 18 are uniquely configured to operate in conjunction with one another during a vascular suturing procedure. In particular, the outer tubular member 22 has a uniform cross-sectional configuration along its length, as does the inner tubular member 26. In contrast, as shown in Fig. 12, the central tabular member 24 is partially tapered or truncated along a portion of its length so as to accommodate the structural features of the inner tubular member 26 as it is received therein. As best seen in Fig. 10, the distal end portion of outer tubular member 22 has diametrically opposed recesses 72a and 72b which define part of the tissue reception areas 60a and 60b shown in Fig. 5. Similarly, Fig. 16 illustrates an undercut 76 formed at the distal end of inner tabular member 26 which also defines part of the tissue engagement areas 60a and 60b.
Fig. 4 also illustrates the sutare 80 that extends between the two curved suture needles 50a and 50b disposed within needle carrying channel 56. Suture 80 may be of braided or monofilament construction, and can be absorbable or non- absorbable. It is normally stored within the space defined by the truncated area of central tubular member 24, and can extend to the exterior of the instrument through an aperture (not shown) formed in tubular body 18 such that the free ends thereof are easily accessible by the surgeon.
Referring now to Fig. 9, as noted above, the outer tubular member 22 has a linear cam slot 42 for cooperating with cam pin 40 and an aperture 34 for receiving positioning pin 28. Consequently, axial movement of actuator 16 during a suturing procedure does not cause any rotational movement of outer tubular member 22. In contrast, referring to Fig. 15, inner tubular member 26 has a stepped cam slot 46 for cooperating with cam pin 40 and a relatively short arcuate slot 38 for accommodating positioning pin 28. Cam slot 46 has four inflection points defining five distinct slot sections for effectuating the rotational movement of inner tubular member 26 relative to the outer tabular member 22, and more particularly, for
- li sequentially approximating circumferentially adjacent terminal ends of the arcuate channels 52 and 56 of the outer and inner tubular members 22 and 26 so as to clamp portions of the wall of a punctured blood vessel therebetween.
In particular, cam slot 46 has a first helical section 46a that facilitates rotational movement of the inner tubular member 26 in a first direction through a first angle of rotation; a first linear section 46b corresponding to a first dwell period in which the inner tabular member 26 does not rotate about its axis; a second helical section 46c that facilitates rotational movement of the inner tabular member 26 in a second direction through a second angle of rotation; a second linear section 46d corresponding to a second dwell period in which the inner tubular member 26 does not rotate about its axis; and a third helical section 46e that facilitates rotational movement of the inner tabular member 26 in the first direction through a third angle of rotation.
Referring now to Fig. 12, the central tabular member 24 has a stepped cam slot 44 for cooperating with cam pin 40 and a relatively long arcuate slot 36 for accommodating positioning pin 28. Cam slot 44 has two inflection points defining three distinct slot sections for effectuating the rotational movement of inner tubular member 24 relative to the outer tubular member 22, and more particularly, for sequentially driving the curved suture needles 50a and 50b from needle carrying channel 56 of inner tubular member 26.
In particular, cam slot 44 has a first helical section 44a that facilitates rotational movement of the central tubular member 24 in a first direction through a first angle of rotation during which the driving stem 54 drives a first curved suture needle from needle carrying channel 56; a second helical section 44b that facilitates rotational movement of the central tubular member 24 in a second direction through a second angle of rotation during which the driving stem 54 drives a second curved sutare needle from needle carrying channel 56; and a third helical section 44c that facilitates rotational movement of the central tabular member 24 in the first direction through a third angle of rotation to reposition the driving stem 54 of central tabular member 44 in a neutral position within needle carrying channel 56 of inner tubular member 26.
As discussed in detail hereinbelow with respect to Figs. 20 through 34, the rotational movements of the central and inner tubular members 24 and 26, and the dwell periods of the inner tabular member 26 effectuated by the translation of the cam pin 40 through the cooperating superimposed cam slots 44 and 46 correspond to sequential steps in the suturing methodology of the subject invention.
In use, at the conclusion of a surgical procedure conducted through an incision or puncture wound in the wall of a blood vessel, such as the femoral artery, a tubular cannula 90 is utilized to facilitate the percutaneous introduction of a flexible stylet 92 into the lumen of the blood vessel A, as illustrated in Fig. 18. Thereafter, as shown in Fig. 19, the tabular cannula 90 is removed from the incision site. Then, the vascular suturing device 10 of the subject invention, with the aide of an optional tapered nose piece 95, is percutaneously introduced to the surgical site as it is guided along the stylet by way of the central lumen of body portion 18, as illustrated in Figs. 20 and 21.
Referring to Figs. 22 and 23, upon commencing the vascular suturing procedure of the subject invention, the cam pin 40 is in an initial position within the superimposed cam slots 42, 44 and 46 of tabular members 22, 24 and 26, respectively. This corresponds to the initial position of the suturing needles 50a and 50b within the arcuate needle carrying channel 56 of the inner tubular member 26, with the distal driving stem 54 of central tubular member 24 disposed therebetween. Thereafter, when, through manipulation of actuation handle 16 relative to stationary handle portion 14, cam pin 40 is moved to the second position of Fig. 24, it has translated through the first helical section 46a of cam slot 46 in inner tubular member 26 to the first inflection point. This causes the inner tubular member 26 to rotate in a counter-clockwise direction relative to the outer tubular member 22 so as to clamp the wall of the blood vessel within engagement area 60a between grasping surfaces of the arcuate channels 52 and 56 of outer and inner tubular members 22 and 26, as shown in Fig. 25. At the same time, the cam pin 40 has traveled partially through the first helical section 44a of cam slot 44 in central member 24, so as to cause the central tabular member 24 follow the inner tubular member 26 in the counter-clockwise direction.
When the cam pin 40 is disposed in the third position of Fig. 26, it has traveled through the first linear section 46b of cam slot 46 in inner tabular member 26 to the second inflection point thereof, and through the remainder of the first helical section 44a of cam slot 44 in central tubular member 24 to the first inflection point thereof. This causes the inner tubular member 26 to remain stationary during the first dwell period, and causes the central tubular member 24 to continue to rotate in a counter-clockwise direction relative to the inner tubular member 26. Consequently, the first suturing needle 50a is driven from the needle carrying channel 56 of the inner tubular member 26 by the needle driving stem 54 of the central tubular member 24, through the clamped blood vessel wall and into the needle receiving channel 52 of the outer tubular member 22, where it is captured by a retention structure 55a, such as a protuberance depending from the wall of channel 52, as shown in Fig. 27. Later, when the cam pin 40 is disposed in the fourth position of Fig.28, it has traveled through the second helical section 46c of cam slot 46 of inner tabular member 26 to the third inflection point thereof, and partially through the second helical section 44b of cam slot 44 in central tabular member 24. This causes, the inner tubular member 26 to rotate in a clockwise direction relative to the outer tubular member 22 so as to clamp the blood vessel wall within tissue engagement area 60b between adjacent grasping surfaces of the outer and inner tubular members 22 and 26, as shown in Fig. 29. At the same time, the central tabular member 26 rotates in a clockwise direction so as to move into a driving position behind the second curved suturing needle 50b in needle carrying channel 56 of inner tabular member 26.
Thereafter, when the cam pin 40 is disposed in the fifth position of Fig. 30, it has traveled through the second linear section 46d of cam slot 46 of inner tubular member 26 to the fourth inflection point thereof, and through the reminder of the second helical section 44b of central tubular member 24. This causes the inner tubular member 26 to remain stationary during the second dwell period, while the central tubular member 24 continues to rotate in a clockwise direction such the distal driving stem 54 drives the second suturing needle 50b from the needle carrying channel 56 of the inner tabular member 26, through the clamped blood vessel wall and into the needle receiving channel 52 of the outer tabular member 22, where it is captured by retention structure 55b, as shown in Fig. 31. Although the retention structures 55a and 55b are shown as protuberances, other structures may be provided to retain the suture needles. For example, the width of the channel could gradually reduce in size to capture the sutare needles. When the cam pin 40 is in the sixth position of Fig. 32, it has traveled completely through the linear cam slot 42 of outer tubular member 22, through the third helical section 46e of cam slot 46 of inner tubular member 26, and through the third helical section 44c of cam slot 44 in central tubular member 24. This causes the inner tabular member 26 to rotate in a counter-clockwise direction to release the wall of the blood vessel and causes the central tabular member 24 to rotate in a counter clockwise direction so as to move the distal driving stem 54 into a neutral position within the needle carrying channel 56 of inner tabular member 26, as shown in Fig. 33.
Referring now to Fig. 34, at the conclusion of the needle driving sequence described hereinabove, the vascular suturing device 10 of the subject invention is withdrawn from the incision site carrying the captured suturing needles 50a and 50b therewith. Thereafter, the free ends of sutare 80 are gathered by the surgeon and a knot is tied therein so as to close the punctare wound in the wall of the blood vessel. Referring to Figs. 35 through 37, there is illustrated another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which is designated generally by reference numeral 100. Suturing device 100 is substantially similar to suturing device 10 in that it includes an outer tubular member 122, a central tubular member 124 and an inner tubular member 126. The inner tubular member 126 has an arcuate channel 156 formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation (see Fig. 37). The central tabular member 124 has a distal driving stem 154 extending into the channel of the inner tubular member 126 and positioned between the pair of sutare needles for sequentially driving the suture needles from the channel of the inner tabular member 126 upon rotation of the central tabular member 124 relative to the inner tubular member 126. The outer tabular member 122 has an arcuate channel 152 formed at a distal end thereof for receiving the pair of arcuate suture needles after the sutare needles have been sequentially driven from the arcuate channel of the inner tabular member 126 by the driving stem of the central tubular member 124.
As shown in Fig. 35, suturing device 100 also includes a handle portion 112 having a stationary handle 114 and an actuator 116 that is operatively associated with a proximal end portion of the outer tabular member 122, the central tabular member 124 and the inner tabular member 126. Actuator 116 effectuates the relative movement of the inner tubular member 126 and the central tubular member 124 relative to the outer tubular member 122 so as to cause sequential passing of the suture needles from the arcuate channel of the inner tabular member 126 to the arcuate channel of the outer tubular member 122. The relative movement of the tubular members is accomplished by cooperative overlying cam slots, and a cam pin that extends through the cooperative overlying cam slots to cause the inner tabular member and the central tubular member to rotate relative to the outer tubular member, as described hereinabove with respect to suturing device 10. Suturing device 100 differs from sutaring device 10 in that it includes an integral vascular dilator 190 that functions to guide the introduction of suturing device 100 through an incision in the wall of a blood vessel. Vascular dilator 190 is formed from the same or similar material as the other components of the sutaring device and includes an elongated body portion 192 disposed within the central lumen of body portion 118, and more particularly, within the center bore of inner tubular member 126. Vascular dilator 190 further includes a tapered distal tip portion 194 dimensioned to extend beyond the distal end of the inner tabular member 126 for positioning the distal end of the sutaring device at the incision in the wall of a blood vessel.
Vascular dilator 190 is preferably fixedly secured to the inner tabular member 126 of the suturing device 100 by way of a lock, pin, glue or other similar means. Vascular dilator 190 has a central lumen 193 extending therethrough to accommodate a guidewire 185, as illustrated in Fig. 38. In addition, the body portion 192 of dilator 190 is provided with an elongated storage channel 195 for accommodating the elongated sutare 180 that is associated with the curved needles 150a, 150b, as best seen in Fig. 37. An annular groove 196 is formed between the tapered distal tip portion 194 of dilator 190 and the elongated body portion 192 of dilator 190. As illustrated in Fig. 39, annular groove 196 is configured and positioned to accept and become enveloped by the wall of the blood vessel.
Consequently, the surgeon holding suturing device 100 will be provided with a tactile sensation, indicating that the suturing device 100 has reached its operating position against the wall of the blood vessel. Referring now to Figs. 40 through 42, there is illustrated another vascular sutaring device constructed in accordance with a preferred embodiment of the subject invention which is designated generally by reference numeral 200. Sutaring device 200 is substantially similar to sutaring device 100 in that it includes an integral vascular dilator 290 having an elongated body portion 292 disposed within the central bore of inner tubular member 226 and a tapered distal tip portion 294 dimensioned to extend beyond the distal end of the inner tubular member 222. Dilator 290 also includes a guidewire bore 293 for guidewire 285, a suture storage channel 295 for suture 280 and an annular tissue envelopment groove 296 for tactile position indication, as described above with reference to Fig. 39.
In addition, in suturing device 200, the vascular dilator 290 includes a system for providing the surgeon or an assisting observer with a visual indication that the device has reached its operating position at the incision site in the wall of the blood vessel to be sutured. The visual position indication system utilizes observable blood flow, and includes at least one but preferably three circumferentially spaced apart longitudinal grooves 298a-298c formed in the exterior surface of the body portion 292 of vascular dilator 290. The three longitudinal grooves extend from the annular groove 296 which communicates with correspondingly positioned and aligned inlet slots that are formed in the base of tapered distal portion 294 of dilator 290, of which inlet slot 297a is one that is shown. Grooves 298a-298c communicate with and deliver arterial/venous blood flow to corresponding observation port(s) 299 formed in the tubular body portion 218 of suturing device 200, remote form the incision site, as illustrated in Fig. 44. This feature or system allows the surgeon or an assisting observer to determine whether the distal end of sutaring device 200 is properly positioned at the incision site for a suturing operation.
Referring to Figs. 43 and 44, in use, the vascular dilator 290 of suturing device 200 is guided into through the incision in the wall of a blood vessel along guidewire 285 extending through bore 293. As the distal portion 294 passes through the incision, blood flow through the incision is obstructed, as seen in Fig. 43. However, when the distal end portion 294 extends a sufficient distance through the wall of the blood vessel such that the three inlet slots (e.g., inlet slot 297a) are positioned within the blood vessel, blood will surge through the inlet slots,, and into the corresponding and aligned longitudinal grooves 298-298c communicating with annular groove 296. The blood will then flow to the observation port(s) 299, whereupon the surgeon or an assistant will observe that the distal end of the instrument is in an operational position for sutaring the blood vessel to close the incision therein.
As shown in Fig. 44, at this time, the wall of the blood vessel envelopes the annular channel 296 in dilator 290 to provide a tactile sensation or indication to the surgeon, and in addition, the wall of the blood vessel is gathered within the opposed U-shaped tissue engagement areas 260a, 260b fonned in the distal end portions of the inner and outer tabular members 226 and 222. As a result, the portions of the longitudinal grooves 298a-298c that extend through the annular groove 296 are enveloped by the wall of the blood vessel. Thus, the blood will remain within the longitudinal grooves and will not escape through the tissue engagement areas 260a, 260b. Referring now to Figs. 45 and 46, there is illustrated a variant of vascular sutaring device 200. In this embodiment of the sutaring device, the three longitudinal grooves 298a-298c formed in the body portion 292 of dilator 290 extend to the proximal end of body portion 218 so that the flow of blood may be observed at the rear end of handle portion 212.
Referring to Figs. 47 through 54, there is illustrated another vascular suturing device constructed in accordance with a preferred embodiment of the subject invention which is designated generally by reference numeral 300. Sutaring device 300 is substantially similar to sutaring devices 10, 100 and 200 in that it includes an outer tabular member 322, a central tubular member 324 and an inner tabular member 326. As shown in Figs. 51 and 53, the inner tubular member 326 has an arcuate needle carrying channel 356 formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation. The central tubular member 324 has a distal driving stem 354 extending into the channel of the inner tubular member 326 and positioned between the pair of sutare needles for sequentially driving the suture needles from the channel of the inner tubular member 326 upon rotation of the central tubular member 324 relative to the inner tubular member 326. The outer tabular member 322 has an arcuate needle reception channel 352 formed at a distal end thereof for receiving the pair of arcuate sutare needles after the suture needles have been sequentially driven from the arcuate channel of the inner tubular member 326 by the driving stem of the central tubular member 324. The outer tubular member 322 also has a pair of diametrically opposed tissue receiving recesses 372a and 372b formed in the distal end thereof in which tissue is to be gathered for sutaring. As shown in Fig. 47, sutaring device 300 also includes a handle portion 312 having a stationary handle 314 and an actuator 316 that is operatively associated with a proximal end portion of the outer tabular member 322, the central tabular member 324 and the inner tabular member 326. Actuator 316 effectuates the relative movement of the inner tubular member 326 and the central tubular member 324 relative to the outer tubular member 322 so as to cause sequential passing of the suture needles from the arcuate channel of the inner tabular member 326 to the arcuate channel of the outer tubular member 322. The relative movement of the tubular members is accomplished by cooperative overlying cam slots, and a cam pin that extends through the cooperative overlying cam slots to cause the inner tabular member and the central tubular member to rotate relative to the outer tubular member, as described hereinabove with respect to sutaring device 10.
Sutaring device 300 differs from sutaring device 10 in that it includes an integral vascular dilator 390 that functions to guide the introduction of sutaring device 300 through an incision in the wall of a blood vessel. Still further, unlike the previously described suturing devices, suturing device 300 includes a helical spring 381 for biasing the dilator 390 in a retracted position and a retaining pin 383 for securing the dilator 390 in the extended position and for preventing the inner tubular member 326 and central tubular member 324 from rotating relative to the outer tubular member 322.
Vascular dilator 390 is formed from the same or similar material as the other components of the sutaring device and includes an elongated body portion 392 disposed within the central lumen of inner tubular member 326. Vascular dilator 390 further includes a tapered distal tip portion 394 that is dimensioned to extend beyond the distal end of the inner tubular member 326 for positioning the distal end of the suturing device 300 at the incision in the wall of a blood vessel.
Vascular dilator 390 is mounted for slidable movement within the central lumen of the inner tabular member 326 of the sutaring device 300 between and extended position and a retracted position. An annular groove 396 is formed in the body portion 392 of the dilator adjacent to the tapered distal tip portion 394. As shown in Figs. 47 and 48, vascular dilator 390 has a central lumen 393 extending therethrough to accommodate a guidewire 385. When the dilator 390 is in the extended position, annular groove 396 is exposed, i.e., the annular groove 396 is positioned beyond the distal end of the inner tubular member 326. In the retracted position, the distal tip portion 394 of the dilator 390 is positioned as close as practical to the distal end of the inner tubular member 326 and the annular groove 396 is concealed within the central lumen of the inner tubular member 326.
As illustrated in Fig. 51, annular groove 396 is configured and positioned to accept and become enveloped by the wall of the blood vessel. Consequently, the surgeon holding suturing device 300 will be provided with a tactile sensation, indicating that the suturing device 300 has reached its operating position against the wall of the blood vessel.
As stated above, unlike sutaring devices 10, 100 and 200, sutaring device 300 includes helical spring 381 and retaining pin 383, which are operatively associated with the proximal end of the dilator 390. Helical spring 381 is used to bias the dilator 390 in the retracted position. Retaining pin 383 perfonns two functions; first, it secures the dilator 390 in the extended position and second, it functions as a lockout mechanism which prevents the axial movement of the actuator 316 thereby preventing the rotation of the inner tubular member 326 and central tubular member 324 relative to the outer tubular member 322. Those skilled in the art would readily appreciate that a separate device could be used for each function.
In operation, the vascular dilator 390 of suturing device 200 is guided into through the incision in the wall of a blood vessel along guidewire 285 extending through bore 293. During the insertion process, retaining pin 383 is engaged within aperture 385 and therefore, the dilator 390 is secured in the extended position and the actuator 316 is prevented from moving relative to the stationary support member 314 (see Fig. 51). When the exposed annular groove 396 reaches the wall of the blood vessel, the surgeon holding suturing device 300 will be provided with a tactile sensation, indicating that the suturing device 300 has reached its operating position against the wall of the blood vessel. At this time, the wall of the blood vessel envelopes (i.e., prolapses into) the annular channel 396 in dilator 390 to provide the tactile sensation. Additionally, the wall of the blood vessel is gathered within the opposed U-shaped tissue receiving recesses 372a and 372b formed in the distal end portion of the outer tubular member 322. At this point, the surgeon removes retaining pin 383 from within aperture
385 provided in actuator 316. As a result, helical spring 381 urges the dilator 390 into the retracted position. As shown in Fig. 53, when the dilator 390 is biased into the retracted position, the wall of the blood vessel which has been enveloped within annular channel 396 and has been gathered in tissue engagement areas 372a and 372b is further urged into the tissue engagement areas 372a and 372b and is held therein by virtue of being captured between the distal tip portion 394 of dilator 390 and the inner and outer tabular members 326 and 322, respectively. After the retaining pin 383 has been removed and the dilator 390 has secured the tissue, the surgeon operates the sutaring device 300 in a manner which is similar to the previously described embodiments.
Referring now to Figs. 54 and 55, there is illustrated another vascular sutaring device constructed in accordance with a preferred embodiment of the subject invention which is designated generally by reference numeral 400. Sutaring device 400 is substantially similar to sutaring device 300 in that it includes an integral vascular dilator 490 having an elongated body portion 492 which is slidably disposed within the central bore of an inner tubular member. However, unlike sutaring device 300, the mechanism used for biasing dilator 490 in the retracted position includes a leaf spring 481 rather than a helical spring element. Leaf spring 481 is attached to the stationary handle 414 at opposed longitudinal ends thereof. As before, a retaining pin 483 operatively associated with the distal end of dilator 490 and actaator 416 is used to secure the dilator 490 in the extended position and function as a lockout mechanism while the sutaring device 400 is being inserted into the incision formed in the blood vessel wall. Although the vascular sutaring apparatus of the subject invention has been described with respect to preferred embodiments, those skilled in the art will readily appreciate that changes and modifications may be made thereto without departing from the spirit and scope of the present invention.

Claims

WHAT IS CLAIMED IS:
1. A sutaring device comprising: a) an inner tubular member having an arcuate needle carrying channel formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation; b) a central tubular member having a distal driving stem extending into the needle carrying channel of the inner tubular member and positioned between the pair of suture needles for sequentially driving the suture needles from the needle carrying channel upon rotation of the central tabular member relative to the inner tubular member; c) an outer tubular member having a pair of diametrically opposed tissue receiving recesses formed in a distal end of the tube wall and an arcuate needle reception disposed between the tissue receiving recesses and configured for receiving the arcuate sutare needles after the sutare needles have been sequentially driven from the arcuate channel of the inner tabular member by the driving stem of the central tubular member through tissue gathered within the tissue receiving recesses; and d) a vascular dilator having an elongated body portion and a tapered distal tip portion, the elongated body portion being slidably disposed within the inner tabular member and having an annular groove formed therein adjacent to the distal tip portion, the distal tip portion extending beyond the distal end of the inner tubular member for positioning the sutaring device at an incision in the wall of a blood vessel, the dilator mounted for movement between an extended position in which the annular groove is exposed allowing tissue to prolapse therein so as to provide tactile feedback and a retracted position in which the prolapsed tissue within the annular groove is urged in a proximal direction and gathered within the tissue receiving recesses of the outer tubular member.
2. A suturing device as recited in Claim 1, further comprising a handle portion operatively associated a proximal end portion of the outer tabular member, the central tubular member and the inner tabular member for co-axially supporting the outer tubular member, the central tubular member and the inner tabular member.
3. A suturing device as recited in Claim 2, further comprising means operatively associated with the handle portion and a proximal end of the dilator for biasing the dilator in the retracted position.
4. A suturing device as recited in Claim 3, wherein the means for biasing the dilator in the retracted position includes a helical spring element engaged with the proximal end of the dilator.
5. A suturing device as recited in Claim 3, wherein the means for biasing the dilator in the retracted position includes a leaf spring element engaged with the proximal end of the dilator.
6. A suturing device as recited in Claim 2, further comprising means operatively associated with the handle portion and a proximal end of the dilator for retaining the dilator in the extended position
7. A suturing device as recited in Claim 2, further comprising means operatively associated with the handle portion and a proximal end of the dilator for preventing rotation of the inner tubular member and central tabular member relative to the outer tubular member.
8. A suturing device as recited in Claim 6, wherein the means for retaining the dilator in the extended position includes a pin which is operatively associated with a proximal end of the dilator so as to restrain its axial movement.
9. A suturing device as recited in Claim 1, wherein the vascular dilator has a central lumen extending therethrough which is dimensioned and configured to accommodate a guidewire.
10. A suturing device as recited in Claim 2, wherein the handle portion further comprising an actaator operatively associated with the proximal end portion of the outer tubular member, the central tubular member and the inner tubular member for effectuating the relative movement of the inner tubular member and the central tabular member relative to the outer tubular member so as to cause sequential passing of the sutare needles from the arcuate channel of the inner tabular member to the arcuate channel of the outer tubular member.
11. A suturing device as recited in Claim 10, wherein the inner tabular member, the central tubular member and the outer tabular member include cooperative overlying cam slots, and a cam pin extends through the cooperative overlying cam slots to cause the inner tabular member and the central tubular member to rotate relative to the outer tabular member.
12. A suturing device as recited in Claim 10, wherein the cam pin is operatively connected to the actuator.
13. A suturing device as recited in Claim 10, wherein the handle portion includes a stationary support portion and the actaator is mounted for movement relative to a stationary support portion.
14. A suturing device as recited in Claim 1, further comprising a pair of arcuate sutare needles, and an elongated suture extending between the pair of arcuate sutare needles.
15. A suturing device comprising: a) an inner tubular member having an arcuate needle carrying channel formed at a distal end thereof for carrying a pair of arcuate suture needles in back-to-back orientation; b) a central tubular member having a distal driving stem extending into the needle carrying channel of the inner tubular member and positioned between the pair of sutare needles for sequentially driving the suture needles from the needle carrying channel upon rotation of the central tabular member relative to the inner tubular member; c) an outer tubular member having a pair of diametrically opposed tissue receiving recesses formed in a distal end of the tube wall and an arcuate needle reception disposed between the tissue receiving recesses and configured for receiving the arcuate suture needles after the sutare needles have been sequentially driven from the arcuate channel of the inner tabular member by the driving stem of the central tabular member through tissue gathered within the tissue receiving recesses; d) a vascular dilator having an elongated body portion and a tapered distal tip portion, the elongated body portion being slidably disposed within the inner tubular member and having an annular groove formed therein adjacent to the distal tip portion, the distal tip portion extending beyond the distal end of the inner tabular member for positioning the sutaring device at an incision in the wall of a blood vessel, the dilator mounted for movement between an extended position in which the annular groove is exposed allowing tissue to prolapse therein so as to provide tactile feedback and a retracted position in which the prolapsed tissue within the annular groove is urged in a proximal direction and gathered within the tissue receiving recesses of the outer tabular member; e) a handle portion operatively associated a proximal end portion of the outer tubular member, the central tabular member and the inner tubular member for co-axially supporting the outer tubular member, the central tubular member and the inner tabular member; f) means operatively associated with the handle portion and a proximal end of the dilator for biasing the dilator in the retracted position; and g) means operatively associated with the handle portion and a proximal end of the dilator for retaining the dilator in the extended position and for preventing rotation of the inner tabular member and central tabular member relative to the outer tubular member.
16. A suturing device as recited in Claim 15, wherein the means for biasing the dilator in the retracted position includes a helical spring element engaged with the proximal end of the dilator.
17. A suturing device as recited in Claim 15, wherein the means for biasing the dilator in the retracted position includes a leaf spring element engaged with the proximal end of the dilator.
18. A suturing device as recited in Claim 15, wherein the means for retaining the dilator in the extended position includes a pin which is operatively associated with a proximal end of the dilator so as to restrain its axial movement.
19. A suturing device as recited in Claim 15, wherein the vascular dilator has a central lumen extending therethrough which is dimensioned and configured to accommodate a guidewire.
20. A suturing device as recited in Claim 15, wherein the handle portion further comprising an actaator operatively associated with the proximal end portion of the outer tabular member, the central tabular member and the inner tubular member for effectuating the relative movement of the inner tubular member and the central tabular member relative to the outer tubular member so as to cause sequential passing of the sutare needles from the arcuate channel of the inner tubular member to the arcuate channel of the outer tubular member.
21. A sutaring device as recited in Claim 20, wherein the inner tubular member, the central tubular member and the outer tabular member include cooperative overlying cam slots, and a cam pin extends through the cooperative overlying cam slots to cause the inner tubular member and the central tubular member to rotate relative to the outer tubular member.
22. A suturing device as recited in Claim 20, wherein the cam pin is operatively connected to the actaator.
23. A suturing device as recited in Claim 20, wherein the handle portion includes a stationary support portion and the actuator is mounted for movement relative to a stationary support portion.
24. A suturing device as recited in Claim 15, further comprising a pair of arcuate suture needles, and an elongated suture extending between the pair of arcuate suture needles.
25. A suturing device comprising: a) an inner tubular member having an arcuate channel formed at a distal end thereof for carrying a pair of arcuate sutare needles in back-to-back orientation; b) a central tubular member having a distal driving stem extending into the channel of the inner tabular member and positioned between the pair of suture needles for sequentially driving the suture needles from the channel of the inner tabular member upon rotation of the central tabular member relative to the inner tubular member; c) an outer tubular member having a channel formed at a distal end thereof for receiving the pair of arcuate suture needles after the sutare needles have been sequentially driven from the arcuate channel of the inner tubular member by the driving stem of the central tabular member; and d) a vascular dilator having an elongated body portion disposed within the inner tubular member and a tapered distal tip portion dimensioned to extend beyond the distal end of the inner tabular member for positioning the suturing device at an incision in the wall of a blood vessel, the dilator including means for directing blood flow from the distal tip portion of the dilator to a location remote from the blood vessel for observation to confirm the position of the sutaring device.
26. A suturing device as recited in Claim 25, wherein an annular groove is formed between the tapered distal tip portion and the elongated body portion of the dilator to provide a tactile indication to a user upon entering the blood vessel through the incision.
27. A suturing device as recited in Claim 25, wherein the means for directing vascular blood flow includes a plurality of circumferentially spaced apart elongated grooves formed in an exterior surface of the elongated body of the vascular dilator.
28. A suturing device as recited in Claim 27, wherein the circumferentially spaced apart elongated grooves direct blood flow to observation ports formed in the tubular members of the suturing device.
29. A suturing device as recited in Claim 27, wherein the circumferentially spaced apart elongated grooves direct blood flow to a proximal end of the suturing device.
30. A sutaring device as recited in Claim 25, wherein the vascular dilator is fixedly secured to the inner tabular member of the suturing device.
31. A sutaring device as recited in Claim 25, wherein the vascular dilator has a central lumen extending therethrough dimensioned and configured to accommodate a guidewire.
32. A suturing device as recited in Claim 25, further comprising an actuator operatively associated with a proximal end portion of the outer tubular member, the central tubular member and the inner tubular member for effectuating the relative movement of the inner tabular member and the central tubular member relative to the outer tabular member so as to cause sequential passing of the suture needles from the arcuate channel of the inner tubular member to the arcuate channel of the outer tubular member.
33. A sutaring device as recited in Claim 32, wherein the inner tubular member, the central tubular member and the outer tubular member include cooperative overlying cam slots, and a cam pin extends through the cooperative overlying cam slots to cause the inner tubular member and the central tubular member to rotate relative to the outer tabular member.
34. A suturing device as recited in Claim 33, wherein a proximal retaining pin is operatively associated with a proximal portion of the elongated tubular body for maintaining relative axial positions of the outer tabular member, the central tubular member and the inner tabular member.
35. A sutaring device as recited in Claim 34, wherein the proximal portions of each one of the outer tubular member, the central tabular member and the inner tabular member include means for accommodating the proximal retaining pin.
36. A suturing device as recited in Claim 35, wherein the camp pin is operatively connected to the actuator.
37. A suturing device as recited in Claim 36, wherein the actuator is mounted for movement relative to a handle member.
38. A suturing device as recited in Claim 37, wherein the retaining pin is operatively connected to the handle member.
39. A suturing device as recited in Claim 25, further comprising a pair of arcuate suture needles, and an elongated suture extending between the pair of arcuate sutare needles.
PCT/GB2003/004172 2002-09-23 2003-09-22 Apparatus for suturing a blood vessel WO2004026144A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE60325398T DE60325398D1 (en) 2002-09-23 2003-09-22 SEWING DEVICE FOR CLOSING A BLOOD VESSEL OPENING
JP2004537339A JP2006500095A (en) 2002-09-23 2003-09-22 Device for suturing a blood vessel
AU2003269195A AU2003269195A1 (en) 2002-09-23 2003-09-22 Apparatus for suturing a blood vessel
EP03750973A EP1549225B1 (en) 2002-09-23 2003-09-22 Apparatus for suturing a blood vessel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/252,808 US7041119B2 (en) 2001-02-27 2002-09-23 Apparatus for suturing a blood vessel
US10/252,808 2002-09-23
US10/460,331 US7204841B2 (en) 2001-02-27 2003-06-12 Apparatus for suturing a blood vessel
US10/460,331 2003-06-12

Publications (1)

Publication Number Publication Date
WO2004026144A1 true WO2004026144A1 (en) 2004-04-01

Family

ID=32033245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2003/004172 WO2004026144A1 (en) 2002-09-23 2003-09-22 Apparatus for suturing a blood vessel

Country Status (6)

Country Link
US (1) US7204841B2 (en)
EP (1) EP1549225B1 (en)
JP (1) JP2006500095A (en)
AU (1) AU2003269195A1 (en)
DE (1) DE60325398D1 (en)
WO (1) WO2004026144A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9011364B2 (en) 2007-07-18 2015-04-21 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9011467B2 (en) 2008-08-13 2015-04-21 Silk Road Medical, Inc. Suture delivery device
US9179909B2 (en) 2008-08-13 2015-11-10 Silk Road Medical, Inc. Suture delivery device
US10159479B2 (en) 2012-08-09 2018-12-25 Silk Road Medical, Inc. Suture delivery device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0303002D0 (en) * 2003-02-11 2003-03-12 Vascutek Ltd Sewing apparatus
US20080262390A1 (en) * 2007-04-19 2008-10-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fiducials for placement of tissue closures
US20080262524A1 (en) * 2007-04-19 2008-10-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems and methods for closing of fascia
US8679134B2 (en) 2007-08-08 2014-03-25 Spirx Pte. Ltd. Methods and devices for delivering sutures in tissue
DE202007011510U1 (en) * 2007-08-16 2009-01-02 Karl Storz Medizinische Nähsysteme GmbH & Co. KG Endoscopic sewing machine and sewing machine extension for an endoscopic instrument
AU2009221844B2 (en) * 2008-03-06 2014-04-03 Cook Medical Technologies Llc Medical systems for accessing an internal bodily opening
JP5528432B2 (en) * 2008-05-15 2014-06-25 クック メディカル テクノロジーズ エルエルシー System, apparatus and method for accessing a body opening
US7997629B2 (en) 2008-09-12 2011-08-16 Dr. Slick Company Knot tying apparatus
US8267857B2 (en) * 2009-01-30 2012-09-18 Cook Medical Technologies Llc Expandable port for accessing a bodily opening
US8834361B2 (en) * 2009-05-15 2014-09-16 Cook Medical Technologies Llc Systems, devices and methods for accessing a bodily opening
US9468435B2 (en) * 2009-12-23 2016-10-18 Cook Medical Technologies Llc Wound closure device
CN103717252B (en) * 2011-08-01 2016-10-26 泰尔茂株式会社 Dilator
KR101309474B1 (en) * 2011-10-05 2013-09-23 김근식 Thread Insertion Device
KR101246573B1 (en) 2011-10-13 2013-03-25 송미희 Stitching fiber insertion device for musclestrengthening
US9642605B2 (en) 2013-03-15 2017-05-09 Cook Medical Technologies Llc Vascular closure device suture tension limiting and indication mechanism
US10219818B2 (en) * 2015-07-24 2019-03-05 Covidien Lp Shaft-based surgical forceps and method of manufacturing the same
EP3793449A4 (en) 2018-05-16 2022-02-09 Munday, George Swope Apparatus and method for closing a surgical site
CN111544068B (en) * 2020-04-23 2021-06-08 孔德栋 Medical suture needle assembly
US11701104B2 (en) 2021-06-08 2023-07-18 George Swope MUNDAY Apparatus for closing a surgical site
US20220387023A1 (en) 2021-06-08 2022-12-08 George Swope MUNDAY Apparatus for closing a surgical site

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016614A1 (en) * 1993-11-08 2002-02-07 Perclose, Inc Device and method for suturing of internal puncture sites
US20020026208A1 (en) * 2000-01-05 2002-02-28 Medical Technology Group, Inc. Apparatus and methods for delivering a closure device
WO2002028286A1 (en) * 2000-10-06 2002-04-11 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
WO2002069809A1 (en) * 2001-02-27 2002-09-12 Green David T Apparatus and method for suturing a blood vessel

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152769A (en) * 1991-11-04 1992-10-06 Will Baber Apparatus for laparoscopic suturing with improved suture needle
DE4201337A1 (en) 1992-01-20 1993-07-22 Storz Karl INSTRUMENT WITH A PLIERS-NEEDLE HOLDER
US5653718A (en) * 1994-05-16 1997-08-05 Yoon; Inbae Cannula anchoring system
US5830125A (en) * 1993-08-12 1998-11-03 Scribner-Browne Medical Design Incorporated Catheter introducer with suture capability
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
WO1995032671A1 (en) 1994-06-01 1995-12-07 Perclose, Inc. Method and device for providing vascular hemostasis
US5964773A (en) 1995-02-15 1999-10-12 Automated Medical Products, Inc. Laparascopic suturing device and suture needles
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
US5902311A (en) 1995-06-15 1999-05-11 Perclose, Inc. Low profile intraluminal suturing device and method
US5846253A (en) 1995-07-14 1998-12-08 C. R. Bard, Inc. Wound closure apparatus and method
WO1997007745A1 (en) 1995-08-24 1997-03-06 Nobles-Lai Engineering, Inc. Method and apparatus for suturing
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
US5860992A (en) 1996-01-31 1999-01-19 Heartport, Inc. Endoscopic suturing devices and methods
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US5766183A (en) 1996-10-21 1998-06-16 Lasersurge, Inc. Vascular hole closure
US5984932A (en) * 1996-11-27 1999-11-16 Yoon; Inbae Suturing instrument with one or more spreadable needle holders mounted for arcuate movement
US6126665A (en) 1997-05-01 2000-10-03 Yoon; Inbae Surgical instrument with arcuately movable offset end effectors and method of using the same
US5810849A (en) 1997-06-09 1998-09-22 Cardiologics, L.L.C. Device and method for suturing blood vessels and the like
US5868762A (en) 1997-09-25 1999-02-09 Sub-Q, Inc. Percutaneous hemostatic suturing device and method
US5972005A (en) 1998-02-17 1999-10-26 Advanced Cardiovascular Systems, Ind. Wound closure assembly and method of use
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
US5980539A (en) 1998-05-06 1999-11-09 X-Site L.L.C. Device and method for suturing blood vessels and the like
US6071404A (en) * 1998-08-31 2000-06-06 Tsui; Tommy Water treating device
US6071289A (en) 1999-03-15 2000-06-06 Ethicon Endo-Surgery, Inc. Surgical device for suturing tissue
US6110184A (en) 1999-08-04 2000-08-29 Weadock; Kevin S. Introducer with vascular sealing mechanism
DE19942951C1 (en) 1999-09-08 2001-01-18 Gip Medizin Technik Gmbh Surgical device for closing opening in artery wall has rod-shaped thread guide with rotatable thread release/thread clamping section between its rear and front sections
AU1464401A (en) * 1999-11-05 2001-06-06 Onux Medical, Inc. Apparatus and method for approximating and closing the walls of a hole or puncture in a physiological shell structure
AU8800801A (en) * 2000-09-08 2002-03-22 James E Coleman Surgical staple
US7041119B2 (en) * 2001-02-27 2006-05-09 Green David T Apparatus for suturing a blood vessel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020016614A1 (en) * 1993-11-08 2002-02-07 Perclose, Inc Device and method for suturing of internal puncture sites
US20020026208A1 (en) * 2000-01-05 2002-02-28 Medical Technology Group, Inc. Apparatus and methods for delivering a closure device
WO2002028286A1 (en) * 2000-10-06 2002-04-11 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
WO2002069809A1 (en) * 2001-02-27 2002-09-12 Green David T Apparatus and method for suturing a blood vessel

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10286139B2 (en) 2007-07-18 2019-05-14 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9259215B2 (en) 2007-07-18 2016-02-16 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US8858490B2 (en) 2007-07-18 2014-10-14 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US10426885B2 (en) 2007-07-18 2019-10-01 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US11364332B2 (en) 2007-07-18 2022-06-21 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9655755B2 (en) 2007-07-18 2017-05-23 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US9789242B2 (en) 2007-07-18 2017-10-17 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9833555B2 (en) 2007-07-18 2017-12-05 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10085864B2 (en) 2007-07-18 2018-10-02 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US10952882B2 (en) 2007-07-18 2021-03-23 Silk Road Medical, Inc. Systems and methods for treating a carotid artery
US10709832B2 (en) 2007-07-18 2020-07-14 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9011364B2 (en) 2007-07-18 2015-04-21 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10543307B2 (en) 2007-07-18 2020-01-28 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US10485917B2 (en) 2007-07-18 2019-11-26 Silk Road Medical, Inc. Methods and systems for establishing retrograde carotid arterial blood flow
US9179909B2 (en) 2008-08-13 2015-11-10 Silk Road Medical, Inc. Suture delivery device
US9011467B2 (en) 2008-08-13 2015-04-21 Silk Road Medical, Inc. Suture delivery device
US10357242B2 (en) 2008-08-13 2019-07-23 Silk Road Medical, Inc. Suture delivery device
US11389155B2 (en) 2008-08-13 2022-07-19 Silk Road Medical, Inc. Suture delivery device
US10881393B2 (en) 2012-08-09 2021-01-05 Silk Road Medical, Inc. Suture delivery device
US10159479B2 (en) 2012-08-09 2018-12-25 Silk Road Medical, Inc. Suture delivery device
US11839372B2 (en) 2012-08-09 2023-12-12 Silk Road Medical, Inc. Suture delivery device

Also Published As

Publication number Publication date
US20030233109A1 (en) 2003-12-18
US7204841B2 (en) 2007-04-17
AU2003269195A1 (en) 2004-04-08
EP1549225B1 (en) 2008-12-17
JP2006500095A (en) 2006-01-05
DE60325398D1 (en) 2009-01-29
EP1549225A1 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
US7041119B2 (en) Apparatus for suturing a blood vessel
EP1549225B1 (en) Apparatus for suturing a blood vessel
US6454777B1 (en) Apparatus and method for suturing a blood vessel
EP1229841B1 (en) System for wound closure
US5759188A (en) Suturing instrument with rotatably mounted needle driver and catcher
US6159224A (en) Multiple needle suturing instrument and method
CA1329347C (en) Surgical suturing instrument and method
US6837893B2 (en) Multi-fastener surgical apparatus and method
EP2011441B1 (en) Suturing device for sealing an opening in a blood vessel or other biological structure
US7029480B2 (en) Device and method for suturing of internal puncture sites
US8425538B2 (en) Suturing device for sealing a puncture in an anatomical structure
US5797927A (en) Combined tissue clamping and suturing instrument
US7992571B2 (en) Suture trimmer
EP1450691B1 (en) Wound suturing device
US20060264977A1 (en) Snared Suture Trimmer
ZA200100527B (en) Surgical stapler.
WO2007019016A1 (en) Vascular suturing device
JPH0622973A (en) Endoscopic ligature and splitter
US20180228478A1 (en) Articulating suturing device with improved actuation and alignment mechanisms
EP1463450B1 (en) Suture trimmer
WO1999055217A2 (en) Multiple needle suturing instrument and method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003750973

Country of ref document: EP

Ref document number: 2004537339

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003750973

Country of ref document: EP