WO2004035130A2 - Procede d'analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l'analyse de l'activite electromagnetique cerebrale d'un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques - Google Patents

Procede d'analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l'analyse de l'activite electromagnetique cerebrale d'un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques Download PDF

Info

Publication number
WO2004035130A2
WO2004035130A2 PCT/FR2003/050090 FR0350090W WO2004035130A2 WO 2004035130 A2 WO2004035130 A2 WO 2004035130A2 FR 0350090 W FR0350090 W FR 0350090W WO 2004035130 A2 WO2004035130 A2 WO 2004035130A2
Authority
WO
WIPO (PCT)
Prior art keywords
signals
synchronization
analysis
period
database
Prior art date
Application number
PCT/FR2003/050090
Other languages
English (en)
Other versions
WO2004035130A3 (fr
Inventor
Jacques Martinerie
Michel Le Van Quyen
Jean-Philippe Lachaux
Bernard Renault
Original Assignee
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique filed Critical Centre National De La Recherche Scientifique
Priority to EP03767930A priority Critical patent/EP1551288B1/fr
Priority to AT03767930T priority patent/ATE536133T1/de
Priority to AU2003292358A priority patent/AU2003292358A1/en
Priority to US10/531,311 priority patent/US7697979B2/en
Publication of WO2004035130A2 publication Critical patent/WO2004035130A2/fr
Publication of WO2004035130A3 publication Critical patent/WO2004035130A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4094Diagnosing or monitoring seizure diseases, e.g. epilepsy
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients

Abstract

L'invention concerne un procédé d'analyse des synchronisations de l'électroencéphalographie d'un individu en utilisant un ensemble de capteurs à partir de l'analyse électromagnétique cérébrale de celui-ci, qui comprend les étapes suivantes une étape de constitution d'une base de données (12) comprenant numérisation de signaux électrophysiologiques issus de ces capteurs, • une phase (11) de calcul du degré de synchronisation existant entre toutes les paires de capteurs enregistrés dans un protocole de montage, dans des bandes de fréquences comprises entre 0 et 2000 Hz, pour constituer cette base de données (12) de classes caractérisant chacune un état de référence ; - une étape (13) de validation statistique d'une période analysée en temps réel, qui permet d'affecter cette période à une classe de la base de données, une étape (14) de détection d'une période spécifique présentant un degré de synchronisation déterminé. L'invention concerne également un dispositif de mise en ouvre de ce procédé.

Description

PROCEDE ET DISPOSITIF DE SUIVI MEDICAL OU COGNITIF EN TEMPS REEL A PARTIR DE L'ANALYSE DE L'ACTIVITE
ELECTROMAGNETIQUE CEREBRALE D'UN INDIVIDU,
APPLICATION DE CE PROCEDE POUR CARACTERISER ET
DIFFERENCIER DES ETATS PHYSIOLOGIQUES OU PATHOLOGIQUES
DESCRIPTION
Domaine technique
La présente invention concerne un procédé et un dispositif de suivi médical ou cognitif en temps réel à partir de l'analyse de l'activité électromagnétique cérébrale d'un individu, avec des applications de ce procédé pour la différenciation et la caractérisation d'états physiologiques et pathologiques, notamment pour le traitement en temps réel de l'anticipation des crises d'épilepsie.
Etat de la technique antérieure
Rôle des interactions cérébrales chez l'homme : la cartographie dynamique
Tout acte cérébral émerge d'une coopération entre plusieurs réseaux neuronaux spatialement distribués. A l'heure actuelle, et malgré leurs progrès récents, les principales techniques d'imagerie cérébrale (EEG (électroencéphalographie) , MEG (magnétoencéphalographie) , IR F (imagerie par résonance magnétique fonctionnelle) et TEP (tomographie par émission de positions)) ne fournissent qu'une cartographie des activâtions cérébrales, sans rendre directement compte des interactions entre ces activations. La caractérisation de ces réseaux fonctionnels nécessite à la fois :
- l'identification des régions cérébrales impliquées ;
- la compréhension des mécanismes d' interaction entre ceux-ci ; et - la quantification précise de ces interactions .
L'observation du fonctionnement de ces réseaux n'est pas possible à partir de la seule cartographie des activités cérébrales. En effet, comment savoir, parmi toutes les zones actives simultanément, celles qui participent à un même réseau ? La simple observation que deux zones sont actives en même temps ne suffit pas pour conclure qu'elles sont engagées dans le même processus pathologique ou cognitif. Pour élucider ces mécanismes d'échange, il est nécessaire d'avoir des hypothèses explicites sur la nature de ces liens et de disposer de moyens techniques pour les observer.
Toutes les approches de l'art connu s'appuient sur l'idée que l'existence d'un couplage entre deux zones doit se traduire par une corrélation entre leurs activités. Or, l'activité d'un groupe de neurones, par exemple une colonne corticale, peut se caractériser par deux types de mesure : un codage temporel avec le taux de décharges neuronales par seconde ; ou un codage par la synchronisation des activités oscillatoires des zones cérébrales impliquées dans un même réseau.
L'invention a pour objet de proposer un procédé de cartographie dynamique du cerveau à partir d'une telle mesure de synchronie de phase, en partant de l'hypothèse selon laquelle les liens dynamiques entre les groupes neuronaux se manifestent par la synchronisation d'activité oscillatoire dans certaines bandes de fréquence entre 0 et 2000 Hz.
Exemple d'application à la pathologie : anticipation des crises d'épilepsie
Dans la suite de la description, le procédé de l'invention est appliqué, à titre d'exemple, et pour la clarté de l'exposé, au suivi médical d'un patient pour l'anticipation en temps réel de crises d'épilepsie. Il est, bien entendu, possible d'appliquer le procédé de l'invention dans d'autres domaines et de caractériser, puis reconnaître des états physiologiques ou pathologiques en changeant la base de données .
L'épilepsie, une des affections neurologiques les plus fréquentes de l'enfant et de l'adulte (1 % de la population) , est la conséquence d'un désordre neuronal qui s'exprime par des décharges paroxystiques, récurrentes, du cortex cérébral. La traduction clinique en est la survenue soudaine des symptômes d'une crise. Cette émergence soudaine est difficile à interpréter comme une réponse à un facteur externe déclenchant, qui est absent dans la plupart des situations, excepté les rares épilepsies réflexes. La transition entre l'état dit « intercritique » et l'état critique (la crise) est une des phénoménologies primordiales de l'épilepsie, et cette intermittence apparaît comme le produit imprévisible d'une auto-organisation interne au cerveau.
Aucune méthode traditionnelle (analyse linéaire) n'avait permis jusqu'à présent une anticipation significative de cet état de crise. Deux publications récentes, référencées [1] et [2] en fin de description, décrivent une procédure qui permet, dans certaines conditions, d'anticiper les crises de plusieurs minutes à l'aide de nouvelles stratégies issues de la théorie des systèmes dynamiques. Les méthodes de la dynamique non linéaire dérivent des mathématiques connues sous le nom générique de « Théorie du Chaos ». Elles permettent de révéler comment, derrière un signal électroencéphalographique en apparence aléatoire, peuvent se cacher des lois ou des déterminismes précis. La possibilité d'anticiper la survenue de crises ouvre des perspectives très vastes.
L'anticipation des crises s'adresse aux nombreux patients présentant une épilepsie pharmacorésistante, ce qui représente environ 25 % des patients épileptiques . La survenue intermittente et inattendue des crises est un facteur reconnu de mortalité (par accidents de voiture, ou mort subite) et de morbidité (notamment traumatismes crâniens et faciaux) . De plus, le caractère imprévisible des crises est considéré par les patients comme un des plus importants facteurs de mauvaise qualité de vie. Les limitations liées au risque de crises sont d'ordre social (isolement lié à la peur de faire une crise en public) , professionnel (métiers à risques interdits aux épileptiques) et personnel (conduite automobile interdite). La possibilité d'anticiper la survenue des crises serait un moyen d'aider les épileptiques à vivre mieux avec leurs crises. En plus de cette possibilité d'alerter le patient de l'imminence d'une crise, les stratégies d'anticipation devraient également aider à la réalisation d'examens complémentaires dans le cadre d'un bilan pré-chirurgical de leur épilepsie. D'autre part, de telles stratégies devraient ouvrir la voie à des interventions thérapeutiques avant même que la crise n'ait le temps d'émerger.
Le document référencé [1], cité ci-dessus, repose sur la quantification de la différence de similarité entre une dynamique de référence « normale » et la dynamique émergente épileptique. Cet indice de similarité est calculé indépendamment pour chacune des voies enregistrées . Les composantes spatiales et temporelles de la dynamique cérébrale peuvent être obtenues en alignant les évolutions de la déviation statistique des indices de chacune des voies. Néanmoins, cette méthode ne prend qu'indirectement en compte l'aspect spatial des modifications de la dynamique de l' électroencéphalographie (intracrânien et de surface) qui nous permettent de prédire l'imminence d'une crise. De fortes évidences suggèrent toutefois que cette période reflète la transition d'un état désordonné vers un état plus ordonné (ou moins complexe) qui sont fortement susceptible de correspondre à des changements de synchronisation de plusieurs ensembles neuronaux distribués dans différentes structures cérébrales. Pour augmenter 5. l'efficacité de l'anticipation, l'idéal serait d'avoir des informations supplémentaires concernant les comportements spatio-temporels de la dynamique épileptogène, telles que des subtiles variations de l'activité ou les interdépendances entre régions 0 cérébrales distantes. De nombreuses observations suggèrent en effet que la détermination d'une zone de dysfonctionnements épileptiques unique de l'origine d'une crise est souvent très délicate. En particulier, de récents travaux ont largement argumenté l'importance 5 de concevoir les épilepsies partielles comme une manifestation d'une structure en réseau. En effet, il est vraisemblable que la propagation de la décharge facilite un certain nombre de connexions entre de multiples ensembles neuronaux, modifiant ainsi d'une 0 façon plus performante des connexions neuronales locales et à distance. Ainsi, l'organisation des dysfonctionnements épileptiques ne peut plus être envisagée de manière statique ou comme un dysfonctionnement local (foyer épileptique circonscrit) 5 mais répondre à un modèle dynamique spatio-temporel complexe, impliquant spatialement des réseaux neuronaux reliés par des connexions anormalement facilitées et mettant en jeu au cours du temps certains comportements synchronisés . 0 Pour étudier l'organisation spatiale du réseau épileptogène et caractériser les interactions entre le réseau épileptogène et le reste du cerveau, les techniques linéaires (cross-corrélations dans le domaine temporel ou de cohérences dans le domaine fréquentiel) ont souvent été employées dans le passé. Ces méthodes sont souvent, dans le cas de l'analyse entre signaux macroscopiques, limitées par leurs hypothèses concernant la stationnarité des signaux ainsi que la nature linéaire des interactions. Ceci est d'autant plus problématique, qu'en période épileptique, on voit se renforcer nettement les comportements non linéaires .
L'invention a pour objet de dépasser ces limitations .
Exposé de l'invention
L'invention concerne un procédé d'analyse des synchronisations de l' électroencéphalographie d'un individu en utilisant un ensemble de capteurs à partir de l'analyse électromagnétique cérébrale de celui-ci, caractérisé en ce qu' il comprend les étapes suivantes : une étape de constitution d'une base de données comprenant :
• une phase d'acquisition et de numérisation de signaux électrophysiologiques issus de ces capteurs,
• une phase de calcul du degré de synchronisation existant entre toutes les paires de capteurs enregistrés dans un protocole de montage, dans des bandes de fréquences comprises entre 0 et 2000 Hz, pour constituer cette base de données de classes caractérisant chacune un état de référence ; - une étape de validation statistique d'une période analysée en temps réel, qui permet d'affecter cette période à une classe de la base de données, une étape de détection d'une période spécifique présentant un degré de synchronisation déterminé .
Avantageusement, ledit procédé comprend une analyse associée à au moins l'un des types de signaux électrophysiologiques suivants : électrocardiogrammes, êlectroocculogrammes, électrodermogrammes, signaux de respiration.
Avantageusement, lors de l'étape de validation statistique, on utilise une méthode PLS, qui estime la différence de phase entre les oscillations des signaux de deux électrodes. Le niveau statistique de la synchronisation PLS entre deux signaux est évalué à l'aide de la variance circulaire de la différence de phase entre les signaux ou à l'aide de l'entropie normalisée de Shannon de la différence de phase entre les signaux.
Le procédé de l'invention peut être utilisé pour caractériser et différencier des états physiologiques ou pathologiques, par exemple pour l'anticipation de crises d'épilepsie. Le procédé de l'invention peut s'appliquer à d'autres domaines d'application, tels que : au sommeil : différenciation entre les différents stades de sommeil ;
- à l'anesthésie : caractérisation des stades d'endormissement sous anesthésie avec un contrôle automatique de la régulation de la substance injectée ; à la dépression : avec le suivi électrophysiologique d'un malade dépressif et la caractérisâtion de ses traits ou états et, en conséquence, l'ajustement de son traitement ; - à la schizophrénie : avec le suivi électrophysiologique d'un malade et la quantification de ses traits ou états à des fins d'aide au diagnostic et à la thérapeutique.
- à l'aide du diagnostic pour les maladies neurologiques telles que : Parkinson, Alzheimer.
- à la caractérisation d'états cognitifs (niveaux de vigilance et d'attention, de perception et de reconnaissance consciente et non consciente de stimulations visuelles, auditives, somesthésiques et également émotionnelles (peur, joie, etc.).
L'invention concerne également un dispositif de suivi médical ou cognitif en temps réel à partir de l'analyse électromagnétique cérébrale d'un individu, caractérisé en ce qu'il comprend : - des moyens d'acquisition et de numérisation de signaux électrophysiologiques issus de capteurs ; des moyens de calcul de synchronisation existant entre toutes les paires de capteurs enregistrés dans un procédé de montage, dans des bandes de fréquences comprises entre 0 et 2000 Hz, pour constituer une base de données de classes caractérisant chacune un état de référence ;
- des moyens de validation statistique d'une période analysée en temps réel qui permet d'affecter cette période à une classe de la base de données ; des moyens de détection d'une période cognitive ou d'une période pathologiques spécifique ; des moyens d'émission éventuelle d'un signal alerte. Avantageusement le dispositif de l'invention est un dispositif autonome, léger et transportable par le patient. Pour permettre aux sujets une autonomie complète, le dispositif de l'invention peut être miniaturisé pour pouvoir être implanté en sous-cutané, comme un stimulateur.
Brève description des dessins
- La figure 1 illustre les différentes étapes du procédé de l'invention, à partir de l'analyse d' électroencéphalogrammes (EEGs) .
- La figure 2 illustre plus précisément les étapes du procédé de l'invention.
La figure 3 illustre le dispositif de l'invention.
- La figure 4 représente des chronogrammes explicatifs du traitement des électroencéphalogrammes avec le procédé de l'invention.
- La figure 5 illustre un exemple de mise en œuvre du procédé de traitement en temps réel de l'épilepsie selon l'invention. Exposé détaillé de modes de réalisation particuliers
L'activité neuroélectrique dans une bande de fréquence restreinte se caractérise par son énergie et sa phase, si bien que la mise en évidence d'une relation entre deux groupes neuronaux dans une certaine bande de fréquence passe par la démonstration d'une corrélation significative entre les variations de leurs énergies ou de leurs phases. La méthode la plus couramment employée utilise simultanément l'énergie et la phase. Elle consiste à calculer la cohérence entre les signaux selon l'indice de « Magnitude Squared Cohérence » (MSC) . Cet indice MSC est une mesure globale dans laquelle il est difficile de séparer l'influence de la phase de celle de l'énergie. Or, une corrélation entre les variations des phases des deux signaux peut s'avérer suffisante pour démontrer un couplage entre deux groupes neuronaux (document référencé [3] ) .
Le procédé de l'invention permet une mesure de synchronie, en utilisant uniquement la phase : la méthode des « Phase Locking Statistics » (PLS) . Pour une latence donnée, cette méthode estime la différence de phase entre les oscillations des signaux de deux électrodes. Si cette différence de phase reste relativement constante au cours de la période analysée, on obtient alors un indice PLS élevé, signe d'une synchronie significative entre les deux électrodes. Cette méthode PLS est suffisamment précise pour détecter des périodes de synchronie et se révèle donc adaptée pour décrire une succession de synchronies transitoires comme celles supposées intervenir dans le traitement cognitif ou bien pour caractériser des synchronies plus soutenues comme celles supposées caractériser des états pathologiques.
Cette méthode permet de mesurer le degré de synchronisation entre les activités des diverses régions cérébrales . La synchronie entre deux groupes neuronaux se définit dans une certaine bande de fréquence comme une corrélation significative entre les variations temporelles de leur phase : il s'agit alors d'un accrochage de phase ou « phase-locking » . Néanmoins, compte tenu des effets de volume (l'activité d'une seule population neuronale peut ainsi être captée par deux électrodes relativement éloignées) et du bruit de fond neuronal, la détection d'une synchronie entre deux régions doit suivre une démarche statistique. La validité statistique des mesures est alors testée par la construction de données de remplacement bivariées. L'invention peut ainsi utiliser une méthode d'estimation statistique basée sur l'emploi de données de remplacement (« surrogate data ») , qui permet à la méthode PLS de s'appliquer, contrairement à la méthode MSC, à des signaux neuroélectriques non-stationnaires, comme c'est le cas de la plupart des signaux biologiques .
Le procédé de. l'invention est donc un procédé de suivi médical ou cognitif en temps réel à partir de l'analyse de l'activité électromagnétique cérébrale d'un individu, associée à l'analyse éventuelle d'autres signaux électrophysiologiques (électrocardiogrammes, électroocculogrammes, électrodermogrammes, signaux de la respiration) , pour notamment détecter des périodes cognitives, ou des périodes pathologiques, spécifiques, par exemple une crise d'épilepsie en préparation, et fournir dans tous les cas un signal d'alerte nécessaire pour permettre une prévention ou une intervention thérapeutique .
Comme illustré sur la figure 1, le procédé de l'invention comprend les étapes suivantes : - une étape 10 d'acquisition et de numérisation des signaux électrophysiologiques : en général, un casque de 27 électrodes à 128 électrodes selon la problématique à résoudre, posé sur le scalp d'un individu, permet l'enregistrement de l'activité cérébrale de celui-ci avec une assez bonne résolution spatiale. Quelques signaux supplémentaires peuvent être acquis simultanément (signaux du mouvement des yeux, de l'activité cardiaque, etc.) ;
- une étape 11 de calcul de synchronisation entre toutes les paires des signaux et dans plusieurs bandes de fréquence pour constituer une base de données
(étape 12) d'états de référence dépendant de la problématique mise en place (pathologiques, sommeil, veille, vigilance, etc.) ; - une étape 13 de validation statistique de la période analysée en temps réel, qui permet de classer cette période à partir de la base de données. Cette validation repose sur une méthode de discrimination non paramétrique multidimensionnelle ; - une étape 14 de détection de périodes cognitives ou de périodes pathologiques spécifiques ; une étape 15 éventuelle d'émission d'un signal alerte.
Plus précisément, comme illustré sur la figure 2, à partir d'une base de données de k classes, on peut avoir successivement : calcul de la partition de l'espace des k variables par probabilités Bayésiennes S ; ref
- classement d'une fenêtre temporelle x, par exemple de 10 secondes, dans la base des k classes ; - détection éventuelle d'une classe avec alerte.
Comme illustré sur la figure 3, le dispositif autonome de suivi médical ou cognitif en temps réel à partir de l'analyse électromagnétique cérébrale d'un individu comprend des circuits d'acquisition (amplificateur 20, convertisseur analogique-numérique 21, tampon 22) des signaux de l'activité électrique du cerveau, un processeur 23 permettant l'acquisition et le traitement de ces signaux et un circuit d'alerte 24 pour le malade ou pour son environnement, par exemple un voyant .
Résultats attendus en épilepsie et implication clinique
On a observé que certains couples d'électrodes dans la périphérie de la zone épileptogène présentent systématiquement, avant une crise, une modification significative de leur degré de synchronie, notamment par exemple dans la bande des fréquences alpha (8-12 Hz), bêta (15-30 Hz) et gamma (30-70 Hz). De manière intéressante, ces synchronisations ont récemment reçu une grande attention pour leur possible rôle dans les phénomènes d'intégration de large échelle pendant la cognition. Ces résultats suggèrent ainsi que les populations neuronales sous-jacentes à la zone épileptogène modifient, avant la crise, leurs relations avec une dynamique de plus grande échelle. Ces changements dans les synchronisations peuvent conduire à une « isolation dynamique » du foyer et pourraient fournir, de manière récurrente une population neuronale facilement recrutable par les processus épileptiques.
Les nouvelles techniques d'analyses des synchronisations de l' électroencéphalographie, utilisées dans le procédé de l'invention, permettent de quantifier très précisément l'activité cérébrale précritique. Cette possibilité d'anticiper la survenue de crises ouvre des perspectives médicales très vastes : - en recherche fondamentale, par la caractérisation des modifications neurobiologiques qui surviennent pendant cette phase précritique ;
- en clinique, par la possibilité de prévenir le patient, et d'essayer de faire avorter la crise en préparation par une intervention thérapeutique.
Tout particulièrement, la neurostimulation électrique est apparue récemment comme une solution thérapeutique prometteuse pour d'autres pathologies, notamment dans la maladie de Parkinson. Suivant cette optique, à la destruction mécanique d'une région cérébrale prédéfinie, s'est substitué le principe d'un traitement conservateur par stimulations électriques pour renforcer ou inhiber une activité neuronale. La possibilité d'une anticipation des crises que permet le procédé de l'invention est à cet égard décisive, puisqu'elle donne une réponse à la question du « quand stimuler ? ». En effet, ces stimulations peuvent être appliquées lorsqu'un état préictal est détecté et visent à déstabiliser les processus épileptogènes avant que ceux-ci ne deviennent irréversibles au moment de la crise. C'est l'approche que l'on désire avoir sur un plus long terme chez les patients investigués par électrodes intracérébrales .
D'autre part, la technique d'analyse des synchronisations de l' électroencéphalographie peut permettre les développements d'interventions « cognitives ». En effet, certains patients décrivent la faculté qu'ils ont d'interrompre leur crise débutante par des activités cognitives spécifiques ou par des activités motrices. Ces phénomènes reposent vraisemblablement sur une déstabilisation du processus épileptique par l'apparition de nouvelles activités électriques au sein du cortex cérébral. La modulation d'une activité épileptique par des synchronisations cognitives a été également démontrée par les inventeurs.
D'autres interventions peuvent également être appliquées, par exemple l'intervention pharmacologique, consistant en l'administration d'un médicament antiêpileptique d'action rapide (comme les benzodiazépines) . Ces possibilités d'alerte et d'interventions, offertes par l'anticipation des crises, impliquent nécessairement l'anticipation en « temps réel », c'est-à-dire que les résultats des calculs mathématiques soient comme dans le procédé de l'invention obtenus instantanément, et non de façon différée .
La capacité d'anticipation des crises permet également d'améliorer la réalisation d'examens effectués lors du bilan préchirurgical des epilepsies partielles pharmacorésistantes . Notamment, la réalisation de la scintigraphie cérébrale précritique
(SPECT-ictal) est facilitée par la mise en alerte de l'équipe : l'injection du traceur radioactif au tout début de la crise, voire juste avant, localise mieux le foyer épileptogène. Les temps d'hospitalisation peuvent être alors considérablement réduits et le temps d'occupation des systèmes d'imagerie optimisé. La possibilité d'anticiper la survenue des crises d'épilepsie, grâce à l' électroencéphalographie de profondeur et de surface ouvre des perspectives très vastes en application sociale et clinique.
Procédure mathématique utilisée pour le calcul de synchronie de phase entre deux signaux
La phase instantanée d'un signal peut être calculée soit à l'aide d'un signal analytique, concept introduit par Gabor en 1946 et récemment appliqué sur des données expérimentales, soit par convolution avec une ondelette complexe spécifique (Lachaux et al, Human Brain Mapping, 1999) .
Pour un signal arbitraire s(t), le signal analytique ζ est une fonction complexe dépendant du temps et définie comme suit :
ζ(t) = s(t) + fi(t) = A(t)ejm (1)
où la fonction (t) est la transformée de Hubert de s (t) :
-s(t) = -PvΛ^-dτ (2) π XJ - τ
P. V. indique que l'intégrale est calculée au sens de la valeur principale de Cauchy. L'amplitude instantanée A(t) et la phase instantanée φ(t) du signal s(t) sont uniquement définies par l'équation (1). Comme on peut le voir dans l'équation (2), 5(t) est considéré comme le produit de convolution de s(t) et de 1/π. Cela signifie que la transformée de Hubert est équivalente à un filtre dont la réponse en amplitude est unitaire et la réponse en phase décalée de π/2 pour toutes les fréquences. Si cette transformée peut s'appliquer en théorie à des signaux à large bande de fréquence, la notion de phase dans ce cas n'est pas très claire. En pratique seulement des signaux à bande étroite obtenus par filtrage sont utilisés. En conséquence, un filtrage est toujours effectué dans une bande de fréquence spécifique. Plusieurs bandes de fréquence peuvent être retenues. La même bande de fréquence est utilisée pour deux signaux en cas d'une synchronie 1:1. Des bandes de fréquence différentes sont employées pour l'étude des synchronies n:m. Le niveau statistique de la synchronisation PLS entre deux signaux est évalué à l'aide d'un des deux indices suivants :
- la variance circulaire de la différence de phase (Δφ) entre les signaux ; ou
- l'entropie normalisée de Shannon de cette différence de phase (Δφ) .
La variance circulaire est telle que :
M
VC = ,('Δ(*) k=\
L'entropie normalisée de Shannon est telle que :
r= (Hraax - H)/ Hmax
avec l ' entropie Η déf inie par
N
H = ~ IΫJPk lnpk k=\
où N est le nombre de classe, Ηmax=ln(N) l'entropie maximale, et pk la fréquence relative de la différence de phase dans la klème classe. Le nombre optimal de classe est N=exp [0, 626+0, 4ln(M-l) ] où M est le nombre d'éléments (différence de phase) à classer. Avec cette normalisation, les valeurs de γ sont comprises, pour 95 % des « surrogates » (valeurs de remplacement) , entre 0 (distribution uniforme et pas de synchronisation) et 1 (parfaite synchronisation) . Ce calcul est fait pour toutes les paires de capteurs enregistrés dans le protocole de montage. Pour 27 électrodes d'un montage standard, le nombre de paires distinctes est de 26x25/2=325 et pour 128 électrodes, il s'élève à 8001.
Ainsi, comme illustré sur la figure 4, on a successivement : filtrage passe-bande de deux signaux obtenus aux deux électrodes 30 et 31 (f + 1 Hz) ;
- transformée de Hubert de ces signaux ; évaluation du niveau statistique de la synchronisation PLS à l'aide de deux indices :
. entropie de Δφ (différence de phase entre
Figure imgf000022_0001
. variance circulaire de Δφ.
La deuxième étape consiste en la mise en place de la base de données des états calibrés du sujet en fonction de l'objectif à atteindre.
La troisième étape est une étape de discrimination à but décisionnel. Etant donné une période d'enregistrement de 10 secondes en pathologogie, mais parfois beaucoup plus courte pour la discrimination d'états cognitifs, dont on connaît la quantification par la méthode de synchronisation, on essaye de l'affecter à une classe, caractérisant un état cérébral parmi plusieurs. C'est un problème de classement, qui suppose que l'on a défini à priori un ensemble de classes. La principale difficulté est la dimension de l'espace des variables. En effet, quantifier la synchronisation entre tous les couples de capteurs et dans 6 bandes de fréquence correspond à un espace de variable de dimension p=1950 (325x6) pour un montage à 27 électrodes. La probabilité a posteriori d'appartenance de la fenêtre temporelle x analysée aux k différents groupes d'états cérébraux a pour expression (théorème de Bayes) :
K P(Gr / x) = P(Gr) .P(x / Gr) / 2 P(Gj) .P(x / Gj) avec r = 1, ... , k j=l
P(Gr) est la probabilité a priori d'appartenance à une classe et est estimée en pratique par la fréquence des éléments de Gr dans l'échantillon total. Les différentes P(x/Gr) sont estimées par les densités de probabilité. Pour chaque nouvelle période x analysée et à classer dans l'un des k groupes, on recherche les q plus proches voisins de chacun des k groupes en définissant ainsi le rayon moyen rk de 1' hypersphere HS(rk,x) contenant la moyenne des q voisins de x et le volume Ak de 1 ' hypersphere correspondante dans l'espace Rp. Ainsi la densité de probabilité P(x/Gr) peut être estimée par :
P(x/Gr) = n A
et x est affecté au groupe j e [l , k] si : P (Gj /x) =max{ P (Gr/x) ; r=l , 2 , ..., k} . Exemple de mise en œuyre de l'invention
Le dispositif de l'invention a été appliqué aux enregistrements électriques cérébraux intracrâniens de patients relevant d'un traitement chirurgical de leur épilepsie temporale et on a pu ainsi montrer, qu'il est possible d'anticiper les crises de plusieurs minutes et qu'il existe un phénomène déterministe de « route vers la crise », comme illustré sur la figure 4. Le dispositif de l'invention permet une anticipation de la crise dans la bande de fréquence 10-20 Hz de près de 20 minutes avant la crise et est caractérisé par une diminution de synchronisation. Le spectre de puissance, procédure classique en traitement du signal, ne montre pas de claires modifications.
Le procédé de l'invention est spécialement adapté aux situations cliniques et permet en raison d'une faible sensibilité aux artefacts d'enregistrement, d'étendre les résultats à 1' électroencéphalographie de surface.
REFERENCES
[1] LE VAN QUYEN M., MARTINERIE J. , NAVARRO V., BOON
P., D'HAVE M., ADAM C, RENAULT B., VARELA F. ET BAULAC M., « Anticipation of epileptic seizures from standard surface EEG recordings » (2001, The
Lancet, 357, pages 183-188) .
[2] MARTINERIE J., ADAM C, LE VAN QUYEN M., BAULAC M., CLEMENCEAU S., RENAULT B., VARELA F., « Can epileptic seizure be anticipated by nonlinear analysis ? » (Nature Medicine 1998, vol. 4, 10, pages 1173-1176) .
[3] VARELA F., LACHAUX J. P., RODRIGUEZ E. et MARTINERIE J. , « The Brainweb : Phase synchronization and Large-scale intégration » (Nature Reviews Neuroscience 2001, 2, pages 229-239) .

Claims

REVENDICATIONS
1. Procédé d'analyse des synchronisations de 1 ' électroencéphalographie d'un individu en utilisant un ensemble de capteurs à partir de l'analyse électromagnétique cérébrale de celui-ci, caractérisé en ce qu'il comprend les étapes suivantes :
- une étape de constitution d'une base de données (12) comprenant : • une phase (10) d'acquisition et de numérisation de signaux électrophysiologiques issus de ces capteurs,
• une phase (11) de calcul du degré de synchronisation existant entre toutes les paires de capteurs enregistrés dans un protocole de montage, dans des bandes de fréquences comprises entre 0 et 2000 Hz, pour constituer cette base de données (12) de classes caractérisant chacune un état de référence ,-
- une étape (13) de validation statistique d'une période analysée en temps réel, qui permet d'affecter cette période à une classe de la base de données ,
- une étape (14) de détection d'une période spécifique présentant un degré de synchronisation déterminé.
2. Procédé selon la revendication 1, qui comprend une analyse associée à au moins l'un des types de signaux électrophysiologiques suivants : électrocardiogrammes, électroocculogrammes, électrodermogrammes, signaux de respiration.
3. Procédé selon la revendication 1, qui, lors de l'étape de validation statistique, utilise une méthode PLS qui estime la différence de phase entre les oscillations des signaux de deux électrodes.
4. Procédé selon la revendication 3, dans lequel le niveau statistique de la synchronisation PLS entre deux signaux est évalué à l'aide de la variance circulaire de la différence de phase entre les signaux.
5. Procédé selon la revendication 3, dans lequel le niveau statistique de la synchronisation PLS entre deux signaux est évalué à l'aide de l'entropie normalisée de Shannon de la différence de phase entre les signaux.
6. Application du procédé selon l'une quelconque des revendications 1 à 5 à un suivi cognitif en temps réel.
7. Application du procédé selon l'une quelconque des revendications 1 à 5, pour caractériser et différencier des états physiologiques ou pathologiques.
8. Application du procédé selon la revendication 7, pour l'anticipation de crises d' épilepsie .
9. Application du procédé selon la revendication 7, pour l'aide au diagnostic du stade précoce des maladies de Parkinson et d'Alzheimer.
10. Application du procédé selon la revendication 7, pour l'aide au diagnostic de la schizophrénie et de la dépression.
11. Dispositif de suivi médical ou cognitif en temps réel à partir de l'analyse électromagnétique cérébrale d'un individu, caractérisé en ce qu'il comprend : des moyens (10) d'acquisition et de numérisation de signaux électrophysiologiques issus de capteurs ; des moyens (11) de calcul du degré de synchronisation existant entre toutes les paires de capteurs enregistrés dans un procédé de montage, dans des bandes de fréquences comprises entre 0 et 2000 Hz, pour constituer une base de données (12) de classes caractérisant chacune un état de référence ;
- des moyens (13) de validation statistique d'une période analysée en temps réel qui permet d'affecter cette période à une classe de la base de données ;
- des moyens (14) de détection d'une période cognitive ou d'une période pathologique spécifique ;
- des moyens (15) d'émission éventuelle d'un signal alerte.
12. Dispositif selon la revendication 11, qui comprend des moyens d'analyse associée à au moins l'un des types de signaux électrophysiologiques suivants : électrocardiogrammes , électroocculogrammes , électrodermogrammes, signaux de respiration.
13. Dispositif selon la revendication 11, dans lequel les moyens de validation statistique utilisent une méthode PLS qui estime la différence de phase entre les oscillations des signaux de deux électrodes.
14. Dispositif selon la revendication 13, dans lequel le niveau statistique de la synchronisation PLS entre deux signaux est évalué à l'aide de la variance circulaire de la différence de phase entre les signaux.
15. Dispositif selon la revendication 13, dans lequel le niveau statistique de la synchronisation
PLS entre deux signaux est évalué à l'aide de l'entropie normalisée de Shannon de la différence de phase entre les signaux.
16. Dispositif selon la revendication 11, qui comprend :
- des circuits (20, 21, 22) d'acquisition des signaux de l'activité électrique du cerveau ;
- un processeur (23) permettant l'acquisition et le traitement de ces signaux ; - un circuit d'alerte pour l'individu ou son environnement .
17. Dispositif selon la revendication 11, qui est un dispositif transportable par ledit individu.
18. Dispositif selon la revendication 11, qui est miniaturisé pour pouvoir être implanté en sous- cutané .
PCT/FR2003/050090 2002-10-18 2003-10-14 Procede d'analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l'analyse de l'activite electromagnetique cerebrale d'un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques WO2004035130A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03767930A EP1551288B1 (fr) 2002-10-18 2003-10-14 Procede d analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l analyse de l activite electromagnetique cerebrale d un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques
AT03767930T ATE536133T1 (de) 2002-10-18 2003-10-14 Verfahren zur analyse und vorrichtung zur medizinischen oder kognitiven echtzeit- überwachung der elektromagnetischen zerebralen aktivität eines individuums, verwendung dieses verfahren zur charakterisierung und bestimmung der physiologischen oder pathologischen zustände
AU2003292358A AU2003292358A1 (en) 2002-10-18 2003-10-14 Analysis method and real time medical or cognitive monitoring device based on the analysis of a subject's cerebral electromagnetic activity, use of said method for characterizing and differentiating physiological or pathological states
US10/531,311 US7697979B2 (en) 2002-10-18 2003-10-14 Analysis method and real time medical or cognitive monitoring device based on the analysis of a subject's cerebral electromagnetic activity use of said method for characterizing and differentiating physiological or pathological states

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/13007 2002-10-18
FR0213007A FR2845883B1 (fr) 2002-10-18 2002-10-18 Procede et dispositif de suivi medical ou cognitif en temps reel par l'analyse de l'activite electromagnetique cerebrale d'un individu, application du procede pour caracteriser et differencier des etats physiologiques ou pathologiques

Publications (2)

Publication Number Publication Date
WO2004035130A2 true WO2004035130A2 (fr) 2004-04-29
WO2004035130A3 WO2004035130A3 (fr) 2004-08-05

Family

ID=32050523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/050090 WO2004035130A2 (fr) 2002-10-18 2003-10-14 Procede d'analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l'analyse de l'activite electromagnetique cerebrale d'un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques

Country Status (6)

Country Link
US (1) US7697979B2 (fr)
EP (1) EP1551288B1 (fr)
AT (1) ATE536133T1 (fr)
AU (1) AU2003292358A1 (fr)
FR (1) FR2845883B1 (fr)
WO (1) WO2004035130A2 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US7853329B2 (en) 1998-08-05 2010-12-14 Neurovista Corporation Monitoring efficacy of neural modulation therapy
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9421373B2 (en) 1998-08-05 2016-08-23 Cyberonics, Inc. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
EP3010401A4 (fr) * 2013-06-20 2017-03-15 University Of Virginia Patent Foundation Système, procédé et support lisible par ordinateur utilisant l'entraînement de séries chronologiques multidimensionnelles
US9622675B2 (en) 2007-01-25 2017-04-18 Cyberonics, Inc. Communication error alerting in an epilepsy monitoring system
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403820B2 (en) * 1998-08-05 2008-07-22 Neurovista Corporation Closed-loop feedback-driven neuromodulation
US7277758B2 (en) * 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
US20050273017A1 (en) * 2004-03-26 2005-12-08 Evian Gordon Collective brain measurement system and method
FR2888743B1 (fr) 2005-07-22 2007-10-12 Centre Nat Rech Scient Procede et dispositif de representation d'une image fonctionnelle dynamique du cerveau, par localisation et discrimination des generateurs neuroelectriques intracerebraux et leurs applications
US20070149952A1 (en) * 2005-12-28 2007-06-28 Mike Bland Systems and methods for characterizing a patient's propensity for a neurological event and for communicating with a pharmacological agent dispenser
US20070287931A1 (en) * 2006-02-14 2007-12-13 Dilorenzo Daniel J Methods and systems for administering an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US8190251B2 (en) * 2006-03-24 2012-05-29 Medtronic, Inc. Method and apparatus for the treatment of movement disorders
JP2009542351A (ja) * 2006-07-06 2009-12-03 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 時間的尺度を使用した脳パターンの解析
US9833184B2 (en) * 2006-10-27 2017-12-05 Adidas Ag Identification of emotional states using physiological responses
JP2010512860A (ja) * 2006-12-22 2010-04-30 ニューロ−インサイト プロプライアタリー リミティド エンターテイメント素材または個々のプレゼンテータの心理的影響を判定する方法
US20080208074A1 (en) * 2007-02-21 2008-08-28 David Snyder Methods and Systems for Characterizing and Generating a Patient-Specific Seizure Advisory System
US20090030717A1 (en) * 2007-03-29 2009-01-29 Neurofocus, Inc. Intra-modality synthesis of central nervous system, autonomic nervous system, and effector data
WO2008137579A1 (fr) 2007-05-01 2008-11-13 Neurofocus, Inc. Système de référentiel de neuroinformatique
WO2008137581A1 (fr) 2007-05-01 2008-11-13 Neurofocus, Inc. Dispositif de compression de stimuli à partir de rétroactions neurologiques
WO2008144569A1 (fr) * 2007-05-16 2008-11-27 Neurofocus, Inc. Analyse d'accoutumance utilisant le système nerveux central, le système nerveux autonome et des mesures de système d'effecteur
US8392253B2 (en) * 2007-05-16 2013-03-05 The Nielsen Company (Us), Llc Neuro-physiology and neuro-behavioral based stimulus targeting system
US8494905B2 (en) 2007-06-06 2013-07-23 The Nielsen Company (Us), Llc Audience response analysis using simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)
JP5542051B2 (ja) 2007-07-30 2014-07-09 ニューロフォーカス・インコーポレーテッド 神経応答刺激及び刺激属性共鳴推定を行うシステム、方法、及び、装置
US8635105B2 (en) 2007-08-28 2014-01-21 The Nielsen Company (Us), Llc Consumer experience portrayal effectiveness assessment system
US8386313B2 (en) 2007-08-28 2013-02-26 The Nielsen Company (Us), Llc Stimulus placement system using subject neuro-response measurements
US8392254B2 (en) * 2007-08-28 2013-03-05 The Nielsen Company (Us), Llc Consumer experience assessment system
US8392255B2 (en) 2007-08-29 2013-03-05 The Nielsen Company (Us), Llc Content based selection and meta tagging of advertisement breaks
US8494610B2 (en) 2007-09-20 2013-07-23 The Nielsen Company (Us), Llc Analysis of marketing and entertainment effectiveness using magnetoencephalography
US20090083129A1 (en) 2007-09-20 2009-03-26 Neurofocus, Inc. Personalized content delivery using neuro-response priming data
CA2666010A1 (fr) * 2008-05-14 2009-11-14 The Hospital For Sick Children Methodes basees sur les fluctuations de synchronisation corticale
EP2369986A4 (fr) * 2008-12-23 2013-08-28 Neurovista Corp Analyse de l'état du cerveau, basée sur des caractéristiques initiales et des manifestations cliniques de crise choisies
US8270814B2 (en) * 2009-01-21 2012-09-18 The Nielsen Company (Us), Llc Methods and apparatus for providing video with embedded media
US8464288B2 (en) 2009-01-21 2013-06-11 The Nielsen Company (Us), Llc Methods and apparatus for providing personalized media in video
US9357240B2 (en) 2009-01-21 2016-05-31 The Nielsen Company (Us), Llc Methods and apparatus for providing alternate media for video decoders
US20100250325A1 (en) 2009-03-24 2010-09-30 Neurofocus, Inc. Neurological profiles for market matching and stimulus presentation
US20110046473A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Eeg triggered fmri signal acquisition
US20110046502A1 (en) * 2009-08-20 2011-02-24 Neurofocus, Inc. Distributed neuro-response data collection and analysis
US8655437B2 (en) * 2009-08-21 2014-02-18 The Nielsen Company (Us), Llc Analysis of the mirror neuron system for evaluation of stimulus
US10987015B2 (en) 2009-08-24 2021-04-27 Nielsen Consumer Llc Dry electrodes for electroencephalography
US8209224B2 (en) 2009-10-29 2012-06-26 The Nielsen Company (Us), Llc Intracluster content management using neuro-response priming data
US9560984B2 (en) 2009-10-29 2017-02-07 The Nielsen Company (Us), Llc Analysis of controlled and automatic attention for introduction of stimulus material
US20110106750A1 (en) 2009-10-29 2011-05-05 Neurofocus, Inc. Generating ratings predictions using neuro-response data
US8335715B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Advertisement exchange using neuro-response data
US8335716B2 (en) 2009-11-19 2012-12-18 The Nielsen Company (Us), Llc. Multimedia advertisement exchange
US20110218820A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Filtering of Annotations
US20110219325A1 (en) * 2010-03-02 2011-09-08 Himes David M Displaying and Manipulating Brain Function Data Including Enhanced Data Scrolling Functionality
WO2011133548A2 (fr) 2010-04-19 2011-10-27 Innerscope Research, Inc. Procédé de recherche par tâche d'imagerie courte
US8655428B2 (en) 2010-05-12 2014-02-18 The Nielsen Company (Us), Llc Neuro-response data synchronization
US8392251B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Location aware presentation of stimulus material
US8392250B2 (en) 2010-08-09 2013-03-05 The Nielsen Company (Us), Llc Neuro-response evaluated stimulus in virtual reality environments
US8396744B2 (en) 2010-08-25 2013-03-12 The Nielsen Company (Us), Llc Effective virtual reality environments for presentation of marketing materials
KR101249069B1 (ko) 2011-01-14 2013-03-29 한국과학기술원 뇌파 신호 동기화 수준을 이용한 정신분열병 고위험군 진단의 정량화 방법, 장치, 및 컴퓨터로 읽을 수 있는 매체
US20130035579A1 (en) 2011-08-02 2013-02-07 Tan Le Methods for modeling neurological development and diagnosing a neurological impairment of a patient
US9569986B2 (en) 2012-02-27 2017-02-14 The Nielsen Company (Us), Llc System and method for gathering and analyzing biometric user feedback for use in social media and advertising applications
US9292858B2 (en) 2012-02-27 2016-03-22 The Nielsen Company (Us), Llc Data collection system for aggregating biologically based measures in asynchronous geographically distributed public environments
US9451303B2 (en) 2012-02-27 2016-09-20 The Nielsen Company (Us), Llc Method and system for gathering and computing an audience's neurologically-based reactions in a distributed framework involving remote storage and computing
US9763592B2 (en) 2012-05-25 2017-09-19 Emotiv, Inc. System and method for instructing a behavior change in a user
US9060671B2 (en) 2012-08-17 2015-06-23 The Nielsen Company (Us), Llc Systems and methods to gather and analyze electroencephalographic data
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US9320450B2 (en) 2013-03-14 2016-04-26 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US9622702B2 (en) 2014-04-03 2017-04-18 The Nielsen Company (Us), Llc Methods and apparatus to gather and analyze electroencephalographic data
US10108264B2 (en) 2015-03-02 2018-10-23 Emotiv, Inc. System and method for embedded cognitive state metric system
US9936250B2 (en) 2015-05-19 2018-04-03 The Nielsen Company (Us), Llc Methods and apparatus to adjust content presented to an individual
US10448883B2 (en) 2015-07-21 2019-10-22 Massachusetts Institute Of Technology Methods and apparatus for neuromodulation
KR101939574B1 (ko) * 2015-12-29 2019-01-17 주식회사 인바디 의식 상태 모니터링 방법 및 장치
WO2018011720A1 (fr) 2016-07-13 2018-01-18 Ramot At Tel Aviv University Ltd. Nouveau procédé d'acquisition de bio-signaux et algorithmes destinés à des dispositifs portatifs
US10067565B2 (en) 2016-09-29 2018-09-04 Intel Corporation Methods and apparatus for identifying potentially seizure-inducing virtual reality content
CN111093471B (zh) * 2017-03-31 2022-11-18 波尓瑟兰尼提公司 用于根据头皮脑电图识别病理性脑活动的方法
EP3684463A4 (fr) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC Procédé et appareil de neuro-activation
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11771358B2 (en) * 2017-12-20 2023-10-03 University Of Southern California Rhythmic synchronization of motor neuron discharges and their burst rate variability
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11844602B2 (en) 2018-03-05 2023-12-19 The Medical Research Infrastructure And Health Services Fund Of The Tel Aviv Medical Center Impedance-enriched electrophysiological measurements
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CN108836323B (zh) * 2018-05-08 2021-01-12 河南省安信科技发展有限公司 一种基于脑电波分析的学习状态监测系统及其使用方法
WO2020056418A1 (fr) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC Système et procédé d'amélioration du sommeil
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201224A (en) * 1978-12-29 1980-05-06 Roy John E Electroencephalographic method and system for the quantitative description of patient brain states
US4846190A (en) * 1983-08-23 1989-07-11 John Erwin R Electroencephalographic system data display
WO2000010455A1 (fr) * 1998-08-24 2000-03-02 Emory University Procede et appareil pour predire l'apparition de crises en fonction de caracteristiques derivees de signaux indiquant une activite du cerveau
WO2001037724A1 (fr) * 1999-11-23 2001-05-31 Erwin Roy John Systeme de balayage de la fonction cerebrale
US6304775B1 (en) * 1999-09-22 2001-10-16 Leonidas D. Iasemidis Seizure warning and prediction
US20020042563A1 (en) * 1999-12-02 2002-04-11 Becerra Lino R. Method and apparatus for objectively measuring pain, pain treatment and other related techniques

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6622036B1 (en) * 2000-02-09 2003-09-16 Cns Response Method for classifying and treating physiologic brain imbalances using quantitative EEG
US6640122B2 (en) * 1999-02-05 2003-10-28 Advanced Brain Monitoring, Inc. EEG electrode and EEG electrode locator assembly
US6810285B2 (en) * 2001-06-28 2004-10-26 Neuropace, Inc. Seizure sensing and detection using an implantable device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4201224A (en) * 1978-12-29 1980-05-06 Roy John E Electroencephalographic method and system for the quantitative description of patient brain states
US4846190A (en) * 1983-08-23 1989-07-11 John Erwin R Electroencephalographic system data display
WO2000010455A1 (fr) * 1998-08-24 2000-03-02 Emory University Procede et appareil pour predire l'apparition de crises en fonction de caracteristiques derivees de signaux indiquant une activite du cerveau
US6304775B1 (en) * 1999-09-22 2001-10-16 Leonidas D. Iasemidis Seizure warning and prediction
WO2001037724A1 (fr) * 1999-11-23 2001-05-31 Erwin Roy John Systeme de balayage de la fonction cerebrale
US20020042563A1 (en) * 1999-12-02 2002-04-11 Becerra Lino R. Method and apparatus for objectively measuring pain, pain treatment and other related techniques

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LACHAUX ET AL.: "Measuring Synchrony in Brain Signals" HUMAN BRAIN MAPPING, vol. 8, 1999, pages 194-208, XP002247405 *
LE VAN QUYEN M ET AL: "Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony" JOURNAL OF NEUROSCIENCE METHODS, 30 OCT. 2001, ELSEVIER, NETHERLANDS, vol. 111, no. 2, 30 octobre 2001 (2001-10-30), pages 83-98, XP002248012 ISSN: 0165-0270 *
QUIROGA R Q ET AL: "Event synchronization: a simple and fast method to measure synchronicity and time delay patterns" PHYSICAL REVIEW E (STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS), OCT. 2002, APS THROUGH AIP, USA, vol. 66, no. 4, octobre 2002 (2002-10), pages 41904-1-9, XP002247968 ISSN: 1063-651X *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9421373B2 (en) 1998-08-05 2016-08-23 Cyberonics, Inc. Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US7853329B2 (en) 1998-08-05 2010-12-14 Neurovista Corporation Monitoring efficacy of neural modulation therapy
US9042988B2 (en) 1998-08-05 2015-05-26 Cyberonics, Inc. Closed-loop vagus nerve stimulation
US7930035B2 (en) 1998-08-05 2011-04-19 Neurovista Corporation Providing output indicative of subject's disease state
US9415222B2 (en) 1998-08-05 2016-08-16 Cyberonics, Inc. Monitoring an epilepsy disease state with a supervisory module
US9375573B2 (en) 1998-08-05 2016-06-28 Cyberonics, Inc. Systems and methods for monitoring a patient's neurological disease state
US9320900B2 (en) 1998-08-05 2016-04-26 Cyberonics, Inc. Methods and systems for determining subject-specific parameters for a neuromodulation therapy
US9113801B2 (en) 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US7747325B2 (en) 1998-08-05 2010-06-29 Neurovista Corporation Systems and methods for monitoring a patient's neurological disease state
US8762065B2 (en) 1998-08-05 2014-06-24 Cyberonics, Inc. Closed-loop feedback-driven neuromodulation
US8781597B2 (en) 1998-08-05 2014-07-15 Cyberonics, Inc. Systems for monitoring a patient's neurological disease state
US8725243B2 (en) 2005-12-28 2014-05-13 Cyberonics, Inc. Methods and systems for recommending an appropriate pharmacological treatment to a patient for managing epilepsy and other neurological disorders
US9044188B2 (en) 2005-12-28 2015-06-02 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US8868172B2 (en) 2005-12-28 2014-10-21 Cyberonics, Inc. Methods and systems for recommending an appropriate action to a patient for managing epilepsy and other neurological disorders
US9592004B2 (en) 2005-12-28 2017-03-14 Cyberonics, Inc. Methods and systems for managing epilepsy and other neurological disorders
US7676263B2 (en) 2006-06-23 2010-03-09 Neurovista Corporation Minimally invasive system for selecting patient-specific therapy parameters
US9480845B2 (en) 2006-06-23 2016-11-01 Cyberonics, Inc. Nerve stimulation device with a wearable loop antenna
US8295934B2 (en) 2006-11-14 2012-10-23 Neurovista Corporation Systems and methods of reducing artifact in neurological stimulation systems
US9898656B2 (en) 2007-01-25 2018-02-20 Cyberonics, Inc. Systems and methods for identifying a contra-ictal condition in a subject
US9622675B2 (en) 2007-01-25 2017-04-18 Cyberonics, Inc. Communication error alerting in an epilepsy monitoring system
US8543199B2 (en) 2007-03-21 2013-09-24 Cyberonics, Inc. Implantable systems and methods for identifying a contra-ictal condition in a subject
US8036736B2 (en) 2007-03-21 2011-10-11 Neuro Vista Corporation Implantable systems and methods for identifying a contra-ictal condition in a subject
US9788744B2 (en) 2007-07-27 2017-10-17 Cyberonics, Inc. Systems for monitoring brain activity and patient advisory device
US9259591B2 (en) 2007-12-28 2016-02-16 Cyberonics, Inc. Housing for an implantable medical device
US11406317B2 (en) 2007-12-28 2022-08-09 Livanova Usa, Inc. Method for detecting neurological and clinical manifestations of a seizure
US8849390B2 (en) 2008-12-29 2014-09-30 Cyberonics, Inc. Processing for multi-channel signals
US8588933B2 (en) 2009-01-09 2013-11-19 Cyberonics, Inc. Medical lead termination sleeve for implantable medical devices
US8786624B2 (en) 2009-06-02 2014-07-22 Cyberonics, Inc. Processing for multi-channel signals
US9643019B2 (en) 2010-02-12 2017-05-09 Cyberonics, Inc. Neurological monitoring and alerts
EP3010401A4 (fr) * 2013-06-20 2017-03-15 University Of Virginia Patent Foundation Système, procédé et support lisible par ordinateur utilisant l'entraînement de séries chronologiques multidimensionnelles

Also Published As

Publication number Publication date
EP1551288B1 (fr) 2011-12-07
FR2845883A1 (fr) 2004-04-23
US7697979B2 (en) 2010-04-13
US20060015034A1 (en) 2006-01-19
FR2845883B1 (fr) 2005-08-05
WO2004035130A3 (fr) 2004-08-05
EP1551288A2 (fr) 2005-07-13
AU2003292358A8 (en) 2004-05-04
AU2003292358A1 (en) 2004-05-04
ATE536133T1 (de) 2011-12-15

Similar Documents

Publication Publication Date Title
EP1551288B1 (fr) Procede d analyse et dispositif de suivi medical ou cognitif en temps reel a partir de l analyse de l activite electromagnetique cerebrale d un individu, application de ce procede pour caracteriser et differencier des etats physiologiques ou pathologiques
Amezquita-Sanchez et al. A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals
US11922277B2 (en) Pain determination using trend analysis, medical device incorporating machine learning, economic discriminant model, and IoT, tailormade machine learning, and novel brainwave feature quantity for pain determination
Kar et al. EEG signal analysis for the assessment and quantification of driver’s fatigue
EP1906822A2 (fr) Procede et dispositif de representation d'une image fonctionnelle dynamique du cerveau, par localisation et discrimination des generateurs neuroelectrioues intracerebraux et leurs applications
Cantor An overview of quantitative EEG and its applications to neurofeedback
Kar et al. Effect of sleep deprivation on functional connectivity of EEG channels
US20170065199A1 (en) Monitoring human brain excitability using synchronization measures
Liyakat et al. Development of Machine Learning based Epileptic Seizureprediction using Web of Things (WoT)
Aydın et al. Machine learning classification of maladaptive rumination and cognitive distraction in terms of frequency specific complexity
Handa et al. Open and free EEG datasets for epilepsy diagnosis
Zhang et al. Multimodal data for the detection of freezing of gait in Parkinson’s disease
Vandana et al. A review of EEG signal analysis for diagnosis of neurological disorders using machine learning
Euler et al. Reliable activation to novel stimuli predicts higher fluid intelligence
Dedeo et al. Early detection of pediatric seizures in the high gamma band
Kamel et al. EEG classification for seizure prediction using SVM vs deep ANN
Soshi et al. Neurophysiological modulation of rapid emotional face processing is associated with impulsivity traits
EP3768154A1 (fr) Méthode de génération d'un indicateur d'état d'une personne dans le coma
WO2019162850A1 (fr) Système portable pour la détection en temps réel de crises d'épilepsie
Bono et al. Classifying human emotional states using wireless EEG based ERP and functional connectivity measures
Popov et al. Cortico-ocular coupling in the service of episodic memory formation
Theodorakopoulou Machine learning data preparation for epileptic seizures prediction.
FR3100972A1 (fr) Système de détermination d’une émotion d’un utilisateur
Smith Assessing mild cognitive impairment using portable electroencephalography: the P300 component
Obukhov et al. Methods and Algorithms for Extracting and Classifying Diagnostic Information from Electroencephalograms and Videos

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003767930

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006015034

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10531311

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003767930

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10531311

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP