WO2004058443A1 - Reibschweissvorrichtung - Google Patents

Reibschweissvorrichtung Download PDF

Info

Publication number
WO2004058443A1
WO2004058443A1 PCT/DE2003/003920 DE0303920W WO2004058443A1 WO 2004058443 A1 WO2004058443 A1 WO 2004058443A1 DE 0303920 W DE0303920 W DE 0303920W WO 2004058443 A1 WO2004058443 A1 WO 2004058443A1
Authority
WO
WIPO (PCT)
Prior art keywords
cassette
piezo actuators
friction welding
blade
piezo
Prior art date
Application number
PCT/DE2003/003920
Other languages
English (en)
French (fr)
Inventor
Erwin Bayer
Boris Grohmann
Frank Hermle
Peter JÄNKER
Original Assignee
Mtu Aero Engines Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Aero Engines Gmbh filed Critical Mtu Aero Engines Gmbh
Priority to EP03767460A priority Critical patent/EP1572413B1/de
Priority to DE50303619T priority patent/DE50303619D1/de
Priority to US10/538,519 priority patent/US8002162B2/en
Publication of WO2004058443A1 publication Critical patent/WO2004058443A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines

Definitions

  • the invention relates to a friction welding device for the integral connection of components, according to the preamble of claim 1.
  • Friction welding devices are known in very different designs.
  • a differentiating criterion is the kinematic principle that is used.
  • devices are concerned in which one of two components to be connected is kept static, the other oscillating, i.e. periodically back and forth, moved and pressed against the static component.
  • the periodic movement runs parallel to the intended welding surfaces and is generated by a so-called oscillator.
  • the pressure is applied perpendicular to the welding surfaces using a suitable upsetting device. Because of the high contact and frictional forces, the moving, usually smaller component is held in a stable cassette, which usually only leaves the welding zone exposed.
  • the oscillating movement can take place on a straight and / or curved path, e.g. on part of an arc.
  • LOSS linear friction welding
  • all elements of a friction welding device must be designed to be particularly robust, dimensionally stable and free of play, which is particularly true when friction welding larger components made of high-strength metals.
  • Precise, reproducible and variable rubbing and upsetting movements with high positioning accuracy at the end of the dynamic rubbing process are also important.
  • mechanical and hydraulic variants as well as combinations of both having established themselves for the immediate generation of the required forces and movements.
  • the corresponding drives also include electric motors, electronic controls and regulations, i.e. include electrical and electronic elements.
  • European patent specification 0 513 669 B1 protects a friction welding process for blading a blade carrier for turbomachines, including the ones required Device or device elements.
  • the real version of this friction welding device works with an electric motor-driven, mechanical oscillator based on an eccentric principle and with an electro-hydraulic pressurized hydraulic upsetting device.
  • the maximum movement frequency is limited to values below 100 Hertz (Hz).
  • the maximum frequency is above 100 Hz but is still below 150 Hz.
  • the friction power is proportional to the friction force, the movement amplitude and the movement frequency.
  • the frictional force results from the normal force and the coefficient of friction.
  • a given amplitude a given frequency (see maximum values above) and a given coefficient of friction, the friction can only be increased or influenced via the normal force / contact pressure.
  • the relatively low frequencies of the mechanical and hydraulic oscillators lead to correspondingly high contact forces that have to be applied by the compression device. High forces require mechanically particularly stable and massive, i.e. heavy components for the friction welding device.
  • the object of the invention is to provide a friction welding device for the cohesive connection of components with periodic movement of a component, which leads to geometrically more exact integral components due to more precise and more reproducible function and which through higher movement frequencies and lower frictional forces
  • the production of more delicate constructions enables lighter and smaller, space-saving fixture elements to be used in the welding area.
  • the oscillator comprises two or a higher even number of piezo actuators, which are at least approximately in pairs on an action line.
  • the piezo actuators exert compressive forces on the cassette with the moving component from opposite sides, so that a defined preload can be achieved and the periodic frictional movement is practically free of play.
  • Via the electrical voltage control / regulation of the Piezo actuators with the option of individually loading each individual actuator allow the mechanical preload of the cassette, the movement frequency, the movement amplitude and the zero position of the movement, including the end position at the end of the welding process, to be selected very precisely and reproducibly.
  • Figure 1 is a partial axial view of a blade carrier with one to be attached
  • Blade Figure 2 the partial view of Figure 1 supplemented by a friction welding device
  • Figure 3 is a radial partial view of the blade carrier, the blade and the
  • FIG. 4 is a partial tangential view of a blade carrier, a blade and a
  • FIG. 5 shows a partial view of a piezo actuator with a leaf spring arrangement
  • FIG. 6 shows an arrangement of piezo elements
  • FIG. 1 shows an axial view of part of a blade carrier 4 provided for a rotor of a turbomachine, to which a blade 3 is to be attached by friction welding.
  • the oscillating frictional movement is to take place transversely to the longitudinal central axis of the blade carrier 4, which is indicated by a horizontal double arrow for the frictional force Fr. is symbolized.
  • Only the blade 3 is moved, the blade carrier 4 is held statically.
  • the welding surfaces 5, 6 are pressed against one another by a compressive force Fs directed perpendicular to them, the compressive force Fs being conducted into the welding zone 7 via the moving blade 3.
  • the force arrow pointing to the tip of the blade from above has no significance for the actual type of force introduction into the blade 3. It is certainly preferable to apply force with as uniform a load as possible of a large part of the blade surface due to frictional or positive locking.
  • FIG. 2 shows, in addition to the components 3, 4 to be friction welded, a friction welding device 1 according to the invention, FIG. 3 also being used for a better understanding.
  • the blade 3 is largely completely enclosed by a mechanically stable cassette, preferably made of steel or hard metal, the inner contour of which is matched as best as possible to the blade contour.
  • the cassette 1 1 consists of two or more parts screwed together with the blade geometry adapted separating joints.
  • the oscillator 8 that generates a defined, periodic frictional movement parallel to the welding surfaces 5, 6 and the upsetting device 10 that generates a defined upsetting force and infeed movement are essential elements of the friction welding device 1.
  • both the oscillator 8 and the upsetting device work 10 according to the piezoelectric principle, ie with a change in length of piezo elements caused by direct electrical voltage.
  • 1 shows two horizontal piezo actuators 12, 13 of the oscillator 8 lying on an action line and acting on the cassette 11 from the left and right and a piezo actuator 16 of the upsetting device 10 acting vertically on the cassette 11 from above.
  • the force transmission points between the piezo actuators and the cassette 11 will, depending on the relative movement, generally have one or more degrees of freedom, for example for translational displacements and / or pivoting movements. Plain and / or roller bearings can be used.
  • a swivel joint with a degree of freedom can be arranged between the piezo actuator 16 and the cassette 11.
  • the design of the power transmission points is within the range of the usual specialist knowledge and is not a direct object of the invention.
  • the drawn double arrows indicate the synchronous, rectified movement of the piezo actuators 12 and 13.
  • the principle of the invention becomes even clearer on the basis of FIG.
  • the longitudinal central axis X of the blade carrier ie its later axis of rotation, runs vertically in this view.
  • the oscillator 8 comprises four piezo actuators 12 to 15, which lie in pairs on an action line and are arranged transversely to the longitudinal central axis X.
  • the piezo actuators - due to the required vibration amplitudes of several millimeters - can have lengths of several meters, with a large number of piezo elements geometrically connected in series, ie arranged one behind the other. It is therefore favorable to arrange the long piezo actuators 12 to 15 in pairs in the manner shown axially in front of and behind the blade carrier 4 to be bladed or to be bladed. It should be noted that the friction welding device 1 can be used both for the production of new parts and for repair purposes (repair), ie for the replacement of individual or fewer blades.
  • the two front piezo actuators 12, 13 are controlled synchronously in such a way that they are always applied to the cassette 11 under compressive stress.
  • the front pair of actuators is operated at the same frequency as the rear pair of actuators. If the front and rear pair of actuators are in phase and in amplitude, the blade 3 executes a linear, oscillating movement. However, there are also the possibilities of operating one pair of actuators relative to the other with a different amplitude and / or with a phase shift, at the same frequency. For the blade 3, this has the consequence that combinations of translatory movements and pivoting movements or pure pivoting movements around variable pivot points are possible. See here the straight and the curved double arrow above the blade 3. This requires a correspondingly articulated connection of the piezo actuators 12 to 15 to the cassette 11. Through locally different forms of movement and different The amplitude of the introduced friction work can be varied over the welding surfaces, for example less friction work in thin blade areas than in thick ones, whereby a more even temperature distribution and ultimately a better welding result can be achieved.
  • FIG. 4 shows a partial view of the blade carrier 4 with blade 3 in the circumferential direction / tangential direction, the longitudinal central axis X of the blade carrier 4 running vertically and to the right of the actual representation.
  • the friction welding device 2 used here differs from the friction welding device 1 described above in that its oscillator 9 comprises four pairs of piezo actuators, that is to say eight piezo actuators, the illustration only showing the four piezo actuators 17 to 20, which in the view in front of the cassette 1 1 are arranged.
  • the plane of action of the piezo actuators 17, 18 lies relative to the longitudinal central axis X at a greater radial height H2 than the plane of action of the piezo actuators 19, 20, which lies at the radial height H1.
  • Friction welding tests have shown that, despite the precise radial alignment in the cassette, the blades showed a slight, unwanted inclination in the circumferential direction after welding.
  • a specific, small, opposite inclination of the cassette 11 and the blade 3 in the circumferential direction can be set during the welding process, e.g. due to the geometric zero point shift of the higher actuator pairs relative to the lower actuator pairs, so that the desired blade orientation is exactly given at the end of the welding process.
  • the upsetting device 10 with the piezo actuator 16 can be designed as in the previous figures.
  • FIG. 5 shows an example of a leaf spring assembly 22 for this purpose. Two or more leaf springs are firmly clamped at one end in a static base 25. The other ends of the leaf springs are embedded in a movable part 24. A tension / compression element connected to a piezo actuator 21 engages the leaf springs in the area between the base 25 and the part 24. By elastic deformation of the leaf springs, the part 24 is of greater amplitude and the same frequency moved in relation to the tension / compression element.
  • the movement amplitude of the part 24 can be increased while reducing the force exerted by the part 24.
  • the movement of part 24 is not exactly linear, since a certain pivoting movement is superimposed.
  • the kinematics are very similar to parallelogram guidance.
  • piezo actuators with amplitudes in the millimeter range comprise a large number of piezo elements in a geometric series connection. It may well be several hundred such piezo elements. Since commercially available piezo elements are limited in cross-section, e.g. To achieve large forces, it may be necessary to arrange several "columns" of piezo elements connected in series in parallel and combine them in a tubular actuator, for example, in order to achieve large forces.
  • FIG. 6 shows, in a highly simplified manner, two "columns" arranged in parallel on a static base 26. The two columns lead to a movable yoke 27, which has the same amplitude of movement as each of the columns with twice the compressive force compared to a single column.

Abstract

Reibschweissvorrichtung für das stoffschlüssige Verbinden von Bauteilen (3, 4), mit einem eine periodische Bewegung eines Bauteils und einer an diesem vorhandenen Schweissfläche (5, 6) relativ zu einem anderen, statischen Bauteil und einer an diesem vorhandenen Schweissfläche mit Bewegungsrichtungen parallel zu den Schweissflächen erzeugenden Oszillator (8), mit einer die Schweissflächen aufeinander drückenden Stauchvorrichtung und mit einer das bewegte Bauteil aufnehmenden Kassette (11). Der Oszillator (8) umfasst zwei oder eine höhere gerade Anzahl an Piezoaktuatoren, welche paarweise auf einer Wirkungslinie liegen und unter Druckerzeugung von gegenüberliegenden Seiten gegen die Kassette (11) vorspannbar und mit dieser und dem Bauteil synchron oszillierend bewegbar sind.

Description

Reibschweißvorrichtung
Die Erfindung betrifft eine Reibschweißvorrichtung für das stoffschlüssige Verbinden von Bauteilen, gemäß dem Oberbegriff des Patentanspruchs 1.
Reibschweißvorrichtungen sind in sehr unterschiedlichen Ausführungen bekannt. Ein Unterscheidungskriterium ist das zur Anwendung kommende, kinematische Prinzip. Im vorliegenden Fall geht es um Vorrichtungen, bei denen von zwei zu verbindenden Bauteilen eines statisch gehalten, das andere oszillierend, d.h. periodisch hin und her, bewegt und dabei gegen das statische Bauteil gedrückt wird. Die periodische Bewegung verläuft parallel zu den vorgesehenen Schweißflächen und wird von einem sogenannten Oszillator erzeugt. Das Anpressen erfolgt senkrecht zu den Schweißflächen mittels einer geeigneten Stauchvorrichtung. Wegen der hohen Anpress- und Reibungskräfte wird das bewegte, in der Regel kleinere Bauteil in einer stabilen Kassette gehalten, welche meist nur die Schweißzone freilässt. Die oszillierende Bewegung kann auf gerade und/oder gekrümmter Bahn erfolgen, z.B. auf einem Teil eines Kreisbogens. Bei der geradlinigen Variante wird häufig die Bezeichnung „lineares Reibschweißen", abgekürzt „LRS", verwendet. Im Hinblick auf die hohen dynamischen Belastungen müssen alle Elemente einer Reibschweißvorrichtung besonders robust, formstabil und spielfrei ausgeführt sein, was insbesondere beim Reibschweißen größerer Bauteile aus hochfesten Metallen gilt. Wichtig sind weiterhin präzise, reproduzierbare und variierbare Reib- und Stauchbewegungen mit hoher Positioniergenauigkeit am Ende des dynamischen Reibvorganges. All diese Kriterien haben über Jahre der Entwicklung dazu geführt, dass sich mechanische und hydraulische Varianten sowie Kombinationen aus beiden zur unmittelbaren Erzeugung der benötigten Kräfte und Bewegungen durchgesetzt haben. Es versteht sich, dass die entsprechenden Antriebe auch Elektromotoren, elektronische Steuerungen und Regelungen, d.h. elektrische und elektronische Elemente umfassen.
Die europäische Patentschrift 0 513 669 B1 schützt ein Reibschweißverfahren zur Beschaufelung eines Schaufelträgers für Strömungsmaschinen einschließlich der benötigten Vorrichtung bzw. Vorrichtungselemente. Die reale Ausführung dieser Reibschweißvorrichtung arbeitet mit einem elektromotorisch angetriebenen, mechanischen Oszillator nach einem Exzenterprinzip sowie mit einer elektrohydraulisch druckbeaufschlagten, hydraulischen Stauchvorrichtung.
Bei mechanischen Oszillatoren ist die maximale Bewegungsfrequenz auf Werte unter 100 Hertz (Hz) begrenzt. Bei hydraulischen Oszillatoren liegt die maximale Frequenz über 100Hz aber noch unter 150 Hz. Nach der Gleichung Leistung - Kraft x Geschwindigkeit ist die Reibleistung proportional zur Reibkraft, zur Bewegungsamplitude und zur Bewegungsfrequenz. Die Reibkraft ergibt sich aus der Normalkraft und dem Reibwert. Bei vorgegebener Amplitude, vorgegebener Frequenz (siehe obige Maximalwerte) und vorgegebenem Reibwert lässt sich die Reibleistung nur über die Normalkraft/Anpresskraft erhöhen bzw. beeinflussen. Bei vorgegebener Reibleistung führen die relativ niedrigen Frequenzen der mechanischen und hydraulischen Oszillatoren zu entsprechend hohen Anpresskräften, die von der Stauchvorrichtung aufzubringen sind. Hohe Kräfte erfordern mechanisch besonders stabile und massive, d.h. schwere Komponenten für die Reibschweißvorrichtung.
Angesichts der bekannten Lösungen und ihrer Nachteile besteht die Aufgabe der Erfindung darin, eine Reibschweißvorrichtung für das stoffschlüssige Verbinden von Bauteilen mit periodischer Bewegung eines Bauteils bereitzustellen, die durch genauere und besser reproduzierbare Funktion zu geometrisch exakteren Integralbauteilen führt und die durch höhere Bewegungsfrequenzen und geringere Reibkräfte die Fertigung filigranerer Konstruktionen ermöglicht, wobei im Schweißbereich leichtere und kleinere, platzsparendere Vorrichtungselemente verwendbar sind.
Diese Aufgabe wird durch die in Patentanspruch 1 gekennzeichneten Merkmale gelöst, in Verbindung mit den gattungsbildenen Merkmalen in dessen Oberbegriff. Erfindungsgemäß umfasst der Oszillator zwei oder eine höhere gerade Anzahl an Piezoaktuatoren, die paarweise zumindest annähernd auf einer Wirkungslinie liegen. Die Piezoaktuatoren üben von gegenüberliegenden Seiten Druckkräfte auf die Kassette mit dem bewegten Bauteil aus, so dass eine definierte Vorspannung realisierbar ist, und die periodische Reibbewegung praktisch spielfrei abläuft. Über die elektrische Spannungssteuerung/-regelung der Piezoaktuatoren mit der Möglichkeit, jeden einzelnen Aktuator individuell zu beaufschlagen, lassen sich die mechanische Vorspannung der Kassette, die Bewegungsfrequenz , die Bewegungsamplitude und die Nullpunktslage der Bewegung einschließlich der Endposition am Ende des Schweißvorganges sehr genau und reproduzierbar wählen. Die Erfordernis aufwendiger Nacharbeit zum Ausgleich geometrischer Ungenauigkeiten der verschweißten Einheit, z.B. durch NC-Fräsen, wird dadurch stark reduziert bzw. eliminiert. Infolge der reduzierten Reibkräfte, einer kleineren und leichteren Kassette etc., lassen sich auch filigrane, mechanisch empfindliche Blisks (Bladed Disks) mit eng stehenden Schaufeln durch Reibschweißen fertigen und instandsetzen. Dabei können die Naben/Scheiben der Rotoren optimal an die Betriebslasten angepasst und weitgehend fertigbearbeitet sein und müssen nicht mehr im Hinblick auf die Reibschweißlasten überdimensioniert bzw. mit erheblichem, später zu entfernenden Aufmaß versehen werden.
In den Unteransprüchen sind bevorzugte Ausgestaltungen der Reibschweißvorrichtung gemäß Hauptanspruch gekennzeichnet.
Die Erfindung wird anschließend anhand der Figuren noch näher erläutert. Dabei zeigen in stark vereinfachter, nicht maßstäblicher Darstellung:
Figur 1 eine axiale Teilansicht eines Schaufelträgers mit einer daran zu befestigenden
Schaufel Figur 2 die Teilansicht gemäß Figur 1 ergänzt um eine Reibschweißvorrichtung, Figur 3 eine radiale Teilansicht des Schaufelträgers, der Schaufel und der
Reibschweißvorrichtung gemäß Figur 2, Figur 4 eine tangentiale Teilansicht eines Schaufelträgers, einer Schaufel und einer
Reibschweißvorrichtung mit vier Piezoaktuatorpaaren, Figur 5 eine Teilansicht eines Piezoaktuators mit einer Blattfederanordnung und Figur 6 eine Anordnung von Piezoelementen
Figur 1 zeigt in axialer Ansicht einen Teil eines für einen Rotor einer Turbomaschine vorgesehenen Schaufelträgers 4, an dem eine Schaufel 3 durch Reibschweißen befestigt werden soll. Die oszillierende Reibbewegung soll hier quer zur Längsmittelachse des Schaufelträgers 4 erfolgen, was durch einen horizontalen Doppelpfeil für die Reibkraft Fr. symbolisiert ist. Dabei wird nur die Schaufel 3 bewegt, der Schaufelträger 4 wird statisch gehalten. Die Schweißflächen 5, 6 werden von einer senkrecht zu diesen gerichteten Stauchkraft Fs aufeinandergepresst, wobei die Stauchkraft Fs über die bewegte Schaufel 3 in die Schweißzone 7 geleitet wird. Der von oben auf die Schaufelspitze weisende Kraftpfeil hat keine Bedeutung für die tatsächliche Art der Krafteinleitung in die Schaufel 3. Zu bevorzugen ist sicher eine Krafteinleitung mit einer möglichst gleichmäßigen Belastung eines Großteils der Schaufeloberfläche durch Reib- bzw. Formschluss.
Figur 2 zeigt zusätzlich zu den reibzuschweißenden Bauteilen 3, 4 eine erfindungsgemäße Reibschweißvorrichtung 1, wobei zum besseren Verständnis auch die Figur 3 heranzuziehen ist. Die Schaufel 3 ist zur Übertragung der beachtlichen Kräfte weitgehend vollständig von einer mechanisch stabilen Kassette n, vorzugsweise aus Stahl oder Hartmetall, umschlossen, deren Innenkontur bestmöglich an die Schaufelkontur angepasst ist. Die Kassette 1 1 besteht aus zwei oder mehr, miteinander verschraubten Teilen mit der Schaufelgeometrie angepassten Trennfugen. Neben der Kassette 1 1 sind der eine definierte, periodische Reibbewegung parallel zu den Schweißflächen 5, 6 erzeugende Oszillator 8 und die eine definierte Stauchkraft und Zustellbewegung erzeugende Stauchvorrichtung 10 wesentlich Elemente der Reibschweißvorrichtung 1. Im vorliegenden Beispiel arbeiten sowohl der Oszillator 8 als auch die Stauchvorrichtung 10 nach dem piezoelektrischen Prinzip, d.h. mit durch elektrische Gleichspannung bewirkter Längenänderung von Piezoelementen. In Figur 1 sind zwei horizontale, auf einer Wirkungslinie liegende, von links und rechts an der Kassette 1 1 angreifende Piezoaktuatoren 12, 13 des Oszillators 8 sowie ein vertikal von oben an der Kassette 1 1 angreifender Piezoaktuator 16 der Stauchvorrichtung 10 zu erkennen. Die Kraftübertragungsstellen zwischen den Piezoaktuatoren und der Kassette 1 1 werden, je nach Relativbewegung, in der Regel einen oder mehrere Freiheitsgrade aufweisen, z.B. für translatorische Verschiebungen und/oder Schwenkbewegungen. Dabei können Gleit- und/oder Wälzlager zur Anwendung kommen. Im vorliegenden Fall kann beispielsweise ein Schwenkgelenk mit einem Freiheitsgrad zwischen dem Piezoaktuator 16 und der Kassette 1 1 angeordnet sein. Die Ausführung der Kraftübertragungsstellen liegt im Bereich des üblichen Fachwissens und ist kein unmittelbarer Gegenstand der Erfindung. Die eingezeichneten Doppelpfeile deuten die synchrone, gleichgerichtete Bewegung der Piezoaktuatoren 12 und 13 an. Anhand von Figur 3 wird das Erfindungsprinzip noch deutlicher. In dieser radialen Teilansicht des Schaufelträgers 4 sowie der Schaufel 3 erkennt man das in der Kassette 1 1 eingeschlossene Schaufelprofil sowie die daran angepassten Trennfugen der Kassette 1 1. Die Längsmittelachse X des Schaufelträgers, d.h. seine spätere Rotationsachse, verläuft in dieser Ansicht vertikal. Es versteht sich, dass bei einer Neubeschaufelungen des Schaufelträgers 4 eine Vielzahl von nahe beieinanderstehenden Schaufeln 3 am Umfang zu befestigen ist, von denen hier der Übersichtlichkeit halber nur eine wiedergegeben ist. Daher muss die Kassette 1 1 so gestaltet sein, dass sie zwischen bereits vorhandenen Schaufeln Platz findet. Dies erklärt die vereinfacht dargestellte, gekröpfte Form der Kassette. Im vorliegenden Fall umfasst der Oszillator 8 vier Piezoaktuatoren 12 bis 15, welche paarweise auf einer Wirkungslinie liegen und quer zur Längsmittelachse X angeordnet sind. Es ist zu beachten, dass die Piezoaktuatoren - aufgrund der erforderlichen Schwingungsamplituden von mehreren Millimetern - Längen von mehreren Metern aufweisen können, wobei eine Vielzahl von Piezoelementen geometrisch in Reihe geschaltet, d.h. hintereinander angeordnet ist. Daher ist es günstig, die langen Piezoaktuatoren 12 bis 15 in der dargestellten Weise paarweise axial vorderhalb und hinterhalb des beschaufelten bzw. zu beschaufelnden Schaufelträgers 4 anzuordnen. Es sei angemerkt, dass die Reibschweißvorrichtung 1 sowohl für die Neuteilfertigung als auch für Reparaturzwecke (Instandsetzung), d.h. für den Ersatz einzelner oder weniger Schaufeln verwendbar ist. Die beiden vorderen Piezoaktuatoren 12, 13 werden synchron gesteuert in der Weise, dass sie immer unter Druckspannung an der Kassette 1 1 anliegen. Das gleiche gilt für die beiden hinteren Piezoaktuatoren 14 und 15. Es wird in aller Regel auch so sein, dass das vordere Aktuatorenpaar mit gleicher Frequenz wie das hintere Aktuatorenpaar betrieben wird. Bei Phasengleicheit und Amplitudengleichheit des vorderen und hinteren Aktuatorenpaares führt die Schaufel 3 eine geradlinige, oszillierende Bewegung aus. Es gibt aber weiter die Möglichkeiten, ein Aktuatorenpaar relativ zum anderen mit unterschiedlicher Amplitude und/oder mit Phasenverschiebung zu betreiben, dies bei gleicher Frequenz. Für die Schaufel 3 hat dies zur Folge, dass Kombinationen aus translatorischen Bewegungen und Schwenkbewegungen bzw. reine Schwenkbewegungen um variable Drehpunkte möglich sind. Siehe hierzu den geraden und den gekrümmten Doppelpfeil über der Schaufel 3. Dies setzt eine entsprechend gelenkige Anbindung der Piezoaktuatoren 12 bis 15 an die Kassette 1 1 voraus. Durch lokal unterschiedliche Bewegungsformen und unterschiedliche Amplituden kann die eingebrachte Reibarbeit über die Schweißflächen variiert werden, z.B. in dünnen Schaufelbereichen weniger Reibarbeit als in dicken, wodurch sich eine gleichmäßigere Temperaturverteilung und letztlich ein besseres Schweißergebnis erzielen lässt.
Figur 4 zeigt eine Teilansicht des Schaufelträgers 4 mit Schaufel 3 in Umfangs- richtung/Tangentialrichtung, wobei die Längsmittelachse X des Schaufelträgers 4 vertikal und rechts neben der eigentlichen Darstellung verläuft. Die hier verwendete Reibschweißvorrichtung 2 unterscheidet sich von der voranstehend beschriebenen Reibschweißvorrichtung 1 dadurch, dass ihr Oszillator 9 vier Paare von Piezoaktuatoren, das heißt acht Piezoaktuatoren umfasst, wobei die Darstellung nur die vier Piezoaktuatoren 17 bis 20 zeigt, welche in der Ansicht vorderhalb der Kassette 1 1 angeordnet sind. Die Wirkungsebene der Piezoaktuatoren 17, 18 liegt relativ zur Längsmittelachse X in einer größeren radialen Höhe H2 als die Wirkungsebene der Piezoaktuatoren 19, 20, welche in der radialen Höhe H1 liegt. Bei Reibschweißversuchen hat sich gezeigt, dass Schaufeln trotz exakt radialer Ausrichtung in der Kassette nach dem Anschweißen eine leichte, ungewollte Neigung in Umfangsrichtung aufwiesen. Mit den gezeigten, höhenversetzten Aktuatorpaaren kann während des Schweißvorganges eine gezielte kleine, entgegengesetzte Neigung der Kassette 1 1 und der Schaufel 3 in Umfangsrichtung eingestellt werden, z.B. durch geometrische Nullpunktsverschiebung der höheren Aktuatorpaare relativ zu den niedrigeren Aktuatorpaaren, so dass am Ende des Schweißvorganges die gewünschte Schaufelorientierung exakt gegeben ist. Die Stauchvorrichtung 10 mit Piezoaktuator 16 kann wie in den vorhergehenden Figuren ausgeführt sein.
Die Bewegungsamplituden von Piezoaktuatoren liegen relativ zur Aktuatorlänge im Promillebereich. Um bei vorgegebenen Amplituden die Aktuatorlängen zu reduzieren, kann man die Aktuatoramplituden mechanisch vergrößern, wobei unterschiedliche Getriebemechanismen möglich sind. Figur 5 zeigt beispielhaft eine Blattfederanordnung 22 für diesen Zweck. Zwei öder mehr Blattfedern sind an einem Ende fest in eine statische Basis 25 eingespannt. Die anderen Enden der Blattfedern sind in ein bewegliches Teil 24 eingebettet. Ein mit einem Piezoaktuator 21 verbundenes Zug-/Druckelement greift an den Blattfedern im Bereich zwischen der Basis 25 und dem Teil 24 an. Durch elastische Verformung der Blattfedern wird das Teil 24 mit größerer Amplitude und gleicher Frequenz in Relation zum Zug-/Druckelement bewegt. Durch Heranrücken des Zug-/Druckelementes an die Basis 25 lässt sich die Bewegungsamplitude des Teils 24 vergrößern, bei Reduzierung der vom Teil 24 ausgeübten Kraft. Die Bewegung des Teils 24 ist dabei nicht exakt linear, da eine gewisse Schwenkbewegung überlagert ist. Die Kinematik ähnelt sehr stark einer Parallelogrammführung.
Wie bereits erwähnt, umfassen Piezoaktuatoren mit Amplituden im Millimeterbereich eine Vielzahl von Piezoelementen in geometrischer Reihenschaltung. Es kann sich durchaus um mehrere Hundert solcher Piezoelemente handeln. Da handelsübliche Piezoelemente im Querschnitt begrenzt sind, z.B. auf Münzgröße, kann es zur Erzielung großer Kräfte erforderlich sein, mehrere „Säulen" von in Reihe geschalteten Piezoelementen parallel anzuordnen und in einem z.B. rohrförmigen Aktuator zusammenzufassen. Figur 6 zeigt stark vereinfacht auf einer statischen Basis 26 zwei parallel angeordnete „Säulen". Die beiden Säulen führen zu einem beweglichen Joch 27, das die gleiche Bewegungsamplitude wie jede der Säulen aufweist bei doppelter Druckkraft gegenüber einer einzelnen Säule. Selbstverständlich können auch mehr als zwei parallelgeschalteter „Säulen" in einem Aktuator zusammengefasst sein. Die geometrisch/konstruktive Reihen- bzw. Parallelschaltung darf nicht mit der elektrischen Schaltung der Piezoelemente verwechselt werden, wobei auch elektrisch Reihen- und Parallelschaltungen verwendet werden, letztere insbesondere um Spannungen zu begrenzen.

Claims

Patentansprüche
1. Reibschweißvorrichtung für das stoffschlüssige Verbinden von Bauteilen, insbesondere für das Verbinden von strömungstechnisch wirksamen Schaufeln mit Scheiben- oder ringförmigen Schaufelträgern zur Herstellung und Instandsetzung von integral beschaufelten Rotorkomponenten für Turbomaschinen, mit einem eine definierte periodische Bewegung eines Bauteils und einer and diesem vorhandenen Schweißfläche relativ zu einem anderen, während des Schweißens statisch gehaltenen Bauteil und einer and diesem vorhandenen Schweißfläche mit Bewegungsrichtungen parallel zu den Schweißflächen erzeugenden Oszillator, mit einer die Schweißflächen mit definierter Kraft aufeinander drückenden Stauchvorrichtung und mit einer das bewegte Bauteil außerhalb der Schweißzone aufnehmenden Kassette, dadurch gekennzeichnet, dass der Oszillator (8, 9) zwei oder eine höhere gerade Anzahl an Piezoaktuatoren (12 bis 15, 17 bis 20) umfasst, welche paarweise zumindest annähernd auf einer Wirkungslinie liegen und unter Druckerzeugung durch piezoelektrische Längenänderung von gegenüberliegenden Seiten gegen die Kassette (1 1) vorspannbar und an ihren kassettenseitigen Enden zusammen mit der Kassette (1 1) und dem Bauteil (3) synchron oszillierend bewegbar sind.
2. Reibschweißvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Stauchvorrichtung (10) mindestens einen Piezoaktuator (16) umfasst, dessen piezoelektrisch bewegbares Ende mit der Kassette (1 1) zur Einleitung einer definierten Stauchkraft (Fs) senkrecht zu den Schweißflächen (5, 6) koppelbar ist.
3. Reibschweißvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zur Vergrößerung der relativ kleinen, linearen Bewegungen der Piezoaktuatoren (21) mechanische Getriebe, wie z.B. Hebelmechanismen, Blattfederanordnungen (22), Kurvengetriebe, Kulissensteuerungen oder ähnliches vorhanden sind mit der Möglichkeit, größere Bewegungen mit geraden und/oder gekrümmten Bahnen zu erzeugen.
4. Reibschweißvorrichtung nach einem der vorhergehenden Ansprüche, für das Verbinden von Schaufeln mit einem Scheiben- oder ringförmigen Schaufelträger, dadurch gekennzeichnet, dass die Wirkungslinien der Piezoaktuatoren (12 bis 15) quer zur Längsmittelachse (X) des Schaufelträgers (4) verlaufen, dass ein Paar von Piezoaktuatoren (12, 13) auf einer Wirkungslinie axial vorderhalb der Schaufel (3) von gegenüberliegenden Seite am vorderen Ende der Kassette (1 1) angreift, und dass ein Paar von Piezoaktuatoren (14, 15) auf einer Wirkungslinie axial hinterhalb der Schaufel (3) von gegenüberliegenden Seiten am hinteren Ende der Kassette (1 1) angreift.
5. Reibschweißvorrichtung nach einem der Ansprüche 1 bis 3, für das Verbinden von Schaufeln mit einem Scheiben- oder ringförmigen Schaufelträger, dadurch gekennzeichnet, dass die Wirkungslinien der Piezoaktuatoren (17 bis 20) quer zur Längsmittelachse (X) des Schaufelträgers (4) verlaufen, dass zwei Paare von jeweils auf einer Wirkungslinie liegenden Piezoaktuatoren (17, 19) in unterschiedlicher radialer Höhe (H 1, H2) relativ zur Längsmittelachse (X) des Schaufelträgers (4) axial vorderhalb der Schaufel (3) von gegenüberliegenden Seiten am vorderen Ende der Kassette (1 1) angreifen, und dass zwei Paare von jeweils auf einer Wirkungslinie liegenden Piezoaktuatoren (18, 20) in unterschiedlicher radialer Höhe (H 1, H2) relativ zur Längsmittelachse (X) des Schaufelträgers (4) axial hinterhalb der Schaufel (3) von gegenüberliegenden Seiten am hinteren Ende der Kassette (1 1) angreifen.
6. Reibschweißvorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das mindestens eine, am axial vorderen Ende der Kassette (1 1) angreifende Paar von Piezoaktuatoren (12, 13, 17, 19) in Relation zu dem mindestens einen, am axial hinteren Ende der Kassette (1 1) angreifenden Paar von Piezoaktuatoren (14, 15, 18, 20) mit gleicher Frequenz, mit gleicher oder verschiedener Amplitude sowie phasengleich oder phasenverschoben bewegbar ist.
7. Reibschweißvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die geometrischen Nullpunkte der Oszillationsbewegungen der beiden in der Höhe (H 1 , H2) versetzten, am axial vorderen Ende der Kassette (1 1) angreifenden Paare von Piezoaktuatoren (17, 19) relativ zueinander verschiebbar sind, ebenso wie die geometrischen Nullpunkte der Oszillationsbewegungen der beiden in der Höhe (H 1, H2) versetzten, am axial hinteren Ende der Kassette (1 1) angreifenden Paare von Piezoaktuatoren (18, 20).
8. Reibschweißvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kraft-/ egverhalten der Piezoaktuatoren (12 bis 21) durch geometrische Reihen- und Parallelschaltung von Piezoelementen (23) gewählt ist.
9. Reibschweißvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der maximale elektrische Spannungsbedarf der Piezoaktuatoren (12 bis 21) durch elektrische Reihen- und Parallelschaltung der Piezoelemente (23) begrenzt ist.
PCT/DE2003/003920 2002-12-21 2003-11-26 Reibschweissvorrichtung WO2004058443A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03767460A EP1572413B1 (de) 2002-12-21 2003-11-26 Reibschweissvorrichtung
DE50303619T DE50303619D1 (en) 2002-12-21 2003-11-26 Reibschweissvorrichtung
US10/538,519 US8002162B2 (en) 2002-12-21 2003-11-26 Friction-welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10260465.7 2002-12-21
DE10260465A DE10260465B3 (de) 2002-12-21 2002-12-21 Reibschweißvorrichtung

Publications (1)

Publication Number Publication Date
WO2004058443A1 true WO2004058443A1 (de) 2004-07-15

Family

ID=30128899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003920 WO2004058443A1 (de) 2002-12-21 2003-11-26 Reibschweissvorrichtung

Country Status (4)

Country Link
US (1) US8002162B2 (de)
EP (1) EP1572413B1 (de)
DE (2) DE10260465B3 (de)
WO (1) WO2004058443A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7624907B2 (en) * 2007-06-15 2009-12-01 Cyril Bath Company Linear friction welding apparatus and method
DE102008017495B8 (de) * 2008-04-04 2015-01-15 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung oder Reparatur von integral beschaufelten Rotoren
DE102008020624A1 (de) * 2008-04-24 2009-10-29 Rolls-Royce Deutschland Ltd & Co Kg Verfahren zur Herstellung von Turbinen- oder Kompressorrotoren für Gasturbinentriebwerke
DE102009052880A1 (de) * 2009-11-13 2011-05-19 Mtu Aero Engines Gmbh Verfahren zum Herstellen eines integral beschaufelten Rotors, Vorrichtung zur Durchführung des Verfahrens sowie mittels des Verfahrens hergestellter Rotor
US8070039B1 (en) 2010-08-25 2011-12-06 APCI, Inc. Linear friction welder
EP2535516B1 (de) * 2011-06-17 2014-02-26 Techspace Aero S.A. Reibschweißverfahren von Laufradschaufeln für die Rotortrommel eines Axialkompressors, und entsprechende Vorrichtung
US8967216B2 (en) 2011-12-01 2015-03-03 Apci, Llc Linear friction welder with helical groove
WO2013085967A1 (en) * 2011-12-05 2013-06-13 Apci, Llc Apparatus and method for linear friction welding repairs
JP6255956B2 (ja) * 2013-12-05 2018-01-10 株式会社Ihi 一体型翼車の線形摩擦接合装置用治具ユニット
US9551230B2 (en) * 2015-02-13 2017-01-24 United Technologies Corporation Friction welding rotor blades to a rotor disk
US10099313B2 (en) 2015-08-07 2018-10-16 Apci, Llc Linear friction welding system with phase change assembly
DE102015122314B3 (de) * 2015-12-18 2016-12-15 Pewag Austria Gmbh Linearreibschweißmaschine
DE102016224386A1 (de) * 2016-12-07 2018-06-07 MTU Aero Engines AG Verfahren zum herstellen einer schaufel für eine strömungsmaschine
US10850347B2 (en) 2018-09-19 2020-12-01 Apci, Llc Linear friction welding system with pre-heating
US10737353B2 (en) 2018-09-19 2020-08-11 Apci, Llc Torque controlled linear friction welder system
BE1027565B1 (fr) * 2019-09-10 2021-04-06 Safran Aero Boosters Sa Outillage de maintien d’une aube pendant son soudage par friction à un élément rotorique d’une turbomachine d’aéronef

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290134A1 (de) * 1987-04-16 1988-11-09 ROLLS-ROYCE plc Schwingungsmechanismus
EP0513669A2 (de) * 1991-05-17 1992-11-19 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Reibschweissverfahren zur Beschaufelung eines Schaufelträgers für Strömungsmaschinen
EP0718069A1 (de) * 1994-12-23 1996-06-26 ROLLS-ROYCE plc Reibschweisswerkzeug

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906468B4 (de) * 1999-02-16 2008-02-07 Robert Bosch Gmbh Piezoelektrischer Aktor
JP2000278073A (ja) * 1999-03-26 2000-10-06 Asahi Rubber Kk 超音波複合振動を用いた表面実装型振動子等の封止方法
DE19928185B4 (de) * 1999-06-19 2006-05-24 Robert Bosch Gmbh Piezoaktor
US6746172B2 (en) * 2001-11-08 2004-06-08 Massachusetts Institute Of Technology Apparatus and method for accurate, precise, and adjustable kinematic coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0290134A1 (de) * 1987-04-16 1988-11-09 ROLLS-ROYCE plc Schwingungsmechanismus
EP0513669A2 (de) * 1991-05-17 1992-11-19 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Reibschweissverfahren zur Beschaufelung eines Schaufelträgers für Strömungsmaschinen
EP0718069A1 (de) * 1994-12-23 1996-06-26 ROLLS-ROYCE plc Reibschweisswerkzeug

Also Published As

Publication number Publication date
DE50303619D1 (en) 2006-07-06
DE10260465B3 (de) 2004-02-12
US8002162B2 (en) 2011-08-23
US20060231593A1 (en) 2006-10-19
EP1572413B1 (de) 2006-05-31
EP1572413A1 (de) 2005-09-14

Similar Documents

Publication Publication Date Title
DE10260465B3 (de) Reibschweißvorrichtung
EP1131537B1 (de) Verfahren zum betrieb einer strömungsmaschine
DE10358586B4 (de) Getriebegehäuse eines Sitzverstellgetriebes für ein Kraftfahrzeug
EP1698423B1 (de) Verfahren zum Reibschweissfügen von einer Laufschaufel an einen Rotorgrundkörper mit Bewegung eines zwischen der Laufschaufel und dem Rotorgrundkörper angeordneten Fügeteils
DE69914567T2 (de) Reibungsschweissgerät
EP3204187B1 (de) Verfahren zur montage von laufschaufeln an einer rotorscheibe sowie zugehörige spannvorrichtung zur durchführung eines solchen verfahrens
WO2011057623A1 (de) Verfahren zum herstellen eines integral beschaufelten rotors durch pendelschwingungen-reibschweissen; vorrichtung zur durchführung des verfahrens; mittels des verfahrens hergestellter rotor
EP2699377B1 (de) Verfahren zur herstellung von fahrwerkskomponenten für nutzfahrzeuge durch reibschweissen und entsprechende achseinheit
EP2168707A1 (de) Verfahren zur Herstellung eines integral beschaufelten Rotors sowie Rotor
EP1250210B1 (de) Verfahren zum verbinden zweier teile mittels reibschweissung und nach diesem verfahren hergestelltes maschinenelement
EP2212522A2 (de) Aktive spaltregeleinrichtung für rotorgehäuse
EP2495473A1 (de) Adaptives Getriebe
EP2323799B1 (de) Verfahren zum verbinden von bauteilen
DE19711337B4 (de) Spannvorrichtung zum Spitzenschleifen für in einem Maschinengehäuse eingebaute Statorschaufeln einer Axial-Strömungsmaschine
EP4182110A1 (de) Aktor, werkzeugmaschine und verfahren zum spanenden bearbeiten
EP1731254A1 (de) Verfahren zum oszillierenden Reibschweissen von Bauteilen mit einer umlaufenden Nut in mindestens einem der beiden Bauteile in der Nähe der Fügezone
DE102007062557A1 (de) Verfahren zum Herstellen eines integral beschaufelten Rotors sowie Rotor
EP3999750B1 (de) Kippsegmentlager
WO2008104316A2 (de) Drehverbindung zwischen welle und ritzel und verfahren zu deren herstellung
CH627113A5 (en) Grinding device for machining curved surfaces
EP2695704A1 (de) Verfahren zur Herstellung eines TIAL-Leitschaufelkranzes für eine Gasturbine sowie ein entsprechender Leitschaufelkranz
EP2507009A1 (de) Verfahren zum reparieren eines bauteils einer strömungsmaschine
EP1704016A1 (de) Rotationsreibschweissanlage
EP3289184B1 (de) Laufschaufelanordnung mit elastischen stützelementen für eine thermische strömungsmaschine
WO2018228795A1 (de) Verfahren und vorrichtung zum schlagverfestigen von übergangsradien einer kurbelwelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003767460

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003767460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006231593

Country of ref document: US

Ref document number: 10538519

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003767460

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538519

Country of ref document: US