WO2004055493A2 - Icp-oes and icp-ms induction current - Google Patents

Icp-oes and icp-ms induction current Download PDF

Info

Publication number
WO2004055493A2
WO2004055493A2 PCT/US2003/039440 US0339440W WO2004055493A2 WO 2004055493 A2 WO2004055493 A2 WO 2004055493A2 US 0339440 W US0339440 W US 0339440W WO 2004055493 A2 WO2004055493 A2 WO 2004055493A2
Authority
WO
WIPO (PCT)
Prior art keywords
set forth
plasma
current
loop
generating
Prior art date
Application number
PCT/US2003/039440
Other languages
French (fr)
Other versions
WO2004055493A3 (en
Inventor
Peter J. Morrisroe
Thomas Myles
Original Assignee
Perkinelmer Las, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Perkinelmer Las, Inc. filed Critical Perkinelmer Las, Inc.
Priority to AU2003293514A priority Critical patent/AU2003293514B2/en
Priority to JP2005508319A priority patent/JP4290161B2/en
Priority to CA2509525A priority patent/CA2509525C/en
Priority to EP03790465.3A priority patent/EP1570254B1/en
Publication of WO2004055493A2 publication Critical patent/WO2004055493A2/en
Publication of WO2004055493A3 publication Critical patent/WO2004055493A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/30Plasma torches using applied electromagnetic fields, e.g. high frequency or microwave energy

Definitions

  • This invention relates to a method and apparatus for spectroscopically analyzing a material sample in a plasma.
  • a plasma is generated.
  • a magnetic field is generated by a magnetic dipole wherein the plasma is confined within the magnetic field.
  • Atoms of a material sample are introduced into the plasma wherein energized atoms of the sample are at least temporarily confined.
  • the spectral or mass content of the energized sample atoms are analyzed.
  • a magnetic dipole has an associated magnetic field.
  • a plasma is confined within the magnetic field and a material sample of atoms is introduced into the plasma.
  • a spectrometer analyzes the excited atoms for their mass-to-charge ratio or for their emission spectra.
  • FIG. 1 is schematic diagram of an Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) system.
  • ICP-OES Inductively Coupled Plasma-Optical Emission Spectroscopy
  • FIG. 2 is schematic diagram of an Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) system.
  • ICP-MS Inductively Coupled Plasma-Mass Spectroscopy
  • FIG. 3 is a diagram of an ICP torch and a plasma.
  • FIG. 4 is a side view of two electrodes of the invention and an ICP torch and a plasma.
  • FIG. 5 is a front view of an electrode for controlling a plasma, the electrode including an aperture.
  • FIG. 6 is a front view of an electrode for controlling a plasma, the electrode including an aperture.
  • FIG. 7 is a side view of the electrodes of Fig. 6.
  • FIG. 8 is a three dimensional view of a single piece electrode of the invention.
  • FIG. 9 is a front view of the single piece electrode of Fig. 8.
  • FIG. 10 is a side view of the single piece electrode of Fig. 8.
  • FIG. 11 is a top view of the single piece electrode of Fig. 8.
  • FIG. 12 is a three dimensional view of a magnetic field generated from a loop current.
  • FIG. 13 is a diagram of an ICP torch showing the helical nature of a solenoid.
  • FIG. 14 is a diagram of a plurality of loop currents driven by a single RF power source during alternating half cycles of a sinusoidally alternating current.
  • FIG. 1 shows a schematic diagram of an Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) system at 100.
  • the ICP- OES 100 generally comprises a system for directing a carrier gas 102 to a torch 114 whereat the carrier gas 102 is ionized to form a hot plasma 116 (5,000 - 10.000K).
  • the plasma 116 comprises a preheating zone 190, an induction zone 192, an initial radiation zone 194, an analytic zone 196 and a plasma tail 198.
  • An atomized sample 104 is also directed to the plasma 116 through a pump 106, nebulizer 108 and spray chamber 162.
  • a radio frequency (RF) power source 110 provides RF electrical power to the plasma 116 by way of a load coil 112.
  • RF radio frequency
  • the Inductively Coupled Plasma Spectroscopy performed herein may also be performed with a mass spectrometer (MS) 180 such as a quadrupole mass analyzer in an Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) system at 100 as seen in FIG. 2.
  • MS mass spectrometer
  • ICP-MS Inductively Coupled Plasma-Mass Spectroscopy
  • the RF power source 110 operates generally in the range of 10 to 100 MHz, particularly 20 - 50 MHz, e.g., 27 - 40 MHz.
  • FIG. 3 shows a more detailed rendition of the plasma 116 of FIGS. 1 and 2.
  • the torch 114 includes three concentric tubes 114, 150, 148.
  • the innermost tube 148 provides atomized flow 146 of the sample into the plasma 116.
  • the middle tube 150 provides auxiliary gas flow 144 to the plasma 116.
  • the outermost tube 114 provides carrier gas flow 128 for sustaining the plasma.
  • the carrier gas flow 128 is directed to the plasma 116 in an laminar flow about the middle tube 150.
  • the auxiliary gas flow 144 is directed to the plasma 116 within the middle tube 150 and the atomized sample flow 146 is directed to the plasma 116 from the spray chamber 162 along the innermost tube 148.
  • the RF current 130, 132 in the load coil 112 forms a magnetic field within the load coil 112 so as to confine the plasma 116 therein.
  • FIGS. 4 - 11 show various configurations of an electrode 152, 156, 158.
  • the electrode 152 comprises two parallel plates 152a, 152b positioned at a distance 'L' from one another.
  • the parallel plates 152a, 152b each include an aperture 154 through which the torch 114 is positioned such that the torch 114, the innermost tube 148, the middle tube 150 and the aperture 154 are aligned along an axis 126.
  • the parallel plates 152a, 152b have a thickness of 't.'
  • the aperture 154 of the electrode 152 also includes a slot 164, of width 'w' such that the aperture 154 is in communication with its surroundings.
  • the electrode 152 is generally comprised of a square or rectangular planar shape, though it may be a wire as seen in FIG. 12.
  • the RF current supplied to the planar electrode comprises a planar current loop 172a generating a toroidal magnetic field 182 through the aperture 154 (FIG. 12).
  • the electrode 156 is of a rounded nature having an outside diameter of Di and inside aperture diameter of D 2 .
  • the electrodes 152, 156 of FIGS. 4 - 7 are distinct elements which are supplied independently with RF electrical current 172 of opposite polarity.
  • One part 176 of the electrode 152 is supplied with the RF power while a second part 178 of the electrode 152 is tied to a ground 174.
  • the RF power and frequency supplied to each electrode 152 can be independently controlled and varied for optimum performance. For instance, each electrode 152 can be driven at a different frequency in order to optimize the plasma emission and excitation.
  • one electrode can be operated in a continuous power mode while the other electrode can be modulated (e.g.; pulsed or gated).
  • the distance, 'L ⁇ between the electrodes 152 can be adjusted since the electrodes 152 are not connected to one another; thus adjusting the power distribution within the plasma 116.
  • the diameter, D 2 , of the aperture 154 can be independently adjusted in order to adjust the coupling characteristics between the RF power supply 110 and the plasma 1 6.
  • the electrode 158 is shown as a single element having two electrodes 166, 168 connected to a common electrical ground 170.
  • FIG. 14 a plurality of loop currents 184a, 184b is shown generated from a single RF electric current source 110.
  • the loop currents 184a, 184b are oriented with respect to one another in such a manner that the alternating electric current 172a in a first loop current 184a flows in a direction opposite to that of the alternating electric current 172b in a second loop current 184b during alternating half cycles of a sinusoidally alternating current.
  • This allows for the plurality of loop currents 184a, 184b to be driven from a single power source 110 so as to generate magnetic fields 182a, 182b having the same spatial orientation.
  • a method and apparatus for spectroscopically analyzing a sample comprises generating a plasma; generating a magnetic field by a magnetic dipole wherein the plasma is confined within the magnetic field; introducing sample atoms into the plasma wherein excited sample atoms are confined; and analyzing the spectral or mass content of the excited sample atoms.
  • a spectroscopic system comprises a magnetic dipole having an associated magnetic field; a plasma confined within the magnetic field; a sample of excited atoms introduced within the plasma; and a spectrometer for analyzing the spectral or mass content of the excited sample atoms.

Abstract

In a method of spectroscopically analyzing a sample (104), a plasma (116) is generated. A magnetic field is generated by a magnetic dipole wherein the plasma is confined within the magnetic field. Sample atoms are introduced into the plasma wherein energized atoms of the sample are confined. The spectral composition or mass-to-charge ratio of the energized sample atoms is analyzed. In a spectroscopic system a magnetic dipole has an associated magnetic field. A plasma is confined within the magnetic field and a sample of energized atoms introduced into the plasma. A spectrometer (120) analyzes the energized atoms for the mass-to-charge ratio or for their spectral composition.

Description

1CP-OES AND ICP-MS INDUCTION CURRENT
Related Applications
[0001] This application claims the benefit of U.S. provisional patent application No. 60/432,963 filed December 12, 2002 and U.S. non-provisional patent application awaiting serial number which was filed on December 9, 2003.
Field Of The Invention
[0002] This invention relates to a method and apparatus for spectroscopically analyzing a material sample in a plasma.
Background Of The Invention
[0003] Conventional Inductively Coupled Plasma-Optical Emission Spectroscopy ICP-OES and Inductively Coupled Plasma-Atomic Emission Spectroscopy ICP-MS systems typically utilize a solenoid receptive of an RF electrical current for confining a plasma and material sample in an associated magnetic field for analysis. However, such a device generates an uneven magnetic field over the length of the interior of the solenoid due to the helical configuration of the solenoid. This results in an uneven temperature distribution within the plasma affecting sample excitation and the trajectory of ions in the plasma. In addition, the solenoid is a single element, which lacks flexibility in controlling the associated magnetic field and the plasma/sample excitation.
Summary Of The Invention
[0004] In a method of spectroscopically analyzing a sample, a plasma is generated. A magnetic field is generated by a magnetic dipole wherein the plasma is confined within the magnetic field. Atoms of a material sample are introduced into the plasma wherein energized atoms of the sample are at least temporarily confined. The spectral or mass content of the energized sample atoms are analyzed.
[0005] In a spectroscopic system a magnetic dipole has an associated magnetic field. A plasma is confined within the magnetic field and a material sample of atoms is introduced into the plasma. A spectrometer analyzes the excited atoms for their mass-to-charge ratio or for their emission spectra.
Brief Description Of The Drawings
[0006] FIG. 1 is schematic diagram of an Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) system.
[0007] FIG. 2 is schematic diagram of an Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) system.
[0008] FIG. 3 is a diagram of an ICP torch and a plasma.
[0009] FIG. 4 is a side view of two electrodes of the invention and an ICP torch and a plasma.
[0010] FIG. 5 is a front view of an electrode for controlling a plasma, the electrode including an aperture.
[0011] FIG. 6 is a front view of an electrode for controlling a plasma, the electrode including an aperture.
[0012] FIG. 7 is a side view of the electrodes of Fig. 6.
[0013] FIG. 8 is a three dimensional view of a single piece electrode of the invention. [0014] FIG. 9 is a front view of the single piece electrode of Fig. 8.
[0015] FIG. 10 is a side view of the single piece electrode of Fig. 8.
[0016] FIG. 11 is a top view of the single piece electrode of Fig. 8.
[0017] FIG. 12 is a three dimensional view of a magnetic field generated from a loop current.
[0018] FIG. 13 is a diagram of an ICP torch showing the helical nature of a solenoid.
[0019] FIG. 14 is a diagram of a plurality of loop currents driven by a single RF power source during alternating half cycles of a sinusoidally alternating current.
Detailed Description Of The Drawings
[0020] FIG. 1 shows a schematic diagram of an Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) system at 100. The ICP- OES 100 generally comprises a system for directing a carrier gas 102 to a torch 114 whereat the carrier gas 102 is ionized to form a hot plasma 116 (5,000 - 10.000K). The plasma 116 comprises a preheating zone 190, an induction zone 192, an initial radiation zone 194, an analytic zone 196 and a plasma tail 198. An atomized sample 104 is also directed to the plasma 116 through a pump 106, nebulizer 108 and spray chamber 162. A radio frequency (RF) power source 110 provides RF electrical power to the plasma 116 by way of a load coil 112.
[0021] While in the plasma 116 excited sample atoms 104 give off light 134 as they decay to a lower state. The light 134 is collected by collection optics 118 and directed to a spectrometer 120 where it is spectrally resolved. A detector 122 detects the spectrally resolved light 134 and provides a signal 138, 140 to a microprocessor 122 and computer network 124 for analysis. In FIG. 1 it is seen that the viewing of the plasma 116 is from a direction at a right angle to the plasma 116. However, it will be understood from FIG. 1 that the viewing of the plasma 116 may also be performed from a direction along the axis 126. It will also be understood that the Inductively Coupled Plasma Spectroscopy performed herein may also be performed with a mass spectrometer (MS) 180 such as a quadrupole mass analyzer in an Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) system at 100 as seen in FIG. 2. The RF power source 110 operates generally in the range of 10 to 100 MHz, particularly 20 - 50 MHz, e.g., 27 - 40 MHz.
[0022] FIG. 3 shows a more detailed rendition of the plasma 116 of FIGS. 1 and 2. The torch 114 includes three concentric tubes 114, 150, 148. The innermost tube 148, provides atomized flow 146 of the sample into the plasma 116. The middle tube 150, provides auxiliary gas flow 144 to the plasma 116. The outermost tube 114, provides carrier gas flow 128 for sustaining the plasma. The carrier gas flow 128 is directed to the plasma 116 in an laminar flow about the middle tube 150. The auxiliary gas flow 144 is directed to the plasma 116 within the middle tube 150 and the atomized sample flow 146 is directed to the plasma 116 from the spray chamber 162 along the innermost tube 148. The RF current 130, 132 in the load coil 112 forms a magnetic field within the load coil 112 so as to confine the plasma 116 therein.
[0023] FIGS. 4 - 11 show various configurations of an electrode 152, 156, 158. In FIG. 4 the electrode 152 comprises two parallel plates 152a, 152b positioned at a distance 'L' from one another. The parallel plates 152a, 152b each include an aperture 154 through which the torch 114 is positioned such that the torch 114, the innermost tube 148, the middle tube 150 and the aperture 154 are aligned along an axis 126. The parallel plates 152a, 152b have a thickness of 't.' The aperture 154 of the electrode 152 also includes a slot 164, of width 'w' such that the aperture 154 is in communication with its surroundings.
[0024] As seen in FIGS. 4 and 5, the electrode 152 is generally comprised of a square or rectangular planar shape, though it may be a wire as seen in FIG. 12. In FIG. 5 it will be appreciated that the RF current supplied to the planar electrode comprises a planar current loop 172a generating a toroidal magnetic field 182 through the aperture 154 (FIG. 12). In FIGS. 6 and 7 the electrode 156 is of a rounded nature having an outside diameter of Di and inside aperture diameter of D2. The electrodes 152, 156 of FIGS. 4 - 7 are distinct elements which are supplied independently with RF electrical current 172 of opposite polarity. One part 176 of the electrode 152 is supplied with the RF power while a second part 178 of the electrode 152 is tied to a ground 174. Thus, during arc ignition of the plasma 116, if the ignition arc makes contact with electrode 152, any unwanted electric currents set up in the electrode 152 will be directed to the ground point 174 and not through to the RF power supply 110. The RF power and frequency supplied to each electrode 152 can be independently controlled and varied for optimum performance. For instance, each electrode 152 can be driven at a different frequency in order to optimize the plasma emission and excitation. In addition, one electrode can be operated in a continuous power mode while the other electrode can be modulated (e.g.; pulsed or gated). Furthermore, the distance, 'L\ between the electrodes 152 can be adjusted since the electrodes 152 are not connected to one another; thus adjusting the power distribution within the plasma 116. Yet further, the diameter, D2, of the aperture 154 can be independently adjusted in order to adjust the coupling characteristics between the RF power supply 110 and the plasma 1 6. In FIGS. 8 - 11 the electrode 158 is shown as a single element having two electrodes 166, 168 connected to a common electrical ground 170.
[0025] In FIG. 14 a plurality of loop currents 184a, 184b is shown generated from a single RF electric current source 110. The loop currents 184a, 184b are oriented with respect to one another in such a manner that the alternating electric current 172a in a first loop current 184a flows in a direction opposite to that of the alternating electric current 172b in a second loop current 184b during alternating half cycles of a sinusoidally alternating current. This allows for the plurality of loop currents 184a, 184b to be driven from a single power source 110 so as to generate magnetic fields 182a, 182b having the same spatial orientation.
[0026] While the invention has been described above in detail with reference to specific embodiments, various changes and modifications which fall within the spirit of the invention and the scope of the claims will become apparent to those skilled in the art. Therefore, the invention is intended to be limited only by the appended claims and their equivalents.
[0027] Thus, based upon the foregoing description, a method and apparatus for spectroscopically analyzing a sample is disclosed. The method comprises generating a plasma; generating a magnetic field by a magnetic dipole wherein the plasma is confined within the magnetic field; introducing sample atoms into the plasma wherein excited sample atoms are confined; and analyzing the spectral or mass content of the excited sample atoms.
[0028] Furthermore, a spectroscopic system comprises a magnetic dipole having an associated magnetic field; a plasma confined within the magnetic field; a sample of excited atoms introduced within the plasma; and a spectrometer for analyzing the spectral or mass content of the excited sample atoms.

Claims

What is claimed is:
1. A method of spectroscopically analyzing a material sample, the method comprising: generating a plasma; generating a loop current so as to generate a magnetic field, wherein the plasma is confined within the magnetic field; introducing atoms of the material sample into the plasma wherein excited sample atoms are confined; and analyzing characteristic features of the excited sample atoms.
2. The method as set forth in Claim 1 wherein generating a loop current comprises generating a sinusoidally alternating electric current.
3. The method as set forth in Claim 2 wherein generating a sinusoidally alternating electric current comprises generating a radio frequency electric current.
4. The method as set forth in Claim 1 wherein analyzing characteristic features of the excited sample atoms comprises analyzing the spectral composition or mass-to-charge ratio of the excited sample atoms.
5. The method as set forth in Claim 1 further comprising electrically grounding the loop current.
6. The method as set forth in Claim 2 wherein generating a loop current comprises generating a planar loop current.
7. The method as set forth in Claim 6 wherein the loop defines an aperture.
8. The method as set forth in Claim 6 wherein generating a loop current comprises generating a plurality of loop currents.
9. The method as set forth in Claim 8 wherein generating a plurality of loop currents comprises generating a plurality of parallel or antiparallel loop currents separated by a prescribed distance.
10. The method as set forth in Claim 9 wherein the alternating electric current in a first loop current flows in a direction opposite to that of the alternating electric current in a second loop current during alternating half cycles of the sinusoidally alternating current.
11. The method as set forth in Claim 7 further comprising adjusting an area of the aperture.
12. The method as set forth in Claim 9 further comprising adjusting the prescribed distance.
13. A spectroscopic system comprising: a loop current having an associated magnetic field; a plasma confined within the magnetic field; a material sample of excited atoms within the plasma; a spectrometer for analyzing characteristic features the excited atoms.
14. The spectroscopic system as set forth in Claim 13 further comprising an electric power generator for generating the loop current.
15. The spectroscopic system as set forth in Claim 14 wherein the loop current is a sinusoudally alternating electric current.
16. The spectroscopic system as set forth in Claim 15 wherein the sinusoudally alternating electric current is a radio frequency current.
17. The spectroscopic system as set forth in Claim 13 wherein the loop current is a planar current.
18. The spectroscopic system as set forth in Claim 13 wherein the loop current defines an aperture.
19. The spectroscopic system as set forth in Claim 13 wherein the loop current comprises a plate.
20. The spectroscopic system as set forth in Claim 13 wherein the loop current comprises a plurality of plates.
21. The spectroscopic system as set forth in Claim 17 wherein the plurality of plates are parallel.
PCT/US2003/039440 2002-12-12 2003-12-11 Icp-oes and icp-ms induction current WO2004055493A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003293514A AU2003293514B2 (en) 2002-12-12 2003-12-11 A spectroscopic system and method of spectroscopically analysing a material sample
JP2005508319A JP4290161B2 (en) 2002-12-12 2003-12-11 ICP-OES and ICP-MS induced current
CA2509525A CA2509525C (en) 2002-12-12 2003-12-11 Icp-oes and icp-ms induction current
EP03790465.3A EP1570254B1 (en) 2002-12-12 2003-12-11 Icp-oes and icp-ms induction current

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US43296302P 2002-12-12 2002-12-12
US60/432,963 2002-12-12
US10/730,779 US7106438B2 (en) 2002-12-12 2003-12-09 ICP-OES and ICP-MS induction current

Publications (2)

Publication Number Publication Date
WO2004055493A2 true WO2004055493A2 (en) 2004-07-01
WO2004055493A3 WO2004055493A3 (en) 2004-12-09

Family

ID=32912132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/039440 WO2004055493A2 (en) 2002-12-12 2003-12-11 Icp-oes and icp-ms induction current

Country Status (7)

Country Link
US (1) US7106438B2 (en)
EP (1) EP1570254B1 (en)
JP (1) JP4290161B2 (en)
CN (1) CN100529741C (en)
AU (1) AU2003293514B2 (en)
CA (1) CA2509525C (en)
WO (1) WO2004055493A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027784A2 (en) 2005-09-02 2007-03-08 Perkinelmer, Inc. Induction device for generating a plasma
US8622735B2 (en) 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
US9686849B2 (en) 2012-07-13 2017-06-20 Perkinelmer Health Sciences, Inc. Torches and methods of using them
US9847217B2 (en) 2005-06-17 2017-12-19 Perkinelmer Health Sciences, Inc. Devices and systems including a boost device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004022200B4 (en) * 2004-05-05 2006-07-20 Actinium Pharmaceuticals, Inc. Radium target and process for its preparation
CA2595230C (en) * 2005-03-11 2016-05-03 Perkinelmer, Inc. Plasmas and methods of using them
US20070046934A1 (en) * 2005-08-26 2007-03-01 New Wave Research, Inc. Multi-function laser induced breakdown spectroscopy and laser ablation material analysis system and method
DE102006008023B4 (en) * 2006-02-21 2008-05-29 Actinium Pharmaceuticals, Inc. Method of cleaning 225Ac from irradiated 226Ra targets
WO2008028664A1 (en) * 2006-09-08 2008-03-13 Actinium Pharmaceuticals, Inc. Method for the purification of radium from different sources
US20110108058A1 (en) * 2009-11-11 2011-05-12 Axcelis Technologies, Inc. Method and apparatus for cleaning residue from an ion source component
CN203556992U (en) 2010-05-05 2014-04-23 珀金埃尔默健康科学股份有限公司 Induction device, torch assembly, optical transmitting device, atomic absorption device, and mass spectrometer
WO2011140168A1 (en) * 2010-05-05 2011-11-10 Perkinelmer Health Sciences, Inc. Inductive devices and low flow plasmas using them
US8563924B2 (en) * 2011-06-28 2013-10-22 Agilent Technologies, Inc. Windowless ionization device
CN207824151U (en) * 2014-01-28 2018-09-07 魄金莱默保健科学有限公司 Sensing device and system including sensing device
US9165751B1 (en) 2014-06-06 2015-10-20 Agilent Technologies, Inc. Sample atomization with reduced clogging for analytical instruments
US9673032B1 (en) 2016-03-31 2017-06-06 Agilent Technologies Inc. Sample sprayer with adjustable conduit and related methods
US10195683B2 (en) * 2016-11-14 2019-02-05 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods
US10300551B2 (en) * 2016-11-14 2019-05-28 Matthew Fagan Metal analyzing plasma CNC cutting machine and associated methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526110A (en) * 1994-07-08 1996-06-11 Iowa State University Research Foundation, Inc. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
US5534998A (en) * 1992-02-19 1996-07-09 Fisons Plc Sample nebulizer and evaporation chamber for ICP and MIP emission or mass spectrometry and spectrometers comprising the same
US5648701A (en) * 1992-09-01 1997-07-15 The University Of North Carolina At Chapel Hill Electrode designs for high pressure magnetically assisted inductively coupled plasmas
US5818581A (en) * 1995-12-27 1998-10-06 Nippon Telegraph And Telephone Corporation Elemental analysis method and apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540884A (en) * 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap
US4629940A (en) * 1984-03-02 1986-12-16 The Perkin-Elmer Corporation Plasma emission source
US4766287A (en) * 1987-03-06 1988-08-23 The Perkin-Elmer Corporation Inductively coupled plasma torch with adjustable sample injector
US4818916A (en) * 1987-03-06 1989-04-04 The Perkin-Elmer Corporation Power system for inductively coupled plasma torch
JP2929275B2 (en) * 1996-10-16 1999-08-03 株式会社アドテック Inductively coupled planar plasma generator with permeable core
US6329757B1 (en) * 1996-12-31 2001-12-11 The Perkin-Elmer Corporation High frequency transistor oscillator system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5534998A (en) * 1992-02-19 1996-07-09 Fisons Plc Sample nebulizer and evaporation chamber for ICP and MIP emission or mass spectrometry and spectrometers comprising the same
US5648701A (en) * 1992-09-01 1997-07-15 The University Of North Carolina At Chapel Hill Electrode designs for high pressure magnetically assisted inductively coupled plasmas
US5526110A (en) * 1994-07-08 1996-06-11 Iowa State University Research Foundation, Inc. In situ calibration of inductively coupled plasma-atomic emission and mass spectroscopy
US5818581A (en) * 1995-12-27 1998-10-06 Nippon Telegraph And Telephone Corporation Elemental analysis method and apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1570254A2 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8622735B2 (en) 2005-06-17 2014-01-07 Perkinelmer Health Sciences, Inc. Boost devices and methods of using them
US9847217B2 (en) 2005-06-17 2017-12-19 Perkinelmer Health Sciences, Inc. Devices and systems including a boost device
WO2007027784A2 (en) 2005-09-02 2007-03-08 Perkinelmer, Inc. Induction device for generating a plasma
EP1929257A2 (en) * 2005-09-02 2008-06-11 PerkinElmer, Inc. Induction device for generating a plasma
JP2009510670A (en) * 2005-09-02 2009-03-12 パーキンエルマー・インコーポレイテッド Induction device for plasma generation
EP1929257A4 (en) * 2005-09-02 2012-03-07 Perkinelmer Inc Induction device for generating a plasma
US9686849B2 (en) 2012-07-13 2017-06-20 Perkinelmer Health Sciences, Inc. Torches and methods of using them

Also Published As

Publication number Publication date
JP4290161B2 (en) 2009-07-01
US7106438B2 (en) 2006-09-12
CA2509525A1 (en) 2004-07-01
AU2003293514B2 (en) 2007-07-19
CA2509525C (en) 2011-03-22
US20040169855A1 (en) 2004-09-02
JP2006516325A (en) 2006-06-29
CN1745295A (en) 2006-03-08
EP1570254A2 (en) 2005-09-07
EP1570254A4 (en) 2007-01-03
AU2003293514B8 (en) 2004-07-09
AU2003293514A1 (en) 2004-07-09
WO2004055493A3 (en) 2004-12-09
EP1570254B1 (en) 2020-11-18
CN100529741C (en) 2009-08-19

Similar Documents

Publication Publication Date Title
CA2509525C (en) Icp-oes and icp-ms induction current
US9810636B2 (en) Induction device
US9649716B2 (en) Inductive devices and low flow plasmas using them
EP2969346B1 (en) System with an asymmetric solenoid for sustaining a plasma

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003293514

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2509525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005508319

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003790465

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A95259

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003790465

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003293514

Country of ref document: AU