WO2004066348A2 - Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik - Google Patents

Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik Download PDF

Info

Publication number
WO2004066348A2
WO2004066348A2 PCT/EP2004/000216 EP2004000216W WO2004066348A2 WO 2004066348 A2 WO2004066348 A2 WO 2004066348A2 EP 2004000216 W EP2004000216 W EP 2004000216W WO 2004066348 A2 WO2004066348 A2 WO 2004066348A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
continuous
organic
electronic component
roll
Prior art date
Application number
PCT/EP2004/000216
Other languages
English (en)
French (fr)
Other versions
WO2004066348A3 (de
Inventor
Adolf Bernds
Alexander Friedrich Knobloch
Alessandro Manuelli
Original Assignee
Polyic Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyic Gmbh & Co. Kg filed Critical Polyic Gmbh & Co. Kg
Priority to DE502004003677T priority Critical patent/DE502004003677D1/de
Priority to EP04701943A priority patent/EP1586127B1/de
Priority to US10/542,678 priority patent/US20060160266A1/en
Publication of WO2004066348A2 publication Critical patent/WO2004066348A2/de
Publication of WO2004066348A3 publication Critical patent/WO2004066348A3/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/621Providing a shape to conductive layers, e.g. patterning or selective deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an organic electronic component and a method for the cost-effective and mass production of organic electronics.
  • the non-structured layers are produced by discontinuous coating processes such as spin coating (whereby individual disks are coated) and structured layers by printing or the like in a continuous roll-to-roll process (e.g. DE 10033112.2).
  • discontinuous coating processes such as spin coating (whereby individual disks are coated) and structured layers by printing or the like in a continuous roll-to-roll process (e.g. DE 10033112.2).
  • Process can be produced because the usual coating techniques, especially spin coating, are not compatible with the rollers.
  • the object of the present invention is to provide a method with which the structure of an organic electronic component can be produced in a roll-to-roll process. It is also an object of the present invention to provide an organic electronic component that can be mass-produced continuously.
  • the invention therefore relates to a method for producing an organic electronic component which is carried out continuously or at least quasi-continuously.
  • the invention relates to a method for producing an organic electronic component, which is carried out completely in a roll-to-roll process. Except- This is the subject of the invention an organic electronic component that can be manufactured in a continuous or at least quasi-continuous mass production process.
  • the invention relates to a method for the continuous or at least quasi-continuous production of the organic component, comprising the following production steps:
  • a functional organic material conductive, semiconducting or insulating is applied to a substrate that forms a continuous tape, continuous (web feed) or lined up single sheets (sheet feed), using a continuous coating method,
  • An organic electronic component is an organic field-effect transistor (OFET), an organic photovoltaic element, an organic diode, in particular an organic light-emitting diode (OLED), or another electronic component that has at least one organic functional layer like the semiconducting one Layer or the conductive layer comprises.
  • OFET organic field-effect transistor
  • OLED organic light-emitting diode
  • a substrate that is a continuous band which can be, for example, a continuous band (web feed) or lined up individual sheets (sheet feed), a functional organic material (conductive) is applied via a continuous coating method, - a structured varnish is printed on this functional layer,
  • the conductive layer is structured by this lacquer
  • a semiconducting layer is applied to the conductor tracks or electrodes formed in this way using a continuous coating method
  • An insulator layer is also applied to the semiconducting layer using a continuous coating method and - An upper electrode is printed on the insulator layer.
  • the porous roll coating has a counterpart in screen printing, only that a porous cylinder is used instead of a screen roll.
  • the coating liquid either penetrates another role from the inside of the cylinder through the pores and from there onto the tape to be coated or directly onto the tape.
  • the advantage over screen printing is that the pores can be made much finer than the openings in the screen, which means that much less viscous (thinner) liquids can be used.
  • Porous roll coating is one of the few processes (also only gravure coating) that also allows a structured application (direct structuring) by closing the pores locally, ie it is suitable for both coating and printing.
  • Dip coating whereby a continuous strip is drawn through at least one liquid, rod coating, in which a strip is tangentially drawn past a roller or roller that is still wetted with a liquid, blade coating, in which a strip lies against a roller, which leads past a container filled with liquid, the container being closed on two sides, delimited on a third side by the roller and on a fourth side by a doctor blade which lies at a distance above the belt, so that the liquid in the distance is retained in the container and does not adhere to the belt in which the squeegee is located above the belt.
  • roller-compatible coating or coating method is air knife coating, which is the same as dip coating except for a blower, through which the liquid on the belt drawn through the liquid is dried at one point and / or blown away.
  • air knife coating which is the same as dip coating except for a blower, through which the liquid on the belt drawn through the liquid is dried at one point and / or blown away.
  • These four coating processes are already known for producing other polymer layers and are described in the text cited at the beginning and explained by drawings.
  • Other roller-compatible coating processes are gravure coating, in which two rollers (or rollers) that are not the same size are operated in the same direction and adjoin one another, the larger one
  • roller is passed through a liquid and the tape abuts the smaller roller, the thickness of the wetting, with which the larger roller connects to the smaller one, limited by a squeegee attached to the larger one, another method is reverse roll coating, in which two rollers moving in opposite directions are pressed against one another, one roller with liquid is wetted and the continuous belt is guided along the other roller.
  • reverse roll coating in which two rollers moving in opposite directions are pressed against one another, one roller with liquid is wetted and the continuous belt is guided along the other roller.
  • coating techniques in general for organic electronics is that thin, homogeneous layers (thickness approximately 0.02 to 2 ⁇ m) can be produced continuously. Since the coating techniques themselves are not structuring, they can only be used in combination with structuring processes, such as printing techniques. By combining roll-compatible coating techniques with roll-to-roll printing processes, you can make all production steps of an organic electronic component roll-compatible.
  • a roll-to-roll process is a process that is continuous, that is to say that it can be produced as tape goods in the above-mentioned sense, that is to say both web feed and sheet feed, and that essentially involves rolling for coating and printing and / or used for other processing steps.
  • the basic elements of an organic electronic component are referred to as the structure of an organic electronic component, substrate as tape goods in the sense mentioned above, that is to say both web feed and sheet feed, which form the carrier.
  • a lower electrode a semiconducting, photovoltaically active and / or emitting layer, insulating layer (s) and upper electrode.
  • Mass production is understood to mean a production that allows and / or allows the production of low-cost products such as disposable chips through simple production steps with a high throughput rate, i.e. high number of pieces per unit of time and optimal utilization of the machines, avoiding dwell times in machines etc. only made possible.
  • a “continuous * process” means a production that does not process "piece by piece *, but” by the meter * like production on a continuous belt. In the discontinuous process, ie the production “piece by piece *, too much time is spent for low cost production by loading and unloading the piece just produced into and out of the machine.
  • the advantages of the assembly line are those that are meant by the term “continuous process *” here.
  • a quasi-continuous process can include smaller stops in the production chain, but has at least two contiguous, continuously running production steps.
  • the organic electronic component is a field-effect transistor, comprising at least one substrate, a lower electrode comprising source and drain, a semiconducting layer, an insulating layer and an upper electrode.
  • Indirect structuring refers to the type of structuring in which a layer (lacquer layer, etc.) that has been applied specifically for structuring a lower layer is first structured.
  • a "direct structuring” is accordingly an immediate structuring of a layer.
  • pretreatment processes take place before the respective coating and printing processes, for example for cleaning and / or pretreating the surface, for example corona, flame, UV, plasma treatment and / or other processes.
  • At least one drying or hardening process takes place after the respective coating and / or printing method, e.g. with heat, UV light, infrared light and / or other processes.
  • the figure shows the process steps for the production of the lower electrode (s) 2, the semiconducting layer 7, the insulator layer 8 and the upper electrode 9 on a substrate 1: the band 1 which forms the substrate can be seen, over which it is applied a continuous coating method applied a functional organic material, in particular a conductive polymer, 2.
  • the organic functional material can be in one or more organic or inorganic
  • Solvents can be dissolved or dispersed, present as a pure material, as a mixture and / or provided with additives.
  • the continuous coating method comprises a doctor blade 6 which is integrated in a machine 3.
  • a coating 5 is applied in a structured manner to the coating 2 via a roller 4, with the aid of which the lower electrode (s) 2 is structured.
  • a semiconducting layer 7 is again applied to the structured lower electrode (s) 2 using a machine 3 equipped with a doctor blade 6.
  • An insulator layer 8 is placed on this layer again using a coating technique, which is finally structured top electrode 9 is applied (direct structuring).
  • the machine 3 is preferably combined with a roller for dip coating, rod coating, knife coating, blade coating, air knife coating, gravure coating, forward and reverse roll coating, slot and extrusion coating, slide coating, curtain coating and / or spray coating , as already mentioned in the literature cited above and in the description.
  • a planar layer is used.
  • the method according to the invention shows for the first time a possibility with which a continuous roll-to-roll coating can be carried out for the cost-effective mass production of organic electronic components.
  • organic electronic components can be manufactured in a continuous mass production process. These include e.g. organic transistors and circuits thereof, organic diodes, organically based capacitors, organic photovoltaic cells, organic sensors and actuators, and combinations thereof.

Abstract

Die Erfindung betrifft ein organisches elektronisches Bauteil und ein Verfahren zur kostengünstigen und massenfertigungstauglichen Herstellung organischer Elektronik, wobei rollenkompatible Beschichtungstechniken in Kombination mit Drucktechniken eingesetzt werden.

Description

Organisches Elektronikbauteil und Verfahren zur Herstellung organischer Elektronik
Die Erfindung betrifft ein organisches elektronisches Bauteil und ein Verfahren zur kostengünstigen und massenfertigungstauglichen Herstellung organischer Elektronik.
Bekannt ist die Herstellung organischer Bauteile durch eine Kombination kontinuierlicher und diskontinuierlicher Verfahren. So werden beispielsweise die nicht strukturierten Schichten durch diskontinuierliche Beschichtungsprozesse wie Spin Coating (wobei jeweils einzelne Scheiben beschichtet werden) hergestellt und strukturierte Schichten durch Bedrucken oder ähnliches im kontinuierlichen Rolle-zu-Rolle Verfahren (z.B. DE 10033112.2).
Bislang galt es als unwahrscheinlich, dass sich ein organi- sches elektronisches Bauteil komplett im kontinuierlichen
Verfahren herstellen lässt, weil die gängigen Beschichtungstechniken, allen voran Spin Coating, nicht rollenkompatibel ist.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zu schaffen, mit dem der Aufbau eines organischen elektronischen Bauteils im Rolle-zu-Rolle Verfahren hergestellt werden kann. Ebenso ist es Aufgabe der vorliegenden Erfindung ein organisches elektronisches Bauteil zur Verfügung zu stellen, das in Massenfertigung kontinuierlich herstellbar ist.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung eines organischen elektronischen Bauteils, das kontinuierlich oder zumindest quasi kontinuierlich geführt wird. Insbesondere ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines organischen elektronischen Bauteils, das komplett im Rolle-zu-Rolle Verfahren ausgeführt wird. Außer- dem ist Gegenstand der Erfindung ein organisches elektronisches Bauteil, das in einem kontinuierlichen oder zumindest quasi kontinuierlichen Massenfertigungsprozess herstellbar ist.
Insbesondere ist Gegenstand der Erfindung ein Verfahren zur kontinuierlichen oder zumindest quasi kontinuierlichen Herstellung des organischen Bauteils folgende Produktionsschritte umfassend:
auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinandergereihte einzelne Bögen (sheet feed), bildet, wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material (leitend, halbleitend oder isolierend) aufgetragen,
- auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt, durch diesen Lack wird die funktionale Schicht, eventuell über weitere Prozessschritte, strukturiert.
Ausgestaltungen der Erfindung ergeben sich aus den Ansprüchen, den Figuren und der Beschreibung.
Als organisches elektronisches Bauteil wird ein organischer Feld-Effekt-Transistor (OFET) , ein organisches photovoltai- sches Element, eine organische Diode, insbesondere eine organische Leuchtdiode (OLED) , oder ein sonstiges elektronisches Bauteil bezeichnet, das zumindest eine organische Funktionsschicht wie die halbleitende Schicht oder die leitende Schicht umfasst.
Nach einer Ausführungsform des Verfahrens zur kontinuierlichen Herstellung des organischen Bauteils sind folgende Produktionsschritte umfasst:
auf einem Substrat, das ein durchgehendes Band, das beispielsweise ein zusammenhängendes Band sein kann (web feed) oder aneinandergereihte einzelne Bögen (sheet feed) , bildet, wird über eine kontinuierliche Beschichtungsmetho- de ein funktionales organisches Material (leitend) aufgetragen, - auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt,
- durch diesen Lack wird die leitfähige Schicht strukturiert,
- auf die so gebildeten Leiterbahnen oder Elektroden wird über eine kontinuierliche Beschichtungsmethode eine halbleitende Schicht aufgetragen,
- auf die halbleitende Schicht wird ebenfalls über eine kontinuierliche Beschichtungsmethode eine Isolatorschicht aufgetragen und - auf die Isolatorschicht wird eine obere Elektrode aufgedruckt.
Als kontinuierliche Beschichtungsmethode werden beispielsweise die vorgeschlagen, die in „Coatings Technology Handbookλλ 2nd Edition Herausgeber: D. Satas und Arthur A. Tracton Verlag Marcel Dekker New York Basel, Kapitel 18 „Porous Roll Co- ater* Seiten 165 bis 178 und „Modern Coating and Drying Technology* Herausgeber: Edward D. Cohen und Edgar B. Gutoff Wi- ley-Nerlag Weinheim, Seiten 1 bis 10 beschrieben werden. Überraschend ist, dass die dort aufgeführten Verfahren rollenkompatibel zum Aufbau organischer Elektronik einsetzbar sind, so dass homogene Polymerschichten für den Aufbau von organischer Elektronik resultieren.
Es handelt sich hierbei um rollenkompatible Beschichtungstechniken. Folgende Beispiele fassen kurz zusammen, welche Techniken hierbei besonders vorteilhaft erscheinen:
Das Porous Roll Coating hat eine Entsprechung im Siebdruck, nur dass anstelle einer Siebrolle ein poröser Zylinder verwendet wird. Die Beschichtungsflüssigkeit dringt vom Inneren des Zylinders durch die Poren entweder auf eine weitere Rolle und von dort auf das zu beschichtende Band oder direkt auf das Band. Der Vorteil gegenüber dem Siebdruck besteht darin, dass die Poren wesentlich feiner ausführbar sind als die Öffnungen im Sieb, somit kann mit sehr viel niederviskoseren (dünneren) Flüssigkeiten gearbeitet werden. Das Porous Roll Coating ist eines der wenigen Verfahren (außerdem nur noch das Gravüre Coating) , dass auch einen strukturierten Auftrag (direkte Strukturierung) erlaubt, indem die Poren lokal verschlossen werden, d.h. es eignet sich sowohl zum Beschichten als auch zum Drucken.
Dip Coating, wobei ein kontinuierliches Band durch zumindest eine Flüssigkeit gezogen wird, Rod Coating, bei dem ein Band tangentiell an einer Rolle oder Walze vorbeigezogen wird, die noch mit einer Flüssigkeit benetzt ist, Blade Coating, bei dem ein Band an einer Walze anliegt, die an einem mit Flüssigkeit gefüllten Behältnis vorbeiführt, wobei das Behältnis an zwei Seiten geschlossen ist, an einer dritten Seite durch die Walze und an einer vierten Seite durch ein Rakel begrenzt wird, das in einem Abstand über dem Band anliegt, so dass die Flüssigkeit in dem Abstand in dem Behältnis zurückgehalten wird und nicht auf dem Band haftet in dem sich das Rakel über dem Band befindet.
Ein weiteres rollenkompatibles Beschichtungs- oder Coating- Verfahren ist das air knife coating, das dem Dip Coating gleich ist bis auf ein Gebläse, durch das die Flüssigkeit auf dem durch die Flüssigkeit gezogene Band an einer Stelle getrocknet und/oder weggeblasen wird. Diese vier Coating Pro- zesse sind bereits zur Herstellung anderer Polymerschichten bekannt und in dem eingangs zitierten Text beschrieben und durch Zeichnungen erläutert. Weitere rollenkompatible Be- schichtungsverfahren sind Gravüre Coating, bei dem zwei nicht gleich große Walzen (oder Rollen) in der gleichen Richtung betrieben werden und aneinandergrenzen, wobei die größere
Walze durch eine Flüssigkeit geführt wird und an der kleineren Walze das Band anliegt, wobei die Dicke der Benetzung, mit der die größere Walze an die kleinere anschließt, durch ein Rakel, das an der größeren befestigt ist, begrenzt ist, ein weiteres Verfahren ist das reverse roll coating, bei dem zwei gegenläufig sich bewegende Walzen aneinander gedrückt werden, wobei die eine Walze mit Flüssigkeit benetzt ist und entlang der anderen Walze das kontinuierliche Band geführt wird. Schließlich sind noch die dort beschriebenen Techniken des Forward Roll Coatings, des Slot und Extrusion coatings, des Slide Coatings, des Curtain Coatings besonders vorteil- haft, wobei aus der Reihenfolge in der sie beschrieben und/oder benannt wurde keine Wertung herausgelesen werden sollte. Schließlich gibt es noch das Spraying Coating, das vor dem Hintergrund, dass Spraying „sprühen* heißt, selbst erklärend ist.
Der Vorteil der Beschichtungstechniken allgemein für die organische Elektronik ist der, dass damit dünne homogene Schichten (Dicke etwa 0.02 bis 2. Oμm) kontinuierlich herstellbar sind. Da die Beschichtungstechniken selbst nicht strukturgebend sind, können sie nur in Kombination mit strukturgebenden Verfahren, wie den Drucktechniken, eingesetzt werden. Durch Kombination von rollenkompatiblen Beschichtungstechniken mit Rolle-zu-Rolle Druckverfahren kann man sämtliche Produktionsschritte eines organischen elektroni- sehen Bauteils rollenkompatibel machen.
Als Rolle-zu-Rolle Verfahren wird ein Verfahren bezeichnet, das kontinuierlich ist, also als Bandware in dem oben erwähnten Sinn, also sowohl web feed als auch sheet feed, produ- ziert werden kann und in dem im wesentlichen Walzen zur Beschichtung, zum Bedrucken und/oder zu sonstigen Verarbeitungsschritten eingesetzt werden.
Als Aufbau eines organischen elektronischen Bauteils werden die Grundelemente eines organischen elektronischen Bauteils bezeichnet, Substrat als Bandware in dem oben erwähnten Sinn, also sowohl web feed als auch sheet feed, die den Träger bil- det, darauf eine untere Elektrode, eine halbleitende, photo- voltaisch aktive und/oder emittierende Schicht, isolierende Schicht (en) und obere Elektrode.
Unter „Massenfertigung* wird eine Produktion verstanden, die die Herstellung von low-cost Produkten wie Einwegchips durch einfache Produktionsschritte mit hoher Durchsatzquote, also hohe Stückzahl pro Zeiteinheit und optimale Auslastung der Maschinen, Vermeidung von Verweilzeiten in Maschinen etc. er- laubt und/oder erst ermöglicht.
Als „kontinuierliches* Verfahren wird eine Produktion bezeichnet, durch die nicht „Stück für Stück* verarbeitet wird, sondern „am laufenden Meter* wie die Produktion an einem durchgehenden Band. Im diskontinuierlichen Verfahren, also der Produktion „Stück für Stück* wird für eine low cost Produktion zuviel Zeit durch einlegen und ausladen des gerade produzierten Stückes in die Maschine und aus der Maschine wieder heraus. Die Vorteile des Fließbandes sind die, die mit dem Term „kontinuierliches Verfahren* hier gemeint sind. Ein quasi kontinuierliches Verfahren kann dabei kleinere Stops in der Produktionskette umfassen, verfügt aber zumindest über zwei aneinanderhängende kontinuierlich verlaufende Produktionsschritte.
Nach einer Ausführungsform ist das organische elektronische Bauteil ein Feld-Effekt-Transistor, zumindest ein Substrat, eine untere, Source und Drain umfassende Elektrode, eine halbleitende Schicht, eine isolierende Schicht und eine obere Elektrode umfassend.
Als "indirekte Strukturierung" wird die Art der Strukturierung bezeichnet, bei der zunächst eine eigens zur Strukturierung einer unteren Schicht aufgebrachte Schicht (Lackschicht etc.) strukturiert wird. Eine "direkte Strukturierung" ist entsprechend eine unmittelbare Strukturierung einer Schicht. Nach einer Ausfü rungsform des Verfahren finden vor den jeweiligen Beschichtungs- und Bedruckungsverfahren Vorbehandlungsverfahren statt, beispielsweise zur Reinigung und/oder Vorbehandlung der Oberfläche, z.B. Corona-, Flammen-, UV-, Plasmabehandlung und/oder sonstige Verfahren.
Nach einer weiteren Ausführungsform des Verfahrens findet nach dem jeweiligen Beschichtungs- und/oder Bedruckungsverfahren zumindest ein Trocknungs- oder Härtungsprozess statt, z.B. mit Wärme, UV-Licht, Infrarotlicht und/oder sonstigen Verfahren.
Im folgenden wird die Erfindung noch anhand der beispielhaf- ten Herstellung eines organischen Feld-Effekt-Transistors näher erläutert.
Die Figur zeigt die Verfahrensschritte zur Herstellung der unteren Elektrode (n) 2, der halbleitenden Schicht 7, der Iso- latorschicht 8 und der oberen Elektrode 9 auf einem Substrat 1: Zu sehen ist das Band 1, das das Substrat bildet, darauf wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material, insbesondere ein leitfähiges Polymer, 2 aufgebracht. Das organische Funktionsmaterial kann in einem oder mehreren organischen oder anorganischen
Lösungsmitteln gelöst oder dispergiert sein, als reines Material vorliegen, als Mischung und/oder mit Additiven versehen.
Die kontinuierliche Beschichtungsmethode umfasst ein Rakel 6 das in eine Maschine 3 integriert ist. Auf die Beschichtung 2 wird über eine Walze 4 ein Lack 5 strukturiert aufgebracht, mit dessen Hilfe die untere (n) Elektrode (n) 2 strukturiert wird. Auf die strukturierte (n) untere (n) Elektrode (n) 2 wird eine halbleitende Schicht 7 wieder unter Einsatz einer mit einem Rakel 6 ausgestatteten Maschine 3 aufgebracht. Auf diese Schicht legt man eine Isolatorschicht 8 wieder mit einer Beschichtungstechnik auf die schließlich strukturiert eine obere Elektrode 9 aufgebracht wird (direkte Strukturierung) . Die Maschine 3 ist vorzugsweise zum Dip Coating, Rod Coating, Knife Coating, Blade Coating, Air Knife Coating, Gravüre Coating, Forward und Reverse Roll Coating, Slot und Extrusion Coating, Slide Coating, Curtain Coating und/oder Spraying Coating mit einer Walze kombiniert, wie in der oben zitierten Literatur und in der Beschreibung bereits erwähnt. Beim Blade Coating wird, wie aus der schematischen Figur ersichtlich, eine planare Schicht angewendet.
Durch das erfindungsgemäße Verfahren wird erstmals eine Möglichkeit aufgezeigt, mit der eine kontinuierliche Rolle-zu- Rolle Beschichtung für die kostengünstige Massenproduktion organischer elektronischer Bauteile durchführbar ist. Bisher waren nur kontinuierliche Verfahren bekannt, die sich der
Drucktechniken bedienen, wobei das Problem ist, dass mit keiner Drucktechnik dünne Schichten mit für die organische Elektronik ausreichender Homogenität erzeugbar sind.
Mit Hilfe der Erfindung können alle Arten organischer elektronischer Bauteile in einem kontinuierlichen Massenferti- gungsprozess hergestellt werden. Dazu gehören z.B. organische Transistoren und Schaltungen hieraus, organische Dioden, organisch basierte Kondensatoren, organische Photovoltaik- Zellen, organische Sensoren und Aktoren, sowie Kombinationen hieraus .

Claims

Patentansprüche
1. Verfahren zur Herstellung eines organischen elektronischen Bauteils, das kontinuierlich oder quasi kontinuierlich ge- führt wird.
2. Verfahren zur Herstellung eines organischen elektronischen Bauteils, das komplett im Rolle-zu-Rolle Verfahren beispielsweise als durchgehendes Band oder auf Bögen ausgeführt wird.
3. Verfahren nach einem der Ansprüche 1 und/oder 2, wobei mindestens eine funktioneile organisch basierte Schicht durch ein Beschichtungsverfahren aufgetragen wird.
4. Verfahren nach einem der vorstehenden Ansprüche, wobei das elektronische Bauteil aus mehreren Einzelschichten aufgebaut wird und mindestens eine funktioneile organisch basierte Schicht verwendet wird.
5. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Schichten direkt oder indirekt strukturiert werden.
6. Verfahren zur kontinuierlichen Herstellung eines organischen Bauteils folgende Produktionsschritte umfassend:
auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinandergereihte einzelne Bögen ( sheet feed) , bildet, wird über eine kontinuierliche Beschichtungsmethode ein funktionales organisches Material (leitend, halbleitend oder isolierend) aufgetragen, auf diese funktionale Schicht wird strukturiert ein Lack aufgedruckt , durch diesen Lack wird die funktionale Schicht direkt oder über weitere Prozessschritte strukturiert .
7. Verfahren zur kontinuierlichen Herstellung eines organischen Bauteils nach Anspruch 1 folgenden Produktionsschritt umfassend:
auf einem Substrat, das ein durchgehendes Band, zusammenhängend (web feed) oder aneinandergereihte einzelne Bögen (sheet feed) , bildet, wird über eine kontinuierliche Druckmethode ein funktionales organisches Material (leitend, halbleitend und/oder isolierend) strukturiert aufgetragen.
8. Verfahren nach einem der vorstehenden Ansprüche, bei dem vor den jeweiligen Beschichtungs- und Bedruckungsverfahren zumindest ein Vorbehandlungsverfahren stattfindet.
9. Verfahren nach einem der vorstehenden Ansprüche, bei dem nach dem jeweiligen Beschichtungs- und/oder Strukturierungs- schritt eine Nachbehandlung der Schicht durchgeführt wird.
10. Verfahren nach einem der vorstehenden Ansprüche, bei dem die Beschichtung in einem rollenkompatiblen Verfahren durchgeführt wird, wie Porous Roll Coating, Dip Coating, Rod Coating, Knife Coating, Blade Coating, Air Knife Coating, Gravüre Coating, Forward und Reverse Coating, Slot und Extrusion Coating, Slide Coating, Curtain Coating, Spraying.
11. Verfahren nach einem der vorstehenden Ansprüche, bei dem eine Strukturierung der Schichten in einem rollenkompatiblen Verfahren durchgeführt wird, wie Tiefdruck, Flachdruck (Offset) , Hochdruck (Flexo) , Tintenstrahl, Laserdruck, sowie Kom- binationen dieser und verwandter Verfahren.
12. Elektronisches Bauteil, das durch eines oder mehrere der Verfahren nach den Ansprüchen 1 bis 10 aufgebaut wird.
PCT/EP2004/000216 2003-01-21 2004-01-14 Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik WO2004066348A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE502004003677T DE502004003677D1 (de) 2003-01-21 2004-01-14 Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik
EP04701943A EP1586127B1 (de) 2003-01-21 2004-01-14 Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik
US10/542,678 US20060160266A1 (en) 2003-01-21 2004-01-14 Organic electronic component and method for producing organic electronic devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10302146.9 2003-01-21
DE10302146 2003-01-21

Publications (2)

Publication Number Publication Date
WO2004066348A2 true WO2004066348A2 (de) 2004-08-05
WO2004066348A3 WO2004066348A3 (de) 2005-01-20

Family

ID=32747467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/000216 WO2004066348A2 (de) 2003-01-21 2004-01-14 Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik

Country Status (4)

Country Link
US (1) US20060160266A1 (de)
EP (1) EP1586127B1 (de)
DE (1) DE502004003677D1 (de)
WO (1) WO2004066348A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128998A2 (en) * 2006-04-11 2007-11-15 Nicholas Stone A method of making an electrical device
WO2007129001A1 (en) * 2006-04-11 2007-11-15 Nicholas Stone Conductive polymer electrodes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10160732A1 (de) * 2001-12-11 2003-06-26 Siemens Ag Organischer Feld-Effekt-Transistor mit verschobener Schwellwertspannung und Verwendung dazu
GB201011280D0 (en) * 2010-07-05 2010-08-18 Cambridge Entpr Ltd Patterning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005361A1 (en) * 2000-07-12 2002-01-17 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
WO2002005360A1 (de) * 2000-07-07 2002-01-17 Siemens Aktiengesellschaft Verfahren zur herstellung und strukturierung organischer-feldeffekt-transistoren (ofet)
WO2002099908A1 (de) * 2001-06-01 2002-12-12 Siemens Aktiengesellschaft Verfahren zur erzeugung von leitfähigen strukturen mittels drucktechnik sowie daraus hergestellte aktive bauelemente für integrierte schaltungen

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3512052A (en) * 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) * 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) * 1973-10-12 1979-02-24
JPS54101176A (en) * 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) * 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
DE3768112D1 (de) * 1986-03-03 1991-04-04 Toshiba Kawasaki Kk Strahlungsdetektor.
GB2215307B (en) * 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
US5892244A (en) * 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) * 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
US5206525A (en) * 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FR2664430B1 (fr) * 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) * 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
JPH0580530A (ja) * 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) * 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
EP0610183B1 (de) * 1991-10-30 1995-05-10 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Belichtungsvorrichtung
JP2709223B2 (ja) * 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
JP3457348B2 (ja) * 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
US5567550A (en) * 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
CA2170402C (en) * 1993-08-24 2000-07-18 Michael P. Allen Novel disposable electronic assay device
JP3460863B2 (ja) * 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) * 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) * 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
EP0708987B1 (de) * 1994-05-16 2003-08-13 Koninklijke Philips Electronics N.V. Halbleiteranordnung aus halbleitendem, organischem material
JP3246189B2 (ja) * 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5574291A (en) * 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (ja) * 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) * 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
GB2310493B (en) * 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
DE19629656A1 (de) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US6344662B1 (en) * 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5946551A (en) * 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100248392B1 (ko) * 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JP4509228B2 (ja) * 1997-08-22 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機材料から成る電界効果トランジスタ及びその製造方法
BR9811636A (pt) * 1997-09-11 2000-08-08 Precision Dynamics Corp Etiqueta de identificação de rádio freqâência em substrato flexìvel
US6251513B1 (en) * 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JP2001510670A (ja) * 1997-12-05 2001-07-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 識別トランスポンダ
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6083104A (en) * 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
EP1051745B1 (de) * 1998-01-28 2007-11-07 Thin Film Electronics ASA Methode zur herstellung zwei- oder dreidimensionaler elektrisch leitender oder halbleitender strukturen, eine löschmethode derselben und ein generator/modulator eines elektrischen feldes zum gebrauch in der herstellungsmethode
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) * 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
US6033202A (en) * 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
US5967048A (en) * 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
US6215130B1 (en) * 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) * 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
JP3990539B2 (ja) * 1999-02-22 2007-10-17 新日本製鐵株式会社 メッキ密着性およびプレス成形性に優れた高強度溶融亜鉛メッキ鋼板および高強度合金化溶融亜鉛メッキ鋼板およびその製造方法
US6300141B1 (en) * 1999-03-02 2001-10-09 Helix Biopharma Corporation Card-based biosensor device
US6207472B1 (en) * 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
US6383664B2 (en) * 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6335539B1 (en) * 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
KR100940110B1 (ko) * 1999-12-21 2010-02-02 플라스틱 로직 리미티드 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법
US6706159B2 (en) * 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
WO2002009478A1 (fr) * 2000-07-24 2002-01-31 Tdk Corporation Dispositif luminescent
US7875975B2 (en) * 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
DE10045192A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
KR20020036916A (ko) * 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
KR100390522B1 (ko) * 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
US20020170897A1 (en) * 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US6870180B2 (en) * 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP2003089259A (ja) * 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) * 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6812509B2 (en) * 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) * 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating
US7011983B2 (en) * 2002-12-20 2006-03-14 General Electric Company Large organic devices and methods of fabricating large organic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005360A1 (de) * 2000-07-07 2002-01-17 Siemens Aktiengesellschaft Verfahren zur herstellung und strukturierung organischer-feldeffekt-transistoren (ofet)
WO2002005361A1 (en) * 2000-07-12 2002-01-17 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
WO2002099908A1 (de) * 2001-06-01 2002-12-12 Siemens Aktiengesellschaft Verfahren zur erzeugung von leitfähigen strukturen mittels drucktechnik sowie daraus hergestellte aktive bauelemente für integrierte schaltungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROGERS J A ET AL: "PRINTING PROCESS SUITABLE FOR REEL-TO-REEL PRODUCTION OF HIGH-PERFORMANCE ORGANIC TRANSISTORS AND CIRCUITS" ADVANCED MATERIALS, VCH VERLAGSGESELLSCHAFT, WEINHEIM, DE, Bd. 11, Nr. 9, 5. Juli 1999 (1999-07-05), Seiten 741-745, XP000851834 ISSN: 0935-9648 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007128998A2 (en) * 2006-04-11 2007-11-15 Nicholas Stone A method of making an electrical device
WO2007129001A1 (en) * 2006-04-11 2007-11-15 Nicholas Stone Conductive polymer electrodes
WO2007128998A3 (en) * 2006-04-11 2008-03-20 Nicholas Stone A method of making an electrical device
US8673681B2 (en) 2006-04-11 2014-03-18 Novalia Ltd. Electrical device fabrication
US8685260B2 (en) 2006-04-11 2014-04-01 Novalia Ltd. Conductive polymer electrodes

Also Published As

Publication number Publication date
WO2004066348A3 (de) 2005-01-20
DE502004003677D1 (de) 2007-06-14
EP1586127B1 (de) 2007-05-02
US20060160266A1 (en) 2006-07-20
EP1586127A2 (de) 2005-10-19

Similar Documents

Publication Publication Date Title
EP1409251B1 (de) Kontinuierlicher siebdruck von organischen leuchtdioden
EP1476313A1 (de) Verfahren und einrichtung zum drucken, wobei vor dem auftrag der farbabstossenden oder farbanziehenden schicht eine benetzungsfördernde substanz aufgetragen wird
DE10229118A1 (de) Verfahren zur kostengünstigen Strukturierung von leitfähigen Polymeren mittels Definition von hydrophilen und hydrophoben Bereichen
EP1395633B1 (de) Verfahren zur erzeugung dünner homogener schichten mit hilfe der siebdrucktechnik
EP2826887A1 (de) Verfahren zum Auftragen einer wässrigen Behandlungslösung auf die Oberfläche eines bewegten Stahlbands
DE3721404C2 (de)
DE4311834C2 (de) Einrichtung zum Beschichten von Bedruckstoffen in Druckmaschinen
EP1586127B1 (de) Organisches elektronikbauteil und verfahren zur herstellung organischer elektronik
DE10154884B4 (de) Vorrichtung zum Transport von flexiblem Flachmaterial, insbesondere Leiterplatten
EP1872417B1 (de) Verfahren und vorrichtung zum herstellen von elektronischen bauteilen
DE102005044306A1 (de) Elektronische Schaltung und Verfahren zur Herstellung einer solchen
WO2004042837A2 (de) Organisches elektronisches bauteil mit hochaufgelöster strukturierung und herstellungsverfahren dazu
DE10329262B3 (de) Verfahren zur Behandlung eines Substrates und ein Halbleiterbauelement
DE102004041497B4 (de) "Organisches Elektronik-Bauteil sowie Verfahren zur Herstellung eines solchen"
EP0802052A1 (de) Vorrichtung zur Rückbefeuchtung einer Bedruckstoffbahn
DE102012018583B4 (de) Verfahren zum Drucken einer funktionalen Schicht für elektronische Bauteile
DE2711488A1 (de) Vorrichtung zum beschichten einer bewegten werkstoffbahn
EP2111652A1 (de) Verfahren zum übertragen von strukturinformationen und vorrichtung hierfür
US20070231461A1 (en) Method and Apparatus for Producing Stuctures From Functional Materials
DE2711228A1 (de) Vorrichtung zum kontinuierlichen beschichten einer bewegten werkstoffbahn
DE3429335C1 (de) Verfahren und Vorrichtung zum Lackieren unebener Platten
EP3090874A1 (de) Verfahren zum falzen eines lackierten, bahn- oder bogenförmigen bedruckstoffes
AT510079A1 (de) Verfahren zur herstellung von mehrschichtigen schaltungen und mehrschichtige schaltung
DE102019119771A1 (de) Verfahren zur Oberflächengestaltung eines Objekts, Applikationsanlage zur Oberflächengestaltung eines Objekts
EP1683583B1 (de) Verfahren und Vorrichtung zur Pulverbeschichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004701943

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004701943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006160266

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542678

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10542678

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004701943

Country of ref document: EP