WO2004052518A2 - Statischer laminationsmikrovermischer - Google Patents

Statischer laminationsmikrovermischer Download PDF

Info

Publication number
WO2004052518A2
WO2004052518A2 PCT/EP2003/013603 EP0313603W WO2004052518A2 WO 2004052518 A2 WO2004052518 A2 WO 2004052518A2 EP 0313603 W EP0313603 W EP 0313603W WO 2004052518 A2 WO2004052518 A2 WO 2004052518A2
Authority
WO
WIPO (PCT)
Prior art keywords
plate
slot
diaphragm
openings
plates
Prior art date
Application number
PCT/EP2003/013603
Other languages
English (en)
French (fr)
Other versions
WO2004052518A3 (de
Inventor
Wolfgang Ehrfeld
Matthias Kroschel
Till Merkel
Frank Herbstritt
Original Assignee
Ehrfeld Mikrotechnik Bts Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehrfeld Mikrotechnik Bts Gmbh filed Critical Ehrfeld Mikrotechnik Bts Gmbh
Priority to AU2003288216A priority Critical patent/AU2003288216A1/en
Priority to US10/535,262 priority patent/US7909502B2/en
Priority to JP2004557974A priority patent/JP4847700B2/ja
Priority to EP03780105.7A priority patent/EP1572335B1/de
Publication of WO2004052518A2 publication Critical patent/WO2004052518A2/de
Publication of WO2004052518A3 publication Critical patent/WO2004052518A3/de
Priority to HK06112780A priority patent/HK1092098A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • B01F33/30121Interdigital streams, e.g. lamellae the interdigital streams being concentric lamellae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/03Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow

Definitions

  • the invention relates to a micromixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, which must contain at least one slotted plate with slotted openings and a diaphragm plate arranged above it with bent slits.
  • the slot openings in the slot plate (s) and cover plate (s) are designed as through openings.
  • the opening can be of any shape, preferably the opening has a simple geometry (e.g. hole or rectangular slot).
  • Static micromixers are key elements of microreaction technology.
  • Statistical micromixers take advantage of the principle of multilamination in order to achieve rapid mixing of fluid phases by diffusion.
  • a geometric configuration of alternately arranged lamellae makes it possible to ensure good mixing in the microscopic range.
  • Multilamination mixers made of structured and periodically stacked thin plates have already been described in detail in the literature; Examples of this can be found in German patents DE 44 16 343, DE 19540 292 and German patent application DE 199 28 123.
  • German patent application DE 199 27 554 also describes, in contrast to the multi-lamination mixers, which consist of structured and periodically stacked, thin plates , a micromixer for mixing two or more starting materials, the micromixer having mixing cells.
  • Each of these mixing cells has a feed chamber which is adjoined by at least two groups of channel fingers, which engage in a comb-like manner between the channel fingers to form mixing areas.
  • Above the mixing area are outlet slots that extend perpendicular to the channel fingers and through which the product exits.
  • the plates are preferably firmly connected to one another and the microstructures are therefore no longer freely accessible; cleaning of the micromixers described is therefore not possible in a simple manner.
  • the plate stacks have to be dismantled, which generally proves to be very complex.
  • the advantages achieved by the invention are that the static lamination micro-mixer can be manufactured inexpensively, is easy to clean and the fluids to be mixed are mixed quickly and effectively with one another.
  • the pressure drop is so low that it can also be used for large throughputs.
  • the number of blind slots in the cover plate and / or the number of slot openings in the slot plate can be greater than 1.
  • the fluid streams brought in from different areas of the fluid distribution are guided in the slot openings of the slot plate in such a way that they enter the slot opening of an overlying slot or diaphragm plate.
  • the fluid phases come together in the slot openings of the diaphragm plate.
  • the slot openings in the slot plate can be offset parallel to one another and / or can be arranged in a periodic pattern to one another. Through Suitable geometric shape and alignment can favor slot openings according to claim 6 structures in the slot plate, the emergence of secondary effects.
  • the slot openings can be arranged obliquely to each other.
  • a further embodiment allows the slot openings to be funnel-shaped or club-shaped. This configuration of the molds can be expedient in order to achieve a uniform pressure distribution in the feed channels. This is a prerequisite for achieving a uniform mixing quality in the entire component. It is also possible for a plurality of slotted plates and / or diaphragm plates to be arranged offset directly from one another.
  • a control of the flow can be achieved according to protection claim 9, if slotted plates and / or diaphragm plates that are directly one above the other or staggered are used.
  • the steering effect according to protection claim 11 can be used to direct the one or more fluid flows to the metering point of one or more fluid flows.
  • the mixing chamber can be mounted above the cover plate according to protection claim 12.
  • protection claim 13 it is also possible that the glare slots in the diaphragm plate are offset parallel to one another and / or can be arranged in a periodic pattern with respect to one another.
  • a further advantageous embodiment of the invention allows the slot openings in the slot plate and the diaphragm slots in the diaphragm plate to be arranged at any angle, preferably 90 °, with respect to one another.
  • the slot openings in the slot plate and the blind slots in the cover plate can have a width of less than 500 microns. To improve the result when mixing liquids, emulsifying or suspending, slit openings with widths of less than 100 ⁇ m have proven particularly useful.
  • the width of the slot openings in the slot plate is for everyone in the basic type of mixer all fluid phases are the same. However, it has been shown that when bringing together fluids that differ in terms of their viscosity and / or in which the volume flows are in a numerical ratio other than 1: 1, it can be advantageous if the width and / or shape and cross section are different differentiate the slot openings in the slot plate for the different fluids.
  • a further advantageous embodiment allows the slit and cover plates to be made partially or completely of metal, glass, ceramic and plastic or of a combination of these materials.
  • the slotted and cover plates can be produced by stamping, embossing, milling, eroding, etching, plasma etching, laser cutting, laser cladding or by the LIGA technology, but preferably by laser cutting or LIGA technology.
  • a further advantageous embodiment allows the slit and cover plates to consist of a stack of microstructured thin plates; these thin, micro-structured plates can be bonded to one another by soldering, welding, diffusion welding or gluing, or non-positively by screwing, pressing (eg in a housing) or riveting.
  • An advantageous embodiment according to claim 20 allows the blind slots in the cover plate and the slot openings in the slot plate to be branched.
  • the static micromixer obtained in this way can be accommodated in a housing provided for this purpose.
  • the housing can contain channels, thus allowing a spatial division of the fluids. These channels can be arranged parallel to one another, radially, concentrically or one behind the other. In order to achieve a suitable distribution of the speeds along the channels, it may be advantageous to maintain or vary their cross sections according to claim 24 over their length.
  • micro-mixer can be used according to claim 25 individually or as part of a modular arrangement for performing physical or chemical conversions or can be integrated according to claim 26 together with other function modules in a component. Exemplary embodiments of the inventions are shown in the drawings and are described in more detail below.
  • Figure 1 is a schematic representation of the static micromixer consisting of a slotted and an orifice plate.
  • FIG. 2a shows an exploded view of a static lamination micro-mixture consisting of the lower housing part (10), feed channels (11), slotted plate (20) and cover plate (30);
  • Fig. 2b representation of a static lamination micro-mixer consisting of lower housing part (10), feed channels (11), slotted plate (20) and cover plate (30);
  • Fig. 3a top view of the feed channels (11), slot openings (22a, 22b) and glare slots (31) of a static lamination micro-mixer;
  • FIG. 3b top view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static lamination micro-mixer;
  • FIG. 3c plan view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static
  • Fig. 3d top view of the slot openings of different geometry and orientation (22) in a slot plate (20), wherein the slot openings for both fluids overlap in the plane of the slot plate;
  • 3e top view of the slot openings of different geometry and orientation (22) in a slot plate (20), the slot openings having different widths and shapes;
  • 3f top view of the slot openings of different geometry and orientation (22) in a slot plate (20), the slot openings, the blind slots (31) and / or the feed channels (11) having different and variable widths and shapes;
  • 4b shows a top view of a static lamination micro-mixer
  • FIG. 6 shows an exploded view of a static micromixer with viewing angle from below
  • Fig. 7 a schematic representation of the lower housing part (10);
  • Fig. 7b cross section through lower housing part (10) along the plane B-B;
  • Fig. 7c cross section through the lower housing part (10) along the plane C-C;
  • 8a shows a schematic representation of a static micromixer with two different slotted plates and staggered slot openings (22, 23);
  • FIG. 8b schematic representation of a composite static
  • Lamination micro mixer with two different slotted plates; 9a exploded views of lamination micro-mixers with a parallel offset arrangement of the channels for separating the fluids in the housing;
  • Fig. 9b exploded views of lamination micro mixers with radially concentric arrangement of the channels for separating the
  • FIG. 1 shows the schematic representation of a static lamination micro-mixer consisting of a lower part 10, a slotted plate 20 and an anti-glare plate 30.
  • the lower part 10 contains the feed channel 11a for the fluid A and the feed channel 11b for the fluid B.
  • the slot plate 20 has slot openings 22a and 22b for the fluids A and B which are fed from the feed channel 11a and 11b.
  • the diaphragm plate 30 with a diaphragm slot 31 is located above the diaphragm plate 20.
  • the diaphragm plate 30 covers the outer area of the slot openings 22a and 22b, while the central area of the slot openings 22a and 22b overlaps with the diaphragm slot 31 and thereby remains free.
  • 2a shows the exploded view of a static micromixer consisting of lower part 10, feed channels 11a and 11b, slotted plate 20 and orifice plate 30.
  • the feed channels 11a and 11b each contain the fluids A and B;
  • the slot plate 20 with the slot openings 22a and 22b is located above these feed channels.
  • 2b shows a schematic illustration of a static micromixer, as shown in FIG. 2a, consisting of lower part 10, slotted plate 20 and cover plate 30.
  • slot openings 22a and 22b arranged in double rows in the form of slot areas 21. These slot areas 21 are supplied with fluids through the feed channels 11a and 11b. One half of the slot openings 22a overlaps with the feed channels 11a, the other with the feed channels 1b. In the central region of the double rows, the slot openings 22 overlap with the blind slot 31 arranged above them. As shown here, the slot openings 22 can also be arranged obliquely.
  • 3b, 3c, 3d, 3e and 3f show slot openings 22 with different geometrical configurations and orientations.
  • the feed channels 11 are located below the slot openings.
  • the blind slots 31 are located above the slot openings.
  • the cross sections of the feed channels 11 and the blind slots 31 can vary along their course (FIG. 3f).
  • the slot openings 22 can be expanded in a funnel shape. The width and shape of the slot openings 22 can vary between the fluids (Fig. 3e) and within the fluids (Fig. 3f).
  • FIG. 4a shows the top view of a lower housing part 10.
  • the lower housing part 10 is provided with numerous slot-shaped feed channels 11 a and 11 b, which are shown alternately shifted to the right or left.
  • the slot plate 20 arranged above are the slot area 21 shown as black bars; the slot area 21 is positioned between two feed channels 11a and 11b, so that it is overlapped by two feed channels.
  • the blind slots 31 of the overlying blind plate 30 are located centrally above the slot regions 21 of the slot plate 20.
  • FIG. 4b shows a schematic arrangement of feed channels 11a and 11b, slot regions 21 and blind slots 31.
  • Figure 5 shows an exploded view of a static lamination micromixer; the micromixer consists of the lower housing part 10 and the upper housing part 40. Between the lower housing part 10 and the upper housing part 40 there are the slotted plates 20 and the cover plates 30. In the lower housing part 10 there is a groove 13 into which a sealing ring 50 can be inserted, so that the micromixer to seal against the environment.
  • the lower housing part 10 and the upper housing part 40 are each provided with openings for fastening elements 44, through which both can be fixed against one another.
  • the lower housing part 10 contains on the outer surface two fluid inlet channels 12a and 12b for the fluids A and B to be mixed.
  • the slot plate 20 contains numerous slot areas 21;
  • the cover plate 30, which has a plurality of cover slots 31, is attached above the slit plate 20.
  • the upper housing part 40 contains a fluid outlet 42 for discharging the mixture obtained.
  • FIG. 6 shows, in analogy to FIG. 5, an exploded view of a static lamination micro-mixer with a viewing angle from the underside.
  • the upper housing part 40 contains a large mixing chamber 45, into which all blind slots 31 of the blind plate 30 open.
  • a plurality of support structures 41 are attached in the upper housing part 40.
  • FIG 7a shows the schematic representation of the lower housing part 10.
  • the lower housing part 10 is provided with supply channels 11a and 11b for the fluids A and B to be mixed.
  • Fluid inlets 12a and 12b are provided on the outer sides of the lower housing part.
  • the recesses 44 at the four corners of the lower housing part 10 allow it to be fixed.
  • FIG. 7b shows the cross section through the lower housing part 10 along the line BB in FIG. 7a.
  • the fluid inlet 12a continues in the fluid inlet channel 14 for the fluid A.
  • On the top of the fluid inlet channel 14 are the Feed channels 11a for the fluid.
  • FIG. 7c shows the cross section through the lower housing part 10 along the line C-C in FIG. 7a.
  • the feed channels 11a for the fluid A and 11b for the fluid B run alternately in parallel without there being a cross-connection between these two feed channels.
  • FIG 8a shows the schematic representation of a static lamination micro-mixer with the two different slot openings 22a / 22b and 23a / 23b.
  • the slot openings 22a and 22b of the first slot plate form the feed channels for the second slot plate with small slot openings 23a and 23b.
  • the slot openings 22a / 22b and 23a / 23b are each rotated by 90 ° to one another.
  • FIG. 8b shows the top view of such a static micromixer according to FIG. 8a consisting of two different slotted plates, the slotted openings of which are rotated through 90 ° to one another.
  • FIGS. 9a and 9b show two exemplary embodiments for lamination micro mixers in the exploded view.
  • the slot openings in the slot plate, the slot openings in the cover plate and the channels for distributing the fluids can then be arranged in a circular or parallel arrangement.
  • lamination micro-mixer shows an exemplary embodiment for the use of a lamination micro-mixer as part of an integrated arrangement for performing physico-chemical conversions.
  • lamination micro mixers (60) and tube bundle heat exchangers (70) were integrated into one component. LIST OF REFERENCE NUMBERS

Abstract

Es wird ein statischer Laminationsmikrovermischer zum Mischen, Dispergieren, Emulgieren oder Suspendieren von mindestens zwei fluiden Phasen beschrieben, der mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Blendenschlitzen enthält, deren Schlitze als durchgehende Öffnun­gen gefertigt sind.

Description

Statischer Laminationsmikrovermischer
Die Erfindung betrifft einen Mikrovermischer zum Vermischen, Dispergieren, Emulgieren oder Suspendieren von mindestens zwei fluiden Phasen, wobei dieser mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Biendschlitzen enthalten muss. Die Schlitzöffnungen in der/den Schlitzplatte(n) und Blendplatte(n) sind als durchgehende Öffnungen ausgeführt. Die Öffnung kann beliebig geformt sein, vorzugsweise hat die Öffnung eine einfache Geometrie (z. B. Loch oder rechteckiger Schlitz).
Bei statischen Mikrovermischern handelt es sich um Schlüsselelemente der Mikroreaktionstechnik. Statistische Mikrovermischer nutzen das Prinzip der Mul- tilamination aus, um so ein schnelles Vermischen von fluiden Phasen durch Diffusion zu erreichen. Durch eine geometrische Ausgestaltung von abwechselnd angeordneten Lamellen ist es möglich, ein gutes Vermischen im mikroskopischen Bereich zu gewährleisten. Multilaminationsmischer aus strukturierten und periodisch gestapelten dünnen Platten sind bereits in der Literatur aus- führlich beschrieben; Beispiele hierfür finden sich in den deutschen Patenten DE 44 16 343, DE 19540 292 und der deutschen Patentanmeldung DE 199 28 123. Die deutsche Patentanmeldung DE 199 27 554 beschreibt außerdem im Gegensatz zu den Multilaminationsmischem, die aus strukturierten und periodisch gestapelten, dünnen Platten bestehen, einen Mikrovermischer zum Mi- sehen von zwei oder mehr Edukten, wobei der Mikrovermischer Mischzellen aufweist. Jede dieser Mischzellen weist eine Zuführkammer auf, an die mindestens zwei Gruppen von Kanalfingern angrenzen, die zur Bildung von Mischbereichen kammartig zwischen die Kanalfinger eingreifen. Über dem Mischbereich befinden sich Auslassschlitze, die sich senkrecht zu den Kanalfingern erstre- cken und durch die das Produkt austritt. Durch die Parallelschaltung in zwei Raumrichtungen ist ein deutlich höherer Durchsatz möglich. Der im Patentanspruch 1 angegebenen Erfindung liegt das Problem zugrunde, dass sich Mikrovermischer mit Verunreinigungspartikeln zusetzen können und damit zur Verstopfung neigen; durch die unzureichende Reinigungsmöglichkeit ist eine erhebliche Einschränkung der Einsatzmöglichkeiten von Mikrovermi- schem gegeben. Bei den aus Platten ausgebildeten Mikrovermischern sind die Platten vorzugsweise fest miteinander verbunden und die MikroStrukturen dadurch nicht mehr frei zugänglich; eine Reinigung der beschriebenen Mikrovermischer ist deshalb nicht auf einfache Art und Weise möglich. Zur Reinigung eines entsprechenden Mikrovermischers müssen die Plattenstapel demontiert werden, was sich in der Regel als sehr aufwändig erweist.
Diese Probleme werden durch den im Patenanspruch 1 beschriebenen statischen Laminationsmikrovermischer gelöst, der zum Mischen von mindestens zwei fluiden Phasen mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Blendschlitzen enthält. Die Schlitzöff- nungen sind in der Regel als durchgehende Öffnungen ausgeführt.
Die mit der Erfindung erzielten Vorteile bestehen darin, dass der statische Laminationsmikrovermischer kostengünstig gefertigt werden kann, leicht zu reinigen ist und die zu mischenden Fluide schnell und effektiv miteinander vermischt werden. Zudem ist der Druckverlust so gering, dass er auch für große Durchsätze Anwendung finden kann.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Schutzansprüchen 2 und folgenden angegeben. Nach Schutzanspruch 2 kann die Anzahl der Blend- schlitze in der Blendplatte und/oder die Anzahl der Schlitzöffnungen in der Schlitzplatte größer als 1 sein. In den Schlitzöffnungen der Schlitzplatte werden nach Anspruch 3, die aus verschiedenen Bereichen der Fluidverteilung herangeführten Fluidströme so geführt, dass sie in die Schlitzöffnung einer darüber liegenden Schlitz- oder Blendplatte eintreten. Nach Anspruch 5 kommen die fluiden Phasen in den Schlitzöffnungen der Blendplatte zusammen. Die Schlitzöffnungen in der Schlitzplatte können hierbei parallel zueinander versetzt und/oder in einem periodischen Muster zueinander angeordnet sein. Durch ge- eignete geometrische Form und Ausrichtung können Schlitzöffnungen nach Anspruch 6 Strukturen in der Schlitzplatte die Entstehung von Sekundäreffekten begünstigen. Diese Effekte können z. B. durch Wirbelablösungen hinter den Platten oder durch Querkomponenten aus den Zuleitungen entstehen. Der Mischung auf molekularer Ebene durch Diffusion überlagern sich dadurch Sekun- därströmungen, die zu einer Verkürzung der Diffusionswege und damit der Mischzeiten führen. Nach Anspruch 7 können die Schlitzöffnungen zueinander schräg angeordnet sind. Eine weitere Ausgestaltung erlaubt es, dass die Schlitzöffnungen trichterförmig oder keulenförmig ausgestaltet sind. Diese Ausgestaltung der Formen kann zweckmäßig sein, um eine gleichförmige Druckver- teilung in den Zuführungskanälen zu erreichen. Dies ist eine Voraussetzung um im gesamten Bauteil zu einer gleichförmigen Mischgüte zu kommen. Weiter ist es möglich, dass mehrere Schlitzplatten und/oder Blendplatten direkt übereinander versetzt zueinander angeordnet sind. Eine Lenkung der Strömung kann nach Schutzanspruch 9 erzielt werden, wenn direkt übereinander liegende oder versetzt angeordnete Schlitzplatten und/oder Blendplatten eingesetzt werden. Die Lenkungswirkung nach Schutzanspruch 11 kann dazu genutzt werden, die einen oder mehrere Fluidströme gezielt zur Dosierstelle eines oder mehrerer Fluidströme hinzuführen.
Die Mischkammer kann nach Schutzanspruch 12 oberhalb der Blendplatte angebracht sein. Nach Schutzanspruch 13 ist es auch möglich, dass die Blendschlitze in der Blendplatte parallel zueinander versetzt und/oder einem periodischen Muster zueinander angeordnet sein können. Eine weitere vorteilhafte Ausgestaltung der Erfindung gestattet es, dass die Schlitzöffnungen in der Schlitzplatte und die Blendschlitze in der Blendplatte in einem beliebigen Winkel, vorzugsweise 90°, zueinander verdreht, angeordnet sein können. Nach Schutzanspruch 15 ist es zudem möglich, dass die Schlitzöffnungen in der Schlitzplatte und die Blendschlitze in der Blendplatte eine Breite von weniger als 500 μm aufweisen können. Zur Verbesserung des Ergebnisses bei der Ver- mischung von Flüssigkeiten, dem Emulgieren oder Suspendieren haben sich insbesondere Schlitzöffnungen mit Breiten kleiner 100 μm bewährt. Die Breite der Schlitzöffnungen in der Schlitzplatte ist im Grundtyp des Mischers für alle alle fluiden Phasen gleich. Es hat sich jedoch gezeigt, dass es beim Zusammenbringen von Fluiden, die sich bezüglich ihrer Viskosität unterscheiden und/oder bei denen die Volumenströme in einem anderen Zahlenverhältnis als 1 :1 zueinander stehen, vorteilhaft sein kann, wenn sich Breite und/oder Form und Querschnitt der Schlitzöffnungen in der Schlitzplatte für die verschiedenen Fluide unterscheiden. Eine weitere vorteilhafte Ausgestaltung gestattet es, dass die Schlitz- und Blendplatten teilweise oder vollständig aus Metall, Glas, Keramik und Kunststoff oder aus einer Kombination dieser Materialien bestehen können. Nach Schutzanspruch 17 können die Schlitz- und Blendplatten durch Stanzen, Prägen, Fräsen, Erodieren, Ätzen, Plasmaätzen, Laserschneiden, La- serablattieren oder durch die LIGA-Technik, vorzugsweise aber durch Laserschneiden oder LIGA-Technik, hergestellt werden. Eine weitere vorteilhafte Ausgestaltung erlaubt es, dass die Schlitz- und Blendplatten aus einem Stapel von mikrostrukturierten dünnen Platten bestehen; diese dünnen mikrostrukturierten Platten können stoffschlüssig durch Löten, Schweißen, Diffusions- schweißen oder Kleben oder kraftschlüssig durch Verschrauben, Verpressen (z. B. in einem Gehäuse) oder Vernieten miteinander verbunden werden. Eine vorteilhafte Ausgestaltung nach Schutzanspruch 20 gestattet es, dass die Blendschlitze in der Blendplatte und die Schlitzöffnungen in der Schlitzplatte verzweigt ausgestaltet sein können. Der so erhaltene statische Mikrovermischer kann nach Schutzanspruch 21 in einem dafür vorgesehenen Gehäuse untergebracht werden. Nach Schutzanspruch 22 kann das Gehäuse Kanäle enthalten und so eine räumliche Aufteilung der Fluide ermöglicht. Diese Kanäle können nach Anspruch 23 parallel zueinander, radial, konzentrisch oder hintereinander angeordnet werden. Es kann zur Erzielung einer geeigneten Verteilung der Ge- schwindigkeiten entlang der Kanäle vorteilhaft sein, deren Querschnitte nach Anspruch 24 über ihre Länge beizubehalten oder zu variieren.
Der Mikrovermischer kann nach Anspruch 25 einzeln oder als Bestandteil einer modular aufgebauten Anordnung zur Durchführung physikalischer oder chemi- scher Umwandlungen eingesetzt werden oder nach Anspruch 26 zusammen mit anderen Funktionsmodulen in ein Bauteil integriert werden. Ausführungsbeispiele der Erfindungen sind in den Zeichnungen dargestellt und werden im nachfolgenden näher beschrieben.
Es zeigen:
Fig. 1 schematische Darstellung des statischen Mikrovermischers bestehend aus einer Schlitz- und einer Blendplatte;
Fig. 2a Expolsionsdarstellung eines statischen Laminationsmikrovermi- sches bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
Fig. 2b Darstellung eines statischen Laminationsmikrovermischers bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
Fig. 3a Draufsicht auf die Zuführkanälen (11), Schlitzöffnungen (22a, 22b) und Blendschiitzen (31) eines statischen Laminationsmikrovermischers;
Fig. 3b Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen Laminationsmikrovermischers;
Fig. 3c Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen
Laminationsmikrovermischers;
Fig. 3d: Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitz- Öffnungen für beide Fluide in der Ebene der Schlitzplatte überlappen; Fig. 3e: Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen unterschiedliche Breiten und Formen haben;
Fig. 3f: Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen, die Blendschlitze (31) und/oder die Zuführkanäle (11) unterschiedliche und variable Breiten und Formen haben;
Fig. 4a Draufsicht auf einen statischen Laminationsmikrovermischer be- stehend aus Gehäuseunterteil (10), Schlitzplatte (20) und Blendplatte (30);
Fig. 4b Draufsicht auf einen statischen Laminationsmikrovermischer;
Fig. 5 Explosionsdarstellung eines statischen Mikrovermischers;
Fig. 6 Explosionsdarstellung eines statischen Mikrovermischers mit Betrachtungswinkel von unten;
Fig. 7a schematische Darstellung des Gehäuseunterteils (10);
Fig. 7b Querschnitt durch Gehäuseunterteil (10) entlang der Ebene B-B;
Fig. 7c Querschnitt durch Gehäuseunterteil (10) entlang der Ebene C-C;
Fig. 8a schematische Darstellung eines statischen Mikrovermischers mit zwei unterschiedlichen Schlitzplatten und versetzt zueinander angeordneten Schlitzöffnungen (22, 23);
Fig. 8b schematische Darstellung eines zusammengesetzten statischen
Laminationsmikrovermischers mit zwei unterschiedlichen Schlitzplatten; Fig. 9a Explosionsdarstellungen von Laminationsmikrovermischern mit parallel versetzter Anordnung der Kanäle zur Auftrennung der Fluide im Gehäuse;
Fig. 9b Explosionsdarstellungen von Laminationsmikrovermischern mit radial konzentrischer Anordnung der Kanäle zur Auftrennung der
Fluide im Gehäuse;
Fig. 10 Laminationsmikrovermischer (60) (vgl. Fig. 9a) als Bestandteil einer integrierten Prozessanordnung zusammen mit einer Wärme- tauscheinheit (70).
Fig. 1 zeigt die schematische Darstellung eines statischen Laminationsmikrovermischers bestehend aus Unterteil 10, einer Schlitzplatte 20 und einer Blend- piatte 30. Das Unterteil 10 enthält für das Fluid A den Zuführkanal 11a und für das Fluid B den Zuführkanal 11b. Die Schlitzplatte 20 weist für die Fluide A und B Schlitzöffnungen 22a und 22b auf, die aus dem Zuführkanal 11a und 11b gespeist werden. Oberhalb der Schlitzplatte 20 befindet sich die Blendplatte 30 mit einem Blendschlitz 31. Die Blendplatte 30 deckt hierbei den äußeren Bereich der Schlitzöffnungen 22a und 22b ab, während der mittlere Bereich der Schlitz- Öffnungen 22a und 22b mit dem Blendschlitz 31 überlappt und dadurch frei bleibt.
Fig. 2a zeigt die Explosionsdarstellung eines statischen Mikrovermischers bestehend aus Unterteil 10, Zuführkanälen 11a und 11 b, Schlitzplatte 20 und Blendplatte 30. Die Zuführkanäle 11a und 11b enthalten jeweils die Fluide A und B; über diesen Zuführkanälen befindet sich die Schlitzplatte 20 mit den Schlitzöffnungen 22 a und 22b. Oberhalb dieser befindet sich die Blendplatte 30, deren Blendschlitze in einem Winkel von 90° zu den Schlitzöffnungen 22a und 22b angeordnet sind. Fig. 2b zeigt eine schematische Darstellung eines statischen Mikrovermischer, wie in Fig. 2a dargestellt, bestehend aus Unterteil 10, Schlitzplatte 20 und Blendplatte 30.
Fig. 3a zeigt als Doppelreihen angeordnete Schlitzöffnungen 22a und 22b in Form von Schlitzbereichen 21. Diese Schlitzbereiche 21 werden durch die Zuführkanäle 11a und 11b mit Fluiden gespeist. Die eine Hälfte der Schlitzöffnungen 22a überlappt mit den Zuführkanälen 11a, die andere mit den Zuführkanälen 1 b. In mittleren Bereich der Doppelreihen überlappen die Schlitzöffnungen 22 mit dem darüber angebrachten Blendschlitz 31. Die Schlitzöffnungen 22 können, wie hier dargestellt, auch schräg angeordnet sein.
Fig. 3b, Fig. 3c, Fig. 3d, Fig. 3e und Fig. 3f zeigen Schlitzöffnungen 22 mit unterschiedlicher geometrischer Ausgestaltung und Orientierung. Unterhalb der Schlitzöffnungen befinden sich die Zuführkanäle 11. Oberhalb der Schlitzöff- nungen befinden sich die Blendschlitze 31. Die Querschnitte der Zuführkanäle 11 und der Blendschlitze 31 können entlang ihres Verlaufs variieren (Fig. 3f). Die Schlitzöffnungen 22 können trichterförmig in erweitert sein. Die Breite und Form der Schlitzöffnungen 22 kann zwischen den Fluiden (Fig. 3e) und innerhalb der Fluide (Fig. 3f) variieren.
Fig. 4a zeigt die Draufsicht auf ein Gehäuseunterteil 10. Das Gehäuseunterteil 10 ist mit zahlreichen schlitzförmigen Zuführkanälen 11 a und 11 b versehen, die abwechselnd rechts oder links verlagert dargestellt sind. In der darüber angeordneten Schlitzplatte 20 befinden sich der als schwarze Balken dargestellte Schlitzbereich 21; der Schlitzbereich 21 ist hierbei jeweils zwischen zwei Zuführkanälen 11a und 11b positioniert, sodass dieser von zwei Zuführkanälen überlappt wird. Die Blendschlitze 31 der darüber liegenden Blendplatte 30 befinden sich mittig über den Schlitzbereichen 21 der Schlitzplatte 20.
Fig. 4b zeigt eine schematische Anordnung aus Zuführkanälen 11a und 11 b, Schlitzbereichen 21 und Blendschlitzen 31. Fig. 5 zeigt die Explosionsansicht eines statischen Laminationsmikrovermischers; der Mikrovermischer besteht aus Gehäuseunterteil 10 und Gehäuseoberteil 40. Zwischen dem Gehäuseunterteil 10 und Gehäuseoberteil 40 befinden sich die Schlitzplatten 20 und die Blendplatten 30. In dem Gehäuseunterteil 10 befindet sich eine Nut 13, in die ein Dichtungsring 50 eingelegt werden kann, um so den Mikrovermischer gegen die Umgebung abzudichten. Das Gehäuseunterteil 10 und das Gehäuseoberteil 40 sind jeweils mit Öffnungen für Befestigungselemente 44 versehen, durch die beide gegeneinander fixiert werden können. Das Gehäuseunterteil 10 enthält an der Außenfläche zwei Fluidein- lasskanäle 12a und 12b für die zu mischenden Fluide A und B. Auf der Obersei- te des Gehäuseunterteils 10 sind zahlreiche schlitzförmige Zuführkanäie 11a und 11b eingearbeitet, die abwechselnd zu der einen oder der anderen Seite verlängert ausgestaltet sind und so vom Fluid A oder vom Fluid B gespeist werden können. Die Schlitzplatte 20 enthält zahlreiche Schlitzbereiche 21; oberhalb der Schlitzplatte 20 ist die Blendplatte 30 angebracht, die eine Vielzahl von Blendschlitzen 31 aufweist. Das Gehäuseoberteil 40 enthält einen Fluidauslass 42 zur Ableitung des gewonnenen Gemisches.
Fig. 6 zeigt in Analogie zu Fig. 5 eine Explosionsdarstellung eines statischen Laminationsmikrovermischers mit Betrachtungswinkel von der Unterseite. Das Gehäuseoberteil 40 enthält eine große Mischkammer 45, in die alle Blendschlitze 31 der Blendplatte 30 münden. Zur Abstützung der Blendplatte 30 sind mehrere Stützstrukturen 41 im Gehäuseoberteil 40 angebracht.
Fig. 7a zeigt die schematische Darstellung des Gehäuseunterteils 10. Das Ge- häuseunterteil 10 ist mit Zuführkanälen 11a und 11b für die zu mischenden Fluide A und B versehen. An den Außenseiten des Gehäuseunterteils sind Fluid- einlässe 12a und 12b vorhanden. Die Aussparungen 44 an den vier Ecken des Gehäuseunterteils 10 gestatten dessen Fixierung.
Fig. 7b zeigt den Querschnitt durch das Gehäuseunterteil 10 entlang der Linie B-B in Fig. 7a. Der Fluideinlass 12a setzt sich in dem Fluideinlasskanal 14 für das Fluid A fort. Auf der Oberseite des Fluideinlasskanals 14 befinden sich die Zufuhrkanäle 11a für das Fluid. Auf der Oberseite des Gehäuseunterteils 10 befindet sich eine Nut 13 für das Einlegen eines Dichtungsrings.
Fig. 7c zeigt den Querschnitt durch das Gehäuseunterteil 10 entlang der Linie C-C in Fig. 7a. Die Zuführkanäle 11a für das Fluid A und 11b für das Fluid B verlaufen abwechselnd parallel, ohne dass es eine Querverbindung zwischen diesen beiden Zuführkanälen gibt. Auf der Oberseite des Gehäuseunterteils 10 befindet sich wieder eine Nut 13 für das Einlegen eines Dichtungsrings.
Fig. 8a zeigt die schematische Darstellung eines statischen Laminationsmikro- vermischers mit den zwei unterschiedlichen Schlitzöffnungen 22a/22b und 23a/23b. Die Schlitzöffnungen 22a und 22b der ersten Schlitzplatte bilden die Zuführkanäle für die zweite Schlitzplatte mit kleinen Schlitzöffnungen 23a und 23b. Die Schlitzöffnungen 22a/22b und 23a/23b sind jeweils um 90° zueinander verdreht angeordnet.
Fig. 8b zeigt die Draufsicht eines solchen statischen Mikrovermischers nach Fig. 8a bestehend aus zwei unterschiedlichen Schlitzplatten, deren Schlitzöffnungen zueinander um 90° gedreht sind.
Fig. 9a und Fig. 9b zeigen zwei Ausführungsbeispiele für Laminationsmikrovermischer in der Explosionsdarstellung. Danach können die Schlitzöffnungen in der Schlitzplatte, die Schlitzöffnungen in der Blendplatte sowie die Kanäle zur Verteilung der Fluide kreisförmig oder parallel versetzt angeordnet sein.
Fig. 10 zeigt ein Ausführungsbeispiel zum Einsatz eines Laminationsmikrovermischers als Bestandteil einer integrierten Anordnung zur Durchführung physikalisch-chemischer Umwandlungen. Im aufgeführten Fall wurden Laminationsmikrovermischer (60) und Rohrbündelwärmeübertrager (70) in ein Bauteil integriert. Bezugszeichenliste:
10, 10a Gehäuseunterteil
11a Zuführkanal für Fluid A
11 b Zuführkanal für Fluid B
12a Fluideinlass für Fluid A
12b Fluideinlass für Fluid B
13 Nut für Dichtungsring
14 Fluideinlasskanal
20 Schlitzplatte
21 Schlitzbereich
22a Schlitzöffnung für Fluid A
22b Schlitzöffnung für Fluid B
23a Schlitzöffnung für Fluid A
23b Schlitzöffnung für Fluid B
30 Blendplatte
31 Blendschlitz
40, 40a Gehäuseoberteil
41 Stützstruktur
42 Fluidauslass
44 Öffnung für Befestigungselement
45 Mischkammer
50 Dichtungsring
60 Mikrovermischer
70 Rohrbü ndelwärmeü bertrager

Claims

Patentansprüche:
1. Statischer Laminationsmikrovermischer zum Mischen, Dispergieren, E- mulgieren oder Suspendieren von mindestens zwei fluiden Phasen, dadurch gekennzeichnet, dass er mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Blendenschlitzen enthält, deren Schlitze als durchgehende Öffnungen gefertigt sind.
2. Mikrovermischer nach Anspruch 1, dadurch gekennzeichnet, dass die Anzahl der Schlitzöffnungen in der Schlitzplatte und/oder die Anzahl der Blendschlitze in der Blendplatte größer als eins ist.
3. Mikrovermischer nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass die fluiden Phasen nach ihrem Eintritt in die Schlitzplatte in den Schlitzöffnungen zunächst aufeinander zugeführt werden, bevor sie in die Öffnung einer darüber liegenden Platte eintreten.
4. Mikrovermischer nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Schlitzöffnungen in der Schlitzplatte so zueinander angeordnet sind, dass die fluiden Phasen in die Schlitzöffnung einer darüberliegenden Blend- oder Schlitzplatte eintreten.
5. Mikrovermischer nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die fluiden Phasen in den Schlitzöffnungen der Blendplatte miteinander in Kontakt kommen.
6. Mikrovermischer nach den Ansprüchen 1 bis 5, dadurch gekennzeich- net, dass die geometrische Form und Ausrichtung der Schlitzöffnungen in der der Schlitzplatte die Entstehung von Sekundäreffekten begünstigen.
7. Mikrovermischer nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Schlitzöffnungen schräg zueinander angeordnet sind.
8. Mikrovermischer nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass der Querschnitt der Schlitzöffnungen in der Platte trichterförmig oder keulenförmig ausgestaltet ist.
9. Mikrovermischer nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass mehrere Schlitzplatten und/oder Blendplatten direkt übereinander o- der versetzt zueinander angeordnet sind.
10. Mikrovermischer nach den Ansprüchen 1 bis 9, dadurch gekennzeichnet, dass auf die Schlitzplatten Strukturen aufgebracht oder aus den Platten herausgearbeitet sind.
11. Mikrovermischer nach den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass durch geeignete Anordnung einer oder mehrerer Schlitzplatte und/oder Blendplatten ein Fluid zu einer Austrittsöffnung eines anderen Fluids hingeführt wird.
12. Mikrovermischer nach den Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass die Mischkammer oberhalb der Blendplatte angebracht ist.
13. Mikrovermischer nach den Ansprüchen 1 bis 12, dadurch gekennzeichnet, dass die Blendschlitze in der Blendplatte parallel zueinander versetzt und/oder in einem periodischen Muster zueinander angeordnet sind.
14. Mikrovermischer nach den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass die Schlitzöffnungen in der Schlitzplatte und die Blendschlitze in der Blendplatte in einem beliebigen Winkel zueinander, vorzugsweise um 90° verdreht, angeordnet sind.
15. Mikrovermischer nach den Ansprüchen 1 bis 14, dadurch gekennzeichnet, dass die Schlitzöffnungen in der Schlitzplatte und die Blendschlitze in der Blendplatte eine Breite von weniger als 500 μm, vorzugsweise aber von weniger als 100 μm aufweisen.
16. Mikrovermischer nach den Ansprüchen 1 bis 15, dadurch gekennzeichnet, dass die Schlitz- und Blendplatte teilweise oder vollständig aus Metall, Glas, Keramik und Kunststoff oder aus einer Kombination dieser Materialien bestehen.
17. Mikrovermischer nach den Ansprüchen 1 bis 16, dadurch gekennzeichnet, dass die Schlitz- und Blendplatten durch Stanzen, Prägen, Fräsen, Erodieren, Ätzen, Plasmaätzen, Laserschneiden, Laserablatieren oder durch die LIGA-Technik, vorzugsweise aber durch Laserschneiden oder LIGA- Technik, hergestellt worden sind.
18. Mikrovermischer nach den Ansprüchen 1 bis 17, dadurch gekennzeichnet, dass die Schlitz- und Blendplatten aus einem Stapel mikrostrukturierter, dünner Platten bestehen.
19. Mikrovermischer nach Anspruch 18, dadurch gekennzeichnet, dass die dünnen, mikrostrukturierten Platten stoffschlüssig durch Löten, Schweißen, Diffusionsschweißen oder Kleben oder kraftschlüssig durch Verschrauben, Ver- pressen oder Vernieten miteinander verbunden sind.
20. Mikrovermischer nach den Ansprüchen 1 bis 19, dadurch gekennzeichnet, dass die Blendschlitze in den Blendplatten und die Schlitzöffnungen in den Schlitzplatten verzweigt ausgestaltet sind.
21. Mikrovermischer nach den Ansprüchen 1 bis 20, dadurch gekenn- zeichnet, dass der Mikrovermischer in einem dafür vorgesehenen Gehäuse untergebracht ist.
22. Mikrovermischer nach den Ansprüchen 1 bis 21, dadurch gekennzeichnet, dass das Gehäuse Kanäle enthalten kann, die eine räumliche Aufteilung der fluiden Phasen gestatten.
23. Mikrovermischer nach den Ansprüchen 1 bis 22, dadurch gekenn- zeichnet, dass die Kanäle zur Aufteilung der Fluide im Gehäuse parallel zueinander versetzt, radial, konzentrisch oder hintereinander angeordnet sind.
24. Mikrovermischer nach den Ansprüchen 1 bis 23, dadurch gekennzeichnet, dass die Kanäle zur Aufteilung der Fluide im Gehäuse mit gleich blei- benden oder variablen Querschnitten ausgeführt werden.
25. Verfahren zum Mischen, Dispergieren, Emulgieren oder Suspendieren von mindestens zwei fluiden Phasen, dadurch gekennzeichnet, dass diese durch mindestens eine Schlitzplatte mit Schlitzöffnungen, deren Schlitze als durchgehende Öffnungen gefertigt sind, und eine darüber angeordnete Blendplatte mit Blendenschlitzen geleitet werden.
PCT/EP2003/013603 2002-12-07 2003-12-03 Statischer laminationsmikrovermischer WO2004052518A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003288216A AU2003288216A1 (en) 2002-12-07 2003-12-03 Static lamination micro mixer
US10/535,262 US7909502B2 (en) 2002-12-07 2003-12-03 Static lamination micro mixer
JP2004557974A JP4847700B2 (ja) 2002-12-07 2003-12-03 層流スタティック・マイクロミキサーおよび混合、分散、乳化または懸濁する方法
EP03780105.7A EP1572335B1 (de) 2002-12-07 2003-12-03 Statischer laminationsmikrovermischer
HK06112780A HK1092098A1 (en) 2002-12-07 2006-11-21 Static lamination micro mixer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE20218972U DE20218972U1 (de) 2002-12-07 2002-12-07 Statischer Laminationsmikrovermischer
DE20218972.4 2002-12-07

Publications (2)

Publication Number Publication Date
WO2004052518A2 true WO2004052518A2 (de) 2004-06-24
WO2004052518A3 WO2004052518A3 (de) 2005-06-09

Family

ID=7977747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013603 WO2004052518A2 (de) 2002-12-07 2003-12-03 Statischer laminationsmikrovermischer

Country Status (8)

Country Link
US (1) US7909502B2 (de)
EP (1) EP1572335B1 (de)
JP (2) JP4847700B2 (de)
KR (1) KR100806401B1 (de)
CN (1) CN100360218C (de)
AU (1) AU2003288216A1 (de)
DE (1) DE20218972U1 (de)
WO (1) WO2004052518A2 (de)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029647B2 (en) 2004-01-27 2006-04-18 Velocys, Inc. Process for producing hydrogen peroxide using microchannel technology
US7084180B2 (en) 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
KR100695151B1 (ko) 2005-05-18 2007-03-14 삼성전자주식회사 교차 채널을 이용한 유체 혼합 장치
DE102005049294A1 (de) * 2005-10-14 2007-04-26 Ehrfeld Mikrotechnik Bts Gmbh Verfahren und Vorrichtung zur Herstellung organischer Peroxide mittels Mikroreaktionstechnik
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
DE102005060280A1 (de) * 2005-12-16 2007-06-28 Ehrfeld Mikrotechnik Bts Gmbh Integrierbarer Mikromischer sowie dessen Verwendung
US7250074B2 (en) 2003-08-29 2007-07-31 Velocys, Inc. Process for separating nitrogen from methane using microchannel process technology
CN100345617C (zh) * 2005-09-22 2007-10-31 上海交通大学 磁电式循环混合器
US7305850B2 (en) 2004-07-23 2007-12-11 Velocys, Inc. Distillation process using microchannel technology
US7459508B2 (en) 2004-03-02 2008-12-02 Velocys, Inc. Microchannel polymerization reactor
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7610775B2 (en) 2004-07-23 2009-11-03 Velocys, Inc. Distillation process using microchannel technology
EP2383245A2 (de) 2010-04-20 2011-11-02 Bayer Technology Services GmbH Verfahren zur kontinuierlichen Oxidation von Thioethern
WO2012025548A1 (en) 2010-08-27 2012-03-01 Solvay Sa Process for the preparation of alkenones
EP2664607A1 (de) 2012-05-16 2013-11-20 Solvay Sa Fluorierungsverfahren
US8696193B2 (en) 2009-03-06 2014-04-15 Ehrfeld Mikrotechnik Bts Gmbh Coaxial compact static mixer and use thereof
US10358604B2 (en) 2015-06-12 2019-07-23 Velocys, Inc. Method for stopping and restarting a Fischer-Tropsch process

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014835B2 (en) 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
DE20218972U1 (de) 2002-12-07 2003-02-13 Ehrfeld Mikrotechnik Ag Statischer Laminationsmikrovermischer
US7294734B2 (en) 2003-05-02 2007-11-13 Velocys, Inc. Process for converting a hydrocarbon to an oxygenate or a nitrile
US8580211B2 (en) 2003-05-16 2013-11-12 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
DE10333922B4 (de) * 2003-07-25 2005-11-17 Wella Ag Bauteile für statische Mikromischer, daraus aufgebaute Mikromischer und deren Verwendung zum Mischen, zum Dispergieren oder zur Durchführung chemischer Reaktionen
US9023900B2 (en) 2004-01-28 2015-05-05 Velocys, Inc. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US8747805B2 (en) 2004-02-11 2014-06-10 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction using microchannel technology
US7934865B2 (en) 2004-02-17 2011-05-03 Ehrfeld Mikrotechnik Bts Gmbh Micromixer
DE102005003965A1 (de) * 2005-01-27 2006-08-10 Ehrfeld Mikrotechnik Gmbh Mikromischer
US20070140042A1 (en) * 2004-06-04 2007-06-21 Gerhard Schanz Multicomponent packaging with static micromixer
DE102004035462A1 (de) * 2004-07-22 2006-03-16 Ehrfeld Mikrotechnik Bts Gmbh Vorrichtung und Verfahren zur kontinuierlichen Durchführung chemischer Prozesse
CA2575165C (en) 2004-08-12 2014-03-18 Velocys Inc. Process for converting ethylene to ethylene oxide using microchannel process technology
WO2006039568A1 (en) 2004-10-01 2006-04-13 Velocys Inc. Multiphase mixing process using microchannel process technology
CN101128257B (zh) 2004-11-12 2010-10-27 万罗赛斯公司 使用微通道技术进行烷化或酰化反应的方法
CA2587546C (en) 2004-11-16 2013-07-09 Velocys Inc. Multiphase reaction process using microchannel technology
WO2006107206A2 (en) * 2005-04-06 2006-10-12 Stichting Voor De Technische Wetenschappen Inlet section for micro-reactor
CA2608400C (en) 2005-05-25 2014-08-19 Velocys Inc. Support for use in microchannel processing
US7935734B2 (en) 2005-07-08 2011-05-03 Anna Lee Tonkovich Catalytic reaction process using microchannel technology
JP4855471B2 (ja) * 2005-09-26 2012-01-18 エルジー・ケム・リミテッド 積層反応装置
CN1800161B (zh) * 2006-01-16 2010-11-10 华东理工大学 一种用于连续生产过氧化甲乙酮的方法和微反应装置
JP2009537687A (ja) * 2006-05-23 2009-10-29 ビーエーエスエフ ソシエタス・ヨーロピア ポリエーテルポリオールの製造方法
WO2010009239A2 (en) * 2008-07-18 2010-01-21 3M Innovative Properties Company Tortuous path static mixers and fluid systems including the same
US8764279B2 (en) * 2008-07-18 2014-07-01 3M Innovation Properties Company Y-cross mixers and fluid systems including the same
US20110158852A1 (en) * 2008-07-18 2011-06-30 Castro Gustavo H Offset path mixers and fluid systems includng the same
DE102009038019B4 (de) * 2009-08-12 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D Mikro-Strukturierung zur Erzeugung von Misch- und Kanalstrukturen in Multilayertechnologie zur Verwendung in oder zum Aufbau von Reaktoren
JP5212313B2 (ja) * 2009-08-24 2013-06-19 株式会社日立プラントテクノロジー 乳化装置
CN101716473B (zh) * 2009-11-04 2011-11-30 中国科学院长春光学精密机械与物理研究所 芯片内微混合器及其制作方法
US9138696B2 (en) 2009-11-30 2015-09-22 Corning Incorporated Honeycomb body u-bend mixers
KR101324405B1 (ko) * 2010-06-28 2013-11-01 디아이씨 가부시끼가이샤 마이크로 믹서
JP5642488B2 (ja) * 2010-10-04 2014-12-17 株式会社神戸製鋼所 流路構造体
JP2012120962A (ja) * 2010-12-07 2012-06-28 Kobe Steel Ltd 流路構造体
ES2645960T3 (es) 2011-12-21 2017-12-11 Bellerophon Bcm Llc Procedimiento para fabricar una solución de alginato parcialmente reticulada
JP5832282B2 (ja) * 2011-12-28 2015-12-16 株式会社フジクラ マイクロミキサ
GB201214122D0 (en) 2012-08-07 2012-09-19 Oxford Catalysts Ltd Treating of catalyst support
CN103977720B (zh) * 2013-09-10 2016-01-13 中国中化股份有限公司 一种组合式层状流体配分混合装置及其应用
JP6142002B2 (ja) * 2014-01-09 2017-06-07 株式会社日立ハイテクノロジーズ 液体混合装置、および液体クロマトグラフ装置
US10161690B2 (en) * 2014-09-22 2018-12-25 Hamilton Sundstrand Space Systems International, Inc. Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger
US9937472B2 (en) 2015-05-07 2018-04-10 Techmetals, Inc. Assembly operable to mix or sparge a liquid
KR101688419B1 (ko) * 2016-08-11 2016-12-21 (주)케이클라우드 가상개인정보를 이용한 보안 운송장 발급관리 시스템 및 방법
CN106423006A (zh) * 2016-10-31 2017-02-22 山东豪迈化工技术有限公司 一种对冲微反应单元及微反应器
CN106823946B (zh) * 2017-01-19 2022-08-16 南京理工大学 一种振荡流微混合器
JP7186213B2 (ja) 2017-07-14 2022-12-08 スリーエム イノベイティブ プロパティズ カンパニー 複数の液体ストリームを搬送するためのアダプタ
WO2019018637A1 (en) * 2017-07-20 2019-01-24 Hydra-Flex Inc. DILUTION DEVICE FOR DISPENSING A FLUID
US20210001340A1 (en) * 2018-02-28 2021-01-07 Tokyo Institute Of Technology Microdroplet/bubble-producing device
CN108273456B (zh) * 2018-03-29 2023-07-04 睦化(上海)流体工程有限公司 一种微孔涡流板式混合反应器及其应用
CN110433876B (zh) * 2018-05-03 2022-05-17 香港科技大学 微流控装置及其制造方法、口罩和过滤悬浮颗粒的方法
GB201817692D0 (en) * 2018-10-30 2018-12-19 Ge Healthcare Mixing device
US11633703B2 (en) 2020-04-10 2023-04-25 Sonny's Hfi Holdings, Llc Insert assembly for foaming device
US11938480B2 (en) * 2020-05-14 2024-03-26 The Board Of Trustees Of The University Of Illinois Urbana, Illinois Microfluidic diagnostic device with a three-dimensional (3D) flow architecture
CN116457079A (zh) * 2020-11-20 2023-07-18 国立研究开发法人科学技术振兴机构 微两相液滴生成装置
WO2022197506A1 (en) 2021-03-15 2022-09-22 Sonny's Hfi Holdings, Llc Foam generating device
CN114534652A (zh) * 2022-02-08 2022-05-27 上海天泽云泰生物医药有限公司 波形微结构混合单元及其用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6710428A (de) * 1967-07-27 1969-01-29
WO1997000442A1 (en) * 1995-06-16 1997-01-03 The University Of Washington Microfabricated differential extraction device and method
DE19917156A1 (de) * 1999-04-16 2000-10-26 Inst Mikrotechnik Mainz Gmbh Verfahren zur Herstellung einer Wasser-in-Dieselöl-Emulsion als Kraftstoff sowie dessen Verwendungen
DE19928123A1 (de) * 1999-06-19 2000-12-28 Karlsruhe Forschzent Statischer Mikrovermischer
DE19927554A1 (de) * 1999-06-16 2000-12-28 Inst Mikrotechnik Mainz Gmbh Mikromischer
US6264900B1 (en) * 1995-11-06 2001-07-24 Bayer Aktiengesellschaft Device for carrying out chemical reactions using a microlaminar mixer

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422671A (en) * 1890-03-04 willis
US3881701A (en) 1973-09-17 1975-05-06 Aerojet General Co Fluid mixer reactor
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
JPS55147729A (en) 1979-05-08 1980-11-17 Sharp Corp Data inpt unit
JPS5662120A (en) * 1979-10-25 1981-05-27 Hitachi Chem Co Ltd Production of unsaturated polyester molded object having high surface hardness
JPS5710752Y2 (de) * 1980-10-16 1982-03-02
DE3782044T2 (de) * 1987-04-10 1993-03-25 Chugoku Kayaku Mischapparat.
US5016707A (en) * 1989-12-28 1991-05-21 Sundstrand Corporation Multi-pass crossflow jet impingement heat exchanger
US5534328A (en) 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
DE4416343C2 (de) 1994-05-09 1996-10-17 Karlsruhe Forschzent Statischer Mikro-Vermischer
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
JP2587390B2 (ja) * 1994-10-03 1997-03-05 特殊機化工業株式会社 液体の超微粒化混合装置
DE19511603A1 (de) 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Vorrichtung zum Mischen kleiner Flüssigkeitsmengen
DE19540292C1 (de) 1995-10-28 1997-01-30 Karlsruhe Forschzent Statischer Mikrovermischer
JPH10314566A (ja) * 1997-05-19 1998-12-02 Sumitomo Heavy Ind Ltd マイクロスタティックミキサー
US5887977A (en) 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
CN2376326Y (zh) * 1999-05-24 2000-05-03 倪新宇 多孔波纹静态混合器
US6485690B1 (en) * 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
US7223364B1 (en) * 1999-07-07 2007-05-29 3M Innovative Properties Company Detection article having fluid control film
JP4284841B2 (ja) * 2000-08-07 2009-06-24 株式会社島津製作所 液体混合器
DE10041823C2 (de) 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
DE10055856C2 (de) 2000-11-10 2003-04-10 Kundo Systemtechnik Gmbh Vorrichtung zum Herstellen von mit Kohlendioxid versetztem Tafelwasser
JP3694877B2 (ja) 2001-05-28 2005-09-14 株式会社山武 マイクロ混合器
JP3694876B2 (ja) * 2001-05-28 2005-09-14 株式会社山武 マイクロ乳化器
JP3727594B2 (ja) * 2002-01-18 2005-12-14 富士写真フイルム株式会社 マイクロミキサー
DE20218972U1 (de) 2002-12-07 2003-02-13 Ehrfeld Mikrotechnik Ag Statischer Laminationsmikrovermischer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6710428A (de) * 1967-07-27 1969-01-29
WO1997000442A1 (en) * 1995-06-16 1997-01-03 The University Of Washington Microfabricated differential extraction device and method
US6264900B1 (en) * 1995-11-06 2001-07-24 Bayer Aktiengesellschaft Device for carrying out chemical reactions using a microlaminar mixer
DE19917156A1 (de) * 1999-04-16 2000-10-26 Inst Mikrotechnik Mainz Gmbh Verfahren zur Herstellung einer Wasser-in-Dieselöl-Emulsion als Kraftstoff sowie dessen Verwendungen
DE19927554A1 (de) * 1999-06-16 2000-12-28 Inst Mikrotechnik Mainz Gmbh Mikromischer
DE19928123A1 (de) * 1999-06-19 2000-12-28 Karlsruhe Forschzent Statischer Mikrovermischer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1572335A2 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7226574B2 (en) 2003-05-16 2007-06-05 Velocys, Inc. Oxidation process using microchannel technology and novel catalyst useful in same
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7896935B2 (en) 2003-05-16 2011-03-01 Velocys, Inc. Process of conducting reactions or separation in a microchannel with internal fin support for catalyst or sorption medium
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US7250074B2 (en) 2003-08-29 2007-07-31 Velocys, Inc. Process for separating nitrogen from methane using microchannel process technology
US7029647B2 (en) 2004-01-27 2006-04-18 Velocys, Inc. Process for producing hydrogen peroxide using microchannel technology
US7084180B2 (en) 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US7722833B2 (en) 2004-01-28 2010-05-25 Velocys, Inc. Microchannel reactor
US7781548B2 (en) 2004-03-02 2010-08-24 Velocys, Inc. Microchannel polymerization reactor
US7459508B2 (en) 2004-03-02 2008-12-02 Velocys, Inc. Microchannel polymerization reactor
US7610775B2 (en) 2004-07-23 2009-11-03 Velocys, Inc. Distillation process using microchannel technology
US7305850B2 (en) 2004-07-23 2007-12-11 Velocys, Inc. Distillation process using microchannel technology
KR100695151B1 (ko) 2005-05-18 2007-03-14 삼성전자주식회사 교차 채널을 이용한 유체 혼합 장치
CN100345617C (zh) * 2005-09-22 2007-10-31 上海交通大学 磁电式循环混合器
DE102005049294B4 (de) * 2005-10-14 2009-03-26 Ehrfeld Mikrotechnik Bts Gmbh Verfahren zur Herstellung organischer Peroxide mittels Mikroreaktionstechnik
DE102005049294C5 (de) * 2005-10-14 2012-05-03 Ehrfeld Mikrotechnik Bts Gmbh Verfahren zur Herstellung organischer Peroxide mittels Mikroreaktionstechnik
DE102005049294A1 (de) * 2005-10-14 2007-04-26 Ehrfeld Mikrotechnik Bts Gmbh Verfahren und Vorrichtung zur Herstellung organischer Peroxide mittels Mikroreaktionstechnik
US7968753B2 (en) 2005-10-14 2011-06-28 Ehrfeld Mikrotechnik Bts Gmbh Method for the production of organic peroxides by means of a microreaction technique
DE102005060280A1 (de) * 2005-12-16 2007-06-28 Ehrfeld Mikrotechnik Bts Gmbh Integrierbarer Mikromischer sowie dessen Verwendung
DE102005060280B4 (de) 2005-12-16 2018-12-27 Ehrfeld Mikrotechnik Bts Gmbh Integrierbarer Mikromischer sowie dessen Verwendung
US8696193B2 (en) 2009-03-06 2014-04-15 Ehrfeld Mikrotechnik Bts Gmbh Coaxial compact static mixer and use thereof
EP2383245A2 (de) 2010-04-20 2011-11-02 Bayer Technology Services GmbH Verfahren zur kontinuierlichen Oxidation von Thioethern
WO2012025548A1 (en) 2010-08-27 2012-03-01 Solvay Sa Process for the preparation of alkenones
EP2664607A1 (de) 2012-05-16 2013-11-20 Solvay Sa Fluorierungsverfahren
US10358604B2 (en) 2015-06-12 2019-07-23 Velocys, Inc. Method for stopping and restarting a Fischer-Tropsch process
US10752843B2 (en) 2015-06-12 2020-08-25 Velocys, Inc. Synthesis gas conversion process
US11661553B2 (en) 2015-06-12 2023-05-30 Velocys, Inc. Synthesis gas conversion process

Also Published As

Publication number Publication date
AU2003288216A1 (en) 2004-06-30
JP2006508795A (ja) 2006-03-16
CN100360218C (zh) 2008-01-09
EP1572335B1 (de) 2013-05-29
JP2011183386A (ja) 2011-09-22
JP4847700B2 (ja) 2011-12-28
EP1572335A2 (de) 2005-09-14
KR20050085326A (ko) 2005-08-29
WO2004052518A3 (de) 2005-06-09
US7909502B2 (en) 2011-03-22
DE20218972U1 (de) 2003-02-13
CN1780681A (zh) 2006-05-31
AU2003288216A8 (en) 2004-06-30
US20060087917A1 (en) 2006-04-27
KR100806401B1 (ko) 2008-02-21

Similar Documents

Publication Publication Date Title
EP1572335A2 (de) Statischer laminationsmikrovermischer
EP0879083B1 (de) Vorrichtung zum mischen kleiner flüssigkeitsmengen
EP1866066B1 (de) Mischersystem, Reaktor und Reaktorsystem
DE4416343C2 (de) Statischer Mikro-Vermischer
EP1242171B1 (de) Mikrovermischer
EP1658129B1 (de) Statischer mikromischer
DE19540292C1 (de) Statischer Mikrovermischer
DE10123092B4 (de) Verfahren und statischer Mischer zum Mischen mindestens zweier Fluide
DE19927556C2 (de) Statischer Mikromischer und Verfahren zum statischen Mischen zweier oder mehrerer Edukte
DE10123093A1 (de) Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
WO2002016017A9 (de) Verfahren und statischer mikrovermischer zum mischen mindestens zweier fluide
DE19748481C2 (de) Statischer Mikrovermischer
EP1648581B1 (de) Extraktionsverfahren unter verwendung eines statischen mikromischers
EP1185359B1 (de) Mikromischer
DE10296876T5 (de) Mikro-Mischer
EP2090353B1 (de) Reaktionsmischersystem zur Vermischung und chemischer Reaktion von mindestens zwei Fluiden
DE10103425A1 (de) Statischer Mischer mit geschichtetem Aufbau
DE102005007707A1 (de) Rekuperator, Mikrokanal-Rekuperator, Folie, Verwendung einer Folie und Verfahren zum Herstellen sowie zum Betreiben eines Rekuperators
DE2328795C3 (de) Vorrichtung zum Mischen von strömenden Stoffen
WO2004091760A1 (de) Statischer mischer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003780105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057010057

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004557974

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A53256

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057010057

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003780105

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006087917

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535262

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10535262

Country of ref document: US