WO2004030568A2 - Device and method for repairing a native heart valve leaflet - Google Patents

Device and method for repairing a native heart valve leaflet Download PDF

Info

Publication number
WO2004030568A2
WO2004030568A2 PCT/US2003/030830 US0330830W WO2004030568A2 WO 2004030568 A2 WO2004030568 A2 WO 2004030568A2 US 0330830 W US0330830 W US 0330830W WO 2004030568 A2 WO2004030568 A2 WO 2004030568A2
Authority
WO
WIPO (PCT)
Prior art keywords
annulus
valve
implant
heart valve
implant according
Prior art date
Application number
PCT/US2003/030830
Other languages
French (fr)
Other versions
WO2004030568A3 (en
Inventor
John A. Macoviak
Robert T. Chang
David A. Rahdert
Timothy R. Machold
Rick A. Soss
Original Assignee
Ample Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2002/031376 external-priority patent/WO2003028558A2/en
Application filed by Ample Medical, Inc. filed Critical Ample Medical, Inc.
Priority to PCT/US2003/030830 priority Critical patent/WO2004030568A2/en
Priority to US10/676,815 priority patent/US7381220B2/en
Priority to AU2003277115A priority patent/AU2003277115A1/en
Publication of WO2004030568A2 publication Critical patent/WO2004030568A2/en
Publication of WO2004030568A3 publication Critical patent/WO2004030568A3/en
Priority to US11/981,025 priority patent/US8016882B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2454Means for preventing inversion of the valve leaflets, e.g. chordae tendineae prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents

Definitions

  • the invention is directed to devices, systems, and methods for improving the function of a heart valve, e.g., in the treatment of mitral valve regurgitation.
  • the heart (see Fig. 1) is slightly larger than a clenched fist. It is a double (left and right side), self-adjusting muscular pump, the parts of which work in unison to propel blood to all parts of the body.
  • the right side of the heart _ receives poorly oxygenated
  • venous blood from the body from the superior vena cava and inferior vena cava and pumps it through the pulmonary artery to the lungs for oxygenation.
  • the left side receives well-oxygenation (“arterial”) blood from the lungs through the pulmonary veins and pumps it into the aorta for distribution to the body.
  • the heart has four chambers, two on each side -- the right and left atria, and the right and left ventricles.
  • the atria are the blood-receiving chambers, which pump blood into the ventricles .
  • the ventricles are the blood-discharging chambers.
  • the synchronous pumping actions of the left and right sides of the heart constitute the cardiac cycle.
  • the cycle begins with a period of ventricular relaxation, called ventri'cular diastole.
  • the cycle ends with a period of ventricular contraction, called ventricular systole.
  • the heart has four valves (see Figs. 2 and 3) that ensure that blood does not flow in the wrong direction during the cardiac cycle; that is, to ensure that the blood does not back flow from the ventricles into the corresponding atria, or back flow from the arteries into the corresponding ventricles .
  • the valve between the left atrium and the left ventricle is the mitral valve .
  • the valve between the right atrium and the right ventricle is the tricuspid valve.
  • the pulmonary valve is at the opening of the pulmonary artery.
  • the aortic valve is at the opening of the aorta. At the beginning of ventricular diastole
  • the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles.
  • the tricuspid and mitral valves open (as Fig. 2 shows) , to allow flow from the atria into the corresponding ventricles.
  • the tricuspid and mitral valves close (see Fig. 3) -- to prevent back flow from the ventricles into the corresponding atria -- and the aortic and pulmonary valves open -- to permit discharge of blood into the arteries from the corresponding ventricles .
  • the opening and closing of heart valves occur primarily as a result of pressure differences.
  • the opening and closing of the mitral valve occurs as a result of the pressure differences between the left atrium and the left ventricle.
  • the mitral valve opens, allowing blood to enter the ventricle.
  • the ventricle contracts during ventricular systole, the intraventricular pressure rises above the pressure in the atrium and pushes the mitral valve shut.
  • Fig. 4 shows a posterior oblique cutaway view of a healthy human heart 100.
  • the left atrium 170 fills with blood from the pulmonary veins .
  • the blood then passes through the mitral valve (also known as the bicuspid valve, and more generally known as an atrioventricular valve) during ventricular diastole and into the left ventricle 140.
  • the mitral valve also known as the bicuspid valve, and more generally known as an atrioventricular valve
  • the blood is then ejected out of the left ventricle 140 through the aortic valve 150 and into the aorta 160.
  • the mitral valve should be shut so that blood is not regurgitated back into the left atrium.
  • the mitral valve consists of two leaflets, an anterior leaflet 110, and a posterior leaflet 115, attached to chordae • tendineae 120 (or chords), which in turn are connected to papillary muscles 130 within the left atrium 140.
  • the mitral valve has a D- shaped anterior leaflet 110 oriented toward the aortic valve, with a crescent shaped posterior leaflet 115.
  • the leaflets intersect with the atrium 170 at the mitral annulus 190.
  • Valve Dysfunction Valve malfunction can result from the chords becoming stretched, and in some cases tearing. When a chord tears, the result is a flailed leaflet. Also, a normally structured valve may not function properly because of an enlargement of the valve annulus pulling the leaflets apart. This condition is referred to as a dilation of the annulus and generally results from heart muscle failure. In addition, the valve may be defective at birth or because of an acquired disease, usually infectious or inflammatory.
  • Fig. 5 shows a cutaway view of a human heart 200 with a prolapsed mitral valve.
  • the prolapsed valve does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction.
  • the anterior 220 and posterior 225 leaflets are shown rising higher than normal (i.e., prolapsing) into the left atrium.
  • the arrows indicate the direction of regurgitant flow.
  • regurgitation can result from redundant valve leaflet tissue or from stretched chords 210 that are too long to prevent the leaflets from being blown into the atrium. As a result, the leaflets do not form a tight seal, and blood is regurgitated into the atrium.
  • Fig. 6 shows a cutaway view of a human heart
  • Fig. 7 shows a cutaway view of a human heart where the anterior leaflet 910 has torn chords 920. As a result, valve flailing and blood regurgitation occur during ventricular systole.
  • Mitral valve regurgitation can be an acute or chronic condition. It is sometimes called mitral insufficiency. III. Prior Treatment Modalities
  • diuretics and/or vasodilators can be used to help reduce the amount of blood flowing back into the left atrium.
  • An intra-aortic balloon counterpulsation device is used if the condition is not stabilized with medications .
  • surgery to repair or replace the mitral valve is often necessary.
  • the invention provides devices, systems and methods that supplement, repair, or replace a native heart valve leaflet.
  • the devices, systems, and methods include an implant that, in use, rests adjacent a valve annulus.
  • the implant defines a pseudo-annulus .
  • the implant includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet.
  • the implant allows the native leaflets to coexist with the implant, or if desired or indicated, one or more native leaflets can be removed and replaced by the implant .
  • the neoleaflet element of the implant is shaped and compressed to mimic the one-way valve function of a native leaflet.
  • the implant includes spaced-apart struts that are .sized and configured to contact tissue near or within the heart valve annulus to brace the implant against migration within the annulus during the one-way valve function.
  • Fig. 1 is a perspective, anterior anatomic view of the interior of a healthy heart.
  • Fig. 2 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular diastole.
  • Fig. 3 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular systole.
  • Fig. 4 is a posterior oblique cutaway view of a portion of a human heart, showing a healthy mitral valve during ventricular systole, with the leaflets properly coapting.
  • Fig. 5 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional prolapsing mitral valve during ventricular systole, with the leaflets not properly coapting, causing regurgitation .
  • Fig. 6 is • a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, with the leaflets flailing, causing regurgitation.
  • Fig. 7 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, caused by torn chords, that leads to regurgitation.
  • Fig. 8 is a perspective view of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element that occupies the space of at least one native valve leaflet.
  • Fig. 9A is a perspective, anatomic view of the implant shown in Fig. 8, with the neoleaflet element installed over an anterior leaflet of a mitral valve to restore normal function.
  • Fig. 9B is a perspective, anatomic view of the implant of the type shown in Fig. 8, with the neoleaflet element installed over a posterior leaflet of a mitral valve to restore normal function to the native valve leaflet.
  • Fig. 10 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being shown installed on a mitral valve annulus and having a neoleaflet element that occupies the space of at least one native valve leaflet, the implant also including a framework that rises above the neoleaflet element in the atrium to help fix and stabilize the implant .
  • Fig. 10 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being shown installed on a mitral valve annulus and having a neoleaflet element that occupies the space of at least one native valve leaflet, the implant also including
  • FIG. 11 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements that occupy the space of two native valve leaflets .
  • Fig. 12 is a perspective view of the implant shown in Fig. 11, with the two neoleaflet elements in a valve opened condition, as would exist during ventricular diastole.
  • Fig. 13 is a perspective view of another illustrative- embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane .
  • Fig. 14 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane, the implant also including a framework that .rises above the neoleaflet element in the atrium to help fix and stabilize the implant.
  • Fig. 14 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane, the implant also including a framework that .rises above the neoleaflet element in the atrium to help fix and stabilize the implant.
  • FIG. 15 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements to form a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole.
  • Fig. 16 is a perspective view of the implant shown in Fig. 15, the duckbill valve being shown in a closed condition as would exist during ventricular systole.
  • Figs. 17 and 18 are side views of the implant shown, respectively, in Figs. 15 and 16, with the duckbill valve, respectively, in an opened and a closed condition.
  • Fig. 19 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements formed by a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole, the implant also including a framework that rises above the neoleaflet elements in the atrium to help fix and stabilize the implant.
  • Fig. 20 is a perspective view of the implant shown in Fig. 19, the duckbill valve being shown in a closed condition as would exist during ventricular systole.
  • Figs. 21A to 21C diagrammatically show a method of gaining intravascular access to the left atrium for the purpose of deploying a delivery catheter to place an implant in a valve annulus to supplement, repair, or replace a native heart valve leaflet Detailed Description Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims .
  • Figs. 8 and 9 show an implant 400 sized and configured to supplement, repair, or replace a dysfunctional native heart valve leaflet or leaflets .
  • the implant 400 defines a pseudo-annulus that rests adjacent the native valve annulus and includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet.
  • the implant 400 allows the native leaflets to coexist with the implant 400. If desired or indicated, one or more native leaflets can be removed and replaced by the implant 400.
  • the implant 400 is made -- e.g., by machining, bending, shaping, joining, molding, or extrusion -- from a biocompatible metallic or polymer material, or a metallic or polymer material that is suitably coated, impregnated, or otherwise treated with a material to impart biocompatibility, or a combination of such materials.
  • the material is also desirably radio-opaque to facilitate fluoroscopic visualization .
  • the implant 400 includes a base or scaffold 420 that, in the illustrated embodiment, is sized and configured to rest adjacent the mitral annulus. At least a portion of the base 420 forms an annular body that approximates the shape of the native annulus. For this reason, the base 420 will also be referred to as a "pseudo-annulus.”
  • the base 420 supports a bridge 430 that extends into the valve.
  • the bridge 430 is sized and configured (see Fig. 9A) to overlay the space of at least a portion of one native valve leaflet. In Fig. 9A, the bridge 430 overlays an anterior leaflet. However, as Fig. 9B shows, the bridge 430 could be oriented to overlay a posterior leaflet.
  • the implant 400 includes ' a material 410 that covers or spans the bridge 430.
  • the spanning material 410 may be attached to the implant 400 with one or more attachment means 440.
  • the spanning materials 410 may be sewn, glued, or welded to the implant 400, or it may be attached to itself when wrapped around the implant 400.
  • the spanning material 410 may be made from a synthetic material (for example, thin
  • Nitinol polyester fabric, polytetrafluoroethylene or
  • the bridge 430 and the spanning material 410 comprise a neoleaflet element 470 coupled to the base 420.
  • the neoleaflet element 470 may be rigid, semi-rigid, or flexible.
  • the neoleaflet element 470 is coupled to the base 420 in a manner that exerts a mechanical, one-way force to provide a valve function that responds to differential pressure conditions across the neoleaflet element. In response to one prescribed differential pressure condition, the neoleaflet element 470 will deflect and, with a native leaflet, assume a valve opened condition.
  • the neoleaflet element 470 will resist deflection and, by coaptation with a native leaflet (or a companion neoleaflet element) at, above, or below the annulus plane, maintain a valve closed condition.
  • a native leaflet or a companion neoleaflet element
  • the neoleaflet element resists being moved in the cranial (superior) direction (into the atrium) , when the pressure in the ventricle exceeds the pressure in the atrium -- as it would during ventricular systole.
  • the neoleaflet element 470 may move, however, in the caudal (inferior) direction (into the ventricle) , when the pressure in the ventricle is less than the pressure in the atrium -- as it would during ventricular diastole.
  • the neoleaflet element 470 thereby mimics the one-way valve function of a native leaflet, to prevent retrograde flow.
  • the implant 400 is sized and shaped so that, in use adjacent the valve annulus of the mitral valve, it keeps the native valve leaflet closed during ventricular systole (as shown in Figs. 9A and 9B) , to prevent flailing and/or prolapse of the native valve leaflet it overlays during ventricular systole.
  • the implant 400 thus restores to the heart valve leaflet or leaflets a normal resistance to the high pressure developed during ventricular contractions, resisting valve leaflet eversion and/or prolapse and the resulting back flow of blood from the ventricle into the atrium during ventricular systole.
  • the pressure difference serves to keep valve leaflets tightly shut during ventricular systole.
  • the implant 400 does not interfere with opening of the native valve leaflet or leaflets during ventricular diastole (see, e.g., Fig. 12).
  • the implant 400 allows the leaflet or leaflets to open during ventricular diastole, so that blood flow occurs from the atrium into the ventricle.
  • the implant 400 thereby restores normal one-way function to the valve, to prevent retrograde flow.
  • the functional characteristics of the -implant 400 just described can be imparted to the neoleaflet element 470 in various ways.
  • hinges and springs mechanical or plastic
  • the implant 400 is made from materials that provide it with spring-like characteristics.
  • the base 420 and bridge 430 are shaped from a length of wire-formed material.
  • the shape and material properties of the implant determine its physical spring- like characteristics as well as its ability to open in one direction only.
  • the spring-like characteristics of the implant 400 allow it to respond dynamically to changing differential pressure conditions within the heart . More particularly, in the illustrated mitral valve embodiment, when greater pressure exists superior to the bridge 430 than inferior to the bridge (i.e., during ventricular diastole) , the shape and material properties of the bridge 430 accommodate its deflection into the ventricle -- i.e., an opened valve condition (as Fig. 12 shows in another illustrative embodiment) .
  • the shape and material properties of the bridge 430 enable it to resist superior movement of the leaflet into the atrium, and otherwise resist eversion and/or prolapse of the valve leaflet into the atrium (as Figs. 9A and 9B also show) .
  • the implant 400 may be delivered percutaneously, thoracoscopically through the chest, or using open heart surgical techniques. If delivered percutaneously, the implant 400 may be made from a superelastic material (for example superelastic Nitinol alloy) enabling it to be folded and collapsed such that it can be delivered in a catheter, and will subsequently self-expand into the desired shape and tension when released from the catheter.
  • a superelastic material for example superelastic Nitinol alloy
  • percutaneous vascular access can be achieved by conventional methods into the femoral or jugular vein.
  • a catheter 52 is steered through the vasculature into the right atrium.
  • a needle cannula 54 carried on the distal end of the catheter is deployed to pierce the septum between the right and left atrium.
  • a guide wire 56 is advanced trans-septally through the needle catheter 52 into the left atrium. The first catheter 52 is withdrawn, and (as Fig.
  • an implant delivery catheter 58 is advanced over the guide wire 56 into the left atrium into proximity with the mitral valve.
  • the implant delivery catheter 58 can be deployed trans-septally by means of surgical access through the right atrium.
  • the distal end of the catheter 58 encloses an implant 400, like that shown 'in Fig. 8, which is constrained in a collapsed condition.
  • a flexible push rod in the catheter 58 can be used to expel the implant 400 from the catheter 58. Free of the catheter, the implant 400 will self-expand to its preordained configuration, e.g., like that shown in Figs. 9A or 9B.
  • the implant 400 may be fixed to the annulus in various ways.
  • the implant 400 may be secured to the annulus with sutures or other attachment means (i.e. barbs, hooks, staples, etc.)
  • the implant 400 may be secured with struts or tabs 450 (see Figs. 8 and 9A) , that extend from the base 420 above or below the plane of the annulus.
  • the struts 450 are preferably configured with narrow connecting members that extend through the valve orifice so that they will not interfere with the opening and closing of the valve.
  • the struts 450 are desirably sized and configured to contact tissue near or within the heart valve annulus to brace the base 420 against migration within the annulus during the one-way valve function of the neoleaflet element.
  • the base 420 be "elastic," i.e., the material of the base 420 is selected to possess a desired spring constant. This means that the base 420 is sized and configured to possess a normal, unloaded, shape or condition (shown in Fig. 8) , in which the base 420 is not in net compression, and the struts 450 are spaced apart farther than the longest cross- annulus distance between the tissue that the struts 450 are intended to contact.
  • the base 420 is shown resting along the major (i.e., longest) axis of the valve annulus, with the struts 450 contacting tissue at or near the leaflet commissures .
  • the struts 450 need not rest at or near the leaflet commissures, but may be significantly removed from the commissures, so as to gain padding from the leaflets.
  • the spring constant imparts to the base 420 the ability to be elastically compressed out of its normal, unloaded condition, in response to external compression forces applied at the struts 450.
  • the base 420 is sized and configured to assume an elastically loaded, in net compression condition, during which the struts 450 are spaced apart a sufficiently shorter distance to rest in engagement with tissue at or near the leaflet commissures (or wherever tissue contact with the struts 450 is intended to occur) (see Figs. 9A or 9B) .
  • the base 450 can exert forces to the tissues through the struts 450. These forces hold the base 420 against migration within the annulus.
  • the struts 450 when they are positioned at or near the commissures, they tend to outwardly displace tissue and separate tissue along the major axis of the annulus, which also typically stretches the leaflet commissures, shortens the minor axis, and/or reshapes surrounding anatomic structures.
  • the base 450 can also thereby reshape the valve annulus toward a shape more conducive to leaflet coaptation.
  • the implant may only need to reshape the annulus during a portion of the heart cycle, such as during ventricular systolic contraction.
  • the implant may be sized to produce small or negligible outward displacement of tissue during ventricular diastole when the tissue is relaxed, but restrict the inward movement of tissue during ventricular systolic contraction.
  • Implants having one or more of the technical features just described, to thereby function in situ as a neo-leaflet, may be sized and configured in various ways.
  • an implant 600 (like implant 400) includes a base 620 that defines a pseudo-annulus, with a bridge 630 carrying a spanning material 640 together comprising a neoleaflet element 650 appended to the base 620 within the pseudo-annulus.
  • the neoleaflet element 650 overlays an anterior native leaflet with the same purpose and function described for the implant 400.
  • the neoleaflet element 650 could overlay a posterior native leaflet, as Fig. 9B shows.
  • the implant 600 also includes struts 670, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus .
  • the implant 600 includes an orientation and stabilization framework 610 that may extend from the annulus to the atrial dome.
  • the framework 610 rises from the base 620 with two substantially parallel arched wires, which connect to form a semicircular hoop above the base 620.
  • the framework 610 helps to accurately position the implant 600 within the ' atrium, and also helps to secure the implant 600 within the atrium.
  • the framework 610 does not interfere with atrial contractions, but instead is compliant enough to contract with the atrium.
  • the implant 600 may have nonuniform flexibility to improve its function within the heart.
  • Figs . 11 and 12 show another illustrative embodiment of an implant 700.
  • the implant 700 contains two neo-leaflet elements.
  • the implant 700 includes an anterior bridge 730 spanned by an anterior bridge material 710, and a posterior bridge 735 spanned by a posterior bridge material 720.
  • the bridges and materials together comprise anterior and posterior neoleaflet elements 780A and 780P.
  • the implant 700 also includes an orientation and stabilization framework 770, shown having a configuration different than the framework 610 in Fig. 9, but having the same function and serving the same purpose as previously described for the framework 610.
  • the base 760 includes structures like the anchoring clips 740 that, in use, protrude above the plane formed by the annulus of the valve. Additionally, the implant 700 may be secured with struts 750 that extend from the base 760 on narrow connecting members and below the plane of the annulus into the ventricular chamber. The anchoring clips 740 and struts 750 desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 760 against migration within the annulus.
  • Fig. 11 shows the dual neo- leaflets 780A and 780B (i.e., the covered anterior and posterior bridges 730 and 735) in a closed valve position.
  • Fig. 12 shows the dual neo-leaflets 780A and 780B in an open valve position.
  • Fig. 13 shows another illustrative embodiment of an implant 1000 having a full sewing ring 1030 with a membrane 1010 that serves as a neo-leaflet.
  • the device 1000 has an opening 1020 though the sewing ring 1030 opposite the membrane 1010 for blood flow.
  • this embodiment could have two neo-leaflets.
  • This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the atrium using catheter based intraluminal techniques.
  • the device may be secured with struts 1040 that extend from the base on narrow connecting members and below the plane of the annulus into the ventricular chamber.
  • the struts 1040 which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus.
  • a given implant may carry various structures or mechanisms to enhance the anchorage and stabilization of the implant in the heart valve annulus .
  • the mechanisms may be located below the plane of the annulus, to engage infra-annular heart tissue adjoining the annulus in the ventricle, and/or be located at or above the plane of the annulus, to engage tissue on the annulus or in the atrium. These mechanisms increase the surface area of contact between the implant and tissue.
  • a given implant can also include tissue in- growth surfaces , to provide an environment that encourages the in-growth of neighboring tissue on the implant. Once in-growth occurs, the implant becomes resistant to migration or dislodgment from the annulus. Conventional in-growth materials such as polyester fabric can be used.
  • Fig. 14 shows another illustrative embodiment of an implant 1100 having a framework 1120 and struts or tabs 1110.
  • This implant 1100 includes a membrane 1130, that serves as a neo-leaflet, attached to the base 1140 of the device with an attachment means 1150.
  • Fig. 15 shows another illustrative embodiment of an implant 1200.
  • the implant 1200 includes a base 1220 that defines a pseudo-annulus and that, in use, is rests adjacent all or a portion of a native valve annulus.
  • the base 1240 supports a duckbill valve 1210, which forms a neoleaflet element. Peripherally supported on the base 1240, the duckbill valve 1210 rests in the pseudo-annulus.
  • Struts 1230 (which also carry additional tab structures to increase the surface area of tissue contact) help. brace the base 1240 to tissue near or within the heart valve annulus.
  • the duckbill valve 1210 replaces the native _anterior and posterior leaflets.
  • the duckbill valve 1210 serves as dual neo-leaflets, which mutually open and close in response to changes in pressure, replacing the function of the native leaflets.
  • Fig. 15 shows the duckbill valve 1210 in the open valve position. In Fig. 15, the arrow shows the direction of blood flow through the opened valve.
  • Fig. 16 shows the duckbill valve in the closed valve position. When closed, the duckbill valve 1210 resists eversion and regurgitation.
  • the duckbill valve 1210 extends from the plane of the valve annulus and into the ventricle.
  • the duckbill valve 1210 is shown to have a more rigid or thick composition emerging from the base member, and gradually becoming less rigid or thick away from the base member. This variation in mechanical properties ensures a valve that responds dynamically to pressure changes, but that is also rigid enough to not become everted.
  • Fig. 17 shows the valve 1210 in an opened valve condition. In Fig. 17, the arrow shows the direction of blood flow through the opened valve.
  • Fig. 18 shows the duckbill valve in the closed valve position, without eversion and regurgitation.
  • Figs. 19 and 20 show another illustrative embodiment of an implant 1600 of the type shown in Figs. 15 and 16.
  • the implant 1600 includes base 1620 defining a pseudo-annulus to which a duckbill valve 1630 is appended, which serves as a neoleaflet element to replace the native anterior and posterior leaflets and serves as dual neo-leaflets.
  • Fig. 19 shows the duckbill valve 1630 in the open valve position, allowing forward flow of blood through the - opened valve.
  • Fig. 20 shows the duckbill valve 1630 in the closed valve position, resisting eversion and regurgitation.
  • the implant 1600 includes an orientation and stabilization framework 1610.
  • the framework 1610 rises from the base 1620 as two arches extending from opposite sides of the base 1620.
  • the dual arch framework 1610 possesses compliance to contract with the atrium.
  • the framework 1610 helps to accurately position the. implant 1600 within the atrium, and also helps to secure the implant 600 within the atrium.
  • the implant 1600 also includes struts 1640, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 1620 against migration within the annulus .

Abstract

Devices, systems and methods supplement, repair, or replace a native heart valve. The devices, systems, and methods employ an implant (400) that, in use, extends adjacent a valve annulus. The implant (400) includes a mobile neoleaflet element (470) that occupies the space of at least a portion of one native valve leaflet. The implant (400) mimics the one-way valve function of a native leaflet, to resist or prevent retrograde flow. The implant (400) restores normal coaptation of the leaflets to resist retrograde flow, thereby resisting eversion and/or prolapse, which, in turn, reduces regurgitation.

Description

DEVICES, SYSTEMS, AND METHODS FOR SUPPLEMENTING, REPAIRING, OR REPLACING A NATIVE HEART VALVE LEAFLET Related Applications This application claims the benefit of co- pending United Stated Patent Application Serial No. 09/666,617, filed September 20, 2000 and entitled "Heart Valve Annulus Device and Methods of Using Same," which is incorporated herein by reference. This application also claims the benefit of Patent Cooperation Treaty Application Serial No. PCT/US 02/31376, filed October 1, 2002 and entitled "Systems and Devices for Heart Valve Treatments," which claimed the benefit of United States Provisional Patent Application Serial No. 60/326,590, filed October 1, 2001, which are incorporated herein by reference. This application also claims the benefit of United States Provisional Application Serial No. 60/429,'444, filed November 26, 2002, and entitled "Heart Valve Remodeling Devices;" United States Provisional Patent Application Serial No. 60/429,709, filed November 26, 2002, and entitled "Neo-Leaflet Medical Devices;" and United States Provisional Patent Application Serial No. 60/42-9,462, filed November 26, 2002, and entitled "Heart Valve Leaflet Retaining Devices," which are each incorporated herein by reference. Field of the Invention
The invention is directed to devices, systems, and methods for improving the function of a heart valve, e.g., in the treatment of mitral valve regurgitation. Background of the Invention
I. The Anatomy of a Healthy Heart
The heart (see Fig. 1) is slightly larger than a clenched fist. It is a double (left and right side), self-adjusting muscular pump, the parts of which work in unison to propel blood to all parts of the body. The right side of the heart _ receives poorly oxygenated
("venous") blood from the body from the superior vena cava and inferior vena cava and pumps it through the pulmonary artery to the lungs for oxygenation. The left side receives well-oxygenation ("arterial") blood from the lungs through the pulmonary veins and pumps it into the aorta for distribution to the body.
The heart has four chambers, two on each side -- the right and left atria, and the right and left ventricles. The atria are the blood-receiving chambers, which pump blood into the ventricles . A wall composed of membranous and muscular parts, called the interatrial septum, separates the right and left atria. The ventricles are the blood-discharging chambers. A wall composed of membranous and muscular parts, called the interventricular septum, separates the right and left ventricles.
The synchronous pumping actions of the left and right sides of the heart constitute the cardiac cycle. The cycle begins with a period of ventricular relaxation, called ventri'cular diastole. The cycle ends with a period of ventricular contraction, called ventricular systole.
The heart has four valves (see Figs. 2 and 3) that ensure that blood does not flow in the wrong direction during the cardiac cycle; that is, to ensure that the blood does not back flow from the ventricles into the corresponding atria, or back flow from the arteries into the corresponding ventricles . The valve between the left atrium and the left ventricle is the mitral valve . The valve between the right atrium and the right ventricle is the tricuspid valve. The pulmonary valve is at the opening of the pulmonary artery. The aortic valve is at the opening of the aorta. At the beginning of ventricular diastole
(i.e., ventricular filling) (see Fig. 2), the aortic and pulmonary valves are closed to prevent back flow from the arteries into the ventricles. Shortly thereafter, the tricuspid and mitral valves open (as Fig. 2 shows) , to allow flow from the atria into the corresponding ventricles. Shortly after ventricular systole (i.e., ventricular emptying) begins, the tricuspid and mitral valves close (see Fig. 3) -- to prevent back flow from the ventricles into the corresponding atria -- and the aortic and pulmonary valves open -- to permit discharge of blood into the arteries from the corresponding ventricles .
The opening and closing of heart valves occur primarily as a result of pressure differences. For example, the opening and closing of the mitral valve occurs as a result of the pressure differences between the left atrium and the left ventricle. During ventricular diastole, when ventricles are relaxed, the venous return of blood from the pulmonary veins into the left atrium causes the pressure in the atrium to exceed that in the ventricle. As a result, the mitral valve opens, allowing blood to enter the ventricle. As the ventricle contracts during ventricular systole, the intraventricular pressure rises above the pressure in the atrium and pushes the mitral valve shut. Fig. 4 shows a posterior oblique cutaway view of a healthy human heart 100. Two of the four heart chambers are shown, the left atrium 170, and the left ventricle 140 (not shown are the right atrium and right ventricle) . The left atrium 170 fills with blood from the pulmonary veins . The blood then passes through the mitral valve (also known as the bicuspid valve, and more generally known as an atrioventricular valve) during ventricular diastole and into the left ventricle 140. During ventricular systole, the blood is then ejected out of the left ventricle 140 through the aortic valve 150 and into the aorta 160. At this time, the mitral valve should be shut so that blood is not regurgitated back into the left atrium. The mitral valve consists of two leaflets, an anterior leaflet 110, and a posterior leaflet 115, attached to chordae • tendineae 120 (or chords), which in turn are connected to papillary muscles 130 within the left atrium 140. Typically, the mitral valve has a D- shaped anterior leaflet 110 oriented toward the aortic valve, with a crescent shaped posterior leaflet 115. The leaflets intersect with the atrium 170 at the mitral annulus 190.
In a healthy heart, these muscles and their chords support the mitral and tricuspid valves, allowing the leaflets to resist the high pressure developed during contractions (pumping) of the left and right ventricles. In a healthy heart, the chords become taut, preventing the leaflets from being forced into the left or right atria and everted. Prolapse is a term used to describe the condition wherein the coaptation edges of each leaflet initially may coapt and close, but then the leaflets rise higher and the edges separate and the valve leaks . This is normally prevented by contraction of the papillary muscles and the normal length of the chords. Contraction of the papillary muscles is simultaneous with the contraction of the ventricle and serves to keep healthy valve leaflets tightly shut at peak contraction pressures exerted by the ventricle. II. Characteristics and Causes of Mitral
Valve Dysfunction Valve malfunction can result from the chords becoming stretched, and in some cases tearing. When a chord tears, the result is a flailed leaflet. Also, a normally structured valve may not function properly because of an enlargement of the valve annulus pulling the leaflets apart. This condition is referred to as a dilation of the annulus and generally results from heart muscle failure. In addition, the valve may be defective at birth or because of an acquired disease, usually infectious or inflammatory.
Fig. 5 shows a cutaway view of a human heart 200 with a prolapsed mitral valve. The prolapsed valve does not form a tight seal during ventricular systole, and thus allows blood to be regurgitated back into the left atrium during ventricular contraction. The anterior 220 and posterior 225 leaflets are shown rising higher than normal (i.e., prolapsing) into the left atrium. The arrows indicate the direction of regurgitant flow. Among other causes, regurgitation can result from redundant valve leaflet tissue or from stretched chords 210 that are too long to prevent the leaflets from being blown into the atrium. As a result, the leaflets do not form a tight seal, and blood is regurgitated into the atrium. Fig. 6 shows a cutaway view of a human heart
300 with a flailing mitral valve 320. The flailing valve also does not form a tight seal during ventricular systole. Blood thus regurgitates back into the left atrium during ventricular contraction, as indicated by the arrows. Among other causes, regurgitation can also result from torn chords 310. As an example, Fig. 7 shows a cutaway view of a human heart where the anterior leaflet 910 has torn chords 920. As a result, valve flailing and blood regurgitation occur during ventricular systole.
As a result of regurgitation, "extra" blood back flows into the left atrium. During subsequent ventricular diastole (when the heart relaxes) , this "extra" blood returns to the left ventricle, creating a volume overload, i.e., too much blood in the left ventricle. During subsequent ventricular systole (when the heart contracts) , there is more blood in the ventricle than expected. This means that: (1) the heart must pump harder to move the extra blood; (2) too little blood may move from the heart to the rest of the body; and (3) over time, the left ventricle may begin to stretch and enlarge to accommodate the larger volume of blood, and the left ventricle may become weaker.
Although mild cases of mitral valve regurgitation result in few problems, more severe and chronic cases eventually weaken the heart and can result in heart failure. Mitral valve regurgitation can be an acute or chronic condition. It is sometimes called mitral insufficiency. III. Prior Treatment Modalities
In the treatment of mitral valve regurgitation, diuretics and/or vasodilators can be used to help reduce the amount of blood flowing back into the left atrium. An intra-aortic balloon counterpulsation device is used if the condition is not stabilized with medications . For chronic or acute mitral valve regurgitation, surgery to repair or replace the mitral valve is often necessary.
To date, invasive, open heart surgical approaches have been used to repair or replace the mitral valve with either a mechanical valve or biological tissue (bioprosthetic) taken from pigs, cows, or horses.
The need remains for simple, cost-effective, and less invasive devices, systems, and methods for treating dysfunction of a heart valve, e.g., in the ' treatment of mitral valve regurgitation. Summary of the Invention
The invention provides devices, systems and methods that supplement, repair, or replace a native heart valve leaflet. The devices, systems, and methods include an implant that, in use, rests adjacent a valve annulus. The implant defines a pseudo-annulus . The implant includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant allows the native leaflets to coexist with the implant, or if desired or indicated, one or more native leaflets can be removed and replaced by the implant . The neoleaflet element of the implant is shaped and compressed to mimic the one-way valve function of a native leaflet. The implant includes spaced-apart struts that are .sized and configured to contact tissue near or within the heart valve annulus to brace the implant against migration within the annulus during the one-way valve function. Other features and advantages of the invention shall be apparent based upon the accompanying description, drawings, and claims. Description of the Drawings
Fig. 1 is a perspective, anterior anatomic view of the interior of a healthy heart.
Fig. 2 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular diastole. Fig. 3 is a superior anatomic view of the interior of a healthy heart, with the atria removed, showing the condition of the heart valves during ventricular systole.
Fig. 4 is a posterior oblique cutaway view of a portion of a human heart, showing a healthy mitral valve during ventricular systole, with the leaflets properly coapting.
Fig. 5 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional prolapsing mitral valve during ventricular systole, with the leaflets not properly coapting, causing regurgitation .
Fig. 6 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, with the leaflets flailing, causing regurgitation.
Fig. 7 is a posterior oblique cutaway view of a portion of a human heart, showing a dysfunctional mitral valve during ventricular systole, caused by torn chords, that leads to regurgitation.
Fig. 8 is a perspective view of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element that occupies the space of at least one native valve leaflet.
Fig. 9A is a perspective, anatomic view of the implant shown in Fig. 8, with the neoleaflet element installed over an anterior leaflet of a mitral valve to restore normal function.
Fig. 9B is a perspective, anatomic view of the implant of the type shown in Fig. 8, with the neoleaflet element installed over a posterior leaflet of a mitral valve to restore normal function to the native valve leaflet. Fig. 10 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being shown installed on a mitral valve annulus and having a neoleaflet element that occupies the space of at least one native valve leaflet, the implant also including a framework that rises above the neoleaflet element in the atrium to help fix and stabilize the implant . Fig. 11 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements that occupy the space of two native valve leaflets .
Fig. 12 is a perspective view of the implant shown in Fig. 11, with the two neoleaflet elements in a valve opened condition, as would exist during ventricular diastole.
Fig. 13 is a perspective view of another illustrative- embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane .
Fig. 14 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including a neoleaflet element formed by a membrane, the implant also including a framework that .rises above the neoleaflet element in the atrium to help fix and stabilize the implant. Fig. 15 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements to form a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole.
Fig. 16 is a perspective view of the implant shown in Fig. 15, the duckbill valve being shown in a closed condition as would exist during ventricular systole.
Figs. 17 and 18 are side views of the implant shown, respectively, in Figs. 15 and 16, with the duckbill valve, respectively, in an opened and a closed condition.
Fig. 19 is a perspective view of another illustrative embodiment of an implant that supplements, repairs, or replaces a native heart valve leaflet, the implant being sized and configured to extend about a heart valve annulus and including two neoleaflet elements formed by a duckbill valve, the valve being shown in an opened condition as would exist during ventricular diastole, the implant also including a framework that rises above the neoleaflet elements in the atrium to help fix and stabilize the implant.
Fig. 20 is a perspective view of the implant shown in Fig. 19, the duckbill valve being shown in a closed condition as would exist during ventricular systole. Figs. 21A to 21C diagrammatically show a method of gaining intravascular access to the left atrium for the purpose of deploying a delivery catheter to place an implant in a valve annulus to supplement, repair, or replace a native heart valve leaflet Detailed Description Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention, which may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims .
Figs. 8 and 9 show an implant 400 sized and configured to supplement, repair, or replace a dysfunctional native heart valve leaflet or leaflets . In use (see, in particular, Fig. 9) , the implant 400 defines a pseudo-annulus that rests adjacent the native valve annulus and includes a neoleaflet element that occupies the space of at least a portion of one native valve leaflet. The implant 400 allows the native leaflets to coexist with the implant 400. If desired or indicated, one or more native leaflets can be removed and replaced by the implant 400. In its most basic form, the implant 400 is made -- e.g., by machining, bending, shaping, joining, molding, or extrusion -- from a biocompatible metallic or polymer material, or a metallic or polymer material that is suitably coated, impregnated, or otherwise treated with a material to impart biocompatibility, or a combination of such materials. The material is also desirably radio-opaque to facilitate fluoroscopic visualization .
As Fig. 8 shows, the implant 400 includes a base or scaffold 420 that, in the illustrated embodiment, is sized and configured to rest adjacent the mitral annulus. At least a portion of the base 420 forms an annular body that approximates the shape of the native annulus. For this reason, the base 420 will also be referred to as a "pseudo-annulus." The base 420 supports a bridge 430 that extends into the valve. The bridge 430 is sized and configured (see Fig. 9A) to overlay the space of at least a portion of one native valve leaflet. In Fig. 9A, the bridge 430 overlays an anterior leaflet. However, as Fig. 9B shows, the bridge 430 could be oriented to overlay a posterior leaflet. As will be described later (see Fig. 11), two bridges can be formed to overlay both leaflets. As Fig. 8 shows, the implant 400 includes' a material 410 that covers or spans the bridge 430. The spanning material 410 may be attached to the implant 400 with one or more attachment means 440. For example, the spanning materials 410 may be sewn, glued, or welded to the implant 400, or it may be attached to itself when wrapped around the implant 400. The spanning material 410 may be made from a synthetic material (for example, thin
Nitinol, polyester fabric, polytetrafluoroethylene or
PTFE, silicone, or polyurethane) or a biological material
(for example, human or animal pericardium) . Together, the bridge 430 and the spanning material 410 comprise a neoleaflet element 470 coupled to the base 420. The neoleaflet element 470 may be rigid, semi-rigid, or flexible. The neoleaflet element 470 is coupled to the base 420 in a manner that exerts a mechanical, one-way force to provide a valve function that responds to differential pressure conditions across the neoleaflet element. In response to one prescribed differential pressure condition, the neoleaflet element 470 will deflect and, with a native leaflet, assume a valve opened condition. In response to another prescribed pressure condition, • the neoleaflet element 470 will resist deflection and, by coaptation with a native leaflet (or a companion neoleaflet element) at, above, or below the annulus plane, maintain a valve closed condition. In the context of the illustrated embodiment (when installed in a mitral valve annulus) , the neoleaflet element resists being moved in the cranial (superior) direction (into the atrium) , when the pressure in the ventricle exceeds the pressure in the atrium -- as it would during ventricular systole. The neoleaflet element 470 may move, however, in the caudal (inferior) direction (into the ventricle) , when the pressure in the ventricle is less than the pressure in the atrium -- as it would during ventricular diastole. The neoleaflet element 470 thereby mimics the one-way valve function of a native leaflet, to prevent retrograde flow.
The implant 400 is sized and shaped so that, in use adjacent the valve annulus of the mitral valve, it keeps the native valve leaflet closed during ventricular systole (as shown in Figs. 9A and 9B) , to prevent flailing and/or prolapse of the native valve leaflet it overlays during ventricular systole. The implant 400 thus restores to the heart valve leaflet or leaflets a normal resistance to the high pressure developed during ventricular contractions, resisting valve leaflet eversion and/or prolapse and the resulting back flow of blood from the ventricle into the atrium during ventricular systole. The pressure difference serves to keep valve leaflets tightly shut during ventricular systole. The implant 400, however, does not interfere with opening of the native valve leaflet or leaflets during ventricular diastole (see, e.g., Fig. 12). The implant 400 allows the leaflet or leaflets to open during ventricular diastole, so that blood flow occurs from the atrium into the ventricle. The implant 400 thereby restores normal one-way function to the valve, to prevent retrograde flow.
The functional characteristics of the -implant 400 just described can be imparted to the neoleaflet element 470 in various ways. For example, hinges and springs (mechanical or plastic) can be used to couple the bridge to the base. Desirably, the implant 400 is made from materials that provide it with spring-like characteristics.
As shown in Fig. 8, in the illustrated embodiment, the base 420 and bridge 430 are shaped from a length of wire-formed material. The shape and material properties of the implant determine its physical spring- like characteristics as well as its ability to open in one direction only. The spring-like characteristics of the implant 400 allow it to respond dynamically to changing differential pressure conditions within the heart . More particularly, in the illustrated mitral valve embodiment, when greater pressure exists superior to the bridge 430 than inferior to the bridge (i.e., during ventricular diastole) , the shape and material properties of the bridge 430 accommodate its deflection into the ventricle -- i.e., an opened valve condition (as Fig. 12 shows in another illustrative embodiment) . When greater pressure exists inferior to the bridge 430 than superior to the bridge (i.e., during ventricular systole) , the shape and material properties of the bridge 430 enable it to resist superior movement of the leaflet into the atrium, and otherwise resist eversion and/or prolapse of the valve leaflet into the atrium (as Figs. 9A and 9B also show) .
The implant 400 may be delivered percutaneously, thoracoscopically through the chest, or using open heart surgical techniques. If delivered percutaneously, the implant 400 may be made from a superelastic material (for example superelastic Nitinol alloy) enabling it to be folded and collapsed such that it can be delivered in a catheter, and will subsequently self-expand into the desired shape and tension when released from the catheter.
For example, percutaneous vascular access can be achieved by conventional methods into the femoral or jugular vein. As Fig. 21A shows, under image guidance (e.g., fluoroscopic, ultrasonic, magnetic resonance, computed tomography, or combinations thereof) , a catheter 52 is steered through the vasculature into the right atrium. A needle cannula 54 carried on the distal end of the catheter is deployed to pierce the septum between the right and left atrium. As Fig. 2IB shows, a guide wire 56 is advanced trans-septally through the needle catheter 52 into the left atrium. The first catheter 52 is withdrawn, and (as Fig. 21C shows) under image guidance, an implant delivery catheter 58 is advanced over the guide wire 56 into the left atrium into proximity with the mitral valve. Alternatively, the implant delivery catheter 58 can be deployed trans-septally by means of surgical access through the right atrium. The distal end of the catheter 58 encloses an implant 400, like that shown 'in Fig. 8, which is constrained in a collapsed condition. A flexible push rod in the catheter 58 can be used to expel the implant 400 from the catheter 58. Free of the catheter, the implant 400 will self-expand to its preordained configuration, e.g., like that shown in Figs. 9A or 9B.
The implant 400 may be fixed to the annulus in various ways. For example, the implant 400 may be secured to the annulus with sutures or other attachment means (i.e. barbs, hooks, staples, etc.) Also, the implant 400 may be secured with struts or tabs 450 (see Figs. 8 and 9A) , that extend from the base 420 above or below the plane of the annulus. The struts 450 are preferably configured with narrow connecting members that extend through the valve orifice so that they will not interfere with the opening and closing of the valve.
In this arrangement, the struts 450 are desirably sized and configured to contact tissue near or within the heart valve annulus to brace the base 420 against migration within the annulus during the one-way valve function of the neoleaflet element. In this arrangement, it is also desirable that the base 420 be "elastic," i.e., the material of the base 420 is selected to possess a desired spring constant. This means that the base 420 is sized and configured to possess a normal, unloaded, shape or condition (shown in Fig. 8) , in which the base 420 is not in net compression, and the struts 450 are spaced apart farther than the longest cross- annulus distance between the tissue that the struts 450 are intended to contact. In the illustrated embodiment, the base 420 is shown resting along the major (i.e., longest) axis of the valve annulus, with the struts 450 contacting tissue at or near the leaflet commissures . However, other orientations are possible. The struts 450 need not rest at or near the leaflet commissures, but may be significantly removed from the commissures, so as to gain padding from the leaflets. The spring constant imparts to the base 420 the ability to be elastically compressed out of its normal, unloaded condition, in response to external compression forces applied at the struts 450. The base 420 is sized and configured to assume an elastically loaded, in net compression condition, during which the struts 450 are spaced apart a sufficiently shorter distance to rest in engagement with tissue at or near the leaflet commissures (or wherever tissue contact with the struts 450 is intended to occur) (see Figs. 9A or 9B) . When in its elastically loaded, net compressed condition (see Figs. 9A and 9B) , the base 450 can exert forces to the tissues through the struts 450. These forces hold the base 420 against migration within the annulus. Furthermore, when the struts 450 are positioned at or near the commissures, they tend to outwardly displace tissue and separate tissue along the major axis of the annulus, which also typically stretches the leaflet commissures, shortens the minor axis, and/or reshapes surrounding anatomic structures. The base 450 can also thereby reshape the valve annulus toward a shape more conducive to leaflet coaptation. It should be appreciated that, in order to be therapeutic, the implant may only need to reshape the annulus during a portion of the heart cycle, such as during ventricular systolic contraction. For example, the implant may be sized to produce small or negligible outward displacement of tissue during ventricular diastole when the tissue is relaxed, but restrict the inward movement of tissue during ventricular systolic contraction.
As the preceding disclosure demonstrates, different forms of heart valve treatment can be performed using a single implant. Implants having one or more of the technical features just described, to thereby function in situ as a neo-leaflet, may be sized and configured in various ways.
Various illustrative embodiments will now be described.
In Fig. 10, an implant 600 (like implant 400) includes a base 620 that defines a pseudo-annulus, with a bridge 630 carrying a spanning material 640 together comprising a neoleaflet element 650 appended to the base 620 within the pseudo-annulus. The neoleaflet element 650 overlays an anterior native leaflet with the same purpose and function described for the implant 400. Alternatively, the neoleaflet element 650 could overlay a posterior native leaflet, as Fig. 9B shows. The implant 600 also includes struts 670, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus .
In addition, the implant 600 includes an orientation and stabilization framework 610 that may extend from the annulus to the atrial dome. In Fig. 10, the framework 610 rises from the base 620 with two substantially parallel arched wires, which connect to form a semicircular hoop above the base 620. The framework 610 helps to accurately position the implant 600 within the' atrium, and also helps to secure the implant 600 within the atrium.
Preferably the framework 610 does not interfere with atrial contractions, but instead is compliant enough to contract with the atrium. As such, the implant 600 may have nonuniform flexibility to improve its function within the heart.
Figs . 11 and 12 show another illustrative embodiment of an implant 700. In Figs. 11 and 12, the implant 700 contains two neo-leaflet elements. The implant 700 includes an anterior bridge 730 spanned by an anterior bridge material 710, and a posterior bridge 735 spanned by a posterior bridge material 720. The bridges and materials together comprise anterior and posterior neoleaflet elements 780A and 780P. The implant 700 also includes an orientation and stabilization framework 770, shown having a configuration different than the framework 610 in Fig. 9, but having the same function and serving the same purpose as previously described for the framework 610.
In Figs. 11 and 12, the base 760 includes structures like the anchoring clips 740 that, in use, protrude above the plane formed by the annulus of the valve. Additionally, the implant 700 may be secured with struts 750 that extend from the base 760 on narrow connecting members and below the plane of the annulus into the ventricular chamber. The anchoring clips 740 and struts 750 desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 760 against migration within the annulus. Fig. 11 shows the dual neo- leaflets 780A and 780B (i.e., the covered anterior and posterior bridges 730 and 735) in a closed valve position. Fig. 12 shows the dual neo-leaflets 780A and 780B in an open valve position.
Fig. 13 shows another illustrative embodiment of an implant 1000 having a full sewing ring 1030 with a membrane 1010 that serves as a neo-leaflet. The device 1000 has an opening 1020 though the sewing ring 1030 opposite the membrane 1010 for blood flow. Alternatively, this embodiment could have two neo-leaflets. This embodiment could be surgically attached to the valve annulus and/or combined with a framework for anchoring the device within the atrium using catheter based intraluminal techniques. Additionally, the device may be secured with struts 1040 that extend from the base on narrow connecting members and below the plane of the annulus into the ventricular chamber. The struts 1040, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 420 against migration within the annulus.
As can be seen, a given implant may carry various structures or mechanisms to enhance the anchorage and stabilization of the implant in the heart valve annulus . The mechanisms may be located below the plane of the annulus, to engage infra-annular heart tissue adjoining the annulus in the ventricle, and/or be located at or above the plane of the annulus, to engage tissue on the annulus or in the atrium. These mechanisms increase the surface area of contact between the implant and tissue. A given implant can also include tissue in- growth surfaces , to provide an environment that encourages the in-growth of neighboring tissue on the implant. Once in-growth occurs, the implant becomes resistant to migration or dislodgment from the annulus. Conventional in-growth materials such as polyester fabric can be used.
Fig. 14 shows another illustrative embodiment of an implant 1100 having a framework 1120 and struts or tabs 1110. This implant 1100 includes a membrane 1130, that serves as a neo-leaflet, attached to the base 1140 of the device with an attachment means 1150.
Fig. 15 shows another illustrative embodiment of an implant 1200. In this embodiment, the implant 1200 includes a base 1220 that defines a pseudo-annulus and that, in use, is rests adjacent all or a portion of a native valve annulus. The base 1240 supports a duckbill valve 1210, which forms a neoleaflet element. Peripherally supported on the base 1240, the duckbill valve 1210 rests in the pseudo-annulus. Struts 1230 (which also carry additional tab structures to increase the surface area of tissue contact) help. brace the base 1240 to tissue near or within the heart valve annulus.
In this embodiment, the duckbill valve 1210 replaces the native _anterior and posterior leaflets. The duckbill valve 1210 serves as dual neo-leaflets, which mutually open and close in response to changes in pressure, replacing the function of the native leaflets. Fig. 15 shows the duckbill valve 1210 in the open valve position. In Fig. 15, the arrow shows the direction of blood flow through the opened valve. Fig. 16 shows the duckbill valve in the closed valve position. When closed, the duckbill valve 1210 resists eversion and regurgitation.
When the implant 1200 is used to replace a mitral valve (see Figs. 17 and 18), the duckbill valve 1210 extends from the plane of the valve annulus and into the ventricle. The duckbill valve 1210 is shown to have a more rigid or thick composition emerging from the base member, and gradually becoming less rigid or thick away from the base member. This variation in mechanical properties ensures a valve that responds dynamically to pressure changes, but that is also rigid enough to not become everted. Fig. 17 shows the valve 1210 in an opened valve condition. In Fig. 17, the arrow shows the direction of blood flow through the opened valve. Fig. 18 shows the duckbill valve in the closed valve position, without eversion and regurgitation.
Figs. 19 and 20 show another illustrative embodiment of an implant 1600 of the type shown in Figs. 15 and 16. Like the implant 1200, the implant 1600 includes base 1620 defining a pseudo-annulus to which a duckbill valve 1630 is appended, which serves as a neoleaflet element to replace the native anterior and posterior leaflets and serves as dual neo-leaflets. Fig. 19 shows the duckbill valve 1630 in the open valve position, allowing forward flow of blood through the - opened valve. Fig. 20 shows the duckbill valve 1630 in the closed valve position, resisting eversion and regurgitation. In Figs. 19 and 20, the implant 1600 includes an orientation and stabilization framework 1610. The framework 1610 rises from the base 1620 as two arches extending from opposite sides of the base 1620. The dual arch framework 1610 possesses compliance to contract with the atrium. As before explained, the framework 1610 helps to accurately position the. implant 1600 within the atrium, and also helps to secure the implant 600 within the atrium. The implant 1600 also includes struts 1640, which desirably contact and exert force against tissue near or within the annulus (in the manner previously described) to brace the base 1620 against migration within the annulus .
While the new devices and methods have been more specifically described in the context of the treatment of a mitral heart valve, it should be understood that other heart valve types can be treated in the same or equivalent fashion. By way of example, and not by limitation, the present systems and methods could be used to prevent or resist retrograde flow in any heart valve annulus, including the tricuspid valve, the pulmonary valve, or the aortic valve. In addition, other embodiments and uses of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples should be considered exemplary and merely descriptive of key technical features and principles, and are not meant to be limiting. The true scope and spirit of the invention are defined by the following claims. As will be easily understood by those of ordinary skill in the art, variations and modifications of each of the disclosed embodiments can be easily made within the scope of this invention as defined by the following claims.

Claims

What is claimed is:
1. An implant that supplements, repairs, or replaces a native heart valve 'leaflet or leaflets comprising a scaffold sized and configured to rest adjacent all or a portion of a native heart valve annulus, at least a portion of the scaffold defining a pseudo-annulus, a neoleaflet element coupled to the scaffold within pseudo-annulus and being sized and shaped to occupy the space of at least a portion of one native heart valve leaflet to provide a one-way valve function that, in response to a first pressure condition, assumes a valve opened condition within the pseudo-annulus and, in response to a second pressure condition, assumes a valve closed condition within the pseudo-annulus, and spaced-apart struts appended to the scaffold and being sized and configured to contact tissue near or within the heart valve annulus to brace the scaffold against migration within the annulus during the one-way valve function.
2. An implant according to claim 1 wherein the scaffold comprises a wire-form structure.
3. An implant according to claim 1 wherein at least one of the struts comprises a wire-form structure.
4. An implant according to claim 1 wherein the scaffold and the struts each comprises a wire-form structure.
5. An implant according to claim 1 wherein the neoleaflet element includes a bridge appended to the scaffold.
6. An implant according to claim 5 wherein the neoleaflet element includes a material covering the bridge .
7. An implant according to claim 5 wherein the bridge is a wire-form structure.
8. An implant according to claim 1 wherein the neoleaflet element includes a duckbill valve within the psuedo-annulus .
9. An implant according to claim 1 wherein the neoleaflet element includes a membrane within the pseudo-annulus.
10. An implant according to claim 1 wherein the neoleaflet element is sized and configured to coapt with a native leaflet when in the valve closed condition.
11. An implant according to claim 1 wherein the scaffold, neoleaflet element, and the struts are collapsible for placement within a catheter.
12. An implant according to claim 1 wherein at least one of the struts carries a structure sized and configured to increase a surface area of contact with tissue at, above, or below the annulus.
13. An implant according to claim 1 further including at least one structure appended to the scaffold and being sized and configured to contact tissue at, above, or below the heart valve annulus to stabilize the scaffold.
14. An implant according to claim 1 wherein the scaffold, neoleaflet element, and struts include materials and shapes to provide a spring- like bias for compliance with anatomy near or within the heart valve annulus .
15. An implant according to claim 1 wherein the struts apply tension to tissue.
16. An implant according to claim 1 wherein the struts apply tension to tissue to reshape the heart valve annulus .
17. An implant according to claim 1 wherein the struts apply tension to separate tissue along an axis of the heart valve annulus .
18. An implant according to claim 1 further including a second heart valve treatment element appended to the scaffold to affect a heart valve function.
19. An implant according to claim 18 wherein the second heart valve treatment element includes means for reshaping the heart valve annulus for leaflet coaptation.
20. An implant according to claim 18 wherein the second heart valve treatment element includes means for stretching leaftlet commissures for leaflet coaptation.
21. A method for supplementing, repairing, or replacing a native heart valve leaflet or leaflets comprising the steps of introducing an implant as defined in claim 1 into a heart, and providing a one-way valve function that, in response to a first pressure condition, assumes a valve opened condition and, in response to second pressure condition, assumes a valve closed condition by locating the scaffold as defined in claim 1 adjacent all or a portion of a native heart valve annulus to define a pseudo-annulus, with the neoleaflet element as defined in claim 1 occupying the space of at least a portion of one native heart valve leaflet to provide the one-way valve function, and with the spaced-apart struts as defined in claim 1 contacting tissue near or within the heart valve annulus to brace the scaffold against migration within the annulus during the one-way valve function.
22. A method according to claim 21 wherein the introducing step comprises using an open heart surgical procedure.
23. A method according to claim 21 wherein the introducing step comprises using a surgical procedure in which the implant is carried within a catheter .
24. A method according to claim 21 wherein the introducing step comprises using an intravascular surgical procedure.
PCT/US2003/030830 2000-09-20 2003-10-01 Device and method for repairing a native heart valve leaflet WO2004030568A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/US2003/030830 WO2004030568A2 (en) 2002-10-01 2003-10-01 Device and method for repairing a native heart valve leaflet
US10/676,815 US7381220B2 (en) 2000-09-20 2003-10-01 Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
AU2003277115A AU2003277115A1 (en) 2002-10-01 2003-10-01 Device and method for repairing a native heart valve leaflet
US11/981,025 US8016882B2 (en) 2000-09-20 2007-10-31 Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
PCT/US2002/031376 WO2003028558A2 (en) 2001-10-01 2002-10-01 Methods and devices for heart valve treatments
USPCT/US02/31376 2002-10-01
US42946202P 2002-11-26 2002-11-26
US42970902P 2002-11-26 2002-11-26
US42944402P 2002-11-26 2002-11-26
US60/429,709 2002-11-26
US60/429,462 2002-11-26
US60/429,444 2002-11-26
PCT/US2003/030830 WO2004030568A2 (en) 2002-10-01 2003-10-01 Device and method for repairing a native heart valve leaflet

Publications (2)

Publication Number Publication Date
WO2004030568A2 true WO2004030568A2 (en) 2004-04-15
WO2004030568A3 WO2004030568A3 (en) 2004-09-30

Family

ID=45353279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/030830 WO2004030568A2 (en) 2000-09-20 2003-10-01 Device and method for repairing a native heart valve leaflet

Country Status (3)

Country Link
US (4) US7381220B2 (en)
AU (1) AU2003277115A1 (en)
WO (1) WO2004030568A2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032051A2 (en) 2004-09-14 2006-03-23 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
WO2006111391A1 (en) * 2005-04-21 2006-10-26 Edwards Lifesciences Ag A blood flow controlling apparatus
US7621948B2 (en) 2003-07-21 2009-11-24 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
WO2012175483A1 (en) * 2011-06-20 2012-12-27 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
WO2013178335A1 (en) * 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or rectifying a heart valve insufficiency
WO2013076724A3 (en) * 2011-11-21 2014-03-20 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US8968395B2 (en) 2006-06-01 2015-03-03 Edwards Lifesciences Corporation Prosthetic insert for treating a mitral valve
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US9078751B2 (en) 2009-03-17 2015-07-14 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve and method of delivery thereof
WO2016079734A1 (en) 2014-11-17 2016-05-26 Mitrassist Medical Ltd. Assistive device for a cardiac valve
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US9629720B2 (en) 2015-05-04 2017-04-25 Jacques Seguin Apparatus and methods for treating cardiac valve regurgitation
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US10149759B2 (en) 2013-05-09 2018-12-11 Mitrassist Medical Ltd. Heart valve assistive prosthesis
EP1855623B1 (en) * 2005-02-07 2019-04-17 Evalve, Inc. Devices for cardiac valve repair
US10639154B2 (en) 2014-10-16 2020-05-05 Jacques Seguin Intervalvular implant for a mitral valve
US10952846B2 (en) 2008-05-01 2021-03-23 Edwards Lifesciences Corporation Method of replacing mitral valve
US11045311B2 (en) 2014-12-14 2021-06-29 Trisol Medical Ltd. Prosthetic valve and deployment system
EP3922213A1 (en) * 2014-10-14 2021-12-15 Valtech Cardio, Ltd. Leaflet-restraining techniques
US11253357B2 (en) 2017-01-11 2022-02-22 Mitrassist Medical Ltd. Multi-level cardiac implant
US11478351B2 (en) 2018-01-22 2022-10-25 Edwards Lifesciences Corporation Heart shape preserving anchor

Families Citing this family (426)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US10327743B2 (en) * 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
AU2001271667A1 (en) * 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US7381220B2 (en) * 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) * 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) * 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20080249504A1 (en) * 2007-04-06 2008-10-09 Lattouf Omar M Instrument port
US6764510B2 (en) 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7007698B2 (en) * 2002-04-03 2006-03-07 Boston Scientific Corporation Body lumen closure
US8721713B2 (en) * 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
AU2003277118A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
JP2006501033A (en) * 2002-10-01 2006-01-12 アンプル メディカル, インコーポレイテッド Device, system and method for reshaping a heart valve annulus
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
WO2004037128A1 (en) * 2002-10-24 2004-05-06 Boston Scientific Limited Venous valve apparatus and method
US7112219B2 (en) 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US7404824B1 (en) * 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US6945957B2 (en) * 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US6997950B2 (en) * 2003-01-16 2006-02-14 Chawla Surendra K Valve repair device
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US7334064B2 (en) * 2003-04-23 2008-02-19 Dot Hill Systems Corporation Application server blade for embedded storage appliance
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
EP2526895B1 (en) 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
US7276078B2 (en) * 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006041877A2 (en) * 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
CA2588140C (en) * 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US8608797B2 (en) 2005-03-17 2013-12-17 Valtech Cardio Ltd. Mitral valve treatment techniques
US20060259135A1 (en) * 2005-04-20 2006-11-16 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US7780723B2 (en) * 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
CA2872116C (en) 2005-09-07 2017-02-28 Medtentia International Ltd Oy A device for improving the function of a heart valve
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) * 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
EP1991168B1 (en) * 2006-02-16 2016-01-27 Transcatheter Technologies GmbH Minimally invasive heart valve replacement
US7749249B2 (en) 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US7648527B2 (en) 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US8075615B2 (en) * 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
CA2878598C (en) 2006-09-08 2018-05-01 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
SE530568C2 (en) 2006-11-13 2008-07-08 Medtentia Ab Medical device for improving function of heart valve, has flange unit connected to loop-shaped support and provided to be arranged against annulus when loop shaped support abut heart valve
US9974653B2 (en) 2006-12-05 2018-05-22 Valtech Cardio, Ltd. Implantation of repair devices in the heart
JP2010511469A (en) 2006-12-05 2010-04-15 バルテック カーディオ,リミティド Segmented ring placement
US11259924B2 (en) 2006-12-05 2022-03-01 Valtech Cardio Ltd. Implantation of repair devices in the heart
JP5593545B2 (en) * 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
US7678144B2 (en) * 2007-01-29 2010-03-16 Cook Incorporated Prosthetic valve with slanted leaflet design
US20080269877A1 (en) * 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
AU2008216670B2 (en) * 2007-02-15 2013-10-17 Medtronic, Inc. Multi-layered stents and methods of implanting
CA2677648C (en) * 2007-02-16 2015-10-27 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US8529620B2 (en) * 2007-05-01 2013-09-10 Ottavio Alfieri Inwardly-bowed tricuspid annuloplasty ring
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US20090138079A1 (en) * 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8784483B2 (en) * 2007-11-19 2014-07-22 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8100962B2 (en) 2008-01-08 2012-01-24 Cook Medical Technologies Llc Flow-deflecting prosthesis for treating venous disease
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8628566B2 (en) * 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
WO2009094188A2 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
EP2244668A1 (en) 2008-01-25 2010-11-03 JenaValve Technology Inc. Medical apparatus for the therapeutic treatment of an insufficient cardiac valve
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US20100121437A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Transvalvular intraannular band and chordae cutting for ischemic and dilated cardiomyopathy
US8262725B2 (en) * 2008-04-16 2012-09-11 Cardiovascular Technologies, Llc Transvalvular intraannular band for valve repair
US20100121435A1 (en) 2008-04-16 2010-05-13 Cardiovascular Technologies, Llc Percutaneous transvalvular intrannular band for mitral valve repair
US20100131057A1 (en) 2008-04-16 2010-05-27 Cardiovascular Technologies, Llc Transvalvular intraannular band for aortic valve repair
US11083579B2 (en) 2008-04-16 2021-08-10 Heart Repair Technologies, Inc. Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy
US11013599B2 (en) 2008-04-16 2021-05-25 Heart Repair Technologies, Inc. Percutaneous transvalvular intraannular band for mitral valve repair
US10456259B2 (en) 2008-04-16 2019-10-29 Heart Repair Technologies, Inc. Transvalvular intraannular band for mitral valve repair
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090287304A1 (en) 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
EP2296744B1 (en) 2008-06-16 2019-07-31 Valtech Cardio, Ltd. Annuloplasty devices
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
US9452045B2 (en) * 2008-10-10 2016-09-27 Peter Forsell Artificial valve
US8137398B2 (en) * 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8382756B2 (en) 2008-11-10 2013-02-26 Ellipse Technologies, Inc. External adjustment device for distraction device
CN102438546B (en) 2008-11-21 2015-07-15 经皮心血管解决方案公司 Heart valve prosthesis
US8241351B2 (en) 2008-12-22 2012-08-14 Valtech Cardio, Ltd. Adjustable partial annuloplasty ring and mechanism therefor
US10517719B2 (en) 2008-12-22 2019-12-31 Valtech Cardio, Ltd. Implantation of repair devices in the heart
US9011530B2 (en) 2008-12-22 2015-04-21 Valtech Cardio, Ltd. Partially-adjustable annuloplasty structure
US8911494B2 (en) 2009-05-04 2014-12-16 Valtech Cardio, Ltd. Deployment techniques for annuloplasty ring
US8715342B2 (en) 2009-05-07 2014-05-06 Valtech Cardio, Ltd. Annuloplasty ring with intra-ring anchoring
EP2379008B1 (en) 2008-12-22 2021-02-17 Valtech Cardio, Ltd. Adjustable annuloplasty devices
EP2682072A1 (en) 2008-12-23 2014-01-08 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
WO2010078121A2 (en) * 2008-12-31 2010-07-08 Genesee Biomedical, Inc. Semi-rigid annuloplasty ring and band
US8353956B2 (en) 2009-02-17 2013-01-15 Valtech Cardio, Ltd. Actively-engageable movement-restriction mechanism for use with an annuloplasty structure
US9011522B2 (en) 2009-04-10 2015-04-21 Lon Sutherland ANNEST Device and method for temporary or permanent suspension of an implantable scaffolding containing an orifice for placement of a prosthetic or bio-prosthetic valve
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US9622792B2 (en) 2009-04-29 2017-04-18 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
US9968452B2 (en) 2009-05-04 2018-05-15 Valtech Cardio, Ltd. Annuloplasty ring delivery cathethers
WO2011008538A1 (en) 2009-06-29 2011-01-20 Med Institute, Inc. Slotted pusher rod for flexible delivery system
US20110077733A1 (en) * 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
EP2482749B1 (en) 2009-10-01 2017-08-30 Kardium Inc. Kit for constricting tissue or a bodily orifice, for example, a mitral valve
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9180007B2 (en) 2009-10-29 2015-11-10 Valtech Cardio, Ltd. Apparatus and method for guide-wire based advancement of an adjustable implant
US10098737B2 (en) 2009-10-29 2018-10-16 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
US9011520B2 (en) 2009-10-29 2015-04-21 Valtech Cardio, Ltd. Tissue anchor for annuloplasty device
WO2011067770A1 (en) 2009-12-02 2011-06-09 Valtech Cardio, Ltd. Delivery tool for implantation of spool assembly coupled to a helical anchor
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
US8475525B2 (en) 2010-01-22 2013-07-02 4Tech Inc. Tricuspid valve repair using tension
US9307980B2 (en) 2010-01-22 2016-04-12 4Tech Inc. Tricuspid valve repair using tension
US10058323B2 (en) 2010-01-22 2018-08-28 4 Tech Inc. Tricuspid valve repair using tension
US9107749B2 (en) 2010-02-03 2015-08-18 Edwards Lifesciences Corporation Methods for treating a heart
US9226826B2 (en) * 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
WO2011109813A2 (en) 2010-03-05 2011-09-09 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US20110224785A1 (en) 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
JP2013526388A (en) 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2611391B1 (en) * 2010-09-01 2017-11-22 Mvalve Technologies Ltd. Cardiac valve support structure
AU2011296361B2 (en) 2010-09-01 2015-05-28 Medtronic Vascular Galway Prosthetic valve support structure
US10105224B2 (en) 2010-09-01 2018-10-23 Mvalve Technologies Ltd. Cardiac valve support structure
EP2613737B2 (en) 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
EP2478868A1 (en) 2011-01-25 2012-07-25 The Provost, Fellows, Foundation Scholars, and the other Members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth Implant device
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
WO2012112396A2 (en) 2011-02-14 2012-08-23 Ellipse Technologies, Inc. Device and method for treating fractured bones
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US10792152B2 (en) 2011-06-23 2020-10-06 Valtech Cardio, Ltd. Closed band for percutaneous annuloplasty
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US9549817B2 (en) * 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
WO2013066946A1 (en) 2011-11-01 2013-05-10 Ellipse Technologies, Inc. Adjustable magnetic devices and methods of using same
US8858623B2 (en) * 2011-11-04 2014-10-14 Valtech Cardio, Ltd. Implant having multiple rotational assemblies
EP3656434B1 (en) 2011-11-08 2021-10-20 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
ES2523223T3 (en) 2011-12-29 2014-11-24 Sorin Group Italia S.R.L. A kit for the implantation of prosthetic vascular ducts
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
CA3095260C (en) 2012-01-31 2023-09-19 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
EP2811939B8 (en) 2012-02-10 2017-11-15 CVDevices, LLC Products made of biological tissues for stents and methods of manufacturing
US20130304197A1 (en) * 2012-02-28 2013-11-14 Mvalve Technologies Ltd. Cardiac valve modification device
EP2819617A4 (en) * 2012-02-28 2015-11-25 Mvalve Technologies Ltd Cardiac valve support structure
AU2013227235B2 (en) * 2012-02-28 2017-10-19 Mvalve Technologies Ltd. Single-ring cardiac valve support
ES2535295T3 (en) 2012-03-23 2015-05-08 Sorin Group Italia S.R.L. Folding valve prosthesis
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
CN103578786A (en) 2012-07-26 2014-02-12 三星电子株式会社 Conductive layered structure, electrode, supercapacitor, method of manufacturing the conductive layered structure, and electronic device in a body
EP2695586B1 (en) 2012-08-10 2019-05-08 Sorin Group Italia S.r.l. A valve prosthesis and kit
WO2014052818A1 (en) 2012-09-29 2014-04-03 Mitralign, Inc. Plication lock delivery system and method of use thereof
WO2014064694A2 (en) 2012-10-23 2014-05-01 Valtech Cardio, Ltd. Controlled steering functionality for implant-delivery tool
US10376266B2 (en) 2012-10-23 2019-08-13 Valtech Cardio, Ltd. Percutaneous tissue anchor techniques
AU2013338218B2 (en) 2012-10-29 2017-05-04 Nuvasive Specialized Orthopedics, Inc. Adjustable devices for treating arthritis of the knee
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
US9730793B2 (en) 2012-12-06 2017-08-15 Valtech Cardio, Ltd. Techniques for guide-wire based advancement of a tool
CN105007832B (en) 2013-01-09 2018-01-23 4科技有限公司 Organize ancora equipment
US20200030096A1 (en) * 2013-01-10 2020-01-30 Innercore Medical Ltd. Devices and implantation methods for treating mitral valve condition
US20140200662A1 (en) * 2013-01-16 2014-07-17 Mvalve Technologies Ltd. Anchoring elements for intracardiac devices
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US20140228937A1 (en) 2013-02-11 2014-08-14 Joshua Krieger Expandable Support Frame and Medical Device
EP2961351B1 (en) 2013-02-26 2018-11-28 Mitralign, Inc. Devices for percutaneous tricuspid valve repair
WO2014141239A1 (en) 2013-03-14 2014-09-18 4Tech Inc. Stent with tether interface
US10449333B2 (en) 2013-03-14 2019-10-22 Valtech Cardio, Ltd. Guidewire feeder
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9724195B2 (en) 2013-03-15 2017-08-08 Mitralign, Inc. Translation catheters and systems
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US10111747B2 (en) 2013-05-20 2018-10-30 Twelve, Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
CN105451688A (en) * 2013-06-14 2016-03-30 哈祖有限公司 Method and device for treatment of valve regurgitation
US9895219B2 (en) * 2013-07-31 2018-02-20 Medtronic Vascular Galway Mitral valve prosthesis for transcatheter valve implantation
EP2835112B1 (en) 2013-08-08 2021-01-27 Sorin Group Italia S.r.l. Heart valve prosthesis
CN105682610B (en) 2013-08-12 2017-11-03 米特拉尔维尔福科技有限责任公司 Apparatus and method for being implanted into replacement heart valve
WO2015023862A2 (en) 2013-08-14 2015-02-19 Mitral Valve Technologies Sa Replacement heart valve apparatus and methods
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US10299793B2 (en) 2013-10-23 2019-05-28 Valtech Cardio, Ltd. Anchor magazine
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
US10166098B2 (en) * 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10022114B2 (en) 2013-10-30 2018-07-17 4Tech Inc. Percutaneous tether locking
US10052095B2 (en) 2013-10-30 2018-08-21 4Tech Inc. Multiple anchoring-point tension system
EP3073965A1 (en) * 2013-11-28 2016-10-05 Mvalve Technologies Ltd. Intracardiac devices comprising stabilizing elements having improved fatigue resistance
US9610162B2 (en) 2013-12-26 2017-04-04 Valtech Cardio, Ltd. Implantation of flexible implant
CA3205860A1 (en) 2014-02-20 2015-08-27 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
CR20160366A (en) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE
AU2015253313B9 (en) 2014-04-28 2020-09-10 Nuvasive Specialized Orthopedics, Inc. System for informational magnetic feedback in adjustable implants
WO2015173609A1 (en) 2014-05-14 2015-11-19 Sorin Group Italia S.R.L. Implant device and implantation kit
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
ES2908178T3 (en) 2014-06-18 2022-04-28 Polares Medical Inc Mitral valve implants for the treatment of valvular regurgitation
EP3157607B1 (en) 2014-06-19 2019-08-07 4Tech Inc. Cardiac tissue cinching
EP3160396B1 (en) 2014-06-24 2022-03-23 Polares Medical Inc. Systems for anchoring an implant
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CN106999178B (en) 2014-12-02 2019-12-24 4科技有限公司 Eccentric tissue anchor
CN111437068B (en) 2014-12-04 2023-01-17 爱德华兹生命科学公司 Percutaneous clamp for repairing heart valve
WO2016105524A1 (en) 2014-12-26 2016-06-30 Ellipse Technologies, Inc. Systems and methods for distraction
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
WO2016134326A2 (en) 2015-02-19 2016-08-25 Nuvasive, Inc. Systems and methods for vertebral adjustment
US20160256269A1 (en) 2015-03-05 2016-09-08 Mitralign, Inc. Devices for treating paravalvular leakage and methods use thereof
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
JP6785786B2 (en) 2015-03-19 2020-11-18 ケーソン・インターヴェンショナル・エルエルシー Systems and methods for heart valve treatment
CN114515173A (en) 2015-04-30 2022-05-20 瓦尔泰克卡迪欧有限公司 Valvuloplasty techniques
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US10517726B2 (en) 2015-05-14 2019-12-31 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10238490B2 (en) * 2015-08-21 2019-03-26 Twelve, Inc. Implant heart valve devices, mitral valve repair devices and associated systems and methods
US10034747B2 (en) 2015-08-27 2018-07-31 Medtronic Vascular, Inc. Prosthetic valve system having a docking component and a prosthetic valve component
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
WO2017059406A1 (en) 2015-10-01 2017-04-06 Neochord, Inc. Ringless web for repair of heart valves
US10022223B2 (en) 2015-10-06 2018-07-17 W. L. Gore & Associates, Inc. Leaflet support devices and methods of making and using the same
CN113425401A (en) 2015-10-16 2021-09-24 诺威适骨科专科公司 Adjustable device for treating gonitis
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
WO2017100774A1 (en) 2015-12-10 2017-06-15 Nuvasive Specialized Orthopedics, Inc. External adjustment device for distraction device
WO2017117370A2 (en) 2015-12-30 2017-07-06 Mitralign, Inc. System and method for reducing tricuspid regurgitation
WO2017117388A1 (en) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10751182B2 (en) 2015-12-30 2020-08-25 Edwards Lifesciences Corporation System and method for reshaping right heart
ES2805657T3 (en) 2016-01-28 2021-02-15 Nuvasive Specialized Orthopedics Inc Systems for bone transport
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
EP3413823B1 (en) * 2016-02-10 2022-01-19 Amir Belson Personalized atrial fibrillation ablation
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US20200146854A1 (en) 2016-05-16 2020-05-14 Elixir Medical Corporation Methods and devices for heart valve repair
US10702274B2 (en) 2016-05-26 2020-07-07 Edwards Lifesciences Corporation Method and system for closing left atrial appendage
KR102393787B1 (en) * 2016-06-13 2022-05-03 싱가포르 헬스 서비시즈 피티이 엘티디 Heart valve restoration device and method of implanting same
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
US10973638B2 (en) 2016-07-07 2021-04-13 Edwards Lifesciences Corporation Device and method for treating vascular insufficiency
US10828150B2 (en) * 2016-07-08 2020-11-10 Edwards Lifesciences Corporation Docking station for heart valve prosthesis
GB201611910D0 (en) 2016-07-08 2016-08-24 Valtech Cardio Ltd Adjustable annuloplasty device with alternating peaks and troughs
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
US10653862B2 (en) 2016-11-07 2020-05-19 Edwards Lifesciences Corporation Apparatus for the introduction and manipulation of multiple telescoping catheters
AU2017382273A1 (en) 2016-12-22 2019-08-08 Heart Repair Technologies, Inc. Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus
US10905554B2 (en) 2017-01-05 2021-02-02 Edwards Lifesciences Corporation Heart valve coaptation device
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
US11419719B2 (en) 2017-02-06 2022-08-23 Mtex Cardio Ag Methods and systems for assisting or repairing prosthetic cardiac valves
CN110913801B (en) 2017-03-13 2022-04-15 宝来瑞斯医疗有限公司 Coaptation assistance element for treating an adverse coaptation of a heart valve of a heart and system for delivering the same
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US11458017B2 (en) * 2017-03-27 2022-10-04 Vvital Biomed Ltd. Device and method for transcatheter mitral and tricuspid valve repair
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
LT3558169T (en) 2017-04-18 2022-02-10 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US11045627B2 (en) 2017-04-18 2021-06-29 Edwards Lifesciences Corporation Catheter system with linear actuation control mechanism
US10799312B2 (en) 2017-04-28 2020-10-13 Edwards Lifesciences Corporation Medical device stabilizing apparatus and method of use
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11173032B2 (en) * 2017-08-28 2021-11-16 Edwards Lifesciences Corporation Transcatheter device for treating mitral regurgitation
US11051940B2 (en) 2017-09-07 2021-07-06 Edwards Lifesciences Corporation Prosthetic spacer device for heart valve
US11065117B2 (en) * 2017-09-08 2021-07-20 Edwards Lifesciences Corporation Axisymmetric adjustable device for treating mitral regurgitation
US11110251B2 (en) 2017-09-19 2021-09-07 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10881511B2 (en) 2017-09-19 2021-01-05 Cardiovalve Ltd. Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue
US9895226B1 (en) 2017-10-19 2018-02-20 Mitral Tech Ltd. Techniques for use with prosthetic valve leaflets
US10835221B2 (en) 2017-11-02 2020-11-17 Valtech Cardio, Ltd. Implant-cinching devices and systems
US11135062B2 (en) 2017-11-20 2021-10-05 Valtech Cardio Ltd. Cinching of dilated heart muscle
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
US10973639B2 (en) 2018-01-09 2021-04-13 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10105222B1 (en) 2018-01-09 2018-10-23 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10231837B1 (en) 2018-01-09 2019-03-19 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10136993B1 (en) 2018-01-09 2018-11-27 Edwards Lifesciences Corporation Native valve repair devices and procedures
CN111655198A (en) 2018-01-09 2020-09-11 爱德华兹生命科学公司 Native valve repair devices and procedures
US10245144B1 (en) 2018-01-09 2019-04-02 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10238493B1 (en) 2018-01-09 2019-03-26 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10159570B1 (en) 2018-01-09 2018-12-25 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10076415B1 (en) 2018-01-09 2018-09-18 Edwards Lifesciences Corporation Native valve repair devices and procedures
US10111751B1 (en) 2018-01-09 2018-10-30 Edwards Lifesciences Corporation Native valve repair devices and procedures
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
CN111655200B (en) 2018-01-24 2023-07-14 爱德华兹生命科学创新(以色列)有限公司 Contraction of annuloplasty structures
WO2019145941A1 (en) 2018-01-26 2019-08-01 Valtech Cardio, Ltd. Techniques for facilitating heart valve tethering and chord replacement
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
WO2019195860A2 (en) 2018-04-04 2019-10-10 Vdyne, Llc Devices and methods for anchoring transcatheter heart valve
US11389297B2 (en) 2018-04-12 2022-07-19 Edwards Lifesciences Corporation Mitral valve spacer device
US11207181B2 (en) 2018-04-18 2021-12-28 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
JP7109657B2 (en) 2018-05-23 2022-07-29 コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ heart valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
CA3106104A1 (en) 2018-07-12 2020-01-16 Valtech Cardio, Ltd. Annuloplasty systems and locking tools therefor
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
US10779946B2 (en) 2018-09-17 2020-09-22 Cardiovalve Ltd. Leaflet-testing apparatus
US11344413B2 (en) 2018-09-20 2022-05-31 Vdyne, Inc. Transcatheter deliverable prosthetic heart valves and methods of delivery
US10321995B1 (en) 2018-09-20 2019-06-18 Vdyne, Llc Orthogonally delivered transcatheter heart valve replacement
US11278437B2 (en) 2018-12-08 2022-03-22 Vdyne, Inc. Compression capable annular frames for side delivery of transcatheter heart valve replacement
US10945844B2 (en) 2018-10-10 2021-03-16 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
WO2020101676A1 (en) * 2018-11-14 2020-05-22 Half Moon Medical, Inc. Leaflet extension for cardiac valve leaflet
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11253359B2 (en) 2018-12-20 2022-02-22 Vdyne, Inc. Proximal tab for side-delivered transcatheter heart valves and methods of delivery
US11273032B2 (en) 2019-01-26 2022-03-15 Vdyne, Inc. Collapsible inner flow control component for side-deliverable transcatheter heart valve prosthesis
EP3917486B1 (en) 2019-01-31 2023-03-08 West Pharma. Services IL, Ltd Liquid transfer device
DK3923867T3 (en) 2019-02-14 2023-12-04 Edwards Lifesciences Corp Heart valve sealing devices and delivery devices therefor
JP2022522411A (en) * 2019-03-05 2022-04-19 ブイダイン,インコーポレイテッド Tricuspid valve closure regurgitation controller for heart valve prosthesis with orthogonal transcatheter
US11484470B2 (en) 2019-04-30 2022-11-01 West Pharma. Services IL, Ltd. Liquid transfer device with dual lumen IV spike
CN114072106A (en) 2019-05-04 2022-02-18 维迪内股份有限公司 Cinching device and method for deploying a laterally delivered prosthetic heart valve in a native annulus
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
US11944536B2 (en) * 2019-08-13 2024-04-02 The Chinese University Of Hong Kong Transcatheter self-expandable tricuspid valve replacement system
AU2020334080A1 (en) 2019-08-20 2022-03-24 Vdyne, Inc. Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
AU2020337235A1 (en) 2019-08-26 2022-03-24 Vdyne, Inc. Side-deliverable transcatheter prosthetic valves and methods for delivering and anchoring the same
CN114786621A (en) 2019-10-29 2022-07-22 爱德华兹生命科学创新(以色列)有限公司 Annuloplasty and tissue anchoring techniques
US11234813B2 (en) 2020-01-17 2022-02-01 Vdyne, Inc. Ventricular stability elements for side-deliverable prosthetic heart valves and methods of delivery
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
EP4099957A4 (en) * 2020-02-06 2023-06-21 Laplace Interventional Inc. Transcatheter heart valve prosthesis assembled inside heart chambers or blood vessels
USD956958S1 (en) 2020-07-13 2022-07-05 West Pharma. Services IL, Ltd. Liquid transfer device
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051824A1 (en) * 2000-04-07 2001-12-13 Hopkins Richard A. Cardiac valve replacement
US20020094573A1 (en) * 1999-10-19 2002-07-18 Eugene Bell Cardiovascular components for transplantation and methods of making thereof

Family Cites Families (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056854A (en) * 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4275469A (en) * 1979-12-13 1981-06-30 Shelhigh Inc. Prosthetic heart valve
US4994069A (en) * 1988-11-02 1991-02-19 Target Therapeutics Vaso-occlusion coil and method
US4994077A (en) * 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) * 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
DK124690D0 (en) * 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
IT1247037B (en) * 1991-06-25 1994-12-12 Sante Camilli ARTIFICIAL VENOUS VALVE
US5792155A (en) * 1991-07-16 1998-08-11 Van Cleef; Jean-Francois Process for partially or totally flattening a vein
US5370685A (en) * 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
EP0667133B1 (en) * 1993-12-14 2001-03-07 Sante Camilli A percutaneous implantable valve for the use in blood vessels
US5545241B1 (en) * 1995-01-17 1999-09-28 Donaldson Co Inc Air cleaner
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
EP0808614B1 (en) * 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5716397A (en) * 1996-12-06 1998-02-10 Medtronic, Inc. Annuloplasty device with removable stiffening element
NL1004827C2 (en) * 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) * 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
US5961440A (en) * 1997-01-02 1999-10-05 Myocor, Inc. Heart wall tension reduction apparatus and method
US6183411B1 (en) * 1998-09-21 2001-02-06 Myocor, Inc. External stress reduction device and method
US6045497A (en) 1997-01-02 2000-04-04 Myocor, Inc. Heart wall tension reduction apparatus and method
US6077214A (en) * 1998-07-29 2000-06-20 Myocor, Inc. Stress reduction apparatus and method
US5776189A (en) * 1997-03-05 1998-07-07 Khalid; Naqeeb Cardiac valvular support prosthesis
US5957949A (en) * 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6245102B1 (en) * 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US6332893B1 (en) * 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
DE69841333D1 (en) * 1997-12-29 2010-01-07 Cleveland Clinic Foundation SYSTEM FOR THE MINIMAL INVASIVE INTRODUCTION OF A HEARTLAP BIOPROTHESIS
US6530952B2 (en) * 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US7452371B2 (en) * 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
WO1999062431A1 (en) * 1998-06-02 1999-12-09 Cook Incorporated Multiple-sided intraluminal medical device
US6260552B1 (en) * 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US6254564B1 (en) * 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6102932A (en) * 1998-12-15 2000-08-15 Micrus Corporation Intravascular device push wire delivery system
AU757091B2 (en) * 1999-01-26 2003-01-30 Edwards Lifesciences Corporation Flexible heart valve
US6425916B1 (en) * 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE60045429D1 (en) * 1999-04-09 2011-02-03 Evalve Inc Device for heart valve surgery
EP1584307A3 (en) * 1999-04-23 2005-10-19 St.Jude Medical ATG, Inc. Artificial heart valve with attachment fingers
US6312464B1 (en) * 1999-04-28 2001-11-06 NAVIA JOSé L. Method of implanting a stentless cardiac valve prosthesis
US6287339B1 (en) * 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
US6478819B2 (en) * 1999-05-27 2002-11-12 Sulzer Carbomedics Inc. Prosthetic heart valves with flexible post geometry
US7628803B2 (en) * 2001-02-05 2009-12-08 Cook Incorporated Implantable vascular device
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
SE514718C2 (en) * 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6312465B1 (en) * 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6299637B1 (en) * 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
US6440164B1 (en) * 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6458153B1 (en) * 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US7195641B2 (en) * 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6821297B2 (en) * 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
US6797002B2 (en) * 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6537198B1 (en) * 2000-03-21 2003-03-25 Myocor, Inc. Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly
US6454799B1 (en) * 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6419695B1 (en) * 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
ATE381291T1 (en) * 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6676698B2 (en) * 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6773454B2 (en) * 2000-08-02 2004-08-10 Michael H. Wholey Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
US7510572B2 (en) * 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
US7381220B2 (en) * 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US8956407B2 (en) * 2000-09-20 2015-02-17 Mvrx, Inc. Methods for reshaping a heart valve annulus using a tensioning implant
US6893459B1 (en) * 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6616684B1 (en) 2000-10-06 2003-09-09 Myocor, Inc. Endovascular splinting devices and methods
US6913608B2 (en) * 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US7070618B2 (en) * 2000-10-25 2006-07-04 Viacor, Inc. Mitral shield
US6602286B1 (en) * 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US6482228B1 (en) * 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6494909B2 (en) * 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US6656221B2 (en) 2001-02-05 2003-12-02 Viacor, Inc. Method and apparatus for improving mitral valve function
US8038708B2 (en) * 2001-02-05 2011-10-18 Cook Medical Technologies Llc Implantable device with remodelable material and covering material
US6955689B2 (en) * 2001-03-15 2005-10-18 Medtronic, Inc. Annuloplasty band and method
US6503272B2 (en) * 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US6733525B2 (en) * 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
KR100393548B1 (en) * 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
US7547322B2 (en) * 2001-07-19 2009-06-16 The Cleveland Clinic Foundation Prosthetic valve and method for making same
FR2828091B1 (en) * 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
AU2002362441A1 (en) * 2001-10-01 2003-04-14 Am Discovery, Incorporated Devices for treating atrial fibrilation
CN101108144A (en) * 2001-10-01 2008-01-23 安普尔医药公司 Devices, systems, and methods for retaining a native heart valve leaflet
US6790237B2 (en) * 2001-10-09 2004-09-14 Scimed Life Systems, Inc. Medical stent with a valve and related methods of manufacturing
US7128754B2 (en) * 2001-11-28 2006-10-31 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods
US20030120340A1 (en) 2001-12-26 2003-06-26 Jan Liska Mitral and tricuspid valve repair
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6716241B2 (en) * 2002-03-05 2004-04-06 John G. Wilder Venous valve and graft combination
US7163556B2 (en) * 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
US6752828B2 (en) * 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7125418B2 (en) * 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US7160320B2 (en) * 2002-04-16 2007-01-09 The International Heart Institute Of Montana Foundation Reed valve for implantation into mammalian blood vessels and heart with optional temporary or permanent support
US6676699B2 (en) * 2002-04-26 2004-01-13 Medtronic Ave, Inc Stent graft with integrated valve device and method
US7351256B2 (en) * 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US20030233022A1 (en) * 2002-06-12 2003-12-18 Vidlund Robert M. Devices and methods for heart valve treatment
AU2003277118A1 (en) * 2002-10-01 2004-04-23 Ample Medical, Inc. Devices for retaining native heart valve leaflet
US7112219B2 (en) * 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US6945978B1 (en) * 2002-11-15 2005-09-20 Advanced Cardiovascular Systems, Inc. Heart valve catheter
US7399315B2 (en) * 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
EP1610728B1 (en) * 2003-04-01 2011-05-25 Cook Incorporated Percutaneously deployed vascular valves
US7159593B2 (en) * 2003-04-17 2007-01-09 3F Therapeutics, Inc. Methods for reduction of pressure effects of cardiac tricuspid valve regurgitation
AU2004233848B2 (en) * 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
US7717952B2 (en) * 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
EP1626681B1 (en) * 2003-05-19 2009-07-01 Cook Incorporated Implantable medical device with constrained expansion
US7201772B2 (en) * 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
ATE442107T1 (en) * 2003-07-21 2009-09-15 Univ Pennsylvania PERCUTANE HEART VALVE
WO2005011535A2 (en) * 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
US7153324B2 (en) * 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
US7004176B2 (en) * 2003-10-17 2006-02-28 Edwards Lifesciences Ag Heart valve leaflet locator
US7347869B2 (en) * 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US8128681B2 (en) * 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
EP2526895B1 (en) * 2003-12-23 2014-01-29 Sadra Medical, Inc. Repositionable heart valve
US7748389B2 (en) * 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US8343213B2 (en) * 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7329279B2 (en) * 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8287584B2 (en) * 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8828078B2 (en) * 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7381219B2 (en) * 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8182528B2 (en) * 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7445631B2 (en) * 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7311730B2 (en) * 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7955375B2 (en) * 2004-02-20 2011-06-07 Cook Medical Technologies Llc Prosthetic valve with spacing member
ITTO20040135A1 (en) * 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20050228468A1 (en) * 2004-04-01 2005-10-13 Macoviak John A Devices, systems, and methods for treating atrial fibrillation
US7361168B2 (en) * 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7566343B2 (en) * 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US6951571B1 (en) * 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
WO2006041877A2 (en) * 2004-10-05 2006-04-20 Ample Medical, Inc. Atrioventricular valve annulus repair systems and methods including retro-chordal anchors
US7458987B2 (en) * 2004-10-29 2008-12-02 Cook Incorporated Vascular valves having implanted and target configurations and methods of preparing the same
US7670368B2 (en) * 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7867274B2 (en) * 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7722666B2 (en) * 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US8012198B2 (en) * 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7611534B2 (en) * 2005-08-25 2009-11-03 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US7569071B2 (en) * 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US7503928B2 (en) * 2005-10-21 2009-03-17 Cook Biotech Incorporated Artificial valve with center leaflet attachment
AU2006315812B2 (en) * 2005-11-10 2013-03-28 Cardiaq Valve Technologies, Inc. Balloon-expandable, self-expanding, vascular prosthesis connecting stent
EP1991168B1 (en) * 2006-02-16 2016-01-27 Transcatheter Technologies GmbH Minimally invasive heart valve replacement
US7648527B2 (en) * 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US7524331B2 (en) * 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US8454684B2 (en) * 2006-08-02 2013-06-04 Medtronic, Inc. Heart valve holder for use in valve implantation procedures
EP3329860A1 (en) * 2006-11-07 2018-06-06 David Stephen Celermajer Devices for the treatment of heart failure
WO2008091493A1 (en) * 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
US7678144B2 (en) * 2007-01-29 2010-03-16 Cook Incorporated Prosthetic valve with slanted leaflet design
EP2109417B1 (en) * 2007-02-05 2013-11-06 Boston Scientific Limited Percutaneous valve and delivery system
US8070802B2 (en) * 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US20080208328A1 (en) * 2007-02-23 2008-08-28 Endovalve, Inc. Systems and Methods For Placement of Valve Prosthesis System
US7896915B2 (en) * 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US8403979B2 (en) * 2007-05-17 2013-03-26 Cook Medical Technologies Llc Monocuspid prosthetic valve having a partial sinus
US7806921B2 (en) * 2007-11-08 2010-10-05 Cook Incorporated Monocusp valve design
US8216303B2 (en) * 2007-11-19 2012-07-10 The Cleveland Clinic Foundation Apparatus and method for treating a regurgitant heart valve
US7846199B2 (en) * 2007-11-19 2010-12-07 Cook Incorporated Remodelable prosthetic valve
US8057532B2 (en) * 2007-11-28 2011-11-15 Cook Medical Technologies Llc Implantable frame and valve design
US7892276B2 (en) * 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8100962B2 (en) * 2008-01-08 2012-01-24 Cook Medical Technologies Llc Flow-deflecting prosthesis for treating venous disease
WO2009094373A1 (en) * 2008-01-22 2009-07-30 Cook Incorporated Valve frame
US8317858B2 (en) * 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US7806919B2 (en) * 2008-04-01 2010-10-05 Medtronic Vascular, Inc. Double-walled stent system
EP3878408A1 (en) * 2008-07-21 2021-09-15 Jenesis Surgical, LLC Endoluminal support apparatus
JP5607639B2 (en) * 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
US8308798B2 (en) * 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8075611B2 (en) * 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
DE102010008360A1 (en) * 2010-02-17 2011-09-29 Transcatheter Technologies Gmbh Medical implant in which gaps remain during crimping or folding, method and device for moving
EP2547285A4 (en) * 2010-03-17 2017-07-12 Deep Vein Medical, Inc. Fatigue-resistant flow regulating device and manufacturing methods
WO2013035864A1 (en) * 2011-09-09 2013-03-14 新幹工業株式会社 Stent with valve, base material for forming stent with valve, and method for producing stent with valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020094573A1 (en) * 1999-10-19 2002-07-18 Eugene Bell Cardiovascular components for transplantation and methods of making thereof
US20010051824A1 (en) * 2000-04-07 2001-12-13 Hopkins Richard A. Cardiac valve replacement

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8118866B2 (en) 2003-07-21 2012-02-21 The Trustees Of The University Of Pennsylvania Method for heart valve implantation
US7621948B2 (en) 2003-07-21 2009-11-24 The Trustees Of The University Of Pennsylvania Percutaneous heart valve
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US8460370B2 (en) 2004-09-14 2013-06-11 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
AU2005284739B2 (en) * 2004-09-14 2011-02-24 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US7704277B2 (en) 2004-09-14 2010-04-27 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
EP1796597A4 (en) * 2004-09-14 2008-12-31 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
WO2006032051A2 (en) 2004-09-14 2006-03-23 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
US8992605B2 (en) 2004-09-14 2015-03-31 Edwards Lifesciences Ag Device and method for reducing mitral valve regurgitation
EP1796597A2 (en) * 2004-09-14 2007-06-20 Edwards Lifesciences AG Device and method for treatment of heart valve regurgitation
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
EP1855623B1 (en) * 2005-02-07 2019-04-17 Evalve, Inc. Devices for cardiac valve repair
EP3967269A3 (en) * 2005-02-07 2022-07-13 Evalve, Inc. Systems and devices for cardiac valve repair
US10667911B2 (en) 2005-02-07 2020-06-02 Evalve, Inc. Methods, systems and devices for cardiac valve repair
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
WO2006111391A1 (en) * 2005-04-21 2006-10-26 Edwards Lifesciences Ag A blood flow controlling apparatus
US11033389B2 (en) 2005-04-21 2021-06-15 Edwards Lifesciences Ag Method for replacing a heart valve
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
US10213305B2 (en) 2006-05-18 2019-02-26 Edwards Lifesciences Ag Device and method for improving heart valve function
US9827101B2 (en) 2006-05-18 2017-11-28 Edwards Lifesciences Ag Device and method for improving heart valve function
US11141272B2 (en) 2006-05-18 2021-10-12 Edwards Lifesciences Ag Methods for improving heart valve function
US10799361B2 (en) 2006-06-01 2020-10-13 Edwards Lifesciences Corporation Method of treating a defective mitral valve by filling gap
US10583009B2 (en) 2006-06-01 2020-03-10 Edwards Lifesciences Corporation Mitral valve prosthesis
US11839545B2 (en) 2006-06-01 2023-12-12 Edwards Lifesciences Corporation Method of treating a defective heart valve
US10441423B2 (en) 2006-06-01 2019-10-15 Edwards Lifesciences Corporation Mitral valve prosthesis
US11141274B2 (en) 2006-06-01 2021-10-12 Edwards Lifesciences Corporation Method of treating a defective heart valve
US8968395B2 (en) 2006-06-01 2015-03-03 Edwards Lifesciences Corporation Prosthetic insert for treating a mitral valve
US9579199B2 (en) 2006-06-01 2017-02-28 Edwards Lifesciences Corporation Method for treating a mitral valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US10952846B2 (en) 2008-05-01 2021-03-23 Edwards Lifesciences Corporation Method of replacing mitral valve
US11717401B2 (en) 2008-05-01 2023-08-08 Edwards Lifesciences Corporation Prosthetic heart valve assembly
US9750604B2 (en) 2009-03-17 2017-09-05 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve and method of delivery thereof
US9078751B2 (en) 2009-03-17 2015-07-14 Mitrassist Medical Ltd. Heart valve prosthesis with collapsible valve and method of delivery thereof
WO2012175483A1 (en) * 2011-06-20 2012-12-27 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US9011523B2 (en) 2011-06-20 2015-04-21 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
US9925043B2 (en) 2011-11-21 2018-03-27 Trisol Medical Ltd. Device for placement in the tricuspid annulus
WO2013076724A3 (en) * 2011-11-21 2014-03-20 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
US9445893B2 (en) 2011-11-21 2016-09-20 Mor Research Applications Ltd. Device for placement in the tricuspid annulus
WO2013178335A1 (en) * 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or rectifying a heart valve insufficiency
JP2015517855A (en) * 2012-06-01 2015-06-25 ウニヴェアズィテート デュースブルク−エッセンUniversitaet Duisburg−Essen Implantable device for ameliorating or treating valvular heart disease
US10149759B2 (en) 2013-05-09 2018-12-11 Mitrassist Medical Ltd. Heart valve assistive prosthesis
EP3922213A1 (en) * 2014-10-14 2021-12-15 Valtech Cardio, Ltd. Leaflet-restraining techniques
US10639154B2 (en) 2014-10-16 2020-05-05 Jacques Seguin Intervalvular implant for a mitral valve
WO2016079734A1 (en) 2014-11-17 2016-05-26 Mitrassist Medical Ltd. Assistive device for a cardiac valve
US11045311B2 (en) 2014-12-14 2021-06-29 Trisol Medical Ltd. Prosthetic valve and deployment system
US9629720B2 (en) 2015-05-04 2017-04-25 Jacques Seguin Apparatus and methods for treating cardiac valve regurgitation
US11253357B2 (en) 2017-01-11 2022-02-22 Mitrassist Medical Ltd. Multi-level cardiac implant
US11478351B2 (en) 2018-01-22 2022-10-25 Edwards Lifesciences Corporation Heart shape preserving anchor

Also Published As

Publication number Publication date
US20110319990A1 (en) 2011-12-29
US20080065204A1 (en) 2008-03-13
US20050010287A1 (en) 2005-01-13
AU2003277115A1 (en) 2004-04-23
US20050267573A9 (en) 2005-12-01
US9610161B2 (en) 2017-04-04
WO2004030568A3 (en) 2004-09-30
US20120185040A1 (en) 2012-07-19
AU2003277115A8 (en) 2004-04-23
US7381220B2 (en) 2008-06-03
US8016882B2 (en) 2011-09-13

Similar Documents

Publication Publication Date Title
US8016882B2 (en) Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US8142494B2 (en) Devices, systems, and methods for retaining a native heart valve leaflet
KR102393787B1 (en) Heart valve restoration device and method of implanting same
AU2002362442B2 (en) Methods and devices for heart valve treatments
EP1748745B1 (en) Devices, systems, and methods for reshaping a heart valve annulus
US9861475B2 (en) Devices, systems, and methods for reshaping a heart valve annulus
JP2024026388A (en) Implantable heart valve devices, mitral valve repair devices, and related systems and methods
US20160074164A1 (en) Heart valve assistive prosthesis
AU2002362442A1 (en) Methods and devices for heart valve treatments
KR20190037233A (en) Artificial mitral valve containing an annulus-ventricular coupling mechanism

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP