WO2004049475A1 - Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same - Google Patents

Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same Download PDF

Info

Publication number
WO2004049475A1
WO2004049475A1 PCT/JP2003/014903 JP0314903W WO2004049475A1 WO 2004049475 A1 WO2004049475 A1 WO 2004049475A1 JP 0314903 W JP0314903 W JP 0314903W WO 2004049475 A1 WO2004049475 A1 WO 2004049475A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
polymer
battery
negative electrode
vinylidene fluoride
Prior art date
Application number
PCT/JP2003/014903
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuyasu Sakuma
Nobuo Ahiko
Tomoaki Kawakami
Takumi Katsurao
Original Assignee
Kureha Chemical Industry Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Company, Limited filed Critical Kureha Chemical Industry Company, Limited
Priority to JP2004555003A priority Critical patent/JP4851092B2/en
Priority to AU2003284631A priority patent/AU2003284631A1/en
Publication of WO2004049475A1 publication Critical patent/WO2004049475A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-aqueous electrolyte battery electrode binder composition and electrode mixture using the same are non-aqueous electrolyte battery electrode binder composition and electrode mixture using the same,
  • the present invention relates to an electrode binder used in the production of a nonaqueous electrolyte battery, particularly a lithium ion battery, an electrode mixture using the same, an electrode, and a nonaqueous electrolyte battery using the same.
  • Non-aqueous rechargeable batteries using lithium as batteries that can obtain more energy with a small volume and weight are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, and video camcorders. Has been used.
  • the electrode structure for a lithium-ion battery is used in a state where an active material and a conductive agent are held on a current collector by a binder.
  • a lithium composite oxide is used as a positive electrode active material
  • a carbon-based material is used as a negative electrode active material
  • a carbon-based material is used as a negative electrode active material.
  • a vinylidene fluoride polymer is mainly used as a binder for binding the active materials.
  • Japanese Patent Application Laid-Open No. 11-329443 exemplifies a mixture of a vinylidene fluoride-based polymer and a cellulose-based polymer having no functional group. It was not considered at all.
  • the main problem of the present invention is to maintain the required high capacity of a non-aqueous electrolyte battery while improving its performance stability and safety in the event of an internal short circuit.
  • An object of the present invention is to provide a binder composition for an electrode, and an electrode and a non-aqueous electrolyte battery using the same.
  • a positive electrode and / or a negative electrode of a nonaqueous electrolyte battery including a positive electrode capable of inserting and extracting lithium and a negative electrode.
  • a binder composition used as a binder of the above comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer having a hydroxyl group and / or a carbonyl group in the molecule. It is intended to provide a binder composition for a non-aqueous electrolyte battery electrode characterized by the following.
  • the present invention provides an electrode mixture containing the binder composition and an electrode active material, an electrode having a layer of the electrode mixture on a current collector, and at least one of a positive electrode and a negative electrode.
  • the present invention provides a non-aqueous electrolyte battery including:
  • the carboxyl group ⁇ glycidyl group in the vinylidene fluoride polymer and the hydroxyl group and carbonyl group of the polar polymer form a hydrogen bond with the hydroxyl group on the surface of the current collector and the surface of the electrode active material, and the adhesiveness as a binder
  • a lithium ion selective permeable film is formed on the surface of the electrode active material to block the permeation of the non-aqueous electrolyte, and is synthesized by the reaction between the electrolyte and lithium ions during charging and discharging on the surface of the electrode active material.
  • Examples of the functional group-containing vinylidene fluoride-based polymer of the present invention include vinylidene fluoride monomer alone or other monomers copolymerizable with a vinylidene fluoride monomer, for example, carbonization of ethylene or propylene.
  • Copolymers are preferably used.
  • Monomers having a functional group include those having a carboxyl group and those having a glycidyl group.
  • carboxyl group-containing monomer examples include unsaturated monobasic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, and monomethyl maleate which is a monoalkyl ester thereof. Esters, monoethyl maleate, monomethyl citraconic acid, monoethyl citraconic ester and the like.
  • the glycidyl group-containing monomer examples include acrylidicidyl ether, methacrylic glycidyl ether, glycidinole crotonate, and dalicidyl acetyl acetate.
  • a functional group-containing vinylidene fluoride polymer obtained by copolymerizing at least one or more of these is preferably used.
  • These functional group-containing vinylidene fluoride polymers can be obtained by known methods such as suspension polymerization, emulsion polymerization, and solution polymerization.
  • a vinylidene fluoride-based polymer may be dehydrofluorinated with a heated base or the like, and then treated with an organic acid or an oxidizing agent to obtain a polymer containing a functional group.
  • the molecular weight of a functional group-containing vinylidene fluoride polymer is determined by measuring the intrinsic viscosity (4 g of resin in 1 liter of N, N —The logarithmic viscosity at 30 ° C. of a solution dissolved in dimethylformamide) is 0.8 to 20 dl / g, preferably 1.0 to 20 dl Zg, and more preferably 1.0 to 1 dl / g. 5 dl / g, more preferably 1.2 to 15 dl Zg is suitably used. If the intrinsic viscosity of the vinylidene fluoride polymer is less than the above range, the viscosity of the electrode mixture becomes low and coating becomes difficult, and if it exceeds the above range, dissolution in an organic solvent becomes difficult and Absent.
  • the polar polymer used in the present invention includes a polymer having a hydroxyl group and a polymer having a carboxy group.
  • the polymer having a hydroxyl group include an ethylene vinylinoleanol copolymer, a senorelose polymer, and a vinylol phenol polymer.
  • the polymer having a carboxy group include a polyacrylic acid-based polymer, more specifically, polyacrylic acid, a polyacrylic acid cross-linked polymer, and metal salts thereof.
  • the polar polymer include polybutylpyrrolidone Is also preferably used.
  • a polar polymer having a hydroxyl group or a hydroxyl group, a homopolymer of vinylidene fluoride, vinylidene fluoride and fusidani vinyl a copolymer of vinylidene fluoride and a monomer copolymerizable with vinylidene fluoride such as trifluoroethylene, chlorofluoroethylene, tetrafluoroethylene, and hexafluoropropylene can be added.
  • the mixing ratio between the functional group-containing vinylidene fluoride copolymer and the polar polymer is 10 to 99% by weight, preferably, the functional group-containing vinylidene fluoride copolymer. 20-95 weight. / 0 , the polar polymer is 1 to 90% by weight, preferably 5 to 80% by weight. If the mixing ratio of the polar polymer is less than the above range, the state of coating on the surface of the active material is insufficient and the contact area between the surface of the active material and the electrolytic solution is increased, resulting in poor battery safety. Further, the adhesiveness between the polymer electrode and the current collector and the binding property between the electrode active materials are reduced, and there is a concern that the discharge capacity during repeated charge and discharge is reduced.
  • the mixing ratio of the polar polymer is larger than the above range, the film formed on the electrode surface becomes too thick, the lithium ion permeability at the interface between the active material and the electrolyte is inferior, and the internal resistance increases. There is a concern that the charge / discharge capacity may decrease.
  • the binder composition of the present invention is usually prepared by dissolving a functional group-containing vinylidene fluoride polymer and a polar polymer constituting the binder composition in a solvent, and further dissolving the positive electrode or negative electrode active material and, if necessary, An auxiliary agent such as a conductive auxiliary agent to be added is dispersed to form a slurry-like electrode mixture, which is used for manufacturing an electrode.
  • the solvent is preferably a polar organic solvent, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, Hexamethylphosphamide, triethyl phosphate, acetone and the like. These organic solvents can be used alone or in combination of two or more.
  • the active material of the lithium ion secondary battery for other in the case of the positive electrode, the general formula L i MY 2 (M is C o, N i, F e , Mn, C r, transition metals V, etc. At least one of the following: Y is a chalcogen element such as 0 or S); in the case of a negative electrode, natural graphite, artificial graphite, coke, activated carbon, phenolic resin, pitch, etc.
  • powdery carbonaceous material a metal oxide-based G e 0, G e 0 2 , SO, S n0 2, P b O, P b 0 2 or the like or a mixed metal oxide thereof, S i, S i S
  • a key compound such as n and a silicon compound are used.
  • the binder composition is used in an amount of 0.1 to 30 parts by weight, and especially 0 to 30 parts by weight, based on 100 parts by weight of the electrode (positive electrode or negative electrode) active material and the conductive additive (these are collectively referred to as “powder electrode material”). It is preferable to use 5 to 20 parts by weight.
  • the solvent may be used alone or as a mixture of two or more, and the binder composition may be used in an amount of 0.1 to 30 parts by weight, particularly 100 parts by weight of the solvent. It is preferable to use it at a ratio of 1 to 20 parts by weight.
  • a homogenizer As a device used for mixing the mixture comprising the binder composition, the powdered electrode material, and the organic solvent, a homogenizer, a multiaxial planetary dispersion / mixing / kneading machine or an emulsifier can be used, but is not limited thereto. It is not done.
  • the mixture slurry prepared by the above method is uniformly dispersed and mixed with the powdered electrode material and the binder composition, and is applied to the current collector with good applicability.
  • the coating method may be a known method, and among them, the doctor blade method is preferably used.
  • the mixture on the current collector is solvent-dried at, for example, 50 to 170 ° C., and if necessary, subjected to a pressing step to form an electrode structure for a non-aqueous secondary battery or the like.
  • the binder composition and the electrode mixture of the present invention are used for forming at least one of a positive electrode and a negative electrode, and if any one of them is preferably used for forming a negative electrode. This is because the powdered electrode material constituting the negative electrode requires a binder having higher adhesiveness, and the binder composition of the present invention is particularly suitable.
  • the polymer slurry is dehydrated, washed with water, dehydrated, and then dried at 80 ° C for 20 hours.
  • the functional group-containing hydrofluoric acid of the present invention having a yield of 89% and an inherent viscosity of 1.1 d 1 A vinylidene fluoride polymer A was obtained.
  • the polymer slurry is dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours.
  • a vinylidene fluoride polymer having a yield of 91% and an inherent viscosity of 1.1 d 1 / g is obtained.
  • C polyvinylidene fluoride
  • N-methyl-2-pyrrolidone was added to 94 parts by weight of lithium cobaltate ("Cellseed C-5", manufactured by Nippon Chemical Industry), 3 parts by weight of vinylidene fluoride polymer C, and 3 parts by weight of carbon black. 43 parts by weight were added and mixed to prepare a positive electrode mixture. The obtained mixture was uniformly applied on a 10 / m-thick aluminum foil so that the film thickness after drying was about 100 ⁇ , and dried at 130 ° C for 25 minutes. A positive electrode structure (active material amount: 29 1 g / m 2 ) was obtained.
  • a negative electrode mixture composition A of the present invention was prepared by mixing 88 parts by weight of spherical natural graphite powder (produced in China) with an average particle diameter of 30 ⁇ m and 67 parts by weight of NMP. The resulting mixture was applied evenly on a copper foil with a thickness of 8 / zm to a thickness of about 100 / xm after drying, and dried at 130 ° C for 25 minutes. A negative electrode structure A (the amount of the active material: 163 g / m 2 ) was obtained.
  • the negative electrode structure applied to the current collector and dried was used as a sample, and the peel strength of the electrode mixture layer from the current collector was measured by a 180 ° peel test in accordance with JIS K 6854.
  • Battery A was charged to 4.2 V with a constant current of 0.2 mA, then discharged to 3.0 V with a constant current of 0.2 mA, and then 4.37 V with a constant current of 1 mA. Charged up to.
  • the charge capacity (integral value of the charge current value) of the battery in the second charge was 133 mAh.
  • the above charged battery A was allowed to stand on a wooden plate with the negative electrode facing up, and a nail with a diameter of 1 mm was stabbed and penetrated.
  • the rise in battery surface temperature was measured using an infrared thermograph (“TVS-100” manufactured by Avionics).
  • the maximum temperature rise of battery A after nail penetration was 3 ° C.
  • Example 1 The procedure of Example 1 was repeated except that polyacrylic acid (PAA) (“AQUPEC HV—501”, manufactured by Sumitomo Seika) was used instead of EVOH in the fabrication of the negative electrode. Got B.
  • PAA polyacrylic acid
  • the peel strength of negative electrode structure B was 1. O g f Zmm Battery B had a charge capacity of 135 mAh, and the maximum temperature rise in the nail penetration test was 3.5 ° C.
  • Example 1 The procedure of Example 1 was repeated except that the functional group-containing vinylidene fluoride polymer B was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode. Got C.
  • the peel strength of negative electrode structure C was 4.3 gf / mm, the charge capacity of battery C was 13 OmAh, and the maximum temperature rise in the nail penetration test was 3 ° C.
  • Example 4 The same procedure as in Example 1 was carried out, except that hydroxethyl cellulose (HEC) (“HEC Daicel EP850”, manufactured by Daicel Chemical Industries) was used instead of EVOH in the preparation of the negative electrode. Battery D was obtained.
  • HEC hydroxethyl cellulose
  • the peel strength of negative electrode structure D was 0.9 gf / mm, the charge capacity of battery D was 133 mAh, and the maximum temperature rise in the nail penetration test was 3 ° C.
  • Example 1 The procedure of Example 1 was repeated, except that polyparabule fuenoren (PPVP) (“Markalinker I-S-2PJ”, Maruzen Petrochemical Co., Ltd.) was used instead of EVOH in the preparation of the negative electrode. Structure H and battery H were obtained.
  • PPVP polyparabule fuenoren
  • the peel strength of the negative electrode structure H was 5.4 g f Zmm, the charging capacity of the battery H was 134 mAh, and the maximum temperature rise in the nail penetration test was 4 ° C.
  • Example 1 The procedure of Example 1 was repeated, except that the amount of the functional group-containing vinylidene fluoride polymer A was increased from 11 g to 12 g in the preparation of the negative electrode, and EV0H was not used. Battery E was obtained.
  • the peel strength of the negative electrode structure E was 0.9 gf / mm, the charge capacity of the battery E was 133 mAh, and the maximum temperature rise in the nail penetration test was 12 ° C.
  • Example 3 The same procedure as in Example 3 was carried out except that the amount of the functional group-containing vinylidene fluoride polymer B was increased from 11 g to 12 g in the preparation of the negative electrode, and EVOH was not used. Battery F was obtained.
  • the peel strength of the negative electrode structure F was 3.1 g f / mm, the charge capacity of the battery F was 124 mAh, and the maximum temperature rise in the nail penetration test was 6.5 ° C.
  • a negative electrode structure G and a battery G were obtained in the same manner as in Example 1, except that a vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode.
  • the peel strength of the negative electrode structure G was 0.1 ⁇ g f / mm, the charge capacity of the battery G was 134 mAh, and the maximum temperature rise in the nail penetration test was 6 ° C.
  • a negative electrode structure G and a battery G were obtained in the same manner as in Comparative Example 1, except that the functional group-containing vinylidene fluoride polymer A was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode.
  • Peel strength of negative electrode structure H is 0.7 f / mm Battery H has a charge capacity of 13 mAh The maximum temperature rise in the nail penetration test was 9 ° C.
  • the binder for the positive electrode Z or the negative electrode was a functional group-containing vinylidene fluoride polymer.

Abstract

A composition comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer having a hydroxyl group and/or a carbonyl group in the molecule is used as a binder for an electrode (a positive or negative electrode) active material. Consequently, a nonaqueous electrolyte battery can have improved performance stability and improved safety at the time of internal short-circuiting while maintaining a necessary large capacity.

Description

非水電解液電池の電極用バインダー組成物およびそれを用いた電極合剤、  Non-aqueous electrolyte battery electrode binder composition and electrode mixture using the same,
電極並びに電池 技術分野  Electrodes and batteries Technical field
本発明は、 非水系電解液電池、 特にリチウムイオン電池、 の製造に用いられる電 極用バインダー、 それを用いた電極合剤、 電極およびそれを用いた非水電解液電池 に関する。 明  The present invention relates to an electrode binder used in the production of a nonaqueous electrolyte battery, particularly a lithium ion battery, an electrode mixture using the same, an electrode, and a nonaqueous electrolyte battery using the same. Light
背景技術 Background art
近年電子技術の発展は目覚しく、 各種の機器が小型軽量化されてきている。 この 電子機器の小型軽量化と相俟って、 その電源書となる電池の小型軽量化の要望も非常 に大きくなつてきている。 少ない容積および重量で、 より大きなエネルギーを得る ことができる電池として、 リチウムを用いた非水系二次電池が、 主として携帯電話 やパーソナルコンピュータ、 ビデオカムコーダなどの家庭で用いられる小型電子機 器の電源として用いられてきた。  In recent years, the development of electronic technology has been remarkable, and various devices have been reduced in size and weight. Along with the downsizing and weight reduction of electronic devices, demands for downsizing and weight reduction of batteries serving as power sources have become very large. Non-aqueous rechargeable batteries using lithium as batteries that can obtain more energy with a small volume and weight are used as power sources for small electronic devices mainly used in homes such as mobile phones, personal computers, and video camcorders. Has been used.
リチウムイオン電池用電極構造体は、 活物質、 導電剤がバインダーにより集電体 に保持された状態で使用され、 正極活物質にはリチウム複合酸化物、 負極活物質に は炭素系材料が、 またそれら活物質を結着するためのバインダ一にはフッ化ビニリ デン系重合体が、 主として用いられる。  The electrode structure for a lithium-ion battery is used in a state where an active material and a conductive agent are held on a current collector by a binder. A lithium composite oxide is used as a positive electrode active material, a carbon-based material is used as a negative electrode active material, and a carbon-based material is used as a negative electrode active material. A vinylidene fluoride polymer is mainly used as a binder for binding the active materials.
特開平 1 1— 3 2 9 4 4 3号公報には官能基を持たないフッ化ビニリデン系重合 体とセルロース系重合体の混合物が例示されるが、 結着性が十分でなく、 安全性に ついても全く考慮されていなかった。  Japanese Patent Application Laid-Open No. 11-329443 exemplifies a mixture of a vinylidene fluoride-based polymer and a cellulose-based polymer having no functional group. It was not considered at all.
しかしながら、 機器の小型軽量化と電池持続時間の増長という市場の要求は、 リ チウムイオン電池に更なる高容量化を課し、 従来に比較し、 電池内部では電極を詰 め込むなどして容量か増加した反面、 電池内部短絡が起こった場合には過大な電流 が局所的に流れてしまい、 電池の急激な温度上昇を招いて、 電池の破裂、 発煙、 発 火等の危険な状態を引き起こす危険性が増大するという問題があった。 発明の開示  However, the market demand for smaller and lighter equipment and longer battery life has imposed higher capacity on lithium-ion batteries, and the capacity inside the battery has been reduced by clogging the electrodes, etc. On the other hand, if a short circuit occurs inside the battery, an excessive current will flow locally, causing a sudden rise in the temperature of the battery, causing a dangerous condition such as explosion, smoke or ignition of the battery. There is a problem that the property increases. Disclosure of the invention
したがって、 本発明の主要な課題は、 非水電解液電池の必要な高容量性を維持し つつ、 その性能安定性ならびに内部短絡時の安全性を向上した非水電解液電池の電 極用バインダー組成物、 ならびにこれを用いる電極およぴ非水電解液電池を提供す ることにある。 Therefore, the main problem of the present invention is to maintain the required high capacity of a non-aqueous electrolyte battery while improving its performance stability and safety in the event of an internal short circuit. An object of the present invention is to provide a binder composition for an electrode, and an electrode and a non-aqueous electrolyte battery using the same.
本発明は、 上記の課題を解決するものであって、 その第 1の観点において、 リチ ゥムを吸蔵 ·放出可能な正極と負極とを備えた非水電解液電池の正極および/また は負極の結着剤として用いられるバインダー組成物であって、 少なく とも官能基含 有フッ化ビニリデン系重合体おょぴ分子内にヒドロキシル基および またはカルボ 二ル基を含有する有極性重合体からなることを特徴とする非水電解液電池電極用バ ィンダ一組成物を提供するものである。  The present invention solves the above-mentioned problems, and according to a first aspect, a positive electrode and / or a negative electrode of a nonaqueous electrolyte battery including a positive electrode capable of inserting and extracting lithium and a negative electrode. A binder composition used as a binder of the above, comprising at least a functional group-containing vinylidene fluoride polymer and a polar polymer having a hydroxyl group and / or a carbonyl group in the molecule. It is intended to provide a binder composition for a non-aqueous electrolyte battery electrode characterized by the following.
また、 本発明は別の観点において、 上記バインダー組成物と電極活物質を含む電 極合剤、 集電体上に上記電極合剤の層を有する電極ならびに該電極を正極および負 極の少なくとも一方として含む非水電解液電池を提供するものである。  In another aspect, the present invention provides an electrode mixture containing the binder composition and an electrode active material, an electrode having a layer of the electrode mixture on a current collector, and at least one of a positive electrode and a negative electrode. The present invention provides a non-aqueous electrolyte battery including:
上記したバインダ一組成物が、 非水電解液電池の必要な高容量性を維持しつつ、 その性能安定性ならびに内部短絡時の安全性を向上できる理由は必ずしも明らかで ないが、 官能基含有フッ化ビニリデン系重合体中のカルボキシル基ゃグリシジル基、 および有極性重合体のヒ ドロキシル基やカルボニル基が、 集電体表面や電極活物質 表面の水酸基と水素結合を形成しバインダ一として接着性を向上させるとともに、 電極活物質表面に、 非水電解液の透過を遮断する、 リチウムイオンの選択的透過性 皮膜を形成し、 電極活物質表面で充放電時に電解液とリチウムイオンの反応で合成 されるリチウム化合物の生成を抑えるので、 充電された電池内部の温度が短絡等で 上昇しても熱的に不安定なリチウム化合物が少なく分解発熱が抑えられるとともに 活物質内のリチウムイオンと電解液の直接反応をも抑制する働きがあると考えられ る。 また、 後述の内部短絡時の温度上昇を予見するために行った釘刺し試験におけ る温度上昇と、 バインダーの持つ接着強度とが逆の相関を示すことから見て、 内部 短絡時の安全性の向上 (温度上昇の低下) にはバインダーの持つ接着性も重要な寄 与をしているものと解される。 すなわち、 バインダーの持つ、 (ィ) リチウムィォ ンの選択透過性と、 (口) 接着強度の向上、 が相乗的に内部短絡時の安全性向上に 寄与しているものと解される。 好ましい実施の形態  It is not clear why the binder composition described above can improve the performance stability and safety in the event of an internal short circuit while maintaining the required high capacity of a non-aqueous electrolyte battery, but it is not clear why. The carboxyl group ゃ glycidyl group in the vinylidene fluoride polymer and the hydroxyl group and carbonyl group of the polar polymer form a hydrogen bond with the hydroxyl group on the surface of the current collector and the surface of the electrode active material, and the adhesiveness as a binder A lithium ion selective permeable film is formed on the surface of the electrode active material to block the permeation of the non-aqueous electrolyte, and is synthesized by the reaction between the electrolyte and lithium ions during charging and discharging on the surface of the electrode active material. The generation of lithium compounds is suppressed, so even if the temperature inside the charged battery rises due to a short circuit, etc., there are few thermally unstable lithium compounds and the decomposition heat generation is suppressed. In addition, it is thought to have the function of suppressing the direct reaction between lithium ions in the active material and the electrolyte. In addition, the temperature rise in a nail penetration test, which was performed to predict the temperature rise during an internal short circuit described later, and the adhesive strength of the binder show an inverse correlation, indicating that the safety during an internal short circuit It is understood that the adhesiveness of the binder also plays an important role in improving (decreasing the temperature rise). In other words, it can be understood that the (a) selective permeability of lithium ion and the (mouth) improvement in adhesive strength of the binder synergistically contribute to the improvement of safety in the event of an internal short circuit. Preferred embodiment
本発明の官能基含有フッ化ビニリデン系重合体としては、 フッ化ビニリデン単量 体の単独、 又はフッ化ビニリデン単量体と共重合可能な他の単量体、 例えばェチレ ン、 プロピレン等の炭化水素系単量体、 またはフッ化ビュル、 トリフルォロェチレ ン、 クロ口 トリフノレ才ロエチレン、 テトラフノレォロエチレン、 へキサフノレオロェチ レン、 へキサフルォロプロピレン、 フルォロアノレキノレビ二ノレエーテル等のフツイ匕ビ 二リデン以外の含フッ素単量体 (好ましくはフッ化ビニリデン単量体との合計量の 20重量%以下) の混合物、 の 100重量部に対し、 0. 1〜 3重量部の官能基を 有する単量体を加えて得られた共重合体が好ましく用いられる。 官能基を有する単 量体にはカルボキシル基を有するものと、 グリシジル基を有するものが含まれる。 カルボキシル基を含有する単量体としては、 例えば、 アクリル酸、 クロトン酸等の 不飽和一塩基酸、 マレイン酸、 シトラコン酸等の不飽和二塩基酸、 もしくはそれら のモノアルキルエステルであるマレイン酸モノメチルエステル、 マレイン酸モノェ チルエステル、 シトラコン酸モノメチルエステル、 シトラコン酸モノェチルエステ ル等がある。 また、 グリシジル基を含有する単量体としては、 例えば、 ァリルダリ シジルエーテル、 メタァリルグリシジルエーテル、 クロ トン酸グリシジノレエステル、 ァリル酢酸ダリシジルエステル等がある。 これらのうちから少なくとも 1種以上を 共重合して得られる官能基含有フッ化ビニリデン系重合体が好ましく用いられる。 これら官能基含有フッ化ビニリデン系重合体は、 懸濁重合、 乳化重合、 溶液重合等 の公知の方法により得られる。 また、 官能基導入方法としては、 フッ化ビニリデン 系重合体を加熱塩基等で脱フッ酸した後に、 有機酸あるいは酸化剤で処理し、 官能 基を含有する重合体を得ることもできる。 Examples of the functional group-containing vinylidene fluoride-based polymer of the present invention include vinylidene fluoride monomer alone or other monomers copolymerizable with a vinylidene fluoride monomer, for example, carbonization of ethylene or propylene. Hydrogen-based monomer, or butyl fluoride, trifluoroethyl Fluorine-containing monomers other than fusidylvinylidene, such as triethylene, tetraphthanol, ethylene, hexafolenoleethylene, hexafluoropropylene, and fluoroanolequinolebininoleether (Preferably 20% by weight or less of the total amount with the vinylidene fluoride monomer), and 0.1 to 3 parts by weight of a monomer having a functional group is added to 100 parts by weight of the mixture. Copolymers are preferably used. Monomers having a functional group include those having a carboxyl group and those having a glycidyl group. Examples of the carboxyl group-containing monomer include unsaturated monobasic acids such as acrylic acid and crotonic acid, unsaturated dibasic acids such as maleic acid and citraconic acid, and monomethyl maleate which is a monoalkyl ester thereof. Esters, monoethyl maleate, monomethyl citraconic acid, monoethyl citraconic ester and the like. Examples of the glycidyl group-containing monomer include acrylidicidyl ether, methacrylic glycidyl ether, glycidinole crotonate, and dalicidyl acetyl acetate. A functional group-containing vinylidene fluoride polymer obtained by copolymerizing at least one or more of these is preferably used. These functional group-containing vinylidene fluoride polymers can be obtained by known methods such as suspension polymerization, emulsion polymerization, and solution polymerization. As a method for introducing a functional group, a vinylidene fluoride-based polymer may be dehydrofluorinated with a heated base or the like, and then treated with an organic acid or an oxidizing agent to obtain a polymer containing a functional group.
官能基含有フッ化ビニリデン系重合体の分子量は、 特開平 9一 28 9023号公 報に開示されているように、 その目安としてインへレント粘度 (樹脂 4 gを 1 リ ツ トルの N、 N—ジメチルホルムアミ ドに溶解させた溶液の 30°Cにおける対数粘度 をいう) において、 0. 8〜 20 d l /g、 好ましくは 1. 0〜20 d l Zg、 よ り好ましくは 1. 0~1 5 d l /g、 さらに好ましくは 1. 2〜; 1 5 d l Zgであ るものが好適に用いられる。 フッ化ビニリデン系重合体のインへレント粘度が、 上 記範囲未満では、 電極合剤の粘度が低くなり塗工が困難になり、 上記範囲を超える と有機溶媒への溶解が困難になり適当ではない。  As disclosed in JP-A-9-189023, the molecular weight of a functional group-containing vinylidene fluoride polymer is determined by measuring the intrinsic viscosity (4 g of resin in 1 liter of N, N —The logarithmic viscosity at 30 ° C. of a solution dissolved in dimethylformamide) is 0.8 to 20 dl / g, preferably 1.0 to 20 dl Zg, and more preferably 1.0 to 1 dl / g. 5 dl / g, more preferably 1.2 to 15 dl Zg is suitably used. If the intrinsic viscosity of the vinylidene fluoride polymer is less than the above range, the viscosity of the electrode mixture becomes low and coating becomes difficult, and if it exceeds the above range, dissolution in an organic solvent becomes difficult and Absent.
本発明において使用される有極性重合体には、 ヒ ドロキシル基を有する重合体と、 カルボ二ル基を有する重合体が含まれる。 ヒ ドロキシル基を有する重合体の例とし ては、 エチレンビニノレアノレコーノレ共重合体、 セノレロース系重合体、 ビニノレフエノー ル系重合体が含まれる。 また、 カルボ二ル基を有する重合体としては、 ポリアクリ ル酸系重合体、 より具体的には、 ポリアクリル酸、 ポリアクリル酸架橋重合体、 そ れらの金属塩類等が含まれる。 有極性重合体としては、 またポリビュルピロリ ドン も好適に用いられる。 The polar polymer used in the present invention includes a polymer having a hydroxyl group and a polymer having a carboxy group. Examples of the polymer having a hydroxyl group include an ethylene vinylinoleanol copolymer, a senorelose polymer, and a vinylol phenol polymer. Examples of the polymer having a carboxy group include a polyacrylic acid-based polymer, more specifically, polyacrylic acid, a polyacrylic acid cross-linked polymer, and metal salts thereof. Examples of the polar polymer include polybutylpyrrolidone Is also preferably used.
必要に応じて、 官能基含有フッ化ビニリデン系重合体、 ヒ ドロキシル基または力 ルポ二ル基を有する有極性重合体の他に、 フッ化ビニリデンの単独重合体、 フッ化 ビニリデンとフツイ匕ビニル、 トリフルォロエチレン、 クロ口 トリフルォロエチレン、 テトラフルォロエチレン、 へキサフルォロプロピレン等のフッ化ビニリデンと共重 合可能なモノマーとの共重合体等を加えることができる。  If necessary, in addition to a functional group-containing vinylidene fluoride-based polymer, a polar polymer having a hydroxyl group or a hydroxyl group, a homopolymer of vinylidene fluoride, vinylidene fluoride and fusidani vinyl, A copolymer of vinylidene fluoride and a monomer copolymerizable with vinylidene fluoride such as trifluoroethylene, chlorofluoroethylene, tetrafluoroethylene, and hexafluoropropylene can be added.
本発明において、 官能基含有フッ化ビニリデン系共重合体と有極性重合体との混 合比率としては、 官能基含有フッ化ビニリデン系共重合体が 1 0〜 9 9重量%、 好 ましくは 2 0〜 9 5重量。 /0で、 有極性重合体が 1〜 90重量%、 好ましくは 5〜 8 0重量%である。 有極性重合体の混合比率が上記範囲より少ない場合には、 活物質 表面の被覆状態が不十分で活物質表面と電解液との接触面積が広くなり電池安全性 が劣ってしまう。 さらに、 重合体の電極と集電体の接着性や電極活物質同士の結着 性が低下し、 繰り返し充放電での放電容量の低下が懸念される。 In the present invention, the mixing ratio between the functional group-containing vinylidene fluoride copolymer and the polar polymer is 10 to 99% by weight, preferably, the functional group-containing vinylidene fluoride copolymer. 20-95 weight. / 0 , the polar polymer is 1 to 90% by weight, preferably 5 to 80% by weight. If the mixing ratio of the polar polymer is less than the above range, the state of coating on the surface of the active material is insufficient and the contact area between the surface of the active material and the electrolytic solution is increased, resulting in poor battery safety. Further, the adhesiveness between the polymer electrode and the current collector and the binding property between the electrode active materials are reduced, and there is a concern that the discharge capacity during repeated charge and discharge is reduced.
一方、 有極性重合体の混合比率が上記範囲より多い場合には、 電極表面に形成さ れる被膜が厚くなりすぎ、 活物質と電解液界面でのリチウムイオン透過性が劣り、 内部抵抗が増大し充放電容量の低下が懸念される。  On the other hand, if the mixing ratio of the polar polymer is larger than the above range, the film formed on the electrode surface becomes too thick, the lithium ion permeability at the interface between the active material and the electrolyte is inferior, and the internal resistance increases. There is a concern that the charge / discharge capacity may decrease.
本発明のバインダー組成物は、 通常、 バインダー組成物を構成する官能基含有フ ッ化ビ二リデン系重合体および有極性重合体を溶剤に溶解し、 更に正極または負極 活物質ならびに必要に応じて添加される導電補助剤等の助剤を分散させて、 スラリ 一状の電極合剤を形成して、 電極の製造に用いられる。 溶剤としては、 好ましくは 極性を有する有機溶媒であり、 例えば N—メチルー 2—ピロリ ドン、 N, N—ジメ チルホルムアミ ド、 N, N—ジメチルァセトアミ ド、 N, N—ジメチルスルホキシ ド、 へキサメチルホスホアミ ド、 トリェチルホスフェイ ト、 アセトンなどが挙げら れる。 これらの有機溶媒は単独での使用のみならず二種以上を混合して用いること もできる。  The binder composition of the present invention is usually prepared by dissolving a functional group-containing vinylidene fluoride polymer and a polar polymer constituting the binder composition in a solvent, and further dissolving the positive electrode or negative electrode active material and, if necessary, An auxiliary agent such as a conductive auxiliary agent to be added is dispersed to form a slurry-like electrode mixture, which is used for manufacturing an electrode. The solvent is preferably a polar organic solvent, such as N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide, Hexamethylphosphamide, triethyl phosphate, acetone and the like. These organic solvents can be used alone or in combination of two or more.
本発明において、 リチウムイオン二次電他用の活物質としては、 正極の場合は、 一般式 L i MY2 (Mは C o, N i , F e , Mn, C r , V等の遷移金属の少なく とも一種: Yは 0、 S等のカルコゲン元素) で表される複合金属カルコゲン化合物、 負極の場合は、 天然黒鉛、 人造黒鉛、 コークス、 活性炭、 フエノール樹脂やピッチ 等を焼成炭化したもの等の粉末状炭素質材料、 金属酸化物系の G e 0, G e 02, SO, S n02, P b O, P b 02等あるいはこれらの複合金属酸化物, S i , S i S n等のケィ秦およびケィ素化合物等が用いられる。 バインダー組成物は、 電極 (正極または負極) 活物質および導電助剤 (これらを 包括的に 「粉末電極材料」 と称する) 1 00重量部に対して、 0. 1 ~3 0重量部、 特に 0. 5〜20重量部の割合で使用することが好ましい。 In the present invention, the active material of the lithium ion secondary battery for other, in the case of the positive electrode, the general formula L i MY 2 (M is C o, N i, F e , Mn, C r, transition metals V, etc. At least one of the following: Y is a chalcogen element such as 0 or S); in the case of a negative electrode, natural graphite, artificial graphite, coke, activated carbon, phenolic resin, pitch, etc. powdery carbonaceous material, a metal oxide-based G e 0, G e 0 2 , SO, S n0 2, P b O, P b 0 2 or the like or a mixed metal oxide thereof, S i, S i S For example, a key compound such as n and a silicon compound are used. The binder composition is used in an amount of 0.1 to 30 parts by weight, and especially 0 to 30 parts by weight, based on 100 parts by weight of the electrode (positive electrode or negative electrode) active material and the conductive additive (these are collectively referred to as “powder electrode material”). It is preferable to use 5 to 20 parts by weight.
また、 予めバインダー組成物を有機溶剤に溶かして使用する場合には、 溶剤は、 単独又は 2種以上混合して、 溶剤 1 00重量部にあたり、 バインダー組成物が 0. 1~30重量部、 特に 1~20重量部となる割合で使用することが好ましい。  When the binder composition is used by dissolving it in an organic solvent in advance, the solvent may be used alone or as a mixture of two or more, and the binder composition may be used in an amount of 0.1 to 30 parts by weight, particularly 100 parts by weight of the solvent. It is preferable to use it at a ratio of 1 to 20 parts by weight.
バインダー組成物、 粉末電極材料、 有機溶媒からなる合剤を混合するのに用いら れる装置としては、 ホモジナイザーや多軸遊星方式の分散 ·混合 ·混練機や乳化機 が使用できるが、 これらに限定されるものではない。  As a device used for mixing the mixture comprising the binder composition, the powdered electrode material, and the organic solvent, a homogenizer, a multiaxial planetary dispersion / mixing / kneading machine or an emulsifier can be used, but is not limited thereto. It is not done.
上記の方法にて調製された合剤スラ リーは粉末電極材料、 バインダー組成物が均 一に分散 ·混合され、 良好な塗布性で集電体に塗布される。 塗布の方法は公知の方 法でよく、 なかでもドクタープレード法が好ましく用いられる。 集電体上の合剤は、 例えば 50〜1 70°Cで溶媒乾燥され、 必要に応じてプレス工程を経て、 非水系二 次電他用の電極構造体が形成される。  The mixture slurry prepared by the above method is uniformly dispersed and mixed with the powdered electrode material and the binder composition, and is applied to the current collector with good applicability. The coating method may be a known method, and among them, the doctor blade method is preferably used. The mixture on the current collector is solvent-dried at, for example, 50 to 170 ° C., and if necessary, subjected to a pressing step to form an electrode structure for a non-aqueous secondary battery or the like.
本発明のバインダー組成物および電極合剤は、 正極および負極の少なくとも一方 の形成に用いられるが、 いずれか一方ということであれば負極形成に用いることが 好ましい。 これは、 負極を構成する粉末電極材料が、 より接着性の高いバインダー を要求し、 本発明のバインダ一組成物が特に適するからである。  The binder composition and the electrode mixture of the present invention are used for forming at least one of a positive electrode and a negative electrode, and if any one of them is preferably used for forming a negative electrode. This is because the powdered electrode material constituting the negative electrode requires a binder having higher adhesiveness, and the binder composition of the present invention is particularly suitable.
【実施例】  【Example】
以下、 実施例および比較例により本発明を更に具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
(官能基含有フッ化ビ-リデン系共重合体 Aの製造)  (Production of functional group-containing bilidene fluoride copolymer A)
内容積 2 リッ トルのオートクレープに、 イオン交換水 1 0 7 5 g、 メチルセル口 ース 0. 4 g、 フッ化ビニリデン単量体 (VDF) 3 9 8 g、 マレイン酸モノメチ ルエステル (MMM) 2 g、 イソプロピルパーォキシジカーボネート 2. 5 g、 酢 酸ェチル 5 gの各量を仕込み、 28°Cで 2 7時間懸濁重合を行った。  In a 2-liter autoclave, ion-exchanged water (175 g), methylcellulose (0.4 g), vinylidene fluoride monomer (VDF) (398 g), maleic acid monomethyl ester (MMM) (2) g, 2.5 g of isopropyl peroxydicarbonate and 5 g of ethyl acetate were subjected to suspension polymerization at 28 ° C. for 27 hours.
重合終了後、 重合体スラリーを脱水、 水洗 ·脱水後、 80°Cで 20時間乾燥し、 収率 8 9%で、 インへレント粘度が 1. 1 d 1 である本発明の官能基含有フッ 化ビニリデン系重合体 Aを得た。  After the polymerization is completed, the polymer slurry is dehydrated, washed with water, dehydrated, and then dried at 80 ° C for 20 hours. The functional group-containing hydrofluoric acid of the present invention having a yield of 89% and an inherent viscosity of 1.1 d 1 A vinylidene fluoride polymer A was obtained.
(官能基含有フッ化ビ二リデン系重合体 Bの製造)  (Production of functional group-containing vinylidene fluoride polymer B)
内容積 2 リ ッ トルのオートクレープに、 イオン交換水 1 0 7 5 g、 メチルセル口 ース 0. 4 g、 フッ化ビニリデン単量体 (VDF) 400 g、 2—メチルダリシジ ノレメタクリ レート ( 2M-GMA) 3 g、 イソプロピルバーオキシジカーボネート 2. 5 g、 酢酸ェチル 5 gの容量を仕込み、 28 °Cで 25時間懸濁重合を行った。 重合終了後、 重合体スラリーを脱水、 水洗 .脱水後、 80°Cで 20時間乾燥し、 収率 9 0%で、 インへレント粘度が 2. 4 d 1 である官能基含有フッ化ビニリ デン重合体 Bを得た。 In a 2-liter autoclave, ion-exchanged water (175 g), methylcellulose (0.4 g), vinylidene fluoride monomer (VDF) 400 g, 2-methyldaricidinolemethacrylate (2M-GMA) 3 g, isopropyl peroxydicarbonate 2.5 g and 5 g of ethyl acetate were charged, and suspension polymerization was performed at 28 ° C. for 25 hours. After the polymerization, the polymer slurry is dehydrated and washed with water.After dehydration, the polymer slurry is dried at 80 ° C for 20 hours to obtain a functional group-containing vinylidene fluoride having a yield of 90% and an inherent viscosity of 2.4 d 1. Polymer B was obtained.
(フッ化ビニリデン重合体 Cの製造)  (Production of vinylidene fluoride polymer C)
内容積 2リツトルのォートクレープに、 ィオン交換水 1 0 7 5 g、 メチルセル口 ース 0. 4 g、 フッ化ビニリデン単量体 (VDF) 400 g、 イソプロピルパーォ キシジカーボネート 2. 5 g、 酢酸ェチル 5 gの各量を仕込み、 26°Cで 20時間 懸濁重合を行った。  In a 2-liter autoclave, ion-exchanged water (175 g), methylcellulose (0.4 g), vinylidene fluoride monomer (VDF) (400 g), isopropyl peroxydicarbonate (2.5 g), Each amount of 5 g of ethyl acetate was charged, and suspension polymerization was performed at 26 ° C for 20 hours.
重合終了後、 重合体スラリーを脱水、 水洗,脱水後、 80°Cで 20時間乾燥し、 収率 9 1 %で、 インへレント粘度が 1. 1 d 1 /gであるフッ化ビニリデン重合体 C (ポリフッ化ビニニリデン) を得た。  After the polymerization is completed, the polymer slurry is dehydrated, washed with water, dehydrated, and dried at 80 ° C for 20 hours. A vinylidene fluoride polymer having a yield of 91% and an inherent viscosity of 1.1 d 1 / g is obtained. C (polyvinylidene fluoride) was obtained.
<実施例 1〉  <Example 1>
(正極の作製)  (Preparation of positive electrode)
コバルト酸リチウム ( 「セルシード C— 5」 、 日本化学工業製) 94重量部、 フ ッ化ビ二リデン重合体 C 3重量部、 カーボンブラック 3重量部に N—メチルー 2 - ピロリ ドン (NMP) を 4 3重量部添加し、 混合して正極用合剤を調製した。 得ら れた合剤を厚さ 1 0 / mのアルミ箔上に、 乾燥後の膜厚が約 1 0 0 μηιになるよう に均一に塗布し、 1 30°Cで 25分間乾燥して、 正極構造体 (活物質量: 2 9 1 g /m2) を得た。 N-methyl-2-pyrrolidone (NMP) was added to 94 parts by weight of lithium cobaltate ("Cellseed C-5", manufactured by Nippon Chemical Industry), 3 parts by weight of vinylidene fluoride polymer C, and 3 parts by weight of carbon black. 43 parts by weight were added and mixed to prepare a positive electrode mixture. The obtained mixture was uniformly applied on a 10 / m-thick aluminum foil so that the film thickness after drying was about 100 μηι, and dried at 130 ° C for 25 minutes. A positive electrode structure (active material amount: 29 1 g / m 2 ) was obtained.
(負極の作製)  (Preparation of negative electrode)
官能基含有フッ化ビニリデン系重合体 A 1 1重量部、 エチレンビュルアルコール 共重合体 (E VOH、 クラレネ土製 「ェバール E P— G 1 5 6 B」 、 エチレンモル含 量 4 7%) 1重量部に対し、 平均粒子径 3 0 μ mの球状天然黒鉛粉末 (中国産) 8 8重量部と、 NMP 6 7重量部を混合して本発明の負極合剤組成物 Aを調製した。 得られた合剤を厚さ 8 /zmの銅箔上に、 乾燥後の膜厚が約 1 00 /xmになるように 均一に塗布し、 1 3 0°Cで 2 5分間乾燥して、 負極構造体 A (活物質量: 1 6 3 g /m2) を得た。 1 part by weight of functional group-containing vinylidene fluoride polymer A, 1 part by weight of ethylene vinyl alcohol copolymer (EVOH, “Eval EP-G156B” made of Kuraray clay, ethylene mole content 47%) A negative electrode mixture composition A of the present invention was prepared by mixing 88 parts by weight of spherical natural graphite powder (produced in China) with an average particle diameter of 30 μm and 67 parts by weight of NMP. The resulting mixture was applied evenly on a copper foil with a thickness of 8 / zm to a thickness of about 100 / xm after drying, and dried at 130 ° C for 25 minutes. A negative electrode structure A (the amount of the active material: 163 g / m 2 ) was obtained.
(電極構造体における電極合剤層の剥離強度測定方法)  (Method of measuring peel strength of electrode mixture layer in electrode structure)
集電体に塗布、 乾燥した負極構造体を試料とし、 電極合剤層の集電体からの剥離 強度を J I S K 68 54に準拠して 1 80° 剥離試験により測定した。  The negative electrode structure applied to the current collector and dried was used as a sample, and the peel strength of the electrode mixture layer from the current collector was measured by a 180 ° peel test in accordance with JIS K 6854.
(剥離強度の測定) 上記負極構造体 Aの剥離強度を測定したところ、 3. 8 g iZmmであった。 (Measurement of peel strength) When the peel strength of the negative electrode structure A was measured, it was 3.8 g iZmm.
(電池の作製)  (Production of battery)
48 mm X 4 8 mmに切り出して充放電用のリード部を取り付けた正極構造体と、 5 Omm X 50 mmに切り出して充放電用のリード部を取り付けた負極構造体 Aを、 電極面が対向するように、 5 2 mm X 5 2 mmで厚さ 20 mのポリエチレン製セ パレーターを介して重ね合わせ、 8 0 mmX 80 mmの寸法で外側がポリエチレン 製のアルミラミネートバッグにリード部分が外側に出るように組み込み、 エチレン カーボネート メチルェチルカーボネート /ジメチルカ一ボネート (9Z 1 3 1 6体積比) 、 混合溶媒中に L i P F 6を 1 M濃度で含む電解液を 1 g添加した後に、 アルミラミネ一ト製バッグを封止し、 本発明の電池 Aを得た。 Positive electrode structure cut out to 48 mm x 48 mm and fitted with charge and discharge leads, and negative electrode structure A cut out to 5 Omm x 50 mm and fitted with charge and discharge leads To overlap through a 52 mm x 52 mm polyethylene separator with a thickness of 20 m, and the lead part comes out to an aluminum laminate bag with dimensions of 80 mm x 80 mm and polyethylene on the outside embedded manner, ethylene carbonate methyl E chill carbonate / Jimechiruka one Boneto (9Z 1 3 1 6 volume ratio), the L i PF 6 after the electrolytic solution 1 g was added containing with 1 M concentration in a mixed solvent, Arumiramine one DOO The battery bag was sealed to obtain Battery A of the present invention.
(充放電)  (Charge and discharge)
上記の電池 Aを 0. 2 mAの定電流で 4. 2 Vまで充電後、 0. 2 mAの定常流 で 3. 0 Vまで放電し、 さらに 1 m Aの定電流で 4. 3 7 Vまで充電した。 2回目 の充電における電池の充電容量 (充電電流値の積分値) は 1 3 3mAhだった。  Battery A was charged to 4.2 V with a constant current of 0.2 mA, then discharged to 3.0 V with a constant current of 0.2 mA, and then 4.37 V with a constant current of 1 mA. Charged up to. The charge capacity (integral value of the charge current value) of the battery in the second charge was 133 mAh.
(釘刺し試験)  (Nail penetration test)
上記の充電された電池 Aを、 室温が 2 3 °Cに保たれた部屋で、 木製の板の上に 負極が上となるように静置後、 直径 1 mmの釘を刺して貫通させ、 赤外線サーモグ ラフィ (アビォニクス社製 「TVS— 1 00」 ) で電池表面温度の上昇を測定した。 電池 Aの釘刺し後の最大温度上昇は 3 °Cであった。  In the room where the room temperature was maintained at 23 ° C, the above charged battery A was allowed to stand on a wooden plate with the negative electrode facing up, and a nail with a diameter of 1 mm was stabbed and penetrated. The rise in battery surface temperature was measured using an infrared thermograph (“TVS-100” manufactured by Avionics). The maximum temperature rise of battery A after nail penetration was 3 ° C.
<実施例 2 >  <Example 2>
負極の作製で EVOHの代りにポリアクリル酸 (P AA) ( 「AQUPEC H V— 5 0 1」 、 住友精化製) を用いたほかは、 実施例 1と同様に行い、 負極構造体 B、 電池 Bを得た。  The procedure of Example 1 was repeated except that polyacrylic acid (PAA) (“AQUPEC HV—501”, manufactured by Sumitomo Seika) was used instead of EVOH in the fabrication of the negative electrode. Got B.
負極構造体 Bの剥離強度は 1. O g f Zmm 電池 Bの充電容量は 1 3 5 m A h で、 釘刺し試験の最大温度上昇は 3. 5°Cだった。  The peel strength of negative electrode structure B was 1. O g f Zmm Battery B had a charge capacity of 135 mAh, and the maximum temperature rise in the nail penetration test was 3.5 ° C.
<実施例 3 >  <Example 3>
負極の作製で官能基含有フッ化ビ-リデン系重合体 Aの代りに官能基含有フッ化 ビニリデン系重合体 Bを用いたほかは、 実施例 1と同様に行い、 負極構造体 C、 電 池 Cを得た。  The procedure of Example 1 was repeated except that the functional group-containing vinylidene fluoride polymer B was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode. Got C.
負極構造体 Cの剥離強度は 4. 3 g f /mm、 電池 Cの充電容量は 1 3 OmAh で、 釘刺し試験の最大温度上昇は 3 °Cだった。  The peel strength of negative electrode structure C was 4.3 gf / mm, the charge capacity of battery C was 13 OmAh, and the maximum temperature rise in the nail penetration test was 3 ° C.
<実施例 4 > 負極の作製で EVOHの代りにヒ ドロキシェチルセルロース (HEC) ( 「HE Cダイセル EP 8 50」 、 ダイセル化学工業製) を用いたほかは、 実施例 1と同様 に行い、 負極構造体 D、 電池 Dを得た。 <Example 4> The same procedure as in Example 1 was carried out, except that hydroxethyl cellulose (HEC) (“HEC Daicel EP850”, manufactured by Daicel Chemical Industries) was used instead of EVOH in the preparation of the negative electrode. Battery D was obtained.
負極構造体 Dの剥離強度は 0. 9 g f /mm, 電池 Dの充電容量は 1 3 3 m Ah で、 釘刺し試験の最大温度上昇は 3 °Cだった。  The peel strength of negative electrode structure D was 0.9 gf / mm, the charge capacity of battery D was 133 mAh, and the maximum temperature rise in the nail penetration test was 3 ° C.
<実施例 5 >  <Example 5>
負極の作製で EVOHの代りにポリパラビュルフエノーノレ (P PVP) ( 「マル カリンカ一 S— 2 PJ 、 丸善石油化学 (株) ) を用いたほかは、 実施例 1と同様 に行い、 負極構造体 H、 電池 Hを得た。  The procedure of Example 1 was repeated, except that polyparabule fuenoren (PPVP) (“Markalinker I-S-2PJ”, Maruzen Petrochemical Co., Ltd.) was used instead of EVOH in the preparation of the negative electrode. Structure H and battery H were obtained.
負極構造体 Hの剥離強度は 5. 4 g f Zmm、 電池 Hの充電容量は 1 34mAh で、 釘刺し試験の最大温度上昇は 4 °Cだった。  The peel strength of the negative electrode structure H was 5.4 g f Zmm, the charging capacity of the battery H was 134 mAh, and the maximum temperature rise in the nail penetration test was 4 ° C.
<比較例 1 >  <Comparative Example 1>
負極の作製で官能基含有フッ化ビニリデン系重合体 Aを、 1 1 gから 1 2 gに増 量し、 EV 0Hを用いなかったほかは、 実施例 1と同様に行い、 負極構造体 E、 電 池 Eを得た。  The procedure of Example 1 was repeated, except that the amount of the functional group-containing vinylidene fluoride polymer A was increased from 11 g to 12 g in the preparation of the negative electrode, and EV0H was not used. Battery E was obtained.
負極構造体 Eの剥離強度は 0. 9 g f /mm, 電池 Eの充電容量は 1 3 3mAh で、 釘刺し試験の最大温度上昇は 1 2°Cだった。  The peel strength of the negative electrode structure E was 0.9 gf / mm, the charge capacity of the battery E was 133 mAh, and the maximum temperature rise in the nail penetration test was 12 ° C.
<比較例 2 >  <Comparative Example 2>
負極の作製で官能基含有フッ化ビニリデン系重合体 Bを、 1 1 gから 1 2 gに増 量し、 E VOHを用いなかったほかは、 実施例 3と同様に行い、 負極構造体 F、 電 池 Fを得た。  The same procedure as in Example 3 was carried out except that the amount of the functional group-containing vinylidene fluoride polymer B was increased from 11 g to 12 g in the preparation of the negative electrode, and EVOH was not used. Battery F was obtained.
負極構造体 Fの剥離強度は 3. 1 g f /mm, 電池 Fの充電容量は 1 24mAh で、 釘刺し試験の最大温度上昇は 6. 5°Cだった。  The peel strength of the negative electrode structure F was 3.1 g f / mm, the charge capacity of the battery F was 124 mAh, and the maximum temperature rise in the nail penetration test was 6.5 ° C.
ぐ比較例 3 > '  Comparative Example 3> '
負極の作製で、 官能基官有フッ化ビニリデン重合体 Aの代りにフッ化ビニリデン 重合体 Cを用いたほかは、 実施例 1と同様に行い、 負極構造体 G、 電池 Gを得た。 負極構造体 Gの剥離強度は 0. Ί g f /mm, 電池 Gの充電容量は 1 34mAh で、 釘刺し試験の最大温度上昇は 6 °Cだった。  A negative electrode structure G and a battery G were obtained in the same manner as in Example 1, except that a vinylidene fluoride polymer C was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode. The peel strength of the negative electrode structure G was 0.1 μg f / mm, the charge capacity of the battery G was 134 mAh, and the maximum temperature rise in the nail penetration test was 6 ° C.
<比較例 4 >  <Comparative Example 4>
負極の作製で、 官能基含有フッ化ビニリデン重合体 Aの代りにフッ化ビニリデン 重合体 Cを用いたほかは、 比較例 1と回禄に行い、 負極構造体 G、 電池 Gを得た。 負極構造体 Hの剥離強度は 0. 7 も f /mm 電池 Hの充電容量は 1 3 2mAh で、 釘刺し試験の最大温度上昇は 9 °Cだった。 A negative electrode structure G and a battery G were obtained in the same manner as in Comparative Example 1, except that the functional group-containing vinylidene fluoride polymer A was used in place of the functional group-containing vinylidene fluoride polymer A in the preparation of the negative electrode. Peel strength of negative electrode structure H is 0.7 f / mm Battery H has a charge capacity of 13 mAh The maximum temperature rise in the nail penetration test was 9 ° C.
上記実施例および比較例に用いたバインダ一組成物の概要および評価結果をまと めて、 以下の表 1に示す。  The summary and evaluation results of the binder composition used in the above Examples and Comparative Examples are shown in Table 1 below.
[表 1 ] [table 1 ]
Figure imgf000010_0001
産業上の利用可能性
Figure imgf000010_0001
Industrial applicability
上記表 1の結果からわかるように、 リチウムを吸蔵 ·放出可能な正極と負極とを 備えた非水電解液電池において、 前記正極 Zまたは負極の結着剤が官能基含有フッ 化ビニリデン系重合体と有極性重合体である非水電解液電池電極用バインダ一組成 物を使用することで、 接着性が優れる電極と安全性に優れる電池が得られることが ゎカゝる。  As can be seen from the results in Table 1 above, in a nonaqueous electrolyte battery including a positive electrode capable of inserting and extracting lithium and a negative electrode, the binder for the positive electrode Z or the negative electrode was a functional group-containing vinylidene fluoride polymer. By using a binder polymer composition for a non-aqueous electrolyte battery electrode, which is a polar polymer, it is possible to obtain an electrode having excellent adhesiveness and a battery having excellent safety.

Claims

請 求 の 範 囲 The scope of the claims
1 . リチウムを吸蔵 ·放出可能な正極と負極とを備えた非水電解液電池の正極およ び/または負極の結着剤として用いられるバインダー組成物であって、 少なくと も官能基含有フッ化ビニリデン系重合体および分子内にヒ ドロキシル基および/ またはカルボ二ル基を含有する有極性重合体からなることを特徴とする非水電解 液電池電極用バインダ一組成物。 1. A binder composition used as a binder for a positive electrode and / or a negative electrode of a nonaqueous electrolyte battery provided with a positive electrode and a negative electrode capable of inserting and extracting lithium, and at least a functional group-containing fluorine. A binder composition for a non-aqueous electrolyte battery electrode, comprising a vinylidene fluoride polymer and a polar polymer containing a hydroxyl group and / or a carbonyl group in a molecule.
2 . 前記負極が炭素材料からなる請求の範囲 1に記載のバインダ一組成物。 2. The binder composition according to claim 1, wherein the negative electrode is made of a carbon material.
3 . 前記官能基含有フッ化ビニリデン系重合体の官能基がカルボキシル基およびグ リシジル基の少なくとも一種である請求の範囲 1に記載の非水電解液電池電極用 バインダ一組成物。 3. The binder composition for a non-aqueous electrolyte battery electrode according to claim 1, wherein the functional group of the functional group-containing vinylidene fluoride polymer is at least one of a carboxyl group and a glycidyl group.
4 . 分子内にヒ ドロキシル基おょぴ またはカルボ二ル基を含有する有極性重合体 力 エチレンビュルアルコール共重合体、 セノレロース系重合体、 ポリアクリル酸 系重合体、 ポリビュルピロリ ドンおよびビュルフエノール系重合体のうち少なく とも 1種からなる請求の範囲 1〜 3のいずれかに記載のパインダ一組成物。 4. A polar polymer containing a hydroxyl group or a carboxyl group in the molecule. Ethylene bulcohol copolymer, senorelose polymer, polyacrylic acid polymer, polybutylpyrrolidone and burphenol. 4. The pinda composition according to any one of claims 1 to 3, wherein the composition comprises at least one kind of a polymer.
5 . 請求の範囲 1〜4のいずれかに記載のバインダー組成物と電極活物質を含む非 水電界液電池電極用電極合剤。 5. An electrode mixture for a non-aqueous electrolyte liquid battery comprising the binder composition according to any one of claims 1 to 4 and an electrode active material.
6 . 集電体上に請求の範囲 5に記載の電極合剤からなる電極合剤層を有する非水電 解液電池用電極。 6. An electrode for a non-aqueous electrolyte battery having an electrode mixture layer comprising the electrode mixture according to claim 5 on a current collector.
7 . 請求の範囲 6に記載の電極を正極および負極の少なくとも一方として含むこと を特徴とする非水電解液電池。 7. A non-aqueous electrolyte battery comprising the electrode according to claim 6 as at least one of a positive electrode and a negative electrode.
PCT/JP2003/014903 2002-11-22 2003-11-21 Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same WO2004049475A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004555003A JP4851092B2 (en) 2002-11-22 2003-11-21 Non-aqueous electrolyte battery electrode binder composition and use thereof
AU2003284631A AU2003284631A1 (en) 2002-11-22 2003-11-21 Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-339105 2002-11-22
JP2002339105 2002-11-22

Publications (1)

Publication Number Publication Date
WO2004049475A1 true WO2004049475A1 (en) 2004-06-10

Family

ID=32375763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014903 WO2004049475A1 (en) 2002-11-22 2003-11-21 Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same

Country Status (6)

Country Link
JP (1) JP4851092B2 (en)
KR (1) KR20050085095A (en)
CN (1) CN100365853C (en)
AU (1) AU2003284631A1 (en)
TW (1) TW200410439A (en)
WO (1) WO2004049475A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055858A1 (en) * 2008-11-13 2010-05-20 株式会社クレハ Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP2010518568A (en) * 2007-02-09 2010-05-27 コミツサリア タ レネルジー アトミーク Binder for electrode of electrochemical system, electrode including the binder, and electrochemical system including the electrode
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US8133610B2 (en) 2006-10-13 2012-03-13 Sony Corporation Battery
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2012510142A (en) * 2008-11-27 2012-04-26 ビーワイディー カンパニー リミテッド Silicon-based negative electrode, lithium ion battery, and method for manufacturing silicon-based negative electrode
JP2013152955A (en) * 2013-04-30 2013-08-08 Nippon Zeon Co Ltd Secondary battery positive electrode binder composition, secondary battery positive electrode slurry composition, method for manufacturing secondary battery positive electrode, secondary battery positive electrode, and secondary battery
WO2013161975A1 (en) * 2012-04-27 2013-10-31 日本合成化学工業株式会社 Resin composition and use therefor
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
US9181439B2 (en) 2010-08-31 2015-11-10 Kyoritsu Chemical & Co., Ltd. Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
JP2018529206A (en) * 2015-09-29 2018-10-04 エー123 システムズ エルエルシーA123 Systems LLC High capacity anode electrode with mixed binder for energy storage device
WO2019065704A1 (en) 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
US10873086B2 (en) 2016-03-30 2020-12-22 Sumitomo Seika Chemicals Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
EP3796430A4 (en) * 2018-05-15 2021-05-19 Kureha Corporation Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery
WO2021100521A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021100520A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021172383A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binding agent for secondary battery
WO2021172385A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Production method for polymer compound used in binder for secondary batteries
WO2021172384A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binder for secondary battery
US11258066B2 (en) 2017-02-03 2022-02-22 Fujifilm Wako Pure Chemical Corporation Binder agent composition for lithium battery

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906250B1 (en) 2006-09-04 2009-07-07 주식회사 엘지화학 Electrode Material Containing Mixture of Polyvinyl Alcohol of High Degree of Polymerization and Polyvinyl Pyrrolidone as Binder and Lithium Secondary Battery Employed with the Same
JP5931315B2 (en) * 2007-01-16 2016-06-08 日本ゼオン株式会社 Binder composition, electrode slurry, electrode and non-aqueous electrolyte secondary battery
JP5548131B2 (en) 2008-09-26 2014-07-16 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
WO2010074041A1 (en) * 2008-12-26 2010-07-01 株式会社クレハ Negative-electrode mix for nonaqueous-electrolyte secondary battery, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2011028251A2 (en) 2009-08-24 2011-03-10 Sion Power Corporation Release system for electrochemical cells
JP5445874B2 (en) 2009-10-02 2014-03-19 トヨタ自動車株式会社 Lithium secondary battery and positive electrode for the battery
EP2485301B1 (en) 2009-10-02 2017-08-09 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and cathode for battery
WO2014002936A1 (en) * 2012-06-28 2014-01-03 株式会社クレハ Resin composition, filler-containing resin film for non-aqueous electrolyte secondary battery, and method for producing filler-containing resin film for non-aqueous electrolyte secondary battery
HUE042852T2 (en) 2012-10-26 2019-07-29 Fujifilm Wako Pure Chemical Corp Use of a cross-linked polyacrylic acid in a binder for a lithium cell
KR102026508B1 (en) 2013-03-15 2019-09-27 시온 파워 코퍼레이션 Protected electrode structures and methods
WO2014140198A1 (en) 2013-03-15 2014-09-18 Basf Se Protected electrode structures
US9761854B2 (en) 2013-12-13 2017-09-12 Samsug SDI Co., Ltd. Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
PL3136483T3 (en) 2014-04-21 2018-12-31 Fujifilm Wako Pure Chemical Corporation Binder for lithium cell
KR101773698B1 (en) * 2015-01-13 2017-08-31 주식회사 엘지화학 Method for preparing positive electrode composition of lithium secondary battery, and positive electrode and lithium secondary battery prepared by using the same
KR101701332B1 (en) * 2015-06-17 2017-02-02 울산과학기술원 Binder for rechargable lithium battery, electrode including the same binder, and method for manufacturing the same electrode, and rechargable lithium battery including the same binder
EP3483963A4 (en) 2016-07-06 2019-05-15 Kureha Corporation Binder composition, electrode mixture, electrode, and non-aqueous electrolyte secondary battery
KR20180132784A (en) 2016-07-06 2018-12-12 가부시끼가이샤 구레하 Binder composition, electrode mixture, electrode, non-aqueous electrolyte secondary battery and method for producing binder composition
KR102255875B1 (en) * 2016-11-15 2021-05-25 가부시끼가이샤 구레하 Electrode mixture, manufacturing method of electrode mixture, electrode structure, manufacturing method of electrode structure, and secondary battery
CN109937500B (en) 2017-02-03 2023-04-11 富士胶片和光纯药株式会社 Binder composition for lithium battery electrode and electrode using same
TWI694633B (en) 2017-07-07 2020-05-21 美商片片堅俄亥俄州工業公司 Electrode binder slurry composition for lithium ion electrical storage devices
CA3069166A1 (en) 2017-07-07 2019-01-10 Ppg Industries Ohio, Inc. Electrode binder slurry composition for lithium ion electrical storage devices
WO2019010405A1 (en) 2017-07-07 2019-01-10 Ppg Industries Ohio, Inc. Electrode slurry composition for lithium ion electrical storage devices
JP7014639B2 (en) 2018-02-28 2022-02-01 株式会社クレハ Production method of vinylidene fluoride polymer, binder composition, electrode mixture, electrode and non-aqueous electrolyte secondary battery, and electrode mixture.
JP7017468B2 (en) * 2018-05-15 2022-02-08 株式会社クレハ Electrode mixture, method for manufacturing electrode mixture, electrode structure, method for manufacturing electrode structure and secondary battery
CN116041604A (en) * 2023-01-06 2023-05-02 浙江巨化技术中心有限公司 Branched polyvinylidene fluoride resin and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289023A (en) * 1996-02-22 1997-11-04 Kureha Chem Ind Co Ltd Electrode binder solution, electrode mixture, electrode structure, and battery
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
JPH11329443A (en) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd Lithium secondary battery
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121943B2 (en) * 1992-12-02 2001-01-09 呉羽化学工業株式会社 Vinylidene fluoride copolymer
JP3467499B2 (en) * 1995-06-29 2003-11-17 呉羽化学工業株式会社 Epoxy group-containing vinylidene fluoride copolymer, resin composition containing the same, electrode structure, and secondary battery
JP3855288B2 (en) * 1995-12-08 2006-12-06 ダイキン工業株式会社 Binder for electrode of secondary battery using non-aqueous electrolyte
JP3518712B2 (en) * 1996-05-27 2004-04-12 呉羽化学工業株式会社 Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289023A (en) * 1996-02-22 1997-11-04 Kureha Chem Ind Co Ltd Electrode binder solution, electrode mixture, electrode structure, and battery
JPH10302799A (en) * 1997-04-25 1998-11-13 Jsr Corp Binder for nonaqueous battery electrode
JPH11250915A (en) * 1997-11-10 1999-09-17 Nippon Zeon Co Ltd Binder containing vinyl alcohol polymer, slurry, nonaqueous electrolyte secondary battery, and its electrode
JPH11228902A (en) * 1998-02-17 1999-08-24 Elf Atochem Japan Kk Method to adhere vinylidene fluoride resin to metalic base material, electrode structure and its preparation
JPH11329443A (en) * 1998-05-15 1999-11-30 Hitachi Maxell Ltd Lithium secondary battery
JP2002246029A (en) * 2001-02-20 2002-08-30 Atofina Japan Kk Binder composition

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133610B2 (en) 2006-10-13 2012-03-13 Sony Corporation Battery
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2010518568A (en) * 2007-02-09 2010-05-27 コミツサリア タ レネルジー アトミーク Binder for electrode of electrochemical system, electrode including the binder, and electrochemical system including the electrode
JP5400058B2 (en) * 2008-11-13 2014-01-29 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
WO2010055858A1 (en) * 2008-11-13 2010-05-20 株式会社クレハ Anode mixture for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell, and nonaqueous electrolyte secondary cell
JP2012510142A (en) * 2008-11-27 2012-04-26 ビーワイディー カンパニー リミテッド Silicon-based negative electrode, lithium ion battery, and method for manufacturing silicon-based negative electrode
US9181439B2 (en) 2010-08-31 2015-11-10 Kyoritsu Chemical & Co., Ltd. Coating liquid, conductive coating film, electrode plate for electricity storage device, and electricity storage device
WO2012049967A1 (en) * 2010-10-14 2012-04-19 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2013161975A1 (en) * 2012-04-27 2013-10-31 日本合成化学工業株式会社 Resin composition and use therefor
JP2013241587A (en) * 2012-04-27 2013-12-05 Nippon Synthetic Chem Ind Co Ltd:The Resin composition and application of the same
US9487650B2 (en) 2012-04-27 2016-11-08 The Nippon Synthetic Chemical Industry Co., Ltd. Resin composition and use thereof
JP2013152955A (en) * 2013-04-30 2013-08-08 Nippon Zeon Co Ltd Secondary battery positive electrode binder composition, secondary battery positive electrode slurry composition, method for manufacturing secondary battery positive electrode, secondary battery positive electrode, and secondary battery
US10164244B2 (en) 2013-06-28 2018-12-25 National Institute Of Advanced Industrial Science And Technology Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
WO2014207967A1 (en) 2013-06-28 2014-12-31 住友精化株式会社 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
KR20160024921A (en) 2013-06-28 2016-03-07 스미토모 세이카 가부시키가이샤 Negative-electrode mixture for non-aqueous electrolyte secondary cell, negative electrode for non-aqueous electrolyte secondary cell containing said mixture, non-aqueous electrolyte secondary cell provided with said negative electrode, and electrical device
JP2018529206A (en) * 2015-09-29 2018-10-04 エー123 システムズ エルエルシーA123 Systems LLC High capacity anode electrode with mixed binder for energy storage device
US10862158B2 (en) 2015-09-29 2020-12-08 A123 Systems Llc High capacity anode electrodes with mixed binders for energy storage devices
US10873086B2 (en) 2016-03-30 2020-12-22 Sumitomo Seika Chemicals Co., Ltd. Binder for nonaqueous electrolyte secondary battery electrodes, electrode mixture for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electrical device
US11258066B2 (en) 2017-02-03 2022-02-22 Fujifilm Wako Pure Chemical Corporation Binder agent composition for lithium battery
WO2019065704A1 (en) 2017-09-29 2019-04-04 住友精化株式会社 Binder for nonaqueous electrolyte secondary battery electrode, electrode mixture for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and electric apparatus
EP3796430A4 (en) * 2018-05-15 2021-05-19 Kureha Corporation Electrode mixture, electrode mixture production method, electrode structure, electrode structure production method, and secondary battery
WO2021100520A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
WO2021100521A1 (en) 2019-11-19 2021-05-27 住友精化株式会社 Binder for secondary batteries
KR20220103940A (en) 2019-11-19 2022-07-25 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
KR20220103941A (en) 2019-11-19 2022-07-25 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
WO2021172383A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binding agent for secondary battery
WO2021172385A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Production method for polymer compound used in binder for secondary batteries
WO2021172384A1 (en) 2020-02-26 2021-09-02 住友精化株式会社 Binder for secondary battery
KR20220146454A (en) 2020-02-26 2022-11-01 스미토모 세이카 가부시키가이샤 Binding agent for secondary batteries
KR20220147592A (en) 2020-02-26 2022-11-03 스미토모 세이카 가부시키가이샤 Manufacturing method of polymer compound used in binder for secondary battery

Also Published As

Publication number Publication date
TW200410439A (en) 2004-06-16
JPWO2004049475A1 (en) 2006-03-30
KR20050085095A (en) 2005-08-29
CN100365853C (en) 2008-01-30
AU2003284631A1 (en) 2004-06-18
TWI330902B (en) 2010-09-21
CN1714465A (en) 2005-12-28
JP4851092B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
WO2004049475A1 (en) Binder composition for electrode of nonaqueous electrolyte battery, and electrode mixture, electrode and battery using same
JP4361241B2 (en) Non-aqueous secondary battery electrode binder composition, electrode mixture composition, electrode and secondary battery
JP5053073B2 (en) Vinylidene fluoride core / shell polymer and its use in non-aqueous electrochemical devices
JP3703582B2 (en) Electrode binder, electrode binder solution, electrode mixture, electrode structure and battery
JP5625917B2 (en) Slurry for electrode mixture of lithium secondary battery, electrode using the slurry, and lithium secondary battery
US9236612B2 (en) Positive electrode mixture for nonaqueous battery and positive electrode structure
EP3493304B1 (en) Conductive resin composition for electrodes, electrode composition, electrode using same and lithium ion battery
KR20150135207A (en) Binder composition for electricity storage devices
JP5637142B2 (en) Binder composition for secondary battery, electrode mixture for secondary battery using the same, and secondary battery
CN108432005B (en) Binder composition for positive electrode, slurry for positive electrode, and lithium ion secondary battery
WO2010092976A1 (en) Positive electrode mixture slurry for lithium secondary batteries, and positive electrode and lithium secondary battery that use said slurry
JP6020209B2 (en) Method for producing slurry composition for secondary battery negative electrode
WO2007033130A1 (en) Vinyl fluoride-based copolymer binder for battery electrodes
JP2009110883A (en) Binder for electrochemical cell
JP2005310747A (en) Binder for forming nonaqueous electrochemical element electrode, electrode mix, electrode structure, and electrochemical element
JP3518712B2 (en) Non-aqueous battery electrode forming binder, electrode mixture, electrode structure and battery
WO2019054310A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP4931420B2 (en) Non-aqueous electrolyte battery electrode binder composition and use thereof
JP4942249B2 (en) Method for producing lithium ion secondary battery
JP7060405B2 (en) Binder composition, electrode mixture and non-aqueous electrolyte secondary battery
JP2008204829A (en) Binder for electrochemical cell electrode
JPH10302800A (en) Battery binder solution, electrode mix containing the same and electrode body structure and battery using mix
KR20220034858A (en) Aqueous PVDF Slurry Formulation for Silicon Graphite Anode
JP6909288B2 (en) Composition for positive electrode
JP2002216849A (en) Manufacturing method of lithium ion secondary cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004555003

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057009194

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A39579

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057009194

Country of ref document: KR

122 Ep: pct application non-entry in european phase