WO2004086470A1 - 露光装置及びデバイス製造方法 - Google Patents

露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2004086470A1
WO2004086470A1 PCT/JP2004/003928 JP2004003928W WO2004086470A1 WO 2004086470 A1 WO2004086470 A1 WO 2004086470A1 JP 2004003928 W JP2004003928 W JP 2004003928W WO 2004086470 A1 WO2004086470 A1 WO 2004086470A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
substrate
exposure apparatus
optical system
projection optical
Prior art date
Application number
PCT/JP2004/003928
Other languages
English (en)
French (fr)
Inventor
Masaomi Kameyama
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR1020127009949A priority Critical patent/KR101345474B1/ko
Priority to JP2005504056A priority patent/JP4353179B2/ja
Priority to EP04722659.2A priority patent/EP1610361B1/en
Priority to KR1020117015987A priority patent/KR101181688B1/ko
Publication of WO2004086470A1 publication Critical patent/WO2004086470A1/ja
Priority to US11/230,572 priority patent/US7471371B2/en
Priority to US11/498,183 priority patent/US7916272B2/en
Priority to US11/648,694 priority patent/US8558987B2/en
Priority to US11/808,406 priority patent/US8018570B2/en
Priority to US14/041,174 priority patent/US8804095B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/42Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of the same original
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Definitions

  • the present invention relates to an exposure apparatus for exposing a substrate to a pattern via a projection optical system and a liquid while at least a portion between the projection optical system and the substrate is filled with a liquid, and a device manufacturing method using the exposure apparatus About.
  • Liquid crystal display devices are manufactured by a so-called photolithography technique in which a pattern formed on a mask is transferred onto a photosensitive substrate.
  • An exposure apparatus used in the photolithography process has a mask stage for supporting a mask and a substrate stage for supporting a substrate, and sequentially moves the mask stage and the substrate stage to change the pattern of the mask.
  • the image is transferred to the substrate via the projection optical system.
  • further improvement in the resolution of the projection optical system has been desired in order to cope with higher integration of device patterns.
  • the resolution of the projection optical system increases as the exposure wavelength used decreases and as the numerical aperture of the projection optical system increases.
  • the exposure wavelength used in the exposure apparatus is becoming shorter year by year, and the numerical aperture of the projection optical system is also increasing.
  • the exposure wavelength of the mainstream is 248 nm of KrF excimer laser, but 193 nm of shorter wavelength ArF excimer laser is also being put to practical use.
  • the depth of focus (DOF) is as important as the resolution.
  • the resolution R and the depth of focus ⁇ are respectively represented by the following equations.
  • e is the exposure wavelength
  • New Alpha is the numerical aperture of the projection optical system
  • 1 ⁇ , k 2 represent the process coefficients. From equations (1) and (2), to increase the resolution R, shorten the exposure wavelength; L. Thus, it can be seen that increasing the numerical aperture NA decreases the depth of focus ⁇ .
  • the interior of the chamber of the conventional exposure apparatus (exposure apparatus for dry exposure) is low in humidity, and airflow is generated by air conditioning, so that an atmosphere in which the liquid is easily vaporized is formed. Therefore, if immersion light is to be emitted in the same environment as in the chamber of a conventional exposure apparatus, the liquid for immersion exposure is vaporized, and the liquid and the projection optical system (partly) in contact with the liquid are exposed.
  • Optical element or the accuracy of controlling the temperature of the substrate may not be maintained.
  • a change in the temperature of the projection optical system may deteriorate the projected image, and a change in the temperature of the substrate may cause deformation (expansion and contraction) of the substrate, thereby deteriorating the pattern overlay accuracy.
  • the present invention has been made in view of such circumstances, and provides an exposure apparatus and a method of manufacturing a device capable of accurately forming a pattern image on a substrate when performing exposure processing based on an immersion method. The purpose is to do.
  • Another object of the present invention is to provide an exposure apparatus and a device manufacturing method capable of setting and maintaining a liquid temperature for immersion exposure and a substrate temperature to be exposed to a desired temperature. Disclosure of the invention
  • the exposure apparatus of the present invention fills at least a part between a projection optical system and a substrate with a liquid, projects a pattern image onto the substrate via the projection optical system and the liquid, and exposes the substrate.
  • An apparatus comprising: a vaporization suppressing device that suppresses vaporization of a liquid.
  • a device manufacturing method of the present invention uses the exposure apparatus described above.
  • a vaporization suppressing device suppresses vaporization of a liquid for immersion exposure.
  • it is possible to set and maintain a desired temperature by suppressing a change in the temperature of the projection optical system, the substrate, or the liquid for immersion exposure due to the vaporization of the liquid. Therefore, the deterioration of the projection image of the projection optical system and the deformation of the substrate due to the temperature change can be suppressed, and the pattern image can be formed on the substrate with high accuracy.
  • the exposure apparatus of the present invention fills at least a part between a projection optical system and a substrate with a liquid, projects a pattern image onto the substrate via the projection optical system and the liquid, and exposes the substrate.
  • An apparatus comprising: a member that forms a closed space surrounding a contact portion with a liquid; and a vapor pressure adjusting device that makes the vapor pressure inside the closed space higher than the vapor pressure outside the closed space.
  • a device manufacturing method of the present invention uses the exposure apparatus described above.
  • the vapor pressure in the closed space including the contact portion with the liquid is high, the change in temperature of the liquid contact portion such as the projection optical system and the substrate can be suppressed by the vaporization of the liquid. Therefore, an image of the pattern can be formed on the substrate with high accuracy.
  • FIG. 1 is a schematic view showing a first embodiment of the exposure apparatus of the present invention.
  • FIG. 2 is an enlarged view of a main part showing the vicinity of the front end of the projection optical system.
  • 'FIG. 3 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
  • FIG. 4 is a diagram showing an example of the arrangement of the supply nozzle and the recovery nozzle.
  • FIG. 5 is an enlarged view of a main part of a second embodiment of the exposure apparatus of the present invention.
  • FIG. 6 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a schematic diagram showing a first embodiment of the exposure apparatus EX of the present invention.
  • an exposure apparatus EX includes a mask stage MST supporting a mask M, A substrate stage PST supporting the substrate P, an illumination optical system I for illuminating the mask M supported by the mask stage MST with the exposure light EL, and a pattern image of the mask M illuminated with the exposure light EL on the substrate stage PST.
  • the system includes a projection optical system PL for projecting and exposing the supported substrate P, and a control device CONT for controlling the overall operation of the exposure apparatus EX.
  • the exposure apparatus EX of the present embodiment is an immersion type exposure apparatus to which an immersion method is applied in order to substantially shorten the exposure wavelength to improve the resolution and substantially widen the depth of focus.
  • the liquid immersion unit 10 that fills at least a part between the system PL and the substrate P with the liquid 30 to form the liquid immersion area AR2.
  • the liquid immersion unit 10 includes a liquid supply device 1 that supplies the liquid 30 onto the substrate P, and a liquid recovery device 2 that recovers the liquid 30 on the substrate P.
  • the exposure apparatus EX uses the liquid 30 supplied from the liquid supply apparatus 1 to transfer the substrate P including the projection area AR 1 of the projection optical system PL while transferring at least the pattern image of the mask M onto the substrate P.
  • An immersion area AR2 is formed in the upper part.
  • the exposure apparatus EX fills the space between the optical element PLa at the tip of the projection optical system PL and the surface of the substrate P with liquid 30 and fills the optical element PLa of the projection optical system PL with the substrate
  • the pattern image of the mask M is projected onto the substrate P via the liquid 30 between the substrate P and the projection optical system PL, and the substrate P is exposed.
  • the exposing device EX includes a vaporization suppressing unit 20 that forms at least a part of a vaporization suppressing device that suppresses the vaporization of the liquid 30 described in detail below.
  • a scanning type exposure apparatus that exposes a pattern formed on a mask M to a substrate P while synchronously moving a mask M and a substrate P in directions different from each other (an opposite direction) as the exposure apparatus EX.
  • a case where a so-called scanning stepper is used will be described as an example.
  • the direction that coincides with the optical axis AX of the projection optical system PL is the Z-axis direction
  • the synchronous movement direction (scanning direction) between the mask M and the substrate P in a plane perpendicular to the Z-axis direction is the X-axis.
  • the “substrate” includes a semiconductor wafer coated with a photoresist as a photosensitive material
  • the “mask” includes a reticle on which a device pattern to be reduced and projected onto the substrate is formed.
  • the illumination optical system IL exposes the mask ⁇ supported by the mask stage MST ⁇ ⁇
  • the system has a variable field stop that sets the illumination area on the mask M with the exposure light EL in a slit shape.
  • a predetermined illumination area on the mask M is illuminated by the illumination optical system IL with exposure light EL having a uniform illuminance distribution.
  • the exposure light EL emitted from the illumination optical system IL includes, for example, ultraviolet bright lines (g-line, h-line, and i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength 248 nm). UV light (DUV light) or ArF excimer laser light (wavelength 193 nm)? 2 Vacuum ultraviolet light (VUV light) such as laser light (wavelength 157 nm) is used. In the present embodiment, an ArF excimer laser beam is used.
  • the mask stage MST supports the mask M, and can be moved two-dimensionally in the plane perpendicular to the optical axis AX of the projection optical system P, that is, in the XY plane, and can be slightly rotated in the 6Z direction.
  • the mask stage MST is driven by a mask stage driving device MSTD composed of a linear motor or the like.
  • the mask stage driving device MS TD is controlled by the control device CONT.
  • Moving mirror 5 0 is provided on the mask stage MS T.
  • a laser interferometer 51 is provided at a position facing the movable mirror 50.
  • the two-dimensional position and rotation angle of the mask M on the mask stage MST are measured in real time by the laser interferometer 51, and the measurement results are output to the control device CONT.
  • the control device CONT drives the mask stage driving device MSTD based on the measurement result of the laser interferometer 51, thereby positioning the mask M supported by the mask stage MST.
  • the projection optical system PL projects and exposes the pattern of the mask M onto the substrate ⁇ at a predetermined projection magnification ⁇ .
  • a plurality of optical elements including an optical element (lens) PL a provided at the front end on the substrate ⁇ side These optical elements are supported by a lens barrel PK.
  • the projection optical system PL is a reduction system having a projection magnification of, for example, 1Z4 or 1-5.
  • the projection optical system PL may be either a unity magnification system or a magnification system.
  • the optical element PLa at the tip of the projection optical system PL of the present embodiment is provided so as to be attachable / detachable (replaceable) with respect to the lens barrel PK, and forms an immersion area AR 2 in the optical element PLa.
  • Liquid 30 comes in contact.
  • the substrate stage PST supports the substrate P, and has a Z stage 52 for holding the substrate P via a substrate holder, and an XY stage 53 for supporting the Z stage 52.
  • the ST XY stage 53 is supported on a base 54.
  • the substrate stage PST is driven by a substrate stage driving device PSTD composed of a linear motor or the like.
  • the substrate stage drive PSTD is controlled by the controller CONT.
  • the Z stage 52 By driving the Z stage 52, the position (focus position) of the substrate P held on the Z stage 52 in the Z axis direction and the positions in the 0X and 0Y directions are controlled.
  • the XY stage 53 By driving the XY stage 53, the position of the substrate P in the XY direction (the position in a direction substantially parallel to the image plane of the projection optical system PL) is controlled. That is, the Z stage 52 controls the focus position and the tilt angle of the substrate P to adjust the surface of the substrate P to the image plane of the projection optical system PL by an auto-focus method and an auto-leveling method, and the XY stage Reference numeral 53 performs positioning of the substrate P in the X-axis direction and the Y-axis direction.
  • a movable mirror 55 is provided on the substrate stage PST (Z stage 52). Further, a laser interferometer 56 is provided at a position facing the movable mirror 55. The two-dimensional position and rotation angle of the substrate P on the substrate stage PST are measured in real time by the laser interferometer 56, and the measurement results are output to the control device CONT.
  • the control device CONT drives the substrate stage driving device PSTD based on the measurement result of the laser interferometer 56 to position the substrate P supported by the substrate stage PST.
  • the liquid supply device 1 of the liquid immersion unit 10 supplies a predetermined liquid 30 onto the substrate P and fills at least a part between the projection optical system PL and the substrate P with the liquid 30. It is provided with a tank for containing, a filter for removing foreign matter in the liquid 30, and a pressure pump. Further, the liquid supply device 1 includes a temperature adjusting device for adjusting the temperature of the liquid 30 to be supplied onto the substrate P. The temperature adjusting device sets the temperature of the liquid 30 to be supplied to, for example, approximately the same as the temperature of the space inside the chamber in which the exposure apparatus EX is housed. One end of a supply pipe 3 is connected to the liquid supply device 1, and a supply nozzle 4 is connected to the other end of the supply pipe 3.
  • the supply nozzle 4 is arranged close to the substrate P, and the liquid supply device 1 is projected optically through the supply pipe 3 and the supply nozzle 4.
  • the liquid 30 is supplied between the system PL and the substrate P.
  • the liquid supply operation of the liquid supply device 1 is controlled by the control device CONT, and the control device CONT can control the amount of liquid supply by the liquid supply device 1 per unit time.
  • pure water is used as the liquid 30.
  • Pure water can be used not only for ArF excimer laser light but also for ultraviolet emission lines (g-line, h-line, i-line) emitted from a mercury lamp and KrF excimer laser light (wavelength 248 nm). Etc. can also transmit deep ultraviolet light (DUV light).
  • the liquid recovery device 2 recovers the liquid 30 on the substrate P, and includes, for example, a suction device such as a vacuum pump, a tank for storing the recovered liquid 30, and the like.
  • a suction device such as a vacuum pump
  • One end of a recovery pipe 6 is connected to the liquid recovery device 2, and a recovery nozzle 5 is connected to the other end of the recovery pipe 6.
  • the recovery nozzle 5 is arranged close to the substrate P, and the liquid recovery device 2 recovers the liquid 30 via the recovery nozzle 5 and the recovery pipe 6.
  • the liquid recovery operation of the liquid recovery device 2 is controlled by the control device C ON T, and the control device C ON T can control the amount of liquid recovered by the liquid recovery device 2 per unit time.
  • the control device CONT drives the liquid supply device 1, supplies a predetermined amount of liquid 30 per unit time onto the substrate P via the supply pipe 3 and the supply nozzle 4, and drives the liquid recovery device 2.
  • a predetermined amount of the liquid 30 is recovered from the substrate P per unit time via the recovery nozzle 5 and the recovery pipe 6.
  • the liquid 30 is disposed between the front end portion PLa of the projection optical system PL and the substrate P, and the immersion area A R2 is formed.
  • the vaporization suppression unit 20 suppresses the vaporization of the liquid 30 by making the periphery of the liquid 30 higher than a predetermined vapor pressure.
  • the vaporization suppression unit 20 is formed by a partition member 21 surrounding a space around the liquid 30 between the projection optical system PL and the substrate P, and a partition member 21, and is formed around the liquid 30.
  • a humidifier 28 that constitutes at least a part of a supply device that supplies steam to the closed space 24 including the above space.
  • the partition member 21 is attached near the periphery of the substrate stage PST (Z stage 52) so as to surround the substrate P, and has a wall member 22 having a wall surface of a predetermined height, and a barrel of the projection optical system PL.
  • a cover member 23 attached to the PK and having a lower surface substantially parallel to the XY plane and having a predetermined size.
  • the lid member 23 may be attached to a support member (not shown) that supports the projection optical system PL (barrel PK).
  • Partition wall member 2 1 Wall member 2 2
  • the lid 23 forms a liquid 30 between the projection optical system PL and the substrate P and a closed space 24 surrounding the substrate P.
  • a slight gap is provided between the upper end of the wall member 22 and the lower surface of the lid member 23 so as not to hinder the movement of the substrate stage PST in the X-axis, Y-axis, and Z-axis directions and the inclination of the substrate stage PST.
  • Gap 25 is formed.
  • a part of the lid member 23 is provided with a through hole in which the supply pipe 3 and the recovery pipe 6 can be arranged.
  • a seal member (not shown) for regulating the flow of fluid is provided between each of the supply pipe 3 and the recovery pipe 6 and the through hole.
  • a through hole 26 is formed in a part of the wall member 22 provided on the substrate stage PST, and one end of a pipe 27 provided so as to be able to expand and contract is connected to the through hole 26.
  • a humidifier 28 for supplying steam to the closed space 24 is connected to the other end of the pipe 27.
  • the humidifier 28 supplies high-humidity gas to the closed space 24 via the pipe 27, and supplies vapor of the same substance as the liquid 30. Since the liquid 30 is water (pure water) in the present embodiment, the humidifier 28 supplies water vapor to the closed space 24.
  • the steam supply operation of the humidifier 28 is controlled by the control device C O NT.
  • the vaporization suppression unit 20 supplies steam to the closed space 24 by the humidifier 28 so that the vapor pressure (the vapor phase) in the closed space 24 inside the partition wall member 21 is increased. Pressure) is higher than its outside (ie inside the chamber device).
  • FIG. 2 is a front view showing the vicinity of the tip of the projection optical system PL of the exposure apparatus EX.
  • the optical element PLa at the lowermost end of the projection optical system PL is formed in a rectangular shape whose tip is elongated in the Y-axis direction (non-scanning direction), leaving only necessary parts in the scanning direction.
  • a part of the pattern image of the mask M is projected onto the rectangular projection area AR1 immediately below the optical element PLa, and the mask M is moved to the projection optical system PL in the ⁇ X direction (or + X).
  • the substrate P moves in the + X direction (or the -X direction) at a speed of -3-V (j3 is a projection magnification) in synchronization with the movement of the substrate P at the speed V in the (direction).
  • the exposure processing for each shot area is sequentially performed by the step-and-scan method.
  • the liquid 30 is set to flow in the same direction as the movement direction of the substrate P, in parallel with the movement direction of the substrate P.
  • Figure 3 shows the projection area AR 1 of the projection optical system PL, the supply nozzle 4 (4A to 4C) that supplies the liquid 30 in the X-axis direction, and the collection nozzle 5 (5A, 5B) that collects the liquid 30. It is a figure which shows the positional relationship of.
  • the projection area ⁇ ⁇ of the projection optical system PL has a rectangular shape elongated in the Y-axis direction, and the three supply nozzles 4 A on the + X direction side sandwich the projection area AR 1 in the X-axis direction.
  • ⁇ 4C are arranged, and two collection nozzles 5A and 5B are arranged on the 1X direction side.
  • the supply nozzles 4A to 4C are connected to the liquid supply device 1 via the supply pipe 3, and the recovery nozzles 5A and 5B are connected to the liquid recovery device 2 via the recovery pipe 6.
  • the supply nozzles 8A to 8C and the recovery nozzles 9A and 9B are arranged such that the supply nozzles 4A to 4C and the recovery nozzles 5A and 5B are rotated by approximately 180 °.
  • the supply nozzles 4A to 4C and the collection nozzles 9A and 9B are alternately arranged in the Y-axis direction.
  • the supply nozzles 8A to 8C and the collection nozzles 5A and 5B are alternately arranged in the Y-axis direction.
  • the nozzles 8A to 8C are connected to the liquid supply device 1 via the supply pipe 11, and the recovery nozzles 9A and 9B are connected to the liquid recovery device 2 via the recovery pipe 12.
  • the controller CONT drives the liquid supply unit 1 and the liquid recovery unit 2 of the liquid immersion unit 10 to project the projection optical system.
  • An immersion area AR 2 is formed between the system PL and the substrate P.
  • the ONT drives the humidifier 28 of the vaporization suppression unit 20 to supply steam to the closed space 24 including the space around the liquid 30 forming the immersion area AR 2, Increase the pressure above the specified vapor pressure. More specifically, the vaporization suppression unit 20 supplies the high-humidity gas water vapor to the closed space 24 to make the closed space 24 the saturated vapor pressure of the liquid (pure water) 30.
  • the vapor pressure in the closed space 24 becomes higher than the vapor pressure outside the closed space 24.
  • the humidity outside the closed space 24, that is, in the chamber device accommodating the exposure apparatus EX is 30 to 40%, but the supply of water vapor is continued to the closed space 24 by the humidifier 28 of the vaporization suppression unit 20. Therefore, the inside of the space 24 is always maintained near the saturated vapor pressure (about 95% humidity).
  • the gap 25 is very small, it is possible to maintain the space 24 near the saturated vapor pressure.
  • the supply pipe 3 When scanning exposure is performed by moving the substrate P in the scanning direction (one X direction) indicated by the arrow Xa (see FIG. 3), the supply pipe 3, the supply nozzles 4A to 4C, the recovery pipe 6, and the ⁇ Using the recovery nozzles 5A and 5B, the liquid supply device 1 and the liquid recovery device 2 supply and recover the liquid 30.
  • the supply pipe 11 When scanning exposure is performed by moving the substrate P in the scanning direction (+ X direction) indicated by the arrow Xb, the supply pipe 11, the supply nozzles 8 A to 8 C, the collection pipe 12, and the collection pipe
  • the liquid 30 is supplied and recovered by the liquid supply device 1 and the liquid recovery device 2 using the nozzles 9A and 9B.
  • the liquid immersion unit 10 uses the liquid supply device 1 and the liquid recovery device 2 to flow the liquid 30 in the same direction as the movement direction of the substrate P along the movement direction of the substrate P.
  • the liquid 30 supplied from the liquid supply device 1 via the supply nozzles 4A to 4C is drawn between the projection optical system PL and the substrate P as the substrate P moves in the X direction. Therefore, the liquid 30 can be easily supplied between the projection optical system PL and the substrate P even if the supply energy of the liquid supply device 1 is small.
  • the substrate P can be scanned in either the + X direction or the 1X direction. It can be filled with liquid 30 and high resolution and wide depth of focus can be obtained.
  • a minute gap 25 is provided between the upper end of the wall member 22 and the lid member 23, the substrate stage PST is moved while maintaining the closed space 24 near the saturated vapor pressure. You can also.
  • a closed space 24 is formed by the partition member 21 around the liquid 30 forming the immersion area AR 2 and the substrate P, and steam is supplied into the closed space 24. Therefore, it is possible to suppress the vaporization of the liquid 30 or the liquid 30 attached to the tip of the projection optical system PL or the substrate P, and to maintain the liquid 30, the projection optical system PL, and the substrate P at a desired temperature. Can be maintained.
  • the substrate stage by the interferometer 56 using the movable mirror 55 Since the same pure water vapor as the liquid (pure water) 30 is supplied to the closed space 24 to humidify the closed space 24, the liquid between the projection optical system PL and the substrate P is supplied. (Pure water) It does not lower the purity of 30 or change the characteristics such as transmittance.
  • the vapor supplied to the closed space 24 is the same substance as the liquid 30 forming the immersion area AR 2, but the purity of the liquid 30 between the projection optical system PL and the substrate P is If the reduction of the pressure is allowed to some extent, the liquid 30 for forming the liquid immersion area AR 2 supplied from the liquid supply device 1 and the vapor supplied to the closed space 24 may not be the same substance. .
  • the inside of the closed space 24 is set to a substantially saturated vapor pressure (humidity of about 95%), but may be lower than that, for example, about 60%. That is, the pressure of the vapor phase in the closed space 24 may be set to a predetermined vapor pressure lower than the saturated vapor pressure.
  • the predetermined vapor pressure is within an allowable range, and fluctuations in pattern transfer accuracy caused by temperature fluctuations of the tip of the projection optical system PL, the substrate P, or the liquid 30 due to the vaporization of the liquid 30 are kept within an allowable range. Is the pressure that can be measured. Therefore, the vaporization suppression unit 20 can keep the pattern transfer accuracy within an allowable range by making the periphery of the liquid 30 for forming the liquid immersion area AR2 higher than the predetermined vapor pressure.
  • the liquid 30 of the present embodiment is water (pure water), but may be a liquid other than water.
  • the light source of the exposure light EL is an F 2 laser
  • the F 2 laser light will not transmit through water, fluorine-based, such as permeable as fluorine-based oil an F 2 laser light as the liquid 3 0 liquid (Eg, Fomblin, PFPE).
  • a fluorine-based liquid vapor is supplied around the substrate P (closed space 24).
  • the same liquid as the liquid may be vaporized and the vapor may be supplied into the closed space 24.
  • liquid 30 other liquids that are transparent to the exposure light EL, have the highest possible refractive index, and are stable with respect to the photoresist applied to the projection optical system PL and the surface of the substrate P (for example, Cedar (Oil) can also be used.
  • a vapor of the same substance as the liquid or a vapor having the same composition as the vapor generated by vaporizing the liquid may be supplied around the substrate P (closed space 24).
  • the shape of the above-described nozzle is not particularly limited.
  • supply or recovery of the liquid 30 is performed using two pairs of nozzles on the long side of the projection area AR1 of the projection optical system PL. It may be.
  • the supply nozzle and the recovery nozzle may be arranged vertically. Good.
  • supply nozzles 41, 42 and recovery nozzles 43, 44 may be provided on both sides in the Y-axis direction with the projection area A R1 of the projection optical system PL interposed therebetween.
  • the supply nozzle and the recovery nozzle stabilize the liquid 30 between the projection optical system PL and the substrate P even when the substrate P moves in the non-scanning direction (Y-axis direction) during stepping movement. Can be supplied.
  • a supply nozzle and a recovery nozzle for the liquid 30 are provided so as to surround the projection area AR1 of the projection optical system PL, the movement direction of the substrate P such as when the substrate P is stepped in the Y-axis direction. It is also possible to switch the flowing direction of the liquid 30 according to the conditions.
  • the vaporization suppressing unit 20 has a partition wall member 60 mounted on a base 54. That is, the partition member 21 according to the first embodiment is constituted by the wall member 22 and the lid member 23, and the gap 25 is formed. However, the partition member 60 according to the present embodiment has There is no gap, and the closed space 61 formed by the partition member 60 is a substantially closed space. In this case, the substrate stage PST moves on the base 54 in the closed space 61. By making the closed space 61 a substantially closed space, it is not only easy to maintain the inside of the closed space 61 near the saturated vapor pressure of the liquid 30, but also the effect on the outside of the closed space 61 Can be eliminated.
  • the measurement light of the interferometer used to measure the position of the substrate stage PST may pass through the closed space 61.
  • the optical path of the measurement light can be covered with an elastic tubular member so that the vapor in the closed space 61 does not affect the measurement operation.
  • the surroundings of the liquid 30 for forming the immersion area AR 2 and the substrate P are made into a closed space, and steam is supplied into this closed space.
  • the liquid 30 for forming the immersion area AR 2 simply by spraying a vapor around the liquid 30 (near the tip of the projection optical system PL, near the surface of the substrate P), the liquid 30 is not formed. Evaporation may be suppressed.
  • the optical path (light flux) of the interferometer may be covered with a tubular member so that the vapor does not affect the measurement of the interferometer.
  • a humidity sensor may be arranged in the closed spaces 24, 61, and the humidifier 28 may be controlled based on the output of the humidity sensor.
  • the vapor pressure in the closed spaces 24 and 61 is made substantially the same as the vapor pressure in the space outside the closed spaces 24 and 61. 6 It may be carried out from 1.
  • the humidifier 28 for supplying steam into the closed spaces 24 and 61 is provided, but this may be omitted. That is, even if only the closed spaces 24 and 61 are formed, the liquid that comes into contact with (adheres to) the substrate P or the vicinity of the front end of the projection optical system PL is dried air in the chamber accommodating the apparatus, or in the chamber. Since it can be protected from contact with the airflow, liquid vaporization can be suppressed.
  • the closed spaces 24 and 61 are formed to suppress the vaporization of the liquid, but without providing the partition members 21 and 60, High-vapor-pressure (high-humidity) steam may be blown toward the vicinity of the tip of the projection optics PL or the surface of the substrate P.
  • High-vapor-pressure (high-humidity) steam may be blown toward the vicinity of the tip of the projection optics PL or the surface of the substrate P.
  • the present invention is not limited to the large closed spaces 24 and 61 as in the first and second embodiments, and a local closed space may be provided so as to surround a portion that comes into contact with (adheres to) the liquid.
  • the liquid 30 in the present embodiment is composed of pure water. Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and that it has no adverse effect on the photoresist on the substrate P, optical elements (lenses), and the like. Also, net Since water has no adverse effect on the environment and has a very low impurity content, it can be expected to have the effect of cleaning the surface of the substrate P and the surface of the optical element provided on the tip end surface of the projection optical system PL.
  • the refractive index n of pure water (water) with respect to the exposure light EL having a wavelength of about 193 nm is approximately 1.44
  • an ArF excimer laser light (wavelength 19 When using (nm) the wavelength is shortened to 1 n on the substrate P, that is, about 134 nm, and a high resolution can be obtained.
  • the depth of focus is expanded about n times, that is, about 1.44 times as compared with that in the air, when it is sufficient to secure the same depth of focus as that used in the air, the projection optical system
  • the number of apertures of the PL can be further increased, and the resolution is also improved in this regard.
  • a lens is attached as an optical element PLa to the tip of the projection optical system PL, and this lens allows the optical characteristics of the projection optical system PL, for example, aberrations.
  • the optical element PLa may be an optical plate for adjusting the optical characteristics.
  • the optical element PLa that comes into contact with the liquid 30 can be a parallel flat plate that is less expensive than a lens.
  • the replacement cost is lower than in the case where it is performed.
  • the surface of the optical element that comes into contact with the liquid is contaminated by scattered particles generated from the resist by exposure to the exposure light EL, or by the attachment of impurities in the liquid.
  • the cost of replacement parts and the time required for replacement can be shortened compared to a lens, and maintenance costs (running costs) can be reduced. Increase and decrease in throughput can be suppressed.
  • the optical element PLa at the tip of the projection optical system PL and the substrate P caused by the flow of the liquid is large, the optical element is not replaced by the optical element but is replaced by the pressure. You may fix firmly so that it may not move.
  • the space between the projection optical system PL and the surface of the substrate P is filled with liquid.
  • a configuration in which a liquid is filled in a state where a force bar glass made of a parallel flat plate is attached to the surface of the substrate P may be used.
  • the substrate P in each of the embodiments described above includes not only a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask (synthesis) for a mask or reticle used in an exposure apparatus. Ishi Ei, silicon wafer) etc. are applied.
  • the exposure apparatus EX includes a step-and-scan type scanning exposure apparatus (scanning stepper) for scanning and exposing the pattern of the mask M by synchronously moving the mask M and the substrate P. It can also be applied to a step-and-repeat type projection exposure apparatus (stepper) in which the pattern of the mask M is exposed collectively while the substrate P and the substrate P are stationary.
  • stepper step-and-repeat type projection exposure apparatus
  • the present invention is also applicable to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P.
  • an exposure apparatus that locally fills the space between the projection optical system PL and the substrate P with a liquid is employed, which is disclosed in Japanese Patent Application Laid-Open No. HEI 6-128473.
  • the present invention is also applicable to an immersion exposure apparatus in which a liquid tank is formed and a substrate is held therein.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern onto a substrate P, but may be an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, and an imaging element. (CCD) or an exposure apparatus for manufacturing a reticle or a mask.
  • Each of the stages PST and MST may be of a type that moves along a guide, or may be a guideless type without a guide.
  • the drive mechanism of each stage PST, MST is a plane that drives each stage PST, MST by electromagnetic force by facing a magnet unit with a two-dimensional magnet and an armature unit with a two-dimensional coil.
  • a motor may be used.
  • one of the magnet unit and the armature unit may be connected to the stage PST, MS ⁇ , and the other of the magnet unit and the armature unit may be provided on the moving surface side of the stage PST, MST. Les ,.
  • a reaction force generated by the movement of the substrate stage PST is not transmitted to the projection optical system PL by using a frame member. You may mechanically escape to the floor (ground).
  • the reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL. It may be mechanically released to the floor (ground) using a member.
  • the exposure apparatus EX of the embodiment of the present invention maintains various mechanical subsystems including the components listed in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. So, it is manufactured by assembling. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, adjustments to achieve mechanical accuracy for various mechanical systems, and various electrical The air system is adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. After the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustments are made to ensure the various accuracy of the entire exposure apparatus. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled.
  • micro devices such as semiconductor devices Step 201 for designing the function and performance of the device, Step 202 for manufacturing a mask (reticle) based on this design step, Step 203 for manufacturing the substrate that is the base material of the device, and the above-described embodiment. It is manufactured through an exposure process step 204, which exposes the pattern of the mask onto the substrate with the exposure device EX, a device assembling step (including dicing, bonding, and packaging processes) 205, an inspection step 206, and the like.
  • EX exposure process
  • a device assembling step including dicing, bonding, and packaging processes
  • the present invention it is possible to suppress the temperature fluctuation of the projection optical system, the substrate, or the liquid for immersion exposure due to the vaporized liquid, so that the deterioration of the projection image of the projection optical system and the substrate deformation due to the temperature fluctuation can be suppressed.
  • accurate exposure processing can be performed.

Abstract

この露光装置EXは、投影光学系PLと基板Pとの間を液体30で満たした状態で、投影光学系PLと液体30とを介してパターンの像を基板P上に投影し、基板Pを露光する。この露光装置EXは、液体30の気化を抑制する気化抑制ユニット20を備えている。

Description

明 細 書 • 露光装置及びデバィス製造方法 技術分野
本発明は、 投影光学系と基板との間の少なくとも一部を液体で満たした状態で 投影光学系と液体とを介して基板にパターンを露光する露光装置及びこの露光装 置を用いるデバイス製造方法に関する。
本出願は、 2003年 3月 25日に出願された日本国特許出願 2003-83 329号に対し優先権を主張し、 その内容を本明細書に援用する。 背景技術
半導体デバイスゃ液晶表示デバィスは、 マスク上に形成されたパターンを感光 性の基板上に転写する、 いわゆるフォトリソグラフィの手法により製造される。 このフォトリソグラフイエ程で使用される露光装置は、 マスクを支持するマス クステージと基板を支持する基板ステージとを有し、 マスクステージ及ぴ基板ス テ一ジを逐次移動しながらマスクのパターンを投影光学系を介して基板に転写す る。 近年、 デバイスパターンのより一層の高集積化に対応するために投影光学系 の更なる高解像度化が望まれている。 投影光学系の解像度は、 使用する露光波長 が短くなるほど、 また投影光学系の開口数が大きいほど高くなる。 そのため、 露 光装置で使用される露光波長は年々短波長化しており、 投影光学系の開口数も増 大している。 そして、 現在主流の露光波長は、 K r Fエキシマレーザの 248 n mであるが、 更に短波長の A r Fエキシマレーザの 193 nmも実用化されつつ ある。 また、 露光を行う際には、 解像度と同様に焦点深度 (DOF) も重要とな る。 解像度 R、 及び焦点深度 δはそれぞれ以下の式で表される。
R = k χ - λ/ΝΑ ■■■ (1)
δ =±k2 · λ/ΝΑ2 ··· (2)
ここで、 えは露光波長、 Ν Αは投影光学系の開口数、 1^、 k2はプロセス係数 である。 (1) 式、 (2) 式より、 解像度 Rを高めるために、 露光波長; Lを短くし て、 開口数 N Aを大きくすると、 焦点深度 δが狭くなることが分かる。
焦点深度 δが狭くなり過ぎると、 投影光学系の像面に対して基板表面を合致さ せることが困難となり、 露光動作時のマージンが不足する恐れがある。 そこで、 実質的に露光波長を短くして、 且つ焦点深度を広くする方法として、 例えば国際 公開第 9 9 / 4 9 5 0 4号に開示されている液浸法が提案されている。 この液浸 法は、 投影光学系の下面と基板表面との間を水や有機溶媒等の液体で満たし、 液 体中での露光光の波長が、空気中の l Z n ( nは液体の屈折率で通常 1 . 2〜1 . 6程度) になることを利用して解像度を向上するとともに、 焦点深度を約 n倍に 拡大するというものである。
ところで、 従来の露光装置 (ドライ露光用露光装置) のチャンバ内は低湿度化 されている上、 空調により気流が生じており、 液体が気化しやすい雰囲気が形成 されている。 したがって、 従来の露光装置のチャンバ内と同様の環境下で液浸露 光を行おうとすると、 液浸露光用の液体が気化し、 その液体やその液体が接触し ている投影光学系(一部の光学素子)、あるいは基板の温度の制御精度を維持でき ない可能性がある。 また投影光学系の温度変化により投影像が劣化したり、 基板 の温度変化により基板の変形 (伸縮) が生じ、 パターンの重ね合わせ精度を悪化 する可能性がある。
本発明はこのような事情に鑑みてなされたものであって、 液浸法に基づいて露 光処理する際、 パターンの像を基板上に精度良く形成できる露光装置及ぴデパイ ス製造方法を提供することを目的とする。 また、 液浸露光用の液体温度や露光対 象である基板温度を所望の温度に設定、 維持できる露光装置及びデバイス製造方 法を提供することを目的とする。 発明の開示
本発明の露光装置は、 投影光学系と基板との間の少なくとも一部を液体で満た し、 投影光学系と液体とを介してパターンの像を基板上に投影し、 該基板を露光 する露光装置であって、 液体の気化を抑制する気化抑制装置を備える。
また、 本発明のデバイス製造方法は、 上記記載の露光装置を用いる。
本発明によれば、 気化抑制装置により液浸露光用の液体の気化を抑制するよう にしたので、 液体の気化による投影光学系や基板、 あるいは液浸露光用の液体の 温度変化を抑えて所望の温度に設定、 維持することができる。 したがって、 温度 変化に起因する投影光学系の投影像の劣化や基板変形などが抑えられ、 パターン の像を基板上に精度良く形成できる。
本発明の露光装置は、 投影光学系と基板との間の少なくとも一部を液体で満た し、 投影光学系と液体とを介してパターンの像を基板上に投影し、 該基板を露光 する露光装置であって、 液体との接触部分を取り囲む閉空間を形成する部材と、 その閉空間内部の蒸気圧が、 その閉空間外部の蒸気圧よりも高くする蒸気圧調整 装置とを備える。
また、 本発明のデバイス製造方法は、 上記記載の露光装置を用いる。
本発明によれば、 液体との接触部分を含む閉空間の蒸気圧が高いので、 液体の 気化によって、 投影光学系や基板などの液体接触部分の温度変化を抑制すること ができる。 したがって、 パターンの像を基板上に精度良く形成できる。 図面の簡単な説明
図 1は、 本発明の露光装置の第 1実施形態を示す概略図である。
図 2は、 投影光学系の先端部付近を示す要部の拡大図である。 ' 図 3は、 供給ノズル及ぴ回収ノズルの配置例を示す図である。
図 4は、 供給ノズル及ぴ回収ノズルの配置例を示す図である。
図 5は、 本発明の露光装置の第 2実施形態の要部の拡大図である。
図 6は、 半導体デバイスの製造工程の一例を示すフローチヤ一トである。 発明を実施するための最良の形態
以下、図面を参照しつつ、本発明の好適な実施形態について説明する。ただし、 本発明は以下の実施形態に限定されるものではなく、 例えばこれら実施形態の構 成要素同士を適宜組み合わせてもよいし、 周知の他の構成を付加または置換して もよい。
図 1は本発明の露光装置 E Xの第 1実施形態を示す概略図である。
図 1において、露光装置 E Xは、マスク Mを支持するマスクステージ M S Tと、 基板 Pを支持する基板ステージ P S Tと、 マスクステージ M S Tに支持されてい るマスク Mを露光光 E Lで照明する照明光学系 I と、 露光光 E Lで照明された マスク Mのパターン像を基板ステージ P S Tに支持されている基板 Pに投影露光 する投影光学系 P Lと、 露光装置 E X全体の動作を統括制御する制御装置 C O N Tとを備えている。 本実施形態の露光装置 E Xは、 露光波長を実質的に短くして 解像度を向上するとともに焦点深度を実質的に広くするために液浸法を適用した 液浸型露光装置であって、 投影光学系 P Lと基板 Pとの間の少なくとも一部を液 体 3 0で満たして液浸領域 A R 2を形成する液浸ュニット 1 0を備えている。 液浸ュニット 1 0は、 基板 P上に液体 3 0を供給する液体供給装置 1と、 基板 P上の液体 3 0を回収する液体回収装置 2とを備えている。 露光装置 E Xは、 少 なくともマスク Mのパターン像を基板 P上に転写している間、 液体供給装置 1か ら供給した液体 3 0により、 投影光学系 P Lの投影領域 A R 1を含む基板 P上の 一部に液浸領域 A R 2を形成する。 具体的には、 露光装置 E Xは、 投影光学系 P Lの先端部の光学素子 P L aと基板 Pの表面との間に液体 3 0を満たし、 この投 影光学系 P Lの光学素子 P L aと基板 Pとの間の液体 3 0、 及び投影光学系 P L を介してマスク Mのパターン像を基板 P上に投影し、 基板 Pを露光する。 更に露 光装置 E Xは、 後に詳述する液体 3 0の気化を抑制する気化抑制装置の少なくと も一部を構成する気化抑制ュニット 2 0を備えている。
本実施形態では、 露光装置 E Xとしてマスク Mと基板 Pとを走查方向における 互いに異なる向き (逆方向) に同期移動しつつマスク Mに形成されたパターンを 基板 Pに露光する走查型露光装置 (所謂スキャニングステッパ) を使用する場合 を例にして説明する。 以下の説明において、 投影光学系 P Lの光軸 A Xと一致す る方向を Z軸方向、 Z軸方向に垂直な平面内でマスク Mと基板 Pとの同期移動方 向 (走査方向) を X軸方向、 Z軸方向及ぴ Y軸方向に垂直な方向 (非走查方向) を Y軸方向とする。 また、 X軸、 Y軸、 及び Z軸まわり方向をそれぞれ、 0 X、 0 Y、 及び Θ Ζ方向とする。 ここでいう 「基板」 は半導体ウェハ上に感光性材料 であるフォトレジストを塗布したものを含み、 「マスク」は基板上に縮小投影され るデバイスパターンを形成されたレチクルを含む。
照明光学系 I Lはマスクステージ M S Tに支持されているマスク Μを露光光 Ε Lで照明するものであり、 露光用光源、 露光用光源から射出された光束の照度を 均一化するオプティカルィンテグレータ、 オプティカルィンテグレータからの露 光光 ELを集光するコンデンサレンズ、 リレーレンズ系、 露光光 ELによるマス ク M上の照明領域をスリット状に設定する可変視野絞り等を有している。 マスク M上の所定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 ELで照 明される。 照明光学系 I Lから射出される露光光 ELとしては、 例えば水銀ラン プから射出される紫外域の輝線 (g線、 h線、 i線) 及び Kr Fエキシマレーザ 光(波長 248 nm) 等の遠紫外光(DUV光)や、 A r Fエキシマレーザ光(波 長 193 nm) 及ぴ?2レーザ光 (波長 1 57 nm) 等の真空紫外光 (VUV光) などが用いられる。本実施形態においては A r Fエキシマレーザ光が用いられる。 マスクステージ MS Tはマスク Mを支持するものであって、 投影光学系 P の 光軸 A Xに垂直な平面内、 すなわち XY平面内で 2次元移動可能及ぴ 6 Z方向に 微小回転可能である。 マスクステージ MS Tはリニアモータ等で構成されるマス クステージ駆動装置 MS TDにより駆動される。 マスクステージ駆動装置 MS T Dは制御装置 CONTにより制御される。 マスクステージ MS T上には移動鏡5 0が設けられている。 また、 移動鏡 50に対向する位置にはレーザ干渉計 51が 設けられている。 マスクステージ MS T上のマスク Mの 2次元方向の位置、 及び 回転角はレーザ干渉計 51によりリアルタイムで計測され、 計測結果は制御装置 CONTに出力される。 制御装置 CO NTはレーザ干渉計 51の計測結果に基づ いてマスクステージ駆動装置 M STDを駆動することでマスクステージ M S Tに 支持されているマスク Mの位置決めを行う。
投影光学系 P Lはマスク Mのパターンを所定の投影倍率 βで基板 Ρに投影露光 するものであって、 基板 Ρ側の先端部に設けられた光学素子 (レンズ) PL aを 含む複数の光学素子で構成されており、 これら光学素子は鏡筒 PKで支持されて いる。 本実施形態において、 投影光学系 PLは、 投影倍率 が例えば 1Z4ある いは 1ノ 5の縮小系である。 投影光学系 P Lは等倍系及び拡大系のいずれでもよ レ、。 また、 本実施形態の投影光学系 PLの先端部の光学素子 PL aは鏡筒 PKに 対して着脱 (交換) 可能に設けられており、 光学素子 PL aには液浸領域 AR 2 を形成する液体 30が接触する。 基板ステージ P STは基板 Pを支持するものであって、 基板 Pを基板ホルダを 介して保持する Zステージ 52と、 Zステージ 52を支持する XYステージ 53 とを有しており、 この基板ステージ P STの XYステージ 53はベース 54に支 持されている。 基板ステージ P STはリニアモータ等で構成される基板ステージ 駆動装置 P STDにより駆動される。 基板ステージ駆動装置 P S TDは制御装置 CONTにより制御される。 Zステージ 52を駆動することにより、 Zステージ 52に保持されている基板 Pの Z軸方向における位置(フォーカス位置)、及び 0 X、 0 Y方向における位置が制御される。 また、 XYステージ 53を駆動するこ とにより、 基板 Pの XY方向における位置 (投影光学系 PLの像面と実質的に平 行な方向の位置) が制御される。 すなわち、 Zステージ 52は、 基板 Pのフォー カス位置及び傾斜角を制御して基板 Pの表面をオートフォーカス方式、 及ぴォー トレベリング方式で投影光学系 P Lの像面に合わせ込み、 XYステージ 53は基 板 Pの X軸方向及び Y軸方向における位置決めを行う。 なお、 Zステージと XY ステージとを一体的に設けてもよい。 基板ステージ P ST (Zステージ 52) 上 には移動鏡 55が設けられている。 また、 移動鏡 55に対向する位置にはレーザ 干渉計 56が設けられている。 基板ステージ P ST上の基板 Pの 2次元方向の位 置、 及ぴ回転角はレーザ干渉計 56によりリアルタイムで計測され、 計測結果は 制御装置 CONTに出力される。 制御装置 C O N Tはレーザ干渉計 56の計測結 果に基づいて基板ステージ駆動装置 P STDを駆動することで基板ステージ P S Tに支持されている基板 Pの位置決めを行う。
液浸ュニット 10の液体供給装置 1は所定の液体 30を基板 P上に供給して投 影光学系 P Lと基板 Pとの間の少なくとも一部を液体 30で満たすものであって、 液体 30を収容するタンク、 液体 30内の異物を除去するフィルタ、 及ぴ加圧ポ ンプ等を備えている。 更に液体供給装置 1は、 基板 P上に供給する液体 30の温 度を調整する温度調整装置を備えている。 温度調整装置は供給する液体 30の温 度を例えば露光装置 E Xが収容されているチヤンパ装置内部の空間の温度とほぼ 同程度に設定する。 液体供給装置 1には供給管 3の一端部が接続され、 供給管 3 の他端部には供給ノズル 4が接続されている。 供給ノズル 4は基板 Pに近接して 配置されており、 液体供給装置 1は供給管 3及び供給ノズル 4を介して投影光学 系 P Lと基板 Pとの間に液体 3 0を供給する。 また、 液体供給装置 1の液体供給 動作は制御装置. C O N Tにより制御され、 制御装置 C O N Tは液体供給装置 1に よる単位時間あたりの液体供給量を制御可能である。
本実施形態において液体 3 0には純水が用いられる。 純水は A r Fエキシマレ 一ザ光のみならず、例えば水銀ランプから射出される紫外域の輝線(g線、 h線、 i線)及ぴ K r Fエキシマレーザ光(波長 2 4 8 n m) 等の遠紫外光 (D U V光) も透過可能である。
液体回収装置 2は基板 P上の液体 3 0を回収するものであって、 例えば真空ポ ンプ等の吸引装置、 及び回収した液体 3 0を収容するタンク等を備えている。 液 体回収装置 2には回収管 6の一端部が接続され、 回収管 6の他端部には回収ノズ ル 5が接続されている。 回収ノズル 5は基板 Pに近接して配置されており、 液体 回収装置 2は回収ノズル 5及び回収管 6を介して液体 3 0を回収する。 また、 液 体回収装置 2の液体回収動作は制御装置 C O N Tにより制御され、 制御装置 C O N Tは液体回収装置 2による単位時間あたりの液体回収量を制御可能である。 制御装置 C O N Tは液体供給装置 1を駆動 'し、 供給管 3及び供給ノズル 4を介 して基板 P上に単位時間あたり所定量の液体 3 0を供給するとともに、 液体回収 装置 2を駆動し、 回収ノズル 5及び回収管 6を介して単位時間当たり所定量の液 体 3 0を基板 P上より回収する。 これにより、 投影光学系 P Lの先端部 P L aと 基板 Pとの間に液体 3 0が配置されて液浸領域 A R 2が形成される。
気化抑制ュ-ット 2 0は、 液体 3 0の周囲を所定の蒸気圧よりも高くすること で液体 3 0の気化を抑制する。 この気化抑制ュニット 2 0は、 投影光学系 P Lと 基板 Pとの間の液体 3 0の周囲の空間を囲む隔壁部材 2 1と、 隔壁部材 2 1によ り形成され、 前記液体 3 0の周囲の空間を含む閉空間 2 4に蒸気を供給する供給 装置の少なくとも一部を構成する加湿器 2 8とを備えている.。 隔壁部材 2 1は、 基板ステージ P S T ( Zステージ 5 2 ) の周縁部付近に基板 Pを取り囲むように 取り付けられ、 所定の高さの壁面を有する壁部材 2 2と、 投影光学系 P Lの鏡筒 P Kに取り付けられ、 X Y平面とほぼ平行で所定の大きさの下面を有する蓋部材 2 3とを備えている。 蓋部材 2 3は投影光学系 P L (鏡筒 P K) を支持する不図 示の支持部材に取り付けられていてもよい。 隔壁部材 2 1を構成する壁部材 2 2 及び蓋部材 2 3により、 投影光学系 P Lと基板 Pとの間の液体 3 0及び基板 Pを 囲む閉空間 2 4が形成される。 壁部材 2 2の上端部と蓋部材 2 3の下面との間に は、 基板ステージ P S Tの X軸、 Y軸、 Z軸方向への移動、 及び基板ステージ P S Tの傾斜を妨げないように、 僅かな隙間 2 5が形成されている。 また、 蓋部材 2 3の一部には供給管 3及び回収管 6をそれぞれ配置可能な貫通孔が設けられて いる。 供給管 3及び回収管 6のそれぞれと貫通孔との間には流体の流通を規制す るシール部材 (図示略) が設けられている。
基板ステージ P S T上に設けられた壁部材 2 2の一部には貫通孔 2 6が形成さ れており、 この貫通孔 2 6には伸縮自在に設けられた配管 2 7の一端部が接続さ れている。 一方、 配管 2 7の他端部には、 閉空間 2 4に蒸気を供給する加湿器 2 8が接続されている。 加湿器 2 8は高湿度気体を配管 2 7を介して閉空間 2 4に 供給するものであって、 液体 3 0と同じ物質の蒸気を供給する。 本実施形態にお いて液体 3 0は水 (純水) であるため、 加湿器 2 8は閉空間 2 4に水蒸気を供給 する。 加湿器 2 8の蒸気供給動作は制御装置 C O N Tに制御される。 そして、 気 化抑制ュ-ット 2 0は加湿器 2 8によって閉空間 2 4に対して蒸気を供給するこ とにより、 隔壁部材 2 1の内側の閉空間 2 4内の蒸気圧 (蒸気相の圧力) を、 そ の外側 (すなわちチャンバ装置内部) より高くする。
図 2は、 露光装置 E Xの投影光学系 P Lの先端部近傍を示す正面図である。 投 影光学系 P Lの最下端の光学素子 P L aは、 先端部が走査方向に必要な部分だけ を残して Y軸方向 (非走査方向) に細長い矩形状に形成されている。 走査露光時 には、 光学素子 P L aの直下の矩形の投影領域 A R 1にマスク Mの一部のパター ン像が投影され、 投影光学系 P Lに対してマスク Mがー X方向 (又は + X方向) に速度 Vで移動するのに同期して、 X Yステージ 5 3を介して基板 Pが + X方向 (又は— X方向) に速度 /3 - V ( j3は投影倍率) で移動する。 そして、 1つのシ ョット領域に対する露光終了後に、 基板 Pのステッピング移動により次のショッ ト領域が走査開始位置に移動し、 以下、 ステップ ·アンド ·スキャン方式で各シ ヨット領域に対する露光処理が順次行われる。 本実施形態では、 基板 Pの移動方 向と平行に、 基板 Pの移動方向と同一方向に液体 3 0を流すように設定されてい る。 図 3は、 投影光学系 PLの投影領域 AR 1と、 液体 30を X軸方向に供給する 供給ノズル 4 (4A〜4 C) と、 液体 30を回収する回収ノズル 5 (5A、 5 B) との位置関係を示す図である。 図 3において、 投影光学系 PLの投影領域 λΐ ΐ は Y軸方向に細長い矩形状となっており、 投影領域 A R 1を X軸方向に挟むよう に、 +X方向側に 3つの供給ノズル 4 A〜4 Cが配置され、 一X方向側に 2つの 回収ノズル 5 A、 5 Bが配置されている。 供給ノズル 4 A〜 4 Cは供給管 3を介 して液体供給装置 1に接続され、 回収ノズル 5 A、 5 Bは回収管 6を介して液体 回収装置 2に接続されている。 また、 供給ノズル 4 A〜4 Cと回収ノズル 5 A、 5 Bとをほぼ 1 80° 回転した配置に、 供給ノズル 8 A〜 8 Cと、 回収ノズル 9 A、 9Bとが配置されている。 供給ノズル 4 A〜4Cと回収ノズル 9A、 9Bと は Y軸方向に交互に配列され、 供給ノズル 8 A〜8 Cと回収ノズル 5 A、 5 Bと は Y軸方向に交互に配列され、 供給ノズル 8 A〜8 Cは供給管 1 1を介して液体 供給装置 1に接続され、 回収ノズル 9 A、 9 Bは回収管 12を介して液体回収装 置 2に接続されている。
次に、 上述した露光装置 E Xを用いてマスク Mのパターンを基板 Pに露光する 手順について説明する。
マスク Mがマスクステージ MS Tにロードされるとともに、 基板 Pが基板ステ ージ P S Tにロードされたら、 制御装置 C O N Tは液浸ュニット 10の液体供給 装置 1及び液体回収装置 2を駆動して投影光学系 P Lと基板 Pとの間に液浸領域 AR 2を形成する。 また、 制御装置。 ONTは気化抑制ュニット 20の加湿器 2 8を駆動し、 液浸領域 AR 2を形成する液体 30の周囲の空間を含む閉空間 24 に対して蒸気を供給し、 この閉空間 24の蒸気相の圧力を所定の蒸気圧よりも高 くする。 具体的には、 気化抑制ュニット 20は閉空間 24に高湿度気体である水 蒸気を供給することでこの閉空間 24を液体 (純水) 30の飽和蒸気圧にする。 閉空間 24の蒸気圧は、 閉空間 24の外側の蒸気圧よりも高くなる。 通常、 閉 空間 24の外側、 すなわち露光装置 EXを収容するチャンバ装置内の湿度は 30 〜 40 %であるが、 閉空間 24には気化抑制ュニット 20の加湿器 28により水 蒸気の供給が続けられているため、 空間 24内部は常に飽和蒸気圧近く (湿度 9 5 %程度) に維持される。 壁部材 22の上端部と蓋部材 23との間に設けられて いる隙間 2 5は非常に僅かであるため、 空間 2 4内を飽和蒸気圧近くに維持する ことが可能となっている。
矢印 X a (図 3参照) で示す走查方向 (一 X方向) に基板 Pを移動させて走査 露光を行う場合には、 供給管 3、 供給ノズル 4 A〜4 C、 回収管 6、 及ぴ回収ノ ズル 5 A、 5 Bを用いて、 液体供給装置 1及び液体回収装置 2により液体 3 0の 供給及び回収が行われる。 一方、 矢印 X bで示す走査方向 (+ X方向) に基板 P を移動させて走査露光を行う場合には、 供給管 1 1、 供給ノズル 8 A〜8 C、 回 収管 1 2、 及び回収ノズル 9 A、 9 Bを用いて、 液体供給装置 1及び液体回収装 置 2により液体 3 0の供給及び回収が行われる。 このように、 液浸ュニット 1 0 は、 液体供給装置 1及び液体回収装置 2を用いて、 基板 Pの移動方向に沿って基 板 Pの移動方向と同一方向へ液体 3 0を流す。 この場合、 例えば液体供給装置 1 から供給ノズル 4 A〜4 Cを介して供給される液体 3 0は基板 Pの一X方向への 移動に伴つて投影光学系 P Lと基板 Pとの間に引き込まれるようにして流れるの で、 液体供給装置 1の供給エネルギーが小さくでも液体 3 0を投影光学系 P Lと 基板 Pとの間に容易に供給できる。 そして、 走査方向に応じて液体 3 0を流す方 向を切り替えることにより + X方向あるいは一 X方向のどちらの方向に基板 Pを 走査する場合にも、 投影光学系 P Lと基板 Pとの間を液体 3 0で満たすことがで き、 高い解像度及び広い焦点深度を得ることができる。 また、 壁部材 2 2の上端 部と蓋部材 2 3との間に微小隙間 2 5が設けられているので、 閉空間 2 4内を飽 和蒸気圧近くに維持しつつ、 基板ステージ P S Tを移動することもできる。 以上説明したように、 液浸領域 A R 2を形成する液体 3 0及び基板 Pの周囲に 隔壁部材 2 1により閉空間 2 4を形成し、 この閉空間 2 4内に水蒸気を供給する ようにしたので、 液体 3 0、 あるいは投影光学系 P Lの先端部や基板 Pに付着し た液体 3 0の気化を抑制することができ、 液体 3 0、 投影光学系 P L、 及び基板 Pを所望の温度に維持することができる。特に、基板 P上の液体を回収しながら、 基板 P上の一部に液浸領域を形成する場合に、 基板 P上に回収しきれなかった残 留液体が付着していても、 その残留液体の気化を防止でき、 基板 Pの温度変化や 変形 (伸縮) を抑制できる。 また投影光学系 P Lの光学素子 P L aの側面に液体 が付着しても、 その付着した液体の気化を防止することができるので、 光学素子 P L aの温度変化や変形を抑えることができる。
本実施形態においては、 基板ステージ P. S Tに取り付けられている移動鏡 5 5 は、 閉空間 2 4の外側に設けられているため、 移動鏡 5 5を用いた干渉計 5 6に よる基板ステージ P S Tの位置計測が、 閉空間 2 4内の環境の影響を受けること がない。 また、 閉空間 2 4を加湿するために、 液体 (純水) 3 0と同じ純水の水 蒸気を閉空間 2 4に供給しているので、投影光学系 P Lと基板 Pとの間の液体 (純 水) 3 0の純度を低下させたり、 透過率などの特 14を変化させることもない。 本実施形態では、 閉空間 2 4に供給される蒸気は液浸領域 A R 2を形成する液 体 3 0と同じ物質であるが、 投影光学系 P Lと基板 Pとの間の液体 3 0の純度の 低下がある程度許容される場合には、 液体供給装置 1から供給される液浸領域 A R 2形成用の液体 3 0と閉空間 2 4内に供給される蒸気とは同じ物質でなくても よい。
本実施形態においては、 閉空間 2 4内をほぼ飽和蒸気圧 (湿度 9 5 %程度) に しているが、 それよりも低い例えば 6 0 %程度でもよレ、。 すなわち、 閉空間 2 4 の蒸気相の圧力を飽和蒸気圧より低い所定の蒸気圧にしてもよい。 ここで、 所定 の蒸気圧は、 液体 3 0の気化に起因する投影光学系 P Lの先端部や基板 P、 ある いは液体 3 0の温度変動により生じるパターン転写精度変動を、 許容範囲内に納 めることができる圧力である。 したがって、 気化抑制ユニット 2 0は、 液浸領域 A R 2を形成するための液体 3 0の周囲を前記所定の蒸気圧より高くすることに より、 パターン転写精度を許容範囲内に納めることができる。
本実施形態の液体 3 0は水 (純水) であるが、 水以外の液体であってもよい。 例えば、 露光光 E Lの光源が F 2レーザである場合、 この F 2レーザ光は水を透過 しないので、 液体 3 0としては F 2レーザ光を透過可能な例えばフッ素系オイル 等のフッ素系の液体 (例えば、 フォンブリン、 P F P E ) であってもよい。 その 場合、 基板 Pの周囲 (閉空間 2 4 ) にはフッ素系の液体の蒸気が供給される。 フ ッ素系の液体を液浸露光用に使用した場合、 その液体と同じものを気化させてそ の蒸気を閉空間 2 4内に供給すればよい。また、液体 3 0としては、その他にも、 露光光 E Lに対する透過性があってできるだけ屈折率が高く、 投影光学系 P Lや 基板 P表面に塗布されているフォトレジストに対して安定なもの (例えばセダー 油) を用いることも可能である。
いずれの場合にも、 基板 Pの周囲 (閉空間 2 4 ) には、 その液体と同じ物質の 蒸気、 あるいはその液体を気化させることによって生じる蒸気と同じ組成をもつ 蒸気を供給すればよい。 . 上記各実施形態において、上述したノズルの形状は特に限定されるものでなく、 例えば投影光学系 P Lの投影領域 A R 1の長辺について 2対のノズルで液体 3 0 の供給又は回収を行うようにしてもよい。 この場合には、 + X方向または一 X方 向のどちらの方向からも液体 3 0の供給及ぴ回収を行うことができるようにする ため、 供給ノズルと回収ノズルと上下に並べて配置してもよい。
また、 図 4に示すように、 投影光学系 P Lの投影領域 A R 1を挟んで Y軸方向 両側のそれぞれに供給ノズル 4 1、 4 2及び回収ノズル 4 3、 4 4を設けること もできる。 この供給ノズル及ぴ回収ノズルにより、 ステッピング移動する際の基 板 Pの非走查方向 (Y軸方向) への移動時においても、 投影光学系 P Lと基板 P との間に液体 3 0を安定して供給することができる。 また、 投影光学系 P Lの投 影領域 A R 1を取り囲むように液体 3 0の供給ノズル及び回収ノズルを設けてお けば、 基板 Pを Y軸方向にステッピング移動させる際など、 基板 Pの移動方向に 応じて、 液体 3 0の流れる方向を切り替えることも可能である。
次に、 本発明の露光装置 E Xの第 2実施形態について図 5を参照しながら説明 する。 以下の説明において、 上述した第 1実施形態と同一又は同等の構成部分に は同一の符号を付し、 その説明を簡略もしくは省略する。
図 5において、 気化抑制ュ-ット 2 0は、 ベース 5 4上に取り付けられた隔壁 部材 6 0を有している。 すなわち、 上記第 1実施形態に係る隔壁部材 2 1は壁部 材 2 2及び蓋部材 2 3により構成され、 隙間 2 5が形成されているが、 本実施形 態に係る隔壁部材 6 0には隙間が無く、 この隔壁部材 6 0により形成される閉空 間 6 1は略密閉空間である。 この場合、 基板ステージ P S Tは閉空間 6 1内をべ ース 5 4上で移動することになる。 閉空間 6 1を略密閉空間とすることにより、 この閉空間 6 1内を液体 3 0の飽和蒸気圧近くに維持することが容易となるばか りでなく、 閉空間 6 1の外側への影響を無くすことができる。 ここで、 基板ステ ージ P S Tの位置計測に用いる干渉計の計測光は閉空間 6 1内を通過する場合が あるが、 閉空間 6 1内の蒸気により計測動作に影響を与えないように、 計測光の 光路を伸縮自在の管状部材で覆うことができる。
上記第 1、 第 2実施形態では、 液浸領域 A R 2を形成するための液体 3 0及び 基板 Pの周囲を閉空間にし、 この閉空間内に蒸気を供給する構成であるが、 閉空 間を形成すること無しに、単に、液体 3 0の周囲(投影光学系 P Lの先端部付近、 基板 Pの表面付近) に蒸気を吹き付けることにより、 液浸領域 A R 2を形成する ための液体 3 0の気化を抑制するようにしてもよい。 この場合、 上述同様、 その 蒸気によって干渉計の計測に影響を与えないように干渉計の光路 (光束) を管状 部材で覆うようにしてもよい。
また、 上述の第 1、 第 2実施形態において、 閉空間 2 4、 6 1内に湿度センサ を配置し、 その湿度センサの出力に基づいて加湿器 2 8を制御するようにしても よい。
また基板 Pの露光終了後、 閉空間 2 4, 6 1内の蒸気圧を、 閉空間 2 4, 6 1 の外側の空間の蒸気圧とほぼ同じにしてから、 基板 Pを閉空間 2 4 , 6 1から搬 出するようにしてもよい。
上記第 1、 第 2実施形態においては、 閉空間 2 4、 6 1内に蒸気を供給する加 湿器 2 8を設けているがこれを省いても構わない。 すなわち、 閉空間 2 4、 6 1 を形成するのみでも、 基板 Pや投影光学系 P Lの先端付近に接触 (付着) する液 体を、 装置を収容するチャンバ内の乾燥した空気、 あるいはチャンバ内の気流と の接触から守ることができるため、 液体の気化を抑制することができる。
また、 上記第 1、 第 2実施形態においては、 閉空間 2 4、 6 1を形成して、 液 体の気化を抑制するようにしているが、 隔壁部材 2 1、 6 0を設けずに、 投影光 学系 P Lの先端付近や基板 P表面に向けて、 高蒸気圧 (高湿度) の蒸気を吹き付 けるようにしてもよい。
また、 第 1、 第 2実施形態のような大きな閉空間 2 4 , 6 1に限らず、 液体と 接触 (付着) する部分を囲むように局所的な閉空間を設けるようにしてもよい。 上述したように、 本実施形態における液体 3 0は純水により構成されている。 純水は、 半導体製造工場等で容易に大量に入手できるとともに、 基板 P上のフォ トレジストゃ光学素子 (レンズ) 等に対する悪影響がない利点がある。 また、 純 水は環境に対する悪影響がないとともに、 不純物の含有量が極めて低いため、 基 板 Pの表面、 及び投影光学系 P Lの先端面に設けられている光学素子の表面を洗 浄する作用も期待できる。 そして、 波長が 1 9 3 n m程度の露光光 E Lに対する 純水 (水) の屈折率 nはほぼ 1 . 4 4であるため、 露光光 E Lの光源として A r Fエキシマレーザ光 (波長 1 9 3 n m) を用いた場合、 基板 P上では 1 n、 す なわち約 1 3 4 n mに短波長化されて高い解像度が得られる。 更に、 焦点深度は 空気中に比べて約 n倍、 すなわち約 1 . 4 4倍に拡大されるため、 空気中で使用 する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 P Lの開 口数をより増加させることができ、 この点でも解像度が向上する。
上記各実施形態では、 投影光学系 P Lの先端に光学素子 P L aとしてレンズが 取り付けられており、 このレンズにより投影光学系 P Lの光学特性、 例えば収差
(球面収差、 コマ収差等) の調整を行うことができる。 光学素子 P L aとしては 前記光学特性を調整する光学プレートであってもよい。 一方、 液体 3 0と接触す る光学素子 P L aを、 レンズより安価な平行平面板とすることも可能である。 光 学素子 P L aを平行平面板とすることにより、 露光装置 E Xの運搬、 組立、 調整 時等において投影光学系 P Lの透過率、 基板 P上での露光光 E Lの照度、 及び照 度分布の均一性を低下させる物質 (例えばシリコン系有機物等) がその平行平面 板に付着しても、 液体を供給する直前にその平行平面板を交換するだけでよく、 液体と接触する光学素子をレンズとする場合に比べてその交換コストが低くなる という利点がある。 すなわち、 露光光 E Lの照射によりレジストから発生する飛 散粒子、 または液体中の不純物の付着などに起因して液体に接触する光学素子の 表面が汚れるため、 その光学素子を定期的に交換する必要があるが、 この光学素 子を安価な平行平面板とすることにより、 レンズに比べて交換部品のコストが低 く、 且つ交換に要する時間を短くすることができ、 メンテナンスコスト (ラン- ングコスト) の上昇やスループットの低下を抑えることができる。
液体の流れによって生じる投影光学系 P Lの先端の光学素子 P L aと基板 Pと の間の圧力が大きい場合には、 その光学素子を交換可能とするのではなく、 その 圧力によつて光学素子が動かないように堅固に固定してもよい。
上記各実施形態では、 投影光学系 P Lと基板 P表面との間は液体で満たされて 、る構成であるが、 例えば基板 Pの表面に平行平面板からなる力バーガラスを取 り付けた状態で液体を満たす構成であってもよい。
上記各実施形態の基板 Pとしては、 半導体デバイス製造用の半導体ウェハのみ ならず、 ディスプレイデバイス用のガラス基板や、 薄膜磁気ヘッド用のセラミツ クウェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石 英、 シリコンウェハ) 等が適用される。
露光装置 E Xとしては、 マスク Mと基板 Pとを同期移動してマスク Mのパター ンを走查露光するステップ 'アンド ' スキャン方式の走查型露光装置 (スキヤ二 ングステツパ) の他に、 マスク Mと基板 Pとを静止した状態でマスク Mのパター ンを.一括露光し、 基板 Pを順次ステップ移動させるステップ ·アンド ' リピート 方式の投影露光装置 (ステツパ) にも適用することができる。 また、 本発明は基 板 P上で少なくとも 2つのパターンを部分的に重ねて転写するステップ . アン ド ·スティツチ方式の露光装置にも適用できる。
上述の実施形態においては、 投影光学系 P Lと基板 Pとの間を局所的に液体で 満たす露光装置を採用しているが、 特開平 6— 1 2 4 8 7 3号公報に開示されて いるような露光対象の基板を保持したステージを液槽の中で移動させる液浸露光 装置や、 特開平 1 0— 3 0 3 1 1 4号公報に開示されているようなステージ上に 所定深さの液体槽を形成し、 その中に基板を保持する液浸露光装置にも本発明を 適用可能である。
また、 本発明は、 特開平 1 0— 1 6 3 0 9 9号公報、 特開平 1 0— 2 1 4 7 8 3号公報、 特表 2 0 0 0— 5 0 5 9 5 8号公報などに開示されているツインステ ージ型の露光装置にも適用できる。
露光装置 E Xの種類としては、 基板 Pに半導体素子パタ一ンを露光する半導体 素子製造用の露光装置に限られず、 液晶表示素子製造用又はディスプレイ製造用 の露光装置や、 薄膜磁気ヘッド、 撮像素子 (C C D) あるいはレチクル又はマス クなどを製造するための露光装置などにも広く適用できる。
基板ステージ P S Tやマスクステージ M S Tにリニアモータ (USP5,623,853 または USP5,528,118参照) を用いる場合は、 エアベアリングを用いたエア浮上 型およびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用い てもよい。 また、 各ステージ PST、 MSTは、 ガイドに沿って移動するタイプ でもよく、 ガイドを設けないガイドレスタイプであってもよい。
各ステージ PST、 MSTの駆動機構としては、 二次元に磁石を配置した磁石 ユニットと、 二次元にコイルを配置した電機子ュニットとを対向させ電磁力によ り各ステージ PST、 MSTを駆動する平面モータを用いてもよい。 この場合、 磁石ュニットと電機子ュニットとのいずれか一方をステージ P S T、 MS Τに接 続し、 磁石ユニットと電機子ユニッ トとの他方をステージ P ST、 MSTの移動 面側に設ければよレ、。
基板ステージ P STの移動により発生する反力は、 投影光学系 PLに伝わらな いように、特開平 8— 1 66475号公報(USP5,528,118) に記載されているよ うに、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。
マスクステージ MS Tの移動により発生する反力は、 投影光学系 PLに伝わら ないように、 特開平 8— 330224号公報 (米国特許 5, 528, 1 1 8) に 記載されているように、 フレーム部材を用いて機械的に床 (大地) に逃がしても よい。
以上のように、 本願実施形態の露光装置 EXは、 本願特許請求の範囲に挙げら れた各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光 学的精度を保つように、 組み立てることで製造される。 これら各種精度を確保す るために、 この組み立ての前後には、 各種光学系については光学的精度を達成す るための調整、 各種機械系については機械的精度を達成するための調整、 各種電 気系については電気的精度を達成するための調整が行われる。 各種サブシステム から露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気 回路の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから 露光装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があるこ とはいうまでもない。 各種サブシステムの露光装置への組み立て工程が終了した ら、 総合調整が行われ、 露光装置全体としての各種精度が確保される。 露光装置 の製造は温度おょぴクリーン度等が管理されたクリーンルームで行うことが望ま しい。
半導体デバイス等のマイクロデパイスは、 図 6に示すように、 マイクロデバイ スの機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたマスク (レチクル) を製作するステップ 2 0 2、 デバイスの基材である基板を製造する ステップ 2 0 3、 前述した実施形態の露光装置 E Xによりマスクのパターンを基 板に露光する露光処理ステップ 2 0 4、 デバイス組み立てステップ (ダイシング 工程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6 等を経て製造される。 産業上の利用の可能性
本発明によれば、 気化した液体による投影光学系や基板、 あるいは液浸露光用 の液体の温度変動を抑えることができるので、 温度変動に起因する投影光学系の 投影像の劣化や基板変形を抑えることができ、 精度良い露光処理を行うことがで きる。

Claims

請求の範囲
1 . 投影光学系と基板との間の少なくとも一部を液体で満たし、 前記投影光学系 と前記液体とを介してパターンの像を前記基板上に投影し、 前記基板を露光する 露光装置であって、 前記液体の気化を抑制する気化抑制装置を備える。
2 . 請求項 1記載の露光装置であって、 前記気化抑制装置は、 前記液体の周囲を 所定の蒸気圧よりも高くする。
3 .請求項 1記載の露光装置であって、前記気化抑制装置は、前記液体の周囲を、 その液体の飽和蒸気圧にする。
4 . 請求項 1記載の露光装置であって、 前記気化抑制装置は、 前記液体の周囲に 蒸気を供給する供給装置を有する。
5 . 請求項 4記載の露光装置であって、 前記供給装置は、 前記液体と同じ物質の 蒸気、 または前記液体が気化したときに生じる蒸気と同じ組成を有する蒸気を供 給する。
6 . 請求項 1記載の露光装置であって、 前記気化抑制装置は、 前記基板を含み、 前記液体の周囲の空間を取り囲む隔壁部材を有する。
7 . 請求項 6記載の露光装置であって、 前記気化抑制装置は、 前記隔壁部材の内 側の空間内の蒸気圧を、 その外側より高くする。
8 . 請求項 1記載の露光装置であって、 前記基板上の一部に液浸領域を形成する ために、 前記基板上に液体を供給する液体供給機構を更に備える。
9 . 投影光学系と基板との間の少なくとも一部を液体で満たし、 前記投影光学系 と前記液体とを介してパターンの像を前記基板上に投影し、 前記基板を露光する 露光装置であって、
液体との接触部分を取り囲む閉空間を形成する部材と、
その閉空間内部の蒸気圧が、 その閉空間外部の蒸気圧よりも高くする蒸気圧調 整装置とを備える。
1 0 . 請求項 1〜請求項 9のいずれか一項記載の露光装置を用いるデバイス製造 方法。
PCT/JP2004/003928 2003-03-25 2004-03-23 露光装置及びデバイス製造方法 WO2004086470A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020127009949A KR101345474B1 (ko) 2003-03-25 2004-03-23 노광 장치 및 디바이스 제조 방법
JP2005504056A JP4353179B2 (ja) 2003-03-25 2004-03-23 露光装置、露光方法、及びデバイス製造方法
EP04722659.2A EP1610361B1 (en) 2003-03-25 2004-03-23 Exposure system and device production method
KR1020117015987A KR101181688B1 (ko) 2003-03-25 2004-03-23 노광 장치 및 디바이스 제조 방법
US11/230,572 US7471371B2 (en) 2003-03-25 2005-09-21 Exposure apparatus and device fabrication method
US11/498,183 US7916272B2 (en) 2003-03-25 2006-08-03 Exposure apparatus and device fabrication method
US11/648,694 US8558987B2 (en) 2003-03-25 2007-01-03 Exposure apparatus and device fabrication method
US11/808,406 US8018570B2 (en) 2003-03-25 2007-06-08 Exposure apparatus and device fabrication method
US14/041,174 US8804095B2 (en) 2003-03-25 2013-09-30 Exposure apparatus and device fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003083329 2003-03-25
JP2003-83329 2003-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/230,572 Continuation US7471371B2 (en) 2003-03-25 2005-09-21 Exposure apparatus and device fabrication method

Publications (1)

Publication Number Publication Date
WO2004086470A1 true WO2004086470A1 (ja) 2004-10-07

Family

ID=33094951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003928 WO2004086470A1 (ja) 2003-03-25 2004-03-23 露光装置及びデバイス製造方法

Country Status (5)

Country Link
US (5) US7471371B2 (ja)
EP (1) EP1610361B1 (ja)
JP (5) JP4353179B2 (ja)
KR (3) KR20050110033A (ja)
WO (1) WO2004086470A1 (ja)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054468A (ja) * 2004-08-13 2006-02-23 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
WO2006093340A1 (en) * 2005-03-02 2006-09-08 Canon Kabushiki Kaisha Exposure apparatus
JP2006332100A (ja) * 2005-05-23 2006-12-07 Canon Inc 液浸露光装置
WO2006133800A1 (en) * 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
JP2007005714A (ja) * 2005-06-27 2007-01-11 Toshiba Corp 液浸露光方法及び液浸露光装置
WO2007046523A1 (en) * 2005-10-18 2007-04-26 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
JP2007173718A (ja) * 2005-12-26 2007-07-05 Nikon Corp 露光装置及びデバイス製造方法
JP2007180271A (ja) * 2005-12-28 2007-07-12 Nikon Corp 結像光学系、結像光学系の製造方法、結像光学系の調整方法、露光装置及びデバイスの製造方法
JP2007519238A (ja) * 2004-01-20 2007-07-12 カール・ツアイス・エスエムテイ・アーゲー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
WO2007083686A1 (ja) * 2006-01-18 2007-07-26 Canon Kabushiki Kaisha 露光装置
JP2007194613A (ja) * 2005-12-28 2007-08-02 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法および制御システム
JP2008010864A (ja) * 2006-06-22 2008-01-17 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2009164622A (ja) * 2004-12-07 2009-07-23 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2010010707A (ja) * 2005-06-21 2010-01-14 Asml Netherlands Bv リソグラフィ装置
US7679717B2 (en) * 2005-12-28 2010-03-16 Canon Kabushiki Kaisha Exposure apparatus
US7701551B2 (en) * 2006-04-14 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7742147B2 (en) 2005-10-11 2010-06-22 Canon Kabushiki Kaisha Exposure apparatus
US7771918B2 (en) 2004-06-09 2010-08-10 Panasonic Corporation Semiconductor manufacturing apparatus and pattern formation method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
JP2011066412A (ja) * 2009-09-21 2011-03-31 Asml Netherlands Bv リソグラフィ装置、カバープレート、およびデバイス製造方法
US7929111B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8089610B2 (en) 2003-04-10 2012-01-03 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US8111373B2 (en) 2004-03-25 2012-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
JP2012524983A (ja) * 2009-04-24 2012-10-18 株式会社ニコン 液浸部材
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8860922B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
JP2015212827A (ja) * 2005-03-23 2015-11-26 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7372541B2 (en) * 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2004086470A1 (ja) * 2003-03-25 2004-10-07 Nikon Corporation 露光装置及びデバイス製造方法
WO2005015315A2 (de) * 2003-07-24 2005-02-17 Carl Zeiss Smt Ag Mikrolithographische projektionsbelichtungsanlage sowie verfahren zum einbringen einer immersionsflüssigkeit in einem immersionsraum
ITMI20031914A1 (it) * 2003-10-03 2005-04-04 Solvay Solexis Spa Perfluoropolieteri.
JP2005150533A (ja) * 2003-11-18 2005-06-09 Canon Inc 露光装置
US7898642B2 (en) * 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060001851A1 (en) * 2004-07-01 2006-01-05 Grant Robert B Immersion photolithography system
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7649611B2 (en) * 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4889331B2 (ja) * 2006-03-22 2012-03-07 大日本スクリーン製造株式会社 基板処理装置および基板処理方法
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE102006021797A1 (de) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optische Abbildungseinrichtung mit thermischer Dämpfung
JP2008147577A (ja) * 2006-12-13 2008-06-26 Canon Inc 露光装置及びデバイス製造方法
US7866637B2 (en) 2007-01-26 2011-01-11 Asml Netherlands B.V. Humidifying apparatus, lithographic apparatus and humidifying method
US8514365B2 (en) * 2007-06-01 2013-08-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL2003392A (en) 2008-09-17 2010-03-18 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
EP2172766A1 (en) * 2008-10-03 2010-04-07 ASML Netherlands B.V. Lithographic apparatus and humidity measurement system
WO2010103822A1 (ja) 2009-03-10 2010-09-16 株式会社ニコン 露光装置、露光方法、及びデバイス製造方法
NL2004497A (en) 2009-05-01 2010-11-02 Asml Netherlands Bv Lithographic apparatus and a method of operating the apparatus.
US8761860B2 (en) 2009-10-14 2014-06-24 Nocimed, Llc MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs
US8825131B2 (en) 2009-10-14 2014-09-02 Nocimed, Llc MR spectroscopy system and method for diagnosing painful and non-painful intervertebral discs
US9280718B2 (en) 2010-11-24 2016-03-08 Nocimed, Llc Systems and methods for automated voxelation of regions of interest for magnetic resonance spectroscopy
US8965094B2 (en) 2012-04-14 2015-02-24 Nocimed, Llc Magnetic resonance spectroscopy pulse sequence, acquisition, and processing system and method
JP6537194B2 (ja) * 2014-07-04 2019-07-03 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及びリソグラフィ装置を用いてデバイスを製造する方法
CN104374982A (zh) * 2014-07-25 2015-02-25 中国计量科学研究院 一种非接触式直流电流测量电路及方法
CN104655919B (zh) * 2015-01-14 2017-08-25 中国计量科学研究院 一种单磁芯准数字式直流大电流传感器
JP6399037B2 (ja) 2016-05-18 2018-10-03 横河電機株式会社 対物レンズユニット及び液浸顕微鏡
AU2017282665B2 (en) 2016-06-19 2022-05-19 Aclarion, Inc. Magnetic resonance spectroscopy system and method for diagnosing pain or infection associated with propionic acid
JP6525296B2 (ja) * 2018-07-04 2019-06-05 横河電機株式会社 対物レンズユニット

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152129A (en) * 1981-03-13 1982-09-20 Sanyo Electric Co Ltd Developing method of resist
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS6265326A (ja) * 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPH0629204A (ja) * 1992-07-08 1994-02-04 Fujitsu Ltd レジスト現像方法及び装置
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH10255319A (ja) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH10340846A (ja) * 1997-06-10 1998-12-22 Nikon Corp 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000058436A (ja) * 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
DD160756A3 (de) * 1981-04-24 1984-02-29 Gudrun Dietz Anordnung zur verbesserung fotochemischer umsetzungsprozesse in fotoresistschichten
JPS58202448A (ja) 1982-05-21 1983-11-25 Hitachi Ltd 露光装置
JPS5919912A (ja) 1982-07-26 1984-02-01 Hitachi Ltd 液浸距離保持装置
DD221563A1 (de) 1983-09-14 1985-04-24 Mikroelektronik Zt Forsch Tech Immersionsobjektiv fuer die schrittweise projektionsabbildung einer maskenstruktur
DD224448A1 (de) 1984-03-01 1985-07-03 Zeiss Jena Veb Carl Einrichtung zur fotolithografischen strukturuebertragung
JPS63157419A (ja) 1986-12-22 1988-06-30 Toshiba Corp 微細パタ−ン転写装置
JPH04305915A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH04305917A (ja) 1991-04-02 1992-10-28 Nikon Corp 密着型露光装置
JPH0562877A (ja) 1991-09-02 1993-03-12 Yasuko Shinohara 光によるlsi製造縮小投影露光装置の光学系
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
JP3500619B2 (ja) * 1993-10-28 2004-02-23 株式会社ニコン 投影露光装置
US5528118A (en) * 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) * 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5623853A (en) * 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316125A (ja) 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
WO1998028665A1 (en) 1996-12-24 1998-07-02 Koninklijke Philips Electronics N.V. Two-dimensionally balanced positioning device with two object holders, and lithographic device provided with such a positioning device
JP2000306807A (ja) * 1999-04-20 2000-11-02 Nikon Corp 露光装置、露光方法、及び半導体デバイスの製造方法
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
US7187503B2 (en) * 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
KR100866818B1 (ko) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 투영광학계 및 이 투영광학계를 구비한 노광장치
US20020163629A1 (en) * 2001-05-07 2002-11-07 Michael Switkes Methods and apparatus employing an index matching medium
DE10210899A1 (de) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refraktives Projektionsobjektiv für Immersions-Lithographie
US7092069B2 (en) * 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10229818A1 (de) * 2002-06-28 2004-01-15 Carl Zeiss Smt Ag Verfahren zur Fokusdetektion und Abbildungssystem mit Fokusdetektionssystem
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US6988326B2 (en) * 2002-09-30 2006-01-24 Lam Research Corporation Phobic barrier meniscus separation and containment
US7093375B2 (en) * 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
US7367345B1 (en) 2002-09-30 2008-05-06 Lam Research Corporation Apparatus and method for providing a confined liquid for immersion lithography
US6954993B1 (en) * 2002-09-30 2005-10-18 Lam Research Corporation Concentric proximity processing head
US6788477B2 (en) * 2002-10-22 2004-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for method for immersion lithography
US7110081B2 (en) * 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121819A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP3977324B2 (ja) * 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
DE60335595D1 (de) * 2002-11-12 2011-02-17 Asml Netherlands Bv Lithographischer Apparat mit Immersion und Verfahren zur Herstellung einer Vorrichtung
SG121822A1 (en) * 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10253679A1 (de) * 2002-11-18 2004-06-03 Infineon Technologies Ag Optische Einrichtung zur Verwendung bei einem Lithographie-Verfahren, insbesondere zur Herstellung eines Halbleiter-Bauelements, sowie optisches Lithographieverfahren
SG131766A1 (en) * 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258718A1 (de) * 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projektionsobjektiv, insbesondere für die Mikrolithographie, sowie Verfahren zur Abstimmung eines Projektionsobjektives
US6992750B2 (en) * 2002-12-10 2006-01-31 Canon Kabushiki Kaisha Exposure apparatus and method
CN101872135B (zh) * 2002-12-10 2013-07-31 株式会社尼康 曝光设备和器件制造法
WO2004055803A1 (en) 2002-12-13 2004-07-01 Koninklijke Philips Electronics N.V. Liquid removal in a method and device for irradiating spots on a layer
DE60314668T2 (de) 2002-12-19 2008-03-06 Koninklijke Philips Electronics N.V. Verfahren und anordnung zum bestrahlen einer schicht mittels eines lichtpunkts
US7010958B2 (en) * 2002-12-19 2006-03-14 Asml Holding N.V. High-resolution gas gauge proximity sensor
AU2003283717A1 (en) 2002-12-19 2004-07-14 Koninklijke Philips Electronics N.V. Method and device for irradiating spots on a layer
US6781670B2 (en) * 2002-12-30 2004-08-24 Intel Corporation Immersion lithography
US7090964B2 (en) * 2003-02-21 2006-08-15 Asml Holding N.V. Lithographic printing with polarized light
US7206059B2 (en) * 2003-02-27 2007-04-17 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US6943941B2 (en) * 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
US7029832B2 (en) 2003-03-11 2006-04-18 Samsung Electronics Co., Ltd. Immersion lithography methods using carbon dioxide
US20050164522A1 (en) 2003-03-24 2005-07-28 Kunz Roderick R. Optical fluids, and systems and methods of making and using the same
WO2004086470A1 (ja) * 2003-03-25 2004-10-07 Nikon Corporation 露光装置及びデバイス製造方法
KR20110104084A (ko) 2003-04-09 2011-09-21 가부시키가이샤 니콘 액침 리소그래피 유체 제어 시스템
CN103383527B (zh) 2003-04-10 2015-10-28 株式会社尼康 包括用于沉浸光刻装置的真空清除的环境系统
EP2921905B1 (en) 2003-04-10 2017-12-27 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
WO2004090633A2 (en) 2003-04-10 2004-10-21 Nikon Corporation An electro-osmotic element for an immersion lithography apparatus
EP3062152B1 (en) 2003-04-10 2017-12-20 Nikon Corporation Environmental system including vaccum scavenge for an immersion lithography apparatus
WO2004093130A2 (en) 2003-04-11 2004-10-28 Nikon Corporation Cleanup method for optics in immersion lithography
KR101533206B1 (ko) 2003-04-11 2015-07-01 가부시키가이샤 니콘 액침 리소그래피 머신에서 웨이퍼 교환동안 투영 렌즈 아래의 갭에서 액침 액체를 유지하는 장치 및 방법
JP4582089B2 (ja) 2003-04-11 2010-11-17 株式会社ニコン 液浸リソグラフィ用の液体噴射回収システム
SG152078A1 (en) 2003-04-17 2009-05-29 Nikon Corp Optical arrangement of autofocus elements for use with immersion lithography
JP4146755B2 (ja) * 2003-05-09 2008-09-10 松下電器産業株式会社 パターン形成方法
JP4025683B2 (ja) * 2003-05-09 2007-12-26 松下電器産業株式会社 パターン形成方法及び露光装置
DE10324477A1 (de) * 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Mikrolithographische Projektionsbelichtungsanlage
JP4084710B2 (ja) * 2003-06-12 2008-04-30 松下電器産業株式会社 パターン形成方法
JP4054285B2 (ja) * 2003-06-12 2008-02-27 松下電器産業株式会社 パターン形成方法
US6867844B2 (en) * 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
JP4029064B2 (ja) * 2003-06-23 2008-01-09 松下電器産業株式会社 パターン形成方法
JP4084712B2 (ja) * 2003-06-23 2008-04-30 松下電器産業株式会社 パターン形成方法
US6809794B1 (en) * 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
WO2005006026A2 (en) 2003-07-01 2005-01-20 Nikon Corporation Using isotopically specified fluids as optical elements
US7384149B2 (en) 2003-07-21 2008-06-10 Asml Netherlands B.V. Lithographic projection apparatus, gas purging method and device manufacturing method and purge gas supply system
US7006209B2 (en) 2003-07-25 2006-02-28 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) * 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US7061578B2 (en) * 2003-08-11 2006-06-13 Advanced Micro Devices, Inc. Method and apparatus for monitoring and controlling imaging in immersion lithography systems
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
US7070915B2 (en) 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
US6954256B2 (en) * 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7014966B2 (en) 2003-09-02 2006-03-21 Advanced Micro Devices, Inc. Method and apparatus for elimination of bubbles in immersion medium in immersion lithography systems
EP3223053A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
US6961186B2 (en) * 2003-09-26 2005-11-01 Takumi Technology Corp. Contact printing using a magnified mask image
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
US7678527B2 (en) * 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
EP1685446A2 (en) 2003-11-05 2006-08-02 DSM IP Assets B.V. A method and apparatus for producing microchips
US7924397B2 (en) * 2003-11-06 2011-04-12 Taiwan Semiconductor Manufacturing Company, Ltd. Anti-corrosion layer on objective lens for liquid immersion lithography applications
US7545481B2 (en) * 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1695148B1 (en) 2003-11-24 2015-10-28 Carl Zeiss SMT GmbH Immersion objective
US7125652B2 (en) * 2003-12-03 2006-10-24 Advanced Micro Devices, Inc. Immersion lithographic process using a conforming immersion medium
JP5106858B2 (ja) 2003-12-15 2012-12-26 カール・ツァイス・エスエムティー・ゲーエムベーハー 高開口数と平面状端面とを有する投影対物レンズ
KR100965330B1 (ko) 2003-12-15 2010-06-22 칼 짜이스 에스엠티 아게 적어도 한 개의 액체 렌즈를 가진 마이크로리소그래피 투사대물렌즈로서의 대물렌즈
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US20050185269A1 (en) * 2003-12-19 2005-08-25 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
JP5102492B2 (ja) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー 結晶素子を有するマイクロリソグラフィー投影用対物レンズ
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7119884B2 (en) 2003-12-24 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050147920A1 (en) * 2003-12-30 2005-07-07 Chia-Hui Lin Method and system for immersion lithography
US7088422B2 (en) * 2003-12-31 2006-08-08 International Business Machines Corporation Moving lens for immersion optical lithography
JP4371822B2 (ja) * 2004-01-06 2009-11-25 キヤノン株式会社 露光装置
JP4429023B2 (ja) * 2004-01-07 2010-03-10 キヤノン株式会社 露光装置及びデバイス製造方法
US20050153424A1 (en) * 2004-01-08 2005-07-14 Derek Coon Fluid barrier with transparent areas for immersion lithography
KR101288187B1 (ko) 2004-01-14 2013-07-19 칼 짜이스 에스엠티 게엠베하 반사굴절식 투영 대물렌즈
JP4958562B2 (ja) 2004-01-16 2012-06-20 カール・ツァイス・エスエムティー・ゲーエムベーハー 偏光変調光学素子
WO2005069078A1 (en) 2004-01-19 2005-07-28 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus with immersion projection lens
WO2005071491A2 (en) * 2004-01-20 2005-08-04 Carl Zeiss Smt Ag Exposure apparatus and measuring device for a projection lens
US7026259B2 (en) * 2004-01-21 2006-04-11 International Business Machines Corporation Liquid-filled balloons for immersion lithography
US7391501B2 (en) * 2004-01-22 2008-06-24 Intel Corporation Immersion liquids with siloxane polymer for immersion lithography
KR20070039869A (ko) * 2004-02-03 2007-04-13 브루스 더블유. 스미스 용액을 사용한 포토리소그래피 방법 및 관련 시스템
WO2005076084A1 (en) 2004-02-09 2005-08-18 Carl Zeiss Smt Ag Projection objective for a microlithographic projection exposure apparatus
US7050146B2 (en) * 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1714192A1 (en) 2004-02-13 2006-10-25 Carl Zeiss SMT AG Projection objective for a microlithographic projection exposure apparatus
JP2007523383A (ja) 2004-02-18 2007-08-16 コーニング インコーポレイテッド 深紫外光による大開口数結像のための反射屈折結像光学系
US20050205108A1 (en) * 2004-03-16 2005-09-22 Taiwan Semiconductor Manufacturing Co., Ltd. Method and system for immersion lithography lens cleaning
JP2006004964A (ja) * 2004-06-15 2006-01-05 Nec Electronics Corp 露光装置および露光方法
US20060001851A1 (en) 2004-07-01 2006-01-05 Grant Robert B Immersion photolithography system
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) * 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152129A (en) * 1981-03-13 1982-09-20 Sanyo Electric Co Ltd Developing method of resist
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPS6265326A (ja) * 1985-09-18 1987-03-24 Hitachi Ltd 露光装置
JPH0629204A (ja) * 1992-07-08 1994-02-04 Fujitsu Ltd レジスト現像方法及び装置
JPH06124873A (ja) * 1992-10-09 1994-05-06 Canon Inc 液浸式投影露光装置
JPH07220990A (ja) * 1994-01-28 1995-08-18 Hitachi Ltd パターン形成方法及びその露光装置
JPH10255319A (ja) * 1997-03-12 1998-09-25 Hitachi Maxell Ltd 原盤露光装置及び方法
JPH10303114A (ja) * 1997-04-23 1998-11-13 Nikon Corp 液浸型露光装置
JPH10340846A (ja) * 1997-06-10 1998-12-22 Nikon Corp 露光装置及びその製造方法並びに露光方法及びデバイス製造方法
JPH11176727A (ja) * 1997-12-11 1999-07-02 Nikon Corp 投影露光装置
WO1999049504A1 (fr) * 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000058436A (ja) * 1998-08-11 2000-02-25 Nikon Corp 投影露光装置及び露光方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1610361A4 *

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US10620545B2 (en) 2002-11-12 2020-04-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10222706B2 (en) 2002-11-12 2019-03-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9091940B2 (en) 2002-11-12 2015-07-28 Asml Netherlands B.V. Lithographic apparatus and method involving a fluid inlet and a fluid outlet
US8797503B2 (en) 2002-11-12 2014-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with a liquid inlet above an aperture of a liquid confinement structure
US8208120B2 (en) 2002-11-12 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8810768B2 (en) 2003-04-10 2014-08-19 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US7969552B2 (en) 2003-04-10 2011-06-28 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8830443B2 (en) 2003-04-10 2014-09-09 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8089610B2 (en) 2003-04-10 2012-01-03 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US8836914B2 (en) 2003-04-10 2014-09-16 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9977350B2 (en) 2003-04-10 2018-05-22 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9244362B2 (en) 2003-04-10 2016-01-26 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9910370B2 (en) 2003-04-10 2018-03-06 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7929111B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US8456610B2 (en) 2003-04-10 2013-06-04 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9244363B2 (en) 2003-04-10 2016-01-26 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7929110B2 (en) 2003-04-10 2011-04-19 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9658537B2 (en) 2003-04-10 2017-05-23 Nikon Corporation Environmental system including vacuum scavenge for an immersion lithography apparatus
US9632427B2 (en) 2003-04-10 2017-04-25 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US7965376B2 (en) 2003-04-10 2011-06-21 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
US9709899B2 (en) 2003-06-19 2017-07-18 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US9715178B2 (en) 2003-06-19 2017-07-25 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
US8004649B2 (en) 2003-06-19 2011-08-23 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
USRE42741E1 (en) 2003-06-27 2011-09-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7898643B2 (en) 2003-06-27 2011-03-01 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9182679B2 (en) 2003-10-28 2015-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US8860922B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9952515B2 (en) 2003-11-14 2018-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10345712B2 (en) 2003-11-14 2019-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
JP2011166165A (ja) * 2004-01-20 2011-08-25 Carl Zeiss Smt Gmbh マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
JP4843503B2 (ja) * 2004-01-20 2011-12-21 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
JP2015135524A (ja) * 2004-01-20 2015-07-27 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
US10345710B2 (en) * 2004-01-20 2019-07-09 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and measuring device for a projection lens
JP2007519238A (ja) * 2004-01-20 2007-07-12 カール・ツアイス・エスエムテイ・アーゲー マイクロリソグラフィ投影露光装置および投影レンズのための測定装置
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8111373B2 (en) 2004-03-25 2012-02-07 Nikon Corporation Exposure apparatus and device fabrication method
US8169590B2 (en) 2004-03-25 2012-05-01 Nikon Corporation Exposure apparatus and device fabrication method
US8411248B2 (en) 2004-03-25 2013-04-02 Nikon Corporation Exposure apparatus and device fabrication method
US9411248B2 (en) 2004-03-25 2016-08-09 Nikon Corporation Exposure apparatus and device fabrication method
US9046790B2 (en) 2004-03-25 2015-06-02 Nikon Corporation Exposure apparatus and device fabrication method
US10126661B2 (en) 2004-03-25 2018-11-13 Nikon Corporation Exposure apparatus and device fabrication method
US7771918B2 (en) 2004-06-09 2010-08-10 Panasonic Corporation Semiconductor manufacturing apparatus and pattern formation method
JP2009105443A (ja) * 2004-08-13 2009-05-14 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US7804575B2 (en) 2004-08-13 2010-09-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having liquid evaporation control
US10254663B2 (en) 2004-08-13 2019-04-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US11378893B2 (en) 2004-08-13 2022-07-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
US9188880B2 (en) 2004-08-13 2015-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
JP2012064982A (ja) * 2004-08-13 2012-03-29 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2006054468A (ja) * 2004-08-13 2006-02-23 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US10838310B2 (en) 2004-08-13 2020-11-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater
JP2014027308A (ja) * 2004-08-13 2014-02-06 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US9268242B2 (en) 2004-08-13 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a heater and a temperature sensor
US20120008115A1 (en) * 2004-12-07 2012-01-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009164622A (ja) * 2004-12-07 2009-07-23 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2012094892A (ja) * 2004-12-07 2012-05-17 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
WO2006093340A1 (en) * 2005-03-02 2006-09-08 Canon Kabushiki Kaisha Exposure apparatus
KR100866453B1 (ko) * 2005-03-02 2008-10-31 캐논 가부시끼가이샤 노광장치
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015212827A (ja) * 2005-03-23 2015-11-26 株式会社ニコン 露光装置及び露光方法、並びにデバイス製造方法
US8203693B2 (en) 2005-04-19 2012-06-19 Asml Netherlands B.V. Liquid immersion lithography system comprising a tilted showerhead relative to a substrate
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2006332100A (ja) * 2005-05-23 2006-12-07 Canon Inc 液浸露光装置
JP4708860B2 (ja) * 2005-05-23 2011-06-22 キヤノン株式会社 液浸露光装置
US8054557B2 (en) 2005-06-14 2011-11-08 Carl Zeiss Smt Gmbh Lithography projection objective, and a method for correcting image defects of the same
WO2006133800A1 (en) * 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US9964859B2 (en) 2005-06-14 2018-05-08 Carl Zeiss Smt Gmbh Lithography projection objective, and a method for correcting image defects of the same
US9316922B2 (en) 2005-06-14 2016-04-19 Carl Zeiss Smt Gmbh Lithography projection objective, and a method for correcting image defects of the same
US8879159B2 (en) 2005-06-14 2014-11-04 Carl Zeiss Smt Gmbh Lithography projection objective, and a method for correcting image defects of the same
US7692868B2 (en) 2005-06-14 2010-04-06 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US7463423B2 (en) 2005-06-14 2008-12-09 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
JP2012124539A (ja) * 2005-06-21 2012-06-28 Asml Netherlands Bv リソグラフィ装置
JP2010010707A (ja) * 2005-06-21 2010-01-14 Asml Netherlands Bv リソグラフィ装置
US9268236B2 (en) 2005-06-21 2016-02-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method having heat pipe with fluid to cool substrate and/or substrate holder
US7652747B2 (en) * 2005-06-27 2010-01-26 Kabushiki Kaisha Toshiba Immersion exposure method and immersion exposure apparatus which transfer image of pattern formed on mask onto substrate through immersion medium
JP2007005714A (ja) * 2005-06-27 2007-01-11 Toshiba Corp 液浸露光方法及び液浸露光装置
US7742147B2 (en) 2005-10-11 2010-06-22 Canon Kabushiki Kaisha Exposure apparatus
WO2007046523A1 (en) * 2005-10-18 2007-04-26 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US7907251B2 (en) 2005-10-18 2011-03-15 Canon Kabushiki Kaisha Exposure apparatus and device manufacturing method
US8456611B2 (en) 2005-11-29 2013-06-04 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
JP4715505B2 (ja) * 2005-12-26 2011-07-06 株式会社ニコン 露光装置及びデバイス製造方法
JP2007173718A (ja) * 2005-12-26 2007-07-05 Nikon Corp 露光装置及びデバイス製造方法
JP4514747B2 (ja) * 2005-12-28 2010-07-28 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、デバイス製造方法および制御システム
JP2007180271A (ja) * 2005-12-28 2007-07-12 Nikon Corp 結像光学系、結像光学系の製造方法、結像光学系の調整方法、露光装置及びデバイスの製造方法
US8564760B2 (en) 2005-12-28 2013-10-22 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
JP2010183114A (ja) * 2005-12-28 2010-08-19 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法および制御システム
US7679717B2 (en) * 2005-12-28 2010-03-16 Canon Kabushiki Kaisha Exposure apparatus
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
JP2010183101A (ja) * 2005-12-28 2010-08-19 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法および制御システム
JP2007194613A (ja) * 2005-12-28 2007-08-02 Asml Netherlands Bv リソグラフィ装置、デバイス製造方法および制御システム
WO2007083686A1 (ja) * 2006-01-18 2007-07-26 Canon Kabushiki Kaisha 露光装置
US8363205B2 (en) 2006-01-18 2013-01-29 Canon Kabishiki Kaisha Exposure apparatus
US7701551B2 (en) * 2006-04-14 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634059B2 (en) 2006-04-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008010864A (ja) * 2006-06-22 2008-01-17 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2011029657A (ja) * 2006-06-22 2011-02-10 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP4643616B2 (ja) * 2006-06-22 2011-03-02 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
JP2011029656A (ja) * 2006-06-22 2011-02-10 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US7656502B2 (en) * 2006-06-22 2010-02-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2011029658A (ja) * 2006-06-22 2011-02-10 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member
JP2012524983A (ja) * 2009-04-24 2012-10-18 株式会社ニコン 液浸部材
US8553206B2 (en) 2009-09-21 2013-10-08 Asml Netherlands B.V. Lithographic apparatus, coverplate and device manufacturing method
JP2011066412A (ja) * 2009-09-21 2011-03-31 Asml Netherlands Bv リソグラフィ装置、カバープレート、およびデバイス製造方法
US8705009B2 (en) 2009-09-28 2014-04-22 Asml Netherlands B.V. Heat pipe, lithographic apparatus and device manufacturing method
US9846372B2 (en) 2010-04-22 2017-12-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10620544B2 (en) 2010-04-22 2020-04-14 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US10209624B2 (en) 2010-04-22 2019-02-19 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
US20060268249A1 (en) 2006-11-30
US8018570B2 (en) 2011-09-13
US20060012765A1 (en) 2006-01-19
US20080030697A1 (en) 2008-02-07
KR101345474B1 (ko) 2013-12-27
JP4353179B2 (ja) 2009-10-28
JP2012080148A (ja) 2012-04-19
KR20050110033A (ko) 2005-11-22
JP2009158977A (ja) 2009-07-16
JP4858569B2 (ja) 2012-01-18
US7916272B2 (en) 2011-03-29
KR101181688B1 (ko) 2012-09-19
JPWO2004086470A1 (ja) 2006-06-29
EP1610361A1 (en) 2005-12-28
JP2014030061A (ja) 2014-02-13
EP1610361B1 (en) 2014-05-21
US8804095B2 (en) 2014-08-12
JP5626230B2 (ja) 2014-11-19
US8558987B2 (en) 2013-10-15
JP5333416B2 (ja) 2013-11-06
JP5725133B2 (ja) 2015-05-27
US7471371B2 (en) 2008-12-30
JP2011044736A (ja) 2011-03-03
EP1610361A4 (en) 2007-10-03
US20140028987A1 (en) 2014-01-30
US20070109516A1 (en) 2007-05-17
KR20120049407A (ko) 2012-05-16
KR20110097945A (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5725133B2 (ja) 露光装置及びデバイス製造方法
JP5787008B2 (ja) 露光装置、露光方法、並びにデバイス製造方法
TWI617896B (zh) 流路形成構件、曝光裝置、曝光方法及元件製造方法
US20180348642A1 (en) Exposure apparatus and device fabrication method
JP5545270B2 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2004193252A (ja) 露光方法及びデバイス製造方法
JP2004207711A (ja) 露光装置及び露光方法、デバイス製造方法
JPWO2004102646A1 (ja) 露光装置及びデバイス製造方法
WO2005081291A1 (ja) 露光装置及びデバイスの製造方法
JP2005072132A (ja) 露光装置及びデバイス製造方法
JP2005005507A (ja) 露光装置及びデバイス製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005504056

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004722659

Country of ref document: EP

Ref document number: 11230572

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057017763

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057017763

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004722659

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11230572

Country of ref document: US