WO2004052926A1 - Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung - Google Patents

Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung Download PDF

Info

Publication number
WO2004052926A1
WO2004052926A1 PCT/EP2003/013281 EP0313281W WO2004052926A1 WO 2004052926 A1 WO2004052926 A1 WO 2004052926A1 EP 0313281 W EP0313281 W EP 0313281W WO 2004052926 A1 WO2004052926 A1 WO 2004052926A1
Authority
WO
WIPO (PCT)
Prior art keywords
cgfp
fluorescent protein
nucleic acid
protein
acid molecules
Prior art date
Application number
PCT/EP2003/013281
Other languages
English (en)
French (fr)
Inventor
Stefan Golz
Svetlana Markova
Ludmila Burakova
Ludmila Frank
Eugene Vysotski
Original Assignee
Bayer Healthcare Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare Ag filed Critical Bayer Healthcare Ag
Priority to EP03767664A priority Critical patent/EP1572732B1/de
Priority to CA002508793A priority patent/CA2508793A1/en
Priority to DE50308032T priority patent/DE50308032D1/de
Priority to AU2003292121A priority patent/AU2003292121B2/en
Priority to US10/537,614 priority patent/US7879557B2/en
Priority to JP2004557934A priority patent/JP2006520582A/ja
Publication of WO2004052926A1 publication Critical patent/WO2004052926A1/de
Priority to HK06108249.6A priority patent/HK1088016A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Definitions

  • the invention relates to the nucleotide and amino acid sequence, and the activity and use of the fluorescent protein CGFP (fluorescence protein of clytia gregaria).
  • CGFP fluorescent protein of clytia gregaria
  • a large number of coelenterates are bioluminescent (Morin et al., 1974) and emit blue or green light.
  • the aequorin from Aequoria victoria identified as the first light producing protein in 1962 (Shimomura et al., 1962) emitted a blue light as the isolated protein and not like the phenotypically observed green light from Aequoria victoria.
  • the green fluorescent protein (GFP) could later be isolated from Aequoria victoria, which due to the excitation by the Aequorin makes the medusa appear phenotypically green (Johnson et al, 1962;
  • Green fluorescent proteins could be isolated from different organisms. These include the hydozoa (aequoria, halistaura obelia) and anthropods (acanthotilum, sea cactus, cavernularia, renila, ptilosarcus, stylatula) (Morin et al.,
  • the fluorescent proteins differ not only because of their nucleotide and amino acid sequence, but also because of their biochemical and physical properties.
  • Proteins can differ on both the excitation and the emission side. An overview of the spectra of the fluorescence and the excitation wavelength can be found in Table 2. Table 2:
  • Fluorescent proteins are already found in a wide variety of areas.
  • Reporter or indicator genes are generally referred to as genes whose gene products can be easily detected using simple biochemical or histochemical methods. There are at least 2 types of reporter genes. 1. Resistance genes. Resistance genes are genes whose expression gives a cell resistance to antibiotics or other substances, the presence of which in the growth medium leads to cell death if the resistance gene is missing.
  • Reporter gene Reporter gene products are used in genetic engineering as merged or unfused indicators. The most common reporter genes include beta-galactosidase (Alam et al., 1990), alkaline phosphatase (Yang et al., 1997; Cullen et al., 1992), luciferases and other photoproteins (Shinomura, 1985; Phillips GN, 1997; Snowdowne et al., 1984).
  • Luminescence is the radiation of photons in the visible spectral range, this being done by excited emitter molecules. In contrast to fluorescence, the energy is not from outside in the form of
  • Chemiluminescence is a chemical reaction that leads to an excited molecule that glows when the excited electrons return to the ground state.
  • the species Clytia gregaria belongs to the Cnidaria, especially to the Medusas.
  • the bioluminescent or fluorescent phenotype was already described in 1998 (Ward et al., 1998). Isolation of the cDNA
  • reaction products were incubated for 30 minutes at 37 ° C. with proteinase K and the cDNA was precipitated with ethanol.
  • the cDNA was dissolved in water and incubated with Sfil for one hour at 37 ° C.
  • the reaction products were gel filtered to separate small fragments.
  • the fractionated cDNA was then ligated into the Sfil cut and dephosphorilated ⁇ TriplEx2 Vector.
  • a ⁇ -phage expression bank the cloned cDNA fragments were then packed in ⁇ -phages by the in vitro packaging system SMART cDNA Library Construction Kits (Clontech). A library screening was used to identify the recombinant phages which contained a cDNA insert with potential expression of fluorescent proteins.
  • the bacteria were irradiated with an argon laser (LGN502) with 100 mV at 488 nm or 366 nm (UVL21).
  • LGN502 argon laser
  • the fluorescence was measured using a 510 nm ZSV filter.
  • the biomass of the fluorescence positive clones was removed from the culture plates and resuspended in PBS (phosphate buffed saline). The cells were disrupted by ultrasound. After clarification of the lysate by centrifugation, the fluorescence of the supernatant was determined in the fluorometer.
  • PBS phosphate buffed saline
  • the fluorescent protein was called CGFP (fluorescence protein of clytia gregaria).
  • the fluorescent protein CGFP is shown in detail below.
  • the fluorescent protein CGFP shows the highest homology at the amino acid level to GFP from Aequoria with an identity of 44% (shown in Example 8; FIG. 5). At the nucleic acid level, the identity is below 30% (shown in Example 9; Figure 6).
  • the BLAST method was used for sequence comparison (Altschul et al., 1997).
  • the invention also relates to functional equivalents of CGFP.
  • Functional equivalents are proteins that have comparable physicochemical properties and are at least 70% homologous. A homology of 80% or 90% is preferred. A homology of 95% is particularly preferred.
  • the fluorescent protein CGFP is suitable as a reporter gene for cellular systems especially for receptors, for ion channels, for transporters, for transcription factors or for inducible systems.
  • the fluorescent protein CGFP is suitable as a reporter gene in bacterial and eukaryotic systems, especially in mammalian cells, in bacteria, in yeast, in Bakulo, in plants
  • the fluorescent protein CGFP is suitable as reporter genes for cellular systems in combination with bioluminescent or chemiluminescent systems, especially systems with luciferases, with oxygenases, with phosphatases.
  • the fluorescent protein CGFP is suitable as a marker protein, especially for FACS (fluorescence activated cell sorter) sorting.
  • the fluorescent protein CGFP is suitable as a fusion protein especially for receptors, for ion channels, for transporters, for transcription factors, for
  • the fluorescent protein CGFP is particularly suitable for immobilization by antibodies, by biotin, by magnetic or magnetizable carriers.
  • the fluorescent protein CGFP is suitable as a protein for energy transfer systems, especially FRET (fluorescence resonance energy transfer), BRET (bioluminescence resonance energy transfer), FET (field effect transistors), FP (fluorescence polarization), HTRF (homogeneous time) resolved fluorescence) systems.
  • the fluorescent protein CGFP is suitable as a label for substrates or ligands especially for proteases, for kinases, for transferases.
  • the fluorescent protein CGFP is suitable for expression in bacterial
  • the fluorescent protein CGFP is particularly suitable as a marker coupled to antibodies, coupled to enzymes, coupled to receptors, coupled to ion channels and other proteins.
  • the fluorescent protein CGFP is suitable as a reporter gene for pharmacological drug searches, especially in HTS (high throughput screening).
  • the fluorescent protein CGFP is suitable as a component of detection systems especially for ELISA (enzyme-linked immunosorbent assay), for immunohistochemistry, for Western blot, for confocal microscopy.
  • the fluorescent protein CGFP is suitable as a marker for the analysis of
  • the fluorescent protein CGFP is suitable as a marker or fusion protein for expression in transgenic organisms, especially in mice, in rats, in hamsters and other mammals, in primates, in fish, in worms, in plants.
  • the fluorescent protein CGFP is suitable as a marker or fusion protein
  • the fluorescent protein CGFP is suitable as a marker via a coupling mediator, especially via biotin, via NHS (N-hydroxysulfosuccimide), via CN-Br.
  • the fluorescent protein CGFP is suitable as a reporter coupled to nucleic acids, especially to DNA, to RNA.
  • the fluorescent protein CGFP is suitable as a reporter coupled to proteins or peptides.
  • the fluorescent protein CGFP coupled to nucleic acids or peptides is suitable as a probe especially for Northern blots, for Southern blots, for Western blots, for ELIS A, for nucleic acid sequencing, for protein analyzes, chip analyzes.
  • the fluorescent protein CGFP is suitable for labeling pharmacological formulations, especially infectious agents, antibodies, and "small molecules”.
  • the fluorescent protein CGFP is suitable for geological investigations especially for ocean, groundwater and river currents.
  • the fluorescent protein CGFP is suitable for expression in expression systems, especially in in-vitro translation systems, in bacterial systems, in yeast systems, in Bakulo systems, in viral systems, in eukaryotic systems
  • the fluorescent protein CGFP is suitable for the visualization of tissues or cells during surgical interventions, especially for invasive, non-invasive, and minimally invasive.
  • the fluorescent protein CGFP is also suitable for marking tumor tissues and other phenotypically modified tissues, especially for histological examinations and surgical interventions.
  • the invention also relates to the purification of the fluorescent protein CGFP, especially as a wild-type protein, as a fusion protein, as a mutagenized protein.
  • the invention also relates to the use of the fluorescent protein CGFP in the field of cosmetics, in particular bath additives, lotions, soaps, body colors, toothpaste and body powders.
  • the invention also relates to the use of the fluorescent protein CGFP for coloring food, bath additives, ink, textiles and plastics.
  • the invention also relates to the use of the fluorescent protein CGFP for coloring paper, especially greeting cards, paper products, wallpapers, handicrafts.
  • the invention also relates to the use of the fluorescent protein CGFP
  • the invention also relates to the use of the fluorescent protein CGFP for the production of toys, especially finger paint, from Scliminke.
  • the invention further relates to nucleic acid molecules selected from the group consisting of
  • nucleic acid molecules encoding the polypeptide disclosed by SEQ ID NO: 2;
  • nucleic acid molecules the complementary strand of which with a
  • Nucleic acid molecule from a) or b) hybridizes under stringent conditions and which have the biological function of a fluorescent protein
  • nucleic acid molecules which differ from those mentioned under c) due to the degeneracy of the genetic code
  • nucleic acid molecules which show a sequence homology of at least 95% to SEQ LD NO: 1 and which have the biological function of a fluorescent protein
  • nucleic acid molecules which have a sequence homology of at least 65% to SEQ ID NO: 1 and which have the biological function of a fluorescent protein.
  • the invention relates to the above-mentioned nucleic acid molecules in which the sequence contains a functional promoter 5 "to the sequence.
  • the invention also relates to nucleic acid molecules as described above, which are part of recombinant DNA or RNA vectors.
  • the invention relates to organisms which contain such a vector.
  • the invention relates to oligonucleotides with more than 10 consecutive nucleotides which are identical or complementary to the DNA or RNA sequence of the CGFP molecules.
  • the invention relates to fluorescent proteins which are encoded by the nucleotide sequences described above.
  • the invention relates to methods for expressing the fluorescent polypeptides according to the invention in bacteria, eukaryotic cells or in in vitro expression systems.
  • the invention also relates to methods for purifying / isolating a fluorescent polypeptide according to the invention.
  • the invention relates to peptides with more than 5 consecutive amino acids which are recognized immunologically by antibodies against the fluorescent proteins according to the invention.
  • the invention relates to the use of the fluorescent proteins according to the invention as marker and reporter genes, in particular for pharmacological search for active substances and diagnostics.
  • Expression is the production of a molecule which, after the gene has been introduced into a suitable host cell, allows the transcription and translation of the foreign gene cloned into an expression vector.
  • Expression vectors contain those for the expression of genes in cells of prokaryotes or
  • expression vectors can be constructed in two different ways.
  • transcription fusions the protein encoded by the cloned-in foreign gene is synthesized as an authentic, biologically active protein.
  • the expression vector carries all 5'- and 3 "- required for expression.
  • the protein encoded by the cloned-in foreign gene is expressed as a hybrid protein together with another protein that can be easily detected.
  • Control signals including the start codons and possibly some of the sequences coding for the N-terminal regions of the hybrid protein to be formed originate from the vector.
  • the additional protein part introduced not only stabilizes the protein encoded by the cloned-in foreign gene in many cases before it is broken down by cellular proteases, but can also be used for the detection and isolation of the hybrid protein formed.
  • Expression can be both transient and stable. Both bacteria, yeasts, viruses and eukaryotic systems are suitable as host organisms.
  • protein purification The isolation of proteins (even after overexpression) is often referred to as protein purification.
  • a variety of established methods and processes are available for protein purification.
  • Solid-liquid separation is a basic operation in protein isolation.
  • the process step is necessary both in the separation of the cells from the culture medium and in the clarification of the crude extract after cell disruption and removal of the cell debris, in the separation of precipitates after precipitation, etc. It is done by centrifugation and filtration.
  • the cell wall must be destroyed or made permeable by obtaining intracellular proteins.
  • high-pressure homogenizers or agitator ball or glass bead mills are used. Mechanical cell integrations and ultrasound treatment are used on a laboratory scale.
  • Extracellular proteins are obtained in relatively dilute solutions. Like extracellular proteins, they must be concentrated before further use. In addition to the processes already mentioned, the
  • Inorganic salts as accompanying substances in proteins are often undesirable for specific applications. They can be removed by gel filtration, dialysis and diafiltration, among others. Numerous proteins are used as dry preparations. Vacuum, freeze and spray drying are important drying methods.
  • the fluorescent protein CGFP is encoded by the following nucleotide sequence (SEQ LD NO: 1):
  • FIG. 3 shows the transient emission of CGFP in CHO cells in the expression vector pcDNA3-CGFP.
  • the figure shows the microscopic image of the transiently transfected cells with an excitation of 480 nm and an emission of 520 nm.
  • CGFP Cly CGFP from Clytia gregaria
  • GFP_Ren GFP from Renilla
  • Figure 7 shows the augmentation of CFGP, GFP (Aquoria) and GFP (Renilla) at the nucleic acid level.
  • CGFP_Cly CGFP from Clytia gregaria
  • GFP_Ren GFP from Renilla
  • Plasmid pTriplEx2 from Clontech was used.
  • the derivative of the vector was named pTriplEx2-CGFP.
  • the vector pTriplEx2-CGFP was used to express CGFP in bacterial systems.
  • the plasmid pcDNA3.1 (+) from Clontech was used as the vector for producing the construct shown below.
  • the derivative of the vector was named pcDNA3-CGFP.
  • the vector pcDNA3-CGFP was used to express CGFP in eukaryotic systems.
  • the transformed bacteria were incubated in LB medium at 37 ° C. for 3 hours and expression was induced for 4 hours by adding IPTG to a final concentration of 1 mM.
  • the induced bacteria were harvested by centrifugation, resuspended in PBS and disrupted by ultrasound.
  • the constitutive eukaryotic expression was carried out in CHO cells by transfection of the cells with the expression plasmids pcDNA3-CGFP and pcDNA3.1 (+) in transient experiments. For this purpose, 10,000 cells per hole were plated in DMEM-F12 medium on 96-well microtiter plates and incubated at 37 ° C. overnight. The transfection was carried out using the Fugene 6 kit (Röche)
  • the transfected cells were incubated overnight at 37 ° C in DMEM-F12 medium.
  • the fluorescence was measured in a fluorometer at room temperature.
  • FIG. 3 shows the expression of CGFP in CHO cells.
  • E. coli BL21 (DE3) were transformed with the plasmids pTriplEX2-CGFP and pTriplEX2. Induction was carried out by adding 1 mM LPTG and incubating for 4 hours at 37 ° C. The bacteria were then harvested and resuspended in PBS. The lysis was carried out by ultrasound. The fluorescence was then measured in the
  • FIG. 4 shows the excitation of the CGFP and the control lysate
  • FIG. 5 shows the emission of the CGFP and the control lysate Example 6
  • FIG. 6 shows the alignment of CFGP, GFP (Aquoria) and GFP (Renilla)
  • the nucleic acid level The nucleic acid level.
  • FIG. 7 shows the alignment of CFGP, GFP (Aquoria) and GFP (Renilla)
  • BLAST and PSI-BLAST a new generation of protein database search programs
  • Green Fluorescent Protein Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc.

Abstract

Die Erfindung betrifft die Nukleotid- und Aminosäuresequenz, sowie die Aktivität und Verwendung des fluoreszierenden Proteins CGFP (fluoreszirendes Protein aus clytiagregaria).

Description

ISOLIERTES FLUORESZIERENDES PROTEIN AUS CLYTIA GREGARIA ( CGFP) , SOWIE DESSEN VERWENDUNG
Die Erfindung betrifft die Nukleotid- und Aminosäuresequenz, sowie die Aktivität und Nerwendung des fluoreszierenden Proteins CGFP (fluorescence protein of clytia gregaria).
Fluoreszierende Proteine
Eine Vielzahl an Coelenteraten sind biolumineszent (Morin et al., 1974) und emittieren blaues oder grünes Licht. Das 1962 als erstes Licht produzierendes Protein identifizierte Aequorin aus Aequoria victoria (Shimomura et al., 1962) emittierte als isoliertes Protein ein blaues Licht und nicht wie das phenotypisch beobachtete grüne Licht von Aequoria victoria. Später konnte das grün fluoreszierende Protein (GFP) aus Aequoria victoria isoliert werden, das Aufgrund der Anregung durch das Aequorin die Meduse phenotypisch grün erscheinen lässt (Johnson et al, 1962;
Hastings et al., 1969; Inouye et al, 1994).
Grün fluoreszierende Proteine konnten aus unterschiedlichen Organismen isoliert werden. Hierzu zählen die Hydozoa (aequoria, halistaura obelia) und Anthropoden (acanthotilum, sea cactus, cavernularia, renila, ptilosarcus, stylatula) (Morin et al.,
1971; Morin et al., 1971 II, Wampler et al., 1971, Wampler et al., 1973, Cormier et al., 1973, Cormier et al., 1974, Levine et al., 1982).
Eine Zusammenfassung einiger fluoreszierender Proteine findet sich in Tabelle 1 : Tabelle 1:
Übersicht über einige fluoreszierende Proteine. Angegeben ist der Name, der Organismus aus dem das Protein isoliert worden ist und die Identifikationsnummer (Acc. No.) des Datenbankeintrages.
Figure imgf000003_0001
Die fluoreszierenden Proteine unterscheiden sich nicht nur aufgrund ihrer Nukleotid- und Aminosäuresequenz, sondern auch aufgrund ihrer biochemischen und physikalischen Eigenschaften. Die spektralen Charakteristika der fluoreszierenden
Proteine können sich sowohl auf der Exitations- als auch auf der Emmisionsseite unterscheiden. Eine Übersicht der Spektren der Fluoreszenz und der Anregungswellenlänge findet sich in Tabelle 2. Tabelle 2:
Übersicht über einige fluoreszierende Proteine. Angegeben ist der Organismus aus dem das Protein isoliert worden ist, die Anregungs- und Emissionswellenlängen, die bei Spektralanalysen bestimmt worden sind.
Figure imgf000004_0001
Die Nerwendung von fluoreszierenden Proteinen wurde bereits zuvor beschrieben. Eine Übersicht findet sich in Tabelle 3:
Tabelle 3:
Übersicht über einige fluoreszierende Proteine. Angegeben ist der Organismus aus dem das Protein isoliert worden ist, der Name des fluoreszierenden Proteins und eine Auswahl an Patenten bzw. Anmeldungen.
Figure imgf000004_0002
Figure imgf000005_0001
Es konnte gezeigt werden, dass durch die Veränderung der Aminosäuresequenz von fluoreszierenden Proteinen die physikalischen und biochemischen Eigenschaften verändert werden können. Beispiele von mutagenisierten fluoreszierenden Proteinen sind in der Literatur beschrieben (Delagrave et al., 1995; Ehrig et al., 1995; Heim et al., 1996).
Fluoreszierende Proteine finden bereits in unterschiedlichsten Gebieten eine
Anwendung. Die Verwendung von fluoreszierende Proteinen beim 'Fluorescence Resonance Energy TranferXFRET), Εioluminescence Resonance Energy Transfer
(BRET) und anderen Energietransferverfahren wurde bereits in der Literatur beschrieben (Mitra et al., 1996; Ward et al., 1978; Cardullo et al, 1988; US patent no.
4,777,128; US patent no. 5,126,508; US patent no. 4,927,923; US patent no.
5,279,943). Weitere Nicht-radioaktive Methoden zum Energietransfer mittels GFP wurden in ebenfalls bereits beschrieben (PCT appl. WO 98/02571 and WO
97/28261)
Reportersysteme
Als Reporter- oder Indikatorgen bezeichnet man generell Gene, deren Genprodukte sich mit Hilfe einfacher biochemischer oder histochemischer Methoden leicht nachweisen lassen. Man unterscheidet mindestens 2 Typen von Reportergenen. 1. Resistenzgene. Als Resistenzgene werden Gene bezeichnet, deren Expression einer Zelle die Resistenz gegen Antibiotika oder andere Substanzen verleiht, deren Anwesenheit im Wachstumsmedium zum Zelltod führt, wenn das Resistenzgen fehlt.
2. Reportergen. Die Produkte von Reportergenen werden in der Gentechnologie als fusionierte oder unfusionierte Indikatoren verwendet. Zu den gebräuchlichsten Reportergenen gehört die beta-Galaktosidase (Alam et al., 1990), alkalische Phosphatase (Yang et al., 1997; Cullen et al., 1992), Luciferasen und andere Photoproteine (Shinomura, 1985; Phillips GN, 1997; Snowdowne et al., 1984).
Als Lumineszenz bezeichnet man die Abstrahlung von Photonen im sichtbaren Spektralbereich, wobei diese durch angeregte Emittermoleküle erfolgt. Im Unter- schied zur Fluoreszenz wird hierbei die Energie nicht von Außen in Form von
Strahlung kürzerer Wellenlänge zugeführt.
Man unterscheidet Chemilumineszenz und Biolumineszenz. Als Chemolumineszenz bezeichnet man eine chemische Reaktion die zu einem angeregten Molekül führt, das selbst leuchtet, wenn die angeregten Elektronen in den Grundzustand zurückkehren.
Wird diese Reaktion durch ein Enzym katalysiert, spricht man von Biolumineszenz. Die an der Reaktion beteiligten Enzyme werden generell als Luziferasen bezeichnet.
Einordung der Spezies Clytia gregaria
Cnidaria→Leptomedusae→Campanulariidae→ Clytia gregaria
Die Spezies Clytia gregaria gehört zu den Cnidaria, speziell zu den Medusen. Der biolumineszente bzw. fluoreszente Phänotyp wurde bereits 1998 beschrieben (Ward et al., 1998). Isolierung der cDNA
Zur Untersuchung der fluoreszenten Aktivität der Spezies Clytia gregaria wurden Exemplare im Friday Harbor in Washington State (USA) gefangen und in flüssigem Stickstoff gelagert. Zur Herstellung der cDNA-Bibliothek wurde ausschließlich der biolumineszente Ring eines Medusenexemplars verwendet. Zur Erstellung der cDNA-Bibliotheken von Clytia gregaria, wurde die RNA nach der Methode von Krieg (Krieg et al., 1996) durch Isothiocyanat isoliert.
Zur Herstellung der cDNA wurde eine RT-PCR durchgeführt. Hierzu wurden 10 μg
RNA mit Reverser Transkriptase (Superscribt Gold II) nach folgendem Schema inkubiert:
PCR 1. 30 Sekunden 95°C
2. 6 Minuten 68°C
3. 10 Sekunden 95°C
4. 6 Minuten 68°C
17 Zyklen von Schritt 4 nach Schritt 3
Die Reaktionsprodukte wurden zur Inaktivierung der Polymerase für 30 Minuten bei 37°C mit Proteinase K inkubiert und die cDNA mit Ethanol präzipitiert. Die cDNA wurde in Wasser gelöst und mit Sfil für eine Stunde bei 37°C inkubiert. Die Reaktionsprodukte wurden zur Abtrennung kleiner Fragmente gelfiltriert. Die f aktionierte cDNA wurde anschließend in den Sfil geschnittenen und dephosphorilierten λTriplEx2 Vector ligiert. Zur Herstellung einer λ-Phagen Expressionsbank wurden die Monierten cDNA-Fragmente anschließend durch das in vitro Verpackungssystem SMART cDNA Library Construction Kits (Clontech) in λ-Phagen verpackt. Die Identifizierung der rekombinaten Phagen, die eine cDNA Insertion mit potentieller Expression von fluoreszenten Proteinen enthielten, wurde ein „library screening" durchgeführt.
Hierzu wurden Bakterienrasen aus transformierten E. coli XLl-Blue auf 90 mm
Kulturschalen plattiert und für 12-15 Stunden bei 31°C inkubiert. Die Induktion der Proteinexpression durch die Zugabe von 60 μl einer 20 mM IPTG (Isopropythiogalactoside) Lösung auf die Platten gestartet. Nach einer Inkubation 24 Stunden bei Raumtemperatur wurden die Platten für 72 Stunden bei 4 °C gelagert. Anschliessend erfolgte die Messung der Fluoreszenz.
Hierzu wurden die Bakterien mit einem Argon-Laser (LGN502) mit 100 mV bei 488 nm oder 366 nm (UVL21) bestrahlt. Die Fluoreszenz wurde unter Verwendung eines 510 nm ZSV Filters gemessen.
Zur Isolierung der Klone und spektralen Analyse wurde die Biomasse der Fluoreszenz positiven Klone von den Kulturplatten entfernt und in PBS (phosphate buffed saline) resuspendiert. Der Zellaufschluss erfolgte durch Ultraschall. Nach der Klärung des Lysates durch Zentrifugation wurde die Fluoreszenz des Überstandes im Fluorometer bestimmt.
Es wurde ein fluoreszierendes Protein identifiziert. Das fluoreszierende Protein wurde als CGFP (fluorescence protein of clytia gregaria) bezeichnet. Im Folgenden wird das fluoreszierende Protein CGFP im einzelnen dargestellt.
CGFP
Das fluoreszierende Protein CGFP zeigt die höchste Homologie auf Aminosäureebene zu GFP aus Aequoria mit einer Identität von 44 % (gezeigt in Beispiel 8; Figur 5). Auf Nukleinsäureebene liegt die Identität unter 30 % (gezeigt in Beispiel 9; Figur 6). Zum Sequenzvergleich wurde das BLAST- Verfahren verwendet (Altschul et al., 1997).
Die Erfindung betrifft auch funktionelle Äquivalente von CGFP. Funktionelle Äquivalente sind solche Proteine, die vergleichbare physikochemische Eigenschaften haben und mindestens 70 % homolog sind. Bevorzugt ist eine Homologie von 80 % oder 90 %. Besonders bevorzugt ist eine Homologie von 95 %.
Das fluoreszierende Protein CGFP eignet sich als Reportergen für zelluläre Systeme speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren oder für induzierbare Systeme.
Das fluoreszierende Protein CGFP eignet sich als Reportergen in bakteriellen und eukaryotischen Systemen speziell in Säugerzellen, in Bakterien, in Hefen, in Bakulo, in Pflanzen
Das fluoreszierende Protein CGFP eignet sich als Reportergene für zelluläre Systeme in Kombination mit biolumineszenten oder chemolumineszenten Systemen speziell Systemen mit Luziferasen, mit Oxygenasen, mit Phosphatasen.
Das fluoreszierende Protein CGFP eignet sich als Markerprotein, speziell bei der FACS (Fluorescence activated cell sorter) Sortierung.
Das fluoreszierende Protein CGFP eignet sich als Fusionsprotein speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren, für
Proteiasen, für Kinasen, für Phosphodiesterasen, für Hydrolasen, für Peptidasen, für Transferasen, für Membranproteine, für Glykoproteine.
Das fluoreszierende Protein CGFP eignet sich zur Immobilisierung speziell durch Antikörper, durch Biotin, durch magnetische oder magnetisierbare Träger. Das fluoreszierende Protein CGFP eignet sich als Protein für Systeme des Energietransfers speziell der FRET- (Fluorescence Resonance Energy Transfer) ,BRET- (Bioluminescence Resonance Energy Transfer), FET (field effect transistors), FP (fluorescence polarization), HTRF (Homogeneous time-resolved fluorescence) Systemen.
Das fluoreszierende Protein CGFP eignet sich als Markierung von Substraten oder Liganden speziell für Proteasen, für Kinasen, für Transferasen.
Das fluoreszierende Protein CGFP eignet sich zur Expression in bakteriellen
Sytemen speziell zur Titerbestimmung, als Substrate für biochemische Systeme speziell für Proteinasen und Kinasen.
Das fluoreszierende Protein CGFP eignet sich als Marker speziell gekoppelt an Antikörper, gekoppelt an Enzyme, gekoppelt an Rezeptoren, gekoppelt an Ionenkanäle und andere Proteine.
Das fluoreszierende Protein CGFP eignet sich als Reportergen bei der pharma- kologischen Wirkstoffsuche speziell im HTS (High Throughput Screening).
Das fluoreszierende Protein CGFP eignet sich als Komponente von Detektions- systemen speziell für ELISA (enzyme-linked immunosorbent assay), für Immunohistochemie, für Western-Blot, für die konfokale Mirkoskopie.
Das fluoreszierende Protein CGFP eignet sich als Marker für die Analyse von
Wechselwirkungen speziell für Protein-Protein-Wechselwirkungen, für DNA- Protein- Wechselwirkungen, für DNA-RNA-Wechselwirkungen, für RNA-RNA- Wechselwirkungen, für RNA-Protein-Wechslewirkungen (DNA : deoxyribonucleic acid; RNA : ribonucleic acid; ). Das fluoreszierende Protein CGFP eignet sich als Marker oder Fusionsprotein für die Expression in transgenen Organismen speziell in Mäusen, in Ratten, in Hamstern und anderen Säugetieren, in Primaten, in Fischen, in Würmern, in Pflanzen.
Das fluoreszierende Protein CGFP eignet sich als Marker oder Fusionsprotein zur
Analyse der Embryonalentwicklung.
Das fluoreszierende Protein CGFP eignet sich als Marker über einen Kopplungsvermittler speziell über Biotin, über NHS (N-hydroxysulfosuccimide), über CN-Br.
Das fluoreszierende Protein CGFP eignet sich als Reporter gekoppelt an Nukleinsäuren speziell an DNA, an RNA.
Das fluoreszierende Protein CGFP eignet sich als Reporter gekoppelt an Proteine oder Peptide.
Das an Nukleinsäuren oder Peptiden gekoppelte fluoreszierende Protein CGFP eignet sich als Sonde speziell für Northern-Blots, für Southern-Blots, für Western-Blots, für ELIS A, für Nukleinsäuresequenzierungen, für Proteinanalysen, Chip-Analysen.
Das fluoreszierende Protein CGFP eignet sich Markierung von pharmakologischen Formulierungen speziell von infektiösen Agentien, von Antikörpern, von „small molecules".
Das fluoreszierende Protein CGFP eignet sich für geologische Untersuchungen speziell für Meeres-, Grundwasser- und Flussströmungen.
Das fluoreszierende Protein CGFP eignet sich zur Expression in Expressionssystemen speziell in in-vitro Translationssystemen, in bakteriellen Systemen, in Hefen Systemen, in Bakulo Systemen, in viralen Systemen, in eukaryotischen
Systemen. Das fluoreszierende Protein CGFP eignet sich zur Visualisierung von Geweben oder Zellen bei chirurgischen Eingriffen speziell bei invasiven, bei nicht-invasiven, bei minimal-invasiven.
Das fluoreszierende Protein CGFP eignet sich auch zur Markierung von Tumorgeweben und anderen phänotypisch veränderten Geweben speziell bei der histologischen Untersuchung, bei operativen Eingriffen.
Die Erfindung betrifft auch die Reinigung des fluoreszierenden Proteins CGFP speziell als wildtyp Protein, als Fusionsprotein, als mutagenisiertes Protein.
Die Erfindung betrifft auch die Verwendung des fluoreszierenden Proteins CGFP auf dem Gebiet der Kosmetik speziell von Badezusätzen, von Lotionen, von Seifen, von Körperfarben, von Zahncreme, von Körperpudern.
Die Erfindung betrifft auch die Verwendung des fluoreszierenden Proteins CGFP zur Färbung speziell von Nahrungsmitteln, von Badezusätzen, von Tinte, von Textilien, von Kunststoffen.
Die Erfindung betrifft auch die Verwendung des fluoreszierenden Proteins CGFP zur Färbung von Papier speziell von Grußkarten, von Papierprodukten, von Tapeten, von Bastelartikeln.
Die Erfindung betrifft auch die Verwendung des fluoreszierenden Proteins CGFP zur
Färbung von Flüssigkeiten speziell für Wasserpistolen, für Springbrunnen, für Getränke, für Eis.
Die Erfindung betrifft auch die Verwendung des fluoreszierenden Proteins CGFP zur Herstellung von Spielwaren speziell von Fingerfarbe, von Scliminke. Die Erfindung bezieht sich desweiteren auf Nukleinsäuremoleküle, ausgewählt aus der Gruppe bestehend aus
a) Nukleinsäuremolekülen, die das Polypeptid offenbart durch SEQ ID NO: 2 kodieren;
b) Nukleinsäuremolekülen, welche die durch SEQ LD NO: 1 dargestellte Sequenz enthalten;
c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem
Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingingen hybridisiert und welche die biologische Funktion eines fluoreszierenden Proteins aufweisen;
d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;
e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 95% zu SEQ LD NO: 1 zeigen, und welche die biologische Funktion eines fluoreszierenden Proteins aufweisen; und
f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 65% zu SEQ ID NO: 1 zeigen, und welche die biologische Funktion eines fluoreszierenden Proteins aufweisen.
Die Erfindung betrifft die oben genannten Nukleinsäuremoleküle, bei denen die Sequenz einen funktionalen Promotor 5" zur Sequenz enthält.
Die Erfindung betrifft auch Nukleinsäuremoleküle wie vorhergehend beschrieben, die Bestandteil von rekombinanten DNA oder RNA Vektoren sind. Die Erfindung betrifft Organismen, die einen solchen Vektor enthalten.
Die Erfindung bezieht sich auf Oligonukleotide mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zur DNA oder RNA Sequenz der CGFP Moleküle sind.
Die Erfindung betrifft fluoreszierende Proteine, die durch die vorhergehend beschriebenen Nukleotidsequenzen kodiert sind.
Die Erfindung bezieht sich auf Verfahren zur Expression der erfindungsgemässen fluoreszierenden Polypeptide in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
Die Erfindung betrifft auch Verfahren zur Aufreinigung/Isolierung eines erfindungs- gemässen fluoreszierenden Polypeptides.
Die Erfindung bezieht sich auf Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen die erfindungsgemässen fluoreszierende Proteine erkannt werden.
Die Erfindung betrifft die Verwendung der erfindungsgemässen fluoreszierenden Proteine als Marker- und Reportergene, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Expression der erfindungsgemässen fluoreszierenden Proteine
Als Expression bezeichnet man die Produktion eines Moleküls, das nach dem Einbringen des Gens in eine geeignete Wirtszelle die Transcription und Translation des in einen Expressionsvektor klonierte Fremdgen erlaubt. Expressionsvektoren enthalten die für die Expression von Genen in Zellen von Prokaryoten oder
Eukaryonten erforderlichen Kontrollsignale. Expressionsvektoren können prinzipiell auf zwei verschiedene Weisen konstruiert werden. Bei den sogenannten Transcriptionsfusionen wird das vom einklonierten Fremdgen codierte Protein als authentisches, biologisch aktives Protein synthetisiert. Der Expressionsvektor trägt hierzu alle zur Expression benötigten 5'- und 3"-
Kontrollsignale.
Bei den sogenannten Translationsfusionen wird das vom einklonierten Fremdgen codierte Protein als Hybridprotein zusammen mit einem anderen Protein exprimiert, das sich leicht nachweisen lässt. Die zur Expression benötigten 5'- undS'-
Kontrollsignale inklusive es Startcodons und eventuell ein Teil der für die N- terminalen Bereiche des zu bildenden Hybridproteins codierenden Sequenzen stammen vom Vektor. Der zusätzliche eingeführte Proteinteil stabilisiert nicht nur in vielen Fällen das vom einklonierten Fremdgen codierte Protein vor dem Abbau durch zelluläre Proteasen, sondern lässt sich auch zum Nachweis und zur Isolierung des gebildeten Hybridproteins einsetzen. Die Expression kann sowohl transient, als auch stabil erfolgen. Als Wirtsorganismen eignen sich sowohl Bakterien, Hefen, Viren als auch eukaryotische Systeme.
Reinigung der erfindungsgemäßen fluoreszierenden Proteine
Die Isolierung von Proteinen (auch nach Überexpression) wird häufig als Proteinreinigung bezeichnet. Zur Proteinreinigung steht eine Vielzahl an etablierten Methoden und Verfahren zur Verfügung.
Die Fest-Flüssig-Trennung ist eine Grundoperation bei Proteinisolierungen. Sowohl bei der Abtrennung der Zellen vom Kulturmedium als auch bei der Klärung des Rohextraktes nach Zellaufschluss und Entfernung der Zelltrümmer, bei der Abtrennung von Niederschlägen nach Fällungen usw. ist der Verfahrensschritt erforderlich. Er erfolgt durch Zentrifugation und Filtration. Durch Gewinnung intrazellulärer Proteine muss die Zellwand zerstört bzw. durchlässig gemacht werden. Je nach Maßstab und Organismus werden dazu Hochdruckhomogenisatoren oder Rührwerkskugel- bzw. Glasperlenmühlen eingesetzt. Im Labormaßstab kommen u.a. mechanische Zellintegrationen und Ultra- schallbehandlung zum Einsatz.
Sowohl für extrazelluläre als auch intrazelluläre Proteine (nach Zellaufschluss) sind verschiedene Fällungsverfahren mit Salzen (insbesondere Ammomumsulfat) oder organischen Lösungsmitteln (Alkohole, Aceton) eine schnelle und defiziente Methode zur Konzentration von Proteinen. Bei der Reinigung intrazellulärer Proteine ist die Entfernung der löslichen Nucleinsäuren erstrebenswert (Fällung z.B. mit Streptomycin- oder Protaminsulfat. Bei der Gewinnung extrazellulärer Proteine werden häufig Träger (z.B. Stärke, Kieselgur) vor Zugabe der Fällungsmittel zugesetzt, um besser handhabbare Niederschläge zu erhalten.
Für die Feinreinigung stehen zahlreiche chromatographische und Verteilungs- verfahren zur Verfügung (absorptions- und Ionenaustauschchromatographie, Gelfiltration, Affinitätschromatographie, Elektrophoresen. Eine Säulenchromatographie wird auch im technischen Maßstab angewandt. Für den Labormaßstab ist vor allem die Affinitätschromatographie von Bedeutung, die Reinigungsfaktoren bis zu mehreren 100 pro Schritt ermöglicht.
Extrazelluläre Proteine fallen in relativ verdünnten Lösungen an. Sie müssen ebenso wie extrazelluläre Proteine vor ihrer weiteren Verwendung konzentriert werden. Neben den schon erwähnten Verfahren hat sich - auch im industriellen Maßstab - die
Ultrafiltration bewährt.
Anorganische Salze als Begleitstoffe von Proteinen sind für spezifische Anwendungen häufig unerwünscht. Sie können u.a. durch Gelfiltration, Dialyse und Diafiltration entfernt werden. Zahlreiche Proteine kommen als Trockenpräparate zum Einsatz. Als Trocknungsverfahren sind die Vakuum-, Gefrier- und Sprühtrocknung von Bedeutung.
Nukleotid- und Aminosäuresequenzen
Das fluoreszierende Protein CGFP wird durch die folgende Nukleotidsequenz codiert (SEQ LD NO: 1):
atgactgcacttaccgaaggagcaaaactgttcgagaaagaaattccctacattaca gagttggaaggagacgttgaaggaatgaaattcatcatcaaaggtgaaggtactggc gacgctactactggcaccatcaaagcgaaatatatttgcacaactggtgaccttcct gtaccatgggctaccatcttgagtagtttgtcgtatggtgttttctgtttcgctaag tatccacgccacattgccgactttttcaagagcacacaaccagatggttattcacaa gacagaatcattagttttgacaatgatggacaatacgatgtcaaagccaaggttact tatgaaaacggaacactttataatagagtcacagtcaaaggtactggcttcaaatca aacggcaacatccttggtatgagagttctctaccattcaccaccacacgctgtctac atccttcctgaccgtaaaaatggtggcatgaaaattgaatacaataaggctttcgac gttatgggcggtggtcaccaaatggcgcgtcacgcccaattcaataaaccactagga gcctgggaagaagattatccgttgtatcatcatcttaccgtatggacttctttcgga aaagatccggatgatgatgaaactgaccatttgaccatcgtcgaagtcatcaaagct gttgatttggaaacataccgttga-3*' .
Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 2):
MTALTEGAKLFEKEIPYITELEGDVEGMKFIIKGEGTGDATTGTIKAKYICTTGD P VPWATILSSLSYGVFCFAKYPRHIADFFKSTQPDGYSQDRIISFDNDGQYDVKAKVT YENGTL YNRVTNKGTGFKSNGNI GMRV YHSPPHAVYILPDRKNGGMKIEYNKAFD VMGGGHQMARHAQFNKPLGAWEEDYPLYHHLTVWTSFGKDPDDDETDHLTIVEVIKA VD ETYR
Diese Sequenzen finden sich im Sequenzlisting wieder. Beschreibung der Figuren
Die Fig. 1 zeigt die Plasmidkarte des Vektors pTriplEX2-CGFP .
Die Fig. 2 zeigt die Plasmidkarte des Vektors pcDNA3-CGFP .
Die Fig. 3 zeigt die transiente Emission von CGFP in CHO-Zellen im Ex- pressionsvector pcDNA3-CGFP. Die Figur zeigt die mikroskopische Aufnahme der transient transfizierten Zellen bei einer Anregung von 480 nm und einer Emission von 520 nm.
Die Fig. 4 zeigt die Exitation des CGFP und des Kontrolllysates
Die Fig. 5 zeigt die Emission des CGFP und des Kontrolllysates
Die Fig. 6 zeigt das Augment von CFGP, GFP (Aquoria) und GFP (Renilla) auf
Aminosäureebene.
CGFP Cly : CGFP aus Clytia gregaria GFP_Ren : GFP aus Renilla
GFP_Aeq . GFP aus Aequoria
Die Fig. 7 zeigt das Augment von CFGP, GFP (Aquoria) und GFP (Renilla) auf Nukleinsäureebene.
CGFP_Cly : CGFP aus Clytia gregaria GFP_Ren : GFP aus Renilla GFP Aeq . GFP aus Aequoria Beispiele
Beispiel 1
Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das
Plasmid pTriplEx2 der Firma Clontech verwendet. Das Derivat des Vektors wurde als pTriplEx2-CGFP bezeichnet. Der Vektor pTriplEx2-CGFP wurde zur Expression von CGFP in bakteriellen Systemen verwendet.
Die Fig. 1 zeigt die Plasmidkarte des Vektors pTriplEX2-CGFP .
Beispiel 2
Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das Plasmid pcDNA3.1(+) der Firma Clontech verwendet. Das Derivat des Vektors wurde als pcDNA3-CGFP bezeichnet. Der Vektor pcDNA3-CGFP wurde zur Expression von CGFP in eukaryotischen Systemen verwendet.
Die Fig. 2 zeigt die Plasmidkarte des Vektors pcDNA3-CGFP
Beispiel 3
Bakterielle Expression
Die bakterielle Expression erfolgte im E. coli Stamm BL21(DE3) durch
Transformation der Bakterien mit den Expressionsplasmiden pTriplEX2-CGFP und pTriplEX2. Die transformierten Bakterien wurden in LB-Medium bei 37°C für 3 Stunden inkubiert und die Expression für 4 Stunden durch Zugabe von IPTG bis zu einer Endkonzentration von 1 mM induziert. Die induzierten Bakterien wurden durch Zentrifugation geerntet, in PBS resuspendiert und durch Ultraschall aufgeschlossen.
Die Fluoreszenz wurde mit Hilfe eines Fluorometers bestimmt. Beispiel 4
Eukaryotische Expression
Die konstitutive eukaryotische Expression erfolgte in CHO-Zellen durch Transfektion der Zellen mit den Expressionsplasmiden pcDNA3-CGFP und pcDNA3.1(+) in transienten Experimenten. Hierzu wurden 10000 Zellen pro Loch in DMEM-F12 Medium auf 96 Loch Mikrotiterplatten plattiert und über Nacht bei 37°C inkubiert. Die Transfektion erfolgte mit Hilfe des Fugene 6 Kits (Röche) nach
Herstellerangaben. Die transfizierten Zellen wurden über Nacht bei 37°C in DMEM- F12 Medium inkubiert. Die Messung der Fluoreszenz erfolgte im Fluorometer bei Raumtemperatur.
Die Figur 3 zeigt die Expression von CGFP in CHO-Zellen.
Beispiel 5
Spektrum des fluoreszierenden Proteins CGFP
Zur Messung des Emissionsspektrums wurden E. coli BL21(DE3) mit den Plasmiden pTriplEX2-CGFP und pTriplEX2 transformiert. Die Induktion erfolgte durch die Zugabe von 1 mM LPTG und einer Inkubation von 4 Stunden bei 37 °C. Anschließend wurden die Bakterien geerntet und in PBS resuspendiert. Die Lyse erfolgte durch Ultraschall. Anschließend erfolgte die Messung der Fluoreszenz im
Fluorometer.
Die Figur 4 zeigt die Exitation des CGFP und des Kontrolllysates
Die Figur 5 zeigt die Emission des CGFP und des Kontrolllysates Beispiel 6
BLAST
Ergebnis einer BLAST- Analyse von CFGP auf der Aminosäureebene.
>AA2002:ABB06186 Abb06186 Green fluorescent protein GFPxml9 SEQ ID, NO: 15. 5/2002, Length = 271, Score = 219 bits (558), Expect = 3e-56, Identities = 102/228 (44%) , Positives = 151/228 (65%) , Gaps = 3/228 (1%)
>gb|AAK02065.11 mutant green fluorescent protein [synthetic construct] , Length = 238, Score = 219 bits (557), Expect = 4e-56, Identities = 102/227 (44%), Positives = 150/227 (65%), Gaps = 3/227 (1%) >gb|AAL33915.1 |AF435430_1 green fluorescent protein [Aequorea macrodactyla] , Length = 238, Score = 218 bits (556), Expect = 5e-56, Identities = 102/227 (44%), Positives = 150/227 (65%), Gaps = 3/227 (1%)
>gb|AAL33918.1 |AF435433_1 green fluorescent protein [Aequorea macrodactyla], Length = 238, Score = 218 bits (555), Expect = 7e-56, Identities = 101/227 (44%), Positives = 149/227 (65%), Gaps = 3/227 (1%)
>gb|AAL33916.1 |AF435431_1 green fluorescent protein [Aequorea macrodactyla], Length = 238, Score = 218 bits (554), Expect = 9e-56 Identities = 102/227 (44%), Positives = 150/227 (65%), Gaps = 3/227 (1%)
>gb|AAL33917.1 |AF435432_l orange fluorescent protein [Aequorea macrodactyla] , Length = 238, Score = 218 bits (554) , Expect = 9e-56, Identities = 101/227 (44%), Positives = 149/227 (65%), Gaps = 3/227 (1%)
>AA2002-.ABB06185 Abb06185 Green fluorescent protein GFPxmlδ SEQ ID, NO: 13. 5/2002, Length = 271, Score = 217 bits (552), Expect = le-55, Identities = 101/228 (44%), Positives = 151/228 (65%), Gaps = 3/228 (1%) >AA2002:ABB06184 Abb06184 Green fluorescent protein GFPxml6 SEQ ID, NO: 11. 5/2002, Length = 271, Score = 216 bits (551), Expect = 2e-55, Identities = 101/228 (44%), Positives = 150/228 (65%), Gaps = 3/228 (1%)
>AA2002:ABB06181 Abb06181 Green fluorescent protein GFPxm SEQ ID, Nθ:5. 5/2002, Length = 271, Score = 216 bits (551), Expect = 2e-55, Identities = 101/228 (44%), Positives = 150/228 (65%), Gaps = 3/228 (1%)
>gb|AAL33912.1 |AF435427_l green fluorescent protein [Aequorea macrodactyla], Length = 238, Score = 216 bits (551), Expect = 2e-55, Identities = 101/227 (44%), Positives = 150/227 (65%), Gaps = 3/227 (1%)
>gb|AAK02064.1 | mutant green fluorescent protein [synthetic construct], Length = 238, Score = 216 bits (551), Expect = 2e-55, Identities = 101/227 (44%), Positives = 150/227 (65%), Gaps = 3/227 (1%) Beispiel 7
BLAST
Ergebnis einer BLAST- Analyse von CFGP auf Nukleinsäureebene.
>gb|AF468563.1 | Crassostrea gigas clone c077 microsatellite sequence, Length = 415, Score = 41.1 bits (21), Expect = 1.4, Identities = 25/27 (92%) >gb|AC079685.2 | Oryza sativa chromosome 10 clone OSJNBb0012A20, complete sequence, Length = 131599, Score = 41.1 bits (21), Expect = 1.4, Identities = 27/30 (90%)
>gb|AF427906.1 |AF427906 Solenopsis globularia littoralis putative odorant binding protein, precursor (Gp-9) gene, complete cds, Length = 1767, Score = 41.1 bits (21), Expect = 1.4, Identities = 23/24 (95%)
>gb|AF297617.1 |AF297617 Echinococcus granulosus genotype 1 mitochondrion, complete genome, Length = 13588, Score = 41.1 bits (21), Expect = 1.4, Identities = 23/24 (95%)
Beispiel 8
Die Figur 6 zeigt das Aligment von CFGP, GFP (Aquoria) und GFP (Renilla) auf
Nukleinsäureebene.
Beispiel 9
Die Figur 7 zeigt das Aligment von CFGP, GFP (Aquoria) und GFP (Renilla) auf
Aminosäureebene.
Literatur / Patente
US patent no. 4,777,128
US patent no. 4,927,923
US patent no. 5,162,508
US patent no. 5,279,943
US patent no. 5,958,713
US patent no. 6,172,188
US patent no. 6,232,107
US patent no. 6,436,682
WO199623898
WO199711094
WO 199728261
WO1998/02571
WO199949019
WO200071565
WO200134824 Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem. 1990 Aug l;188(2):245-54
Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997); Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25:3389-3402
Cardullo et al. (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer.; Proc. Natl. Acad. Sei. U.S.A. 85:8790-8794
Cormier, M.J., Hori, K., Karkhanis, Y.D., Anderson, J.M., Wampler, J.E., Morin, J.G., and Hastings, J.W. (1973) Evidence for similar biochemical requirements for bioluminescence among the coelenterates. J. Cell. Physiol. 81, 291- 298.
Cormier, M.J., Hori, K., and Anderson, J.M. (1974) Bioluminescence in coelenterates. Biochim. Biophys. Acta 346, 137-164.
Cullen Bryan R., Malim Michael H., Secreted placental alkaline phosphatase as a eukaryotic reporter gene. Methods in Enzymology. 216:362ff
Davenport, D. and Nicol, J.A.C. (1955) Luminescence in Hydromedusae. Proc. R. Soc. B 144, 399-411. Delagrave et al., Red-shifted excitation mutants of the green fluorescent protein, Bio/Technology 13(2):151-154 (1995)
Ehrig et al., Green-fluorescent protein mutants with altered fluorence excitationspectra, FEBS Letters 367:163-166 (1995)
Hastings, J.W. and Morin, J.G. (1969) Comparative biochemistry of calcium- activated photoproteins from the ctenophore, Mnemiopsis and the coelenterates Aequorea, Obelia, and Pelagia. Biol. Bull. 137, 402.
Heim et al., (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Current Biology 6(2):178-182 (1996).
Inouye S, Tsuji FI. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. EEES Eett 1994 Mar 21;341(2-3):277-80
Johnson, F.H., Shimomura, O., Saiga, Y., Gershman, L.C., Reynolds, G.T., and Waters, J.R. (1962) Quantum efficiency of Cypridina luminescence, with a note on that of Aequorea. J. Cell. Comp. Physiol. 60, 85-103.
Krieg, S., Castles, C, Allred, D., Benedix, M., Fuqua S., RNA from air-dried frozen sections " for RT-PCR and differential display. Biotechniques. 1996 Sep;21(3):425-8.
Levine, L.D. and Ward, W.W. (1982) Isolation and characterization of a photoprotein, "phialidin", and a spectrally unique green-fluorescent protein from the bioluminescent jellyfish Phialidium gregarium. Comp. Biochem. Physiol. 72B, 11- 85. Mitra et al., Fluorescence resonance energy tranfer between blue-emitting and red- shifted excitation derivatives of the green fluorescent protein, Gene 73(1): 13-17 (1996).
Morin, J.G. and Hastings, J.W. (1971) Biochemistry of the bioluminescence of colomal hydroids and other coelenterates. J. Cell. Physiol. 77, 305-311.
Morin, J.G. and Hastings, J.W. (1971) Energy transfer in bioluminescent System. J. Cell. Physiol. 77, 313-318.
Phillips GN. Structure and dynamics of green fluorescent protein. Curr Opin Struct Biol. 1997 Dec;7(6):821-7
Shimomura O., Bioluminescence in the sea: photoprotein Systems. Symp Soc Exp Biol. 1985;39:351-72.
Snowdowne KW, Borle AB. Measurement of cytosolic free calcium in mammalian cells with aequorin. Am J Physiol. 1984 Nov;247(5 Pt l):C396-408.
Ward, W.W. (1998) Biochemical and physical properties of green fluorescent protein. In: Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc.
Ward et al., Energy Transfer Via Protein-Protein Interation in Remlla Bioluminescence Photochemistry and Photobiology 27 : 389-396 ( 1978).
Wampler, J.E., Hori, K., Lee, J.W., and Cormier, M.J. (1971) Structured bioluminescence. Two emitters during both the in vitro and the in vivo bioluminescence of the sea pansy, Renilla. Biochemistry 10, 2903-2909. Wampler, J.E., Karkhanis, Y.D., Morin, J.G., Cormier, M.J. (1973) Similarities in the bioluminescence from the Pennatulacea. Biochim. Biophys. Acta 314, 104- 109.
Yang Te-Tuan, Sinai Parisa, Kitts Paul A. Kain Seven R., Quantification of gene expresssion with a secreted alkaline phosphatase reporter System. Biotechnique. 1997 23(6) l l lOff

Claims

Patentansprüche
1. Nukleinsäuremolekül, ausgewählt aus der Gruppe bestehend aus
a) Nukleinsäuremolekülen, die das Polypeptid offenbart durch SEQ ID NO: 2 kodieren;
b) Nukleinsäuremolekülen, welche die durch SEQ ID NO: 1 dargestellte Sequenz enthalten;
c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingingen hybridisiert und welche die biologische Funktion eines fluoreszierenden Proteins aufweisen;
d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden;
e) Nukleinsäuremolekülen, welche eine Sequenzhomologie von min- destens 95% zu SEQ ID NO: 1 zeigen, und welche die biologische
Funktion eines fluoreszierenden Proteins aufweisen; und
f) Nukleinsäuremolekülen, welche eine Sequenzhomologie von mindestens 65% zu SEQ ID NO: 1 zeigen, und welche die biologische Funktion eines fluoreszierenden Proteins aufweisen.
2. Moleküle nach Anspruch 1, bei denen die Sequenz einen funktionalen Promotor 5' zur Sequenz enthält.
3. Moleküle nach Anspruch 2, die Bestandteil von rekombinanten DNA oder
RNA Vektoren sind.
4. Organismen, die einen nach Anspruch 3 beschriebenen Vektor enthalten.
5. Ohgonukleotide mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zu DNA oder RNA Sequenzen nach Anspruch 1 sind.
6. Peptide, die durch die Nukleotidesequenzen nach Anspruch 1 kodiert sind.
7. Verfahren zur Expression der CGFP Polypeptide gemäss Anspruch 6 in
Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
8. Verfahren zur Aufreinigung/Isolierung eines CGFP Polypeptides gemäss Anspruch 6.
9. Peptide mit mehr als 5 aufeinanderfolgenden Aminosäuren, die immunologisch durch Antikörper gegen das fluoreszierende Protein CGFP erkannt werden.
10. Verwendung des fluoreszierenden Proteins CGFP gemäß den Ansprüchen 1 bis 7 als Marker- und Reportergen.
PCT/EP2003/013281 2002-12-09 2003-11-26 Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung WO2004052926A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP03767664A EP1572732B1 (de) 2002-12-09 2003-11-26 Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
CA002508793A CA2508793A1 (en) 2002-12-09 2003-11-26 Isolated fluorescent protein from clytia gregaria (cgfp) and use thereof
DE50308032T DE50308032D1 (de) 2002-12-09 2003-11-26 Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
AU2003292121A AU2003292121B2 (en) 2002-12-09 2003-11-26 Isolated fluorescent protein from clytia gregaria CGFP and use thereof
US10/537,614 US7879557B2 (en) 2002-12-09 2003-11-26 Isolated fluorescent protein from Clytia gregaria CGFP and use thereof
JP2004557934A JP2006520582A (ja) 2002-12-09 2003-11-26 単離クリティア・グレガリア由来蛍光タンパク質(cgfp)およびその使用
HK06108249.6A HK1088016A1 (en) 2002-12-09 2006-07-25 Isolated fluorescent protein from clytia gregaria cgfp and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10257354.9 2002-12-09
DE10257354A DE10257354A1 (de) 2002-12-09 2002-12-09 Isoliertes fluoreszierendes Protein CGFP, sowie dessen Verwendung

Publications (1)

Publication Number Publication Date
WO2004052926A1 true WO2004052926A1 (de) 2004-06-24

Family

ID=32477460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013281 WO2004052926A1 (de) 2002-12-09 2003-11-26 Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung

Country Status (11)

Country Link
US (1) US7879557B2 (de)
EP (1) EP1572732B1 (de)
JP (1) JP2006520582A (de)
CN (1) CN100384871C (de)
AT (1) ATE370964T1 (de)
AU (1) AU2003292121B2 (de)
CA (1) CA2508793A1 (de)
DE (2) DE10257354A1 (de)
ES (1) ES2291696T3 (de)
HK (1) HK1088016A1 (de)
WO (1) WO2004052926A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081976A1 (de) * 2005-02-05 2006-08-10 Bayer Healthcare Ag MUTANTEN DES FLUORESZIERENDEN PROTEINS CGFPs, SOWIE DEREN VERWENDUNG
WO2007140983A1 (de) * 2006-06-07 2007-12-13 Bayer Healthcare Ag FLUORESZIERENDE PROTEINE wfCGFP, SOWIE DEREN VERWENDUNG
EP1908775A1 (de) * 2006-10-06 2008-04-09 AXXAM S.p.A. Fluoreszente Proteine aus den Phylum Ctenophora und ihre Verwendungen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342670A1 (de) * 2003-09-16 2005-04-21 Bayer Healthcare Ag Isoliertes Photoprotein mtClytin, sowie dessen Verwendung
US20100047273A1 (en) * 2007-05-07 2010-02-25 Rino Rappuoli Coxsackie B virus and type 1 diabetes
US8975042B2 (en) * 2012-12-21 2015-03-10 Dna Twopointo, Inc. Fluorescent and colored proteins and methods for using them
US9290552B2 (en) 2012-12-21 2016-03-22 Dna Twopointo, Inc. Fluorescent and colored proteins and methods for using them

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777079A (en) * 1994-11-10 1998-07-07 The Regents Of The University Of California Modified green fluorescent proteins
US6096865A (en) * 1996-05-06 2000-08-01 Amgen Inc. Mutants of the green fluorescent protein having improved fluorescent properties at 37°
WO2000071565A2 (en) * 1999-05-21 2000-11-30 The Regents Of The University Of California Fluorescent protein indicators
JP4830063B2 (ja) * 2000-03-15 2011-12-07 プロルーム・リミテッド Renillareniformis蛍光タンパク質、その蛍光タンパク質をコードする核酸、および診断、ハイスループットスクリーニングおよび新規アイテムにおけるその使用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHALFIE, M. AND KAIN, S.: "Green fluorescent protein: properties, applications, and protocols", August 1998, WILEY-LISS, INC., XP009028583 *
DATABASE GENBANK [online] 26 April 1993 (1993-04-26), PRASHER ET AL.: "Primary Structure of the Aequorea victoria green-fluorescent protein", XP002276253, Database accession no. M62653 *
INOUYE SATOSHI ET AL: "Cloning and sequence analysis of cDNA for the calcium-activated photoprotein, clytin", FEBS (FEDERATION OF EUROPEAN BIOCHEMICAL SOCIETIES) LETTERS, vol. 315, no. 3, 1993, pages 343 - 346, XP001180448, ISSN: 0014-5793 *
LEVINE L D ET AL: "ISOLATION AND CHARACTERIZATION OF A PHOTO PROTEIN PHIALIDIN AND A SPECTRALLY UNIQUE GREEN FLUORESCENT PROTEIN FROM THE BIO LUMINESCENT JELLYFISH PHIALIDIUM-GREGARIUM", COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY B, vol. 72, no. 1, 1982, pages 77 - 86, XP009028577, ISSN: 0305-0491 *
PRASHER D C ET AL: "PRIMARY STRUCTURE OF THE AEQUOREA VICTORIA GREEN-FLUORESCENT PROTEIN", GENE, ELSEVIER, AMSTERDAM, NL, vol. 111, 1992, pages 229 - 233, XP001018985, ISSN: 0378-1119 *
PRASHER D C: "Using GFP to see the light", TRENDS IN GENETICS, ELSEVIER, AMSTERDAM, NL, vol. 11, no. 8, 1995, pages 320 - 323, XP004207387, ISSN: 0168-9525 *
TSIEN R Y: "THE GREEN FLUORESCENT PROTEIN", ANNUAL REVIEW OF BIOCHEMISTRY, PALTO ALTO, CA, US, vol. 67, 1998, pages 509 - 544, XP000946725, ISSN: 0066-4154 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006081976A1 (de) * 2005-02-05 2006-08-10 Bayer Healthcare Ag MUTANTEN DES FLUORESZIERENDEN PROTEINS CGFPs, SOWIE DEREN VERWENDUNG
WO2007140983A1 (de) * 2006-06-07 2007-12-13 Bayer Healthcare Ag FLUORESZIERENDE PROTEINE wfCGFP, SOWIE DEREN VERWENDUNG
EP1908775A1 (de) * 2006-10-06 2008-04-09 AXXAM S.p.A. Fluoreszente Proteine aus den Phylum Ctenophora und ihre Verwendungen
WO2008041107A2 (en) * 2006-10-06 2008-04-10 Axxam S.P.A. Fluorescent proteins from the ctenophora phylum and methods of use thereof
WO2008041107A3 (en) * 2006-10-06 2008-06-19 Axxam Spa Fluorescent proteins from the ctenophora phylum and methods of use thereof

Also Published As

Publication number Publication date
JP2006520582A (ja) 2006-09-14
AU2003292121B2 (en) 2010-03-04
CA2508793A1 (en) 2004-06-24
US20060188930A1 (en) 2006-08-24
AU2003292121A1 (en) 2004-06-30
HK1088016A1 (en) 2006-10-27
DE50308032D1 (de) 2007-10-04
US7879557B2 (en) 2011-02-01
ATE370964T1 (de) 2007-09-15
ES2291696T3 (es) 2008-03-01
EP1572732A1 (de) 2005-09-14
DE10257354A1 (de) 2004-07-08
EP1572732B1 (de) 2007-08-22
CN100384871C (zh) 2008-04-30
CN1729201A (zh) 2006-02-01

Similar Documents

Publication Publication Date Title
WO2008095622A2 (de) Sekretierte luziferase mluc7 und deren verwendung
EP1664102B1 (de) Isoliertes photoprotein mtclytin, sowie dessen verwendung
EP1572732B1 (de) Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
DE10339567A1 (de) Isoliertes Photoprotein Berovin, sowie dessen Verwendung
WO2006010454A1 (de) Isoliertes photoprotein aequorin y89f, sowie dessen verwendung
DE102005005438A1 (de) Mutanten des fluoreszierenden Proteins CGFPs, sowie deren Verwendung
WO2008107104A1 (de) Isoliertes photoprotein mtclytindecay, sowie dessen verwendung
WO2005000885A1 (de) Isoliertes photoprotein bolinopsin, sowie dessen verwendung
WO2006122650A2 (de) Isoliertes photoprotein aqdecay sowie dessen verwendung
DE102005016980A1 (de) Isoliertes Photoprotein gr-Bolinopsin, sowie dessen Verwendung
WO2007140983A1 (de) FLUORESZIERENDE PROTEINE wfCGFP, SOWIE DEREN VERWENDUNG
JP2006501804A (ja) 急速に成熟する蛍光タンパク質およびその使用法
US20060063229A1 (en) mmFP encoding nucleic acids, polypeptides, antibodies and methods of use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003767664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2508793

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004557934

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038A55529

Country of ref document: CN

Ref document number: 2003292121

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003767664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006188930

Country of ref document: US

Ref document number: 10537614

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10537614

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003767664

Country of ref document: EP