WO2004076585A1 - 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置 - Google Patents

硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置 Download PDF

Info

Publication number
WO2004076585A1
WO2004076585A1 PCT/JP2004/002199 JP2004002199W WO2004076585A1 WO 2004076585 A1 WO2004076585 A1 WO 2004076585A1 JP 2004002199 W JP2004002199 W JP 2004002199W WO 2004076585 A1 WO2004076585 A1 WO 2004076585A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
shielding
group
led package
component
Prior art date
Application number
PCT/JP2004/002199
Other languages
English (en)
French (fr)
Inventor
Manabu Tsumura
Masahito Ide
Katsuya Ouchi
Masafumi Kuramoto
Tomohide Miki
Original Assignee
Kaneka Corporation
Nichia Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation, Nichia Corporation filed Critical Kaneka Corporation
Priority to JP2005502905A priority Critical patent/JP4694371B2/ja
Priority to KR1020057015625A priority patent/KR101141566B1/ko
Priority to US10/546,905 priority patent/US7785715B2/en
Priority to EP04714432A priority patent/EP1609835B1/en
Priority to CA 2516404 priority patent/CA2516404A1/en
Publication of WO2004076585A1 publication Critical patent/WO2004076585A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/452Block-or graft-polymers containing polysiloxane sequences containing nitrogen-containing sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/485Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/54Nitrogen-containing linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a curable composition, a method of preparing the curable composition, a light-shielding paste, a light-shielding resin obtained by curing a light-shielding paste, a method of forming the light-shielding resin, and a light-emitting diode coated with the light-shielding resin. And a light emitting diode as a semiconductor device. More specifically, the present invention relates to a curable composition having excellent adhesion and high light-shielding properties, and more preferably to a curable composition having low castability and suitable workability.
  • the present invention also relates to a method for efficiently forming a light-shielding resin layer only on the side wall of the LED package opening, and a light-emitting diode in which a light-shielding layer is formed only on the side wall of the LED package opening.
  • the light-emitting diode is composed of a package consisting of an external electrode, an LED chip, an opening with a bottom surface and side walls, and a mold member for efficiently extracting light from the LED chip.
  • External electrodes are formed on the bottom surface of the package by integral molding, and a noble metal film with high light reflectivity is formed for the purpose of extracting light to the outside.
  • the package is generally an organic resin
  • the adhesiveness to the mold member decreases due to the deterioration of the package resin
  • the reflectance decreases due to the coloring of the package resin.
  • a light-shielding paste for protecting the package resin for the purpose of preventing the LED package from being directly irradiated with light and for preventing the reflectance from being reduced due to coloring of the Z or the package resin.
  • condensation-curable silicone when used as a sealing material for joints in buildings, condensation-curable silicone can exhibit good adhesion to adherends even when the joint depth is shallow by adding boric acid esters.
  • Japanese Patent Laid-Open No. 59-1555483 Japanese Patent Laid-Open No. 59-1555483.
  • this system was cured at room temperature, and there was no disclosure of the effects achieved by heat curing or the effects exhibited when applied to an addition reaction type system with a different reaction type.
  • the light-shielding layer can be formed by curing the curable composition. If the castability of the curable composition is high, the light-shielding layer is cast on the bottom of the package at the time of curing to obtain a light-shielding layer having a desired thickness. There was a problem that it could not be done. Further, if the curability of the curable composition is high, the bottom surface is contaminated, and for example, there is a problem that conduction to a lead frame material disposed on the bottom surface cannot be established.
  • a first object of the present invention is to provide a curable composition having excellent adhesion and high light-shielding properties, a curable composition having low fluidity, a method for preparing the curable composition, To provide a light-shielding paste comprising a conductive composition, a cured product, a light-shielding resin obtained by curing the light-shielding paste, a light-shielding paste, and a light-emitting diode in which substantially only the side wall of the LED package is shielded from light by the light-shielding resin. It is.
  • a second object of the present invention is to provide a method for efficiently forming a light-shielding resin layer only on the side wall of an LED package opening, a light-shielding paste suitable for the method, and a light-shielding resin formed by the method.
  • An object of the present invention is to provide an LED package whose side wall is covered with the light-shielding resin, and a light-emitting diode in which a light-shielding layer is formed only on the side wall of the LED package opening by the method.
  • the inventors of the present invention have conducted intensive studies in order to solve a powerful problem.
  • the curable composition having a castability of 2 cm or less after 1 hour at 100 ° C. on a glass substrate inclined at an angle of 80 °; a light-shielding paste composed of the curable composition; , With an opening consisting of a bottom surface and side walls, First, in the LED package, which is integrally molded with a molding resin such that each end of the positive external electrode and the negative external electrode is exposed at a predetermined interval on the bottom of the opening, (1) (2) After the LED package opening is brought into close contact with the light-shielding base applied to the base material, (3) The light-shielding paste is heated by heating with the LED package opening up. No ,. By forming the light-shielding resin layer to be cast only on the side wall of the package, The inventors have found that the above-mentioned problems can be solved, and have reached the present invention.
  • the first of the present invention is:
  • a light-shielding paste (Claim 1) comprising a thermoplastic resin and an inorganic member as essential components
  • a light-shielding paste (Claim 2) comprising a thermosetting resin and an inorganic member as essential components
  • a light-shielding paste (claim 4), wherein the titanium oxide according to claim 3 is rutile, and has an average particle size of 0.1 to 1.0 / im.
  • a curable composition (Claim 5), characterized in that:
  • curable composition (Claim 6) according to claim 5, wherein the component (F) is titanium oxide,
  • the component (D) has at least one functional group selected from the group consisting of an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a butyl group, and a olebamate group in a molecule, and a hydrolyzable case.
  • the curable composition according to any one of claims 5 to 7, wherein the curable composition is a silane coupling agent having a silicon group (claim 8).
  • composition comprising:
  • the component (E) is aluminum ethyl acetate diisopropylate, aluminum acetyl acetate diisopropylate, aluminum tris (ethyl acetate acetate), aluminum bisethyl acetoacetate monoacetate acetonate
  • the curable composition according to any one of claims 5 to 10, wherein the curable composition is at least one selected from the group consisting of aluminum and aluminum tris (acetyl acetonate).
  • the component is selected from the group consisting of trinormal otatadecyl borate, trinormal octyl borate, trinormal butyl borate, triisopropyl borate, trinormal propyl borate, triethyl borate and trimethyl borate;
  • the component (A) has the following general formula (I)
  • R 1 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 1 may be different or the same.
  • the component (A) is triarinoleisocyanurate, and the component (B) is 1, 3, 5,
  • the component (A) is a mixture of triallyl isocyanurate and monoglycidyl diaryl isocyanurate, and the component (B) is 1,3,5,7-tetramethylcyclotetrasiloxane and triarinoleisocyanurate.
  • the castability of the curable composition after 1 hour at 100 ° C. on a glass substrate inclined at an angle of 80 ° is 2 cm or less, wherein the castability is 2 cm or less.
  • Claims 17 to 20 wherein the components (A) to (E) are mixed with the components (F) and (G) using a planetary stirring deaerator.
  • a method for preparing the curable composition according to any one of claims (Claim 21), wherein a mixture of the components (A) to (E) is mixed with a dissolver (F)
  • a method for preparing the curable composition according to any one of claims 17 to 20, wherein the component and the component (G) are mixed (claim 22).
  • a light-shielding paste comprising the curable composition according to any one of claims 5 to 20 (claim 23).
  • a cured product obtained by curing the curable composition according to any one of claims 5 to 20 (claim 24).
  • a light-shielding resin obtained by curing the light-shielding paste according to any one of claims 1 to 4 and 23 (claim 25).
  • An LED package (claim 26), comprising the light-blocking resin according to claim 25 substantially only on the side wall of the LED package opening.
  • the LED package (claim 27) according to claim 26, wherein the LED package is made of resin.
  • a semiconductor device having an LED package formed as described above and a light emitting element mounted on the bottom surface of the LED package, wherein substantially only on the side wall of the LED package, any one of claims 5 to 20.
  • a semiconductor device (Claim 33) wherein the curable composition according to any one of the preceding claims is applied and Z or a cured product according to the claim 24 is formed.
  • An opening consisting of a bottom surface and a side wall is provided, and the molding resin is integrally formed so that the ends of the positive external electrode and the negative external electrode are exposed at predetermined intervals on the bottom surface of the opening.
  • a semiconductor device (claim 34) characterized in that:
  • LED package has an opening consisting of a bottom surface and a side wall, and is formed integrally with molding resin so that each end of the positive external electrode and the negative external electrode is exposed at a predetermined interval on the bottom surface of the opening.
  • a method for forming a layer (Claim 45), wherein 5 Omg of a light-shielding paste is applied to a glass plate in a circular shape having a diameter of 8 mm, and the glass plate is fixed at an oblique angle of 80 degrees, and is heated at 21 ° C Downflow distance when holding for 10 minutes is 5mn!
  • the method for forming a light-shielding resin layer according to any one of claims 36 to 42 (claim 46), wherein
  • A an organic compound containing at least two carbon-carbon double bonds reactive with a SiH group in one molecule;
  • B a case containing at least two SiH groups in one molecule.
  • the component (D) has at least one functional group selected from the group consisting of an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a vinyl group and a olebamate group in a molecule, and a hydrolyzable case.
  • the method for forming a light-shielding resin layer according to claim 50, which is a silane coupling agent having a silicon group (claim 55).
  • the component (E) is aluminum ethyl acetate diisopropylate, aluminum dimethyl acetate diisopropylate, aluminum tris At least one member selected from the group consisting of aluminum acetylacetate), aluminum bisethyl acetate monoacetate acetonate and aluminum tris (acetyl acetonate). 50.
  • the method for forming a light-shielding resin layer according to claim 50 (claim 59),
  • the component (E) is selected from the group consisting of trinormal octadecyl borate, trinormal octyl borate, trinormal butyl borate, triisopropyl borate, trinonoremal propyl oxalate, triethyl borate and trimethyl borate.
  • the component (A) has the following general formula (I)
  • R 1 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 1 may be different or the same.
  • the component ( ⁇ ) is triallyl isocyanurate, and the component ( ⁇ ) is 1, 3, 5,
  • the component ( ⁇ ) is a mixture of triallyl isocyanurate and monodaricidyl diaryl isocyanurate, and the component ( ⁇ ) is 1,3,5,7-tetramethinolecyclotetrasiloxane and triallyl isocyanate.
  • the yellowness (yellow index, YI) 1 of the light-shielding resin formed by the method for forming a light-shielding resin layer according to any one of claims 36 to 42 is 100 and 100.
  • a light-shielding resin (claim 67), wherein a value after a light resistance test by a xenon weather meter is 70 or more;
  • a semiconductor device having an LED package formed as described above and a light emitting element disposed on a bottom surface of the LED package, wherein the LED package is provided substantially only on a side wall of the LED package.
  • a semiconductor device comprising: a light-shielding resin formed and shielded by the method for forming a light-shielding resin layer according to any one of the three items (3). Range of claim 72), and
  • a semiconductor device having an LED package and a light emitting element mounted on the bottom surface of the LED package, a light shielding resin is formed on the bottom surface and side walls of the LED package around the light emitting element to block light.
  • a semiconductor device (claim 76). Detailed Disclosure of the Invention
  • the light-shielding paste referred to in the present invention includes a resin and an inorganic member as essential components, and further includes other additives such as a viscosity modifier, an adhesion-imparting agent, and a solvent as necessary.
  • the light-shielding paste is applied to an adherend to protect the adherend from light.
  • Examples of the light-shielding paste of the present invention include a paste containing a thermoplastic resin and an inorganic member as essential components, and a paste containing a thermosetting resin and an inorganic member as essential components.
  • thermoplastic resins can be used for the light-shielding paste of the present invention.
  • a polymethyl methacrylate resin such as a homopolymer of methyl methacrylate or a random, block, or graft polymer of methyl methacrylate and another monomer (for example, Optrez manufactured by Hitachi Chemical Co., Ltd.), or a homopolymer of butyl acrylate Acrylic resin represented by polybutyl acrylate resin such as random, block, or graft polymer of unified or butyl acrylate with other monomer; bisphenol A, 3, 3, 5-trimethyl Polycarbonate resins such as polycarbonate resins containing monomeric structures such as hexylidene bisphenol (such as APE C manufactured by Teijin Limited); resins obtained by homopolymerization or copolymerization of norpolenene derivatives, butyl monomers, etc.
  • a resin obtained by ring-opening metathesis polymerization of a norbornene derivative or a cycloolefin resin such as a hydrogenated product thereof for example, APEL manufactured by Mitsui Chemicals, ZEONOR, ZEONEX manufactured by Zeon, ARTON manufactured by JSR, etc.
  • ethylene And maleimide copolymers such as olefin-maleimide-based resins (for example, TI-PAS manufactured by Tosoh Corporation); bisphenols such as bisphenol and bis (4- (2-hydroxyethoxy) phenyl) fluorene; Dionoles such as diethylene glycol; phthalic acids such as terephthalanolic acid and bisphthalic acid; and aliphatics
  • Polyester resins such as polyester obtained by polycondensation of carboxylic acids (for example, O-PET manufactured by Kanebo); polyethersulfone resin; polyarylate resin; polybiacetal resin; polyethylene resin; polypropylene resin; polysty
  • Acrylic resin, polyamide resin, and polyester resin are preferred from the viewpoint of adhesion to the LED package side wall.
  • silicone resin, fluorine resin and the like are preferable.
  • the thermoplastic resin may have a crosslinkable group.
  • the molecule may have a carbon-carbon double bond reactive with a SiH group and a Z or SiH group.
  • other crosslinkable groups include an epoxy group, an amino group, a radically polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained crosslinked product is likely to be high, it is preferable that the crosslinked group has at least one crosslinkable group in one molecule on average.
  • the molecular weight of the thermoplastic resin is not particularly limited, but from the viewpoint of applicability, the number average molecular weight is preferably 10,000 or less, and is 5,000 or less. Is more preferable.
  • the molecular weight distribution is also not particularly limited, but is preferably 3 or less, more preferably 2 or less, from the viewpoint that the viscosity of the mixture is reduced and coating properties are easily improved. It is more preferred that:
  • the number average molecular weight can be measured by gel permeation chromatography.
  • thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
  • the blending amount of the thermoplastic resin in the light-shielding paste is not particularly limited, but is preferably 0.1 to 90% by weight based on the total amount of the light-shielding paste of the present invention. From the viewpoint of good coatability, the preferred range of the amount used is 10% by weight of the total amount of the light-shielding paste. / 0 or more, more preferably 40% by weight or more, further preferably 60% by weight. / 0 or more, particularly preferably 80% by weight or more. If the amount is too small, the coatability tends to decrease, and the light-shielding property tends to decrease due to poor coating.
  • the preferred range of use is 90% by weight or less, more preferably 80% by weight or less, and further preferably 60% by weight, based on the total amount of the light-shielding paste. / 0 or less, particularly preferably 50% by weight or less, more preferably 30% by weight. / 0 or less. If the blending amount of the thermoplastic resin is large, the amount of the inorganic member to be added is small, and the light-shielding property tends to be easily reduced. Therefore, in order to achieve both applicability and light-shielding properties, the preferred range of the amount used is 10% to 80% by weight, more preferably 10% to 50% by weight of the total amount of the light-shielding paste. More preferably, the content is 10% by weight or more and 30% by weight or less.
  • the thermoplastic resin may be directly mixed with the inorganic member described below, may be uniformly mixed using a solvent or the like, or may be uniformly dispersed and Z or mixed after removing the solvent. .
  • its average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the particle system may have a distribution, may be monodispersed, or may have a plurality of peak particle sizes.However, from the viewpoint that the viscosity of the light-shielding paste is low and the coating property is easily improved, The coefficient of variation is preferably 10% or less.
  • thermosetting resins are used for the light-shielding paste of the present invention.
  • the thermosetting resin include an epoxy resin, a cyanate ester resin, a phenol resin, a polyimide resin, a urethane resin, a bismaleimide resin, and the like, but are not limited thereto.
  • epoxy resins are preferred from the viewpoint of excellent practical properties such as adhesiveness.
  • epoxy resin examples include nopolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentagen type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, 2,2,1-bis (4 -Glycidyloxycyclohexyl) propane, 3,4-epoxycyclohexylmethyl _ 3,4-epoxycyclohexanecarboxylate, butylcyclohexenedioxide, 2- (3,4-epoxycyclohexyl) 1 5,5-spiro (3,4-epoxycyclohexane) _1,3_dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2_bisglycidyl cyclopropanedicarboxylate Ester, glycidyl isocyanurate V, monoglycerin glycidinol isocyanurate And epoxy resins such as diaryl monoglycidyl
  • the blending amount of the thermosetting resin in the light-shielding paste is not particularly limited, but the preferred amount is 0.1 to 90% by weight based on the total amount of the light-shielding paste of the present invention. From the viewpoint of good applicability, the preferred range of the amount used is 10% by weight or more, more preferably 40% by weight or more, and still more preferably 60% by weight of the total amount of the light-shielding paste. / 0 or more, particularly preferably 80% by weight or more. If the amount is too small, the coatability tends to decrease, and the light-shielding property tends to decrease due to poor coating.
  • the preferred range of the amount used is 90% by weight or less, more preferably 80% by weight or less, even more preferably 60% by weight or less of the total amount of the light-shielding paste. It is particularly preferably at most 50% by weight, more preferably at most 30% by weight. Large amount of thermosetting resin.
  • the preferred range of the amount used is 10% by weight or more and 80% by weight or less, more preferably 10% by weight or more and 50% by weight of the entire light-shielding paste. The content is more preferably 10% by weight or more and 30% by weight or less.
  • the thermosetting resin may be directly mixed with the inorganic member described below, may be mixed uniformly using a solvent, or the like, and then may be uniformly dispersed and Z or mixed except for the solvent. It may be.
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 tm.
  • the particle system may have a distribution, may be monodispersed, or may have a plurality of peak particle sizes.However, from the viewpoint that the viscosity of the light-shielding paste is low and the moldability is easily improved, the particle size Preferably, the coefficient of variation is 10% or less.
  • thermosetting resin used in the light-shielding paste is preferably the thermosetting resin described in the claim 5 from the viewpoint of light resistance and heat resistance.
  • the inorganic member used in the present invention be dispersed in a resin and reflect external light.
  • examples of such inorganic members include oxides such as alumina, titanium oxide, tin oxide, zinc oxide, tin monoxide, calcium oxide, magnesium oxide, and beryllium oxide; boron nitride, silicon nitride, aluminum nitride, and the like.
  • Metal nitrides Metal carbides such as SiC
  • Metal carbonates such as calcium carbonate, carbonated sodium carbonate, sodium carbonate, magnesium carbonate, and barium carbonate
  • Metal hydroxides such as aluminum hydroxide and magnesium hydroxide
  • Aluminum borate Examples include barium titanate, calcium silicate, clay, gypsum, barium sulfate, myriki, diatomaceous earth, clay, inorganic balloons, and fluorescent substances. These may be used alone or in combination of two or more.
  • the inorganic member may be appropriately surface-treated.
  • the surface treatment include an alkylation treatment, a trimethylsilylation treatment, a silicone treatment, and a treatment with a coupling agent.
  • Examples of the force coupling agent in this case include a silane coupling agent.
  • Examples of the silane coupling agent include a functional group reactive with an organic group in the molecule and a water-soluble component.
  • the compound is not particularly limited as long as it has at least one decomposable silicon group.
  • the functional group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a bier group, and a carbamate group from the viewpoint of handleability. From the viewpoints of curability and adhesiveness, an epoxy group, a methacryl group, and an acryl group are particularly preferable.
  • As the hydrolyzable silicon group an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3, '4-epoxycycline hexinole) ethynoletrimethoxysilane, 2- (3, 4-epoxycyclohexyl) Alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane; 3-metharyloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-ataaryloxypropyltrimethoxysilane Methacrylic groups such as, 3-atallyloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, ataryloxymethyltrimethoxysilane, and atariguchi xmethyltriethoxysilane Alkoxysilanes having a drill group can
  • the blending amount of the inorganic member in the light-shielding paste is not particularly limited, but the preferred use amount is 0.1 to 90% by weight based on the total amount of the light-shielding paste of the present invention. From the viewpoint of good coatability, the preferred amount is 80% by weight / 0 or less, more preferably 70% by weight / 0 or less, still more preferably 50% by weight or less of the total amount of the light-shielding paste. It is preferably at most 40% by weight, more preferably at most 30% by weight. If the compounding amount is large, the coatability tends to decrease, and the light-shielding property tends to decrease due to poor coating.
  • the preferred amount is at least 5% by weight, more preferably at least 10% by weight, further preferably at least 30% by weight, particularly preferably at least 30% by weight of the total amount of the light-shielding paste. 4 0 wt 0/0 or more, and more particularly preferably 5 0 wt% or more. Therefore, in order to achieve both applicability and light-shielding properties, the preferred amount is from 10% by weight to 80% by weight, more preferably from 20% by weight to 70% by weight, based on the total amount of the light-shielding paste. Preferably 30 weight. / 0 or more and 60% by weight or less.
  • the shape of the inorganic member can take various shapes such as a spherical shape, a needle shape, and a flake shape in consideration of dispersibility and light shielding properties.
  • the average particle diameter is preferably 1. ⁇ ⁇ or less, and 0.8 ⁇ The following is more preferable, and the value is more preferably 0.4 ⁇ or less.
  • the thickness is preferably at least 0.2 ⁇ , more preferably at least 0.2 m.
  • the average particle size is preferably from 0.1 ⁇ to 1.0 ⁇ . The average particle diameter can be measured based on an electron micrograph.
  • titanium oxide can be suitably used as a light-shielding paste inorganic member from the viewpoints of high whiteness, hiding power, and excellent durability.
  • the crystal form is preferably a rutile type.
  • the average particle diameter is preferably not more than 1.0 ⁇ , more preferably not more than 0.8 ⁇ , and still more preferably not more than 0.4 ⁇ m from the viewpoint of dispersibility in the resin.
  • the hiding power it is preferably at least 0.1 ⁇ , more preferably at least 0.2 / m. Therefore, from the viewpoint of both the dispersibility and the hiding power, the average particle diameter is preferably from 0.1111 to 1.0 m.
  • the average particle size of titanium oxide is measured with an image analyzer (Luettas I I I U) based on electron micrographs. Titanium oxide produced by either the sulfuric acid method or the chlorine method can be suitably used. Further, a resin whose surface is treated with a hydrated oxide such as A1 or Si to improve the affinity with the resin can also be suitably used. For example, Taipeta R-820, R-680, CR-50-2, CR-97, CR-60, CR-60-2, etc. manufactured by Ishihara Sangyo Co., Ltd. can be suitably used.
  • the amount of titanium oxide in the light-shielding paste is not particularly limited, but the preferred usage is 0.1 to 90% by weight based on the total amount of the light-shielding paste of the present invention. From the viewpoint of good coatability, the preferred amount is 80% by weight or less, more preferably 70% by weight or less, still more preferably 50% by weight or less, particularly preferably 40% by weight, based on the total amount of the light-shielding paste. %, More preferably 30% by weight or less. If the amount is too large, the coatability tends to decrease, and the light-shielding property tends to decrease due to poor coating.
  • the preferred amount is 5 weight of the light-shielding paste total weight 0/0 Or more, more preferably 10 weight. / 0 or more, more preferably 3 0 wt% or more, particularly preferably 4 0 wt 0/0 or more, and more particularly preferably 5 0 wt% or more. Therefore, in order to achieve both applicability and light-shielding properties, the preferred amount is 10% by weight of the entire light-shielding paste. / 0 to 80% by weight, more preferably 20% to 70% by weight. / 0 or less, more preferably 30% by weight or more and 60% by weight or less.
  • the inorganic member when alumina, silica, boron nitride, aluminum nitride, or the like is used as the inorganic member, it has high weather resistance and can maintain high reflectance.
  • the fluorescent substance as an inorganic member can convert blue light from the LED chip into white light in addition to a shielding effect, and can further improve the characteristics of a light emitting diode. Further, by including a diffusing agent in the light-shielding paste in addition to the fluorescent substance, the directivity can be further increased. As a specific diffusing agent, inorganic barium titanate, titanium oxide, aluminum oxide, silicon oxide and the like, and organic guanamine resin and the like are suitably used.
  • the fluorescent substance is for converting visible light or ultraviolet light emitted from the nitride-based compound semiconductor to another emission wavelength. Therefore, various types are used depending on the emission wavelength emitted from the emission layer used in the LED chip and the desired emission wavelength emitted from the emission diode. In particular, white light can be emitted when the light emitted from the LED chip and the light from the fluorescent substance that emits light when excited by the light from the LED chip have a complementary color relationship.
  • Such fluorescent materials include yttrium-aluminum-garnet-based fluorescent materials activated with cerium, perylene-based derivatives, zinc sulfide force doped with copper and aluminum, and magnesium oxide activated with manganese. ⁇ Various things such as titanium. These fluorescent substances may be used alone or in combination of two or more.
  • cerium (R e 3 R e) 5 O i 2 : C e, R e, Y, G d, Lu, S c, L a at least one selected from La and R e, is at least one selected from A 1, In, B, T 1 is heat, light and light because of the garnet structure.
  • the emission peak is around 530 nm, etc. It can have a broad light emission spectrum.
  • the emission wavelength shifts to the shorter wavelength side by substituting a part of the composition A 1 with G a
  • the emission wavelength shifts to the longer wavelength side by substituting a part of the composition Y with G d.
  • various emission wavelengths can be continuously obtained, and therefore, it is particularly preferable as a fluorescent substance.
  • part of yttrium can be replaced by Lu, Sc, or La
  • part of aluminum can be replaced by In, B , T1.
  • the absorption wavelength can be adjusted by adding a small amount of Tb or Cr in addition to cellium.
  • the preferred amount of the fluorescent substance used is 5% by weight or more, more preferably 10% by weight or more, and even more preferably 30% by weight or more of the total amount of the light-shielding paste. And particularly preferably at least 40% by weight, more preferably at least 50% by weight.
  • the upper limit of the amount used is preferably not more than 80% by weight, more preferably not more than 60% by weight of the total amount of the light-shielding paste.
  • the curable composition comprises (A) an organic compound containing at least two carbon-carbon double bonds reactive with a SiH group in one molecule, and (B) at least two S-carbon double bonds in one molecule.
  • a silicon compound containing an H group (C) a hydrosilylation catalyst, (D) a silane coupling agent and / or an epoxy group-containing compound, (E) a silanol condensation catalyst, and (F) an inorganic component as essential components. Including.
  • the component (A) is not particularly limited as long as it is an organic compound containing at least two carbon-carbon double bonds reactive with a SiH group in one molecule.
  • the organic compound does not contain siloxane units (Si-O-Si) such as polysiloxane-organic block copolymer or polysiloxane-organograft copolymer, and its constituent elements are C, H, N, 0, S, Preferably, it contains only halogen. In the case of those containing siloxane units, there are problems of gas permeability and repelling.
  • the bonding position of the carbon-carbon double bond reactive with the SiH group is not particularly limited, and may be anywhere in the molecule.
  • the organic compound (A) can be classified into an organic polymer compound and an organic monomer compound.
  • organic polymer compound examples include polyether, polyester, polyarylate, polycarbonate, saturated hydrocarbon, unsaturated hydrocarbon, polyacrylate, polyamide, and phenol-formaldehyde. (Phenol resin-based), polyimide-based compounds and the like can be used.
  • organic monomer-based compound examples include aromatic hydrocarbons such as phenol, bisphenol, benzene, and naphthalene; aliphatic hydrocarbons such as linear and alicyclic; heterocyclic compounds; And mixtures thereof.
  • the carbon-carbon double bond reactive with the SiH group in the component (A) is not particularly limited, but may be represented by the following general formula (II)
  • R 2 represents a hydrogen atom or a methyl group.
  • R 2 represents a hydrogen atom or a methyl group.
  • the carbon-carbon double bond reactive with the SiH group in the component (A) is represented by the following general formula (III):
  • R 3 represents a hydrogen atom or a methyl group, and two R 3 s may be the same or different.
  • the alicyclic group having a partial structure represented by the formula It is suitable in that it has high properties. Also, from the availability of raw materials, the following formula II
  • An alicyclic group having a partial structure represented by in the ring is preferable.
  • the carbon-carbon double bond reactive with the SiH group may be directly bonded to the skeleton portion of the component (A), or may be covalently bonded via a divalent or higher valent substituent.
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms, but those containing only C, H, N, 0, S, and halogen as constituent elements are preferable. . Examples of these substituents include
  • n represents a number from 0 to 4.
  • two or more of these divalent or higher substituents may be connected by a covalent bond to form one divalent or higher substituent.
  • Examples of groups covalently bonded to the skeleton as described above include a vinyl group, an aryl group, a methallyl group, an acryl group, a methacryl group, a 2-hydroxy-13- (aryloxy) propyl group, and a 2-arylphenyl group. , 3-arylphenyl, 4.arylphenyl, 2- (aryloxy) phenyl, 3- (aryloxy) phenyl, 4- (aryloxy) phenyl, 2- (aryloxy) ethyl, 2,2-bi 2- (aryloxymethyl) butyl group, 3-aryloxy-1,2,2-bis (aryloxymethyl) propyl group,
  • n is a number that satisfies 5> n> 2.
  • component (A) includes diaryl phthalate, triarinole trimellitate, diethylene glycol bisaryl carbonate, trimethylolpropane diaryl ether, pentaerythritol triallyl ether, 1,1,2,2 —Tetraaryloxetane, diarylidenepentaerythrit, triallyl cyanurate, triaryl isocyanurate, 1,2,4-tributylcyclohexane, dibutylbenzenes (purity 50-100 %, Preferably 80 to 100% pure), divinylbiphenyl, 1,3-diisopropenylbenzene, 1,4-diisopropeninolebenzene, and oligomers thereof, 1,2-polybutadiene ( 1, 2 ratio: 10 to 100%, preferably 1, 2 ratio: 50 to: L: 0%), novolak phenol Les of ⁇ linolenyl ether Nor
  • a low molecular weight compound which is difficult to be divided into a skeleton portion and an alkenyl group as described above, can also be used.
  • these low molecular weight compounds include aliphatic chain polyene compounds such as butadiene, isoprene, octadiene, and decadiene; cyclopentadiene; Examples thereof include aliphatic cyclic polyene compounds such as norenagen and substituted aliphatic cyclic olefin compounds such as bulcyclopentene and bulcyclohexene.
  • a carbon-carbon double bond having a reactivity with the SiH group is added in an amount of 0.001 mo 1 or more per 1 g of the component (A).
  • the above-mentioned component is preferable, the one containing at least 0.05 mol per (g) of component (A) is more preferable, and the one containing at least 0.008 mol per lg of component (A) is more preferable.
  • one molecule contains one or more vinyl groups, and that one molecule contains two or more vinyl groups. Is more preferred. Also, from the viewpoint that storage stability is likely to be good, it is preferable that one molecule contains 6 or less vinyl groups, and it is more preferable that one molecule contains 4 or less vinyl groups. .
  • the component (A) those having a molecular weight of less than 900 are preferred from the viewpoint of high mechanical heat resistance and low formability, handleability, and applicability of the raw material liquid with low stringiness. Preferably, it is less than 700, more preferably less than 500. From the viewpoint of low volatility and good handling, It is preferably at least 100, more preferably at least 150.
  • the molecular weight can be measured, for example, by a gas chromatograph mass spectrometer or a liquid-mouth Matodaraf mass spectrometer.
  • Component (A) has a viscosity of 23 to achieve uniform mixing with other components and good workability.
  • C those having a size of less than 1000 poise are preferable, those having a size of less than 300 poise are more preferable, and those having a size of less than 300 poise are more preferable.
  • the lower limit is preferably at least 0.05 void, more preferably at least 0.1 void.
  • the viscosity can be measured with an E-type viscometer.
  • the component (A) preferably has a low content of a compound having a phenolic hydroxyl group and Z or a derivative of a phenolic hydroxyl group from the viewpoint of suppressing coloring, particularly yellowing, and the phenolic hydroxyl group and Z Alternatively, a compound containing no compound having a phenolic hydroxyl group derivative is preferable.
  • the phenolic hydroxyl group in the present invention refers to a hydroxyl group directly bonded to an aromatic hydrocarbon nucleus exemplified by a benzene ring, a naphthalene ring, an anthracene ring and the like, and the derivative of the phenolic hydroxyl group refers to the phenolic hydroxyl group described above.
  • the components (A) include vinylcyclohexene, dicyclopentadiene, triarylenoisocyanurate, 2,2-bis (4-hydroxycycline).
  • Dihexyl ether of propane, diaryl ether of propane, 1,2,4-triviercyclohexane is preferred, triarinoleic acid cyanurate, diaryl ether of 2,2-bis (4-hydroxycyclohexynole) propane, 1,2,4- Triviercyclohexane is particularly preferred.
  • butylcyclohexene particularly preferred are butylcyclohexene, dibutylbenzene, 1,2,4-tributylcyclohexane and triallyl isocyanurate.
  • the component (A) may have another reactive group.
  • the reactive group in this case include an epoxy group, an amino group, a radically polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • the resulting curable composition tends to have high adhesiveness.
  • the strength of the obtained cured product tends to increase.
  • epoxy groups are preferred from the viewpoint that the adhesiveness can be higher. Further, from the viewpoint that the heat resistance of the obtained cured product is likely to be high, it is preferable that the number of reactive groups is one or more in one molecule on average.
  • R 1 represents a monovalent organic group having 1 to 50 carbon atoms, and each R 1 may be different or the same.
  • R 1 in the above general formula (I) is preferably a monovalent organic group having 1 to 20 carbon atoms, from the viewpoint that the heat resistance of the obtained cured product may be higher. It is more preferably a monovalent organic group having 1 to 10 carbon atoms, and further preferably a monovalent organic group having 1 to 4 carbon atoms.
  • R 1 are preferably a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a benzyl group, a phenethyl group, a vinyl group, a aryl group, a glycidyl group,
  • At least one of the three R 1 's contains at least one epoxy group from the viewpoint that the obtained cured product can have good adhesion to various materials. It is preferably a monovalent organic group having 1 to 50 carbon atoms, Is more preferably a monovalent organic group having 1 to 50 carbon atoms and containing at least one epoxy group represented by Examples of these preferred R 1 include a glycidyl group,
  • n is a number from 2 to 18 And the like.
  • R 1 in the above general formula (I) from the viewpoint that the obtained cured product can have good chemical thermal stability, at least one of them contains two or less oxygen atoms and It is preferably a monovalent organic group having 1 to 50 carbon atoms containing only C, H, N, and O as an element, and more preferably a monovalent hydrocarbon group having 1 to 50 carbon atoms.
  • R 1 examples include a methyl group, an ethyl group, a propyl group, a butyl group, a phenyl group, a benzyl group, a phenethyl group, a butyl group, a phenyl group, a glycidyl group, (Where n is a number from 4 to 19) ° ⁇ 2 (where ⁇ is a number from 2 to 18)
  • At least one of the three R 1 is considered from the viewpoint of improving the reactivity.
  • R 4 represents a hydrogen atom or a methyl group. It is more preferably ⁇ 50 monovalent organic group containing at least one group represented by the following formula:
  • At least two of the three R 1 are represented by the following general formula (V)
  • R 5 in the above general formula (V) is a direct bond or a divalent organic group having 1 to 48 carbon atoms.
  • the direct bond or It is preferably a divalent organic group having 1 to 20 carbon atoms, more preferably a direct bond or a divalent organic group having 1 to 10 carbon atoms, and a direct bond or 1 carbon atom. More preferably, it is a divalent organic group of from 4 to 4. Examples of these have preferably R 5, CH (where n is a number from 0 to 17:
  • n is a number from 0 to 16.
  • R 5 in the above general formula (V) contains a direct bond or contains two or less oxygen atoms, and contains C, It is preferably a divalent organic group having 1 to 48 carbon atoms containing only H and O, and more preferably a direct bond or a divalent hydrocarbon group having 1 to 48 carbon atoms. Examples of these preferred R 5, CH 2 ⁇ ⁇ -(where n is a number from 1 to 17) 0
  • n is a number from 1 to 16
  • R 6 in the above general formula (V) is a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint of good reactivity.
  • the organic compound represented by the general formula (I) as described above at least two carbon-carbon double bonds reactive with the SiH group should be contained in one molecule. Is necessary. From the viewpoint that heat resistance can be further improved, an organic compound containing three or more carbon-carbon double bonds reactive with a SiH group in one molecule is more preferable.
  • organic compound represented by the general formula (I) as described above examples include triaryl isocyanurate,
  • Triaryl isocyanurate is preferred for the purpose of reducing the viscosity of the resulting curable composition.
  • the component (A) is preferably diaryl monoglycidyl isocyanurate.
  • a mixture of triallyl isocyanurate and diaryl monoglycidyl isocyanurate is preferable as the component (A). Since the mixture has an isocyanuric ring skeleton, it is also effective from the viewpoint of heat resistance.
  • the component (A) can be used alone or as a mixture of two or more. Next, the component (B) will be described.
  • the component (B) of the present invention is a compound containing at least two SiH groups in one molecule.
  • the component (B) is not particularly limited as long as it is a compound containing at least two SiH groups in one molecule, and is, for example, a compound described in International Publication WO 96/1 519 Those having at least two SiH groups therein can be used. Among these, from the viewpoint of availability, a chain, Z or cyclic organopolysiloxane having at least two SiH groups in one molecule is preferable. Specifically, for example,
  • R 7 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 2 to 10).
  • a ring having at least two SiH groups in one molecule Organopolysiloxanes are more preferred.
  • the substituent R 7 in the compound represented by the general formula (VI) is preferably an organic group having 1 to 6 carbon atoms composed of C, H, and O, and a hydrocarbon group having 1 to 6 carbon atoms. And more preferably a methyl group.
  • the compound represented by the general formula (VI) is preferably 1,3,5'7-tetramethylcyclotetrasiloxane from the viewpoint of availability.
  • the molecular weight of the component (B) is not particularly limited, and any one can be suitably used. However, a low molecular weight one is preferably used from the viewpoint of further developing the fluidity of the curable composition. In this case, the lower limit of the molecular weight is preferably 50, and the upper limit of the molecular weight is preferably 100,000, more preferably 1,000, and even more preferably 700.
  • the component (B) can be used alone or as a mixture of two or more.
  • the component (B) is An organic compound (a) containing at least one carbon-carbon double bond reactive with a SiH group in one molecule; a chain having at least two SiH groups in a molecule; It is preferably a compound that can be obtained by hydrosilylation reaction of a cyclic polyorganosiloxane (] 3).
  • the component () the reactivity with the SiH group, which is the component (A) described above,
  • the same organic compound having at least two carbon-carbon double bonds in one molecule may be used.
  • the ( ⁇ ⁇ ) component is used, the crosslinked density of the obtained cured product increases, and the cured product tends to have high mechanical strength.
  • an organic compound ( ⁇ 2) containing one carbon-carbon double bond reactive with a Si i group in one molecule can also be used.
  • the obtained cured product tends to have low elasticity.
  • the component (a2) is not particularly limited as long as it is an organic compound containing one carbon-carbon double bond reactive with a SiH group in one molecule.
  • the compound is not a compound containing siloxane units (S i -O-S i), such as polysiloxane-organic block copolymer or polysiloxane-organic graft copolymer.
  • the bonding position of the carbon-carbon double bond reactive with the SiH group of the ( ⁇ 2) component is not particularly limited, and may be anywhere in the molecule.
  • Compounds of (a 2) component can be classified into polymer compounds and monomer compounds.
  • the polymer-based compound include polysiloxane-based, polyether-based, polyester-based, polyarylate-based, polycarbonate-based, saturated hydrocarbon-based, unsaturated hydrocarbon-based, polyacrylate-based, polyamide-based, and phenol-based compounds.
  • Formaldehyde-based (phenolic resin-based) and polyimide-based compounds can be used.
  • the monomeric compound include aromatic hydrocarbons such as phenol, bisphenol, benzene and naphthalene; aliphatic hydrocarbons such as linear and alicyclic; heterocyclic compounds; Examples thereof include silicon-based compounds and mixtures thereof.
  • the carbon-carbon double bond reactive with the SiH group in the component ( ⁇ 2) is not particularly limited, but may be represented by the following general formula (II): (II)
  • R 2 represents a hydrogen atom or a methyl group. It is more suitable. Also, from the availability of raw materials,
  • the carbon-carbon double bond reactive with the SiH group in the component (a2) is represented by the following general formula (III)
  • R 3 represents a hydrogen atom or a methyl group, and two R 3 may be the same or different.
  • An alicyclic group having a partial structure represented by It is suitable in that it has high properties. Also, from the availability of raw materials, the following formula
  • An alicyclic group having a partial structure represented by in the ring is preferable.
  • the carbon-carbon double bond reactive with the SiH group may be directly bonded to the ( ⁇ 2) component skeleton, or may be covalently bonded via a divalent or higher valent substituent. .
  • the divalent or higher valent substituent is not particularly limited as long as it is a substituent having 0 to 10 carbon atoms.
  • C is a constituent element.
  • H, N, 0, S, and those containing only halogen are preferred. Examples of these substituents include 4 days
  • Examples of the group covalently bonded to the skeleton as described above include a butyl group, an aryl group, a methallyl group, an acryl group, a methacryl group, a 2-hydroxy-3- (aryloxy) propyl group, a 2-arylphenyl group, and a 3-arylphenyl Group, 4-arylphenyl, 2- (aryloxy) phenyl, 3- (aryloxy) phenyl, 4- (aryloxy) phenyl, 2- (aryloxy) ethyl, 2,2-bis (aryloxy) Methyl) butyl group, 3-aryloxy-1,2,2-bis (aryloxymethyl) propyl group,
  • the ( ⁇ 2) component examples include propene, 1-pentene, and 1-pentene.
  • Cycloaliphatic hydrocarbon-based compounds such as norbonorenylene, ethylidenehexane, hexinolenic hexane, camphene, propylene, ⁇ -pinene, and 0-pinene
  • styrene a-methylstyrene, indene,
  • Aliphatic ethers such as 4-butyl-1,3-dioxolan-12-one; 1,2-dimethoxy-14-arylbenzene, o-arylpheno And substituted isocyanurates such as monoallyldibenzylisocyanurate and monoaryldiglycidylisocyanurate; and silicon compounds such as biertrimethoxysilane, biertrimethoxysilane and biertriphenylsilane.
  • polyether resins such as one-terminal arylated polyethylene oxide and one-terminal arylated polypropylene oxide; hydrocarbon-based resins such as one-terminal arylated polyisobutylene; one-ended arylated polybutyl acrylate; Examples thereof include polymers having a vinyl group at one end such as acryl-based resins such as terminal methylated polymethyl methacrylate, and oligomers.
  • the structure may be linear or branched, and the molecular weight is not particularly limited, and various structures can be used.
  • the molecular weight distribution is not particularly limited, the molecular weight distribution is preferably 3 or less, more preferably 2 or less, and 1.5 or less, from the viewpoint that the viscosity of the mixture is low and moldability is easily improved. It is even more preferable that:
  • the glass transition temperature is 1 The temperature is preferably at most 100 ° C, more preferably at most 50 ° C, even more preferably at most 0 ° C.
  • Preferred resin Examples thereof include polybutyl acrylate resin.
  • the glass transition temperature is preferably at least 10 ° C, more preferably at least 120 ° C, and The temperature is more preferably at least C, and most preferably at least 170 ° C.
  • the glass transition temperature can be determined as a temperature at which ta ⁇ ⁇ shows a maximum in dynamic viscoelasticity measurement.
  • the component (a2) is preferably a hydrocarbon compound from the viewpoint that the heat resistance of the obtained cured product is increased.
  • the lower limit of the preferred number of carbon atoms is 7, and the upper limit of the preferred number of carbon atoms is 10.
  • the component (a2) may have another reactive group.
  • the reactive group in this case include an epoxy group, an amino group, a radically polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group.
  • the resulting curable composition tends to have high adhesiveness, and the resulting cured product tends to have high strength.
  • epoxy groups are preferred from the viewpoint that the adhesiveness can be higher. Further, from the viewpoint that the heat resistance of the obtained cured product is likely to be increased, it is preferable that the reactive group has one or more reactive groups on average in one molecule.
  • ⁇ 2 component a single component may be used, or a plurality of components may be used in combination.
  • the ⁇ ) component is a linear and / or cyclic polyorganosiloxane having at least two Si i groups in one molecule.
  • R 7 represents an organic group having 1 to 6 carbon atoms, and n represents a number of 3 to 10.
  • the substituent R 7 in the compound represented by the general formula (VI) is preferably an organic group having 1 to 6 carbon atoms composed of C, H, and ⁇ , and a hydrocarbon group having 1 to 6 carbon atoms. And more preferably a methyl group.
  • 1,3,5,7-tetramethylcyclotetrasiloxane is preferred from the viewpoint of availability.
  • a mixture of a plurality of compounds including the component ( ⁇ ) of the present invention may be obtained by the hydrosilylation reaction of the component ( ⁇ ) and the component W.
  • the curable composition of the present invention can be prepared as it is.
  • the mixing ratio of the ( ⁇ ) component and the ( ⁇ ) component is not particularly limited, but the resulting hydrosilyl of the ( ⁇ ) component and the ( ⁇ ) component is obtained.
  • the total number (X) of carbon-carbon double bonds that are reactive with the SiH group in the mixed component (i) and the S in the mixed (/ 3) component The ratio of iH groups to the total number (Y) is preferably YZX ⁇ 2, and more preferably ⁇ 3. Further, from the viewpoint that the compatibility of the component ( ⁇ ) with the component ( ⁇ ) is easily improved, it is preferable that the ratio is 1 ⁇ ⁇ ⁇ / ⁇ , and it is more preferable that 5 ⁇ .
  • a suitable catalyst may be used.
  • the catalyst for example, the following hydrosilylation catalyst can be used.
  • examples of the catalyst other than platinum compounds RhC l (PPh) R h C 1 3, R h A 1 2 0 3s RuC l 3, I r C l 3, F e C l 3, A 1 C 1 3, P d C 1 2 ⁇ 2H 2 ⁇ , N i C 1 2, T i C 1 4 , and the like.
  • chloroplatinic acid platinum-one-year-old olefin complex, platinum-vinylsiloxane complex and the like are preferable from the viewpoint of catalytic activity.
  • These catalysts may be used alone or in combination of two or more.
  • the addition amount of the catalyst is not particularly limited. However, in order to have sufficient curability and to keep the cost of the curable composition relatively low, the lower limit of the preferable addition amount is the SiH of the component [] 3).
  • 1 0 8 mol per group 1 mol more preferably from 1 0 _ 6 mol, 1 0 1 mole relative to S i Eta group 1 mole of the upper limit of the addition amount has preferably the (beta) component , more preferable properly is 1 0 2 mol.
  • co-catalyst can be used in combination with the above catalyst.
  • co-catalyst include phosphorus compounds such as triphenylphenylphosphine; 1,2-diester compounds such as dimethyl maleate; acetylene alcohol compounds such as 2-hydroxy-12-methyl-11-butyne; And sulfur-based compounds such as sulfur; amine-based compounds such as triethylamine.
  • the addition amount of the co-catalyst is not particularly limited, towards hydrosilylation catalyst 1 mole, the lower limit of the preferable amount is 1 0 2 mol, more preferably from 1 0 to 1 mole, of good preferable amount the upper limit is 1 0 2 mol, more preferably 1 0 mol.
  • the ( ⁇ ) component, the (0) component, and the catalyst may be mixed by various methods, and a mixture of the ( ⁇ ) component with the catalyst and a mixture of the ( ⁇ ) component with Is preferred. (It is difficult to control the reaction if the catalyst is mixed with the mixture of the Q component and the w component. If the method of mixing the ( ⁇ ) component and the catalyst is mixed with the ( ⁇ component, Presence (] 3) May be degraded due to reactivity with water mixed with components.
  • the reaction temperature can be variously set.
  • the lower limit of the preferable reaction temperature is 30 ° C, more preferably 50 ° C
  • the upper limit of the preferable reaction temperature is 200 ° C, more preferably 15 ° C. 0 ° C. If the reaction temperature is low, the reaction time for a sufficient reaction is prolonged.
  • the reaction may be carried out at a constant temperature. The temperature may be changed in multiple stages or continuously as necessary.
  • the reaction time and the pressure during the reaction can be variously set as required.
  • a solvent may be used during the hydrosilylation reaction.
  • the solvent that can be used is not particularly limited as long as it does not inhibit the hydrosilylation reaction. Specific examples include hydrocarbon solvents such as benzene, toluene, hexane, and heptane; tetrahydrofuran, 1,4 1-dioxane, 1,3-dioxolan, Ether solvents; ketone solvents such as acetone and methyl ethyl ketone; and halogen solvents such as chloroform, methylene chloride and 12-dichloroethane can be suitably used.
  • the solvent may be used alone or as a mixed solvent of two or more.
  • toluene tetrahydrofuran, 1,3-dioxolan, and chloroform are preferred.
  • the amount of the solvent used can also be set as appropriate.
  • various additives may be used for the purpose of controlling the reactivity.
  • the solvent and the Z or unreacted component (c) and the component Z or the component (J3) can also be removed.
  • the component (B) obtained does not have a volatile component, so that in the case of curing with the component (A), the problem of voids and cracks due to volatilization of the volatile components is less likely to occur.
  • the removal method include, in addition to devolatilization under reduced pressure, treatment with activated carbon, aluminum silicate, silica gel, and the like.
  • the treatment is preferable to perform the treatment at a low temperature. In this case, the preferable upper limit of the temperature is 100 ° C, and more preferably 60 ° C. When treated at a high temperature, deterioration such as thickening tends to occur.
  • component (II) which is a reaction product of component (a) and component ( ⁇ ) as described above, include a reaction product of divinylbenzene and 1,3,5,7-tetramethylcyclotetrasiloxane, bisphenol Reaction product of diaryl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, reaction product of vinylinolecyclohexene and 1,3,5,7-tetramethylcyclotetrasiloxane, dicyclopentene and 1,3, 5,7-Tetramethylcyclotetrasiloxane reactant, triallyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane reactant, diarylmonoglycidyl isocyanurate, 1,3, Reaction product of 5,7-tetramethylcyclotetrasiloxane, reaction product of arylglycidyl ether and 1,3,5,7-tetramethylcyclotetrasiloxane, ⁇ Methyl
  • a reaction product of divinylbenzene and 1,3,5,7-tetramethylcyclotetrasiloxane, and triaryl isocyanurate and 1,3 The reactant of 5,5,7-tetramethinecrotetrasiloxane is preferred.
  • a reaction product of diaryl monoglycidyl isocyanurate and 1,3,5,7-tetramethylcyclotetrasiloxane, and monoallyl diglycidyl isocyanurate and 1,3, Preferred are reactants of 5,7-tetramethylcyclotetrasiloxane.
  • the hydrosilylation catalyst is not particularly limited as long as it has a catalytic activity for the hydrosilylation reaction.
  • examples of the catalyst other than platinum compounds RhC l (P Ph) 3 , RhC l 3, RhA l 2 ⁇ 3, RuC l 3, I r C l 3, F e C l 3, A 1 C 1 3, P d C 1 2 • 2H 2 0, N i C 1 2, T i C 1 4 , and the like.
  • chloroplatinic acid platinum one-year-old complex
  • platinum Monobutylsiloxane complexes are preferred. These catalysts may be used alone or in combination of two or more.
  • the addition amount of the catalyst is not particularly limited. However, in order to have sufficient curability and keep the cost of the curable composition relatively low, the lower limit of the preferable addition amount is as follows. 1 0 8 mol per mol, more preferably from 1 0 6 mol, the upper limit of the addition amount has preferably the (B) 1 0 1 mole relative to S i H group 1 mole of component, and more the preferred municipal district is a 1 0 _ 2 mol.
  • the hydrosilyllic catalyst is not necessarily required to be added when the remaining amount used during the synthesis of the component (B) shows sufficient curability, but it is necessary to adjust the curability as described above. It can be newly added in the range.
  • co-catalyst can be used in combination with the above catalyst.
  • co-catalyst include phosphorus compounds such as triphenylphenylphosphine; 1,2-diester compounds such as dimethyl maleate; acetylene alcohol compounds such as 2-hydroxy-2-methyl-1-butyne; sulfur alone; Amine compounds such as triethylamine; and the like.
  • the addition amount of the co-catalyst is not particularly limited, towards hydrosilylation catalyst 1 mole, the lower limit of the preferable amount is 1 0 _ 2 moles, more preferably from 1 0 to 1 mole, of good preferable amount the upper limit is 1 0 2 mol, more preferably 1 0 mol.
  • a curing retarder can be used for the purpose of improving the storage stability of the composition of the present invention or for adjusting the reactivity of the hydrosilylation reaction in the production process.
  • the curing retarder include compounds containing an aliphatic unsaturated bond, organophosphorus compounds, organophosphorus compounds, nitrogen-containing compounds, tin compounds, organic peroxides, and the like. I don't care.
  • Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols, benzene compounds, maleic esters, and the like.
  • Examples of the organic phosphorus compound include triorganophosphines, diorganophosphines, organophosphines, and triorganophosphites.
  • Examples of the organic thio compound include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like. Including nitrogen Examples of the organic compound include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • Examples of the tin compound include stannous halide dihydrate, stannous carboxylate, and the like.
  • examples of the organic peroxide include di-tert-butyl peroxide, dicumyl peroxide, benzoyl peroxide, t-butyl perbenzoate, and the like.
  • curing retarders from the viewpoint of good delay activity and availability of raw materials, benzothiazonole, thiazonole, dimethinoremalate, 3-hydroxy-3-methyl-1-butyne, 1-ethyl-1-1- Silk mouth hexanol is preferred.
  • the addition amount of the curing retarder can be variously set, but the lower limit of the preferable addition amount per 1 mol of the hydrosilylation catalyst used is 10 to 1 mol, more preferably 1 mol, and the upper limit of the preferable addition amount is 10 3 Mole, more preferably 50 mole.
  • the component (D) of the present invention is indispensable as a component that gives the curable composition an adhesive property with a package resin when combined with the component (E) of the present invention.
  • the silane coupling agent is not particularly limited as long as it has at least one functional group reactive with an organic group and at least one hydrolyzable silicon group in the molecule.
  • the functional group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a butyl group, and a carbamate group from the viewpoint of handleability. .
  • an epoxy group, a methacryl group, and an acryl group are more preferable, and an epoxy group is particularly preferable.
  • silane cup Ving agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4 —Epoxy Alkoxysilanes having an epoxy functional group such as chlorohexyl) ethyltriethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3- Examples thereof include alkoxysilanes having a methacrylic group or an acrylyl group such as atalyloxypropyltrie
  • the addition amount fl of the silane coupling agent can be variously set, but the preferable lower limit of the addition amount is 0.1 part by weight, more preferably 100 parts by weight of [(A) component + (B) component]. Is 0.5 parts by weight, and the preferable upper limit of the addition amount is 50 parts by weight, more preferably 25 parts by weight. If the amount is less than 0.1 part by weight, the effect of improving the adhesiveness tends to be insufficient, and if the amount is more than 50 parts by weight, the physical properties of the cured product tend to deteriorate.
  • Epoxy resins include, for example, nopolak phenol type epoxy resin, bipheninole type epoxy resin, dicyclopentagen type epoxy resin, bisphenol F diglycidinoleatenore, bisphenol monoleate A diglycidinoleatenole, 2, 2'-bis (4-glycidyl hexinole hexinole) propane, 3,4-epoxy hexine hexinolemethyl-3,4-epoxy hexine hexane carboxylate, vinyl / resin hexene oxide, 2— (3,4-epoxycyclohexyl) 1,5,5-spiro (3,4-epoxycyclohexane) 1,1,3-dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2 —Cyclopropanedicarboxylic acid bis glycidyl ester,
  • the amount of the epoxy group-containing compound to be added can be variously set, but [Component (A) + ( B) Component] 100 parts by weight, the lower limit of the preferable addition amount is 0.1 part by weight, more preferably 0.5 part by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably Is 25 parts by weight. If the amount is less than 0.1 part by weight, the effect of improving the adhesiveness tends to be insufficient, and if the amount is more than 50 parts by weight, the physical properties of the cured product tend to deteriorate.
  • the silane coupling agent and the epoxy group-containing compound may be used alone or in combination of two or more.
  • the component (E) of the present invention is essential as a component that imparts adhesiveness to the curable composition when combined with the component (D) of the present invention.
  • the silanol condensation catalyst is not particularly limited, but preferably includes an organoaluminum compound, a borate ester, a titanium compound, and the like. More preferred are organic aluminum compounds and borate esters. Further, boric acid esters are preferred from the viewpoint of low coloring properties during curing and at high temperatures.
  • the amount used when a silanol condensation catalyst is used can be variously set, but the lower limit of the preferable addition amount is 0.05 parts by weight, more preferably 100 parts by weight of [(A) component + (B) component]. Is 0.1 part by weight, and a preferable upper limit of the addition amount is 50 parts by weight, more preferably 30 parts by weight. If the amount is less than 0.05 part by weight, the effect of improving the adhesion tends to be insufficient, and if the amount is more than 50 parts by weight, the properties of the cured product may be adversely affected.
  • the organoaluminum compound used as a silanol condensation catalyst in the present invention can improve and / or stabilize adhesiveness.
  • organoaluminum compound used in the present invention examples include aluminum alcohol compounds such as trimethoxyaluminum, triethoxyaluminum, triisopropoxyaluminum, and trinormal propoxyaluminum; aluminum naphthenate, aluminum stearate, and octylic acid.
  • Aluminum organic acid salts such as aluminum, aluminum benzoate, etc .; aluminum urea ethyl acetate diasopropylate, aluminum methacrylate acetate acetate diisobutyrate, aluminum dimethyl acetate (ethyl acetate acetate) ), Aluminum Biscet Examples include aluminum dimethyl chelate compounds such as acetoacetate monoacetyl acetonate and aluminum tris (acetyl acetonate). From the viewpoints of reactivity and adhesion to a substrate and adhesion, an aluminum chelate compound and an aluminum alcoholate compound are preferred, and an aluminum chelate compound is more preferred. Further, aluminum tris (ethyl acetate) is preferred in view of compatibility with the hydrosilylation curing reaction. These organoaluminum compounds may be used alone or in combination of two or more.
  • the borate ester used as a silanol condensation catalyst in the present invention can improve and / or stabilize the adhesiveness.
  • borate ester used in the present invention those represented by the following general formulas (VII) and (VIII) can be suitably used.
  • R 8 represents an organic group having 1 to 48 carbon atoms.
  • borate esters include triethylhexyl borate, trinormaloctadecyl borate, trinormalooctyl borate, triphenyl oxalate, trimethylene borate, tris (trimethinoresilinole) borate, and boric acid.
  • the borate ester only one type may be used, or two or more types may be mixed and used. When two or more types are mixed, they may be mixed in advance, or may be mixed when a cured product is prepared.
  • trinormal otatadecyl borate trinormal octyl borate
  • tri normal butyl borate triisopropyl borate
  • trinormal propyl oxalate triethyl borate and trimethyl borate.
  • trimethyl borate, triethyl borate, and trinormal butyl oxalate are more preferable, and trimethyl borate is more preferable.
  • trinormal butyl oxalate, triisopropyl oxalate, and trinormal propyl borate are more preferable, and trinormal butyl borate is more preferable.
  • Trimethyl borate and triethyl borate are more preferred, and trimethyl borate is still more preferred, from the viewpoint of low colorability at high temperatures.
  • the titanium-based compound used as a silanol condensation catalyst in the present invention can improve and / or stabilize adhesiveness.
  • titanium compound used in the present invention examples include tetraalkoxytitaniums such as tetraisopropoxytitanium and tetrabutoxytitanium; titanium chelates such as titanium tetraacetylacetonate; and general compounds having a residue such as oxyacetic acid and ethylene glycol.
  • Typical titanate coupling agents can be exemplified. These titanium compounds may be used alone or in combination of two or more.
  • the silane coupling agent and the Z or epoxy group-containing compound as the component (D) and the silanol condensation catalyst as the component (E) according to the present invention are indispensable. No adhesion is exhibited.
  • a silanol source compound can be further used to further enhance the adhesiveness improving effect, and the adhesiveness can be improved and / or stabilized.
  • a silanol source compound include silanol compounds such as triphenylsilanol and diphenyldihydroxysilane, and alkoxysilanes such as diphenyldimethoxysilane, tetramethoxysilane and methyltrimethoxysilane.
  • the amount used when a silanol source compound is used can be set variously.
  • the lower limit of the preferable addition amount is 0.05 part by weight, more preferably 1 part by weight
  • the upper limit of the preferable addition amount is 50 parts by weight, More preferably, it is 30 parts by weight. If the addition amount is less than 0.05 parts by weight, the adhesiveness improving effect tends to be less than + min, and if the addition amount is more than 50 parts by weight, the physical properties of the cured product tend to deteriorate.
  • silanol source compounds may be used alone or in combination of two or more.
  • carboxylic acids and Z or acid anhydrides can be used in order to enhance the effects of the force coupling agent and the epoxy group-containing compound, and it is possible to improve adhesion and Z or stabilize.
  • Such carboxylic acids and acid anhydrides are not particularly limited,
  • the hydrosilylation reactivity A compound containing a carbon-carbon double bond that is reactive with a SiH group is preferable in that it hardly impairs the physical properties of the obtained cured product with a low possibility of exuding from the cured product.
  • Preferred carboxylic acids and / or acid anhydrides include, for example, Examples thereof include tetrahydrophthalic acid, methyltetrahydrophthalic acid, and their single or complex acid anhydrides.
  • the amount of carboxylic acid and / or Z or acid anhydride used can be variously set, but the lower limit of the preferable addition amount to 1.0 part by weight of the coupling agent and / or the epoxy group-containing compound is ⁇ 1 part by weight, more preferably 1 part by weight, and the upper limit of the preferable addition amount is 50 parts by weight, more preferably 10 parts by weight. If the amount is less than 0.1 part by weight, the effect of improving the adhesion tends to be insufficient, and if the amount is more than 50 parts by weight, the physical properties of the cured product tend to deteriorate.
  • carboxylic acids and acid anhydrides may be used alone or in combination of two or more.
  • a curing retarder can be used for the purpose of improving the storage stability of the curable composition of the present invention or for adjusting the reactivity of the hydrosilylation reaction in the production process.
  • the curing retarder include a compound containing an aliphatic unsaturated bond, an organic phosphorus compound, an organic thio compound, a nitrogen-containing compound, a tin compound, and an organic peroxide. These may be used in combination.
  • Examples of the compound containing an aliphatic unsaturated bond include propargyl alcohols, industrial compounds, and maleic esters.
  • Examples of the organic phosphorus compound include triorganophosphines, diorganophosphines, organophosphons, and triorganophosphites.
  • Examples of the organic compound include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide and the like.
  • Examples of the nitrogen-containing compound include ammonia, primary to tertiary alkylamines, arylamines, urea, hydrazine and the like.
  • Tin-based compounds include stannous halide Examples include dihydrate and stannous carboxylate.
  • examples of the organic peroxide include di-t-butylperoxide, dicumylperoxide, benzoylperoxide, and t-butyl perbenzoate.
  • curing retardants from the viewpoint of good delay activity and availability of raw materials, benzothiazole, thiazonole, dimethinolemalate, 3-hydroxy-3-methynole-1-butyne, and 11-ethyninole-1 Hexahexanol is preferred.
  • the addition amount of the curing retarder can be selected at various levels, the preferred amount of the lower limit is 1 0 one 1 mole with respect to hydrosilylation catalyst l ni o 1 to be used, more preferably 1 mol, the upper limit of the preferable amount is 1 0 It is 3 moles, more preferably 50 moles.
  • the inorganic member as the component (F) the same member as the above-mentioned inorganic member can be suitably used.
  • the amount of the inorganic component (F) is not particularly limited, but is preferably 0.1 to 90% by weight based on the total amount of the curable composition of the present invention. From the viewpoint of good coatability, the preferred amount is 80% by weight or less, more preferably 70% by weight or less, and still more preferably 50% by weight of the total amount of the curable composition. / 0 or less, particularly preferably 40% by weight or less, more preferably 30% by weight or less.
  • the preferred amount is at least 5% by weight of the total amount of the curable composition, more preferably at least 10% by weight / 0 , even more preferably at least 30% by weight / 0 , It is particularly preferably at least 40% by weight, more preferably at least 50% by weight. Therefore, in order to achieve both applicability and light-shielding properties, the preferred amount is from 10% by weight to 80% by weight, more preferably from 20% by weight to 70% by weight, based on the total amount of the curable composition. More preferably, the content is 30% by weight or more and 60% by weight or less.
  • the curable composition of the present invention preferably further contains (G) silica in addition to the components (A) to (F). The component (G) silica will be described.
  • silica examples include fumed silica, precipitated silica, quartz, silica anhydride, fused silica, crystalline silica, and ultrafine amorphous silica.
  • Silica can impart thixotropy to the curable composition and can also provide a thickening effect.
  • the silica preferably has an average primary particle diameter of 3 to 20 nm, particularly preferably 5 to 10 nm.
  • the average particle size of silica can be measured based on an electron micrograph.
  • the surface treatment is not performed.
  • AEROSIL 300, 130, 200, etc. manufactured by Nippon Aerosil Co., Ltd. can be suitably used.
  • Surface treatment is preferred from the viewpoint of the thickening effect.
  • silica for example, Nippon Aerosil Co., Ltd. AEROSILR 812, R972, R974, R976, RX200, RX300, etc. can be preferably used.
  • the surface treatment include an alkylation treatment, a trimethylsilylation treatment, a silicone treatment, and a treatment with a coupling agent.
  • the force coupling agent in this case is a silane coupling agent.
  • the silane coupling agent is not particularly limited as long as it has at least one functional group reactive with an organic group and at least one silicon group hydrolyzable in the molecule.
  • the functional group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acryl group, an isocyanate group, an isocyanurate group, a butyl group, and a carbamate group from the viewpoint of handleability.
  • Epoxy, methacryl, and acryl groups are particularly preferred from the viewpoints of curability and adhesiveness.
  • As the hydrolyzable silicon group an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.
  • Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-1 Alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3 —Methacryl, such as ataryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyl oletrimethoxysilane, and ataryloxymethyltriethoxysilane And alkoxysilanes having an acryl group.
  • the amount of silica in the curable composition is not particularly limited, but from the viewpoint of coatability and low fluidity, 0.5 parts by weight with respect to 100 parts by weight of the resin component [component (A) to (E)]. It is preferably from 20 to 20 parts by weight, more preferably from 2 to 10 parts by weight, particularly preferably from 3 to 5 parts by weight.
  • the castability after 1 hour at 100 ° C. on a glass substrate inclined at an angle of 80 ° is preferably 2 cm or less. . Further, it is more preferable that it is 1 cm or less.
  • the castability is specifically measured as follows. First, about 15 Omg of the curable composition of the present invention is applied to a glass plate (general blue plate glass) having a thickness of l O cmX I O cmX 3 mm in a circular shape at a position about 1 cm from the edge of the glass plate. Place the glass plate in an oven heated to 100 ° C with the coated part on top, inclined at an angle of 80 °. After 1 hour, the distance between the tip where the curable composition has flowed and the application position is measured in cm.
  • a glass plate generally blue plate glass
  • a glass plate generally blue plate glass having a thickness of l O cmX I O cmX 3 mm in a circular shape at a position about 1 cm from the edge of the glass plate.
  • the curable yarn containing the components (A) to (F) can be obtained by mixing these components.
  • Various methods can be used for the mixing method.A mixture of the components (A), (C) and (E) and a mixture of the components (B) and (D) can be used. It is preferred to mix and then mix component (F).
  • a mixture of component (B) and component (C) or component (E) promotes the reaction between component (B) and water in the presence of component (C) and component (E). Deterioration may occur during storage.
  • composition In the case where the composition is reacted and cured, (A), (B), (C), (D), and (E) may be mixed and reacted at a time with the required amount of each component. After mixing and reacting a part, the component (F) is added and the remaining amount is mixed to further react, or the composition is controlled by controlling the reaction conditions and utilizing the difference in the reactivity of the substituent after mixing. It is also possible to adopt a method in which only a part of the 'functional groups in the product is reacted (B-staged) and then subjected to a treatment such as molding and further cured. According to these methods, the viscosity during molding Adjustment becomes easy.
  • the method of mixing the component (F) and the components (A) to (E) is as follows. Can be obtained. If the amount is as small as 10 g or less, it is also possible to stir with a planetary stirring deaerator.
  • a mixture of the component (A), the component (C) and the component (E) may be used. It is preferable to mix the components (B) and (D), and to mix the components (F) and (G) in the mixture.
  • component (F) and component (G) are mixed with component (A), component (C) and component (E), viscosity tends to increase and workability tends to decrease. Also, a mixture of the components (A), (C) and (E) and the component (F) are mixed, and a mixture of the components (B) and (D) and the component (G) are mixed. However, when they are mixed, the castability tends to increase. In addition, (F) and (G) are mixed with the mixture of (B) and (D), and the mixture is mixed with (A), (C) and (E). When mixed, the castability tends to increase.
  • a method of mixing the components (A) to (E) and the components (F) and (G) will be described.
  • the mixing device for example, a spatula, a planetary stirring deaerator, a dissolver, a three-roll, a paint mill, a ball mill and the like can be suitably used. Heating may be performed at a temperature / time range in which curing does not proceed during mixing. Specifically, it is preferably 70 ° CZ3 hours or less. The heating may be performed in air or in an inert atmosphere gas such as, for example, nitrogen or argon.
  • a curable composition having excellent dispersibility can be obtained by vacuum defoaming.
  • the temperature is preferably 1 hour or more in a temperature range of 40 ° C. to 60 ° C., and more preferably about 2 hours at 50 ° C.
  • the curable yarn composition of the present invention is preliminarily mixed as described above, and a part or all of the carbon-carbon double bond and the SiH group reactive with the SiH group in the composition. React By curing, a cured product can be obtained.
  • the light-shielding paste of the present invention is made of the curable composition.
  • the light-shielding paste of the present invention is previously mixed as described above, and a part or all of the Si-H group is reacted with a carbon-carbon double bond having reactivity with the SiH group in the composition. To cure the resin to form a light-shielding resin.
  • the reaction can be carried out simply by mixing, or the reaction can be carried out by heating.
  • the method of heating and reacting is preferable from the viewpoint that a reaction is quick and a material having high heat resistance is generally easily obtained.
  • the reaction temperature can be variously set, and for example, a temperature of 30 to 300 ° C. can be applied, 50 to 250 ° C. is more preferable, and 100 to 200 is more preferable. If the reaction temperature is low, the reaction time for a sufficient reaction is prolonged, and if the reaction temperature is high, molding tends to be difficult.
  • the reaction may be carried out at a constant temperature, but the temperature may be changed in multiple steps or continuously as necessary. Also, the reaction time can be variously set. For example, it is possible to adopt a method of pre-curing at 600 ° C.Z for 10 to 10 minutes and curing at 100 ° C.Z for 1 to 60 minutes.
  • the pressure during the reaction can be variously set as required, and the reaction can be performed at normal pressure, high pressure, or reduced pressure.
  • thermosetting resins can be added to the curable composition and the light-shielding paste of the present invention for the purpose of, for example, modifying properties.
  • thermosetting resin include an epoxy resin, a cyanate ester resin, a phenol resin, a polyimide resin, a urethane resin, a bismaleimide resin, and the like, but are not limited thereto.
  • epoxy resins are preferred from the viewpoint of excellent practical properties such as adhesiveness.
  • epoxy resin examples include nopolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentagen type epoxy resin, and bisphenol F Diglycidinoleatene, bisphenol A diglycidinoleatene, 2,2,1-bis (4-glycidinoleoxycyclohexynole) propane, 3,4-epoxycycline Hexinolemethyl-3,4-epoxycycline Hexane carboxylate, bininole cyclohexenedioxide, 2- (3,4-epoxycyclohexyl) -1,5,5-spiro (3,4-epoxycyclohexane) 1,1,3-dioxane, bis (3,4-epoxycyclyl hexyl) Epoxy resins such as adipate, 1,2-cyclopropanedicarboxylate bisglycidyl ester, triglycidyl isocyanurate, monoaryl diglycidyl isocyanurate, diaryl
  • thermosetting resins may be used alone or in combination.
  • the amount of the thermosetting resin to be added is not particularly limited, but the lower limit of the preferred amount is 5% by weight, more preferably 10% by weight of the entire curable composition, and the upper limit of the preferred amount is the curable composition. 50% by weight in the composition. / 0 , more preferably 30% by weight. If the amount of added calorie is small, it is difficult to obtain the desired effect such as adhesiveness, and if the added amount is large, it tends to become brittle.
  • the thermosetting resin may be obtained by dissolving the resin raw material and / or the cured resin in the component (A) and the component Z or the component (B) and mixing them in a uniform state, or by pulverizing and mixing in a particle state. Or a dispersion state by dissolving in a solvent and mixing. From the viewpoint that the obtained cured product tends to be more uniform, it is preferable to dissolve the component (A) and the component Z or (B) and mix them in a uniform state. Also in this case, the thermosetting resin may be directly dissolved in the component (A) and the component Z or the component (B), may be uniformly mixed using a solvent, or the like, and then may be uniformly removed by removing the solvent. It may be in a dispersed state and Z or mixed state.
  • the average particle diameter can be variously set, but the lower limit of the preferable average particle diameter is 10 nm, and the upper limit of the preferable average particle diameter is 10 ⁇ m.
  • the distribution of particle systems may be monodisperse or multiple peak sizes However, from the viewpoint that the curable composition and the light-shielding paste have low viscosities and are easily applied, the coefficient of variation of the particle diameter is preferably 1 °% or less.
  • thermoplastic resins can be added to the curable composition and the light-shielding paste of the present invention for the purpose of improving properties and the like.
  • Various thermoplastic resins can be used.
  • a polymethyl methacrylate resin such as a homopolymer of methyl methacrylate or a random, block, or graft polymer of methinole methacrylate and another monomer (for example, Optrez manufactured by Hitachi Chemical Co., Ltd.), or a homopolymer of butyl acrylate Acrylic resin represented by polybutyl acrylate resin such as random, block, or graft polymer of coalesced or butyl acrylate and other monomer; bisphenol A, 3, 3, 5-trimethylcyclyl Polycarbonate resins such as polycarbonate resins containing a monomer structure of hexylidenebisphenol, etc.
  • Cyclorefin-based resins such as cured resins or their hydrogenated products (for example, APEL manufactured by Mitsui Chemicals, ZENO, ZEONEX manufactured by Zeon, ARTON manufactured by JSR, etc.); Copolymerization of ethylene and maleimide Olefin-maleimide resin such as coalesce (for example, TI-PAS manufactured by Tosoh Corporation); Bisphenol A, bis (4- (2-hydroxyethoxy) phenyl) Bisphenols such as fluorene Polyester resins such as polyesters obtained by polycondensation of diols such as diethylene glycol and phthalic acids such as terephthalic acid and isophthalic acid and aliphatic dicarboxylic acids (for example, O-PET manufactured by Kanebo Co., Ltd.
  • the thermoplastic resin may have a carbon-carbon double bond and / or a SiH group reactive with a SiH group in the molecule. In terms of the fact that the resulting cured product is more likely to be tough, a carbon-carbon double bond that is reactive with SiH groups in the molecule It is preferable that the compound has one or more Z and SiH groups on average in one molecule.
  • the thermoplastic resin may have another crosslinkable group. Examples of the crosslinkable group in this case include an epoxy group, an amino group, a radically polymerizable unsaturated group, a carboxyl group, an isocyanate group, a hydroxyl group, and an alkoxysilyl group. From the viewpoint that the heat resistance of the obtained cured product is likely to be high, it is preferable that the number of crosslinkable groups is one or more in one molecule on average.
  • the molecular weight of the thermoplastic resin is not particularly limited, but the number average molecular weight is preferably 100,000 or less in that compatibility with the component (A) and the component (B) is easily improved. Preferably, it is more preferably 500 or less. Conversely, from the viewpoint that the obtained cured product tends to be tough, the number average molecular weight is preferably at least 1,000, more preferably at least 1,000. Although there is no particular limitation on the molecular weight distribution, the molecular weight distribution is preferably 3 or less, more preferably 2 or less, from the viewpoint that the viscosity of the mixture is low and moldability is easily improved. More preferably, it is 1.5 or less. A single thermoplastic resin may be used, or a plurality of thermoplastic resins may be used in combination.
  • the blending amount of the thermoplastic resin is not particularly limited, but the lower limit of the preferred amount is 5% by weight, more preferably 10% by weight of the entire curable composition, and the upper limit of the preferred amount is the curable composition. 50% by weight, more preferably 30% by weight in the product. If the amount is less than 5% by weight, the obtained cured product tends to be brittle, and if it is more than 50% by weight, heat resistance (elasticity at high temperatures) tends to be low.
  • the thermoplastic resin may be dissolved in the component (A) and / or the component (B) and mixed in a uniform state, may be ground and mixed in a particle state, or may be dissolved in a solvent and mixed. And may be in a dispersed state. From the viewpoint that the obtained cured product tends to be more uniform, it is preferable to dissolve the components (A) and Z or the components (B) and mix them in a uniform state. Also in this case, the thermoplastic resin may be directly dissolved in the component (A) and the component Z or the component (B), or may be uniformly mixed using a solvent or the like. It may be in a state and Z or a mixed state.
  • the average particle diameter can be variously set.
  • the lower limit of the average particle diameter is preferably 10 nm, and the upper limit of the average particle diameter is preferably 10 ⁇ m.
  • the particle system may have a distribution, and may be monodispersed or may have a plurality of peak particle sizes.However, from the viewpoint that the curable composition tends to have low viscosity and good moldability, the particles are easily dispersed.
  • the coefficient of variation of the diameter is 1 °% or less.
  • a filler may be added to the curable composition and the light-shielding paste of the present invention.
  • Various types of fillers are used.For example, inorganic fillers such as silver powder, glass fiber, carbon fiber, carbon black, graphite, and talc, as well as conventional sealing materials such as epoxy-based fillers are used. Examples of the filler include generally used and / or proposed fillers.
  • the light-shielding paste composed of a thermoplastic resin and an inorganic member, and the light-shielding paste composed of a thermosetting resin and an inorganic member include, for example, quartz, fume silica, precipitated silica, anhydrous silicic acid, fused silica, crystalline silica, Silica-based fillers such as ultrafine amorphous silica can also be added.
  • the silica-based filler is preferred from the viewpoint that it hardly inhibits the curing reaction and has a large effect of reducing the linear expansion coefficient.
  • the filler may be appropriately surface-treated.
  • Examples of the surface treatment include the same as those exemplified for the inorganic member.
  • the curable composition of the present invention may be a hydrolyzable silane monomer or oligomer such as alkoxysilane, acyloxysilane, or silane, or an alkoxide, acyloxide, or halide of a metal such as titanium or aluminum.
  • a method of adding a filler in the curable composition and light-shielding paste or reacting in the curable composition and light-shielding paste or in a partial reactant of the curable composition and light-shielding paste to form a filler in the curable composition and light-shielding paste Can be mentioned.
  • the average particle diameter of the filler is preferably 10 ⁇ or less, more preferably 5 ⁇ m or less, in that the permeability is likely to be good.
  • the proportion of particles having a particle size of 50 ⁇ m or more in the filler is preferably 1% by weight or less, more preferably 0.1% by weight or less from the viewpoint that permeability is easily improved. .
  • the filler is used as a filler for conventional sealing materials such as epoxy.
  • Various settings can be made, including those that have been used and / or proposed.
  • particles of 24 / zm or more may be 15% by weight or more and particles of 1 ⁇ m or less may be 3% by weight or more.
  • the average particle diameter of the filler and the ratio of particles having a particle diameter of 50 / xm or more can be measured using a laser-type micro-mouth track particle size analyzer.
  • the specific surface area of the filler can also be set in various ways, including those that have been used and / or have been proposed as fillers for conventional sealing materials such as epoxy.
  • more than 4 m 2 Z g hereinafter, it can be set arbitrarily, such as 10 m 2 Z g or less.
  • the specific surface area can be measured by a BET method monosoap specific surface area measuring device.
  • the vitrification rate of the filler can be set in various ways, including those that have been used and / or have been proposed as fillers for conventional sealing materials such as epoxy. For example, 97% or more can be set arbitrarily.
  • the shape of the filler is preferably a spherical filler from the viewpoint that the viscosity of the sealing material is likely to be low.
  • the fillers may be used alone or in combination of two or more.
  • the addition amount of the filler is not particularly limited, but from the viewpoint that the effect of reducing the coefficient of linear expansion is high and the fluidity of the composition is good, the preferred lower limit of the addition amount is 30% by weight of the total composition. More preferably, it is 50% by weight, and the upper limit of the addition amount is preferably 80% by weight, more preferably 70% by weight in the whole composition.
  • the component (A) should be added to the component (C).
  • the method of mixing the component (B) with the mixture of the component and the filler is preferred.
  • the component (B) is added in the presence and / or absence of the component (C). Reacts with water and / or fillers in the environment and may deteriorate during storage.
  • An antioxidant may be added to the curable composition and light-shielding paste of the present invention.
  • the anti-aging agent include generally used anti-aging agents such as citric acid, phosphoric acid, and sulfur-based anti-aging agents.
  • Mercapta is a sulfur-based anti-aging agent Salts, mercaptan salts, sulfide carboxylate esters, sulfides including hindered phenolic sulfides, polysulfides, dithiocarbonates, thioperreas, thiophosphates, sulfodium compounds, thioaldehydes, thioketones And mercaptals, mercaptols, monothioic acids, polythioic acids, thioamides, sulfoxides and the like. These antioxidants may be used alone or in combination of two or more.
  • a radical inhibitor may be added to the curable composition and light-shielding paste of the present invention.
  • the radical inhibitor include 2,6-di-t-butyl-4-methylphenol (BHT), 2,2′-methylene-bis (4-methyl-6-t-butylphenol), tetrakis (methylene-13 ( 3,5-di-t-butynole -4- 4-hydroxyphene) propionate) phenolic radical inhibitors such as methane, phenyl- ⁇ -naphthylamine, a-naphthylamine, N, N'-second butyl-p-phene Amine radical inhibitors such as rangeamine, phenothiazine, N, N, diphenyl-, etc .; These radical inhibitors may be used alone or in combination of two or more.
  • An ultraviolet absorber may be added to the curable composition and the light-shielding paste of the present invention.
  • the ultraviolet absorber include 2 (2,2, hydroxy-3 ′, 5′-dibutyltinolephenyl) benzotriazole, bis (2,2,6,6-tetramethinole-4-piperidyl) sebacate and the like. These ultraviolet absorbers may be used alone or in combination of two or more.
  • the curable composition and the light-shielding paste of the present invention include, in addition to those that have been used and / or have been proposed as a filler of a conventional sealing material such as an epoxy resin, a coloring agent, a release agent, a flame retardant, Flame retardant, surfactant, defoamer, emulsifier, leveling agent, anti-repellent, ion trapping agent, thixotropic agent, tackifier, storage stability improver, ozone deterioration inhibitor, light stability Agents, thickeners, plasticizers, reactive diluents, antioxidants, heat stabilizers, conductivity-imparting agents, antistatic agents, radiation blockers, nucleating agents, phosphorus-based peroxide decomposers, lubricants, Pigments, metal deactivators, thermal conductivity-imparting agents, physical property modifiers, and the like can be added as long as the objects and effects of the present invention are not impaired.
  • a conventional sealing material such as an epoxy resin,
  • the curable composition and light-shielding paste of the present invention can be used by dissolving in a solvent.
  • the solvent that can be used is not particularly limited, and specific examples include hydrocarbon solvents such as benzene, toluene, hexane and heptane; tetrahydrofuran, 1,4-dioxane, 1,3-dioxolan, Ether solvents such as getyl ether; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as chloroform, methylene chloride and 1,2-dichloroethane are preferably used.
  • the solvent toluene, tetrahydrofuran, 1,3-dioxolan, and chloroform are more preferable.
  • the amount of the solvent to be used can be set as appropriate, but the lower limit of the preferable usage for 1 g of the curable composition and the light-shielding paste to be used is 0.1 mL, and the upper limit of the preferable usage is 1 OmL. If the amount used is less than 0.1 mL, the effect of using a solvent such as a low viscosity tends to be hardly obtained, and if the amount used is more than 1 OmL, the solvent remains in the material. This tends to cause problems such as thermal cracks, and tends to be disadvantageous in terms of cost.
  • solvents may be used alone or as a mixed solvent of two or more.
  • a light-emitting diode as a semiconductor device of the present invention has an opening having a bottom surface and a side wall, and the bottom surface of the opening has a positive external electrode and a negative electrode.
  • An LED package formed integrally with a molding resin so that each end of the external electrode is exposed at a predetermined interval, and a light emitting element mounted on the bottom surface of the LED package.
  • the light-shielding paste of the present invention is applied to substantially only the side wall of the LED package, and / or is shielded from light by the cured light-shielding resin.
  • the semiconductor device of the present invention there may be mentioned a device in which a light-blocking resin is formed on the bottom surface and side walls of the LED package around the light-emitting element to block light.
  • the bottom surface and the side wall of the LED package around the light emitting element means a portion of the bottom surface and the side wall of the LED package that does not contact the light emitting element.
  • the package resin has undergone thermal discoloration due to the heat history of the process of assembling the semiconductor device, and the reflectance has decreased. As a result, the light extraction efficiency was reduced, resulting in low output.
  • a light-shielding resin made of a resin having excellent heat resistance is used so that the light-emitting element is not substantially in contact with only the side wall of the LED package, or the bottom surface and the side wall.
  • the LED package of the present invention is characterized in that a light-shielding resin is provided only on the substantially upper wall of the LED package opening.
  • the package before applying the light-shielding paste can be made of various materials, for example, polycarbonate resin, polyphenylene sulfide resin, epoxy resin, atalinole resin, silicone resin, ABS resin, and polybutylene terephthalate. Rate resin, polyphthalamide resin, epoxy resin, BT resin, liquid crystal polymer and the like. From the viewpoint of heat resistance, semi-crystalline polymer resins such as polyphthalamide resin, BT resin, and liquid crystal polymer are preferred. From the viewpoint of adhesiveness, semi-crystalline polymer resins such as polyphthalamide resin and polybutylene terephthalate resin are preferred.
  • a ceramic package can also be used.
  • the opening in the package may be of various shapes, such as rectangular, circular, oval, and the like.
  • a printing method, a coating method, a transfer method, or the like which is a generally known liquid resin application method, can be used.
  • stamping, inkjet, dive, gravure, stencil, screen printing, or applying through a mask can be used. It is also possible to apply using a needle, a spatula or a brush.
  • the light emitting element used for the light emitting diode of the present invention is not particularly limited, and a conventionally known light emitting element used for a light emitting diode can be used.
  • a light-emitting element can be formed on a substrate provided with a buffer layer of GaN, A1N, etc. as necessary by various methods such as MOCVD, HDVPE, and liquid phase growth.
  • MOCVD MOCVD
  • HDVPE high vacuum chemical vapor phase growth
  • the semiconductor materials to be laminated include GaAs, GaP, GaAlAs, GaAsP, AlGaInP, GaN, InN, AlN, InGaN, InGaAlN, S i C and the like.
  • nitride-based compound semiconductors InxGayA1zN
  • Such a material may contain an activator or the like.
  • Examples of the structure of the light emitting element include a homo junction having a MIS junction, a pn junction, and a PIN junction, a hetero junction, a double hetero structure, and the like. Also, a single or multiple quantum well structure can be used.
  • the light-emitting element may or may not include the passivation layer.
  • An electrode can be formed on the light emitting element by a conventionally known method.
  • the electrode on the light emitting element can be electrically connected to a lead terminal or the like by various methods.
  • the electrical connection member those having good ohmic mechanical connection with the electrode of the light emitting element are preferable, and for example, a bonding wire using gold, silver, copper, platinum, aluminum, or an alloy thereof is preferable.
  • a conductive adhesive or the like in which a conductive filler such as silver or carbon is filled with a resin can also be used. Among these, from the viewpoint of good workability, it is preferable to use an aluminum wire or a gold wire.
  • the light emitting device is obtained as described above.
  • any light emitting device having a vertical luminous intensity of 1 cd or more can be used. luminosity is remarkable the effect of the present invention optionally with 2 cd or more light-emitting elements, is remarkable effects of the present invention further in the case of using the 3 C d or more light-emitting elements.
  • the light emitting output of the light emitting element can be any one without particular limitation, but the effect of the present invention is remarkable when a light emitting element of 1 nxW or more at 2 OmA is used, and 4 mW or more at 2 OmA.
  • the effect of the present invention can be improved by using the light emitting element of The effect of the present invention is remarkable, and the effect of the present invention is further remarkable when a light-emitting element with 5 mW or more at 2 O mA is used.
  • Various emission wavelengths can be used from the ultraviolet region to the infrared region of the light emitting element.
  • the effect of the present invention is particularly remarkable when a device having a 1S main emission peak wavelength of 550 nm or less is used.
  • a single type of light emitting element may be used to emit monochromatic light, or a plurality of light emitting elements may be used to emit monochromatic or multicolor light.
  • the lead terminal used in the light emitting diode of the present invention preferably has good adhesion and electric conductivity with an electric connection member such as a bonding wire, and the lead terminal has an electric resistance of 30%. It is preferably at most 0 ⁇ ⁇ cm, more preferably at most 3 ⁇ ⁇ cm.
  • these lead terminal materials include iron, copper, copper with iron, copper with tin, and materials obtained by plating silver, nickel, and the like. The glossiness of these lead terminals may be appropriately adjusted in order to obtain good light spread.
  • the light-emitting diode of the present invention can be manufactured by coating the light-emitting element with various resins.
  • the coating is not limited to directly sealing the light-emitting element, but indirectly coating the light-emitting element. Includes cases where Epoxy resin, silicone resin, acrylic resin, urea resin, imide resin and the like can be used as the sealing resin. Further, the light emitting element may be sealed with glass.
  • a liquid yarn or the like may be injected into a cup, cavity, package recess, or the like having a light emitting element disposed at the bottom by a dispenser or other method, and may be cured by heating or the like, or may be solid.
  • the high-viscosity liquid composition may be caused to flow by heating or the like, and may be similarly injected into a concave portion of the package and further cured by heating or the like.
  • the shape of the covering portion is not particularly limited, and can take various shapes.
  • a lens shape, a plate shape, a thin film shape, a shape described in JP-A-6-244458, and the like can be mentioned. These shapes may be formed by molding and curing the composition, or may be formed by post-processing after curing the composition.
  • various conventionally known methods can be applied to the light emitting diode of the present invention.
  • An example For example, a method of providing a layer that reflects or condenses light on the back of the light emitting element, a method of forming a complementary colored portion at the bottom corresponding to the yellowing of the sealing resin, a thin film that absorbs light with a wavelength shorter than the main emission peak On the light-emitting element, a method in which the light-emitting element is sealed with a soft or liquid sealing material, and then the surroundings are molded with a hard material.
  • a phosphor that absorbs light from the light-emitting element and emits longer-wavelength fluorescent light A method in which a light emitting element is sealed with a material containing the same and then molding is performed around the light emitting element; a method in which a material containing a phosphor is molded in advance and then molded together with the light emitting element;
  • a method to increase the luminous efficiency by using a special molding material a
  • the light emitting diode of the present invention can be used for various known applications. Specific examples include a pack light, a lighting, a sensor light source, an instrument light source for a vehicle, a signal light, an indicator light, a display device, a light source of a planar illuminant, a display, a decoration, various lights, and the like.
  • the method for forming the light-shielding resin layer only on the side wall of the LED package thus formed can be roughly divided into the following three steps.
  • the light-shielding paste can be applied to a substrate by various known methods.
  • the material of the base material is, for example, resin, rubber, glass, ceramic, metal, etc. Various things can be used.
  • As the shape of the substrate for example, a flat substrate, a horizontal plate, a plate-shaped belt, a flat substrate such as a ⁇ -shaped roll, a curved substrate such as a roll, a pole, or the like can be used.
  • the coating time is preferably 0.1 second to 24 hours, more preferably 1 second to 1 hour, and particularly preferably 1 minute to 30 minutes.
  • the coating temperature is preferably 5 ° C to 100 ° C, more preferably 10 ° C to 50 ° C, and particularly preferably 15 ° C to 30 ° C.
  • the coating can be suitably performed in any of a vacuum, air, and an inert gas such as nitrogen or argon.
  • Various heating furnaces can be used, such as a hot air circulation open and an infrared heating furnace.
  • the opening of the LED package is brought into close contact with the substrate coated with the light-shielding paste formed in step (1), and a light-shielding paste is attached to the upper part of the opening.
  • the contact with the opening of the LED package can be performed by various methods, such as by the weight of the package, pressing by a press, or pressing by a roll. I can do it.
  • the substrate coated with the light-shielding paste has a curved surface, for example, a hole, the roll is rolled into the opening, and the opening of the roll coated with the light-shielding paste and the LED package are formed.
  • the light-shielding paste can be adhered to the upper part of the opening of the LED package by passing between the doors so that they are in close contact with each other.
  • the contact time is preferably 0.01 seconds to 24 hours, more preferably 0.1 seconds to 1 hour, particularly preferably 1 second to 5 minutes.
  • the temperature for the close contact is preferably 5 ° C to 100 ° C, more preferably 10 ° C to 50 ° C, and particularly preferably 15 ° C to 30 ° C.
  • the amount of light-shielding paste applied can be controlled by adjusting the temperature and time for adhesion.
  • the adhesion can be suitably performed in any of vacuum, air, and an inert gas such as nitrogen or argon.
  • Various heating furnaces such as a hot air circulation oven and an infrared heating furnace are used. Rukoto can.
  • the heating time Z temperature is controlled so that the light-shielding paste attached to the upper part of the package opening in section (2) can be removed only from the LED package sidewall. Can be cast.
  • the state in which the opening portion of the LED package is turned up means that the bottom electrode surface of the LED package is directed upward and the bottom electrode surface is positioned perpendicular to the vertical axis. Means status.
  • the heating temperature can be appropriately set according to the amount of the light-shielding paste attached, the viscosity, the thixotropy, and the like. In order to prevent package deterioration, the temperature is preferably from 30 ° C to 200 ° C, more preferably from 40 ° C to 100 ° C, and particularly preferably from 50 ° C to 80 ° C.
  • the heating time can be appropriately set depending on the amount of the light-shielding paste adhered, the viscosity, the thixotropy, and the like.
  • Heating can be suitably performed in a vacuum, in the air, and in an inert gas such as nitrogen or argon.
  • Various heating furnaces can be used, such as a hot air circulation opening and an infrared heating furnace. Heating can be performed stepwise. For example, heating can be performed stepwise at 60 ° C. for 30 minutes, at 80 at 30 minutes, and at 100 at 30 minutes.
  • a light-shielding paste that can be used in the method for forming a light-shielding resin layer of the present invention will be described.
  • the light-shielding paste As the light-shielding paste, the light-shielding paste described above, the light-shielding paste composed of the above-described curable composition, or the like can be suitably used.
  • the light-shielding paste those having various viscosities can be used. In order to ensure good coatability, it is preferable that the viscosity at room temperature (23 ° C) is high and the viscosity at heating (30 ° C) decreases. At room temperature (23 ° C), the temperature is preferably at least 10 vois, and at the time of heating (30 ° C), at least 1 vois is preferable. The viscosity can be measured with an E-type viscometer. If the light-shielding paste has a large titasic property, the flowability becomes poor, and the object of the present invention cannot be achieved.
  • the thixotropic property (viscosity ratio) at 23 ° C is preferably 0.8 to 1.2, more preferably 0.9 to 1.1, and particularly preferably 0.95 to 1.05.
  • the thixotropy (viscosity ratio) can be measured with an E-type viscometer, and the number of revolutions of the viscometer is usually set to 10 rpm Zl rpm, but 20 rpm // 2 rpm s 5 Various combinations of values such as 0 rpm / 5 rpm 5 rpm / 0.5 rm can be adopted.
  • the curing time at 115 ° C. is preferably from 15 seconds to 90 seconds, more preferably from 20 seconds to 75 seconds, and particularly preferably from 30 seconds to 60 seconds.
  • the curing time can be evaluated by a gel time called a snap-up time. The measuring method is described below. Start the stopwatch at the same time as pressing about 5 Omg of the light-shielding paste on a hot plate (115 ° C ⁇ 3 ° C). Further, apply with a spatula, and let the time until the light-shielding paste shows no fluidity be the curing time. .
  • the package may be removed in the step of (2) adhering the opening of the LED package and / or (3) heating the LED package with the opening thereof facing upward.
  • the LED chips are cast from the side to the bottom electrode and the LED chips cannot be conducted. Therefore, the light-shielding paste preferably has an appropriate fluidity.
  • there is substantially no inconvenience such as the inability to conduct electricity as described above, there is no problem even if the resin partially flows to the bottom and then hardens.
  • the fluidity can be evaluated by a method of casting the light-shielding paste on a glass plate.
  • the method is described below. After applying about 5 Omg of the light-shielding paste on a glass plate in a circular shape with a diameter of about 8 mm, the glass plate is fixed at an angle of about 80 °, and the flow-down distance when held at about 21 ° C for 10 minutes Is measured.
  • the falling distance is preferably from 5 mm to 3 Omm, more preferably from 5 to 2 Omm, and particularly preferably from 5 to 15 mm.
  • the downflow distance when held at about 60 ° C for 5 minutes is 10 mm It is preferably from 7 to 7 Omm, more preferably from 10 to 40 mm, and particularly preferably from 10 to 3 Omm. Heating can be performed using hot air circulation open.
  • the light-shielding resin obtained by curing the light-shielding paste.
  • the light-shielding resin is required to have heat resistance to withstand solder reflow or the like. If the heat resistance is low, the solder reflow will be colored at one time, causing the brightness of the LED to decrease. Therefore, the light-shielding resin produced from the light-shielding paste preferably has high heat resistance.
  • the heat resistance can be evaluated by heating the light-shielding resin formed by applying a light-shielding paste on a substrate and heating it at 260 ° C for 3 minutes and evaluating the yellowness (yellow index, YI) of the light-shielding resin.
  • the value after heating at 260 ° CZ for 3 minutes is preferably 100 to 150, more preferably 100 to 140, and particularly preferably 100 to 130. preferable. Yellowness can be measured using a color difference meter.
  • the light-shielding resin is required to have light resistance to reflect light from the LED chip. If the light resistance is low, it is colored and causes the brightness of the LED to decrease. Therefore, the light-shielding resin produced from the light-shielding paste preferably has high light resistance.
  • the light resistance is evaluated by irradiating light to a light-shielding resin formed by applying a light-shielding paste on a substrate. The light resistance test was carried out using a SUGA Xenon weather meter manufactured by Suga Test Instruments, with an irradiance of 0.18 kW / m for 1 hour and 42 minutes, followed by a 18-minute rain cycle test, with a black panel temperature of 63 ° C and a humidity of 50%.
  • the test was performed for 330 hours under the test conditions. Assuming that the initial value of the yellowness is 100, the value after the light resistance test using a xenon weather meter is preferably 100 to 150, more preferably 100 to 140, and more preferably 100 to 130. Particularly preferred. Yellowness can be measured using a color difference meter.
  • the light-shielding resin preferably has an appropriate film thickness in order to secure necessary light-shielding properties.
  • the film thickness is preferably from 1 to 1000 / zm, more preferably from 5 to 500 ⁇ ⁇ , and particularly preferably from 50 to 100 ⁇ .
  • the film thickness can be measured by nondestructive inspection using an ultrasonic microscope, X-ray fluoroscope or the like.
  • a section was prepared so as to have a light-blocking resin and a substrate surface, and was then scanned with a scanning electron microscope (SEM) Can be measured.
  • SEM scanning electron microscope
  • the light-shielding resin needs to have high adhesiveness to the package to ensure the reliability of the LED. If the adhesiveness is low, the package and the mold resin will peel off, causing LED failure. Adhesion can be evaluated by a die shear test on a substrate on which a light-shielding resin layer is formed.
  • a die shear tester for example, a universal bond tester 2400 manufactured by Digi Corporation can be used.
  • the light resistance test was carried out using a SUGA Xenon weather meter manufactured by Suga Test Instruments, with an irradiance of 0.18 kW / m 2 , 1 hour 42 minutes of irradiation followed by 18 minutes of rainfall cycle test, black panel temperature 63 ° C, humidity 50 The test was performed for 330 hours under the test conditions of ° / 0 .
  • the adhesive strength is preferably 70 or more, more preferably 80 or more, particularly preferably 90 or more after the light resistance test with a xenon weather meter. No.
  • the light-shielding paste and the light-shielding resin used in the method for forming a light-shielding resin of the present invention can also be suitably used for an LED package and a light-emitting diode.
  • the description of the LED package and the light emitting diode is as described above.
  • (A) A mixture of 54.51 g of triaryl isocyanurate and 87.03 g of diaryl monoglycidyl isocyanurate as the component, (B) 162.64 g of the reaction product of Synthesis Example 1 (B 1) as the component (B) 9) 13mg of xylene solution of platinum-bul siloxane complex (containing 3wt ° / 0 as platinum) as component, 7.60g of ⁇ -glycidoxypropyl trimethoxysilane as component (D), boric acid as component (E) 1.52 g of trimethyl was used.
  • the components (A), (C) and (E) were mixed and stirred in advance to prepare a mixture A solution.
  • the above-mentioned component (B), (D) component and 9-mg of hexanol (1-ethynyl-1-hexanol) were previously mixed and stirred to prepare a mixture B solution.
  • the above mixture A and mixture B were mixed, stirred and defoamed to obtain a one-liquid mixture.
  • 2.5 g of the mixture contained titanium oxide (F) Industrial Co., Ltd., Taipeta R-820) 2.5 g were mixed and stirred and defoamed to obtain a light-shielding paste.
  • Example 3 To 2.5 g of the one-component mixture of the components (A) to (E) obtained in Example 1, 2.5 g of titanium oxide (Tipeta R-820, Ishihara Sangyo Co., Ltd.) as the component (F) was added. After mixing, 75 mg of silica (Nippon Aerosil Co., Ltd., Aerosil 300) was mixed, followed by stirring and defoaming to obtain a light-shielding paste. (Example 3)
  • the component (D) and 9 Omg of 1-ethynyl-1-cyclohexanol were previously mixed and stirred to prepare a mixture B solution.
  • the above mixture A liquid and mixture B liquid were mixed, stirred and defoamed to obtain a one-liquid mixture.
  • 2.5 g of the mixture was mixed with 2.5 g of titanium oxide (Ishihara Sangyo Co., Ltd., Taipeta R-820) as a component (F), and further mixed with silica (Nippon Aerosil Co., Ltd., Aerosil 300) 1 25 mg was mixed and stirred and defoamed to obtain a light-shielding paste.
  • the light-shielding paste obtained in each of Examples 1 to 3 was applied onto a polyphthalamide resin molded article with a tape as a spacer while controlling the film thickness, and then cured at 100 ° C. for 1 hour. A light shielding layer was formed. Then, a die for a die shear test was adhered with an adhesive prepared as follows.
  • the adhesive layer is 60 ° CZ for 6 hours, 70 ° C / 1 hour, 80 ° 0/1 hour, 120. C / 1 After heating at 150 ° C for 1 hour and 180 ° C for 30 minutes, they were cured and formed. (Comparative Example 1)
  • a die for a die shear test was adhered to the polyphthalamide resin molded body using an adhesive prepared as follows.
  • the adhesive layer is 60 ° C / 6 hours, 70 ° C / 1 hour, 80. . No. 1 hour, 120 ° C / 1 hour, 150 ° C / 1 hour, 180 ° C / 30 minutes, then cured to form.
  • the liquid mixture was passed through a cell made by inserting a silicone rubber sheet having a thickness of 3 mm between two glass plates as a spacer, and was then placed in a hot air drier at 60 ° C for 6 hours at 70 ° C. After heating for 1 hour, 80 ° C / 1 hour, 120 ° C / 1 hour, 150 ° C / 1 hour, 180 ° C / 30 minutes, it was cured. 3 mm (length) of the obtained transparent molded body X 3 mm (horizontal) and XI mm (thick) were cut using a diamond cutter to form a die.
  • Example 4 The test pieces obtained in Example 4 and Comparative Example 1 were evaluated for adhesion by a die shear test.
  • a disure tester a universal bond tester 240, manufactured by Digi Corporation was used. The test was performed at a temperature of 23 ° C and a load cell of 50 kgf at a test speed of 83 ⁇ / sec. The results are shown in Table 1. (Measurement example 2)
  • Example 4 and Comparative Example 1 were subjected to a light resistance test in a state where light was applied to the bonding surface through a die.
  • the light resistance test was carried out using a Sparx Xenon weather meter manufactured by Suga Test Instruments, with an irradiance of 0.18 kW / m 2 , irradiation for 1 hour and 42 minutes, followed by a 18-minute rain cycle test, and a black panel temperature of 63 °.
  • the test was performed for 330 hours under the test conditions of C and 50% humidity.
  • the test piece after the light resistance test was evaluated for adhesion by a die shear test under the same conditions as in Measurement Example 1. The results are shown in Table 1.
  • the light-shielding paste of the present invention shows a decrease in adhesiveness after the light resistance test. It was found that it had a light shielding ability. In addition, there was no coloring even after the light resistance test, and the light resistance was high. Therefore, the curable composition of the present invention is a light-shielding paste. Can be suitably used. (Synthesis example 2)
  • the components (A), (C) and (E) were mixed and stirred in advance to prepare a mixture A solution. Further, the above-mentioned component (B), component (D), and 9-13 mg of 1-ethyl-11-cyclohexanol were mixed and stirred in advance to prepare a mixture B solution.
  • the viscosity of the curable composition measured by an E-type viscometer (0. S r pm Zl r pm) was 46 Pa ⁇ s / 31 Pa ⁇ s.
  • the curable composition (150 mg) was applied onto a 3 mm thick blue plate glass having a thickness of lOcmXlOCmX at a position approximately 1 cm from the edge of the glass plate.
  • the glass plate was placed in an oven heated at 100 ° C with the coated part on top, inclined at an angle of 80 °. After 1 hour, the curable composition was not flowing and the castability was 0 cm.
  • Dissolver 363 g of Mixture A and 434 g of Mixture B prepared in Synthesis Example 2 For 3 minutes. 800 g of titanium oxide (Ishihara Sangyo Co., Ltd., Taipeta R-820) was added as a component (F), and the mixture was stirred with a dissolver for 14 minutes. 24 g of silica (Nippon AEROSIL Co., Ltd., AEROSIL 300) was added as the component (G) and mixed for 49 minutes to obtain a curable composition.
  • titanium oxide Ishihara Sangyo Co., Ltd., Taipeta R-820
  • silica Nippon AEROSIL Co., Ltd., AEROSIL 300
  • the viscosity of the curable composition as measured by an E-type viscometer was 39 Pa ⁇ s / 26 Pas.
  • One hundred and fifty milligrams of the curable composition was applied onto a blue glass plate having a thickness of lOcmXIOcmX3 mm in a circular manner at a position about 1 cm from the edge of the glass plate.
  • the glass plate was placed in an oven heated to 100 ° C with the coated part on top, inclined at an angle of 80 °. After one hour, the curable composition was not flowing, and the castability was 0 cm.
  • 46 g of the mixture A prepared in Synthesis Example 2 46 g of titanium oxide (Ishihara Industry Co., Ltd., Taipeta R-820) as a component (F) and silica (Nippon Aerosil Co., Ltd., Aerosil) as a (G) component 300) was added and stirred with a planetary stirring deaerator.
  • 55 g of the mixture B, 55 g of titanium oxide (Ishihara Sangyo Co., Ltd., Taipeta R-820) as the component (F), and silica (Nippon Aerosil Co., Ltd., Aerosil 300) as the component (G) were also used. .7 g was added and the mixture was stirred with a planetary stirring deaerator.
  • 30.0 g of the mixture A liquid titanium monoxide / silica mixture and 35.7 g of the mixture B liquid titanium monoxide / silica mixture were mixed by a stirring defoaming machine.
  • the viscosity (0.5 r; pin / 2.5 rpm) of the curable composition measured by an E-type viscometer was 17 Pa ⁇ s / 12 Pa ⁇ s.
  • the curable composition (150 mg) was applied onto a blue glass sheet having a thickness of 10 cm ⁇ 10 cm ⁇ 3 mm thick at a position approximately 1 cm from the edge of the glass sheet.
  • the glass plate was placed in an oven heated to 100 ° C with the coated part on top, tilted at an angle of 80 °. After 1 hour, the curable composition was flowing and the castability was 9 cm or more.
  • the viscosity (0.5 rpm lpZl. 0 rpm) of the curable composition as measured by an E-type viscometer was 17 Pa ⁇ s / 12 Pas ⁇ s.
  • One hundred and fifty milligrams of the curable composition was applied onto a blue glass sheet of 10 cm ⁇ 10 cm ⁇ 3 mm thick in a circular manner at a position about 1 cm from the edge of the glass sheet.
  • the glass plate was placed in an oven heated to 100 ° C with the coated part on top, tilted at an angle of 80 °. After one hour, the curable composition was flowing and the castability was 9 cm or more.
  • the viscosity (1.0 rpm / 2.5 rpm) of the curable composition measured by an E-type viscometer was 9 Pa-s / l O Pa-s.
  • the curable composition (150 mg) was applied onto a blue glass sheet having a thickness of 10 cm ⁇ 10 cm ⁇ 3 mm in a circular shape at a position approximately 1 cm from the edge of the glass sheet.
  • the glass plate was placed in an oven heated to 100 ° C with the coated part on top, inclined at an angle of 80 °. After one hour, the curable composition was flowing and the castability was 9 cm or more.
  • the component (B), the component (D), and 9 Omg of 1-ethynyl-1-cyclohexanol were previously mixed and stirred to prepare a mixture B solution.
  • the above mixture A and mixture B were mixed, stirred and defoamed to form a one-liquid mixture.
  • 2.5 g of the mixture was mixed with 2.5 g of titanium oxide (F) component (Ishihara Industry Co., Ltd., Taipeta R-820), and further mixed with silica (Nippon Aerosil Co., Ltd., Aerosil R 812). ) 25 mg were mixed, and the mixture was stirred and defoamed to obtain a light-shielding paste.
  • F titanium oxide
  • silica Nippon Aerosil Co., Ltd., Aerosil R 812
  • the component (B), the component (D) and 9 Omg of 1-ethyl-11-cyclohexanol were previously mixed and stirred to prepare a mixture B solution.
  • the above mixture A liquid and mixture B liquid were mixed, stirred and defoamed to obtain a one-liquid mixture.
  • 2.5 g of the mixture was mixed with 2.5 g of titanium oxide (F) component (Ishihara Sangyo Co., Ltd., Taipeta R-820), and then 188 mg of silica (Nippon Aerosil Co., Ltd., Aerosil R8 12) was added. Mix and stir. Was performed to obtain a light-shielding paste. (Example 13)
  • the curing time of the light-shielding paste obtained in Example 11 was measured.
  • the curing time measured by the snap-up time at 115 ° C. was 32 seconds, and was a light-shielding paste applicable to the method for forming a light-shielding resin layer of the present invention.
  • Example 10 2 cm
  • Example 11 2 cm
  • Example 12 2.5 cm
  • Example 15 which was a light-shielding paste applicable to the method for forming a light-shielding resin layer of the present invention.
  • Example 10 After applying 5 Omg of the light-shielding paste described in Examples 10 to 12 to a glass plate in a circular shape having a diameter of 8 mm, the glass plate was fixed at an oblique angle of 80 degrees, and the flowing distance when the temperature was maintained at 60 ° C for 5 minutes. Was evaluated.
  • Example 10 4.5 cm
  • Example 11 3.5 cm
  • Example 12 4.0 cm, which was a light-shielding paste applicable to the method for forming a light-shielding resin layer of the present invention.
  • a polyester tape of 50 ⁇ was used as a spacer, and the light-shielding paste obtained in Examples 10 to 12 was coated on a glass plate at 21 ° C. with a glass rod.
  • a resin LED package (approximately 3 x 2 x lmm thick) with double-sided tape was attached to the preparation on the side opposite to the package opening.
  • Ten test packages consisted of 10 LED packages. The opening of the package was brought into close contact with the light-shielding paste coated on the glass plate at 21 ° C. for about 1 second. The package was heated in a hot air drier at 60 ° C for 5 minutes with the package opening facing up.
  • the light-shielding paste obtained in Examples 10 to 12 was applied to the same LED package as that used in Example 16 with a needle. It took three or more parts to apply all 10 pieces to the side only.In addition, it became clear that the work was highly dependent on the skill of the worker, and that the work was very tired for the eyes. It is clear that this is not a method that can withstand the change.
  • the method for forming a light-shielding resin layer according to the present invention is efficient and leads to an improvement in productivity.
  • a nitride semiconductor layer including an n-type layer, an active layer, and a p-type layer is sequentially formed on a sapphire substrate, and a part of the active layer and the p-type layer is removed to form one of the n-type layers. Part was exposed.
  • An n-electrode is formed on the exposed n-type layer, and a p-electrode is formed on the p-type layer, respectively, and nitrided to emit blue light of 475 nm with a monochromatic emission peak of visible light.
  • a light-emitting element of a gallium-based compound semiconductor was formed.
  • thermoplastic resin highly reflective with a pigment such as titanium oxide was used as a housing material to produce a package molded body. That is, 100 parts by weight of polyphthalamide resin, 40 parts by weight of glass fiber as a reinforcing material, and 20 parts by weight of titanium oxide as a pigment were added with a small amount of a heat stabilizer and kneaded, followed by silver plating. It was injection molded integrally with the material.
  • the obtained molded package had a rectangular parallelepiped shape of 3.5 mm in length, 2.8 mm in width, and 2.0 mm in height.
  • the package molded body had four openings, and the light emitting element was mounted on the bottom surface of the recess.
  • the opening of the concave portion of the package molded product was a substantially rectangular shape having a length of 3.1 mm and a width of 2.4 mm.
  • the portion of the package formed body had a tapered shape with a wide opening on the opening side. Recessed part to cover the mounted light emitting element was injected and cured.
  • the package molded body had a pair of lead electrodes formed such that one end was inserted into the package molded body and the other end protruded from the outer wall surface of the package molded body. A part of the main surface of the lead electrode was exposed at the bottom surface of the second concave portion.
  • the light emitting element was fixed by die bonding using an epoxy resin in the round portion of the molded package.
  • the Au wire which is a conductive wire, was electrically connected to each electrode of the light emitting element and each lead electrode by wire bonding.
  • the curable composition obtained in Example 6 was applied to the side wall of the concave portion of the package molded body so as not to come into contact with the light emitting element, and dried, and was heated to about 100 ° C. Cured in about 1 hour.
  • a sealing resin composed of a combination of 10 g of the mixture A solution and 11.9 g of the mixture B solution of Synthesis Example 2 was injected as a sealing member from above the concave portion of the package molded body. This is about 6 hours at 60 ° C, about 1 hour at 70 ° C, about 1 hour at 80 ° C, about 1 hour at 120 ° C, about 1 hour at 150 Curing was performed at 80 ° C. for about 0.5 hour to produce a light emitting diode as a semiconductor device.
  • Example 17 A light emitting diode was produced in the same manner as in Example 17 except that the reflective coating member was not applied to the concave portion of the package molded product.
  • the light-emitting diode of Example 17 When the light output of the obtained light-emitting diode was measured, as shown in Table 2, the light-emitting diode of Example 17 exhibited a light output of about 580 at a current of 20 mA, as shown in Table 2. In the light-emitting diode of Comparative Example 3, an optical output of only about 470 ⁇ W was obtained under the same conditions. Thus, it was confirmed that the light emitting diode of Example 17 can improve the initial light output as compared with the light emitting diode of Comparative Example 3. Table 2
  • Optical output 580 0 / i W 4670 0 ⁇ W Further, the light emitting diodes manufactured in Example 17 and Comparative Example 3 were repeatedly mounted at 260 ° C. by reflow soldering, and the light output was reduced when the initial light output was set to 100. It was measured. The results are shown below.
  • Example 17 From Table 3, it was confirmed that in Example 17, the formation of the high-reflection coating member suppressed yellowing of a part of the reflector due to heat during reflow, and suppressed output reduction.
  • the curable composition of the present invention has excellent light-shielding properties and high light resistance, so that it can be used as a light-shielding paste. Further, since the curable composition of the present invention has low fluidity, it is possible to obtain a light emitting diode having a cured product formed only on the side wall of the LED package by using the curable composition. I can do it. Furthermore, according to the method for forming a light-shielding resin layer of the present invention, a light-shielding paste can be efficiently applied only to the LED package side wall to form a light-shielding resin layer, thereby greatly improving productivity. You.

Description

明細書
硬化性組成物とその調製方法、 遮光ペースト、 遮光用樹脂とその形成方法、 発光 ダイォード用パッケージ及び半導体装置 技術分野
本発明は、 硬化性組成物、 硬化性組成物の調製方法、 遮光ペース ト、 遮光ぺー ストを硬化させてなる遮光用樹脂、 遮光用樹脂の形成方法、 遮光用樹脂で被覆さ れた発光ダイオード用パッケージ、 及び、 半導体装置としての発光ダイオードに 関するものである。 さらに詳しくは、 接着性に優れ、 高い遮光性を有する硬化性 組成物、 好ましくはさらに低流延性であり、 好適な作業性を有する硬化性組成物 に関する。 また、 効率的に L E D用パッケージ開口部側壁にのみ遮光用樹脂層を 形成する方法、 L E D用パッケージ開口部側壁のみに遮光層が形成された発光ダ ィォードに関するものである。 背景技術
近年、 発光ダイオード (以下、 L E Dともいう) の利用分野の広がりと共に、 より信頼性が高く長期間かつ、 高輝度に発光可能な発光ダイォードが求められて いる。 発光ダイオードは外部電極、 L E Dチップ、 L E Dチップからの光を効率 的に取り出すため底面と側壁を備えた開口部からなるパッケージ及びモールド部 材で構成される。 パッケージ底面には外部電極が一体成形により形成され、 光を 良好に外部に取り出す目的で光反射率の高い貴金属膜が形成されている。 一方、 パッケージは一般に有機樹脂であるため該側壁に光が照射され続けた場合、 パッ ケ一ジ樹脂の劣化によるモールド部材との接着性の低下、 またパッケージ樹脂の 着色により反射率が低下し、 L E Dの輝度が低下するといつた問題があった。 従って、 L E D用パッケージに直接光が照射されないようにする目的、 及ぴ Z 又はパッケージ樹脂の着色による反射率の低下を起こさせないことを目的に、 パ ッケージ樹脂を保護する遮光ペーストが求められていた。
従来、 付加型反応硬化型 (ヒドロシリル化) シリコーンにおいて、 エポキシ基 及びアルコキシ基がケィ素原子に結合した有機ケィ素化合物と有機アルミニゥム 化合物を含有した硬化性組成物が良好な密着性を示し、 粘着シート、 加工布等に 応用する技術が提案されている (特開平 0 8— 1 8 3 9 3 4号公報、 特開平 0 5 一 1 4 0 4 5 9号公報) 。 し力 しながら、 この技術で得られる材料は、 光学特性 の観点から発光ダイオード用の遮光用樹脂としては向いていない。 また、 付加型 反応硬化型 (ヒドロシリル化) 液状組成物にエポキシ樹脂及ぴアルミニゥム化合 物を添加し接着性を向上させる技術が提案されている (特許第 3 3 5 4 9 7 3号 ) 。 しかしながら、 発光ダイオード用の遮光用樹脂に関しては何ら開示されてい なかった。
また、 縮合反応硬化型シリコーンにおいて、 建造物目地部のシーリング材とし て使用する場合に、 ほう酸エステルを添加することにより目地深さが浅い場合で も被着体との良好な接着性を発現できることが開示されている (特開昭 5 9—1 5 5 4 8 3号公報) 。 しかしながら本系は室温硬化であり、 加熱硬化での効果発 現や、 反応形式が異なる付加反応型の系に適用した場合の効果発現に関しては何 ら開示されていなかった。
一方、 S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2個含有する有機化合物、 1分子中に少なくとも 2個の S i H基を含有する化合 物、 ヒドロシリル化触媒を含有する硬化性組成物からなる硬化物が発光ダイォー ド用の封止剤として適用可能なことが知られている (特開 2 0 0 2 - 3 1 4 1 4 0号公報) 。 しかしながら、 発光ダイオード用の遮光用樹脂として必要な光照射 後の接着性についてはなんら開示されていなかった。
ところで、 該遮光層は硬化性組成物を硬化させて形成させることが可能である 力 硬化性組成物の流延性が高いと硬化時にパッケージ底面に流延し、 所望の厚 みの遮光層が得られないといった問題があった。 また、 硬化性組成物の流延性が 高いと、 底面が汚染され、 例えば底面に配置されたリードフレーム材への導通が 取れなくなるといった問題もあった。
さらに、 L E D用パッケージ開口部側壁にのみ塗布可能な有効な方法が得られ ていないことも問題であった。 なお、 本発明で言う 「L E D用パッケージ開口部 側壁のみに塗布する」 という意味は、 側壁近傍の底面に本発明の遮光ペーストが 流れ出して硬化した場合でも、 最終的に製品となる発光ダイォードの性能に悪影 響を及ぼさない限り、 該場合も含まれるという意味である。 発明の要約
従って、 本発明の第一の目的は、 接着性に優れ、 高い遮光性を有する硬化性組 成物、 さらに低流動性である硬化性組成物、 該硬化性組成物の調製方法、 当該硬 化性組成物からなる遮光ペースト、 硬化物、 遮光ペーストを硬化させてなる遮光 用樹脂、 遮光ペースト及ぴ 又は遮光用樹脂によって LED用パッケージの実質 上側壁のみが遮光されてなる発光ダイォードを提供することである。
さらに、 本発明の第二の目的は、 効率的に LED用パッケージ開口部側壁にの み遮光用樹脂層を形成する方法、 該方法に好適な遮光ペースト、 該方法により形 成された遮光用樹脂、 該遮光用樹脂で側壁が被覆された LED用パッケージ、 該 方法により LED用パッケージ開口部側壁のみに遮光層が形成されてなる発光ダ -ィオードを提供することである。
力かる課題を解決するために本発明者らは鋭意研究の結果、
熱可塑性樹脂及び無機部材を必須成分として含む遮光ペースト ;熱硬化性樹脂 及び無機部材を必須成分として含む遮光ペース ト ; (A) S i H基と反応性を有 する炭素一炭素二重結合を 1分子中に少なくとも 2個含有する有機系骨格からな る有機化合物、 (B) 1分子中に少なくとも 2個の S i H基を含有するケィ素化 合物、 (C) ヒドロシリル化触媒、 (D) シランカツプリング剤及び Z又はェポ キシ基含有化合物、 (E) シラノール縮合触媒、 及び (F) 無機部材を必須成分 として含む硬化性組成物; さらに (G) シリカを含む上記硬化性組成物; 80度 の角度に傾斜したガラス基材上での、 100°Cで 1時間経過後における流延性が 2 cm以下である上記硬化性組成物;上記硬化性組成物よりなる遮光ペースト ; 又は、 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極 と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一 体成形されてなる LED用パッケージにおいて、 (1) 基材に塗布させた遮光べ 一ス トに、 (2) LED用パッケージの開口部を密着させた後、 (3) LED用 パッケージの開口部を上にした状態で加熱することにより、 遮光ペーストをノ、。ッ ケ一ジの側壁にのみ流延させる遮光用樹脂層の形成方法とすることによって、 上 記課題を解決できることを見出し、 本発明に至った。
すなわち、 本発明の第一は、
熱可塑性樹脂及び無機部材を必須成分として含むことを特徴とする遮光ペース ト (請求の範囲第 1項) であって、
熱硬化性樹脂及び無機部材を必須成分として含むことを特徴とする遮光ペース ト (請求の範囲第 2項) であって、
無機部材が酸化チタンであることを特徴とする請求の範囲第 1又は 2項記載の 遮光ペース ト (請求の範囲第 3項) であって、
請求の範囲第 3項記載の酸化チタンがルチル型であり、 その平均粒子径が 0 . 1〜1 . 0 /i mであることを特徴とする遮光ペース ト (請求の範囲第 4項) であ つて、
(A) S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2個含有する有機系骨格からなる有機化合物、 (B ) 1分子中に少なくとも 2個 の S i H基を含有するケィ素化合物、 (C ) ヒドロシリル化触媒、 (D ) シラン カップリング剤及び/又はエポキシ基含有化合物、 (E ) シラノール縮合触媒、 及び (F ) 無機部材を必須成分として含むことを特徴とする硬化性組成物 (請求 の範囲第 5項) であって、
( F ) 成分が酸化チタンであることを特徴とする請求の範囲第 5項記載の硬化 性組成物 (請求の範囲第 6項) であって、
酸化チタンがルチル型であり、 その平均粒子径が 0 . 1〜1 . Ο μ ιηであるこ とを特徴とする請求の範囲第 6項記載の硬化性糸且成物 (請求の範囲第 7項) であ つて、
(D ) 成分が、 分子中にエポキシ基、 メタクリル基、 アクリル基、 イソシァネ ート基、 イソシァヌレート基、 ビュル基及び力ルバメート基からなる群より選ば れる少なくとも 1個の官能基と加水分解性のケィ素基を有するシランカップリン グ剤であることを特徴とする請求の範囲第 5〜 7項のいずれか一項に記載の硬化 性組成物 (請求の範囲第 8項) であって、
(D ) 成分が、 分子中にエポキシ基と加水分解性のケィ素基を有するシラン力 ップリング剤であることを特徴とする請求の範囲第 5〜 8項のいずれか一項に記 載の硬化性組成物 (請求の範囲第 9項) であって、
( E ) 成分が、 有機アルミニウム化合物及びほう酸エステルから選ばれる少な くとも 1種であることを特徴とする請求の範囲第 5〜 9項のいずれか一項に記載 の硬化性組成物 (請求の範囲第 1 0項) であって、
( E ) 成分が、 アルミニウムキレート化合物及びアルミニウムアルコラート化 合物から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5〜 1 0 項のいずれか一項に記載の硬化性組成物 (請求の範囲第 1 1項) であって、
( E ) 成分が、 アルミニウムェチルァセトアセテートジイソプロピレート、 ァ ルミユウムェチルァセトアセテートジイソプチレート、 アルミニウムトリス (ェ チルァセトアセテート) 、 アルミニウムビスェチノレアセトアセテートモノァセチ ルァセトネート及びアルミニウムトリス (ァセチルァセトネート) からなる群よ り選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5〜1 0項のい ずれか一項に記載の硬化性組成物 (請求の範囲第 1 2項) であって、
( E ) 成分が、 ほう酸トリノルマルオタタデシル、 ほう酸トリノルマルォクチ ル、 ほう酸トリノルマルプチル、 ほう酸トリイソプロピル、 ほう酸トリノルマル プロピル、 〖まう酸トリェチル及びほぅ酸トリメチルからなる群より選ばれる少な くとも 1種であることを特徴とする請求の範囲第 5〜 1 0項のいずれか一項に記 載の硬化性組成物 (請求の範囲第 1 3項) であって、
(A) 成分が、 下記一般式 (I )
R 1
°YNr° en
Figure imgf000007_0001
(式中 R 1は炭素数 1〜 5 0の一価の有機基を表し、 それぞれの R 1は異なって いても同一であってもよい。 ) で表される有機化合物を含むことを特徴とする請 求の範囲第 5〜1 3項のいずれか一項に記載の硬化性組成物 (請求の範囲第 1 4 項) であって、
(A) 成分がトリアリノレイソシァヌレートであり、 ( B ) 成分が 1, 3, 5 , 7—テトラメチルシクロテトラシロキサンとトリアリルイソシァヌレートの反応 物であることを特徴とする請求の範囲第 5〜 1 4項のいずれか一項に記載の硬化 性組成物 (請求の範囲第 1 5項) であって、
(A) 成分がトリアリルイソシァヌレートとモノグリシジルジァリルイソシァ ヌレートの混合物であり、 ( B ) 成分が 1 , 3 , 5 , 7—テトラメチルシクロテ トラシロキサンとトリアリノレイソシァヌレートの反応物であることを特徴とする 請求の範囲第 5〜 1 4項のいずれか一項に記載の硬化性組成物 (請求の範囲第 1 6項) であって、
さらに (G) シリカを含有することを特徴とする請求の範囲第 5〜1 6項のい ずれか一項に記載の硬化性組成物 (請求の範囲第 1 7項) であって、
8 0度の角度に傾斜したガラス基材上での、 1 0 0 °Cで 1時間経過後における 硬化性組成物の流延性が 2 c m以下であることを特徴とする請求の範囲第 1 7項 に記載の硬化性組成物 (請求の範囲第 1 8項) であって、
(A) 成分〜 ( E ) 成分を混合したものに、 ( F ) 成分及び (G) 成分を混合 して得られる請求の範囲第 1 7又は 1 8項記載の硬化性組成物 (請求の範囲第 1 9項) であって、
(G) シリカの一次粒子の平均粒子径が 3〜 2 0 n mであることを特徴とする 請求の範囲第 1 7〜1 9項のいずれか一項に記載の硬化性組成物 (請求の範囲第 2 0項) であって、
(A) 〜 (E ) 成分を混合したものに、 遊星式攪拌脱泡機を用いて (F ) 成分 及び (G) 成分を混合することを特徴とする請求の範囲第 1 7〜 2 0項のいずれ か一項に記載の硬化性組成物を調製する方法 (請求の範囲第 2 1項) であって、 (A) 〜 (E ) 成分を混合したものに、 ディゾルバーを用いて (F ) 成分及ぴ (G) 成分を混合することを特徴とする請求の範囲第 1 7〜2 0項のいずれか一 項に記載の硬化性組成物を調製する方法 (請求の範囲第 2 2項) であって、 請求の範囲第 5〜 2 0項のいずれか一項に記載の硬化性組成物からなる遮光べ 一スト (請求の範囲第 2 3項) であって、
請求の範囲第 5〜 2 0項のいずれか一項に記載の硬化性組成物を硬化させてな る硬化物 (請求の範囲第 2 4項) であって、 請求の範囲第 1〜 4、 23項のいずれか一項に記載の遮光ペーストを硬化させ てなる遮光用樹脂 (請求の範囲第 25項) であって、
LED用パッケージ開口部の実質上側壁にのみ、 請求の範囲第 25項記載の遮 光用樹脂を有することを特徴とする L ED用パッケージ (請求の範囲第 26項) であって、
LED用パッケージが榭脂製であることを特徴とする請求の範囲第 26項記載 の LED用パッケージ (請求の範囲第 27項) であって、
LED用パッケージの成形樹脂が半結晶性ポリマー樹脂を含有する組成物であ ることを特徴とする請求の範囲第 26項記載の L ED用パッケージ (請求の範囲 第 28項) であって、
LED用パッケージがセラミック製であることを特徴とする請求の範囲第 26 項記載の LED用パッケージ (請求の範囲第 29項) であって、
L E D用パッケージの開口部が長方形であることを特徴とする請求の範囲第 2 6項記載の LED用パッケージ (請求の範囲第 30項) であって、
L E D用パッケージの開口部が円形であることを特徴とする請求の範囲第 26 項記載の LED用パッケージ (請求の範囲第 3 1項) であって、
L E D用パッケージの開口部が楕円形であることを特徴とする請求の範囲第 2 6項記載の LED用パッケージ (請求の範囲第 3 2項) であって、
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一体成 形されてなる LED用パッケージと、 LED用パッケージの底面に載置される発 光素子とを有する半導体装置において、 該 LED用パッケージの実質上側壁にの み、 請求の範囲第 5〜 20項のいずれか一項に記載の硬化性組成物が塗布され、 及び Z又は請求の範囲第 24項記載の硬化物が形成されてなることを特徴とする 半導体装置 (請求の範囲第 3 3項) であって、
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するよう こ成形樹脂にて一体成 形されてなる L E D用パッケージと、 L E D用パッケージの底面に載置される発 光素子とを有する半導体装置において、 該 L E D用パッケージの実質上側壁にの み、 請求の範囲第 1〜4、 2 3項のいずれか一項に記載の遮光ペース トが塗布さ れ、 及び/又は請求の範囲第 2 5項記載の遮光用樹脂が形成され遮光されてなる ことを特徴とする半導体装置 (請求の範囲第 3 4項) であって、
パッケージの成形樹脂が半結晶性ポリマー樹脂を含有する組成物であることを 特徴とする請求の範囲第 3 3又は 3 4項記載の半導体装置 (請求の範囲第 3 5項 ) である。
また、 本発明の第二は、
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一体成 形されてなる L E D用パッケージにおいて、
( 1 ) 基材に塗布させた遮光ペース トに、
( 2 ) L E D用パッケージの開口部を密着させた後、
( 3 ) L E D用パッケージの開口部を上にした状態で加熱する、
ことにより、 遮光ペーストをパッケージの側壁にのみ流延させることを特徴とす る遮光用樹脂層の形成方法 (請求の範囲第 3 6項) であって、
遮光ペーストが、 平板、 水平板、 板状ベルト、 Δ状ロールからなる群より選ば れる平面状基材上にコーティングされていることを特徴とする請求の範囲第 3 6 項記載の遮光用樹脂層の形成方法 (請求の範囲第 3 7項) であって、
遮光ペーストが、 ロール、 ボールからなる群より選ばれる曲面状基材上にコー ティングされていることを特徴とする請求の範囲第 3 6項記載の遮光用樹脂層の 形成方法 (請求の範囲第 3 8項) であって、
L E D用パッケージの開口部を上にした状態で加熱する工程 (3 ) において、 加熱を段階的に実施することを特徴とする請求の範囲第 3 6項記載の遮光用樹脂 層の形成方法 (請求の範囲第 3 9項) であって、
L E D用パッケージの開口部が長方形であり、 短い方の一辺の長さが 1 0 0 μ m以上であることを特徴とする請求の範囲第 3 6項記載の遮光用樹脂層の形成方 法 (請求の範囲第 4 0項) であって、
L E D用パッケージの開口部が円形であることを特徴とする請求の範囲第 3 6 項記載の遮光用樹脂層の形成方法 (請求の範囲第 4 1項) であって、 LED用パッケージの開口部が楕円形であることを特徴とする請求の範囲第 3 6項記載の遮光用樹脂層の形成方法 (請求の範囲第 42項) であって、
遮光ペーストの粘度が、 常温 (23°C) では 10ボイズ以上であり、 加熱時 ( 30°C) には 1ボイズ以上であることを特徴とする請求の範囲第 36〜42項の いずれか一項に記載の遮光用樹脂層の形成方法 (請求の範囲第 43項) であって、 遮光ペーストの 23°Cにおけるチクソ性 (粘度比) が 0. 8〜1. 2であるこ とを特徴とする請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層 の形成方法 (請求の範囲第 44項) であって、
遮光ペーストの 11 5°Cにおけるスナップアップタイムで測定される硬化時間 が 1 5秒〜 90秒であることを特徴とする請求の範囲第 36 ~42項のいずれか 一項に記載の遮光用樹脂層の形成方法 (請求の範囲第 45項) であって、 遮光ペースト 5 Omgをガラス板に 8 mm径の円状に塗布した後、 該ガラス板 を斜め 80度に固定して、 21°Cに 10分間保持した時の流下距離が、 5mn!〜 3 Ommであることを特徴とする請求の範囲第 36〜42項のいずれか一項に記 載の遮光用樹脂層の形成方法 (請求の範囲第 46項) であって、
遮光ペースト 5 Omgをガラス板に 8 mm径の円状に塗布した後、 該ガラス板 を斜め 80度に固定して、 60°Cに 5分間保持した時の流下距離が、 10mm〜 7 Ommであることを特徴とする請求の範囲第 36〜42項のいずれか一項に記 載の遮光用樹脂層の形成方法 (請求の範囲第 47項) であって、
遮光ペーストが、 熱可塑性樹脂及ぴ無機部材を必須成分として含むことを特徴 とする請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成方 法 (請求の範囲第 48項) であって、
遮光ペーストが、 熱硬化性樹脂及び無機部材を必須成分として含むことを特徴 とする請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成方 法 (請求の範囲第 49項) であって、
遮光ペーストが、
(A) S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2 個含有する有機化合物、 (B) 1分子中に少なくとも 2個の S i H基を含有する ケィ素化合物、 (C) ヒ ドロシリル化触媒、 (D) シランカップリング剤及び Z 又はエポキシ基含有化合物、 (E ) シラノール縮合触媒、 及び (F ) 無機部材を 必須成分として含むことを特徴とする硬化性組成物よりなる遮光ペースト、 であることを特徴とする請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光 用樹脂層の形成方法 (請求の範囲第 5 0項) であって、
無機部材が酸化チタンであることを特徴とする請求の範囲第 4 8〜 5 0項のい ずれか一項に記載の遮光用樹脂層の形成方法 (請求の範囲第 5 1項) であって、 酸化チタンがルチル型であり、 その平均粒子径が 0 . 1〜 1 . 0 μ mであるこ とを特徴とする請求の範囲第 5 1項記載の遮光用樹脂層の形成方法 (請求の範囲 第 5 2項) であって、
さらに (G) シリカを含有することを特徴とする請求の範囲第 4 8〜5 0項の いずれか一項に記載の遮光用樹脂層の形成方法 (請求の範囲第 5 3項) であって、 シリカが疎水性シリカであることを特徴とする請求の範囲第 5 3項記載の遮光 用樹脂層の形成方法 (請求の範囲第 5 4項) であって、
(D ) 成分が、 分子中にエポキシ基、 メタクリル基、 アクリル基、 イソシァネ ート基、 イソシァヌレート基、 ビニル基及び力ルバメート基からなる群より選ば れる少なくとも 1個の官能基と加水分解性のケィ素基を有するシランカツプリン グ剤であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形成方法 (請求の範囲第 5 5項) であって、
(D ) 成分が、 分子中にエポキシ基と加水分解性のケィ素基を有するシランカ ップリング剤であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の 形成方法 (請求の範囲第 5 6項) であって、
( E ) 成分が、 有機アルミニウム化合物及びほう酸エステルから選ばれる少な くとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形 成方法 (請求の範囲第 5 7項) であって、
( E ) 成分が、 アルミニウムキレート化合物及びアルミニウムアルコラ一ト化 合物から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5 0項記 載の遮光用樹脂層の形成方法 (請求の範囲第 5 8項) であって、
( E ) 成分が、 アルミニウムェチルァセトアセテートジイソプロピレート、 ァ ルミニゥムェチルァセトアセテートジイソプチレート、 アルミニウムトリス (ェ チルァセトアセテート) 、 アルミニウムビスェチルァセトアセテートモノァセチ ルァセトネート及びアルミニゥムトリス (ァセチルァセトネート) からなる群よ り選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮 光用樹脂層の形成方法 (請求の範囲第 5 9項) であって、
( E ) 成分が、 ほう酸トリノルマルォクタデシル、 〖まう酸トリノルマルォクチ ル、 ほう酸トリノルマルブチル、 ほう酸トリイソプロピル、 〖まう酸トリノノレマル プロピル、 ほう酸トリェチル及ぴほぅ酸トリメチルからなる群より選ばれる少な くとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形 成方法 (請求の範囲第 6 0項) であって、
(A) 成分が、 下記一般式 (I)
R 1
Figure imgf000013_0001
(式中 R 1は炭素数 1 ~ 5 0の一価の有機基を表し、 それぞれの R 1は異なって いても同一であってもよい。 ) で表される有機化合物を含むことを特徴とする請 求の範囲第 5 0項記載の遮光用樹脂層の形成方法 (請求の範囲第 6 1項) であつ て、
(Α) 成分がトリアリルイソシァヌレートであり、 ( Β ) 成分が 1 , 3, 5 ,
7—テトラメチルシクロテトラシロキサンとトリァリルイソシァヌレートの反応 物であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形成方法 ( 請求の範囲第 6 2項) であって、
( Α) 成分がトリアリルイソシァヌレートとモノダリシジルジァリルイソシァ ヌレートの混合物であり、 ( Β ) 成分が 1 , 3, 5 , 7—テトラメチノレシクロテ トラシロキサンとトリアリルィソシァヌレートの反応物であることを特徴とする 請求の範囲第 5 0項記載の遮光用樹脂層の形成方法 (請求の範囲第 6 3項) であ つて、
請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光用樹脂層の形成方法に より形成された遮光用樹脂の黄色度 (イェローインデックス, Y I ) 1 初期値 を 1 0 0とした場合、 2 6 0 °C/ 3分間加熱後の値が 1 0 0〜 1 5 0であること を特徴とする遮光用樹脂 (請求の範囲第 6 4項) であって、
請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光用樹脂層の形成方法に より形成された遮光用樹脂の黄色度 (イェローインデックス, Y I ) 1 初期値 を 1 0 0とした場合、 キセノンウエザーメーターによる耐光性試験後の値が 1 0 0〜1 5 0であることを特徴とする遮光用樹脂 (請求の範囲第 6 5項) であって、 請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光用樹脂層の形成方法に より形成された遮光用樹脂層の厚みが、 1〜1 0 0 0 μ ιηであることを特徴とす る遮光用樹脂 (請求の範囲第 6 6項) であって、
請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光用樹脂層の形成方法に より形成された遮光用樹脂と基板との接着強度が、 初期値を 1 0 0とした場合、 キセノンウエザーメーターによる耐光性試験後の値が 7 0以上であることを特徴 とする遮光用樹脂 (請求の範囲第 6 7項) であって、
請求の範囲第 3 6〜 6 3項のいずれか一項に記載の遮光用樹脂層の形成方法に よって遮光ペーストが塗布され、 遮光用樹脂層が形成された L E D用パッケージ (請求の範囲第 6 8項) であって、
L E D用パッケージが樹脂製であることを特徴とする請求の範囲第 6 8項記載 の L E D用パッケージ (請求の範囲第 6 9項) であって、
L E D用パッケージが半結晶性ポリマー樹脂を含有することを特徴とする請求 の範囲第 6 8項記載の L E D用パッケージ (請求の範囲第 7 0項) であって、
L E D用パッケージがセラミックス製であることを特徴とする請求の範囲第 6 8項記載の L E D用パッケージ (請求の範囲第 7 1項) であって、
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一体成 形されてなる L E D用パッケージと、 L E D用パッケージの底面に载置される発 光素子とを有する半導体装置において、 該 L E D用パッケ一ジの実質上側壁にの み、 請求の範囲第 3 6〜6 3項のいずれか一項に記載の遮光用樹脂層の形成方法 により、 遮光用樹脂が形成され遮光されてなることを特徴とする半導体装置 (請 求の範囲第 7 2項) であって、
L E D用パッケージが樹脂製であることを特徴とする請求の範囲第 7 2項記載 の半導体装置 (請求の範囲第 7 3項) であって、
L E D用パッケージが半結晶性ポリマ一樹脂を含有することを特徴とする請求 の範囲第 7 2項記載の半導体装置 (請求の範囲第 7 4項) であって、
L E D用パッケージがセラミックス製であることを特徴とする請求の範囲第 7 2項記載の半導体装置 (請求の範囲第 7 5項) であって、
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一体成 形されてなる L E D用パッケージと、 L E D用パッケージの底面に載置される発 光素子とを有する半導体装置において、 発光素子の周囲の L E D用パッケージの 底面及び側壁に、 遮光用樹脂が形成され遮光されてなることを特徴とする半導体 装置 (請求の範囲第 7 6項) である。 発明の詳細な開示
以下、 本発明を詳細に説明する。
<本発明の第一 >
本発明でいう遮光ペーストとは、 樹脂と無機部材を必須成分とし、 必要に応じ て、 その他の粘度調整剤、 接着性付与剤、 溶剤等の添加剤を含むものである。 ま た、 該遮光ペーストを被着体に塗布し、 その被着体を光から保護するものである。 本発明の遮光ペーストは、 熱可塑性樹脂と無機部材を必須成分として含むもの、 及び、 熱硬化性樹脂と無機部材を必須成分として含むものが挙げられる。
本発明の遮光ペーストに用いられる熱可塑性樹脂としては、 種々のものを用い ることができる。 例えば、 メチルメタタリレートの単独重合体あるいはメチルメ タクリレートと他モノマーとのランダム、 ブロック、 あるいはグラフト重合体等 のポリメチルメタタリレート系樹脂 (例えば日立化成社製ォプトレッツ等) 、 プ チルァクリレートの単独重合体あるいはプチルァクリレートと他モノマーとのラ ンダム、 ブロック、 あるいはグラフト重合体等のポリブチルアタリレート系樹脂 等に代表されるアクリル系樹脂;ビスフエノール A、 3, 3, 5—トリメチルシ ク口へキシリデンビスフエノーノレ等をモノマー構造として含有するポリカーボネ ート樹脂等のポリカーボネート系樹脂 (例えば帝人社製 APE C等) ; ノルポル ネン誘導体、 ビュルモノマー等を単独あるいは共重合した樹脂、 ノルボルネン誘 導体を開環メタセシス重合させた樹脂、 あるいはその水素添加物等のシクロォレ フィン系樹脂 (例えば、 三井化学社製 APE L、 日本ゼオン社製 ZEONOR、 ZEONEX、 J SR社製 ARTON等) ;エチレンとマレイミドの共重合体等 のォレフイン一マレイミド系榭脂 (例えば東ソ一社製 T I—PAS等) ; ビスフ エノール 、 ビス (4一 (2—ヒ ドロキシエトキシ) フエニル) フルオレン等の ビスフエノーノレ類やジエチレングリコール等のジォーノレ類と、 テレフタノレ酸、 ィ ソフタル酸等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリエステル 等のポリエステル系樹脂 (例えば鐘紡社製 O— P E T等) ;ポリエーテルスルホ ン樹脂;ポリアリレート樹脂;ポリビエルァセタール樹脂; ポリエチレン樹脂; ポリプロピレン樹脂; ポリスチレン樹脂; ポリアミ ド樹脂; シリコーン樹脂; フ ッ素樹脂等の他、 天然ゴム、 EPDM等のゴム状樹脂等が例示されるが、 これら に限定されるものではない。
LED用パッケージ側壁との接着性の点から、 アクリル系樹脂、 ポリアミド樹 月旨、 ポリエステル系樹脂が好ましい。 また、 耐光性の点からは、 シリコーン樹脂、 フッ素樹脂等が好ましい。
熱可塑性樹脂としては架橋性基を有していてもよい。 例えば、 分子中に S i H 基と反応性を有する炭素一炭素二重結合及び Z又は S i H基を有していてもよい。 得られる架橋体がより強靭となりやすいという点においては、 分子中に S i H基 と反応性を有する炭素一炭素二重結合及び/又は S i H基を平均して 1分子中に 1個以上有していることが好ましい。 その他の架橋性基としては、 エポキシ基、 アミノ基、 ラジカル重合性不飽和基、 カルボキシル基、 イソシァネート基、 ヒド 口キシル基、 アルコキシシリル基等が挙げられる。 得られる架橋体の耐熱性が高 くなりやすいという点においては、 架橋性基を平均して 1分子中に 1個以上有し ていることが好ましい。
熱可塑性樹脂の分子量としては、 特に限定はないが、 塗布性という点において は、 数平均分子量が 10000以下であることが好ましく、 5000以下である ことがより好ましい。 分子量分布についても特に限定はないが、 混合物の粘度が 低くなり塗布性が良好となりやすいという点においては、 分子量分布が 3以下で あることが好ましく、 2以下であることがより好ましく、 1 . 5以下であること がさらに好ましい。 また、 数平均分子量は、 ゲルパーミエーシヨンクロマトグラ フィ一により測定することができる。
熱可塑性樹脂としては単一のものを用いてもよいし、 複数のものを組み合わせ て用いてもよい。
遮光ペースト中の熱可塑性樹脂の配合量としては特に限定はないが、 好ましい 使用量は本発明の遮光ペースト全体量の 0 . 1〜 9 0重量%でぁる。 塗布性が良 好である点から、 好ましい使用量の範囲は、 遮光ペースト全体量の 1 0重量。 /0以 上、 より好ましくは 4 0重量%以上、 さらに好ましくは 6 0重量。 /0以上、 特に好 ましくは 8 0重量%以上である。 配合量が少ないと塗布性が低下し、 塗布不良の ため遮光性が低下し易くなる傾向がある。 また、 遮光性が良好である点から、 好 ましい使用量の範囲は、 遮光ペースト全体量の 9 0重量%以下、 より好ましくは 8 0重量%以下、 さらに好ましくは 6 0重量。 /0以下、 特に好ましくは 5 0重量% 以下、 より特に好ましくは 3 0重量。 /0以下である。 熱可塑性樹脂の配合量が多い と、 添加する無機部材が少なくなり遮光性が低下し易くなる傾向がある。 そこで、 塗布性と遮光性の両立のためには、 好ましい使用量の範囲は、 遮光ペースト全体 量の 1 0重量%以上 8 0重量%以下、 より好ましくは 1 0重量%以上 5 0重量% 以下、 さらに好ましくは 1 0重量%以上 3 0重量%以下である。
熱可塑性樹脂は下記に説明する無機部材と直接混合させてもよいし、 溶媒等を 用いて均一に混合してもよいし、 その後溶媒を除いて均一な分散状態及び Z又は 混合状態としてもよい。 熱可塑性樹脂を分散させて用いる場合は、 その平均粒子 径は種々設定できるが、 好ましい平均粒子径の下限は 1 0 n mであり、 好ましい 平均粒子径の上限は 1 0 μ mである。 粒子系の分布はあってもよく、 単一分散で あっても複数のピーク粒径を持っていてもよいが、 遮光ペーストの粘度が低く塗 布性が良好となりやすいという観点からは粒子径の変動係数が 1 0 %以下である ことが好ましい。
本発明の遮光ペーストに用いられる熱硬化性樹脂としては、 種々のものを用い ることができる。 熱硬化性樹脂としては、 ェポキシ樹脂、 シァネートエステル樹 月旨、 フヱノール樹脂、 ポリイミド樹脂、 ウレタン樹脂、 ビスマレイミド樹脂等が 例示されるが、 これらに限定されるものではない。 これらのうち、 接着性等の実 用特性に優れるという観点から、 エポキシ樹脂が好ましい。
エポキシ樹脂としては、 例えば、 ノポラックフエノール型エポキシ樹脂、 ビフ ェニル型エポキシ樹脂、 ジシクロペンタジェン型エポキシ樹脂、 ビスフエノール Fジグリシジルエーテル、 ビスフエノール Aジグリシジルエーテル、 2, 2, 一 ビス ( 4ーグリシジルォキシシクロへキシル) プロパン、 3, 4一エポキシシク 口へキシルメチル _ 3, 4一エポキシシクロへキサンカーボキシレート、 ビュル シクロへキセンジォキサイ ド、 2 - ( 3, 4—エポキシシク口へキシノレ) 一 5, 5—スピロ一 (3, 4 _エポキシシクロへキサン) _ 1, 3 _ジォキサン、 ビス ( 3 , 4一エポキシシク口へキシル) アジぺ一ト、 1 , 2 _シクロプロパンジカ ルポン酸ビスグリシジルエステル、 ト Vグリシジルイソシァヌレート、 モノァリ ノレジグリシジノレイソシァヌレート、 ジァリノレモノグリシジルイソシァヌレート等 のエポキシ樹脂を、 へキサヒドロ無水フタル酸、 メチルへキサヒドロ無水フタル 酸、 トリアルキルテトラヒドロ無水フタル酸、 水素化メチルナジック酸無水物等 の脂肪族酸無水物で硬化させたものが挙げられる。 これらのエポキシ樹脂あるい は硬化剤は、 それぞれ単独で用いても、 複数のものを組み合わせてもよい。 熱硬化性樹脂としては単一のものを用いてもよいし、 複数のものを組み合わせ て用いてもよい。
遮光ペースト中の熱硬化性樹脂の配合量としては特に限定はないが、 好ましい 使用量は本発明の遮光ペースト全体量の 0 . 1〜 9 0重量%である。 塗布性が良 好である点から、 好ましい使用量の範囲は、 遮光ペースト全体量の 1 0重量%以 上、 より好ましくは 4 0重量%以上、 さらに好ましくは 6 0重量。 /0以上、 特に好 ましくは 8 0重量%以上である。 配合量が少ないと塗布性が低下し、 塗布不良の ため遮光性が低下し易くなる傾向がある。 また、 遮光性が良好である点から、 好 ましい使用量の範囲は、 遮光ペース ト全体量の 9 0重量%以下、 より好ましくは 8 0重量%以下、 さらに好ましくは 6 0重量%以下、 特に好ましくは 5 0重量% 以下、 より特に好ましくは 3 0重量%以下である。 熱硬化性樹脂の配合量が多い と、 添加する無機部材が少なくなり遮光性が低下し易くなる傾向がある。 そこで、 塗布性と遮光性の両立のためには、 好ましい使用量の範囲は、 遮光ペース ト全体 量の 1 0重量%以上 8 0重量%以下、 より好ましくは 1 0重量%以上 5 0重量% 以下、 さらに好ましくは 1 0重量%以上 3 0重量%以下である。
熱硬化性樹脂は、 下記に説明する無機部材と直接混合させてもよいし、 溶媒等 を用いて均一に混合してもよいし、 その後溶媒を除いて均一な分散状態及び Z又 は混合状態としてもよい。 熱硬化性樹脂を分散させて用いる場合は、 その平均粒 子径は種々設定できるが、 好ましい平均粒子径の下限は 1 0 n mであり、 好まし い平均粒子径の上限は 1 0 t mである。 粒子系の分布はあってもよく、 単一分散 であっても複数のピーク粒径を持っていてもよいが、 遮光ペース トの粘度が低く 成形性が良好となりやすいという観点からは、 粒子径の変動係数が 1 0 %以下で あることが好ましい。
遮光ペーストに用いられる熱硬化性樹脂において、 耐光性 ·耐熱性の点から請 求の範囲第 5項に説明される熱硬化性樹脂が好ましい。
本発明において用いられる無機部材は、 樹脂中に分散し外部からの光を反射さ せることが望まれる。 このような無機部材としては、 例えば、 アルミナ、 酸化チ タン、 酸化錫、 酸化亜鉛、 一酸化錫、 酸化カルシウム、 酸化マグネシウム、 酸化 ベリリゥム等の酸化物;窒化硼素、 窒化ケィ素、 窒化アルミニウム等の金属窒化 物; S i C等の金属炭化物;炭酸カルシウム、 炭酸力リゥム、 炭酸ナトリゥム、 炭酸マグネシウム、 炭酸バリウム等の金属炭酸塩;水酸化アルミニウム、 水酸化 マグネシウム等の金属水酸化物;ほう酸アルミニウム、 チタン酸バリウム、 珪酸 カルシウム、 クレー、 石膏、 硫酸バリウム、 マイ力、 ケイソゥ土、 白土、 無機バ ルーン、 蛍光物質等が挙げられる。 これらは単独で用いてもよいし、 2種以上併 用してもよい。
無機部材は、 適宜表面処理してもよい。 表面処理としては、 アルキル化処理、 トリメチルシリル化処理、 シリコーン処理、 カップリング剤による処理等が挙げ られる。
この場合の力ップリング剤の例としては、 シランカップリング剤が挙げられる, シランカツプリング剤としては、 分子中に有機基と反応性のある官能基と加水分 解性のケィ素基を各々少なくとも 1個有する化合物であれば特に限定されない。 有機基と反応性のある官能基としては、 取扱い性の点からエポキシ基、 メタク リル基、 アクリル基、 イソシァネート基、 イソシァヌレート基、 ビエル基、 カル バメート基から選ばれる少なくとも 1個の官能基が好ましく、 硬化性及ぴ接着性 の点から、 エポキシ基、 メタクリル基、 アクリル基が特に好ましい。 加水分解性 のケィ素基としては、 取扱い性の点からアルコキシシリル基が好ましく、 反応性 の点からメ トキシシリル基、 エトキシシリル基が特に好ましい。
好ましいシランカツプリング剤としては、 3—グリシドキシプロピルトリメト キシシラン、 3—グリシドキシプロピルトリエトキシシラン、 2— ( 3, ' 4—ェ ポキシシク口へキシノレ) ェチノレトリメ トキシシラン、 2 - ( 3 , 4一エポキシシ ク口へキシル) ェチルトリエトキシシラン等のエポキシ官能基を有するアルコキ シシラン類; 3—メタタリロキシプロピルトリメ トキシシラン、 3—メタクリロ キシプロピルトリエトキシシラン、 3—アタリロキシプロピルトリメ トキシシラ ン、 3—アタリロキシプロピルトリエトキシシラン、 メタクリロキシメチルトリ メ トキシシラン、 メタクリロキシメチルトリエトキシシラン、 アタリロキシメチ ルトリメ トキシシラン、 アタリ口キシメチルトリェトキシシラン等のメタクリル 基あるいはァクリル基を有するアルコキシシラン類が例示できる。
遮光ペースト中の無機部材の配合量としては特に限定はないが、 好ましい使用 量は、 本発明の遮光ペースト全体量の 0 . 1〜 9 0重量%である。 塗布性が良好 であるという点から、 好ましい使用量は、 遮光ペースト全体量の 8 0重量 °/0以下、 より好ましくは 7 0重量 °/0以下、 さらに好ましくは 5 0重量%以下、 特に好まし くは 4 0重量%以下、 より特に好ましくは 3 0重量以下である。 配合量が多いと 塗布性が低下し、 塗布不良のため遮光性が低下し易くなる傾向がある。 また、 遮 光性が良好である点から、 好ましい使用量は、 遮光ペースト全体量の 5重量%以 上、 より好ましくは 1 0重量%以上、 さらに好ましくは 3 0重量%以上、 特に好 ましくは 4 0重量0 /0以上、 より特に好ましくは 5 0重量%以上である。 そこで、 塗布性と遮光性の両立のためには、 好ましい使用量は、 遮光ペースト全体量の 1 0重量%以上 8 0重量%以下、 より好ましくは 2 0重量%以上 7 0重量%以下、 さらに好ましくは 3 0重量。 /0以上 6 0重量%以下である。 無機部材の形状は、 分散性や遮光性を考慮して、 球状、 針状、 フレーク状等、 種々の形状をとることができる。
また、 無機部材の平均粒子径は、 1 nm〜 100 μ mの種々のものを好適に用 いることができるが、 樹脂への分散性の点から 1. Ο μιη以下が好ましく、 0. 8 μπι以下がより好ましく、 0. 4 μπι以下がさらに好ましい。 また、 隠ぺぃカ の点からは、 0. Ι μπι以上が好ましく、 0. 2 m以上がより好ましい。 そこ で、 分散性と隠ぺぃ力の両立の点からは、 平均粒子径は、 0. Ι μπι以上 1. 0 μπι以下が好ましい。 なお、 当該平均粒子径は、 電子顕微鏡写真をもとに実測す ることができる。
特に酸化チタンは、 高い白色度、 隠ぺぃ力、 優れた耐久性の観点から遮光ぺー ストの無機部材として好適に用いることが出来る。 遮光用樹脂の耐久性の観点か らその結晶形はルチル型が好ましい。 また、 平均粒子径は、 樹脂への分散性の点 から 1. Ο μπι以下が好ましく、 0. 8 μΐη以下がより好ましく、 0. 4 μ m以 下がさらに好ましい。 また、 隠ぺぃ力の点からは、 0. Ι μΐη以上が好ましく、 0. 2 /m以上がより好ましい。 そこで、 分散性と隠ぺぃ力の両立の点からは、 平均粒子径は、 0. 1 111以上1. 0 m以下が好ましい。 なお、 酸化チタンの 平均粒子径は、 電子顕微鏡写真をもとに画像解析装置 (ルーゼッタス I I I U) にて測定する。 酸化チタンは硫酸法及び塩素法どちらで製造されたものも好適に 用いることが出来る。 また、 樹脂との親和性をよくするために A 1や S i等の含 水酸化物でその表面を処理したものも好適に用いることが出来る。 例えば、 石原 産業株式会社製 タイペータ R— 820, R- 680, CR— 50— 2, CR- 9 7, CR— 60, CR— 60— 2等が好適に用いることが出来る。
遮光ペースト中の酸化チタンの配合量としては特に限定はないが、 好ましい使 用量は、 本発明の遮光ペースト全体量の 0. 1〜90重量%である。 塗布性が良 好であるという点から、 好ましい使用量は、 遮光ペースト全体量の 80重量%以 下、 より好ましくは 70重量%以下、 さらに好ましくは 50重量%以下、 特に好 ましくは 40重量%以下、 より特に好ましくは 30重量以下である。 配合量が多 いと塗布性が低下し、 塗布不良のため遮光性が低下し易くなる傾向がある。 また、 遮光性が良好である点から、 好ましい使用量は、 遮光ペースト全体量の 5重量0 /0 以上、 より好ましくは 1 0重量。 /0以上、 さらに好ましくは 3 0重量%以上、 特に 好ましくは 4 0重量0 /0以上、 より特に好ましくは 5 0重量%以上である。 そこで、 塗布性と遮光性の両立のためには、 好ましい使用量は、 遮光ペースト全体量の 1 0重量。 /0以上 8 0重量%以下、 より好ましくは 2 0重量%以上 7 0重量。 /0以下、 さらに好ましくは 3 0重量%以上 6 0重量%以下である。
また、 無機部材としてアルミナ、 シリカ、 窒化硼素、 窒化アルミニウム等を用 いた場合は、 耐侯性に強く高反射率を維持させることができる。
無機部材としての蛍光物質は、 遮蔽効果に加えて L E Dチップからの青色光を 白色光に変換することが可能であり、 さらに発光ダイォードの特性を向上させる こ 'とが可能である。 また、 蛍光物質に加えて該遮光ペースト中に拡散剤を含有さ せることによって、 より指向性を増すこともできる。 具体的な拡散剤としては、 無機系であるチタン酸バリウム、 酸化チタン、 酸化アルミニウム、 酸化珪素等や 有機系であるグアナミン樹脂等が好適に用いられる。 蛍光物質は、 窒化物系化合 物半導体から放出された可視光や紫外光を他の発光波長に変換するためのもので ある。 したがって、 L E Dチップに用いられる発光層から発光される発光波長や 発光ダイォードから放出される所望の発光波長に応じて種々のものが用いられる。 特に、 L E Dチップが発光した光と、 L E Dチップからの光によって励起され発 光する蛍光物質からの光が補色関係にあるとき白色系光を発光させることもでき る。
このような蛍光物質として、 セリウムで付活されたイットリウム■アルミユウ ム ·ガーネット系蛍光物質、 ペリレン系誘導体や、 銅、 アルミニウムで付活され た硫化亜鉛力ドミゥムや、 マンガンで付活された酸化マグネシウム ·チタン等種 々のものが挙げられる。 これらの蛍光物質は、 1種類で用いてもよいし、 2種類 以上混合して用いてもよい。 特に、 セリウムで付活されたイットリウム ·アルミ 二ゥム 'ガーネット系蛍光物質 (R e 3 R e ' 5 O i 2: C e、 伹し、 R eは、 Y、 G d、 L u、 S c、 L aから選択される少なくとも一種、 R e, は、 A 1、 I n、 B、 T 1から選択される少なくとも一種である。 ) は、 ガーネッ ト構造であるた め、 熱、 光及ぴ水に強く、 励起スペク トルのピークを 4 5 0 n m付近にさせるこ とができる。 また、 発光ピークも 5 3 0 n m付近等にあり、 7 0 0 n mまで裾を 引くブロードな発光スペク トルを持たせることができる。 しかも、 組成の A 1の 一部を G aで置換することで発光波長が短波長側にシフトし、 また組成の Yの一 部を G dで置換することで、 発光波長が長波長側へシフトさせることができる。 このように組成を変化させることで連続的に種々の発光波長とすることができる ため蛍光物質として特に好ましい。 なお、 所望に応じて発光波長を長波長や短波 長側に調節させるため、 イットリウムの一部を L u、 S c、 L aに置換させるこ ともできるし、 アルミニウムの一部を I n、 B、 T 1に置換させることもできる。 さらに、 セリゥムに加えて、 T bや C rを微量含有させて吸収波長を調整させる こともできる。
変換性が良好である点から、 蛍光物質の好ましい使用量は、 遮光ペースト全体 量の 5重量%以上であり、 より好ましくは 1 0重量%以上であり、 さらに好まし くは 3 0重量%以上であり、 特に好ましくは 4 0重量%以上であり、 より特に好 ましくは 5 0重量%以上である。 使用量の上限は、 遮光ペースト全体量の好まし くは 8 0重量%以下、 より好ましくは 6 0重量%以下である。
次に、 本発明の硬化性組成物について説明する。
当該硬化性組成物は、 (A) S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2個含有する有機化合物、 (B ) 1分子中に少なくとも 2 個の S i H基を含有するケィ素化合物、 ( C ) ヒドロシリル化触媒、 (D ) シラ ンカップリング剤及び/又はエポキシ基含有化合物、 (E ) シラノール縮合触媒、 及び (F ) 無機部材を必須成分として含むものである。
まず、 (A) 成分について説明する。
(A) 成分は、 S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少 なくとも 2個含有する有機化合物であれば特に限定されない。 有機化合物として はポリシロキサン一有機プロックコポリマーやポリシロキサン一有機グラフトコ ポリマーのようなシロキサン単位 (S i— O— S i ) を含むものではなく、 構成 元素として C、 H、 N、 0、 S、 ハロゲンのみを含むものであることが好ましい。 シ口キサン単位を含むものの場合は、 ガス透過性やはじきの問題がある。
S i H基と反応性を有する炭素一炭素二重結合の結合位置は特に限定されず、 分子内のどこに存在してもよい。 (A) 成分の有機化合物は、 有機重合体系の化合物と有機単量体系化合物に分 類できる。
有機重合体系化合物としては、 例えば、 ポリエーテル系、 ポリエステル系、 ポ リアリレート系、 ポリカーボネート系、 飽和炭化水素系、 不飽和炭化水素系、 ポ リアクリル酸エステル系、 ポリアミ ド系、 フエノールーホルムアルデヒ ド系 (フ ェノール樹脂系) 、 ポリイミ ド系の化合物等を用いることができる。
有機単量体系化合物としては、 例えば、 フエノール系、 ビスフエノール系、 ベ ンゼン、 ナフタレン等の芳香族炭化水素系;直鎖系、 脂環系等の脂肪族炭化水素 系;複素環系の化合物、 及びこれらの混合物等が挙げられる。
(A) 成分における S i H基と反応性を有する炭素一炭素二重結合 しては、 特に限定されないが、 下記一般式 (I I )
R
( I I )
CH2二 c
(式中 R 2は水素原子あるいはメチル基を表す。 ) で示される基が反応性の点か ら好適である。 また、 原料の入手の容易さからは、
H
CH2二 c
で示される基が特に好ましい。
(A) 成分における S i H基と反応性を有する炭素一炭素二重結合としては、 下記一般式 (I I I ) .
Figure imgf000024_0001
R 3
(式中 R 3は水素原子あるいはメチル基を表し、 2つの R 3は同一でも異なって いてもよい。 ) で表される部分構造を環内に有する脂環式の基が、 硬化物の耐熱 性が高いという点から好適である。 また、 原料の入手の容易さからは、 下記式 II
c
Z H
で表される部分構造を環内に有する脂環式の基が好適である。
S i H基と反応性を有する炭素一炭素二重結合は (A) 成分の骨格部分に直接 結合していてもよく、 2価以上の置換基を介して共有結合していても良い。
2価以上の置換基としては、 炭素数 0〜1 0の置換基であれば特に限定されな いが、 構成元素として C、 H、 N、 0、 S、 及びハロゲンのみを含むものが好ま しい。 これらの置換基の例としては、
Figure imgf000026_0001
Figure imgf000026_0002
(nは 0 ~4の数を ¾す。) 等が挙げられる。 また、 これらの 2価以上の置換基の 2つ以上が共有結合により つながって 1つの 2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、 ビニル基、 ァリル基、 メタリル基、 アクリル基、 メタクリル基、 2—ヒ ドロキシ一 3— (ァリルォキシ ) プロピル基、 2—ァリルフエ-ル基、 3—ァリルフエニル基、 4.ーァリルフエ -ル基、 2— (ァリルォキシ) フエニル基、 3— (ァリルォキシ) フエニル基、 4一 (ァリルォキシ) フエニル基、 2— (ァリルォキシ) ェチル基、 2 , 2—ビ ス (ァリルォキシメチル) プチル基、 3—ァリルォキシ一 2, 2—ビス (ァリル ォキシメチル) プロピル基、
Figure imgf000027_0001
( nは 5 >n >2 を満足する数を表す。 )
Figure imgf000027_0002
( nは 0 〜4の数を表す。) 等が挙げられる。 (A) 成分の具体的な例としては、 ジァリルフタレート、 トリァリノレトリメリ テート、 ジエチレングリコールビスァリルカーボネート、 トリメチロールプロパ ンジァリルエーテル、 ペンタエリスリ トールトリアリルエーテル、 1, 1, 2, 2—テトラァリロキシェタン、 ジァリリデンペンタエリスリット、 トリアリルシ ァヌレート、 トリァリルイソシァヌレート、 1 , 2, 4一トリビュルシクロへキ サン、 ジビュルベンゼン類 (純度 5 0〜 1 0 0 %のもの、 好ましくは純度 8 0〜 1 0 0 %のもの) 、 ジビニルビフエニル、 1, 3—ジイソプロぺニルベンゼン、 1, 4ージィソプロぺニノレベンゼン、 及びそれらのオリゴマー、 1, 2—ポリブ タジェン (1、 2比率 1 0〜1 0 0 %のもの、 好ましくは 1、 2比率 5 0〜: L 0 0 %のもの) 、 ノボラックフエノーノレのァリノレエーテノレ、 ァリノレイ匕ポリフエニレ ンォキサイ ド、
OoSHn
( L= ϋ)
Figure imgf000029_0001
( ° ¾¾¾0ffl s <§ 靈
— 0 — — , - 0 - '—ο— y ) εΗΟ
Figure imgf000029_0002
LZ 00請 Zdf/ェ:) d 請 OAV
Figure imgf000030_0001
· Κ ο
Figure imgf000030_0002
82
0請 Zdf/ェ:) d 請 OAV の他、 従来公知のエポキシ樹脂のグリシジル基の一部あるいは全部をァリル基に 置き換えたもの等が挙げられる。
(A) 成分としては、 上記のように骨格部分とアルケニル基とに分けて表現し がたい、 低分子量化合物も用いることができる。 これらの低分子量化合物の具体 例としては、 ブタジエン、 イソプレン、 ォクタジェン、 デカジエン等の脂肪族鎖 状ポリェン化合物系、 シクロペンタジェン、 シク口へキサジェン、 シクロォクタ ジェン、 ジシク口ペンタジェン、 トリシク口ペンタジェン、 ノノレポノレナジェン等 の脂肪族環状ポリェン化合物系、 ビュルシクロペンテン、 ビュルシクロへキセン 等の置換脂肪族環状ォレフィン化合物系等が挙げられる。
(A) 成分としては、 耐熱性をより向上し得るという観点からは、 S i H基と 反応性を有する炭素一炭素二重結合を (A) 成分 1 gあたり 0 . 0 0 1 m o 1以 上含有するものが好ましく、 (A) 成分 l gあたり 0 . 0 0 5 m o l以上含有す るものがより好ましく、 (A) 成分 l gあたり 0 . 0 0 8 m o 1以上含有するも のがさらに好ましい。
(A) 成分の S i H基と反応性を有する炭素一炭素二重結合の数は、 平均して
1分子当たり少なくとも 2個あればよいが、 力学強度をより向上したい場合には 2個を越えることが好ましく、 3個以上であることがより好ましい。 (A) 成分 の S i H基と反応性を有する炭素一炭素二重結合の数が 1分子内当たり 1個以下 の場合は、 (B ) 成分と反応してもグラフト構造となるのみで架橋構造とならな い。
(A) 成分としては反応性が良好であるという観点からは、 1分子中にビニル 基を 1個以上含有していることが好ましく、 1分子中にビニル基を 2個以上含有 していることがより好ましい。 また貯蔵安定性が良好となりやすいという観点か らは、 1分子中にビニル基を 6個以下含有していることが好ましく、 1分子中に ビュル基を 4個以下含有していることがより好ましい。
(A) 成分としては、 力学的耐熱性が高いという観点及び原料液の糸引き性が 少なく成形性、 取扱い性、 塗布性が良好であるという観点からは、 分子量が 9 0 0未満のものが好ましく、 7 0 0未満のものがより好ましく、 5 0 0未満のもの がさらに好ましい。 揮発性が少なく取扱い性が良好であるという観点からは、 好 ましくは 1 0 0以上、 より好ましくは 1 5 0以上である。 分子量は、 例えばガス クロマトグラフ質量分析計や液体ク口マトダラフ質量分析計により測定すること ができる。
(A) 成分としては、 他の成分との均一な混合、 及び良好な作業性を得るため には、 粘度としては 2 3。Cにおいて 1 0 0 0ボイズ未満のものが好ましく、 3 0 0ポィズ未満のものがより好ましく、 3 0ポィズ未満のものがさらに好ましい。 下限としては、 好ましくは 0 . 0 5ボイズ以上、 より好ましくは 0 . 1ボイズ以 上である。 粘度は E型粘度計によって測定することができる。
(A) 成分としては、 着色特に黄変の抑制の観点からはフ ノール性水酸基及 び Z又はフエノール性水酸基の誘導体を有する化合物の含有量が少ないものが好 ましく、 フ ノール性水酸基及び Z又はフ ノール性水酸基の誘導体を有する化 合物を含まないものが好ましい。 本発明におけるフエノール性水酸基とはべンゼ ン環、 ナフタレン環、 アントラセン環等に例示される芳香族炭化水素核に直接結 合した水酸基を示し、 フエノール性水酸基の誘導体とは上述のフェノール性水酸 基の水素原子を、 メチル基、 ェチル基等のアルキル基、 ビュル基、 ァリル基等の アルケニル基、 ァセトキシル基等のァシル基等により置換された基を示す。
得られる遮光用樹脂の着色が少なく、 耐光性が高いという観点からは、 (A) 成分としてはビニルシクロへキセン、 ジシクロペンタジェン、 トリアリノレイソシ ァヌレート、 2 , 2—ビス ( 4—ヒ ドロキシシク口へキシル) プロパンのジァリ ルエーテル、 1, 2, 4一トリビエルシクロへキサンが好ましく、 トリアリノレイ ソシァヌレート、 2 , 2一ビス ( 4ーヒ ドロキシシクロへキシノレ) プロパンのジ ァリルエーテル、 1, 2 , 4—トリ ビエルシクロへキサンが特に好ましい。
得られる硬化性組成物の粘度を低減させる目的では、 ビュルシクロへキセン、 ジビュルベンゼン、 1, 2, 4一トリビュルシクロへキサン、 トリアリルイソシ ァヌレートが特に好ましい。
(A) 成分としてはその他の反応性基を有していてもよい。 この場合の反応性 基としては、 エポキシ基、 アミノ基、 ラジカル重合性不飽和基、 カルボキシル基、 イソシァネート基、 ヒ ドロキシル基、 アルコキシシリル基等が挙げられる。 これ らの官能基を有している場合には得られる硬化性組成物の接着性が高くなりやす く、 得られる硬化物の強度が高くなりやすい。 接着性がより高くなりうるという 点からは、 これらの官能基のうちエポキシ基が好ましい。 また、 得られる硬化物 の耐熱性が高くなりやすいという点においては、 反応性基を平均して 1分子中に 1個以上有していることが好ましい。
(A) 成分としては耐熱性 ·耐光性が高いという観点から、 下記一般式 ( I )
R 1
。 ( I )
R YN、Ri
0
(式中 R 1は炭素数 1〜5 0の一価の有機基を表し、 それぞれの R 1は異なって いても同一であってもよい。 ) で表される有機化合物を含むことが好ましい。 上記一般式 (I ) の R 1としては、 得られる硬化物の耐熱性がより高くなりう るという観点からは、 炭素数 1〜 2 0の一価の有機基であることが好ましく、 炭 素数 1〜1 0の一価の有機基であることがより好ましく、 炭素数 1〜4の一価の 有機基であることがさらに好ましい。 R 1の例としては、 好ましくは、 メチル基、 ェチル基、 プロピル基、 プチル基、 フエニル基、 ベンジル基、 フエネチル基、 ビ ニル基、 ァリル基、 グリシジル基、
3H3 (式中 nは 4〜1 9の数)
数)
Figure imgf000034_0001
OH
CH2-CH-CH2 0― CH2-CH=CH2 ,
Figure imgf000034_0002
0— CH2-CH=CH2
'CH2'CH— CH2'0——CH2— CH=CH2 等が挙げられる。
上記一般式 (I ) の R 1としては、 得られる硬化物の各種材料との接着性が良 好になりうるという観点からは、 3つの R 1のうち少なくとも 1つがエポキシ基 を一つ以上含む炭素数 1 ~ 5 0の一価の有機基であることが好ましく、
Figure imgf000035_0001
で表されるエポキシ基を 1個以上含む炭素数 1 ~ 5 0の一価の有機基であること がより好ましい。 これらの好ましい R 1の例としては、 グリシジル基、
CH H— CH-CH, (式中 nは 2〜 1 8の数)
Figure imgf000035_0002
Figure imgf000035_0003
等が挙げられる。
上記一般式 (I ) の R 1としては、 得られる硬化物の化学的な熱安定性が良好 になり うるという観点からは、 これらのうち少なくとも 1つが、 2個以下の酸素 原子を含みかつ構成元素として C、 H、 N、 Oのみを含む炭素数 1〜5 0の一価 の有機基であることが好ましく、 炭素数 1〜 5 0の一価の炭化水素基であること がより好ましい。 これらの好ましい R 1の例としては、 メチル基、 ェチル基、 プ 口ピル基、 プチル基、 フエニル基、 ベンジル基、 フエネチル基、 ビュル基、 ァリ ル基、 グリシジル基、 (式中 nは 4〜 1 9の数)
Figure imgf000036_0001
°Η2 (式中 ηは 2〜 1 8の数)
0
CH=CH2 (式中 nは 0〜 1 7の数) n
(式中 nは 0 9の数)
Figure imgf000036_0002
CH3
I I
CH^" H— CH=CH2
Figure imgf000036_0003
OH
•CH2 - CH - CH CH 2一 CH= CHつ
Figure imgf000036_0004
0——CH2— CH=CH2
I 2
• CH2' CH— CH2- 0—— CH2— CH= CH2 等が挙げられる。
上記一般式 (I ) の R 1としては、 反応性が良好になるという観点からは、 3 つの R 1のうち少なく とも 1つが
CH2
II
Figure imgf000037_0001
で表される基を 1個以上含む炭素数 5 0の一価の有機基であることが好まし く、 下記一般式 ( I V)
( I V )
CHゥニ
Figure imgf000037_0002
(式中 R 4は水素原子あるいはメチル基を表す。 ) で表される基を 1個以上含む ~ 5 0の一価の有機基であることがより好ましく、
3つの R 1のうち少なく とも 2つが下記一般式 (V)
Figure imgf000037_0003
(式中 R 5は直接結合あるいは炭素数 1〜 4 8の二価の有機基を表し、 R 6は水 素原子あるいはメチル基を表す。 ) で表される有機化合物 (複数の R 5及び R 6 はそれぞれ異なっていても同一であってもよい。 ) であることがさらに好ましい。 上記一般式 (V) の R 5は、 直接結合あるいは炭素数 1〜4 8の二価の有機基 であるが、 得られる硬化物の耐熱性がより高くなり うるという観点からは、 直接 結合あるいは炭素数 1〜 2 0の二価の有機基であることが好ましく、 直接結合あ るいは炭素数 1〜 1 0の二価の有機基であることがより好ましく、 直接結合ある いは炭素数 1〜4の二価の有機基であることがさらに好ましい。 これらの好まし い R 5の例としては、 CH (式中 nは 0〜 1 7の数:
(式中 nは 0〜 1 6の数)
Figure imgf000038_0001
0
II
C一〇十 CH, (式中 nは 0〜 1 6の数)
π
の数)
Figure imgf000038_0002
OH
—— CH2— CH - CH2— 0— CH2- 0—— CH2— CH=CH。
CH2— CH— CH2― 0—— CH2 - 等が挙げられる。
上記一般式 (V) の R 5としては、 得られる硬化物の化学的な熱安定性が良好 になりうるという観点からは、 直接結合あるいは 2つ以下の酸素原子を含みかつ 構成元素として C、 H、 Oのみを含む炭素数 1 ~ 4 8の二価の有機基であること が好ましく、 直接結合あるいは炭素数 1〜 4 8の二価の炭化水素基であることが より好ましい。 これらの好ましい R 5の例としては、 CH2†^- (式中 nは 1〜 1 7の数) 0
C~i"CH2")— (式中 nは"!〜 1 6の数)
(式中 nは 1〜 1 6の数)
Figure imgf000039_0001
Figure imgf000039_0002
OH
I
— CH2— CH - CH2― 0— CH2- ,
0― CH2— CH=CH2
— CH2— CH-CH,—— 0一 CH2- 等が挙げられる。
上記一般式 (V) の R 6は、 水素原子あるいはメチル基であるが、 反応性が良 好であるという観点からは、 水素原子が好ましい。
ただし、 上記のような一般式 (I ) で表される有機化合物の好ましい例におい ても、 S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2 個含有することは必要である。 耐熱性をより向上し得るという観点からは、 S i H基と反応性を有する炭素一炭素二重結合を 1分子中に 3個以上含有する有機化 合物であることがより好ましい。
以上のような一般式 (I ) で表される有機化合物の好ましい具体例としては、 トリァリルイソシァヌレート、
Figure imgf000040_0001
等が挙げられる。
得られる硬化性組成物の粘度を低減する目的ではトリァリルイソシァヌレート が好ましい。
遮光用樹脂の接着性向上のためには、 (A) 成分としてはジァリルモノグリシ ジルイソシァヌレートが好ましい。 遮光用樹脂の接着性向上と耐光性を両立させるためには、 (A) 成分としては トリアリルイソシァヌレートとジァリルモノグリシジルイソシァヌレートの混合 物が好ましい。 該混合物はィソシァヌル環骨格を有するため耐熱性の点からも有 効である。 混合比は任意に設定出来るが、 上記目的達成のためにはトリァリルイ ソシァヌレート /ジァリルモノグリシジルイソシァヌレート (モル比) = 9 Z 1 〜: L/9が好ましく、 8/2〜2/8がさらに好ましく、 7//3〜3Z7が特に 好ましい。 '
(A) 成分は、 単独又は 2種以上のものを混合して用いることが可能である。 次に、 (B) 成分について説明する。
本発明の (B) 成分は、 1分子中に少なくとも 2個の S i H基を含有する化合 物である。
(B) 成分については 1分子中に少なくとも 2個の S i H基を含有する化合物 であれば特に制限がなく、 例えば国際公開 WO 96/1 51 94に記載される化 合物で、 1分子中に少なくとも 2個の S i H基を有するもの等が使用できる。 これらのうち、 入手性の面からは、 1分子中に少なくとも 2個の S i H基を有 する鎖状及び Z又は環状オルガノポリシロキサンが好ましい。 具体的には、 例え ば
Figure imgf000042_0001
(m=2〜"! 000、 n =0〜"! 000 )
Figure imgf000042_0002
=2 〜1 000 =0 - 000
Figure imgf000042_0003
=2〜1 000 =Q〜1 000
Figure imgf000042_0004
=1 〜1 000 =0 〜1 000
0 0 し〜 し = )
00
'( 0
Figure imgf000043_0001
( 0 00 レ〜 0= u 、 00 0 レ〜 L=^)
Figure imgf000043_0002
S8S9Z.0/f00Z OAV 等が挙げられる。
(A) 成分との相溶性が良いという観点からは、 下記一般式 (V I )
Figure imgf000044_0001
(式中、 R 7は炭素数 1〜6の有機基を表し、 nは 2〜1 0の数を表す。 ) で表 される、 1分子中に少なくとも 2個の S i H基を有する環状オルガノポリシロキ サンがより好ましい。
一般式 (V I ) で表される化合物中の置換基 R 7は、 C、 H、 Oから構成され る炭素数 1〜 6の有機基であることが好ましく、 炭素数 1〜 6の炭化水素基であ ることがより好ましく、 メチル基であることがさらに好ましい。
一般式 (V I ) で表される化合物としては、 入手容易性の観点からは、 1, 3, 5 ' 7—テトラメチルシクロテトラシロキサンであることが好ましい。
(B) 成分の分子量は特に制約はなく任意のものが好適に使用できるが、 硬化 性組成物の流動性をより発現しゃすいという観点からは低分子量のものが好まし く用いられる。 この場合、 分子量の下限は好ましくは 5 0であり、 分子量の上限 は好ましくは 1 0 0, 0 0 0、 より好ましくは 1, 0 0 0、 さらに好ましくは 7 0 0である。
(B) 成分は単独又は 2種以上のものを混合して用いることが可能である。 また、 (A) 成分と良好な相溶性を有するという観点、 及び (B) 成分の揮発 性が低くなり得られる組成物からのアウトガスの問題が生じ難 、という観点から は、 (B) 成分は、 S i H基と反応性を有する炭素一炭素二重結合を 1分子中に 1個以上含有する有機化合物 (a ) と、 1分子中に少なくとも 2個の S i H基を 有する鎖状及び/又は環状のポリオルガノシロキサン (]3 ) を、 ヒドロシリル化 反応して得ることができる化合物であることが好ましい。
( ( a) 成分)
ここで ( ) 成分としては、 上記した (A) 成分である、 S i H基と反応性を 有する炭素一炭素二重結合を 1分子中に少なくとも 2個含有する有機化合物と同 じもの (ひ 1 ) も用いることができる。 (α ΐ ) 成分を用いると得られる硬化物 の架橋密度が高くなり力学強度が高い硬化物となりやすい。
その他、 S i Η基と反応性を有する炭素一炭素二重結合を 1分子中に 1個含有 する有機化合物 (α 2 ) も用いることができる。 ( 2) 成分を用いると得られ る硬化物が低弾性となりやすい。
( ( a 2 ) 成分)
(a 2) 成分としては、 S i H基と反応性を有する炭素一炭素二重結合を 1分 子中に 1個含有する有機化合物であれば特に限定されないが、 (B) 成分が (A ) 成分と相溶性がよくなるという点においては、 化合物としてはポリシロキサン 一有機プロックコポリマーやポリシロキサン一有機グラフトコポリマーのような シロキサン単位 (S i -O- S i ) を含むものではなく、 構成元素として C、 H、 N、 0、 S、 及びハロゲンのみを含むものであることが好ましい。
(α 2) 成分の S i H基と反応性を有する炭素一炭素二重結合の結合位置は特 に限定されず、 分子内のどこに存在してもよい。
{a 2) 成分の化合物は、 重合体系の化合物と単量体系化合物に分類できる。 重合体系化合物としては例えば、 ポリシロキサン系、 ポリエーテル系、 ポリエ ステル系、 ポリアリレート系、 ポリカーボネート系、 飽和炭化水素系、 不飽和炭 化水素系、 ポリアクリル酸エステル系、 ポリアミ ド系、 フエノール一ホルムアル デヒド系 (フ ノール樹脂系) 、 ポリイミド系の化合物等を用いることができる。 また単量体系化合物としては、 例えば、 フエノール系、 ビスフエノール系、 ベ ンゼン、 ナフタレン等の芳香族炭化水素系;直鎖系、 脂環系等の脂肪族炭化水素 系;複素環系の化合物、 シリコン系の化合物及びこれらの混合物等が挙げられる。
(α 2) 成分における S i H基と反応性を有する炭素一炭素二重結合としては 特に限定されないが、 下記一般式 (I I )
Figure imgf000045_0001
(I I)
CHゥニ
(式中 R 2は水素原子あるいはメチル基を表す。 ) で示される基が反応性の点か ら好適である。 また、 原料の入手の容易さからは
Figure imgf000046_0001
で示される基が特に好ましい。
( a 2 ) 成分における S i H基と反応性を有する炭素一炭素二重結合としては、 下記一般式 (I I I )
Figure imgf000046_0002
C
II ( I I I )
Zへ
(式中 R 3は水素原子あるいはメチル基を表し、 2つの R 3は同一でも異なって いてもよい。 ) で表される部分構造を環内に有する脂環式の基が、 硬化物の耐熱 性が高いという点から好適である。 また、 原料の入手の容易さからは、 下記式
II
c
z ヽ H
で表される部分構造を環内に有する脂環式の基が好適である。
S i H基と反応性を有する炭素一炭素二重結合は (α 2 ) 成分の骨格部分に直 接結合していてもよく、 2価以上の置換基を介して共有結合していても良い。
2価以上の置換基としては炭素数 0〜1 0の置換基であれば特に限定されない 力 ( Β ) 成分が (Α) 成分と相溶性がよくなりやすいという点においては、 構 成元素として C、 H、 N、 0、 S、 及びハロゲンのみを含むものが好ましい。 こ れらの置換基の例としては、 4 ひ
Figure imgf000047_0001
oen
Figure imgf000047_0002
Figure imgf000047_0003
0〜4の数を表す。) 等が挙げられる。 また、 これらの 2価以上の置換基の 2つ以上が共有結合により つながって 1つの 2価以上の置換基を構成していてもよい。
以上のような骨格部分に共有結合する基の例としては、 ビュル基、 ァリル基、 メタリル基、 アクリル基、 メタクリル基、 2—ヒドロキシー 3— (ァリルォキシ ) プロピル基、 2—ァリルフエニル基、 3—ァリルフエニル基、 4ーァリルフエ エル基、 2— (ァリルォキシ) フエニル基、 3— (ァリルォキシ) フエエル基、 4 - (ァリルォキシ) フエニル基、 2— (ァリルォキシ) ェチル基、 2, 2—ビ ス (ァリルォキシメチル) プチル基、 3ーァリルォキシ一 2, 2 -ビス (ァリル ォキシメチル) プロピル基、
Figure imgf000048_0001
( nは 5≥n≥2を満足する数を表す。)
Figure imgf000048_0002
から選ばれる 2価の基を表す。 )
Figure imgf000048_0003
(nは 0〜4の数を表す。) 等が挙げられる。
( α 2 ) 成分の具体的な例としては、 プロペン、 1ープテン、 1—ペンテン 1一へキセン、 1一ヘプテン、 1—ォクテン、 1一ノネン、 1ーデセン、 1ード デセン、 1一ゥンデセン、 出光石油化学社製リニアレン、 4 , 4—ジメチルー 1 一ペンテン、 2—メチノレー 1一へキセン、 2 , 3 , 3—トリメチルー 1—ブテン、 2, 4 , 4ートリメチルー 1一ペンテン等のような鎖状脂肪族炭化水素系化合物 類; シク口へキセン、 メチノレシクロへキセン、 メチレンシク口へキサン、 ノルボ ノレ二レン、 ェチリデンシク口へキサン、 ビニノレシク口へキサン、 カンフェン、 力 レン、 αピネン、 0ピネン等のような環状脂肪族炭化水素系化合物類;スチレン、 aメチルスチレン、 インデン、 ァリノレベンゼン、 4一フエエノレー 1—ブテン等の ような芳香族炭化水素系化合物類;アルキルァリルエーテル、 了リルフエニルェ 一テル等のァリルエーテル類; グリセリンモノアリルエーテル、 エチレングリコ ールモノアリルエーテル、 4一ビュル— 1 , 3—ジォキソラン一 2 _オン等の脂 肪族系化合物類; 1, 2—ジメ トキシ一 4ーァリルベンゼン、 o—ァリルフエノ ール等の芳香族系化合物類;モノアリルジベンジルイソシァヌレート、 モノァリ ルジグリシジルイソシァヌレート等の置換ィソシァヌレート類; ビエルトリメチ ノレシラン、 ビエルトリメ トキシシラン、 ビエルトリフエニルシラン等のシリコン 化合物等が挙げられる。 さらに、 片末端ァリル化ポリエチレンオキサイ ド、 片末 端ァリル化ポリプロピレンォキサイド等のポリエーテル系樹脂;片末端ァリル化 ポリイソプチレン等の炭化水素系樹脂;片末端ァリル化ポリプチルァクリレート、 片末端ァリル化ポリメチルメタクリレート等のァクリル系樹脂、 等の片末端にビ 二ル基を有するポリマーあるいはオリゴマ一類等も挙げることができる。
構造は線状でも枝分かれ状でもよく、 分子量は特に制約はなく種々のものを用 いることができる。 分子量分布も特に制限ないが、 混合物の粘度が低くなり成形 性が良好となりやすいという点においては、 分子量分布が 3以下であることが好 ましく、 2以下であることがより好ましく、 1 . 5以下であることがさらに好ま しい。
( α 2 ) 成分のガラス転移温度が存在する場合はこれについても特に限定はな く種々のものが用いられるが、 得られる硬化物が強靭となりやすいという点にお いては、 ガラス転移温度は 1 0 0 °C以下であることが好ましく、 5 0 °C以下であ ることがより好ましく、 0 °C以下であることがさらに好ましい。 好ましい樹脂の 例としてはポリプチルァクリレート樹脂等が挙げられる。 逆に得られる硬化物の 耐熱性が高くなるという点においては、 ガラス転移温度は 1 0 o °c以上であるこ とが好ましく、 1 2 0 °C以上であることがより好ましく、 1 5 0 °C以上であるこ とがさらに好ましく、 1 7 0 °C以上であることが最も好ましい。 ガラス転移温度 は動的粘弾性測定において t a η δが極大を示す温度として求めることができる。
{ a 2 ) 成分としては、 得られる硬化物の耐熱性が高くなるという点において は、 炭化水素化合物であることが好ましい。 この場合、 好ましい炭素数の下限は 7であり、 好ましい炭素数の上限は 1 0である。
( a 2 ) 成分としてはその他の反応性基を有していてもよい。 この場合の反応 性基としては、 エポキシ基、 アミノ基、 ラジカル重合性不飽和基、 カルボキシル 基、 イソシァネート基、 ヒドロキシル基、 アルコキシシリル基等が挙げられる。 これらの官能基を有している場合には得られる硬化性組成物の接着性が高くなり やすく、 得られる硬化物の強度が高くなりやすい。 接着性がより高くなりうると いう点からは、 これらの官能基のうちエポキシ基が好ましい。 また、 得られる硬 化物の耐熱性が高くなりやすいという点においては、 反応性基を平均して 1分子 中に 1個以上有していることが好ましい。 具体的にはモノアリルジグリシジルイ ソシァヌレート、 ァリルグリシジルエーテル、 ァリロキシェチルメタクリ レート、 了リロキシェチルァクリレート、 ビニノレトリメ トキシシラン等が挙げられる。 上記のような (α 2 ) 成分としては単一のものを用いてもよいし、 複数のもの を組み合わせて用いてもよい。
( ( ]3 ) 成分)
{ β ) 成分は、 1分子中に少なくとも 2個の S i Η基を有する鎖状及び Ζ又は 環状のポリオルガノシロキサンである。
具体的には、 例えば =2 〜1 0 0 0
〜1 0 0 0 )
Figure imgf000051_0001
( m=2 〜1 0 0 0 、 n =0 〜1 0 0 0 )
Figure imgf000051_0002
( m=2 〜1 0 0 0 n =0 — 1 0 0 0 )t
Figure imgf000051_0003
( m=2 ~1 0 0 0 、 n =0 〜1 0 0 0 )
Figure imgf000051_0004
( m= 〜1 0 0 0 、 n =0 〜"! 0 0 0 )
Figure imgf000052_0001
( 000 し〜
Figure imgf000052_0002
*( 000 し〜 0= u 、 000 し〜
Figure imgf000052_0003
( 000 し〜 0= u 、 000 〜 し =UJ )
Figure imgf000052_0004
o 請 OAV 等が挙げられる。
ここで、 (c 成分との相溶性が良くなりやすいという観点から、 下記一般式 (V I)
Figure imgf000053_0001
(式中、 R 7は炭素数 1 ~6の有機基を表し、 nは 3〜10の数を表す。 ) で表 される、 1分子中に少なくとも 3個の S i H基を有する環状ポリオルガノシロキ サンが好ましい。
一般式 (V I) で表される化合物中の置換基 R 7は、 C、 H、 〇から構成され る炭素数 1 ~ 6の有機基であることが好ましく、 炭素数 1〜 6の炭化水素基であ ることがより好ましく、 メチル基であることがさらに好ましい。
入手容易性等から、 1, 3, 5, 7—テトラメチルシクロテトラシロキサンで あることが好ましい。
上記したような各種 ( ) 成分は単独もしくは 2種以上のものを混合して用い ることが可能である。
( (α) 成分と (β) 成分の反応)
次に、 本発明の (Β) 成分として、 (ο 成分と ( 3) 成分をヒ ドロシリル化 反応して得ることができる化合物を用いる場合の、 (ο 成分と (]3) 成分との ヒ ドロシリル化反応に関して説明する。
なお、 (ο 成分と W 成分をヒ ドロシリル化反応すると、 本発明の (Β) 成分を含む複数の化合物の混合物が得られることがあるが、 そこから (Β) 成分 を分離することなく混合物のままで用いて本発明の硬化性組成物を作成すること もできる。
(α) 成分と (β) 成分をヒ ドロシリル化反応させる場合の (α) 成分と (Ρ ) 成分の混合比率は、 特に限定されないが、 得られる (Β) 成分と (Α) 成分と のヒドロシリル化による硬化物の強度を考えた場合、 (Β) 成分の S i H基が多 い方が好ましいため、 一般に、 混合する (ひ) 成分中の S i H基と反応性を有す る炭素一炭素二重結合の総数 (X) と、 混合する (/3) 成分中の S i H基の総数 (Y) との比が、 YZX≥ 2であることが好ましく、 ΥΖΧ 3であることがよ り好ましい。 また (Β) 成分の (Α) 成分との相溶性がよくなりやすいという点 からは、 1 Ο^Υ/Χであることが好ましく、 5≥ΥΖΧであることがより好ま しレ、。
(α) 成分と (β) 成分をヒドロシリル化反応させる場合には適当な触媒を用 いてもよい。 触媒としては、 例えば次のようなヒドロシリル化触媒を用いること ができる。 白金の単体、 アルミナ、 シリカ、 カーボンブラック等の担体に固体白 金を担持させたもの、 塩化白金酸、 塩化白金酸とアルコール、 アルデヒド、 ケト ン等との錯体、 白金ーォレフイン錯体 (例えば、 P t (CH2 = CH2) 2 (P P h 3) 2、 P t (CH2=CH2) 2C 12) 、 白金一ビュルシロキサン錯体 (例え ば、 P t (V iMe 2S i OS iMe 2V i) n、 P t [ (Me V i S i O) 4] m ) 、 白金一ホスフィン錯体 (例えば、 P t (P P h 3) 4、 P t (PB u3) 4) 、 白金一ホスファイ ト錯体 (例えば、 P t [P (O P h) 3] 4、 P t [P (OB u) 3] 4) (式中、 Meはメチル基、 B uはブチル基、 V iはビュル基、 P h はフエ-ル基を表し、 n、 mは、 整数を示す。 ) 、 ジカルボニルジクロ口白金、 カールシュテト (Ka r s t e d t) 触媒、 アシュビー (A s h b y) の米国特 許第 3 1 59601号及び第 3159662号明細書中に記載された白金一炭化 水素複合体、 ラモロー (L amo r e a u x) の米国特許第 3220972号明 細書中に記載された白金アルコラート触媒等が挙げられる。 さらに、 モディック (M o d i c ) の米国特許第 3516946号明細書中に記載された塩化白金一 ォレフィン複合体も本発明において有用である。
また、 白金化合物以外の触媒の例としては、 RhC l (PPh) R h C 1 3、 R h A 1203s RuC l 3、 I r C l 3、 F e C l 3、 A 1 C 13、 P d C 12 ■ 2H2〇、 N i C 12、 T i C 14等が挙げられる。
これらの中では、 触媒活性の点から塩化白金酸、 白金一才レフイン錯体、 白金 一ビニルシロキサン錯体等が好ましい。 また、 これらの触媒は単独で使用しても よく、 2種以上併用してもよい。 触媒の添加量は特に限定されないが、 十分な硬化性を有し、 かつ硬化性組成物 のコス トを比較的低く抑えるために、 好ましい添加量の下限は、 (]3 ) 成分の S i H基 1モルに対して 1 0— 8モル、 より好ましくは 1 0 _ 6モルであり、 好まし い添加量の上限は ( β ) 成分の S i Η基 1モルに対して 1 0— 1モル、 より好ま しくは 1 0— 2モルである。
また、 上記触媒には助触媒を併用することが可能である。 助触媒としては、 例 えば、 トリフエニルホスフィン等のリン系化合物;ジメチルマレエート等の 1 , 2—ジエステル系化合物; 2—ヒドロキシ一 2—メチル一 1—ブチン等のァセチ レンアルコール系化合物;単体の硫黄等の硫黄系化合物; トリェチルァミン等の アミン系化合物等が挙げられる。
助触媒の添加量は特に限定されないが、 ヒドロシリル化触媒 1モルに対して、 好ましい添加量の下限は、 1 0— 2モル、 より好ましくは 1 0—1モルであり、 好 ましい添加量の上限は 1 0 2モル、 より好ましくは 1 0モルである。
反応させる場合の (α ) 成分、 (0 ) 成分、 触媒の混合の方法としては、 各種 方法をとることができるが、 ( α ) 成分に触媒を混合したものを、 ( β ) 成分に を混合する方法が好ましい。 (Q 成分、 w 成分の混合物に触媒を混合する 方法だと反応の制御が困難である。 ( β ) 成分と触媒を混合したものに (ο 成 分を混合する方法をとる場合は、 触媒の存在下 ( ]3 ) 成分が混入している水分と 反応性を有するため、 変質することがある。
反応温度としては種々設定できるが、 この場合、 好ましい反応温度の下限は 3 0 °C、 より好ましくは 5 0 °Cであり、 好ましい反応温度の上限は 2 0 0 °C、 より 好ましくは 1 5 0 °Cである。 反応温度が低いと十分に反応させるための反応時間 が長くなり、 反応温度が高いと実用的でない。 反応は一定の温度で行ってもよい 力 必要に応じて多段階あるいは連続的に温度を変化させてもよい。
反応時間、 反応時の圧力も必要に応じ種々設定できる。
ヒドロシリル化反応の際に溶媒を使用してもよい。 使用できる溶媒は、 ヒドロ シリル化反応を阻害しない限り特に限定されるものではなく、 具体的に例示すれ ば、 ベンゼン、 トルエン、 へキサン、 ヘプタン等の炭化水素系溶媒;テトラヒド 口フラン、 1 , 4一ジォキサン、 1 , 3—ジォキソラン、 ジェチルエーテノレ等の エーテル系溶媒;アセトン、 メチルェチルケトン等のケトン系溶媒;クロロホル ム、 塩化メチレン、 1 2—ジクロロェタン等のハロゲン系溶媒を好適に用いるこ とができる。 当該溶媒は、 単独で用いてもよいし、 2種類以上の混合溶媒として 用いることもできる。 溶媒としては、 トルエン、 テトラヒドロフラン、 1 , 3— ジォキソラン、 クロ口ホルムが好ましい。 使用する溶媒量も適宜設定できる。 その他、 反応性を制御する目的等のために種々の添加剤を用いてもよい。
(a) 成分と (]3) 成分を反応させた後に、 溶媒及び Z又は未反応の (c ) 成 分及ぴ Z又は (J3) 成分を除去することもできる。 これらの揮発分を除去するこ とにより、 得られる (B) 成分が揮発分を有さないため、 (A) 成分との硬化の 場合に揮発分の揮発によるポイド、 クラックの問題が生じにくい。 除去する方法 としては例えば、 減圧脱揮の他、 活性炭、 ケィ酸アルミニウム、 シリカゲル等に よる処理等が挙げられる。 減圧脱揮する場合には低温で処理することが好ましい。 この場合の好ましい温度の上限は 1 00°Cであり、 より好ましくは 6 0°Cである。 高温で処理すると増粘等の変質を伴いやすい。
以上のような、 (a) 成分と ( β ) 成分の反応物である (Β) 成分の例として は、 ジビニルベンゼンと 1 , 3, 5, 7ーテトラメチルシクロテトラシロキサン の反応物、 ビスフエノール Αジァリルエーテルと 1 , 3, 5, 7—テトラメチル シクロテトラシロキサンの反応物、 ビニノレシクロへキセンと 1 , 3, 5, 7—テ トラメチルシクロテトラシロキサンの反応物、 ジシク口ペンタジェンと 1 , 3, 5, 7—テトラメチルシクロテトラシロキサンの反応物、 トリアリルイソシァヌ レートと 1, 3, 5, 7—テトラメチルシクロテトラシロキサンの反応物、 ジァ リルモノグリシジルイソシァヌレートと 1 , 3, 5, 7—テトラメチルシク口テ トラシロキサンの反応物、 ァリルグリシジルエーテルと 1, 3, 5, 7—テトラ メチルシクロテトラシロキサンの反応物、 αメチルスチレンと 1, 3, 5, 7 - テトラメチルシクロテトラシロキサンの反応物、 モノアリルジグリシジルイソシ ァヌレートと 1, 3, 5, 7—テトラメチルシクロテトラシロキサンの反応物等 を挙げることができる。
硬化性組成物が低粘度になる点から、 ジビエルベンゼンと 1 , 3, 5, 7—テ トラメチルシクロテトラシロキサンの反応物、 メチルスチレンと 1, 3, 5, 7ーテトラメチルシクロテトラシロキサンの反応物が好ましい。
硬化性組成物を硬化させてなる樹脂の耐熱性 ·耐光性の点からジビニルベンゼ ンと 1, 3, 5, 7—テトラメチルシクロテトラシロキサンの反応物、 及びトリ ァリルイソシァヌレートと 1 , 3, 5, 7—テトラメチ ンクロテトラシロキサ ンの反応物が好ましい。 また、 耐熱性 ·耐光性 ·接着性の点からジァリルモノグ リシジルイソシァヌレートと 1 , 3, 5, 7—テトラメチルシクロテトラシロキ サンの反応物、 モノアリルジグリシジルイソシァヌレートと 1, 3, 5 , 7—テ トラメチルシクロテトラシロキサンの反応物が好ましい。
次に本発明の (C) 成分であるヒドロシリル化触媒について説明する。
ヒドロシリル化触媒としては、 ヒドロシリル化反応の触媒活性があれば特に限 定されないが、 例えば、 白金の単体、 ァノレミナ、 シリカ、 カーポンプラック等の 担体に固体白金を担持させたもの、 塩化白金酸、 塩化白金酸とアルコール、 アル デヒド、 ケトン等との錯体、 白金ーォレフイン錯体 (例えば、 P t (CH2 = C H2) 2 (PPh3) 2、 P t (CH2 = CH2) 2C 12) 、 白金一ビュルシロキサ ン錯体 (例えば、 P t (V iMe 2S i OS iMe 2V i ) n、 P t [ (M e V i S i O) 4] m) 、 白金一ホスフィン錯体 (例えば、 P t (P P h3) 4、 P t ( PBu3) 4) 、 白金一ホスファイ ト錯体 (例えば、 P t [P (OP h) 3] 4、 P t [P (OB u) 3] 4) (式中、 Meはメチル基、 B uはブチル基、 V iは ビエル基、 Phはフエエル基を表し、 n、 mは、 整数を示す。 ) 、 ジカルボニル ジクロロ白金、 カールシュテト (Ka r s t e d t) 触媒、 アシュビー (A s h b y) の米国特許第 3 1 59601号及び第 3 1 59662号明細書中に記載さ れた白金一炭化水素複合体、 ラモロー (L amo r e a u x) の米国特許第 32 20972号明細書中に記載された白金アルコラート触媒等が挙げられる。 さら に、 モディック (Mo d i c) の米国特許第 351 6946号明細書中に記載さ れた塩化白金一ォレフィン複合体も本発明において有用である。
また、 白金化合物以外の触媒の例としては、 RhC l (P Ph) 3、 RhC l 3、 RhA l 23、 RuC l 3、 I r C l 3、 F e C l 3、 A 1 C 13、 P d C 12 • 2H20、 N i C 12、 T i C 14等が挙げられる。
これらの中では、 触媒活性の点から塩化白金酸、 白金一才レフイン錯体、 白金 一ビュルシロキサン錯体等が好ましい。 また、 これらの触媒は単独で使用しても よく、 2種以上併用してもよい。
触媒の添加量は特に限定されないが、 十分な硬化性を有し、 かつ硬化性組成物 のコストを比較的低く抑えるために、 好ましい添加量の下限は、 (B ) 成分の S i H基 1モルに対して 1 0— 8モル、 より好ましくは 1 0— 6モルであり、 好まし い添加量の上限は (B ) 成分の S i H基 1モルに対して 1 0—1モル、 より好ま しくは 1 0 _ 2モルである。
なお、 当該ヒドロシリルィヒ触媒は、 (B ) 成分合成時に使用して残存している 量で十分な硬化性を示す場合には必ずしも添加する必要はないが、 硬化性を調整 するために上記の範囲で新たに添加することもできる。
また、 上記触媒には助触媒を併用することが可能である。 助触媒としては、 例 えば、 トリフエニルホスフィン等のリン系化合物;ジメチルマレエート等の 1, 2ージエステル系化合物; 2—ヒ ドロキシー 2—メチルー 1ーブチン等のァセチ レンアルコール系化合物;単体の硫黄等の硫黄系化合物; トリェチルァミン等の アミン系化合物等が挙げられる。
助触媒の添加量は特に限定されないが、 ヒドロシリル化触媒 1モルに対して、 好ましい添加量の下限は、 1 0 _ 2モル、 より好ましくは 1 0—1モルであり、 好 ましい添加量の上限は 1 0 2モル、 より好ましくは 1 0モルである。
本発明の組成物の保存安定性を改良する目的、 あるいは製造過程でのヒドロシ リル化反応の反応性を調整する目的で、 硬化遅延剤を使用することができる。 硬 化遅延剤としては、 脂肪族不飽和結合を含有する化合物、 有機リン化合物、 有機 ィォゥ化合物、 窒素含有化合物、 スズ系化合物、 有機過酸化物等が挙げられ、 こ れらを併用してもかまわない。
脂肪族不飽和結合を含有する化合物として、 プロパギルアルコール類、 ェンー イン化合物類、 マレイン酸エステル類等が例示される。 有機リン化合物としては、 トリオルガノフォスフィン類、 ジオルガノフォスフィン類、 オルガノフォスフィ ン類、 トリオルガノフォスファイト類等が例示される。 有機ィォゥ化合物として は、 オルガノメルカプタン類、 ジオルガノスルフィド類、 硫化水素、 ベンゾチア ゾール、 チアゾール、 ベンゾチアゾールジサルファイ ド等が例示される。 窒素含 有化合物としては、 アンモニア、 1〜 3級アルキルアミン類、 ァリールアミン類、 尿素、 ヒドラジン等が例示される。 スズ系化合物としては、 ハロゲン化第一スズ 2水和物、 カルボン酸第一スズ等が例示される。 有機過酸化物としては、 ジー t —プチルペルォキシド、 ジクミルペルォキシド、 ベンゾィルペルォキシド、 過安 息香酸 t一ブチル等が例示される。
これらの硬化遅延剤のうち、 遅延活性が良好で原料入手性がよいという観点か らは、 ベンゾチアゾーノレ、 チアゾーノレ、 ジメチノレマレート、 3—ヒドロキシー 3 ーメチルー 1ーブチン、 1—ェチェル一 1—シク口へキサノールが好ましい。 硬化遅延剤の添加量は種々設定できるが、 使用するヒドロシリル化触媒 1 m o 1に対する好ましい添加量の下限は 1 0—1モル、 より好ましくは 1モルであり、 好ましい添加量の上限は 1 0 3モル、 より好ましくは 5 0モルである。
また、 これらの硬化遅延剤は単独で使用してもよく、 2種以上併用してもよい。 次に、 (D ) 成分であるシラン力ップリング剤及び Z又はエポキシ基含有化合 物について説明する。 本発明の (D) 成分は、 本発明の ( E ) 成分との組み合わ せにより、 硬化性組成物にパッケージ樹脂との接着性を与える成分として必須で ある。
シランカップリング剤としては、 分子中に、 有機基と反応性のある官能基と、 加水分解性のケィ素基を、 各々少なくとも 1個有する化合物であれば特に限定さ れない。
有機基と反応性のある官能基としては、 取扱い性の点からエポキシ基、 メタク リル基、 アクリル基、 イソシァネート基、 イソシァヌレート基、 ビュル基、 カル バメート基から選ばれる少なくとも 1個の官能基が好ましい。 硬化性及ぴ接着性 の点から、 エポキシ基、 メタクリル基、 アクリル基がより好ましく、 エポキシ基 が特に好ましい。
加水分解性のケィ素基としては、 取扱い性の点からアルコキシシリル基が好ま しく、 反応性の点からメ トキシシリル基、 エトキシシリル基が特に好ましい。 好ましいシランカップ Vング剤としては、 3一グリシドキシプロピルトリメト キシシラン、 3—グリシドキシプロピルトリエトキシシラン、 2 - ( 3, 4—ェ ポキシシクロへキシル) ェチルトリメ トキシシラン、 2— (3 , 4—エポキシシ クロへキシル) ェチルトリエトキシシラン等のエポキシ官能基を有するアルコキ シシラン類; 3—メタクリロキシプロピルトリメ トキシシラン、 3—メタクリロ キシプロビルトリエトキシシラン、 3—ァクリロキシプロピルトリメ トキシシラ ン、 3—アタリロキシプロピ ^トリエトキシシラン、 メタクリロキシメチルトリ メ トキシシラン、 メタクリロキシメチルトリエトキシシラン、 アタリロキシメチ ルトリメ トキシシラン、 ァクリ口キシメチルトリエトキシシラン等のメタクリル 基あるいはァクリル基を有するアルコキシシラン類が例示できる。
シランカップリング剤の添力 fl量としては種々設定できるが、 [ (A) 成分 + ( B ) 成分] 1 0 0重量部に対して、 好ましい添加量の下限は 0 . 1重量部、 より 好ましくは 0 . 5重量部であり、 好ましい添加量の上限は 5 0重量部、 より好ま しくは 2 5重量部である。 添加量が 0 . 1重量部より少ないと接着性改良効果が 十分でなくなる傾向があり、 添加量が 5 0重量部より多いと硬化物物性が低下し 易くなる傾向がある。
エポキシ基含有化合物としては種々のエポキシ樹脂が例示される。 エポキシ樹 脂としては、 例えば、 ノポラックフエノール型エポキシ樹脂、 ビフエ二ノレ型ェポ キシ樹脂、 ジシクロペンタジェン型ェポキシ樹脂、 ビスフエノール Fジグリシジ ノレエーテノレ、 ビスフエノ一ノレ Aジグリシジノレエーテノレ、 2 , 2 ' 一ビス ( 4ーグ リシジル才キシシク口へキシノレ) プロパン、 3, 4一エポキシシク口へキシノレメ チルー 3, 4一エポキシシク口へキサンカーボキシレート、 ビ二/レシク口へキセ ンジオキサイド、 2— (3, 4一エポキシシクロへキシル) 一 5 , 5—スピロ一 ( 3 , 4—エポキシシクロへキサン) 一 1, 3—ジォキサン、 ビス (3, 4ーェ ポキシシクロへキシル) アジペート、 1, 2—シクロプロパンジカルボン酸ビス グリシジルエステル、 トリグリシジルイソシァヌレート、 モノァリルジグリシジ ルイソシァヌレート、 ジァリルモノグリシジルイソシァヌレート等のエポキシ樹 脂を、 へキサヒ ドロ無水フタル酸、 メチルへキサヒ ドロ無水フタル酸、 トリアノレ キルテトラヒ ドロ無水フタル酸、 水素化メチルナジック酸無水物等の脂肪族酸無 水物で硬化させて得られたものが挙げられる。 これらのェポキシ樹脂あるいは硬 化剤はそれぞれ単独で用いても、 複数のものを組み合わせてもよい。
エポキシ基含有化合物の添加量としては種々設定できるが、 [ (A) 成分 + ( B ) 成分] 1 0 0重量部に対して、 好ましい添加量の下限は 0 . 1重量部、 より 好ましくは 0 . 5重量部であり、 好ましい添加量の上限は 5 0重量部、 より好ま しくは 2 5重量部である。 添加量が 0 . 1重量部より少ないと接着性改良効果が 十分でなくなる傾向があり、 添加量が 5 0重量部より多いと硬化物物性が低下し 易くなる傾向がある。
上記シランカップリング剤、 エポキシ基含有化合物は、 単独で用いても、 2種 以上を併用してもよい。
次に、 (E ) 成分であるシラノール縮合触媒について説明する。 本発明の (E ) 成分は、 本発明の (D ) 成分との組み合わせにより硬化性組成物に接着性を与 える成分として必須である。
シラノール縮合触媒としては特に限定されないが、 有機アルミニウム化合物、 ほう酸エステル、 チタン系化合物等が好ましく挙げられる。 より好ましくは、 有 機アルミニウム化合物、 ほう酸エステルである。 また、 硬化時及び高温下での着 色性が低い点からは、 ほう酸エステルが好ましい。
シラノール縮合触媒を用いる場合の使用量は種々設定できるが、 [ (A) 成分 + ( B ) 成分] 1 0 0重量部に対して、 好ましい添加量の下限は 0 . 0 5重量部、 より好ましくは 0 . 1重量部であり、 好ましい添加量の上限は 5 0重量部、 より 好ましくは 3 0重量部である。 添加量が 0 . 0 5重量部より少ないと接着性改良 効果が十分でなくなる傾向があり、 添加量が 5 0重量部より多いと硬化物物性に 悪影響を及ぼし易くなる場合がある。
本発明においてシラノール縮合触媒として用いられる有機アルミニウム化合物 は、 接着性の向上及び/又は安定化が可能である。
本発明に用いられる有機アルミニウム化合物としては、 トリメトキシアルミエ ゥム、 トリエトキシアルミニウム、 トリイソプロポキシアルミニウム、 トリノル マルプロポキシアルミニウム等のアルミニウムアルコラ一ト化合物;ナフテン酸 アルミニウム、 ステアリン酸アルミニウム、 ォクチル酸アルミニウム、 安息香酸 アルミニウム等のアルミニウム有機酸塩;アルミユウムェチルァセトァセテート ジィソプロビレート、 アルミェゥムェチルァセトァセトアセテートジィソプチレ ート、 アルミ-ゥムトリス (ェチルァセトアセテート) 、 アルミニウムビスェチ ルァセトアセテートモノァセチルァセトネート、 アルミニウムトリス (ァセチル ァセトネート) 等のアルミ-ゥムキレート化合物等が挙げられる。 反応性、 基材 との接着性 '密着性の観点から、 アルミニウムキレート化合物、 アルミニウムァ ルコラート化合物が好ましく、 アルミニウムキレート化合物がより好ましい。 さ らにヒ ドロシリル化硬化反応との相性から、 アルミニウムトリス (ェチルァセト アセテート) が好ましい。 当該有機アルミニウム化合物は、 単独で用いても、 2 種以上を併用してもよい。
本発明においてシラノール縮合触媒として用いられるほう酸エステルは、 接着 性の向上及び/又は安定化が可能である。
本発明に用いられるほう酸エステルとしては、 下記一般式 (V I I) 、 (V I I I ) で示されるものを好適に用いることが出来る。
B(OR8 ) 3 (VII)
B(OCOR8 ) 3 (VI I I)
(式中 R 8は炭素数 1〜 48の有機基を表す。 )
ほう酸エステルの具体例としては、 ほう酸トリー 2—ェチルへキシル、 ほう酸 トリノルマルォクタデシル、 ほう酸トリノルマルォクチル、 〖まう酸トリフエニル, .トリメチレンボレート、 トリス (トリメチノレシリノレ) ボレート、 ほう酸トリノ/レ マノレブチノレ、 ほう酸トリー s e c一プチノレ、 ほう酸トリー t e r t—プチノレ、 ほ う酸トリイソプロピル、 ほう酸トリノルマルプロピル、 ほう酸トリァリノレ、 ほう 酸トリェチル、 〖まう酸トリメチル、 ほう素メ トキシェトキサイド等を好適に挙げ ることができる。 ほう酸エステルとしては、 1種類のみを用いてもよく、 2種類 以上を混合して用いても良い。 2種類以上を混合する場合、 混合は事前に行って も良く、 また硬化物作成時に混合しても良い。
ほう酸トリノルマルオタタデシル、 ほう酸トリノルマルォクチル、 ほう酸トリ ノルマルプチル、 ほう酸トリイソプロピル、 〖まう酸トリノルマルプロピル、 ほう 酸トリェチル及びほぅ酸トリメチルがより好ましい。
入手性の点から、 ほう酸トリメチル、 ほう酸トリェチル、 〖まう酸トリノルマル ブチルがより好ましく、 ほう酸トリメチルがさらに好ましい。 硬化時の揮発性を抑制出来る点から、 ほう酸トリノルマルォクタデシル、 ほう 酸トリノルマルォクチル、 ほう酸トリフエニル、 トリメチレンボレート、 トリス (トリメチルシリル) ポレート、 ほう酸トリノルマルブチル、 ほう酸トリー s e cーブチル、 ほう酸トリ一 t e r t—プチル、 ほう酸トリイソプロピル、 ほう酸 トリノルマルプロピル、 ほう酸トリァリノレ、 ほう素メ トキシェトキサイドがより 好ましく、 ほう酸ノルマルトリォクタデシル、 ほう酸トリー t e r t —プチル、 ほう酸トリフエニル、 ほう酸トリノルマルプチルがさらに好ましい。
揮発性の抑制、 作業性の点から、 〖まう酸トリノルマルプチル、 〖まう酸トリイソ プロピル、 ほう酸トリノルマルプロピルがより好ましく、 ほう酸トリノルマルブ チルがさらに好ましい。
高温下での着色性が低い点から、 ほう酸トリメチル、 ほう酸トリェチルがより 好ましく、 〖まう酸トリメチルがさらに好ましい。
本発明においてシラノール縮合触媒として用いられるチタン系化合物は、 接着 性の向上及び/又は安定化が可能である。
本発明に用いられるチタン系化合物としては、 テトライソプロポキシチタン、 テトラブトキシチタン等のテトラアルコキシチタン類;チタンテトラァセチルァ セトナート等のチタンキレート類;ォキシ酢酸やエチレングリコール等の残基を 有する一般的なチタネートカツプリング剤等が例示できる。 当該チタン系化合物 は、 単独で用いても、 2種以上を併用してもよい。
接着性発現のためには、 本発明に記載の (D ) 成分であるシランカップリング 剤及び Z又はエポキシ基含有化合物と (E ) 成分であるシラノール縮合触媒が必 須であり、 どちらか一方では接着性は発現しない。
本発明においては接着性改良効果をさらに高めるために、 さらにシラノール源 化合物を用いることができ、 接着性の向上及び/又は安定化が可能である。 この ようなシラノール源化合物としては、 例えばトリフエ二ルシラノール、 ジフエ二 ルジヒドロキシシラン等のシラノール化合物、 ジフエ二ルジメ トキシシラン、 テ トラメ トキシシラン、 メチルトリメ トキシシラン等のアルコキシシラン類等を挙 げることができる。
シラノール源化合物を用いる場合の使用量は種々設定できるが、 カツプリング 剤及び 又はエポキシ基含有化合物 1 0 0重量部に対して、 好ましい添加量の下 限は 0 . 0 5重量部、 より好ましくは 1重量部であり、 好ましい添加量の上限は 5 0重量部、 より好ましくは 3 0重量部である。 添加量が 0 . 0 5重量部より少 ないと接着性改良効果が +分でなくなる傾向があり、 添加量が 5 0重量部より多 V、と硬化物物性が低下し易くなる傾向がある。
また、 これらのシラノール源化合物は単独で使用してもよく、 2種以上併用し てもよい。
本発明においては力ップリング剤やエポキシ基含有化合物の効果を高めるため に、 カルボン酸類及び Z又は酸無水物類を用いることができ、 接着性の向上及び Z又は安定化が可能である。 このようなカルボン酸類、 酸無水物類としては特に 限定されないが、
CH3-(-CH2^-COOH, HOOC(CH2~^COOH ,
CHfCH+CH^—COOH ' ( n03 0の数を表す J
Figure imgf000065_0001
Figure imgf000065_0002
Figure imgf000065_0003
、 2—ェチルへキサン酸、 シクロへキサンカノレポン酸、 シクロへキサンジカノレポ ン酸、 メチルシクロへキサンジカルボン酸、 テトラヒ ドロフタル酸、 メチルテト ラヒ ドロフタル酸、 メチルハイミック酸、 ノルポルネンジカルボン酸、 水素化メ チルナジック酸、 マレイン酸、 アセチレンジカルボン酸、 乳酸、 リンゴ酸、 タエ ン酸、 酒石酸、 安息香酸、 ヒドロキシ安息香酸、 桂皮酸、 フタル酸、 トリメリッ ト酸、 ピロメリット酸、 ナフタレンカルボン酸、 ナフタレンジカルボン酸等、 及 ぴそれらの単独あるいは複合酸無水物等が挙げられる。
これらの力ルポン酸類及び Z又は酸無水物類のうち、 ヒドロシリル化反応性を 有し硬化物からの染み出しの可能性が少なく得られる硬化物の物性を損ない難い という点においては、 S i H基と反応性を有する炭素一炭素二重結合を含有する ものが好ましい。 好ましいカルボン酸類及び/又は酸無水物類としては、 例えば、
Figure imgf000066_0001
テトラヒドロフタル酸、 メチルテトラヒ ドロフタル酸及びそれらの単独あるいは 複合酸無水物等が挙げられる。
力ルポン酸類及び Z又は酸無水物類を用いる場合の使用量は種々設定できるが、 カツプリング剤及び/又はエポキシ基含有化合物 1 .0 0重量部に対しての好まし い添加量の下限は◦. 1重量部、 より好ましくは 1重量部であり、 好ましい添加 量の上限は 5 0重量部、 より好ましくは 1 0重量部である。 添加量が 0 . 1重量 部より少ないと接着性改良効果が十分でなくなる傾向があり、 添加量が 5 0重量 部より多いと硬化物物性が低下し易くなる傾向がある。
また、 これらのカルボン酸類、 酸無水物類は単独で使用してもよく、 2種以上 併用してもよい。
本発明の硬化性組成物の保存安定性を改良する目的、 あるいは製造過程でのヒ ドロシリル化反応の反応性を調整する目的で、 硬化遅延剤を使用することができ る。 硬化遅延剤としては、 脂肪族不飽和結合を含有する化合物、 有機リン化合物、 有機ィォゥ化合物、 窒素含有化合物、 スズ系化合物、 有機過酸化物等が挙げられ、 これらを併用してもかまわない。
脂肪族不飽和結合を含有する化合物として、 プロパギルアルコール類、 工ン一 イン化合物類、 マレイン酸エステル類等が例示される。 有機リン化合物としては、 トリオルガノフォスフィン類、 ジオルガノフォスフィン類、 オルガノフォスフォ ン類、 トリオルガノフォスファイト類等が例示される。 有機ィォゥ化合物として は、 オルガノメルカプタン類、 ジオルガノスルフィド類、 硫化水素、 ベンゾチア ゾール、 チアゾール、 ベンゾチアゾールジサルファイド等が例示される。 窒素含 有化合物としては、 アンモニア、 1〜 3級アルキルアミン類、 ァリールアミン類、 尿素、 ヒドラジン等が例示される。 スズ系化合物としては、 ハロゲン化第一スズ 2水和物、 カルボン酸第一スズ等が例示される。 有機過酸化物としては、 ジ _ t 一ブチルペルォキシド、 ジクミルペルォキシド、 ベンゾィルペルォキシド、 過安 息香酸 t一プチル等が例示される。
これらの硬化遅延剤のうち、 遅延活性が良好で原料入手性がよいという観点か らは、 ベンゾチアゾール、 チアゾーノレ、 ジメチノレマレート、 3—ヒ ドロキシー 3 ーメチノレ一 1ーブチン、 1一ェチニノレ一 1—シク口へキサノーノレが好ましい。 硬化遅延剤の添加量は種々設定できるが、 使用するヒドロシリル化触媒 l ni o 1に対する好ましい添加量の下限は 1 0一1モル、 より好ましくは 1モルであり、 好ましい添加量の上限は 1 0 3モル、 より好ましくは 5 0モルである。
また、 これらの硬化遅延剤は単独で使用してもよく、 2種以上併用してもよい。 次に、 (F ) 成分である無機部材としては、 前記無機部材と同様のものを好適 に用いることが出来る。 また、 (F ) 成分の無機部材の配合量としては特に限定 はないが、 好ましい使用量は、 本発明の硬化性組成物全体量の 0 . 1〜 9 0重量 %である。 塗布性が良好であるという点から、 好ましい使用量は、 硬化性組成物 全体量の 8 0重量%以下、 より好ましくは 7 0重量%以下、 さらに好ましくは 5 0重量。 /0以下、 特に好ましくは 4 0重量%以下、 より特に好ましくは 3 0重量以 下である。 配合量が多いと塗布性が低下し、 塗布不良のため遮光性が低下し易く なる傾向がある。 また、 遮光性が良好である点から、 好ましい使用量は、 硬化性 組成物全体量の 5重量%以上、 より好ましくは 1 0重量 °/0以上、 さらに好ましく は 3 0重量 °/0以上、 特に好ましくは 4 0重量%以上、 より特に好ましくは 5 0重 量%以上である。 そこで、 塗布性と遮光性の両立のためには、 好ましい使用量は、 硬化性組成物全体量の 1 0重量%以上 8 0重量%以下、 より好ましくは 2 0重量 %以上 7 0重量%以下、 さらに好ましくは 3 0重量%以上 6 0重量%以下である。 次に、 本発明の硬化性組成物においては、 上記 (A) 〜 (F ) 成分に加えて、 さらに (G) シリカを含有することが好ましい。 (G) 成分であるシリカについ て説明する。
シリカとしては、 例えば、 ヒュームシリカ、 沈降性シリカ、 石英、 無水ケィ酸、 溶融シリカ、 結晶性シリカ、 超微粉無定形シリカ等が挙げられる。
シリカは、 硬化性組成物にチクソ性を付与したり、 また增粘効果を付与するこ とができる。 当該シリカとしては、 一次粒子の平均粒子径が 3〜2 0 n mである ことが好ましく、 5〜 1 0 n mであることが特に好ましい。 シリカの平均粒子径 は電子顕微鏡写真をもとに計測することができる。
チタソ性付与の点からは表面処理をしていないことが好ましい。 当該シリ力と しては、 例えば、 日本ァエロジル株式会社製の A E R O S I L 3 0 0 , 1 3 0 , 2 0 0等を好適に用いることが出来る。
増粘効果の点からは表面処理をしていることが好ましい。 当該シリカとしては、 例えば、 日本ァエロジル株式会社製の A E R O S I L R 8 1 2 , R 9 7 2 , R 9 7 4, R 9 7 6 , R X 2 0 0 , R X 3 0 0等を好適に用いることが出来る。 表面処理としては、 アルキル化処理、 トリメチルシリル化処理、 シリコーン処 理、 カツプリング剤による処理等が挙げられる。
この場合の力ップリング剤の例としては、 シランカップリング剤が挙げられる。 シランカップリング剤としては、 分子中に有機基と反応性のある官能基と加水分 解性のケィ素基を各々少なくとも 1個有する化合物であれば特に限定されない。 有機基と反応性のある官能基としては、 取扱い性の点からエポキシ基、 メタク リル基、 アクリル基、 イソシァネート基、 イソシァヌレート基、 ビュル基、 カル バメート基から選ばれる少なくとも 1個の官能基が好ましく、 硬化性及び接着性 の点から、 エポキシ基、 メタクリル基、 ァクリル基が特に好ましい。 加水分解性 のケィ素基としては、 取扱い性の点からアルコキシシリル基が好ましく、 反応性 の点からメ トキシシリル基、 エトキシシリル基が特に好ましい。
好ましいシランカツプリング剤としては、 3 -グリシドキシプロピルトリメ ト キシシラン、 3—グリシドキシプロピルトリエトキシシラン、 2— ( 3, 4ーェ ポキシシクロへキシル) ェチルトリメ トキシシラン、 2— ( 3, 4一エポキシシ ク口へキシル) ェチルトリエトキシシラン等のエポキシ官能基を有するアルコキ シシラン類; 3—メタクリロキシプロピルトリメ トキシシラン、 3—メタクリロ キシプロピルトリエトキシシラン、 3—ァクリロキシプロピルトリメ トキシシラ ン、 3—アタリロキシプロピルトリエトキシシラン、 メタクリロキシメチルトリ メ トキシシラン、 メタクリロキシメチルトリエトキシシラン、 ァクリロキシメチ ノレトリメ トキシシラン、 アタリロキシメチルトリェトキシシラン等のメタクリル 基あるいはァクリル基を有するアルコキシシラン類が例示できる。
硬化性組成物中のシリカの量は特に限定されないが、 塗布性及び低流動性の点 から、 樹脂成分 [ (A) 成分〜 (E) 成分] 100重量部に対して、 0. 5重量 部〜 20重量部が好ましく、 2重量部〜 10重量部がさらに好ましく、 3重量部 〜 5重量部が特に好ましい。
次に、 本発明の硬化性組成物においては、 80度の角度に傾斜したガラス基材 上での、 100°Cで 1時間経過後における流延性が、 2 c m以下であることが好 ましい。 また、 1 cm以下であることがより好ましい。
当該流延性は、 具体的には以下のようにして測定する。 まず、 l O cmX I O cmX 3 mm厚のガラス板 (一般的な青板ガラス) に、 本発明の硬化性組成物約 1 5 Omgを円形にガラス板の端から約 1 cmの位置に塗布する。 そのガラス板 を塗布部分が上部にくるようにし、 80度の角度に傾斜させ 100°Cに加熱した オーブン中に設置する。 1時間経過後、 硬化性組成物が流動した先端と塗布位置 の距離を c m単位で計測する。
次に、 本発明の硬化性組成物の調製方法について説明する。
上記 (A) 〜 (F) 成分を含有する硬化性糸且成物は、 これら成分を混合するこ とにより得ることができる。 混合の方法としては、 各種方法をとることができる が、 (A) 成分、 (C) 成分及び (E) 成分を混合したものと、 (B) 成分、 ( D) 成分を混合したものとを混合し、 その後 (F) 成分を混合することが好まし い。 (A) 成分と (B) 成分との混合物に (C) 成分を混合する方法だと反応の 制御が困難となる傾向がある。 (B) 成分と (C) 成分、 又は (E) 成分を混合 したものは、 (C) 成分、 (E) 成分の存在下、 (B) 成分と水分との反応が促 進されるため、 貯蔵中等に変質することもありうる。
組成物を反応させて硬化させる場合においては、 (A) 、 (B) 、 (C) 、 ( D) 、 (E) 各成分それぞれの必要量を一度に混合して反応させてもよいが、 一 部を混合して反応させた後、 (F) 成分を加えて残量を混合してさらに反応させ る方法や、 混合した後に反応条件の制御や置換基の反応性の差の利用により組成 物中の'官能基の一部のみを反応 (Bステージ化) させてから成形等の処理を行い さらに硬化させる方法をとることもできる。 これらの方法によれば成形時の粘度 調整が容易となる。
(F) 成分と (A) 〜 (E) 成分との混合方法は、 例えば 3本ロール、 ペイン トミル、 ボールミル等を用いて混練し、 混練後真空脱泡することにより分散性に 優れた遮光ペーストを得ることが出来る。 また、 10 g以下の少量であれば遊星 式攪拌脱泡機で攪拌することも可能である。
また、 (A) 〜 (F) 成分以外にさらに (G) 成分を含有する硬化性組成物を 得る場合は、 (A) 成分、 (C) 成分及ぴ (E) 成分を混合したものと、 (B) 成分、 (D) 成分を混合したものとを混合し、 その混合物に (F) 成分と (G) 成分を混合することが好ましい。
(A) 成分、 (C) 成分及び (E) 成分を混合したものに (F) 成分と (G) 成分を混合する場合、 粘度が上昇し、 作業性が低下する傾向がある。 また、 (A ) 成分、 (C) 成分及び (E) 成分を混合したものと (F) 成分を混合し、 (B ) 成分、 (D) 成分を混合したものと (G) 成分を混合し、 それらを混合した場 合、 流延性が大きくなる傾向がある。 また、 (B) 成分、 (D) 成分を混合した ものに (F) 成分と (G) 成分を混合し、 そのものと、 (A) 成分、 (C) 成分 及び (E) 成分を混合したものを混合させた場合、 流延性が大きくなる傾向があ る。
次に、 (A) 〜 (E) 成分を混合したものと (F) 成分及び (G) 成分を混合 する方法について説明する。 混合装置は、 例えば、 へら、 遊星式攪拌脱泡機、 デ ィゾルバ一、 3本ロール、 ペイントミル、 ボールミル等を好適に用いることが出 来る。 混合時に硬化が進行しない温度/時間範囲で加熱しても良い。 具体的には 70°CZ3時間以下が好ましい。 加熱は空気中、 又は例えば窒素、 アルゴン等の 不活性雰囲気ガス中で実施してもよい。 また、 遊星式攪拌脱泡機、 ディゾルバー では真空脱泡することにより分散性に優れた硬化性組成物を得ることが出来る。 また、 混合した硬化性組成物の性状を安定化する目的で加温して養生することも 可能である。 具体的には 40 °C〜 60 °Cの温度範囲で 1時間以上が好ましく、 さ らに好ましくは 50 °Cで 2時間程度が好ましい。
本発明の硬化性糸且成物は、 上記のようにしてあらかじめ混合し、 組成物中の S i H基と反応性を有する炭素一炭素二重結合と S i H基の一部又は全部を反応さ せることによって硬化させて、 硬化物とすることができる。
また、 本発明の遮光ペース トは、 上記硬化性組成物からなるものである。
本発明の遮光ペーストは、 上記のようにしてあらかじめ混合し、 組成物中の S i H基と反応性を有する炭素一炭素二重結合と S i H基の一部又は全部を反応さ せることによって硬化させて、 遮光用樹脂とすることができる。
該遮光ペーストを被着体上で硬化し遮光用樹脂層を得る方法としては、 単に混 合するだけで反応させることもできるし、 加熱して反応させることもできる。 反 応が速く、 一般に耐熱性の高い材料が得られやすいという観点から加熱して反応 させる方法が好ましい。
反応温度としては種々設定できるが、 例えば 3 0〜3 0 0 °Cの温度が適用でき、 5 0〜 2 5 0 °Cがより好ましく、 1 0 0〜 2 0 0 がさらに好ましい。 反応温度 が低いと十分に反応させるための反応時間が長くなり、 反応温度が高いと成形加 ェが困難となりやすい。
反応は一定の温度で行つてもよいが、 必要に応じて多段階あるいは連続的に温 度を変化させてもよい。 また、 反応時間も種々設定できる。 例えば、 6 0 °CZ l ~ 1 0分間で予備硬化させ、 1 0 0 °CZ 1 ~ 6 0分間で硬化させる方法をとるこ とが出来る。
反応時の圧力も必要に応じ種々設定でき、 常圧、 高圧、 あるいは減圧状態で反 応させることもできる。
次に、 本発明の硬化性組成物及び遮光ペーストに添加することが出来る物質に ついて記載する。
本発明の硬化性組成物及び遮光ペース トには、 特性を改質する等の目的で、 種 々の熱硬化性樹脂を添加することも可能である。 熱硬化性樹脂としては、 ェポキ シ樹脂、 シァネートエステル樹脂、 フエノール樹脂、 ポリイミド榭脂、 ウレタン 樹脂、 ビスマレイミド樹脂等が例示されるが、 これらに限定されるものではない。 これらのうち、 接着性等の実用特性に優れるという観点から、 エポキシ樹脂が好 ましい。
エポキシ樹脂としては、 例えば、 ノポラックフエノール型エポキシ樹脂、 ビフ ェニル型エポキシ樹脂、 ジシクロペンタジェン型エポキシ樹脂、 ビスフエノール Fジグリシジノレエーテノレ、 ビスフエノ一ノレ Aジグリシジノレエーテノレ、 2 , 2, 一 ビス ( 4ーグリシジノレオキシシクロへキシノレ) プロパン、 3 , 4—エポキシシク 口へキシノレメチルー 3, 4一エポキシシク口へキサンカーボキシレート、 ビニノレ シクロへキセンジオキサイド、 2— ( 3 , 4—エポキシシクロへキシル) 一 5, 5 —スピロ一 (3, 4一エポキシシクロへキサン) 一 1, 3—ジォキサン、 ビス ( 3, 4一エポキシシク口へキシル) アジペート、 1, 2—シクロプロパンジカ ルボン酸ビスグリシジルエステル、 トリグリシジルイソシァヌレート、 モノァリ ルジグリシジルイソシァヌレート、 ジァリルモノグリシジルイソシァヌレート等 のエポキシ樹脂を、 へキサヒドロ無水フタル酸、 メチルへキサヒドロ無水フタル 酸、 トリアルキルテトラヒドロ無水フタル酸、 水素化メチルナジック酸無水物等 の脂肪族酸無水物で硬化させたものが挙げられる。 これらのェポキシ樹脂あるい は硬化剤は、 それぞれ単独で用いても、 複数のものを組み合わせてもよい。
これらの熱硬化性樹脂は、 単独で用いても、 複数のものを組み合わせてもよい。 熱硬化性樹脂の添加量としては特に限定はないが、 好ましい使用量の下限は硬 化性組成物全体の 5重量%、 より好ましくは 1 0重量%であり、 好ましい使用量 の上限は硬化性組成物中の 5 0重量。 /0、 より好ましくは 3 0重量%である。 添カロ 量が少ないと、 接着性等目的とする効果が得られにくいし、 添加量が多いと脆く なりやすい。
熱硬化性樹脂は、 樹脂原料及び/又は硬化させたものを、 (A) 成分及び Z又 は (B ) 成分に溶かして均一な状態として混合してもよいし、 粉碎して粒子状態 で混合してもよいし、 溶媒に溶かして混合する等して分散状態としてもよい。 得 られる硬化物がより均一になりやすいという点においては、 (A) 成分及び Z又 は (B ) 成分に溶かして均一な状態として混合することが好ましい。 この場合も、 熱硬化性樹脂を (A) 成分及び Z又は (B ) 成分に直接溶解させてもよいし、 溶 媒等を用いて均一に混合してもよいし、 その後溶媒を除いて均一な分散状態及び Z又は混合状態としてもよい。
熱硬化性樹脂を分散させて用いる場合は、 平均粒子径は種々設定できるが、 好 ましい平均粒子径の下限は 1 0 n mであり、 好ましい平均粒子径の上限は 1 0 μ mである。 粒子系の分布はあってもよく、 単一分散であっても複数のピーク粒径 を持っていてもよいが、 硬化性組成物及び遮光ペーストの粘度が低く塗布性が良 好となりやすいという観点からは粒子径の変動係数が 1◦ %以下であることが好 ましい。
本発明の硬化性組成物及び遮光ペース トには、 特性を改質する等の目的で、 種 々の熱可塑性樹脂を添加することも可能である。 熱可塑性樹脂としては種々のも のを用いることができる。 例えば、 メチルメタタリレートの単独重合体あるいは メチノレメタクリレートと他モノマーとのランダム、 ブロック、 あるいはグラフト 重合体等のポリメチルメタクリレート系樹脂 (例えば日立化成社製ォプトレッツ 等) 、 ブチルアタリレートの単独重合体あるいはプチルアタリレートと他モノマ 一とのランダム、 ブロック、 あるいはグラフト重合体等のポリプチルァクリレー ト系樹脂等に代表されるアクリル系樹脂; ビスフエノール A、 3, 3, 5—トリ メチルシク口へキシリデンビスフエノール等をモノマー構造として含有するポリ カーボネート樹脂等のポリカーボネート系樹脂 (例えば帝人社製 APE C等) ; ノルポルネン誘導体、 ビニルモノマー等を単独あるいは共重合した樹脂、 ノルポ ルネン誘導体を開環メタセシス重合させた樹脂、 あるいはその水素添加物等のシ クロォレフィン系樹脂 (例えば、 三井化学社製 APE L、 日本ゼオン社製 ZE〇 NOR, ZEONEX、 J SR社製 ARTON等) ;エチレンとマレイミ ドの共 重合体等のォレフィン一マレイミ ド系樹脂 (例えば東ソ一社製 T I一 PAS等) ; ビスフエノール A、 ビス (4— (2—ヒ ドロキシエトキシ) フエ-ル) フルォ レン等のビスフエノール類やジエチレングリコール等のジオール類と、 テレフタ ル酸、 イソフタル酸等のフタル酸類や脂肪族ジカルボン酸類を重縮合させたポリ エステル等のポリエステル系樹脂 (例えば鐘紡社製 O— PET等) ;ポリエーテ ルスルホン樹脂;ポリアリレート樹脂;ポリビュルァセタール樹脂;ポリエチレ ン樹脂;ポリプロピレン樹脂;ポリスチレン樹脂;ポリアミ ド樹脂;シリコーン 樹脂; フッ素樹脂等の他、 天然ゴム、 EPDM等のゴム状樹脂等が例示される力 これらに限定されるものではない。
熱可塑性樹脂としては、 分子中に S i H基と反応性を有する炭素一炭素二重結 合及び/又は S i H基を有していてもよい。 得られる硬化物がより強靭となりや すいという点においては、 分子中に S i H基と反応性を有する炭素一炭素二重結 合及び Z又は S i H基を平均して 1分子中に 1個以上有していることが好ましい。 熱可塑性樹脂としてはその他の架橋性基を有していてもよい。 この場合の架橋 性基としては、 エポキシ基、 アミノ基、 ラジカル重合性不飽和基、 カルボキシル 基、 イソシァネート基、 ヒドロキシル基、 アルコキシシリル基等が挙げられる。 得られる硬化物の耐熱性が高くなりやすいという点においては、 架橋性基を平均 して 1分子中に 1個以上有していることが好ましい。
熱可塑性樹脂の分子量としては、 特に限定はないが、 (A) 成分や (B ) 成分 との相溶性が良好となりやすいという点においては、 数平均分子量が 1 0 0 0 0 以下であることが好ましく、 5 0 0 0以下であることがより好ましい。 逆に、 得 られる硬化物が強靭となりやすいという点においては、 数平均分子量が 1 0 0 0 0以上であることが好ましく、 1 0 0 0 0 0以上であることがより好ましい。 分 子量分布についても特に限定はないが、 混合物の粘度が低くなり成形性が良好と なりやすいという点においては、 分子量分布が 3以下であることが好ましく、 2 以下であることがより好ましく、 1 . 5以下であることがさらに好ましい。 熱可塑性樹脂としては単一のものを用いてもよいし、 複数のものを組み合わせ て用いてもよい。
熱可塑性樹脂の配合量としては特に限定はないが、 好ましい使用量の下限は硬 化性組成物全体の 5重量%、 より好ましくは 1 0重量%であり、 好ましい使用量 の上限は硬化性組成物中の 5 0重量%、 より好ましくは 3 0重量%である。 添加 量が 5重量%より少ないと得られる硬化物が脆くなり易い傾向があり、 5 0重量 %より多いと耐熱性 (高温での弾性率) が低くなり易い傾向がある。
熱可塑性樹脂は (A) 成分及び/又は (B ) 成分に溶かして均一な状態として 混合してもよいし、 粉碎して粒子状態で混合してもよいし、 溶媒に溶かして混合 する等して分散状態としてもよい。 得られる硬化物がより均一になりやすいとい う点においては、 (A) 成分及び Z又は (B ) 成分に溶かして均一な状態として 混合することが好ましい。 この場合も、 熱可塑性樹脂を (A) 成分及び Z又は ( B ) 成分に直接溶解させてもよいし、 溶媒等を用いて均一に混合してもよいし、 その後溶媒を除いて均一な分散状態及び Z又は混合状態としてもよい。
熱可塑性樹脂を分散させて用いる場合は、 平均粒子径は種々設定できるが、 好 ましい平均粒子径の下限は 1 0 n mであり、 好ましい平均粒子径の上限は 1 0 μ mである。 粒子系の分布はあってもよく、 単一分散であっても複数のピーク粒径 を持っていてもよいが、 硬化性組成物の粘度が低く成形性が良好となりやすいと いう観点からは粒子径の変動係数が 1◦%以下であることが好ましい。
また、 本発明の硬化性組成物及び遮光ペース トには充填材を添加してもよい。 充填材としては各種のものが用いられるが、 例えば、 銀粉、 ガラス繊維、 炭素 繊維、 カーボンブラック、 グラフアイト、 タルク等の無機充填材をはじめとして、 エポキシ系等の従来の封止材の充填材として一般に使用及び/又は提案されてい る充填材等を挙げることができる。
なお、 熱可塑性樹脂と無機部材からなる遮光ペースト、 熱硬化性樹脂と無機部 材からなる遮光ペーストには、 例えば、 石英、 ヒュームシリカ、 沈降性シリカ、 無水ケィ酸、 溶融シリカ、 結晶性シリカ、 超微粉無定形シリカ等のシリカ系充填 材も添加することができる。 当該シリカ系充填材は、 硬化反応を阻害し難く、 線 膨張係数の低減化効果が大きいという観点から好ましい。
充填材は適宜表面処理してもよい。 表面処理としては、 前記無機部材で例示し たものと同様のものが挙げられる。
その他にも充填材を添カ卩する方法が挙げられる。 例えばアルコキシシラン、 ァ シロキシシラン、 ハ口ゲン化シラン等の加水分解性シランモノマーあるいはォリ ゴマーや、 チタン、 アルミニウム等の金属のアルコキシド、 ァシロキシド、 ハロ ゲン化物等を、 本発明の硬化性組成物及び遮光ペース トに添加して、 硬化性組成 物及び遮光ペースト中あるいは硬化性組成物及び遮光ペーストの部分反応物中で 反応させ、 硬化性組成物及び遮光ペースト中で充填材を生成させる方法も挙げる ことができる。
充填材の平均粒子径としては、 浸透性が良好となりやすいという点においては、 1 0 μ ΐη以下であることが好ましく、 5 μ m以下であることがより好ましい。 充填材の粒径 5 0 μ m以上の粒子の割合としては、 浸透性が良好となりやすい という点においては、 1重量%以下であることが好ましく、 0 . 1重量%以下で あることがより好ましい。
充填材の粒径分布については、 エポキシ系等の従来の封止材の充填材として使 用及び/又は提案されているものをはじめ、 各種設定できる。 例えば、 2 4 /z m 以上の粒子が 1 5重量%以上かつ 1 μ m以下の粒子が 3重量%以上となるように してもよい。
充填材の平均粒子径、 充填材の粒径 5 0 /x m以上の粒子の割合はレーザー法マ イク口トラック粒度分析計を用いて測定することができる。
充填材の比表面積についても、 エポキシ系等の従来の封止材の充填材として使 用及び/又は提案されているものをはじめ、 各種設定できる。 例えば、 4 m 2Z g以上、
Figure imgf000076_0001
以下、 1 0 m 2Z g以下等、 任意に設定できる。
比表面積は B E T法モノソープ比表面積測定装置によって測定できる。
充填材のガラス化率についても、 エポキシ系等の従来の封止材の充填材として 使用及び/又は提案されているものをはじめ、 各種設定できる。 例えば、 9 7 % 以上等、 任意に設定できる。
充填材の形状としては、 封止材の粘度が低くなりやすい観点からは、 球状の充 填材であることが好ましい。
充填材は単独で使用してもよく、 2種以上併用してもよい。
充填材の添加量は特に限定されないが、 線膨張係数の低減化効果が高く、 かつ 組成物の流動性が良好であるという観点から、 好ましい添加量の下限は全組成物 中の 3 0重量%、 より好ましくは 5 0重量%であり、 好ましい添加量の上限は全 組成物中の 8 0重量%、 より好ましくは 7 0重量%である。
充填材の混合の方法としては、 各種方法をとることができるが、 硬化性組成物 及び遮光ペーストの中間原料の貯蔵安定性が良好になりやすいという点において は、 (A) 成分に (C ) 成分及び充填材を混合したものと、 (B ) 成分を混合す る方法が好ましい。 (B ) 成分に (C ) 成分及び Z又は充填材を混合したものに (A) 成分を混合する方法をとる場合は、 ( C ) 成分存在下及び/又は非存在下 において (B ) 成分が環境中の水分及び/又は充填材と反応性を有するため、 貯 蔵中等に変質することもある。
本発明の硬化性組成物及び遮光ペーストには老化防止剤を添加してもよい。 老 化防止剤としては、 一般に用いられている老化防止剤、 たとえばクェン酸やリン 酸、 硫黄系老化防止剤等が挙げられる。 硫黄系老化防止剤としては、 メルカプタ ン類、 メルカプタンの塩類、 スルフイドカルボン酸エステル類や、 ヒンダードフ エノール系スルフィド類を含むスルフィド類、 ポリスルフィド類、 ジチォカルボ ン酸塩類、 チォゥレア類、 チォホスフェイ ト類、 スルホェゥム化合物、 チォアル デヒド類、 チオケトン類、 メルカプタール類、 メルカプトール類、 モノチォ酸類、 ポリチォ酸類、 チォアミド類、 スルホキシド類等が挙げられる。 また、 これらの 老化防止剤は単独で使用してもよく、 2種以上併用してもよい。
本発明の硬化性組成物及び遮光ペーストにはラジカル禁止剤を添加してもよい。 ラジカル禁止剤としては、 例えば、 2, 6—ジ一 t一ブチル _ 4ーメチルフエノ ール ( B H T ) 、 2, 2 ' ーメチレン一ビス (4ーメチルー 6— t一ブチルフエ ノーノレ) 、 テトラキス (メチレン一 3 ( 3, 5—ジー t一プチノレ _ 4ーヒ ドロキ シフエエル) プロピオネート) メタン等のフェノール系ラジカル禁止剤や、 フエ ニル一 β一ナフチルァミン、 a一ナフチルァミン、 N, N ' —第二プチルー p— フエ二レンジァミン、 フエノチアジン、 N, N, 一ジフエ-ノレ一: —フエ二レン ジァミン等のアミン系ラジカル禁止剤等が挙げられる。 また、 これらのラジカル 禁止剤は単独で使用してもよく、 2種以上併用してもよい。
本発明の硬化性組成物及び遮光ペーストには紫外線吸収剤を添加してもよい。 紫外線吸収剤としては、 例えば 2 ( 2, 一ヒドロキシー 3 ' , 5 ' —ジー tーブ チノレフェニル) ベンゾトリァゾール、 ビス (2 , 2, 6, 6—テトラメチノレー 4 ーピペリジル) セバケート等が挙げられる。 また、 これらの紫外線吸収剤は単独 で使用してもよく、 2種以上併用してもよい。
本発明の硬化性組成物及び遮光ペーストには、 その他、 エポキシ系等の従来の 封止材の充填材として使用及び/又は提案されているものをはじめ、 着色剤、 離 型剤、 難燃剤、 難燃助剤、 界面活性剤、 消泡剤、 乳化剤、 レべリング剤、 はじき 防止剤、 イオントラップ剤、 チクソ性付与剤、 粘着性付与剤、 保存安定改良剤、 オゾン劣化防止剤、 光安定剤、 増粘剤、 可塑剤、 反応性希釈剤、 酸化防止剤、 熱 安定化剤、 導電性付与剤、 帯電防止剤、 放射線遮断剤、 核剤、 リン系過酸化物分 解剤、 滑剤、 顔料、 金属不活性化剤、 熱伝導性付与剤、 物性調整剤等を本発明の 目的及び効果を損なわない範囲において添加することができる。
本発明の硬化性組成物及び遮光ペーストは、 溶媒に溶解して用いることも可能 である。 使用できる溶媒は特に限定されるものではなく、 具体的に例示すれば、 ベンゼン、 トルエン、 へキサン、 ヘプタン等の炭化水素系溶媒;テトラヒドロフ ラン、 1, 4一ジォキサン、 1, 3—ジォキソラン、 ジェチルエーテル等のエー テル系溶媒;ァセトン、 メチルェチルケトン、 メチルイソプチルケトン等のケト ン系溶媒; クロ口ホルム、 塩化メチレン、 1 , 2—ジクロロェタン等のハロゲン 系溶媒を好適に用いることができる。 溶媒としては、 トルエン、 テトラヒドロフ ラン、 1, 3—ジォキソラン、 クロ口ホルムがより好ましい。
使用する溶媒量は適宜設定できるが、 用いる硬化性組成物及び遮光ペースト 1 gに対しての好ましい使用量の下限は 0 . l m Lであり、 好ましい使用量の上限 は 1 O m Lである。 使用量が 0 . l m Lより少ないと、 低粘度化等の溶媒を用い ることの効果が得られにくくなる傾向があり、 また、 使用量が 1 O m Lより多い と、 材料に溶媒が残留して熱クラック等の問題となり易く、 またコスト的にも不 利になる傾向がある。
これらの溶媒は、 単独で使用してもよく、 2種類以上の混合溶媒として用いる こともできる。
[本発明の遮光ペーストを用いた L E D用パッケージ及び発光ダイォード] 本発明の半導体装置としての発光ダイォードは、 底面と側壁とからなる開口部 を備え、 かつ、 開口部底面は正の外部電極と負の外部電極との各端部が所定の間 隔を隔てて露出するように成形樹脂にて一体成形されてなる L E D用パッケージ と、 L E D用パッケージの底面に載置される発光素子とを有するものであり、 該 L E D用パッケージの実質上側壁にのみ、 本発明の上記遮光ペーストが塗布され、 及び 又は、 それが硬化した遮光用樹脂により、 遮光されている。
「実質上側壁にのみ」 とは、 側壁近傍の底面に本発明の遮光ペーストが流れ出 して硬化した場合でも、 最終的に製品となる本発明の発光ダイォードの性能に悪 影響を及ぼさない限り、 該場合も含まれるという意味である。
また、 本発明の半導体装置としては、 発光素子の周囲の L E D用パッケージの 底面及び側壁に、 遮光用樹脂が形成され遮光されてなるものも挙げることができ る。 この場合、 「発光素子の周囲の L E D用パッケージの底面及び側壁」 とは、 L E D用パッケージの底面及ぴ側壁で発光素子と接触しない部分をいう。 なお、 従来においては、 半導体装置を組み立てる工程熱履歴により、 パッケ一 ジ榭脂は熱変色し、 反射率が低下した。 そのため、 光取り出し効率が低下し、 低 出力を招いていた。 また、 発光素子に遮光用樹脂が接触すると、 発光素子からの 光取り出しが低下し、 低出力を招いていた。 しカゝし、 本発明においては、 耐熱性 に優れた樹脂からなる遮光用樹脂を用いて、 L E D用パッケージの実質上側壁の みに、 又は、 底面及び側壁に発光素子と接触しないように、 遮光用樹脂層を設け る事により、 組み立て工程熱履歴による反射率の低下を防ぐことが可能となり、 高い光出力を有する半導体装置を提供することができる。
また、 本発明の L E D用パッケージは、 L E D用パッケージ開口部の実質上側 壁にのみ、 遮光用樹脂を有することを特徴とする。
遮光ペーストを塗布する前のパッケージは、 種々の材料を用いて作成すること ができ、 例えば、 ポリカーボネート樹脂、 ポリフエ二レンスルフイド樹脂、 ェポ キシ樹脂、 アタリノレ樹脂、 シリコーン樹脂、 A B S樹脂、 ポリブチレンテレフタ レート樹脂、 ポリフタルアミ ド樹脂、 エポキシ樹脂、 B Tレジン、 液晶ポリマー 等の樹脂を挙げることができる。 耐熱性の点から、 半結晶性ポリマー樹脂である ポリフタルアミド樹脂、 B Tレジン、 液晶ポリマーが好ましい。 接着性の点から 半結晶性ポリマー樹脂であるポリフタルアミド樹脂、 ポリブチレンテレフタレー ト樹脂が好ましい。
またセラミック製のパッケージも用いることができる。
パッケージの開口部は長方形、 円形、 楕円形等、 種々の形のものであってよい。 遮光ペース トの塗布方法としては、 一般に知られている液状樹脂塗布方法であ る印刷法、 コーティング法、 転写法等を用いることが出来る。 例えば、 スタンプ 法、 インクジェット法、 デイツビング法、 グラビア印刷法、 孔版印刷、 スクリー ン印刷、 あるいはマスクを介して塗布することである。 また、 針'へら ·はけ等 を使って塗布することも可能である。
本発明の発光ダイオードに用いられている発光素子は、 特に限定なく従来公知 の発光ダイオードに用いられる発光素子を用いることができる。 このような発光 素子としては、 例えば、 MO C VD法、 H D V P E法、 液相成長法といった各種 方法によって、 必要に応じて G a N、 A 1 N等のバッファ一層を設けた基板上に 半導体材料を積層して作成したものが挙げられる。 この場合の基板としては、 各 種材料を用いることができるが、 例えばサフアイャ、 スピネル、 S i C、 S i、 Z nO、 G a N単結晶等が挙げられる。 これらのうち、 結晶性の良好な G a Nを 容易に形成でき、 工業的利用価値が高いという観点からは、 サフアイャを用いる ことが好ましい。
積層される半導体材料としては、 GaA s、 G a P、 GaA l A s、 G a A s P、 A l G a I nP、 GaN、 I nN、 A l N、 I nGaN、 I nGaA l N、 S i C等が挙げられる。 これらのうち、 高輝度が得られるという観点からは、 窒 化物系化合物半導体 (I n x G a y A 1 z N) が好ましい。 このような材料 には付活剤等を含んでいてもよい。
発光素子の構造としては、 MI S接合、 p n接合、 P I N接合を有するホモ接 合、 ヘテロ接合やダブルへテロ構造等が挙げられる。 また、 単一あるいは多重量 子井戸構造とすることもできる。
発光素子はパッシベーション層を設けていてもよいし、 設けなくてもよい。 発光素子には従来知られている方法によって電極を形成することができる。 発光素子上の電極は種々の方法でリ一ド端子等と電気接続できる。 電気接続部 材としては、 発光素子の電極とのォーミック性機械的接続性等が良いものが好ま しく、 例えば、 金、 銀、 銅、 白金、 アルミニウムやそれらの合金等を用いたボン デイングワイヤーが挙げられる。 また、 銀、 カーボン等の導電性フィラーを樹脂 で充填した導電性接着剤等を用いることもできる。 これらのうち、 作業性が良好 であるという観点からは、 アルミニウム線或いは金線を用いることが好ましい。 上記のようにして発光素子が得られるが、 本発明の発光ダイォードにおいては 発光素子の光度としては垂直方向の光度が 1 c d以上であれば任意のものを用い ることができるが、 垂直方向の光度が 2 c d以上の発光素子を用いた場合により 本発明の効果が顕著であり、 3 C d以上の発光素子を用いた場合にさらに本発明 の効果が顕著である。
発光素子の発光出力としては特に限定なく任意のものを用いることができるが、 2 OmAにおいて 1 nxW以上の発光素子を用いた場合に本発明の効果が顕著であ り、 2 OmAにおいて 4 mW以上の発光素子を用いた場合により本発明の効果が 顕著であり、 2 O mAにおいて 5 mW以上の発光素子を用いた場合にさらに本発 明の効果が顕著である。
発光素子の発光波長は紫外域から赤外域まで種々のものを用いることができる 1S 主発光ピーク波長が 5 5 0 n m以下のものを用いた場合に特に本発明の効果 が顕著である。
用いる発光素子は一種類で単色発光させても良いし、 複数用いて単色或いは多 色発光させても良い。
本発明の発光ダイォードに用いられるリ一ド端子としては、 ボンディングワイ ヤー等の電気接続部材との密着性、 電気伝導性等が良好なものが好ましく、 リー ド端子の電気抵抗としては、 3 0 0 μ Ω · c m以下が好ましく、 より好ましくは 3 μ Ω · c m以下である。 これらのリード端子材料としては、 例えば、 鉄、 銅、 鉄入り銅、 錫入り銅や、 これらに銀、 ニッケル等をメツキしたもの等が挙げられ る。 これらのリード端子は良好な光の広がりを得るために適宜光沢度を調整して あよい。
本発明の発光ダイオードは、 種々の樹脂によって発光素子を被覆することによ つて製造することができるが、 この場合被覆とは、 上記発光素子を直接封止する ものに限らず、 間接的に被覆する場合も含む。 封止樹脂としてはエポキシ樹脂、 シリコーン樹脂、 アクリル樹脂、 ユリア樹脂、 イミド樹脂等を用いることが出来 る。 また、 ガラスで発光素子を封止してもよい。
封止の方法としても各種方法を適用することができる。 例えば、 底部に発光素 子を配置させたカップ、 キヤビティ、 パッケージ凹部等に、 液状の糸且成物をディ スペンサーその他の方法にて注入して、 加熱等により硬化させてもよいし、 固体 状あるいは高粘度液状の組成物を加熱する等して流動させ、 同様にパッケージ凹 部等に注入してさらに加熱する等して硬化させてもよい。
被覆部分の形状も特に限定されず、 種々の形状をとることができる。 例えば、 レンズ形状、 板状、 薄膜状、 特開平 6— 2 4 4 4 5 8号公報記載の形状等が挙げ られる。 これらの形状は組成物を成形硬化させることによって形成してもよいし、 組成物を硬化した後に後加工により形成してもよい。
その他、 本発明の発光ダイオードには従来公知の種々の方式が適用できる。 例 えば、 発光素子背面に光を反射あるいは集光する層を設ける方式、 封止樹脂の黄 変に対応して補色着色部を底部に形成させる方式、 主発光ピークより短波長の光 を吸収する薄膜を発光素子上に設ける方式、 発光素子を軟質あるいは液状の封止 材で封止した後周囲を硬質材料でモールディングする方式、 発光素子からの光を 吸収してより長波長の蛍光を出す蛍光体を含む材料で発光素子を封止した後周囲 をモールディングする方式、 蛍光体を含む材料をあらかじめ成形してから発光素 子とともにモールドする方式、 特開平 6— 2 4 4 4 5 8号公報に記載のとおりモ 一ルディング材を特殊形状として発光効率を高める方式、 輝度むらを低減させる ためにパッケージを 2段状の凹部とする方式、 発光ダイォードを貫通孔に揷入し て固定する方式、 発光素子表面に主発光波長より短い波長の光を吸収する薄膜を 形成する方式、 発光素子をはんだバンプ等を用いたフリップチップ接続等によつ てリード部材等と接続して基板方向から光を取出す方式等を挙げることができる。 本発明の発光ダイオードは、 従来公知の各種の用途に用いることができる。 具 体的には、 例えばパックライト、 照明、 センサー光源、 車両用計器光源、 信号灯、 表示灯、 表示装置、 面状発光体の光源、 ディスプレイ、 装飾、 各種ライト等を挙 げることができる。
<本発明の第二 >
次に、 本発明の遮光用樹脂層の形成方法について説明する。
底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電極と負 の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて一体成 形されてなる L E D用パッケージの、 側壁にのみ遮光用樹脂層を形成する方法は、 以下の 3段階に大きく分けることが出来る。
( 1 ) 遮光ペース トを基材に塗布させる工程
( 2 ) L E D用パッケージの開口部を密着させる工程
( 3 ) L E D用パッケージの開口部を上にした状態で加熱する工程
以下、 各工程に分けて説明する。
( 1 ) 遮光ペース トを基材に塗布させる工程
遮光ペーストは種々の公知の方法によって基材に塗布させることが出来る。 基 材の材質は、 例えば、 樹脂製、 ゴム製、 ガラス製、 セラミック製、 金属製等、 種 々のものを用いることが出来る。 基材の形状は、 例えば、 平板、 水平板、 板状べ ルト、 Δ状ロールのような平面状基材、 ロール、 ポール等の曲面状基材の種々の ものを用いることが出来る。
基材への遮光ペーストの塗布は、 キャスティング法、 コーティング法、 Tダイ を用いた押出し法、 遮光ペーストを張った浴へのディッビング法等、 種々の方法 を用いることが出来る。 また、 膜厚を制御する目的で種々のスぺーサーを用いる ことが出来る。 塗布させる時間は、 0. 1秒〜 24時間が好ましく、 1秒〜 1時 間がさらに好ましく、 1分〜 30分が特に好ましい。 塗布させる温度は 5°C~1 00°Cが好ましく、 10°C〜50°Cがさらに好ましく、 15°C〜30°Cが特に好 ましい。 塗布は、 真空中、 空気中及び窒素、 アルゴン等の不活性ガス中、 いずれ でも好適に実施することが出来る。 加熱炉は、 熱風循環オープン、 赤外線加熱炉 等、 種々のものを用いることが出来る。 また、 異物等の混入を防ぐ目的で、 タリ ーンルームで行うことが好ましい。
(2) LED用パッケージの開口部を密着させる工程
(1) 項で形成した遮光ペーストが塗布された基材に LED用パッケージの開 口部を密着させ、 開口部上部に遮光ペース トを付着させる。 遮光ペース トを塗布 した基材が平面状である場合、 L E D用パッケージの開口部との密着はパッケ一 ジの自重によるもの、 またプレスによる押圧、 ロールによる押圧等種々の方法に より行うことが出来る。 また、 遮光ペース トを塗布した基材が曲面状、 例えば口 ール状である場合、 そのロールを開口部に転がすことにより、 また、 遮光ペース トを塗布したロールと L E D用パッケージの開口部が密着するように口ール間を 通すことにより、 LED用パッケージの開口部上部に遮光ペーストを付着させる ことが出来る。
密着させる時間は 0. 01秒〜 24時間が好ましく、 0. 1秒〜 1時間がさら に好ましく、 1秒〜 5分が特に好ましい。 密着させる温度は 5°C〜100°Cが好 ましく、 10°C〜50°Cがさらに好ましく、 15°C〜30°Cが特に好ましい。 密 着させる温度 ·時間により遮光ペースト付着量を制御することが出来る。 密着は、 真空中、 空気中及び窒素、 アルゴン等の不活性ガス中、 いずれでも好適に実施す ることが出来る。 加熱炉は熱風循環オーブン、 赤外線加熱炉等種々のものを用い ることが出来る。 また、 異物等の混入を防ぐ目的で、 クリーンルームで行うこと が好ましい。
(3) L E D用パッケージの開口部を上にした状態で加熱する工程
次に、 LED用パッケージの開口部を上にした状態で加熱し、 加熱時間 Z温度 を制御することにより、 (2) 項でパッケージ開口部上部に付着した遮光ペース トを、 LED用パッケージ側壁のみに流延させることが出来る。 本明細書でいう 「LED用パッケージの開口部を上にした状態」 とは、 LED用パッケージの底 部電極面を上に向け、 かつ鉛直軸に対して該底部電極面を垂直に位置させた状態 を意味する。
垂直の精度は、 本発明の (3) の工程に大きな支障を及ぼさない限り、 ±10 度を目安に許容することができる。 加熱温度は、 遮光ペース トの付着量、 粘度、 チクソ性等により適宜設定することが出来る。 パッケージの劣化を防ぐために 3 0°Cから 200°Cが好ましく、 40°Cから 100°Cがさらに好ましく、 50°C力、 ら 80°Cが特に好ましい。 加熱時間は、 遮光ペース トの付着量、 粘度、 チクソ性 等により適宜設定することが出来る。 生産性の点からは、 1時間以下が好ましく、 30分以下がさらに好ましく、 15分以下が特に好ましい。 加熱は、 真空中、 空 気中及び窒素、 アルゴン等の不活性ガス中、 いずれも好適に実施することが出来 る。 加熱炉は、 熱風循環オープン、 赤外線加熱炉等、 種々のものを用いることが 出来る。 また、 加熱は段階的に実施することができる。 例えば、 60°Cで 30分 間、 80 で 30分間、 100でで 30分間と段階的に加熱することができる。 次に、 本発明の遮光用樹脂層の形成方法で用いることが出来る遮光ペーストに ついて説明する。
該遮光ペーストとしては、 上述の遮光ペースト、 上述の硬化性組成物からなる 遮光ペースト等を好適に用いることができる。
該遮光ペーストは、 種々の粘度のものを用いることが出来る。 良好な塗布性を 確保するために、 常温 (23°C) での粘度が高く、 加熱時 (30°C) では粘度が 低下することが好ましい。 常温 (23°C) では 10ボイズ以上が好ましく、 加熱 時 ( 30 °C) では 1ボイズ以上が好ましい。 粘度は E型回転粘度計で測定するこ とが出来る。 該遮光ペーストはチタソ性が大きいと流れ性が良好でなくなり、 本発明の目的 を達成することが出来ない。 従って、 2 3°Cにおけるチクソ性 (粘度比) は、 0. 8〜1. 2が好ましく、 0. 9〜; 1. 1がさらに好ましく、 0. 9 5〜1. 05 が特に好ましい。 チクソ性 (粘度比) は E型回転粘度計で測定することが可能で あり、 粘度計の回転数は、 通常 1 0 r pmZl r pmの値とするが、 20 r pm // 2 r p ms 5 0 r p m/ 5 r pm 5 r p m/ 0. 5 r m等種々の組み合わ せの値についても採用することが出来る。
該遮光ペース トは硬化性が大きいと、 (3) LED用パッケージの開口部を上 にした状態で加熱する工程において、 遮光ペーストがパッケージ側面全面に流延 する前に硬化し、 良好な遮光層が得られない。 従って、 1 1 5°Cにおける硬化時 間が 1 5秒〜 9 0秒であることが好ましく、 20秒〜 7 5秒であることがさらに 好ましく、 30秒〜 6 0秒が特に好ましい。 硬化時間はスナップアップタイムと 呼ばれるゲル化時間により評価できる。 測定方法を以下に示す。 遮光ペース ト約 5 Omgを、 ホットプレート (1 1 5°C± 3°C) 上に押し付けると同時にストッ プウォッチをスタートさせる。 さらにへらで塗り付け、 遮光ペース トが流動性を 示さなくなるまでの時間を硬化時間とする。 .
該遮光ペース トは流れ性が大きいと、 (2) LED用パッケージの開口部を密 着させる工程、 及び/又は (3) L E D用パッケージの開口部を上にした状態で 加熱する工程において、 パッケージ側面から底面の電極部分に流延し、 LEDチ ップの導通が取れなくなるといった不具合が発生する。 従って、 遮光ペーストは 適度な流動性を有することが好ましい。 一方、 上述のように導通が取れなくなる 等の不都合が実質上発生しない限り、一部底面へ流れ出した後硬化しても問題は ない。
流動性はガラス板に該遮光ペーストを流延させる方法で評価することが可能で ある。 以下にその方法を示した。 遮光ペースト約 5 Omgをガラス板に約 8 mm 径の円状に塗布した後、 該ガラス板を斜め約 8 0度に固定して、 約 2 1°Cに 1 0 分間保持した時の流下距離を測定する。 流下距離が 5 mm- 3 Ommであること が好ましく、 5〜 2 Ommであることがさらに好ましく、 5〜 1 5 mmであるこ とが特に好ましい。 また、 約 6 0°Cに 5分間保持した時の流下距離が、 1 0 mm 〜7 Ommであることが好ましく、 10〜40 mmであることがさらに好ましく、 10〜3 Ommであることが特に好ましい。 加熱は熱風循環オープンを用いるこ とが出来る。
また、 上記遮光ペーストを硬化させて得られる遮光用樹脂について説明する。 該遮光用樹脂は、 はんだリフロー等に耐えるための耐熱性が要求される。 耐熱 性が低いとはんだリフロ一時に着色し L E Dの輝度低下の原因となる。 従って該 遮光ペーストから製造される遮光用樹脂は高い耐熱性を有することが好ましい。 耐熱性は基板状に遮光ペーストを塗布し形成させた遮光用樹脂を、 260°〇 3 分間加熱し、 遮光用樹脂の黄色度 (イェローインデックス, Y I) を評価するこ とにより評価可能である。 黄色度の初期値を 100とした場合、 260 °CZ 3分 間加熱後の値が 100〜 1 50であることが好ましく、 100〜 140であるこ とがさらに好ましく、 100〜130であることが特に好ましい。 黄色度は色差 計を用いて測定できる。
該遮光用樹脂は、 LEDチップからの光を反射させるため耐光性が要求される。 耐光性が低いと着色し LEDの輝度低下の原因となる。 従って該遮光ペーストか ら製造される遮光用樹脂は高い耐光性を有することが好ましい。 耐光性は基板状 に遮光ペーストを塗布し形成させた遮光用樹脂に光照射を行うことにより評価す る。 耐光性試験はスガ試験機製スーパーキセノンウエザーメーターを用い、 放射 照度 0. 1 8 kW/m 1時間 42分照射に引き続き 1 8分降雨のサイクル試 験、 ブラックパネル温度 63 °C、 湿度 50 %の試験条件で 330時間実施した。 黄色度の初期値を 100とした場合、 キセノンウエザーメーターによる耐光性試 験後の値が 100〜1 50であることが好ましく、 100〜140であることが さらに好ましく、 100〜130であることが特に好ましい。 黄色度は色差計を 用いて測定できる。
該遮光用樹脂は、 必要な遮光性を確保するため適切な膜厚を有していることが 好ましい。 膜厚は 1〜1000 /zmであることが好ましく、 5〜500 ^πιであ ることがさらに好ましく、 50〜100 μΐηであることが特に好ましい。 膜厚は 超音波顕微鏡、 X線透視装置等を用いた非破壊検査により測定できる。 また遮光 用樹脂と基板面を有する様に切片を作製し、 走査型電子顕微鏡 (SEM) により 測定できる。
該遮光用樹脂は、 LEDの信頼性確保のためパッケージとの高い接着性が必要 である。 接着性が低いと、 パッケ ジとモールド樹脂に剥離が発生し LED不灯 の原因となる。 接着性は遮光用樹脂層が形成された基板においてダイシェア試験 により評価可能である。 ダイシェア試験機は、 例えばディジ社製万能型ボンドテ スター 2400を用いることが出来る。 耐光性試験は、 スガ試験機製スーパーキ セノンウエザーメーターを用い、 放射照度 0. 18 kW/m2、 1時間 42分照 射に引き続き 18分降雨のサイクル試験、 ブラックパネル温度 63°C、 湿度 50 °/0の試験条件で 330時間実施した。 接着強度は、 初期値を 100とした場合、 キセノンウエザーメーターによる耐光性試験後の値が 70以上であることが好ま しく、 80以上であることがさらに好ましく、 90以上であることが特に好まし い。
本発明の遮光用樹脂の形成方法に用いられる遮光ペースト、 遮光用樹脂も、 L ED用パッケージ及び発光ダイォードに好適に用いることができる。 なお、 LE D用パッケージ及び発光ダイォードの説明は前述のとおりである。 発明を実施するための最良の形態
以下に、 本発明の実施例及び比較例を示すが、 本発明はこれらによって限定さ れるものではない。
(合成例 1 )
(B) 成分であるトリァリルイソシァヌレートと 1, 3, 5, 7—テトラメチノレ シクロテトラシロキサンの反応物の合成
5 Lのセパラプノレフラスコにトルエン 1. 8 k g、 1, 3, 5, 7—テトラメ チルシクロテトラシロキサン 1. 44 k gを加えて、 内温が 104°Cになるよう に加熱した。 そこに、 トリアリルイソシァヌレート 200 g、 白金ビュルシロキ サン錯体のキシレン溶液 (白金として 3 w t%含有) 1. 44mL、 トルエン 2 00 gの混合物を滴下した。 120°Cのオイルバス中で 7時間加熱還流させた。 1—ェチ二ルー 1ーシク口へキサノーノレ 1. 7 gを加えた。 未反応の 1, 3, 5 7—テトラメチルシクロテトラシロキサン及びトルエンを減圧留去した。 1H— NMRにより、 このものは 1, 3, 5, 7—テトラメチルシクロテトラシロキサ ンの S i H基の一部がトリアリルイソシァヌレートと反応したもの (部分反応物 B 1と称す、 S i H価: 8. 2 mm o 1 Z g、 ァリル価: 0. 12 mm o 1 /g ) であることがわかった。 生成物は混合物であるが、 本発明の (B) 成分である 下記構造を有する化合物を主成分として含有している。 また、 本^明の (C) 成 分である白金ビニルシ口キサン錯体を含有している。
Figure imgf000088_0001
(実施例 l )
(A) 成分としてトリァリルイソシァヌレート 54. 5 1 gとジァリルモノグ リシジルイソシァヌレート 87. 03 gの混合物、 (B) 成分として合成例 1の 反応物 (B 1) 162. 64 g、 (C) 成分として白金ビュルシロキサン錯体の キシレン溶液 (白金として 3 w t°/0含有) 9 1 3mg、 (D) 成分として γ—グ リシドキシプロビルトリメ トキシシラン 7. 60 g、 (E) 成分としてほう酸ト リメチル 1. 52 gを用いた。 上記 (A) 成分、 (C) 成分及び (E) 成分をあ らかじめ混合、 攪拌し混合物 A液を作製した。 また、 上記 (B) 成分、 (D) 成 分及ぴ 1一ェチニルー 1ーシク口へキサノール 9 Omgをあらかじめ混合、 攪拌 し混合物 B液を作製した。 上記混合物 A液と混合物 B液を混合し攪拌■脱泡を行 い一液混合物とした。 該混合物 2. 5 gに (F) 成分である酸化チタン (石原産 業 (株) , タイペータ R— 8 2 0) 2. 5 gを混合し攪拌 '脱泡を行い遮光ぺー ス トを得た。
(実施例 2)
実施例 1で得られた (A) 〜 (E) 成分の一液混合物 2. 5 gに、 (F) 成分 である酸化チタン (石原産業 (株) タイペータ R— 8 20) 2. 5 gを混合し、 さらにシリカ (日本ァエロジル (株) , ァエロジル 3 00) 7 5m gを混合し、 攪拌 ·脱泡を行い遮光ペーストを得た。 (実施例 3 )
(A) 成分としてトリァリルイソシァヌレート 1 2. 04 g、 (B) 成分とし て合成例 1の反応物 (B 1) 1 7. 9 6 g、 (C) 成分として白金ビュルシロキ サン錯体のキシレン溶液 (白金として 3 w t%含有) 9 0mg、 (D) 成分とし て γ—グリシドキシプロピルトリメ トキシシラン 7 5 0 m g、 (E) 成分として ほう酸トリメチル 1 5 Omgを用いた。 上記 (A) 成分、 (C) 成分及び (E) 成分をあらかじめ混合、 攪拌し混合物 A液を作製した。 また、 上記 (B) 成分、
(D) 成分及び 1一ェチニルー 1—シクロへキサノール 9 Omgをあらかじめ混 合、 攪拌し混合物 B液を作製した。 上記混合物 A液と混合物 B液を混合し攪拌- 脱泡を行い一液混合物とした。 該混合物 2. 5 gに (F) 成分である酸化チタン (石原産業 (株) 、 タイペータ R— 8 20) 2. 5 gを混合し、 さらにシリカ ( 日本ァエロジル (株) , ァエロジル 3 00) 1 2 5mgを混合し、 攪拌 ·脱泡を 行い遮光ペーストを得た。
(実施例 4)
実施例 1〜 3で得られた遮光ペーストをポリフタルアミド樹脂成形体の上にテ 一プをスぺーサ一として膜厚を制御して塗布し、 1 0 0°CZl時間硬化させるこ とで遮光層を形成させた。 その上に、 以下のようにして作製した接着剤により、 ダイシヱァ試験用のダイを接着させた。
接着剤層は 6 0 °CZ 6時間、 70 °C/ 1時間、 80 °0/ 1時間、 1 20。C/ 1 時間、 150°C/1時間、 180°C/30分間加熱した後、 硬化させて形成した。 (比較例 1 )
ポリフタルアミド樹脂成形体の上に、 以下のようにして作製した接着剤により、 ダイシェア試験用のダイを接着させた。
接着剤層は 60 °C/ 6時間、 70 °C/ 1時間、 80。。ノ 1時間、 120 °C/ 1 時間、 150°C/1時間、 180°C/30分間加熱した後、 硬化させて形成した。
<接着剤成分の作製 >
トリアリルイソシァヌレート 12. 04 g、 白金ビュルシロキサン錯体のキシ レン溶液 (白金として 3w t%含有) 9 Omg及びほう酸トリメチル 15 Omg をあらかじめ混合、 攪拌し混合物 A液を作製した。 また、 合成例 1の反応物 (B 1) 17. 96 g、 γ—グリシドキシプロビルトリメ トキシシラン 75 Omg及 び 1—ェチェル— 1ーシク口へキサノール 9 Omgをあらかじめ混合、 攪拌し混 合物 B液を作製した。 上記混合物 A液と混合物 B液を混合し攪拌 ·脱泡を行い接 着剤成分とした。 くダイシェア試験用のダイの作製 >
トリァリノレイソシァヌレート 12. 04 g、 白金ビニルシ口キサン錯体のキシ レン溶液 (白金として 3 w t%含有) 9 Omg及びほう酸トリメチル 15 Omg をあらかじめ混合、 攪拌し混合物 A液を作製する。 また、 合成例 1の反応物 (B 1 ) 17. 96 g、 γ _グリシドキシプロピルトリメ トキシシラン 750 m g及 ぴ 1ーェチェル一 1—シク口へキサノール 9 Omgをあらかじめ混合、 攪拌し混 合物 B液を作製する。 上記混合物 A液と混合物 B液を混合し攪拌 ·脱泡を行い、 一液混合物とした。
該ー液混合物を、 2枚のガラス板に 3 mm厚みのシリコーンゴムシートをスぺ ーサ一としてはさみこんで作成したセルに流し、 熱風乾燥機中で 60°C/6時間、 70 °C/ 1時間、 80 °C/ 1時間、 120 °C/ 1時間、 150 °C/ 1時間、 18 0°C/30分間加熱した後、 硬化させた。 得られた透明な成形体を 3 mm (縦) X 3 mm (横) X I mm (厚) にダイヤモンドカッターを用いて切削し、 ダイと した。
(測定例 1 )
実施例 4、 比較例 1で得られた試験片についてダイシ ア試験により接着性を 評価した。 ダイシュア試験機はディジ社製万能型ボンドテスター 2 4 0 0を用い た。 温度 2 3 °Cで、 5 0 k g f のロードセルを用い、 試験スピードは 8 3 μ / 秒で実施した。 結果を表 1に示した。 (測定例 2 )
実施例 4、 比較例 1で得られた試験片について、 ダイを通して接着面に光が照 射されるようにした状態で耐光性試験を実施した。 耐光性試験はスガ試験機製ス 一パーキセノンウエザーメーターを用い、 放射照度 0 . 1 8 k W/m 2、 1時間 4 2分照射に引き続き 1 8分降雨のサイクル試験、 ブラックパネル温度 6 3 °C、 湿度 5 0 %の試験条件で 3 3 0時間実施した。 耐光性試験後の試験片について、 測定例 1と同様の条件でダイシ ア試験により接着性を評価した。 結果を表 1に 示した。
表 1
Figure imgf000091_0001
* )ダイシェア試験: n= 5,試験値は最大 ·最小値をカットし n= 3の平均. 表 1から明らかな様に、 本発明の遮光ペーストは耐光性試験後の接着性低下が 見られず、 遮光能を有していることが明らかとなった。 また、 耐光性試験後も着 色がなく高耐光性を有していた。 従って、 本発明の硬化性組成物は遮光ペース ト として好適に用いることが出来る。 (合成例 2 )
(A) 成分としてトリァリルイソシァヌレート 54. 51 gとジァリルモノグ リシジルイソシァヌレート 87. 03 gの混合物、 (B) 成分として合成例 1の 反応物 (B 1) 162. 64 g、 (C) 成分として白金ビュルシロキサン錯体の キシレン溶液 (白金として 3 w t%含有) 9 1 3mg、 (D) 成分として y _ グリシドキシプロビルトリメ トキシシラン 7. 60 g、 (E) 成分としてほう酸 トリメチル 1. 52 gを用いた。 上記 (A) 成分、 (C) 成分及び (E) 成分を あらかじめ混合、 攪拌し混合物 A液を作製した。 また、 上記 (B) 成分、 (D) 成分及び 1—ェチュル一 1—シクロへキサノール 9 1 3mgをあらかじめ混合、 攪拌し混合物 B液を作製した。
(実施例 5 )
合成例 2で作製した混合物 A液 1 14 gと混合物 B液 1 36 gを遊星式攪拌脱 泡機 (クラボウ (株) 、 マゼルスター KK一 500) にて 10. 5分攪拌した。 そこに (F) 成分として酸化チタン (石原産業 (株) , タイペータ R— 820) を 250 g加えて遊星式攪抻脱泡機にて 2分間攪拌した。 そこに (G) 成分とし てシリカ (日本ァエロジル (株) , ァエロジル 300) を 7. 5 g加えて 1 20 分間混合し、 硬化性組成物を得た。
該硬化性組成物の E型粘度計による粘度 (0. S r pmZl r pm) は 46 P a · s / 3 1 P a · sであった。 該硬化性組成物 1 50mgを、 l O cmX l O CmX 3 mm厚の青板ガラス上に、 円形にガラス板の端から約 1 c mの位置に塗 布した。 そのガラス板を塗布部分が上部にくるようにし、 80度の角度に傾斜さ せ 100°Cに加熱したオーブン中に設置した。 1時間経過後、 硬化性組成物は流 動しておらず、 流延性は 0 cmであった。
(実施例 6 )
合成例 2で作製した混合物 A液 363 gと混合物 B液 434 gをディゾルバー にて 3分攪拌した。 そこに (F) 成分として酸化チタン (石原産業 (株) , タイ ペータ R— 820) を 800 g加えてディゾルバ一にて 14分間攪拌した。 そこ に (G) 成分としてシリカ (日本ァエロジル (株) , ァエロジル 300) を 24 g加えて 49分間混合し、 硬化性組成物を得た。
該硬化性組成物の E型粘度計による粘度 (0. S r pmZl r pm) は 39 P a · s/26 P a ■ sであった。 該硬化性組成物 1 50mgを、 l O cmX I O cm X 3 mm厚の青板ガラス上に、 円形にガラス板の端から約 1 cmの位置に塗 布した。 そのガラス板を塗布部分が上部にくるようにし、 80度の角度に傾斜さ せ 100 °Cに加熱したオーブン中に設置した。 1時間経過後、 硬化性組成物は流 動しておらず、 流延性は 0 c mであった。
(実施例 7 )
合成例 2で作製した混合物 A液 46 gと (F) 成分として酸化チタン (石原産 業 (株) , タイペータ R— 820) 46 g及び (G) 成分としてシリカ (日本ァ エロジル (株) , ァエロジル 300) を 1. 4 g加えて遊星式攪拌脱泡機にて攪 拌した。 また、 混合物 B液 55 gと (F) 成分として酸化チタン (石原産業 (株 ) , タイペータ R— 820) 55 g、 及び (G) 成分としてシリカ (日本ァエロ ジル (株) , ァエロジル 300) を 1. 7 g加えて遊星式攪拌脱泡機にて攪拌し た。 混合液 A液一酸化チタン一シリカ混合物 30. 0 gと混合液 B液一酸化チタ ンーシリカ混合物 35. 7 gを攪拌脱泡機にて混合した。
該硬化性組成物の E型粘度計による粘度 (0. 5 r ;pin/2. 5 r p m) は 1 7 P a · s /1 2 P a · sであった。 該硬化性組成物 1 50mgを、 l O cmX 10 cmX 3 mm厚の青板ガラス上に、 円形にガラス板の端から約 1 c mの位置 に塗布した。 そのガラス板を塗布部分が上部にくるようにし、 80度の角度に傾 斜させ 100°Cに加熱したオーブン中に設置した。 1時間経過後、 硬化性組成物 は流動しており、 流延性は 9 c m以上であった。
(実施例 8 ) ·
合成例 2で作製した混合物 A液 46 gと (G) 成分としてシリカ (日本ァエロ ジル (株) , ァエロジル 300) を 3 g加えて遊星式攪拌脱泡機にて攪拌した。 また、 混合物 B液 54 gと (F) 成分として酸化チタン (石原産業 (株) , タイ ペータ R— 8 20) を 100 g加えて遊星式攪拌脱泡機攪拌した。 混合液 A液一 シリカ混合物 30. 2 gと混合液 B液一酸化チタン混合物 95. 9 gを攪拌脱泡 機にて混合した。
該硬化性組成物の E型粘度計による粘度 (0. 5 r pmZl. 0 r p m) は 1 7 P a · s/1 2 P a ■ sであった。 該硬化性組成物 1 50mgを、 l O cmX 10 cm X 3 mm厚の青板ガラス上に、 円形にガラス板の端から約 1 c mの位置 に塗布した。 そのガラス板を塗布部分が上部にくるようにし、 80度の角度に傾 斜させ 100°Cに加熱したオーブン中に設置した。 1時間経過後、 硬化性組成物 は流動しており、 流延性は 9 cm以上であった。
(実施例 9 )
合成例 2で作製した混合物 B液 54 gと (F) 成分として酸化チタン (石原産 業 (株) , タイペータ R— 820) を 100 g、 (G) 成分としてシリカ (日本 ァエロジル (株) , ァエロジル 300) を 3 g加えて遊星式攪拌脱泡機にて攪拌 した。 合成例 2で作製した混合物 A液 22. 5 gと混合液 B液一酸化チタンーァ エロジル混合物 77. 5 gを攪拌脱泡機にて混合した。
該硬化性組成物の E型粘度計による粘度 ( 1. 0 r pm/2. 5 r p m) は 9 P a - s/l O P a - sであった。 該硬化性組成物 1 50mgを、 l O cmX l 0 cmX 3 mm厚の青板ガラス上に、 円形にガラス板の端から約 1 c mの位置に 塗布した。 そのガラス板を塗布部分が上部にくるようにし、 80度の角度に傾斜 させ 100°Cに加熱したオーブン中に設置した。 1時間経過後、 硬化性組成物は 流動しており、 流延性は 9 c m以上であった。
(実施例 1 0 )
(A) 成分としてトリァリルイソシァヌレート 54. 5 1 gとジァリルモノグ リシジルイソシァヌレート 87. 03 gの混合物、 (B) 成分として合成例 1の 反応物 (B 1) 162. 64 g、 (C) 成分として白金ビュルシロキサン錯体の キシレン溶液 (白金として 3 w t%含有) 9 l 3mg、 (D) 成分として γ—グ リシドキシプロビルトリメトキシシラン 7. 60 g、 (E) 成分としてほう酸ト リメチル 1. 52 gを用いた。 上記 (A) 成分、 (C) 成分及び (E) 成分をあ らかじめ混合、 攪拌し混合物 A液を作製した。 また、 上記 (B) 成分、 (D) 成 分及び 1一ェチニルー 1—シクロへキサノール 9 Omgをあらかじめ混合、 攪拌 し混合物 B液を作製した。 上記混合物 A液と混合物 B液を混合し攪拌 ·脱泡を行 い一液混合物とした。 該混合物 2. 5 gに (F) 成分である酸化チタン (石原産 業 (株), タイペータ R— 820) 2. 5 gを混合し、 さらにシリカ (日本ァエロ ジル (株) , ァエロジル R 8 12) 25mgを混合し、 攪拌■脱泡を行い遮光べ ーストを得た。
(実施例 1 1 )
実施例 10で得られた (A) 〜 (E) 成分の一液混合物 2. 5 gに、 (F) 成 分である酸化チタン (石原産業 (株) , タイペータ R— 820) 0. 625 gを 混合し、 さらにシリカ (日本ァエロジノレ (株) , ァエロジル R 81 2) 250m gを混合し、 攪拌 ·脱泡を行い遮光ペーストを得た。
(実施例 1 2 )
(A) 成分としてトリァリルイソシァヌレート 1 2. 04 g、 (B) 成分とし て合成例 1の反応物 (B 1) 1 7. 96 g、 (C) 成分として白金ビニルシロキ サン錯体のキシレン溶液 (白金として 3 w t%含有) 90mg、 (D) 成分とし て γ—グリシドキシプロビルトリメ トキシシラン 75 Omg、 (E) 成分として ほう酸トリメチル 15 Omgを用いた。 上記 (A) 成分、 (C) 成分及び (E) 成分をあらかじめ混合、 攪拌し混合物 A液を作製した。 また、 上記 (B) 成分、 (D) 成分及び 1ーェチュル一 1—シクロへキサノール 9 Omgをあらかじめ混 合、 攪拌し混合物 B液を作製した。 上記混合物 A液と混合物 B液を混合し攪拌- 脱泡を行い一液混合物とした。 該混合物 2. 5 gに (F) 成分である酸化チタン (石原産業 (株) , タイペータ R—820) 2. 5 gを混合し、 さらにシリカ ( 日本ァエロジル (株) , ァエロジル R8 1 2) 188mgを混合し、 攪拌 .脱泡 を行い遮光ペーストを得た。 (実施例 1 3)
実施例 1 1で得られた遮光ペーストの硬化時間を測定した。 1 15°Cにおける スナップアップタイムで測定された硬化時間は 32秒であり、 本発明の遮光用樹 脂層の形成方法に適用可能な遮光ペーストであった。
(実施例 14)
実施例 10〜1 2記載の遮光ペースト 5 Omgをガラス板に 8 mm径の円状に 塗布した後、 該ガラス板を斜め 80度に固定して、 21°Cに 10分間保持した時 の流下距離を評価した。 実施例 10 : 2 cm, 実施例 1 1 : 2 cm, 実施例 12 : 2. 5 cmであり、 本発明の遮光用樹脂層の形成方法に適用可能な遮光ペース トであった。 (実施例 1 5 )
実施例 10~12記載の遮光ペースト 5 Omgをガラス板に 8 mm径の円状に 塗布した後、 該ガラス板を斜め 80度に固定して、 60°Cに 5分間保持した時の 流下距離を評価した。 実施例 10 : 4. 5 cm, 実施例 1 1 : 3. 5 cm, 実施 例 12 : 4. 0 cmであり、 本発明の遮光用樹脂層の形成方法に適用可能な遮光 ペーストであった。
(実施例 1 6 )
50 μπιのポリエステル製テープをスぺーサ一とし、 ガラス板上にガラス棒で、 実施例 10〜 1 2で得られた遮光ペーストを 21 °Cでコーティングした。 プレパ ラートに両面テープで樹脂製の LED用パッケージ (約 3 X 2 X lmm厚) を、 パッケージ開口部と逆側の面で装着した。 LED用パッケージ 10個を 1回の試 験単位とした。 該パッケージの開口部を、 上記ガラス板上にコーティングされた 遮光ペース トに、 約 1秒間、 21°Cで密着させた。 パッケージ開口部を上にした 状態で 60°Cの熱風乾燥機中で 5分間加熱した。 実施例 1 0〜 1 2で得られた遮光ペーストは、 パッケージ底面の電極部底面へ の流延は見られず、 該パッケージの開口部側面にのみ遮光ペーストが塗布され、 遮光用樹脂層が形成された。 また、 塗布に要した時間は 6分以内であった。 (比較例 2 )
実施例 1 6で用いたものと同様の L E D用パッケージに、 実施例 1 0〜 1 2で 得られた遮光ペーストを針で塗布した。 1 0個すベてを側面のみに塗布するため に 3ひ分以上要した上に、 作業者の熟練度に大きく依存すること、 また眼が非常 に疲れやすい作業であることが明らかとなり、 量産化に耐えうる方法ではないこ とが明らかとなった。
従って、 本発明の遮光用樹脂層の形成方法は、 効率的であり生産性向上につな がる。
(実施例 1 7 )
まず、 半導体素子として、 サファイア基板上に n型層、 活性層及び p型層を含 む窒化物半導体層を順次形成し、 活性層及び p型層の一部を除去して n型層の一 部を露出させた。 この露出させた n型層の上に n電極、 p型層の上に p電極をそ れぞれ形成し、 単色性発光ピークが可視光である 4 7 5 n mの青色の発光が可能 な窒化ガリゥム系化合物半導体の発光素子を形成した。
また、 酸化チタン等の顔料にて高反射化された熱可塑性樹脂 (ポリフタルアミ ド) をハウジング材料として用い、 パッケージ成形体を作製した。 つまり、 ポリ フタルアミド樹脂 1 0 0重量部に、 強化材としてグラスファイバーを 4 0重量部、 顔料として酸化チタン 2 0重量部に微量の熱安定剤を添加して混練し、 銀メツキ されたリードフレーム材と一体型に射出成形した。
得られたパッケージ成形体は、 縦 3 . 5 mm, 横 2 . 8 mm, 高さ 2 . O mm の直方体の形状を成していた。 パッケージ成形体は開口する四部を有し、 その凹 部の底面に発光素子を載置した。 パッケージ成形体の凹部の開口部分は、 縦 3 . l mm、 横 2 . 4 mmの略長方形であった。 パッケージ成形体の 部は、 開口部 側が広口のテーパー形状を形成していた。 載置された発光素子を覆うように凹部 に封止樹脂を注入して硬化した。 パッケージ成形体は、 一端部がパッケージ成形 体に挿入され、 他端部がパッケージ成形体の外壁面から突出するように形成され た一対のリ一ド電極を有していた。 リ一ド電極の主面の一部がそれぞれ第 2の凹 部の底面にて露出していた。
パッケージ成形体回部内に、 エポキシ樹脂を用いて発光素子をダイボンドして 固定した。 導電性ワイヤーである A u線を、 発光素子の各電極と各リード電極と に、 それぞれワイヤーボンディングにより電気的に接続した。
続いて、 高反射コーティング部材として、 実施例 6で得られた硬化性組成物を、 発光素子に接触しないように、 パッケージ成形体の凹部の側壁に塗布、 乾燥し、 約 1 0 0 °C、 約 1時間で硬化させた。
さらに、 パッケージ成形体凹部の上から、 封止部材として、 合成例 2の混合物 A液 1 0 gと混合物 B液 1 1 . 9 gの組合せからなる封止樹脂を注入した。 これ を、 6 0 °Cで約 6時間、 7 0 °Cで約 1時間、 8 0 °Cで約 1時間、 1 2 0 °Cで約 1 時間、 1 5 0でで約1時間、 1 8 0 °〇で約0 . 5時間の条件で硬化させ、 半導体 装置としての発光ダイオードを作製した。
(比較例 3 )
髙反射コーティング部材をパッケージ成形体の凹部に塗布しないこと以外は、 上記の実施例 1 7と同様にして発光ダイオードを作製した。
(測定例 3 )
得られた発光ダイオードの光出力を測定したところ、 表 2に示すように、 2 0 mAの通電時、 実施例 1 7の発光ダイォードは、 ほぼ 5 8 0 0 程度の光出力 が得られたが、 比較例 3の発光ダイォードでは、 同条件でほぼ 4 6 7 0 μ W程度 の光出力しか得られなかった。 これより実施例 1 7の発光ダイオードは、 比較例 3の発光ダイオードと比較して、 初期の光出力の向上を図れることが確認された。 表 2
実施例 1 7 比較例 3
光出力 5 8 0 0 /i W 4 6 7 0 μ W また、 実施例 1 7及ぴ比較例 3で作製した発光ダイオードを、 2 6 0 °Cでリフ ロー実装を繰り返し、 初期の光出力を 1 0 0としたときの光出力の低下をそれぞ れ測定した。 その結果を以下に示す。
表 3
Figure imgf000099_0001
表 3から、 実施例 1 7においては、 高反射コーティング部材の形成により、 リ フロー時の熱によるリフレクタ一部の黄変が抑制され、 出力低下が抑制されたこ とが確認された。 産業上の利用可能性
本発明の硬化性組成物は、 遮光性に優れ、 高い耐光性を有するため遮光ペース トとして用いることが出来る。 また、 本発明の硬化性組成物は、 低流動性である ため、 当該硬化性組成物を用いることにより、 L E D用パッケ一ジの側壁にのみ 硬化物が形成されている発光ダイオードを得ることが出来る。 さらに、 本発明の 遮光用樹脂層の形成方法によれば、 効率的に、 L E D用パッケージ側壁にのみ、 遮光ペース トを塗布し、 遮光用樹脂層を形成可能であり、 生産性が大幅に向上す る。

Claims

' 請求の範囲
1. 熱可塑性樹脂及び無機部材を必須成分として含むことを特徴とする遮光べ ース ト。
2. 熱硬化性樹脂及び無機部材を必須成分として含むことを特徴とする遮光ぺ ース ト。
3. 無機部材が酸化チタンであることを特徴とする請求の範囲第 1又は 2項記 載の遮光ペースト。
4. 酸化チタンがルチル型であり、 その平均粒子径が 0. 1〜1. Ο μΐηであ ることを特徴とする請求の範囲第 3項記載の遮光ペースト。
5. (A) S i Η基と反応性を有する炭素一炭素二重結合を 1分子中に少なく とも 2個含有する有機化合物、 (B) 1分子中に少なくとも 2個の S i H基を含 有するケィ素化合物、 (C) ヒドロシリル化触媒、 (D) シランカップリング剤 及び/又はエポキシ基含有化合物、 (E) シラノール縮合触媒、 及び (F) 無機 部材を必須成分として含むことを特徴とする硬化性組成物。
6. (F) 成分が酸化チタンであることを特徴とする請求の範囲第 5項に記載 の硬化性組成物。
7. 酸化チタンがルチル型であり、 その平均粒子径が 0. 1
ることを特徴とする請求の範囲第 6項記載の硬化性組成物。
8. (D) 成分が、 分子中にエポキシ基、 メタクリル基、 アクリル基、 イソシ ァネート基、 イソシァヌレート基、 ビニル基及び力ルバメート基からなる群より 選ばれる少なくとも 1個の官能基と加水分解性のケィ素基を有するシラン力ップ リング剤であることを特徴とする請求の範囲第 5〜 7項のいずれか一項に記載の 硬化性組成物。
9. (D) 成分が、 分子中にエポキシ基と加水分解性のケィ素基を有するシラ ンカツプリング剤であることを特徴とする請求の範囲第 5〜 8項のいずれか一項 に記載の硬化性組成物。
10. (E) 成分が、 有機アルミニウム化合物及びほう酸エステルから選ばれ る少なくとも 1種であることを特徴とする請求の範囲第 5〜 9項のいずれか一項 に記載の硬化性組成物。
1 1. (E) 成分が、 アルミニウムキレート化合物及びアルミニウムアルコラ 一ト化合物から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5 〜 10項のいずれか一項に記載の硬化性組成物。
1 2. (E) 成分が、 アルミニウムェチルァセトァセテートジィソプロビレー ト、 アルミニウムェチルァセトアセテートジイソプチレート、 アルミニウムトリ ス (ェチルァセトァセテート) 、 アルミェゥムビスェチルァセトアセテートモノ ァセチルァセ トネート及びアルミニウムトリス (ァセチルァセトネート) からな る群より選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5〜10 項のいずれか一項に記載の硬化性組成物。
1 3. (E) 成分が、 〖まう酸トリノルマルォクタデシル、 〖まう酸トリノノレマノレ ォクチル、 ほう酸トリノルマルブチル、 ほう酸トリイソプロピル、 ほう酸トリノ ルマルプロピル、 ほう酸トリェチル及びほう酸トリメチルからなる群より選ばれ る少なくとも 1種であることを特徴とする請求の範囲第 5〜 10項のいずれか一 項に記載の硬化性組成物。
14. (A) 成分が、 下記一般式 ( I )
Figure imgf000102_0001
(式中 R1は炭素数 1〜50の一価の有機基を表し、 それぞれの R1は異なって いても同一であってもよい。 ) で表される有機化合物を含むことを特徴とする請 求の範囲第 5〜 1 3項のいずれか一項に記載の硬化性組成物。
1 5. (A) 成分がトリアリルイソシァヌレートであり、 (B) 成分が 1, 3, 5, 7—テトラメチルシクロテトラシロキサンとトリアリルイソシァヌレートの 反応物であることを特徴とする請求の範囲第 5〜 14項のいずれか一項に記載の 硬化性組成物。
16. (A) 成分がトリアリルイソシァヌレートとモノグリシジルジァリルイ ソシァヌレートの混合物であり、 (B) 成分が 1 , 3, 5, 7—テトラメチルシ クロテトラシロキサンとトリァリルイソシァヌレートの反応物であることを特徴 とする請求の範囲第 5 ~ 14項のいずれか一項に記載の硬化性組成物。
1 7. さらに (G) シリカを含有することを特徴とする請求の範囲第 5〜16 項のいずれか一項に記載の硬化性組成物。
18. 80度の角度に傾斜したガラス基材上での、 100 °Cで 1時間経過後に おける硬化性組成物の流延性が 2 c m以下であることを特徴とする請求の範囲第 1 7項に記載の硬化性組成物。
1 9. (A) 成分〜 (E) 成分を混合したものに、 (F) 成分及び (G) 成分 を混合して得られる請求の範囲第 1 7又は 1 8項記載の硬化性組成物。
20. (G) シリカの一次粒子の平均粒子径が 3〜 20 nmであることを特徴 とする請求の範囲第 1 7〜1 9項のいずれか一項に記載の硬化性組成物。
21. (A) ~ (E) 成分を混合したものに、 遊星式攪拌脱泡機を用いて (F ) 成分及び (G) 成分を混合することを特徴とする請求の範囲第 1 7~20項の いずれか一項に記載の硬化性組成物を調製する方法。
22. (A) 〜 (E) 成分を混合したものに、 ディゾルパーを用いて (F) 成 分及び (G) 成分を混合することを特徴とする請求の範囲第 1 7〜20項のいず れか一項に記載の硬化性組成物を調製する方法。
23. 請求の範囲第 5〜 20項のいずれか一項に記載の硬化性組成物からなる 遮光へースト。
24. 請求の範囲第 5〜 20項のいずれか一項に記載の硬化性組成物を硬化さ せてなる硬化物。
25. 請求の範囲第 1〜 4、 23項のいずれか一項に記載の遮光ペーストを硬 化させてなる遮光用樹脂。
26. LED用パッケージ開口部の実質上側壁にのみ、 請求の範囲第 25項記 載の遮光用樹脂を有することを特徴とする LED用パッケージ。
27. LED用パッケージが樹脂製であることを特徴とする請求の範囲第 26 項記載の LED用パッケージ。
28. LED用パッケージの成形樹脂が半結晶性ポリマー樹脂を含有する組成 物であることを特徴とする請求の範囲第 26項記載の L E D用パッケージ。
29. LED用パッケージがセラミック製であることを特徴とする請求の範囲 第 26項記載の LED用パッケージ。
30. LED用パッケージの開口部が長方形であることを特徴とする請求の範 囲第 26項記載の LED用パッケージ。
3 1. LED用パッケージの開口部が円形であることを特徴とする請求の範囲 第 26項記載の LED用パッケージ。
32. LED用パッケージの開口部が楕円形であることを特徴とする請求の範 囲第 26項記載の LED用パッケージ。
33. 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電 極と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて —体成形されてなる LED用パッケージと、 LED用パッケージの底面に載置さ れる発光素子とを有する半導体装置において、 該 LED用パッケージの実質上側 壁にのみ、 請求の範囲第 5〜20項のいずれか一項に記載の硬化性組成物が塗布 され、 及び/又は請求の範囲第 24項記載の硬化物が形成されてなることを特徴 とする半導体装置。
34. 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電 極と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて 一体成形されてなる L E D用パッケージと、 L E D用パッケージの底面に載置さ れる発光素子とを有する半導体装置において、 該 LED用パッケージの実質上側 壁にのみ、 請求の範囲第 1〜 4、 23項のいずれか一項に記載の遮光ペーストが 塗布され、 及び/又は請求の範囲第 25項記載の遮光用樹脂が形成され遮光され てなることを特徴とする半導体装置。
35. パッケージの成形樹脂が半結晶性ポリマー樹脂を含有する組成物である ことを特徴とする請求の範囲第 3 3又は 34項記載の半導体装置。
36. 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電 極と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて 一体成形されてなる LED用パッケージにおいて、
(1) 基材に塗布させた遮光ペース トに、
(2) LED用パッケージの開口部を密着させた後、
(3) L E D用パッケージの開口部を上にした状態で加熱する、
ことにより、 遮光ペーストをパッケージの側壁にのみ流延させることを特徴とす る遮光用樹脂層の形成方法。
37. 遮光ペーストが、 平板、 水平板、 板状ベルト、 Δ状ロールからなる群よ り選ばれる平面状基材上にコーティングされていることを特徴とする請求の範囲 第 36項記載の遮光用樹脂層の形成方法。
38. 遮光ペーストが、 ロール、 ポールからなる群より選ばれる曲面状基材上 にコーティングされていることを特徴とする請求の範囲第 36項記載の遮光用樹 脂層の形成方法。
39. LED用パッケージの開口部を上にした状態で加熱する工程 (3) にお いて、 加熱を段階的に実施することを特徴とする請求の範囲第 36項記載の遮光 用樹脂層の形成方法。
40. LED用パッケージの開口部が長方形であり、 短い方の一辺の長さが 1 00 /im以上であることを特徴とする請求の範囲第 36項記載の遮光用樹脂層の 形成方法。
41. LED用パッケージの開口部が円形であることを特徴とする
第 36項記載の遮光用樹脂層の形成方法。
42. LED用パッケージの開口部が楕円形であることを特徴とする請求の範 囲第 36項記載の遮光用樹脂層の形成方法。
43. 遮光ペーストの粘度が、 常温 ( 23 °C) では 10ポィズ以上であり、 加 熱時 (30°C) には 1ボイズ以上であることを特徴とする請求の範囲第 36〜4 2項のいずれか一項に記載の遮光用樹脂層の形成方法。
44. 遮光ペーストの 23°Cにおけるチクソ性 (粘度比) が 0. 8〜1. 2で あることを特徴とする請求の範囲第 36〜42項のいずれか一項に記載の遮光用 樹脂層の形成方法。
45. 遮光ペーストの 1 1 5°Cにおけるスナップアップタイムで測定される硬 化時間が 1 5秒〜 90秒であることを特徴とする請求の範囲第 36〜42項のい ずれか一項に記載の遮光用樹脂層の形成方法。
46. 遮光ペースト 5 Omgをガラス板に 8 mm径の円状に塗布した後、 該ガ ラス板を斜め 80度に固定して、 21°Cに 10分間保持した時の流下距離が、 5 mm〜3 Ommであることを特徴とする請求の範囲第 36〜42項のいずれか一 項に記載の遮光用樹脂層の形成方法。
47. 遮光ペースト 5 Omgをガラス板に 8mm径の円状に塗布した後、 該ガ ラス板を斜め 80度に固定して、 60°Cに 5分間保持した時の流下距離が、 10 mm〜7 Ommであることを特徴とする請求の範囲第 36〜42項のいずれか一 項に記載の遮光用樹脂層の形成方法。
48. 遮光ペーストが、 熱可塑性樹脂及び無機部材を必須成分として含むこと を特徴とする請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の 形成方法。
4 9 . 遮光ペーストが、 熱硬化性樹脂及び無機部材を必須成分として含むこと を特徴とする請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光用樹脂層の 形成方法。
5 0 . 遮光ペースト力
(A) S i H基と反応性を有する炭素一炭素二重結合を 1分子中に少なくとも 2 個含有する有機化合物、 (B ) 1分子中に少なくとも 2個の S i H基を含有する ケィ素化合物、 (C) ヒドロシリル化触媒、 (D ) シランカップリング剤及び/ 又はエポキシ基含有化合物、 (E) シラノール縮合触媒、 及び (F ) 無機部材を 必須成分として含むことを特徴とする硬化性組成物よりなる遮光ペースト、 であることを特徴とする請求の範囲第 3 6〜4 2項のいずれか一項に記載の遮光 用樹脂層の形成方法。
5 1 . 無機部材が酸化チタンであることを特徴とする請求の範囲第 4 8〜 5 0 項のいずれか一項に記載の遮光用樹脂層の形成方法。
5 2 . 酸化チタンがルチル型であり、 その平均粒子径が 0 . 1〜 1 . 0 μ mで あることを特徴とする請求の範囲第 5 1項記載の遮光用樹脂層の形成方法。
5 3 . さらに (G) シリカを含有することを特徴とする請求の範囲第 4 8〜5 0項のいずれか一項に記載の遮光用樹脂層の形成方法。
5 4 . シリカが疎水性シリカであることを特徴とする請求の範囲第 5 3項記載 の遮光用樹脂層の形成方法。
5 5 . (D) 成分が、 分子中にエポキシ基、 メタクリル基、 アクリル基、 イソ シァネート基、 イソシァヌレート基、 ビエル基及びカルパメート基からなる群よ り選ばれる少なくとも 1個の官能基と加水分解性のケィ素基を有するシランカツ プリング剤であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形 成方法
5 6 . (D ) 成分が、 分子中にエポキシ基と加水分解性のケィ素基を有するシ ランカツプリング剤であることを特徴とする請求の範囲第 5 0項記載の遮光用樹 脂層の形成方法。
5 7 . ( E ) 成分が、 有機アルミニウム化合物及びほう酸エステルから選ばれ る少なくとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂 層の形成方法。
5 8 . ( E ) 成分が、 アルミニウムキレート化合物及びアルミニウムアルコラ 一ト化合物から選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂層の形成方法。
5 9 . ( E ) 成分が、 アルミニウムェチルァセトァセテートジィソプロビレー ト、 アルミニウムェチルァセトアセテートジイソプチレート、 アルミニウムトリ ス (ェチルァセトァセテート) 、 アルミニウムビスェチルァセトァセテートモノ ァセチルァセトネート及びアルミニウムトリス (ァセチルァセトネート) からな る群より選ばれる少なくとも 1種であることを特徴とする請求の範囲第 5 0項記 載の遮光用樹脂層の形成方法。
6 0 . ( E ) 成分が、 ほう酸トリノルマルォクタデシル、 ほう酸トリノノレマノレ ォクチル、 〖まう酸トリノルマルプチル、 ほう酸トリイソプロピル、 ほう酸トリノ ルマルプロピル、 ほう酸トリェチル及びほう酸トリメチルからなる群より選ばれ る少なくとも 1種であることを特徴とする請求の範囲第 5 0項記載の遮光用樹脂 層の形成方法。
6 1 . (A) 成分が、 下記一般式 (I) R1
R1 NN、R1
0
(式中 R1は炭素数 1〜5 0の一価の有機基を表し、 それぞれの R1は異なって いても同一であってもよい。 ) で表される有機化合物を含むことを特徴とする請 求の範囲第 50項記載の遮光用樹脂層の形成方法。
62. (A) 成分がトリアリルイソシァヌレートであり、 (B) 成分が 1 , 3, - 5 , 7—テトラメチルシクロテトラシロキサンと トリアリルイソシァヌレートの 反応物であることを特徴とする請求の範囲第 50項記載の遮光用樹脂層の形成方 法。
63. (A) 成分がトリアリルイソシァヌレートとモノグリシジルジァリルイ ソシァヌレートの混合物であり、 (B) 成分が 1, 3, 5, 7—テトラメチルシ クロテトラシロキサンと トリアリルイソシァヌレートの反応物であることを特徴 とする請求の範囲第 50項記載の遮光用樹脂層の形成方法。
64. 請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成 方法により形成された遮光用樹脂の黄色度 (イェローインデックス, Y I) 、 初期値を 100とした場合、 260 °C/ 3分間加熱後の値が 100〜 1 50であ ることを特徴とする遮光用樹脂。
65. 請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成 方法により形成された遮光用樹脂の黄色度 (イェローインデックス, Y i) ίΚ 初期値を 100とした場合、 キセノンウエザーメーターによる耐光性試験後の値 が 100〜1 50であることを特徴とする遮光用樹脂。
66. 請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成 方法により形成された遮光用樹脂層の厚みが、 1〜1000 μπιであることを特 徴とする遮光用樹脂。
67. 請求の範囲第 36〜42項のいずれか一項に記載の遮光用樹脂層の形成 方法により形成された遮光用樹脂と基板との接着強度が、 初期値を 100とした 場合、 キセノンゥェザーメーターによる耐光性試験後の値が 70以上であること を特徴とする遮光用樹脂。
68. 請求の範囲第 36〜 63項のいずれか一項に記載の遮光用樹脂層の形成 方法によって遮光ペーストが塗布され、 遮光用樹脂層が形成された LED用パッ ケージ。
69. LED用パッケージが樹脂製であることを特徴とする請求の範囲第 68 項記載の L E D用パッケ一ジ。
70. LED用パッケージが半結晶性ポリマー樹脂を含有することを特徴とす る請求の範囲第 68項記載の LED用パッケージ。
71. LED用パッケージがセラミックス製であることを特徴とする請求の範 囲第 68項記載の LED用パッケージ。
72. 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電 極と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて
—体成形されてなる L E D用パッケージと、 L E D用パッケージの底面に載置さ れる発光素子とを有する半導体装置において、 該 LED用パッケージの実質上側 壁にのみ、 請求の範囲第 36〜63項のいずれか一項に記載の遮光用樹脂層の形 成方法により、 遮光用樹脂が形成され遮光されてなることを特徴とする半導体装
73. LED用パッケージが樹脂製であることを特徴とする請求の範囲第 72 項記載の半導体装置。
74. L E D用パッケージが半結晶性ポリマー樹脂を含有することを特徴とす る請求の範囲第 72項記載の半導体装置。
75. LED用パッケージがセラミックス製であることを特徴とする請求の範 囲第 72項記載の半導体装置。
76. 底面と側壁とからなる開口部を備え、 かつ、 開口部底面には正の外部電 極と負の外部電極との各端部が所定の間隔を隔てて露出するように成形樹脂にて 一体成形されてなる LED用パッケージと、 LED用パッケージの底面に載置さ れる発光素子とを有する半導体装置において、 発光素子の周囲の LED用パッケ 一ジの底面及び側壁に、 遮光用樹脂が形成され遮光されてなることを特徴とする 半導体装置。
PCT/JP2004/002199 2003-02-25 2004-02-25 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置 WO2004076585A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005502905A JP4694371B2 (ja) 2003-02-25 2004-02-25 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
KR1020057015625A KR101141566B1 (ko) 2003-02-25 2004-02-25 경화성 조성물과 그 조제 방법, 차광 페이스트, 차광용수지와 그 형성 방법, 발광 다이오드용 패키지 및 반도체장치
US10/546,905 US7785715B2 (en) 2003-02-25 2004-02-25 Curable composition and method of preparing same, light-shielding paste, light-shielding resin and method of forming same, light-emitting diode package and semiconductor device
EP04714432A EP1609835B1 (en) 2003-02-25 2004-02-25 Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
CA 2516404 CA2516404A1 (en) 2003-02-25 2004-02-25 Curable composition and method of preparing same, light-shielding paste,light-shielding resin and method of forming same, light-emitting diode package and semiconductor device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003047360 2003-02-25
JP2003-047360 2003-02-25
JP2003-047359 2003-02-25
JP2003047359 2003-02-25
JP2003361137 2003-10-21
JP2003-361137 2003-10-21

Publications (1)

Publication Number Publication Date
WO2004076585A1 true WO2004076585A1 (ja) 2004-09-10

Family

ID=32931122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002199 WO2004076585A1 (ja) 2003-02-25 2004-02-25 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置

Country Status (8)

Country Link
US (1) US7785715B2 (ja)
EP (1) EP1609835B1 (ja)
JP (2) JP4694371B2 (ja)
KR (1) KR101141566B1 (ja)
CA (1) CA2516404A1 (ja)
MY (1) MY151065A (ja)
TW (1) TW200502372A (ja)
WO (1) WO2004076585A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006044894A2 (en) * 2004-10-19 2006-04-27 Eastman Kodak Company Method of preparing a lens-less led array
JP2007005750A (ja) * 2005-05-23 2007-01-11 Hitachi Chem Co Ltd 液状封止材の流動性評価方法及び液状封止材
WO2008146759A1 (ja) * 2007-05-25 2008-12-04 Kaneka Corporation 硬化性組成物及びその硬化物
JP2009149878A (ja) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd 白色硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2009149879A (ja) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd 白色熱硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2010138270A (ja) * 2008-12-11 2010-06-24 Kaneka Corp 金属酸化物微粒子含有硬化性樹脂組成物、その硬化物、及び光拡散材
US20100267919A1 (en) * 2007-11-09 2010-10-21 Yoshikatsu Ichiryu Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
JP2010274540A (ja) * 2009-05-29 2010-12-09 Mitsubishi Plastics Inc 白色フィルム、金属積層体、led搭載用基板及び光源装置
EP1914811A4 (en) * 2005-08-04 2011-01-05 Nichia Corp LIGHT EMITTING ARRANGEMENT, METHOD FOR THE PRODUCTION THEREOF, FORM BODY AND SEALING MEMBER
JP2011105869A (ja) * 2009-11-18 2011-06-02 Kaneka Corp 白色硬化性組成物および反射コーティング材
JP2012140556A (ja) * 2011-01-05 2012-07-26 Shin-Etsu Chemical Co Ltd 白色熱硬化性シリコーン組成物及び該組成物の硬化物からなる白色発光ダイオード用リフレクター
JP2012224736A (ja) * 2011-04-19 2012-11-15 Aica Kogyo Co Ltd 光半導体装置リフレクター用シリコーン樹脂組成物
JP2012224728A (ja) * 2011-04-19 2012-11-15 Canon Inc 光学素子用遮光膜及び光学素子
US8664685B2 (en) 2009-09-07 2014-03-04 Nitto Denko Corporation Resin composition for optical semiconductor element housing package, and optical semiconductor light-emitting device obtained using the same
JP2014133822A (ja) * 2013-01-10 2014-07-24 Kaneka Corp 硬化性樹脂組成物、硬化性樹脂組物用タブレットおよびそれを用いた半導体のパッケージ
JP2019029057A (ja) * 2017-07-25 2019-02-21 株式会社小糸製作所 光源モジュール及び車両用灯具

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897859A (en) * 1956-01-04 1959-08-04 Improved Machinery Inc Log-centering barker feeding mechanism
JP4381255B2 (ja) * 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 潜在性硬化剤
WO2006081433A1 (en) * 2005-01-26 2006-08-03 Marvin Lumber And Cedar Company Flashing assembly with cross channels and method for same
TWI362708B (en) 2005-02-21 2012-04-21 Nitto Denko Corp A manufacturing method of semiconductor device
JP5137295B2 (ja) * 2005-02-24 2013-02-06 株式会社Adeka ケイ素含有硬化性組成物及びその硬化物
DE102005036520A1 (de) * 2005-04-26 2006-11-09 Osram Opto Semiconductors Gmbh Optisches Bauteil, optoelektronisches Bauelement mit dem Bauteil und dessen Herstellung
EP1733859B1 (en) * 2005-06-14 2012-07-18 Industria Auxiliar Alavesa, S.A. (Inauxa) Process and apparatus for manufacturing a connection and stress transmission element by overinjection, and connection and stress transmission element
US20090162715A1 (en) * 2005-10-20 2009-06-25 Henkel Corporation Polyisobutylene compositions with improved reactivity and properties for bonding and sealing fuel cell components
US8066288B2 (en) * 2005-10-20 2011-11-29 Henkel Corporation Components comprising polyisobutylene compositions
EP2033248B1 (en) * 2006-01-17 2017-12-27 Henkel IP & Holding GmbH Elektrode assembly and method for forming a fuel cell
KR100764391B1 (ko) * 2006-04-25 2007-10-05 삼성전기주식회사 발광 다이오드 모듈
WO2007135707A1 (ja) 2006-05-18 2007-11-29 Nichia Corporation 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
DE102006026481A1 (de) * 2006-06-07 2007-12-13 Siemens Ag Verfahren zum Anordnen einer Pulverschicht auf einem Substrat sowie Schichtaufbau mit mindestens einer Pulverschicht auf einem Substrat
US7772040B2 (en) 2006-09-12 2010-08-10 Nitto Denko Corporation Manufacturing method of semiconductor device, adhesive sheet used therein, and semiconductor device obtained thereby
CN102751430B (zh) * 2006-11-15 2015-04-01 日立化成株式会社 光半导体装置及其制造方法
KR100895352B1 (ko) * 2006-11-15 2009-04-29 다이요 잉키 세이조 가부시키가이샤 흑색 페이스트 조성물, 및 그것을 이용한 블랙 매트릭스패턴의 형성 방법, 및 그 블랙 매트릭스 패턴
JP4895879B2 (ja) * 2007-03-19 2012-03-14 サンユレック株式会社 発光素子封止用シリコーン樹脂組成物及びこれを用いたポッティング方式による光半導体電子部品の製造方法
US8084765B2 (en) * 2007-05-07 2011-12-27 Xerox Corporation Electronic device having a dielectric layer
JP5146645B2 (ja) * 2007-08-28 2013-02-20 デクセリアルズ株式会社 マイクロカプセル型潜在性硬化剤
KR101800015B1 (ko) 2007-12-10 2017-11-21 카네카 코포레이션 알칼리 현상성을 갖는 경화성 조성물 및 그것을 사용한 절연성 박막 및 박막 트랜지스터
DE102008046762B4 (de) * 2008-09-11 2020-12-24 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED-Projektor
JP5471180B2 (ja) * 2008-09-11 2014-04-16 信越化学工業株式会社 シリコーン積層基板、その製造方法、シリコーン積層基板製造用シリコーン樹脂組成物及びled装置
US8809414B2 (en) * 2008-10-02 2014-08-19 Kaneka Corporation Photocurable composition and cured product
CN102449001B (zh) * 2009-05-25 2014-04-23 日本化成株式会社 异氰脲酸三烯丙酯的储藏方法
US8592260B2 (en) 2009-06-26 2013-11-26 Nitto Denko Corporation Process for producing a semiconductor device
JP5801028B2 (ja) * 2009-10-21 2015-10-28 株式会社Adeka ケイ素含有硬化性組成物及びその硬化物
DE202009017047U1 (de) * 2009-12-17 2011-05-05 Rehau Ag + Co. Titandioxidhaltige Zusammensetzung
EP2545103B1 (en) 2010-03-09 2016-09-14 University Of Virginia Patent Foundation Viscoelastic silicone rubber compositions
DE102010012039A1 (de) * 2010-03-19 2011-09-22 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Verfahren zu dessen Herstellung
DE102010012602B4 (de) * 2010-03-24 2023-02-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes Halbleiterbauteil sowie Anzeigevorrichtung und Herstellungsverfahren
EP2597354B1 (en) * 2010-07-20 2016-12-28 Panasonic Intellectual Property Management Co., Ltd. Lightbulb shaped lamp
JP5710915B2 (ja) * 2010-09-09 2015-04-30 シチズンホールディングス株式会社 半導体発光装置
DE102010046091A1 (de) 2010-09-20 2012-03-22 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip, Verfahren zur Herstellung und Anwendung in einem optoelektronischen Bauelement
JP2012107096A (ja) * 2010-11-16 2012-06-07 Kaneka Corp 熱伝導性硬化性樹脂組成物及び硬化性樹脂成形体
US8496771B2 (en) * 2011-01-26 2013-07-30 GEM Weltronics TWN Corporation Method of filling and sealing a fluorescent layer in a slot space defined by two optical lenses and a partition ring
US8436386B2 (en) 2011-06-03 2013-05-07 Micron Technology, Inc. Solid state lighting devices having side reflectivity and associated methods of manufacture
JP5237507B1 (ja) * 2011-06-23 2013-07-17 三井化学株式会社 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル
US9290618B2 (en) 2011-08-05 2016-03-22 Sabic Global Technologies B.V. Polycarbonate compositions having enhanced optical properties, methods of making and articles comprising the polycarbonate compositions
US9550864B2 (en) 2011-08-10 2017-01-24 University Of Virginia Patent Foundation Viscoelastic silicon rubber compositions
US9534075B2 (en) 2011-11-01 2017-01-03 Korea Institute Of Industrial Technology Isocyanurate epoxy compound having alkoxysilyl group, method of preparing same, composition including same, cured product of the composition, and use of the composition
TWI631735B (zh) * 2011-11-02 2018-08-01 宏齊科技股份有限公司 Light-emitting diode bracket, package, and packaging method thereof
JP2013144763A (ja) * 2012-01-16 2013-07-25 Shin-Etsu Chemical Co Ltd 半導体封止用熱硬化性樹脂組成物及び該組成物で封止された半導体装置
KR101905238B1 (ko) * 2012-03-28 2018-10-05 주식회사 다이셀 경화성 에폭시 수지 조성물
WO2014066784A1 (en) 2012-10-25 2014-05-01 Sabic Innovative Plastics Ip B.V. Light emitting diode devices, method of manufacture, uses thereof
US20140192538A1 (en) * 2013-01-08 2014-07-10 Sabic Innovative Plastics Ip B.V. Polymer light armature
JP6346456B2 (ja) * 2013-02-22 2018-06-20 国立研究開発法人産業技術総合研究所 撥水/撥油皮膜及びその製造方法
JP6036490B2 (ja) * 2013-03-29 2016-11-30 大日本印刷株式会社 化粧シートの製造方法
KR101362391B1 (ko) 2013-07-25 2014-02-12 남궁선 유리병 차광용 코팅조성물 및 이를 이용한 차광유리병 제조방법
EP3158595B1 (en) 2014-06-19 2021-12-01 Inkron Oy Led lamp with siloxane particle material
US10061151B2 (en) * 2014-06-30 2018-08-28 Lg Display Co., Ltd. Light shielding material and display device including the same
US11203674B2 (en) 2014-10-31 2021-12-21 Sumitomo Chemical Company, Limited Transparent film
CN107109124B (zh) 2014-10-31 2021-07-09 住友化学株式会社 透明被膜
JP6715530B2 (ja) 2014-10-31 2020-07-01 住友化学株式会社 撥水撥油コーティング混合組成物
JP6705752B2 (ja) 2014-11-12 2020-06-03 住友化学株式会社 撥水撥油コーティング組成物及び透明皮膜
TWI784922B (zh) * 2015-12-18 2022-12-01 香港商英克倫股份有限公司 Led燈、led燈之製造方法以及led裝置之密封方法
WO2018207751A1 (ja) * 2017-05-11 2018-11-15 日本化薬株式会社 中空構造粒子及びその製造方法、並びに白インク
EP3699146A4 (en) 2017-12-11 2021-01-13 Nippon Kayaku Kabushiki Kaisha CONVENTIONAL PARTICLES AND THE METHOD OF MANUFACTURING THEM, AND WHITE INK
KR102192817B1 (ko) * 2019-02-20 2020-12-18 레이트론(주) 광센서 패키지 제조방법
JP7103974B2 (ja) 2019-02-25 2022-07-20 信越化学工業株式会社 付加硬化型シリコーン組成物、光反射材用シリコーン硬化物、光反射材及び光半導体装置
US11891484B2 (en) * 2019-09-17 2024-02-06 Crayola Llc Putty and putty base compounds and methods of making thereof
KR102232340B1 (ko) 2019-11-15 2021-03-26 한국생산기술연구원 알콕시실릴기를 갖는 에폭시 수지의 조성물 및 이의 복합체
CN111073378B (zh) * 2019-11-29 2022-02-01 宁波瑞凌新能源科技有限公司 包括无机荧光材料的复合涂料
KR20220023503A (ko) 2020-08-21 2022-03-02 덕산네오룩스 주식회사 저반사율의 감광성 수지 조성물 및 이를 이용한 차광층
KR20220045744A (ko) 2020-10-06 2022-04-13 덕산네오룩스 주식회사 수지, 수지 조성물 및 이를 이용한 표시장치
KR20240025888A (ko) 2022-08-19 2024-02-27 덕산네오룩스 주식회사 저반사율의 감광성 수지 조성물 및 이를 이용한 차광층

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183407A (ja) * 1998-12-16 2000-06-30 Rohm Co Ltd 光半導体装置
JP2001011210A (ja) * 1999-06-29 2001-01-16 Toray Ind Inc 白色ポリエステルフィルム
JP2001118865A (ja) * 1999-10-19 2001-04-27 Japan Rec Co Ltd 光電子部品の製造方法
JP2002217459A (ja) * 2001-01-16 2002-08-02 Stanley Electric Co Ltd 発光ダイオード及び該発光ダイオードを光源として用いた液晶表示器のバックライト装置
JP2002317048A (ja) * 2001-02-14 2002-10-31 Kanegafuchi Chem Ind Co Ltd 硬化剤、硬化性組成物、光学材料用組成物、光学材料、その製造方法、並びに、それを用いた液晶表示装置及びled

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756492B2 (ja) 1973-05-02 1982-11-30
JPS59155483A (ja) * 1983-02-25 1984-09-04 Toshiba Silicone Co Ltd 表面硬化性シリコ−ンシ−リング材組成物
JPS6220733A (ja) 1985-07-19 1987-01-29 Meidensha Electric Mfg Co Ltd 直流給電装置
JPS62207333A (ja) 1986-03-08 1987-09-11 Nippon Petrochem Co Ltd シリコ−ン共重合体
US5580925A (en) 1989-02-28 1996-12-03 Kanegafuchi Chemical Industry, Co., Ltd. Curable organic polymers containing hydrosilyl groups
US5204408A (en) 1989-03-28 1993-04-20 Shin-Etsu Chemical Co., Ltd. Modified silicone vulcanization activator
US5409995A (en) 1989-05-29 1995-04-25 Kanegafuchi Chemical Industry Co., Ltd. Curing agent, preparation thereof and curable composition comprising the same
JPH07119396B2 (ja) 1990-02-27 1995-12-20 信越化学工業株式会社 接着性オルガノポリシロキサン組成物及びその硬化物
JP3268801B2 (ja) 1991-11-22 2002-03-25 ジーイー東芝シリコーン株式会社 シリコーンゴム組成物およびシリコーンゴム加工布
JP3354973B2 (ja) 1992-10-06 2002-12-09 鐘淵化学工業株式会社 硬化性組成物
US5391678A (en) 1992-12-03 1995-02-21 Hercules Incorporated Curable and cured organosilicon compositions
US5523374A (en) 1992-12-03 1996-06-04 Hercules Incorporated Curable and cured organosilicon compositions
JPH08157720A (ja) 1994-12-08 1996-06-18 Kanegafuchi Chem Ind Co Ltd 有機系硬化剤の製造方法
JP2875758B2 (ja) 1994-12-28 1999-03-31 東芝シリコーン株式会社 粘着シート
JPH09291214A (ja) * 1996-04-25 1997-11-11 Nippon Paint Co Ltd 硬化性樹脂組成物及びその硬化物
JP3571144B2 (ja) 1996-05-29 2004-09-29 鐘淵化学工業株式会社 硬化性組成物
JPH103270A (ja) 1996-06-17 1998-01-06 Kanegafuchi Chem Ind Co Ltd タッチ入力装置を一体化した画像表示装置並びにこれに使用するゴム組成物及び硬化性組成物
DE19837855A1 (de) 1998-08-20 2000-02-24 Wacker Chemie Gmbh Härtbare Organopolysiloxanmassen
JP2000124475A (ja) 1998-10-14 2000-04-28 Kanegafuchi Chem Ind Co Ltd 光半導体封止材用硬化性組成物及び光半導体製品の製造方法
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP2000344895A (ja) 1999-06-01 2000-12-12 Toagosei Co Ltd 硬化性樹脂の製造方法
JP3704286B2 (ja) * 1999-11-17 2005-10-12 信越化学工業株式会社 酸化チタン充填付加反応硬化型シリコーンゴム組成物及びその硬化物
JP4993806B2 (ja) 2000-04-21 2012-08-08 株式会社カネカ 光学材料用組成物、光学用材料、その製造方法およびそれを用いた液晶表示装置
CN1192061C (zh) 2000-04-21 2005-03-09 钟渊化学工业株式会社 固化性组合物、光学材料用组合物、光学材料、液晶显示装置、透明导电性膜及其制造方法
JP4782279B2 (ja) 2000-12-26 2011-09-28 株式会社カネカ 封止剤、半導体等の封止方法、半導体装置の製造方法、および半導体装置
EP1369458B1 (en) 2000-12-27 2011-06-29 Kaneka Corporation Curing agents, curable compositions, compositions for optical materials, optical materials, their production, and liquid crystal displays and led's made by using the materials
US7005460B2 (en) * 2001-01-25 2006-02-28 Kettenbach Gmbh & Co. Kg Two-step curable mixer-suitable materials
JP2002235005A (ja) * 2001-02-09 2002-08-23 Kanegafuchi Chem Ind Co Ltd 光学用材料用組成物、光学用材料およびその製造方法
JP4275891B2 (ja) * 2001-02-09 2009-06-10 株式会社カネカ 発光ダイオード及びその製造方法
JP4275889B2 (ja) 2001-02-09 2009-06-10 株式会社カネカ 発光ダイオード及びその製造方法
JP4275890B2 (ja) * 2001-02-13 2009-06-10 株式会社カネカ 発光ダイオード及びその製造方法
JP4037125B2 (ja) * 2001-02-23 2008-01-23 株式会社カネカ 発光ダイオード及びその製造方法
JP3910080B2 (ja) 2001-02-23 2007-04-25 株式会社カネカ 発光ダイオード
JP2002317408A (ja) 2001-04-19 2002-10-31 Ngk Insulators Ltd 透光性防音板および防音壁
US6592999B1 (en) 2001-07-31 2003-07-15 Ppg Industries Ohio, Inc. Multi-layer composites formed from compositions having improved adhesion, coating compositions, and methods related thereto
JP2003128921A (ja) 2001-10-17 2003-05-08 Kanegafuchi Chem Ind Co Ltd 熱硬化性樹脂組成物及び熱硬化性樹脂フィルム、それを用いてなる金属箔積層体
DE60318570T2 (de) 2002-04-26 2009-01-08 Kaneka Corp. Härtbare zusammensetzung, härtendes produkt, herstellungsverfahren dafür und mit dem gehärteten produkt versiegelte lichtemittierende diode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183407A (ja) * 1998-12-16 2000-06-30 Rohm Co Ltd 光半導体装置
JP2001011210A (ja) * 1999-06-29 2001-01-16 Toray Ind Inc 白色ポリエステルフィルム
JP2001118865A (ja) * 1999-10-19 2001-04-27 Japan Rec Co Ltd 光電子部品の製造方法
JP2002217459A (ja) * 2001-01-16 2002-08-02 Stanley Electric Co Ltd 発光ダイオード及び該発光ダイオードを光源として用いた液晶表示器のバックライト装置
JP2002317048A (ja) * 2001-02-14 2002-10-31 Kanegafuchi Chem Ind Co Ltd 硬化剤、硬化性組成物、光学材料用組成物、光学材料、その製造方法、並びに、それを用いた液晶表示装置及びled

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"fira handbook", 1987, SOCIETY OF RUBBER INDUSTRY, JAPAN, pages: 198 - 218, XP002982591 *
KIYONO MANABU: "Sanka titanium bussei to oyo gijutsu", GIHODO SHUPPAN CO, LTD., 1991, pages 75 - 155, XP002982590 *
See also references of EP1609835A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006044894A3 (en) * 2004-10-19 2006-07-06 Eastman Kodak Co Method of preparing a lens-less led array
WO2006044894A2 (en) * 2004-10-19 2006-04-27 Eastman Kodak Company Method of preparing a lens-less led array
JP2007005750A (ja) * 2005-05-23 2007-01-11 Hitachi Chem Co Ltd 液状封止材の流動性評価方法及び液状封止材
EP1914811A4 (en) * 2005-08-04 2011-01-05 Nichia Corp LIGHT EMITTING ARRANGEMENT, METHOD FOR THE PRODUCTION THEREOF, FORM BODY AND SEALING MEMBER
WO2008146759A1 (ja) * 2007-05-25 2008-12-04 Kaneka Corporation 硬化性組成物及びその硬化物
JP5368302B2 (ja) * 2007-05-25 2013-12-18 株式会社カネカ 硬化性組成物及びその硬化物
US8273842B2 (en) * 2007-11-09 2012-09-25 Kaneka Corporation Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
US20100267919A1 (en) * 2007-11-09 2010-10-21 Yoshikatsu Ichiryu Process for production of cyclic polyorganosiloxane, curing agent, curable composition, and cured product of the curable composition
JP2009149879A (ja) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd 白色熱硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2009149878A (ja) * 2007-11-30 2009-07-09 Taiyo Ink Mfg Ltd 白色硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2010275561A (ja) * 2007-11-30 2010-12-09 Taiyo Holdings Co Ltd 白色熱硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2011017010A (ja) * 2007-11-30 2011-01-27 Taiyo Holdings Co Ltd 白色硬化性樹脂組成物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2014129547A (ja) * 2007-11-30 2014-07-10 Taiyo Holdings Co Ltd 発光素子が実装されるプリント配線板用白色硬化性樹脂組成物、その硬化物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2014111792A (ja) * 2007-11-30 2014-06-19 Taiyo Holdings Co Ltd 発光素子が実装されるプリント配線板用白色硬化性樹脂組成物、その硬化物、その硬化物を有するプリント配線板、及びその硬化物からなる発光素子用反射板
JP2010138270A (ja) * 2008-12-11 2010-06-24 Kaneka Corp 金属酸化物微粒子含有硬化性樹脂組成物、その硬化物、及び光拡散材
JP2010274540A (ja) * 2009-05-29 2010-12-09 Mitsubishi Plastics Inc 白色フィルム、金属積層体、led搭載用基板及び光源装置
US8664685B2 (en) 2009-09-07 2014-03-04 Nitto Denko Corporation Resin composition for optical semiconductor element housing package, and optical semiconductor light-emitting device obtained using the same
JP2011105869A (ja) * 2009-11-18 2011-06-02 Kaneka Corp 白色硬化性組成物および反射コーティング材
JP2012140556A (ja) * 2011-01-05 2012-07-26 Shin-Etsu Chemical Co Ltd 白色熱硬化性シリコーン組成物及び該組成物の硬化物からなる白色発光ダイオード用リフレクター
JP2012224728A (ja) * 2011-04-19 2012-11-15 Canon Inc 光学素子用遮光膜及び光学素子
JP2012224736A (ja) * 2011-04-19 2012-11-15 Aica Kogyo Co Ltd 光半導体装置リフレクター用シリコーン樹脂組成物
JP2014133822A (ja) * 2013-01-10 2014-07-24 Kaneka Corp 硬化性樹脂組成物、硬化性樹脂組物用タブレットおよびそれを用いた半導体のパッケージ
JP2019029057A (ja) * 2017-07-25 2019-02-21 株式会社小糸製作所 光源モジュール及び車両用灯具

Also Published As

Publication number Publication date
TW200502372A (en) 2005-01-16
US20060243947A1 (en) 2006-11-02
JP2011094143A (ja) 2011-05-12
JP4694371B2 (ja) 2011-06-08
KR20060002777A (ko) 2006-01-09
CA2516404A1 (en) 2004-09-10
EP1609835A1 (en) 2005-12-28
US7785715B2 (en) 2010-08-31
EP1609835B1 (en) 2013-01-09
JPWO2004076585A1 (ja) 2006-06-08
TWI350850B (ja) 2011-10-21
KR101141566B1 (ko) 2012-05-15
MY151065A (en) 2014-03-31
EP1609835A4 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2004076585A1 (ja) 硬化性組成物とその調製方法、遮光ペースト、遮光用樹脂とその形成方法、発光ダイオード用パッケージ及び半導体装置
EP1505121B1 (en) Hardenable composition, hardening product, process for producing the same and light emitting diode sealed with the hardening product
JP4774201B2 (ja) パッケージ成形体及び半導体装置
JP4611617B2 (ja) 発光ダイオード
JP4493013B2 (ja) 半導体装置
JP4685690B2 (ja) 硬化性組成物、硬化物およびその製造方法
WO2011125753A1 (ja) 硬化性樹脂組成物、硬化性樹脂組成物タブレット、成形体、半導体のパッケージ、半導体部品及び発光ダイオード
WO2013047606A1 (ja) 表面実装型発光装置用樹脂成形体およびその製造方法ならびに表面実装型発光装置
JP2004292714A (ja) 硬化性組成物、硬化物、その製造方法およびその硬化物により封止された発光ダイオード
JP2006241462A (ja) 光学材料用組成物、光学材料、その製造方法、およびそれを用いた液晶表示装置
JP2003313438A (ja) 光学材料用硬化物の製造方法およびその硬化物及びその硬化物により封止された発光ダイオード
JP5000072B2 (ja) 発光ダイオード
JP2004002784A (ja) 電子材料用組成物、電子材料、およびそれを用いた電子製品
JP5749543B2 (ja) 熱硬化性樹脂組成物タブレットおよびそれを用いた半導体のパッケージ
JP2004266134A (ja) ダイボンディング用樹脂ペースト及びそれを用いた発光ダイオード
JP2003113310A (ja) 光学材料用組成物、電子材料用組成物、光学材料、電子材料、発光ダイオード及びその製造方法
CN108699341B (zh) 固化性树脂组合物、其固化物、及半导体装置
JP2006183061A (ja) 電子材料用組成物及び電子材料
JP2013225573A (ja) 表面実装型発光装置用樹脂成形体およびそれを用いた発光装置
JP5767550B2 (ja) Ledモジュール用樹脂成形体
JP2013080822A (ja) パッケージ成形体とその製造方法及び発光装置
JP2013080820A (ja) 樹脂成形体および発光装置
JP2013080821A (ja) 樹脂成形体および側面発光型の半導体発光装置
JP2013080819A (ja) 発光装置用樹脂成形体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005502905

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2516404

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057015625

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048051116

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004714432

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004714432

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057015625

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006243947

Country of ref document: US

Ref document number: 10546905

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10546905

Country of ref document: US