WO2004087805A1 - Polyolefin masterbatch and composition suitable for injection molding - Google Patents

Polyolefin masterbatch and composition suitable for injection molding Download PDF

Info

Publication number
WO2004087805A1
WO2004087805A1 PCT/EP2004/003304 EP2004003304W WO2004087805A1 WO 2004087805 A1 WO2004087805 A1 WO 2004087805A1 EP 2004003304 W EP2004003304 W EP 2004003304W WO 2004087805 A1 WO2004087805 A1 WO 2004087805A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
composition
ethylene
weight
masterbatch composition
Prior art date
Application number
PCT/EP2004/003304
Other languages
French (fr)
Inventor
Anteo Pelliconi
Enea Garagnani
Gerald J. Ennis
Original Assignee
Basell Poliolefine Italia S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basell Poliolefine Italia S.R.L. filed Critical Basell Poliolefine Italia S.R.L.
Priority to JP2006500077A priority Critical patent/JP4990614B2/en
Priority to EP04723995A priority patent/EP1608701B1/en
Priority to BRPI0409514-6A priority patent/BRPI0409514A/en
Priority to CA002520270A priority patent/CA2520270A1/en
Priority to US10/551,679 priority patent/US8008400B2/en
Priority to PL04723995T priority patent/PL1608701T3/en
Priority to MXPA05010631A priority patent/MXPA05010631A/en
Priority to AU2004226244A priority patent/AU2004226244B2/en
Priority to DE602004004884T priority patent/DE602004004884T2/en
Priority to KR1020057018655A priority patent/KR101085374B1/en
Publication of WO2004087805A1 publication Critical patent/WO2004087805A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/02Heterophasic composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst

Definitions

  • the present invention relates to a polyolefin masterbatch which can be used to prepare polyolef ⁇ n compositions suitable for injection molding into relatively large articles. More particularly, the polyolef ⁇ n compositions can be injection molded into large objects which exhibit improved surface properties, particularly with respect to reduction of tiger striping and gels.
  • Polypropylene and thermoplastic polyolef ⁇ ns have enjoyed wide commercial acceptance because of their outstanding cost/performance characteristics.
  • these polymers are used in molded-in color applications because of their good weatherability.
  • Polypropylene and thermoplastic polyolef ⁇ ns are generally injection molded into desired articles.
  • Relatively large parts such as automobile bumpers and fascia, offer particularly challenging problems such as cold flow, tiger striping and gels.
  • Cold flow occurs when the molten polymer being injected into a mold begins to cool and solidify before the mold is completely filled with the polymer.
  • Teiger striping refers to color and gloss variations on the surface of an injection molded article, which occur because of unstable mold filling properties of the molten polymer as it is being injected into the mold and formed into the desired shape.
  • Gels refers to small dots appearing at the surface of the final shaped article, due to relatively poor dispersion of one or more polymeric components. Such gels, together with tiger stripes, have the effect of worsening the surface appearance of the final shaped article.
  • An advantage of using a masterbatch composition is that it can be added to many and different kinds of polylefins to achieve a final polyolefin composition ready for production, by injection molding, of large articles such as automobile bumpers.
  • masterbatch compositions able to produce, by blending with various polyolef ⁇ n materials, final compositions exhibiting a good balance of physical and surface properties.
  • a particularly good balance of melt flowability, mechanical properties and surface properties is achieved by adding to a polyolefin matrix a masterbatch composition comprising (percent by weight):
  • fractions A 1 and A 11 are independently selected from the group consisting of a propylene homopolymer, a random copolymer of propylene containing up to 8% of ethylene, and a random copolymer of propylene containing up to 8% of at least one C -C 10 ⁇ -olefin; and
  • a masterbatch composition comprising (percent by weight):
  • A) 50%-90%, preferably 55-80%, of a crystalline polypropylene component comprising: A 1 ) from 25% to 75%, preferably from 30% to 70%, of a fraction having a melt flow rate MFR 1 of from 0.1 to 10 g/10 min., preferably from 0.1 to 5 g/10 min., more preferably from 0.1 to 3 g/10 min.; and A 11 ) from 25% to 75%, preferably from 30% to 70%, of a fraction having a melt flow rate value MFR 11 equal to or lower than 100 g/10 min., in particular from 5 to 100 g/10 min., preferably from 10 to 100 g/10 min., more preferably from 10 to 68 g/10 min.; wherein the ratio MFRVMFR 11 (i.e.
  • the value of the ratio of the MFR value of (A 1 ) to the MFR value of (A 11 )) is from 5 to 60, preferably from 10 to 55, and the fractions (A 1 ) and (A 11 ) are independently selected from the group consisting of a propylene homopolymer, a random copolymer of propylene containing up to 3% of ethylene, and a random copolymer of propylene containing up to 6% of at least one C 4 -C 10 ⁇ -olefin; and B) 10%-50%, preferably 20-45%, of a copolymer component of ethylene and at least one C 3 -C 10 ⁇ -olefin, the copolymer containing from 15% to 50%, preferably from 20% to 48%, more preferably from 25% to 38% of ethylene, and optionally minor amounts of a diene; said masterbatch composition having a value of the intrinsic viscosity [ ⁇ ] of the fraction soluble in xylene at room temperature (about 25
  • the MFR values are measured according to ASTM-D 1238, condition L (230 °C, with 2.16 kg load).
  • the melt flow rate of the masterbatch composition can preferably range from 0.1 to 10 g/10 min., more preferably from 0.1 to 5 g/10 min.
  • Illustrative C -C 10 ⁇ -olef ⁇ ns that can be present in (A 1 ) and/or (A 11 ) include 1-butene, 1- pentene, 1-hexene, 4-methyl-l-pentene and 1-octene, with 1-butene being particularly preferred.
  • both (A ) and (A 11 ) are propylene homopolymers.
  • propylene is preferred.
  • the masterbatch composition of the present invention can be prepared by a sequential polymerization, comprising at least three sequential steps, wherein components (A) and (B) are prepared in separate subsequent steps, operating in each step, except the first step, in the presence of the polymer formed and the catalyst used in the preceding step. The catalyst is added only in the first step, however its activity is such that it is still active for all the subsequent steps.
  • component (A) requires two sequential steps, one for preparing the fraction (A 1 ) and the other for preparing the fraction (A 11 ).
  • component (A) is prepared before component (B).
  • the polymerization which can be continuous or batch, is carried out following known techniques and operating in liquid phase, in the presence or not of inert diluent, or in gas phase, or by mixed liquid-gas techniques. It is preferable to carry out the polymerization in gas phase.
  • Reaction time, pressure and temperature relative to the polymerization steps are not critical, however it is best if the temperature is from 50 to 100 °C.
  • the pressure can be atmospheric or higher.
  • the regulation of the molecular weight is carried out by using known regulators, hydrogen in particular.
  • the masterbatch compositions of the present invention can also be produced by a gas- phase polymerisation process carried out in at least two interconnected polymerisation zones.
  • the said type of process is illustrated in European patent application 782 587.
  • the above-mentioned process comprises feeding one or more monomer(s) to said polymerisation zones in the presence of catalyst under reaction conditions and collecting the polymer product from the said polymerisation zones.
  • the growing polymer particles flow upward through one (first) of the said polymerisation zones (riser) under fast fluidisation conditions, leave the said riser and enter another (second) polymerisation zone (downcomer) through which they flow downward in a densif ⁇ ed form under the action of gravity, leave the said downcomer and are reintroduced into the riser, thus establishing a circulation of polymer between the riser and the downcomer.
  • the condition of fast fluidization in the riser is established by feeding a gas mixture comprising the relevant monomers to the said riser. It is preferable that the feeding of the gas mixture is effected below the point of reintroduction of the polymer into the said riser by the use, where appropriate, of gas distributor means.
  • the velocity of transport gas into the riser is higher than the transport velocity under the operating conditions, preferably from 2 to 15 m/s.
  • the polymer and the gaseous mixture leaving the riser are conveyed to a solid/gas separation zone.
  • the solid/gas separation can be effected by using conventional separation means.
  • the polymer enters the downcomer.
  • the gaseous mixture leaving the separation zone is compressed, cooled and transferred, if appropriate with the addition of make-up monomers and/or molecular weight regulators, to the riser.
  • the transfer can be effected by means of a recycle line for the gaseous mixture.
  • control of the polymer circulating between the two polymerisation zones can be effected by metering the amount of polymer leaving the downcomer using means suitable for controlling the flow of solids, such as mechanical valves.
  • the operating parameters are those that are usual in gas-phase olefin polymerisation process, for example between 50 to 120 °C.
  • This process can be carried out under operating pressures of between 0.5 and 10 MPa, preferably between 1.5 to 6 MPa.
  • one or more inert gases are maintained in the polymerisation zones, in such quantities that the sum of the partial pressure of the inert gases is preferably between 5 and 80% of the total pressure of the gases.
  • the inert gas can be nitrogen or propane, for example.
  • the various catalysts are fed up to the riser at any point of the said riser. However, they can also be fed at any point of the downcomer.
  • the catalyst can be in any physical state, therefore catalysts in either solid or liquid state can be used.
  • the said polymerizations are preferably carried out in the presence of stereospecific Ziegler-Natta catalysts.
  • An essential component of said catalysts is a solid catalyst component comprising a titanium compound having at least one titanium-halogen bond, and an electron-donor compound, both supported on a magnesium halide in active form.
  • Another essential component (co-catalyst) is an organoaluminum compound, such as an aluminum alkyl compound.
  • the catalysts generally used in the process of the invention are capable of producing polypropylene with an isotactic index greater than 90%, preferably greater than 95%. Catalysts having the above mentioned characteristics are well known in the patent literature; particularly advantageous are the catalysts described in US patent 4,399,054 and European patent 45977.
  • the , solid catalyst components used in said catalysts comprise, as electron-donors (internal donors), compounds selected from the group consisting of ethers, ketones, lactones, compounds containing N, P and/or S atoms, and esters of mono- and dicarboxylic acids.
  • Particularly suitable electron-donor compounds are phthalic acid esters, such as diisobutyl, dioctyl, diphenyl and benzylbutyl phthalate.
  • R ⁇ ⁇ ⁇ ⁇ CH 2 OR IV wherein R 1 and R ⁇ are the same or different and are Cj . -C 18 alkyl, C 3 -C 18 cycloalkyl or C - C 18 aryl radicals; R m and R IV are the same or different and are C 1 -C 4 alkyl radicals; or are the 1,3-diethers in which the carbon atom in position 2 belongs to a cyclic or poly cyclic structure made up of 5, 6 or 7 carbon atoms and containing two or three unsaturations.
  • dieters are 2-methyl-2-isopropyl-l,3-dimethoxypropane, 2,2-diisobutyl- 1 ,3 -dimethoxypropane, 2-isopropyl-2-cyclopentyl- 1 ,3 -dimethoxypropane, 2- isopropyl-2-isoamyl-l,3-dimethoxypropane, 9,9-bis (methoxymethyl) fluorene.
  • a MgCl 2 -nROH adduct (in particular in the form of spheroidal particles) wherein n is generally from 1 to 3 and ROH is ethanol, butanol or isobutanol, is reacted with an excess of TiCl 4 containing the electron-donor compound.
  • the reaction temperature is generally from 80 to 120° C.
  • the solid is then isolated and reacted once more with TiCl 4 , in the presence or absence of the electron-donor compound, after which it is separated and washed with aliquots of a hydrocarbon until all chlorine ions have disappeared.
  • the titanium compound, expressed as Ti is generally present in an amount from 0.5 to 10% by weight.
  • the quantity of electron-donor compound which remains fixed on the solid catalyst component generally is 5 to 20% by moles with respect to the magnesium dihalide.
  • titanium compounds which can be used for the preparation of the solid catalyst component are the halides and the halogen alcoholates of titanium. Titanium tetrachloride is the preferred compound.
  • the Al-alkyl compounds used as co-catalysts comprise the Al-trialkyls, such as Al- triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO 4 or SO 3 groups.
  • Al-trialkyls such as Al- triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO 4 or SO 3 groups.
  • the Al-alkyl compound is generally used in such a quantity that the Al/Ti ratio be from 1 to 1000.
  • the electron-donor compounds that can be used as external donors include aromatic acid esters such as alkyl benzoates, and in particular silicon compounds containing at least one Si-OR bond, where R is a hydrocarbon radical.
  • silicon compounds are (tert-butyl) 2 Si(OCH 3 ) 2 , (cyclohexyl)(methyl)Si (OCH3) 2 , (phenyl) 2 Si(OCH 3 ) 2 and (cyclopentyl) 2 Si(OCH 3 ) 2 .
  • 1,3-diethers having the formulae described above can also be used advantageously. If the internal donor is one of these dieters, the external donors can be omitted.
  • Another class of suitable catalysts are the so-called constrained geometry catalysts, as described in EP-A-0 416 815 (Dow), EP-A-0 420 436 (Exxon), EP-A-0 671 404, EP-A-0 643 066 and WO 91/04257. These metallocene compounds may be used in particular to produce the component (B).
  • the catalysts can be pre-contacted with small amounts of olefins (prepolymerization).
  • the masterbatch composition of the present invention can also contain additives commonly employed in the art, such as antioxidants, light stabilizers, heat stabilizers, colorants and fillers.
  • the masterbatch composition of the present invention can be advantageously compounded with additional polyolefins, in particular propylene polymers such as propylene homopolymers, random copolymers, and thermoplastic elastomeric polyolefin compositions.
  • a second embodiment of the invention relates to a thermoplastic polyolefin composition suitable for injection molding, containing the above- defined masterbatch compositions.
  • the said thermoplastic polyolef ⁇ n composition comprises up to 30% by weight, typically from 5% to 20% by weight, of the masterbatch composition according to the present invention.
  • polystyrene resins i.e. the polyolefins other than those present in the masterbatch.
  • elastomeric copolymers of ethylene with propylene and/or a C 4 -C 10 ⁇ -olef ⁇ ns optionally containing minor quantities of a diene, such as butadiene, 1,4-hexadiene, 1,5-hexadiene and ethylidene-1-norbornene, wherein the diene content is typically from 1 to 10% by weight;
  • thermoplastic elastomeric composition comprising one or more of propylene homopolymers and/or the copolymers of item 2) and an elastomeric moiety comprising one or more of the copolymers of item 4), typically prepared according to known methods by mixing the components in the molten state or by sequential polymerization, and generally containing the said elastomeric moiety in quantities from 5 to 80% by weight.
  • the polyolefin composition may be manufactured by mixing the masterbatch composition and the additional polyolef ⁇ n(s) together, extruding the mixture, and pelletizing the resulting composition using known techniques and apparatus.
  • the polyolefin composition may also contain conventional additives such as mineral fillers, colorants and stabilizers.
  • Mineral fillers that can be included in the composition include talc, CaCO 3 , silica, such as woUastonite (CaSiO 3 ), clays, diatomaceaous earth, titanium oxide and zeolites.
  • the mineral filler is in particle form having an average diameter ranging form 0.1 to 5 micrometers.
  • the present invention also provides final articles, such as bumpers and fascia, made of the said polyolefin composition.
  • This property is strictly connected with the molecular weight distribution of the polymer under examination. In particular it is inversely proportional to the creep resistance of the polymer in the molten state. Said resistance called modulus separation at low modulus value (500 Pa), was determined at a temperature of 200 °C by using a parallel plates rheometer model RMS-800 marketed by RHEOMETRICS (USA), operating at an oscillation frequency which increases from 0.1 rad/sec to 100 rad/sec. From the modulus separation value, one can derive the P.I. by way of the equation:
  • the percent by weight of polymer insoluble in xylene at room temperature is considered the isotacticity index of the polymer. This value corresponds substantially to the isotacticity index determined by extraction with boiling n-heptane, which by definition constitutes the isotacticity index of polypropylene.
  • Cast films 100 ⁇ m thick are prepared from the compositions of the examples using the filming apparatus Plasticisers MKII.
  • the extruder has a screw whose diameter and length are respectively 19 and 400 mm.
  • the die has a width of 80 mm and a die gap of 0.2 mm.
  • the temperatures of the extruder and the die are of 270°C.
  • compositions are classified as "good” when the average diameter of the gels found in the film samples is smaller thanl.5 mm, "bad” when gels having average diameter equal to or greater than the said value are detected.
  • HECO heterophasic copolymer prepared with Ziegler-Natta catalyst and consisting of
  • EPR ethylene/propylene rubber prepared with Ziegler-Natta catalyst and containing
  • HOMO 1 propylene homopolymer prepared with Ziegler-Natta catalyst, having MFR L of 2000 g/10 min.;
  • HOMO 2 propylene homopolymer prepared with Ziegler-Natta catalyst, having MFR L of 400 g/10 min.;
  • EPDM ethylene/propylene/diene rubber prepared with V-based catalyst and containing
  • Neotalc Natural natural talc.
  • the plaques used for the Tiger Stripes evaluation (with a length of 250 mm, a width of 150 mm and a thickness of 3 mm) are moulded in an injection press machine Negri Bossi (225 tons of clamping force), under the following conditions:
  • the evaluation is carried out by measuring the distance between the injection point and the first tiger stripe. Obviously, the longer such distance, the better is the tested material in terms of ability to reduce the tiger stripes.
  • the solid catalyst component used in polymerization is a highly stereospecif ⁇ c Ziegler- Natta catalyst component supported on magnesium chloride, containing about 2.5% by weight of titanium and diisobutylphthalate as internal donor, prepared by analogy with the method described in the examples of European published patent application 674991.
  • the solid catalyst component described above is contacted at -5 °C for 5 minutes with aluminum triethyl (TEAL) and dicyclopentyldimethoxysilane (DCPMS), in a TEAL/DCPMS weight ratio equal to about 15 and in such quantity that the TEAL/Ti molar ratio be equal to 65.
  • TEAL aluminum triethyl
  • DCPMS dicyclopentyldimethoxysilane
  • the catalyst system is then subjected to prepolymerization by maintaining it in suspension in liquid propylene at 20 °C for about 20 minutes before introducing it into the first polymerization reactor.
  • a polypropylene homopolymer (fraction (A 11 )) is produced by feeding in a continuous and constant flow the prepolymerized catalyst system, hydrogen (used as molecular weight regulator) and propylene in the gas state.
  • the polypropylene homopolymer produced in the first reactor is discharged in a continuous flow and, after having been purged of unreacted monomers, is introduced, in a continuous flow, into a second gas phase reactor, together with quantitatively constant flows of hydrogen and propylene in the gas state.
  • a propylene homopolymer (fraction (A 1 )) is produced.
  • Polymerization conditions, molar ratio of the reactants and composition of the copolymers obtained are shown in Table 1.
  • the polymer coming from the second reactor is discharged in a continuous flow and, after having been purged of unreacted monomers, is introduced, in a continuous flow, into a third gas phase reactor, together with quantitatively constant flows of hydrogen and ethylene in the gas state.
  • the polymer particles exiting the third reactor are subjected to a steam treatment to remove the reactive monomers and volatile substances, and then dried.
  • the polymer particles are introduced in a rotating drum, where they are mixed with 0.05% by weight of paraffin oil ROL/OB 30 (having a density of 0.842 kg/1 at 20 °C according to ASTM D 1298 and flowing point of -10 °C according to ASTM D 97), 0.15% by weight of Irganox® B 215 (made of about 34% Irganox® 1010 and 66% Irgafos® 168) and 0.05% by weight of calcium stearate.
  • paraffin oil ROL/OB 30 having a density of 0.842 kg/1 at 20 °C according to ASTM D 1298 and flowing point of -10 °C according to ASTM D 97
  • Irganox® B 215 made of about 34% Irganox® 1010 and 66% Irgafos® 168
  • calcium stearate calcium stearate
  • the said Irganox 1010 is 2,2-bis[3-[,5-bis(l,l-dimethylethyl)-4-hydroxyphenyl)-l- oxopropoxy]methyl]-l ,3-propanediyl-3,5-bis(l , 1 -dimethylethyl)-4-hydroxybenzene- propanoate, while Irgafos 168 is tris(2,4-di-tert.-butylphenyl)phosphite.
  • C3- propylene
  • C2- ethylene
  • split amount of polymer produced in the concerned reactor.

Abstract

A masterbatch composition comprising (percent by weight): A) 50%-90% of a crystalline polypropylene component comprising: AI) from 25% to 75% of a fraction having a melt flow rate MFRI of from 0.1 to 10 g/10 min.; and AII) from 75% to 25% of a fraction having a melt flow rate value MFRII equal to or lower than 100 g/10 min.; wherein the ratio MFRI/MFRII is from 5 to 60; and B) 10%-50% of a copolymer component of ethylene and at least one C3-C10 α-olefin, containing from 15% to 50% of ethylene; said masterbatch composition having a value of the intrinsic viscosity [η] of the fraction soluble in xylene at room temperature equal to or higher than 3.5 dl/g, is added to polyolefin materials to obtain final compositions suitable for injection molding.

Description

"POLYOLEFIN MASTERBATCH AND COMPOSITION SUITABLE FOR INJECTION MOLDING"
The present invention relates to a polyolefin masterbatch which can be used to prepare polyolefϊn compositions suitable for injection molding into relatively large articles. More particularly, the polyolefϊn compositions can be injection molded into large objects which exhibit improved surface properties, particularly with respect to reduction of tiger striping and gels.
Polypropylene and thermoplastic polyolefϊns have enjoyed wide commercial acceptance because of their outstanding cost/performance characteristics. For example, these polymers are used in molded-in color applications because of their good weatherability.
Polypropylene and thermoplastic polyolefϊns are generally injection molded into desired articles. Relatively large parts, such as automobile bumpers and fascia, offer particularly challenging problems such as cold flow, tiger striping and gels. "Cold flow" occurs when the molten polymer being injected into a mold begins to cool and solidify before the mold is completely filled with the polymer. "Tiger striping" refers to color and gloss variations on the surface of an injection molded article, which occur because of unstable mold filling properties of the molten polymer as it is being injected into the mold and formed into the desired shape. "Gels" refers to small dots appearing at the surface of the final shaped article, due to relatively poor dispersion of one or more polymeric components. Such gels, together with tiger stripes, have the effect of worsening the surface appearance of the final shaped article.
An advantage of using a masterbatch composition is that it can be added to many and different kinds of polylefins to achieve a final polyolefin composition ready for production, by injection molding, of large articles such as automobile bumpers. Thus there is a constant need for masterbatch compositions able to produce, by blending with various polyolefϊn materials, final compositions exhibiting a good balance of physical and surface properties.
In US patent No. 5,519,090 it is taught that a good melt folwability and good mechanical properties, in particular high rigidity, can be achieved by blending together two polypropylenes with different values of melt flow index and a propylene/ethylene copolymer.
According to WO 02/28958, a particularly good balance of melt flowability, mechanical properties and surface properties, with particular reference to reduction of tiger stripes, is achieved by adding to a polyolefin matrix a masterbatch composition comprising (percent by weight):
A) 20%-90% of a crystalline polypropylene component containing from 25% to 75% of a fraction A1 having a melt flow rate MFR1 of from 0.5 to 10 g/10 min., and from 75% to 25% of a fraction A11 having a melt flow rate MFRπ such that a ratio MFR'VMFR1 is from 30 to 2000; and wherein fractions A1 and A11 are independently selected from the group consisting of a propylene homopolymer, a random copolymer of propylene containing up to 8% of ethylene, and a random copolymer of propylene containing up to 8% of at least one C -C10 α-olefin; and
B) 10%-80% of a copolymer component of ethylene and at least one C3-C10 α-olefin, the copolymer containing from 10 to 70% of ethylene, and optionally minor amounts of a diene, said copolymer being soluble in xylene at room temperature, and having an intrinsic viscosity [η] of from 4 to 9 dl/g.
It has now been found that by properly selecting the melt flow rate values of the polypropylene components, in combination with other features relating to the composition and the proportions of the various components, it is possible to obtain a masterbatch composition with a particularly valuable set of physical and mechanical properties and particularly suited for preparing final polyolefin compositions having excellent surface appearance, due to reduction of tiger stripes and absence of gels.
Thus the present invention relates to a masterbatch composition, comprising (percent by weight):
A) 50%-90%, preferably 55-80%, of a crystalline polypropylene component comprising: A1) from 25% to 75%, preferably from 30% to 70%, of a fraction having a melt flow rate MFR1 of from 0.1 to 10 g/10 min., preferably from 0.1 to 5 g/10 min., more preferably from 0.1 to 3 g/10 min.; and A11) from 25% to 75%, preferably from 30% to 70%, of a fraction having a melt flow rate value MFR11 equal to or lower than 100 g/10 min., in particular from 5 to 100 g/10 min., preferably from 10 to 100 g/10 min., more preferably from 10 to 68 g/10 min.; wherein the ratio MFRVMFR11 (i.e. the value of the ratio of the MFR value of (A1) to the MFR value of (A11)) is from 5 to 60, preferably from 10 to 55, and the fractions (A1) and (A11) are independently selected from the group consisting of a propylene homopolymer, a random copolymer of propylene containing up to 3% of ethylene, and a random copolymer of propylene containing up to 6% of at least one C4-C10 α-olefin; and B) 10%-50%, preferably 20-45%, of a copolymer component of ethylene and at least one C3-C10 α-olefin, the copolymer containing from 15% to 50%, preferably from 20% to 48%, more preferably from 25% to 38% of ethylene, and optionally minor amounts of a diene; said masterbatch composition having a value of the intrinsic viscosity [η] of the fraction soluble in xylene at room temperature (about 25 °C) equal to or higher than 3.5 dl/g, in particular from 3.5 to 9 dl/g, preferably from 4 to 8 dl/g.
The MFR values are measured according to ASTM-D 1238, condition L (230 °C, with 2.16 kg load).
The melt flow rate of the masterbatch composition can preferably range from 0.1 to 10 g/10 min., more preferably from 0.1 to 5 g/10 min.
Illustrative C -C10 α-olefϊns that can be present in (A1) and/or (A11) include 1-butene, 1- pentene, 1-hexene, 4-methyl-l-pentene and 1-octene, with 1-butene being particularly preferred.
Preferably both (A ) and (A11) are propylene homopolymers.
Among the C3 - C10 α-olefins that are present in the copolymer component (B), propylene is preferred.
Other preferred features for the masterbatch compositions of the present invention are: P.I. (Polydispersity Index) of (A) from 4 to 7;
Mw/Mn values for both (A1) and (A11) higher than 4, more preferably higher than 4.5, in particular higher than 5 (measured by gel permeation chromathography in trichlorobenzene at 135 °C); amount of fraction soluble in xylene at room temperature of the overall composition lower than 35% by weight. The masterbatch composition of the present invention can be prepared by a sequential polymerization, comprising at least three sequential steps, wherein components (A) and (B) are prepared in separate subsequent steps, operating in each step, except the first step, in the presence of the polymer formed and the catalyst used in the preceding step. The catalyst is added only in the first step, however its activity is such that it is still active for all the subsequent steps. In particular, component (A) requires two sequential steps, one for preparing the fraction (A1) and the other for preparing the fraction (A11).
Preferably component (A) is prepared before component (B).
The order in which the fractions (A1) and (A11) are prepared is not critical.
The polymerization, which can be continuous or batch, is carried out following known techniques and operating in liquid phase, in the presence or not of inert diluent, or in gas phase, or by mixed liquid-gas techniques. It is preferable to carry out the polymerization in gas phase.
Reaction time, pressure and temperature relative to the polymerization steps are not critical, however it is best if the temperature is from 50 to 100 °C. The pressure can be atmospheric or higher.
The regulation of the molecular weight is carried out by using known regulators, hydrogen in particular.
The masterbatch compositions of the present invention can also be produced by a gas- phase polymerisation process carried out in at least two interconnected polymerisation zones. The said type of process is illustrated in European patent application 782 587.
In detail, the above-mentioned process comprises feeding one or more monomer(s) to said polymerisation zones in the presence of catalyst under reaction conditions and collecting the polymer product from the said polymerisation zones. In the said process the growing polymer particles flow upward through one (first) of the said polymerisation zones (riser) under fast fluidisation conditions, leave the said riser and enter another (second) polymerisation zone (downcomer) through which they flow downward in a densifϊed form under the action of gravity, leave the said downcomer and are reintroduced into the riser, thus establishing a circulation of polymer between the riser and the downcomer.
In the downcomer high values of density of the solid are reached, which approach the bulk density of the polymer. A positive gain in pressure can thus be obtained along the direction of flow, so that it become to possible to reintroduce the polymer into the riser without the help of special mechanical means. In this way, a "loop" circulation is set up, which is defined by the balance of pressures between the two polymerisation zones and by the head loss introduced into the system.
Generally, the condition of fast fluidization in the riser is established by feeding a gas mixture comprising the relevant monomers to the said riser. It is preferable that the feeding of the gas mixture is effected below the point of reintroduction of the polymer into the said riser by the use, where appropriate, of gas distributor means. The velocity of transport gas into the riser is higher than the transport velocity under the operating conditions, preferably from 2 to 15 m/s.
Generally, the polymer and the gaseous mixture leaving the riser are conveyed to a solid/gas separation zone. The solid/gas separation can be effected by using conventional separation means. From the separation zone, the polymer enters the downcomer. The gaseous mixture leaving the separation zone is compressed, cooled and transferred, if appropriate with the addition of make-up monomers and/or molecular weight regulators, to the riser. The transfer can be effected by means of a recycle line for the gaseous mixture.
The control of the polymer circulating between the two polymerisation zones can be effected by metering the amount of polymer leaving the downcomer using means suitable for controlling the flow of solids, such as mechanical valves.
The operating parameters, such as the temperature, are those that are usual in gas-phase olefin polymerisation process, for example between 50 to 120 °C.
This process can be carried out under operating pressures of between 0.5 and 10 MPa, preferably between 1.5 to 6 MPa.
Advantageously, one or more inert gases are maintained in the polymerisation zones, in such quantities that the sum of the partial pressure of the inert gases is preferably between 5 and 80% of the total pressure of the gases. The inert gas can be nitrogen or propane, for example.
The various catalysts are fed up to the riser at any point of the said riser. However, they can also be fed at any point of the downcomer. The catalyst can be in any physical state, therefore catalysts in either solid or liquid state can be used.
The said polymerizations are preferably carried out in the presence of stereospecific Ziegler-Natta catalysts. An essential component of said catalysts is a solid catalyst component comprising a titanium compound having at least one titanium-halogen bond, and an electron-donor compound, both supported on a magnesium halide in active form. Another essential component (co-catalyst) is an organoaluminum compound, such as an aluminum alkyl compound.
An external donor is optionally added. The catalysts generally used in the process of the invention are capable of producing polypropylene with an isotactic index greater than 90%, preferably greater than 95%. Catalysts having the above mentioned characteristics are well known in the patent literature; particularly advantageous are the catalysts described in US patent 4,399,054 and European patent 45977.
The , solid catalyst components used in said catalysts comprise, as electron-donors (internal donors), compounds selected from the group consisting of ethers, ketones, lactones, compounds containing N, P and/or S atoms, and esters of mono- and dicarboxylic acids.
Particularly suitable electron-donor compounds are phthalic acid esters, such as diisobutyl, dioctyl, diphenyl and benzylbutyl phthalate.
Other electron-donors particularly suitable are 1,3-diethers of formula:
R1 CH2ORm
^ C
Rπ <^ ^CH2ORIV wherein R1 and Rπ are the same or different and are Cj.-C18 alkyl, C3-C18 cycloalkyl or C - C18 aryl radicals; Rm and RIV are the same or different and are C1-C4 alkyl radicals; or are the 1,3-diethers in which the carbon atom in position 2 belongs to a cyclic or poly cyclic structure made up of 5, 6 or 7 carbon atoms and containing two or three unsaturations.
Ethers of this type are described in published European patent applications 361493 and 728769.
Representative examples of said dieters are 2-methyl-2-isopropyl-l,3-dimethoxypropane, 2,2-diisobutyl- 1 ,3 -dimethoxypropane, 2-isopropyl-2-cyclopentyl- 1 ,3 -dimethoxypropane, 2- isopropyl-2-isoamyl-l,3-dimethoxypropane, 9,9-bis (methoxymethyl) fluorene.
The preparation of the above mentioned catalyst components is carried out according to various methods.
For example, a MgCl2-nROH adduct (in particular in the form of spheroidal particles) wherein n is generally from 1 to 3 and ROH is ethanol, butanol or isobutanol, is reacted with an excess of TiCl4 containing the electron-donor compound. The reaction temperature is generally from 80 to 120° C. The solid is then isolated and reacted once more with TiCl4, in the presence or absence of the electron-donor compound, after which it is separated and washed with aliquots of a hydrocarbon until all chlorine ions have disappeared. In the solid catalyst component the titanium compound, expressed as Ti, is generally present in an amount from 0.5 to 10% by weight. The quantity of electron-donor compound which remains fixed on the solid catalyst component generally is 5 to 20% by moles with respect to the magnesium dihalide.
The titanium compounds which can be used for the preparation of the solid catalyst component are the halides and the halogen alcoholates of titanium. Titanium tetrachloride is the preferred compound.
The reactions described above result in the formation of a magnesium halide in active form. Other reactions are known in the literature, which cause the formation of magnesium halide in active form starting from magnesium compounds other than halides, such as magnesium carboxylates.
The Al-alkyl compounds used as co-catalysts comprise the Al-trialkyls, such as Al- triethyl, Al-triisobutyl, Al-tri-n-butyl, and linear or cyclic Al-alkyl compounds containing two or more Al atoms bonded to each other by way of O or N atoms, or SO4 or SO3 groups.
The Al-alkyl compound is generally used in such a quantity that the Al/Ti ratio be from 1 to 1000.
The electron-donor compounds that can be used as external donors include aromatic acid esters such as alkyl benzoates, and in particular silicon compounds containing at least one Si-OR bond, where R is a hydrocarbon radical.
Examples of silicon compounds are (tert-butyl)2Si(OCH3)2, (cyclohexyl)(methyl)Si (OCH3)2, (phenyl)2Si(OCH3)2 and (cyclopentyl)2Si(OCH3)2. 1,3-diethers having the formulae described above can also be used advantageously. If the internal donor is one of these dieters, the external donors can be omitted.
Other catalysts that may be used in the process according to the present invention are metallocene-type catalysts, as described in USP 5,324,800 and EP-A-0 129 368; particularly advantageous are bridged bis-indenyl metallocenes, for instance as described in USP 5,145,819 and EP-A-0 485 823. Another class of suitable catalysts are the so-called constrained geometry catalysts, as described in EP-A-0 416 815 (Dow), EP-A-0 420 436 (Exxon), EP-A-0 671 404, EP-A-0 643 066 and WO 91/04257. These metallocene compounds may be used in particular to produce the component (B).
The catalysts can be pre-contacted with small amounts of olefins (prepolymerization). The masterbatch composition of the present invention can also contain additives commonly employed in the art, such as antioxidants, light stabilizers, heat stabilizers, colorants and fillers.
As previously said, the masterbatch composition of the present invention can be advantageously compounded with additional polyolefins, in particular propylene polymers such as propylene homopolymers, random copolymers, and thermoplastic elastomeric polyolefin compositions. Accordingly, a second embodiment of the invention relates to a thermoplastic polyolefin composition suitable for injection molding, containing the above- defined masterbatch compositions. Preferably, the said thermoplastic polyolefϊn composition comprises up to 30% by weight, typically from 5% to 20% by weight, of the masterbatch composition according to the present invention.
Practical examples of the polyolefϊns to which the masterbatch is added (i.e. the polyolefins other than those present in the masterbatch) are the following polymers:
1) crystalline propylene homopolymers, in particular isotactic or mainly isotactic homopolymers;
2) crystalline propylene copolymers with ethylene and/or a C4-C10 α-olefin, wherein the total comonomer content ranges from 0.05 to 20% by weight with respect to the weight of the copolymer, and wherein preferred α-olefins are 1-butene; 1-hexene; 4-methyl-l- pentene and 1-octene;
3) crystalline ethylene homopolymers and copolymers with propylene and/or a C4-C10 α- olefin, such as HDPE;
4) elastomeric copolymers of ethylene with propylene and/or a C4-C10 α-olefϊns, optionally containing minor quantities of a diene, such as butadiene, 1,4-hexadiene, 1,5-hexadiene and ethylidene-1-norbornene, wherein the diene content is typically from 1 to 10% by weight;
5) a thermoplastic elastomeric composition comprising one or more of propylene homopolymers and/or the copolymers of item 2) and an elastomeric moiety comprising one or more of the copolymers of item 4), typically prepared according to known methods by mixing the components in the molten state or by sequential polymerization, and generally containing the said elastomeric moiety in quantities from 5 to 80% by weight. The polyolefin composition may be manufactured by mixing the masterbatch composition and the additional polyolefϊn(s) together, extruding the mixture, and pelletizing the resulting composition using known techniques and apparatus.
The polyolefin composition may also contain conventional additives such as mineral fillers, colorants and stabilizers. Mineral fillers that can be included in the composition include talc, CaCO3, silica, such as woUastonite (CaSiO3), clays, diatomaceaous earth, titanium oxide and zeolites. Typically the mineral filler is in particle form having an average diameter ranging form 0.1 to 5 micrometers.
The present invention also provides final articles, such as bumpers and fascia, made of the said polyolefin composition.
The practice and advantages of the present invention are disclosed below in the following examples. These Examples are illustrative only, and are not intended to limit the allowable scope of the invention in any manner whatsoever.
The following analytical methods are used to characterize the polymer compositions.
Melt Flow Rate: ASTM-D 1238, condition L. fη] intrinsic viscosity: determined in tetrahydronaphtalene at 135°C.
Ethylene content: I.R. Spectroscopy.
Flexural Modulus: ISO 178
Stregth at yield: ISO 527
Strength at break: ISO 527
Elongation at break and at yield: ISO 527
Notched IZOD impact test: ISO 180/1 A
Polydispersity index (P.I.)
This property is strictly connected with the molecular weight distribution of the polymer under examination. In particular it is inversely proportional to the creep resistance of the polymer in the molten state. Said resistance called modulus separation at low modulus value (500 Pa), was determined at a temperature of 200 °C by using a parallel plates rheometer model RMS-800 marketed by RHEOMETRICS (USA), operating at an oscillation frequency which increases from 0.1 rad/sec to 100 rad/sec. From the modulus separation value, one can derive the P.I. by way of the equation:
P.I.= 54.6* (modulus separation)" in which the modulus separation is defined as: modulus separation = frequency at G -500Pa / frequency at G"=500Pa wherein G' is storage modulus and G" is the loss modulus.
Xylene soluble and isoluble fractions
2.5 g of polymer and 250 cm of xylene are introduced in a glass flask equipped with a refrigerator and a magnetical stirrer. The temperature is raised in 30 minutes up to the boiling point of the solvent. The so obtained clear solution is then kept under reflux and stirring for further 30 minutes. The closed flask is then kept for 30 minutes in a bath of ice and water and in thermostatic water bath at 25 °C for 30 minutes as well. The so formed solid is filtered on quick filtering paper. 100 cm3 of the filtered liquid is poured in a previously weighed aluminum container which is heated on a heating plate under nitrogen flow, to remove the solvent by evaporation. The container is then kept in an oven at 80 °C under vacuum until constant weight is obtained. The weight percentage of polymer soluble in xylene at room temperature is then calculated.
The percent by weight of polymer insoluble in xylene at room temperature is considered the isotacticity index of the polymer. This value corresponds substantially to the isotacticity index determined by extraction with boiling n-heptane, which by definition constitutes the isotacticity index of polypropylene.
Cast film evaluation
Cast films 100 μm thick are prepared from the compositions of the examples using the filming apparatus Plasticisers MKII.
The extruder has a screw whose diameter and length are respectively 19 and 400 mm.
The die has a width of 80 mm and a die gap of 0.2 mm.
The temperatures of the extruder and the die are of 270°C.
The compositions are classified as "good" when the average diameter of the gels found in the film samples is smaller thanl.5 mm, "bad" when gels having average diameter equal to or greater than the said value are detected.
Tiger Stripes in blend
In order to evaluate the tiger stripes, the following blends with the compositions of the examples (as reported in Table 2 hereinafter) are prepared in an internal mixer.
Figure imgf000012_0001
Notes (all percentages by weight):
HECO = heterophasic copolymer prepared with Ziegler-Natta catalyst and consisting of
44% propylene homopolymer with MFR L of 90 g/10 min. and 56% propylene/ethylene bipolymer with 49% of ethylene, having total MFR L of 2.5 g/10 min.;
EPR = ethylene/propylene rubber prepared with Ziegler-Natta catalyst and containing
60% ethylene, having total MFR L ofs 1.5 g/10 min.;
HOMO 1 = propylene homopolymer prepared with Ziegler-Natta catalyst, having MFR L of 2000 g/10 min.;
HOMO 2 = propylene homopolymer prepared with Ziegler-Natta catalyst, having MFR L of 400 g/10 min.;
EPDM = ethylene/propylene/diene rubber prepared with V-based catalyst and containing
66% ethylene and 4.5% ethylidene-norbornene-1, having MFR L of 0.6 g/10 min.;
Neotalc Natural = natural talc.
The plaques used for the Tiger Stripes evaluation (with a length of 250 mm, a width of 150 mm and a thickness of 3 mm) are moulded in an injection press machine Negri Bossi (225 tons of clamping force), under the following conditions:
- screw rotation: 100 rpm
- melt temperature: 215 - 220 °C
- mould temperature: 55 °C - injection time: 11 seconds
- holding pressure: 20-30 bar
- holding time: 5 seconds
- cooling time: 40 seconds.
On the so obtained plaques the evaluation is carried out by measuring the distance between the injection point and the first tiger stripe. Obviously, the longer such distance, the better is the tested material in terms of ability to reduce the tiger stripes.
Examples 1 to 4 and Comparative Example 1
The solid catalyst component used in polymerization is a highly stereospecifϊc Ziegler- Natta catalyst component supported on magnesium chloride, containing about 2.5% by weight of titanium and diisobutylphthalate as internal donor, prepared by analogy with the method described in the examples of European published patent application 674991.
CATALYST SYSTEM AND PREPOLYMERIZATION TREATMENT
Before introducing it into the polymerization reactors, the solid catalyst component described above is contacted at -5 °C for 5 minutes with aluminum triethyl (TEAL) and dicyclopentyldimethoxysilane (DCPMS), in a TEAL/DCPMS weight ratio equal to about 15 and in such quantity that the TEAL/Ti molar ratio be equal to 65.
The catalyst system is then subjected to prepolymerization by maintaining it in suspension in liquid propylene at 20 °C for about 20 minutes before introducing it into the first polymerization reactor.
POLYMERIZATION
Into a first gas phase polymerization reactor a polypropylene homopolymer (fraction (A11)) is produced by feeding in a continuous and constant flow the prepolymerized catalyst system, hydrogen (used as molecular weight regulator) and propylene in the gas state.
Polymerization conditions are shown in Table 1.
The polypropylene homopolymer produced in the first reactor is discharged in a continuous flow and, after having been purged of unreacted monomers, is introduced, in a continuous flow, into a second gas phase reactor, together with quantitatively constant flows of hydrogen and propylene in the gas state.
In the second reactor a propylene homopolymer (fraction (A1)) is produced. Polymerization conditions, molar ratio of the reactants and composition of the copolymers obtained are shown in Table 1. The polymer coming from the second reactor is discharged in a continuous flow and, after having been purged of unreacted monomers, is introduced, in a continuous flow, into a third gas phase reactor, together with quantitatively constant flows of hydrogen and ethylene in the gas state.
In the third reactor a propylene/ethylene copolymer (component (B)) is produced. Polymerization conditions, molar ratio of the reactants and composition of the copolymers obtained are shown in Table 1.
The polymer particles exiting the third reactor are subjected to a steam treatment to remove the reactive monomers and volatile substances, and then dried.
Then the polymer particles are introduced in a rotating drum, where they are mixed with 0.05% by weight of paraffin oil ROL/OB 30 (having a density of 0.842 kg/1 at 20 °C according to ASTM D 1298 and flowing point of -10 °C according to ASTM D 97), 0.15% by weight of Irganox® B 215 (made of about 34% Irganox® 1010 and 66% Irgafos® 168) and 0.05% by weight of calcium stearate.
The said Irganox 1010 is 2,2-bis[3-[,5-bis(l,l-dimethylethyl)-4-hydroxyphenyl)-l- oxopropoxy]methyl]-l ,3-propanediyl-3,5-bis(l , 1 -dimethylethyl)-4-hydroxybenzene- propanoate, while Irgafos 168 is tris(2,4-di-tert.-butylphenyl)phosphite.
Then the polymer particles are introduced in a twin screw extruder Berstorff ZE 25 (length/diameter ratio of screws: 33) and extruded under nitrogen atmosphere in the following conditions:
Rotation speed: 250 rpm;
Extruder output: 6-20 kg/hour;
Melt temperature: 200-250 °C.
The characteristics relating to this polymer composition, reported in Table 2, are obtained from measurements carried out on the so extruded polymer.
Table 1
Figure imgf000015_0001
Notes: C3- = propylene; C2- = ethylene; split = amount of polymer produced in the concerned reactor.
Table2
Figure imgf000016_0001
Notes: X.S.I.V = Intrisic Viscosity of the fraction soluble in xylene; N. B. = No Breakage.

Claims

1. A masterbatch composition, comprising (percent by weight):
A) 50%-90% of a crystalline polypropylene component comprising:
A1) from 25% to 75%> of a fraction having a melt flow rate MFR1 of from 0.1 to
10 g/10 min.;and A11) from 25% to 75% of a fraction having a melt flow rate value MFR11 equal to or lower than 100 g/10 min.; wherein the ratio MFRVMFR11 is from 5 to 60, and the fractions (A1) and (A11) are independently selected from the group consisting of a propylene homopolymer, a random copolymer of propylene containing up to 3% of ethylene, and a random copolymer of propylene containing up to 6% of at least one C4-C10 α-olefin; and
B) 10%-50% of a copolymer component of ethylene and at least one C3-C10 α-olefin, the copolymer containing from 15% to 50% of ethylene, and optionally minor amounts of a diene; said masterbatch composition having a value of the intrinsic viscosity [η] of the fraction soluble in xylene at room temperature (about 25 °C) equal to or higher than 3.5 dl/g.
2. The masterbatch composition of claim 1, having a MFR value of from 0.1 to 10 g/10 min.
3. A thermoplastic polyolefin composition containing the masterbatch composition of claim 1.
4. The thermoplastic polyolefin composition of claim 3, wherein the content of masterbatch composition is of from 5% to 20% by weight with respect to the total weight of the thermoplastic composition.
5. The thermoplastic polyolefin composition of claim 3, wherein the olefin polymers other than those contained in the masterbatch composition are selected from the group cosisting of:
1) crystalline propylene homopolymers;
2) crystalline copolymers of propylene with ethylene and/or a C4-C10 α-olefϊn, wherein the total comonomer content ranges from 0.05 to 20% by weight with respect to the weight of the copolymer;
3) crystalline ethylene homopolymers and copolymers with propylene and/or a C4-C10 α-olefins; 4) elastomeric copolymers of ethylene with propylene and/or a C4-C10 α-olefin, optionally containing minor quantities of a diene;
5) a thermoplastic elastomeric composition comprising one or more of propylene homopolymers and/or the copolymers of item 2) and an elastomeric moiety comprising one or more of the copolymers of item 4), containing the said elastomeric moiety in quantities from 5 to 80% by weight;
6) blends of two or more of the polymers or compositions of items 1) to 5).
6. A process for preparing the masterbatch composition of claim 1 by a sequential polymerization, comprising at least three sequential steps, wherein components (A) and (B) are prepared in separate subsequent steps, operating in each step, except the first step, in the presence of the polymer formed and the catalyst used in the preceding step.
7. Bumpers and fascia comprising the masterbatch composition of claim 1.
PCT/EP2004/003304 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding WO2004087805A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006500077A JP4990614B2 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
EP04723995A EP1608701B1 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
BRPI0409514-6A BRPI0409514A (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
CA002520270A CA2520270A1 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
US10/551,679 US8008400B2 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
PL04723995T PL1608701T3 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
MXPA05010631A MXPA05010631A (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding.
AU2004226244A AU2004226244B2 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding
DE602004004884T DE602004004884T2 (en) 2003-04-02 2004-03-29 Masterbatch and composition of polyolefins, suitable for injection molding
KR1020057018655A KR101085374B1 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03075962.5 2003-04-02
EP03075962 2003-04-02
US47367103P 2003-05-23 2003-05-23
US60/473,671 2003-05-23

Publications (1)

Publication Number Publication Date
WO2004087805A1 true WO2004087805A1 (en) 2004-10-14

Family

ID=40497776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003304 WO2004087805A1 (en) 2003-04-02 2004-03-29 Polyolefin masterbatch and composition suitable for injection molding

Country Status (19)

Country Link
US (1) US8008400B2 (en)
EP (1) EP1608701B1 (en)
JP (1) JP4990614B2 (en)
KR (1) KR101085374B1 (en)
CN (1) CN100445330C (en)
AR (1) AR043814A1 (en)
AT (1) ATE354616T1 (en)
AU (1) AU2004226244B2 (en)
BR (1) BRPI0409514A (en)
CA (1) CA2520270A1 (en)
DE (1) DE602004004884T2 (en)
ES (1) ES2280954T3 (en)
MX (1) MXPA05010631A (en)
MY (1) MY136027A (en)
PL (1) PL1608701T3 (en)
RU (1) RU2341543C2 (en)
TW (1) TW200427761A (en)
WO (1) WO2004087805A1 (en)
ZA (1) ZA200507822B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067052A1 (en) * 2004-12-20 2006-06-29 Basell Poliolefine Italia S.R.L. Process and apparatus for the polymerization of propylene
US7517947B2 (en) 2004-06-07 2009-04-14 Chevron Phillips Chemical Company Lp Polymer transfer within a polymerization system
US20090306298A1 (en) * 2005-04-28 2009-12-10 Basell Poliolefine Italia S.R.L. Propylene polymer composition for thermoforming
WO2010069687A1 (en) * 2008-12-17 2010-06-24 Basell Poliolefine Italia S.R.L. Foamed polyolefin composition
WO2010108866A1 (en) 2009-03-23 2010-09-30 Basell Poliolefine Italia S.R.L. Polyolefin masterbatch and composition suitable for injection molding
US8202611B2 (en) 2004-12-21 2012-06-19 Basell Poliolefine Italia, s.r.l. Process compositions and permeable films therefrom
EP2589623A1 (en) 2011-11-02 2013-05-08 Basell Poliolefine Italia S.r.l. Polypropylene composition for foaming
US20130123432A1 (en) * 2010-07-23 2013-05-16 Basell Poliolefine Italia, s.r.l. Propylene polymer compositions
EP2669329A1 (en) 2012-06-01 2013-12-04 Basell Poliolefine Italia S.r.l. Mineral-filled polypropylene composition for foaming
WO2015091372A1 (en) * 2013-12-16 2015-06-25 Basell Poliolefine Italia S.R.L. Mineral filled polypropylene composition
WO2015091151A1 (en) 2013-12-20 2015-06-25 Saudi Basic Industries Corporation Polyolefin composition
EP1797138B2 (en) 2004-10-04 2017-08-16 Basell Poliolefine Italia S.r.l. Elastomeric polyolefin compositions
WO2018085236A1 (en) * 2016-11-02 2018-05-11 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
EP2655505B1 (en) 2010-12-20 2018-07-25 Braskem America, Inc. Propylene-based compositions of enhanced appearance and excellent mold flowability
EP2601260B2 (en) 2010-08-06 2019-02-20 Borealis AG Heterophasic propylene copolymer with excellent impact/stiffness balance
US10696829B2 (en) 2013-12-20 2020-06-30 Saudi Basic Industries Corporation Heterophasic propylene copolymer
WO2020208200A1 (en) * 2019-04-12 2020-10-15 Thai Polyethylene Co., Ltd. High flow and high stiffness impact copolymer polypropylene
US11186711B2 (en) 2016-11-02 2021-11-30 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
CN113998951A (en) * 2021-11-15 2022-02-01 广州天骄建筑有限公司 Anti-cracking impervious waterproof material and preparation method and application thereof
US11370891B2 (en) 2016-11-02 2022-06-28 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
WO2022144251A1 (en) 2020-12-28 2022-07-07 Sabic Global Technologies B.V. Polypropylene composition with high multi-axial impact resistance and improved tiger stripe behaviour

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674530A1 (en) * 2004-12-24 2006-06-28 Kraton Polymers Research B.V. High melt strength thermoplastic elastomer composition
CN102046723B (en) * 2007-12-19 2014-06-04 巴塞尔聚烯烃意大利有限责任公司 Soft and flexible polyolefin compositions
EP2077286A1 (en) * 2008-01-07 2009-07-08 Total Petrochemicals Research Feluy Heterophasic propylene copolymer with improved creep behavior
KR101678243B1 (en) * 2009-03-31 2016-11-21 바셀 폴리올레핀 이탈리아 에스.알.엘 Polyolefin masterbatch and composition suitable for injection molding
EP2316882A1 (en) * 2009-10-29 2011-05-04 Borealis AG Heterophasic polypropylene resin
RU2610466C2 (en) * 2011-08-22 2017-02-13 ЭнСинк, Инк. Electrode for use in battery with flow electrolyte and unit of battery elements with flow electrolyte
US20140162096A1 (en) * 2012-08-22 2014-06-12 Lotte Chemical Corporation Battery Flow Frame Material Formulation
JP6143876B2 (en) * 2012-11-30 2017-06-07 ボルージュ コンパウンディング シャンハイ カンパニー リミテッド PP compound with excellent mechanical properties, improved or non-occurring tiger stripes
CN103113671A (en) * 2013-02-04 2013-05-22 北京海科华昌新材料技术有限公司 Safety helmet, material used for manufacturing safety helmet and preparation method of material
US20170044359A1 (en) * 2014-05-07 2017-02-16 Borealis Ag Polypropylene - polyethylene blends with improved properties
CN107849323B (en) * 2015-07-16 2021-09-07 道达尔研究技术弗吕公司 Polypropylene composition and thermoformed sheet thereof
CN105219005B (en) * 2015-10-10 2018-01-16 中广核俊尔新材料有限公司 PP composite material of tiger fur line and its preparation method and application is completely eliminated
JP7004499B2 (en) * 2016-12-20 2022-01-21 サンアロマー株式会社 Masterbatch composition
KR102282288B1 (en) * 2017-04-06 2021-07-26 에스케이이노베이션 주식회사 Copolymer and method of manufacturing the same
EP3421538B1 (en) 2017-06-30 2021-03-17 Borealis AG Polyolefin composition with improved surface appearance
MX2020013515A (en) 2018-06-14 2022-07-11 Lyondellbasell Advanced Polymers Inc Foamable polyolefin compositions and methods thereof.
SE542754C2 (en) * 2018-06-14 2020-07-07 Tepe Munhygienprodukter Ab Toothbrush handle, toothbrush and methods of manufacturing
EP3877135A1 (en) 2018-11-05 2021-09-15 Equistar Chemicals, LP High gloss black tpo replacing paint
EP4114897A1 (en) 2020-03-06 2023-01-11 LyondellBasell Advanced Polymers Inc. Automotive molded-in-color thermoplastic polyolefin with clear coating for paint replacement and high gloss applications
CN116438251A (en) 2020-11-16 2023-07-14 伊奎斯塔化学有限公司 Compatibilization of post-consumer resins
AU2022282255A1 (en) 2021-05-28 2023-12-14 Equistar Chemicals, Lp Polyolefin compositions with high dimensional stability for sheet applications

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028958A2 (en) * 2000-10-04 2002-04-11 Basell Technology Company B.V. Polyolefin masterbatch and composition suitable for injection molding
US6441094B1 (en) * 1999-09-14 2002-08-27 Baselltech Usa Inc. Impact resistant polyolefin compositions
WO2003076511A1 (en) * 2002-03-12 2003-09-18 Basell Poliolefine Italia S.P.A. “polyolefin masterbatch for preparing impact-resistant polyolefin articles”

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1098272B (en) 1978-08-22 1985-09-07 Montedison Spa COMPONENTS, CATALYSTS AND CATALYSTS FOR THE POLYMERIZATION OF ALPHA-OLEFINS
IT1209255B (en) 1980-08-13 1989-07-16 Montedison Spa CATALYSTS FOR THE POLYMERIZATION OF OLEFINE.
ZA844157B (en) 1983-06-06 1986-01-29 Exxon Research Engineering Co Process and catalyst for polyolefin density and molecular weight control
US5324800A (en) 1983-06-06 1994-06-28 Exxon Chemical Patents Inc. Process and catalyst for polyolefin density and molecular weight control
US5055438A (en) 1989-09-13 1991-10-08 Exxon Chemical Patents, Inc. Olefin polymerization catalysts
IT1227260B (en) 1988-09-30 1991-03-28 Himont Inc DIETTERS THAT CAN BE USED IN THE PREPARATION OF ZIEGLER-NATTA CATALYSTS
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
DE59104869D1 (en) 1990-11-12 1995-04-13 Hoechst Ag 2-Substituted bisindenyl metallocenes, process for their preparation and their use as catalysts in olefin polymerization.
DE4119283A1 (en) 1991-06-12 1992-12-17 Basf Ag HIGHLY FLOWABLE MIXTURES FROM DIFFERENT PROPYLENE POLYMERISATS
IT1269914B (en) 1994-03-24 1997-04-16 Himonty Inc PAINTABLE COMPOSITIONS OF PROPYLENE CRYSTALLINE COPOLYMERS HAVING LOW WELDABILITY TEMPERATURE
IL117114A (en) 1995-02-21 2000-02-17 Montell North America Inc Components and catalysts for the polymerization ofolefins
IT1275573B (en) 1995-07-20 1997-08-07 Spherilene Spa PROCESS AND EQUIPMENT FOR GAS PHASE POMIMERIZATION OF ALPHA-OLEFINS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441094B1 (en) * 1999-09-14 2002-08-27 Baselltech Usa Inc. Impact resistant polyolefin compositions
WO2002028958A2 (en) * 2000-10-04 2002-04-11 Basell Technology Company B.V. Polyolefin masterbatch and composition suitable for injection molding
WO2003076511A1 (en) * 2002-03-12 2003-09-18 Basell Poliolefine Italia S.P.A. “polyolefin masterbatch for preparing impact-resistant polyolefin articles”

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517947B2 (en) 2004-06-07 2009-04-14 Chevron Phillips Chemical Company Lp Polymer transfer within a polymerization system
EP1797138B2 (en) 2004-10-04 2017-08-16 Basell Poliolefine Italia S.r.l. Elastomeric polyolefin compositions
US7524903B2 (en) 2004-12-20 2009-04-28 Basell Poliolefine Italia S.R.L. Process and apparatus for the polymerization of propylene
WO2006067052A1 (en) * 2004-12-20 2006-06-29 Basell Poliolefine Italia S.R.L. Process and apparatus for the polymerization of propylene
KR101237260B1 (en) 2004-12-20 2013-02-27 바셀 폴리올레핀 이탈리아 에스.알.엘 Process and apparatus for the polymerization of propylene
US8202611B2 (en) 2004-12-21 2012-06-19 Basell Poliolefine Italia, s.r.l. Process compositions and permeable films therefrom
US20090306298A1 (en) * 2005-04-28 2009-12-10 Basell Poliolefine Italia S.R.L. Propylene polymer composition for thermoforming
KR20110101156A (en) * 2008-12-17 2011-09-15 바셀 폴리올레핀 이탈리아 에스.알.엘 Foamed polyolefin composition
WO2010069687A1 (en) * 2008-12-17 2010-06-24 Basell Poliolefine Italia S.R.L. Foamed polyolefin composition
KR101643878B1 (en) 2008-12-17 2016-07-29 바셀 폴리올레핀 이탈리아 에스.알.엘 Foamed polyolefin composition
US8623932B2 (en) 2008-12-17 2014-01-07 Basell Poliolefine Italia S.R.L. Foamed polyolefin composition
KR20110129433A (en) * 2009-03-23 2011-12-01 바셀 폴리올레핀 이탈리아 에스.알.엘 Polyolefine masterbatch and composition suitable for injection molding
WO2010108866A1 (en) 2009-03-23 2010-09-30 Basell Poliolefine Italia S.R.L. Polyolefin masterbatch and composition suitable for injection molding
KR101693062B1 (en) 2009-03-23 2017-01-04 바셀 폴리올레핀 이탈리아 에스.알.엘 Polyolefine masterbatch and composition suitable for injection molding
US9309394B2 (en) 2009-03-23 2016-04-12 Basell Poliolefine Italia S.R.L. Polyolefin masterbatch and composition suitable for injection molding
US9303159B2 (en) * 2010-07-23 2016-04-05 Basell Poliolefine Italia S.R.L. Propylene polymer compositions
US20130123432A1 (en) * 2010-07-23 2013-05-16 Basell Poliolefine Italia, s.r.l. Propylene polymer compositions
EP2601260B2 (en) 2010-08-06 2019-02-20 Borealis AG Heterophasic propylene copolymer with excellent impact/stiffness balance
EP2655505B1 (en) 2010-12-20 2018-07-25 Braskem America, Inc. Propylene-based compositions of enhanced appearance and excellent mold flowability
WO2013064364A1 (en) 2011-11-02 2013-05-10 Basell Poliolefine Italia S.R.L. Polypropylene composition for foaming
EP2589623A1 (en) 2011-11-02 2013-05-08 Basell Poliolefine Italia S.r.l. Polypropylene composition for foaming
EP2855578B1 (en) 2012-06-01 2016-06-08 Basell Poliolefine Italia S.r.l. Mineral-filled polypropylene composition for foaming
WO2013178509A1 (en) 2012-06-01 2013-12-05 Basell Poliolefine Italia S.R.L. Mineral-filled polypropylene composition for foaming
EP2669329A1 (en) 2012-06-01 2013-12-04 Basell Poliolefine Italia S.r.l. Mineral-filled polypropylene composition for foaming
WO2015091372A1 (en) * 2013-12-16 2015-06-25 Basell Poliolefine Italia S.R.L. Mineral filled polypropylene composition
US9714337B2 (en) 2013-12-16 2017-07-25 Basell Poliolefine Italia S.R.L. Mineral filled polypropylene composition
US10047218B2 (en) 2013-12-20 2018-08-14 Saudi Basic Industries Corporation Polyolefin composition
WO2015091151A1 (en) 2013-12-20 2015-06-25 Saudi Basic Industries Corporation Polyolefin composition
US10696829B2 (en) 2013-12-20 2020-06-30 Saudi Basic Industries Corporation Heterophasic propylene copolymer
WO2018085236A1 (en) * 2016-11-02 2018-05-11 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
US11186711B2 (en) 2016-11-02 2021-11-30 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
US11370891B2 (en) 2016-11-02 2022-06-28 Dow Global Technologies Llc Semi-crystalline polyolefin-based additive masterbatch composition
WO2020208200A1 (en) * 2019-04-12 2020-10-15 Thai Polyethylene Co., Ltd. High flow and high stiffness impact copolymer polypropylene
WO2022144251A1 (en) 2020-12-28 2022-07-07 Sabic Global Technologies B.V. Polypropylene composition with high multi-axial impact resistance and improved tiger stripe behaviour
CN113998951A (en) * 2021-11-15 2022-02-01 广州天骄建筑有限公司 Anti-cracking impervious waterproof material and preparation method and application thereof
CN113998951B (en) * 2021-11-15 2023-02-28 广州天骄建筑有限公司 Anti-cracking impervious waterproof material and preparation method and application thereof

Also Published As

Publication number Publication date
MXPA05010631A (en) 2005-12-12
PL1608701T3 (en) 2007-08-31
RU2005133721A (en) 2006-03-10
TW200427761A (en) 2004-12-16
US8008400B2 (en) 2011-08-30
ZA200507822B (en) 2006-12-27
JP4990614B2 (en) 2012-08-01
RU2341543C2 (en) 2008-12-20
DE602004004884T2 (en) 2007-11-15
MY136027A (en) 2008-07-31
AU2004226244B2 (en) 2009-03-05
EP1608701B1 (en) 2007-02-21
BRPI0409514A (en) 2006-04-18
ATE354616T1 (en) 2007-03-15
JP2006522169A (en) 2006-09-28
ES2280954T3 (en) 2007-09-16
AU2004226244A1 (en) 2004-10-14
EP1608701A1 (en) 2005-12-28
DE602004004884D1 (en) 2007-04-05
CA2520270A1 (en) 2004-10-14
KR20050110036A (en) 2005-11-22
AR043814A1 (en) 2005-08-17
CN1768107A (en) 2006-05-03
KR101085374B1 (en) 2011-11-21
CN100445330C (en) 2008-12-24
US20060194924A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
EP1608701B1 (en) Polyolefin masterbatch and composition suitable for injection molding
EP1753813B1 (en) Polyolefin composition having a high balance of stiffness, impact strength and elongation at break and low thermal shrinkage
US6586531B2 (en) Polyolefin masterbatch and composition suitable for injection molding
US7728077B2 (en) Polyolefin masterbatch and composition suitable for injection molding
EP1483327A1 (en) Polyolefin masterbatch for preparing impact-resistant polyolefin articles
US7691939B2 (en) Polyolefin composition having a high balance of stiffness and impact strength
ZA200409590B (en) Impact-resistant polyolefin compositions.
US8450422B2 (en) Polyolefin masterbatch and composition suitable for injection molding
US7288598B2 (en) Polyolefin masterbatch for preparing impact-resistant polyolefin articles
KR20070018922A (en) Polyolefin masterbatch and composition suitable for injection molding

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004723995

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 170692

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2004226244

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2520270

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005/07822

Country of ref document: ZA

Ref document number: 200507822

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2004226244

Country of ref document: AU

Date of ref document: 20040329

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006194924

Country of ref document: US

Ref document number: 2006500077

Country of ref document: JP

Ref document number: 10551679

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004226244

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020057018655

Country of ref document: KR

Ref document number: 2476/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/010631

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20048091630

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005133721

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 1020057018655

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004723995

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0409514

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10551679

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004723995

Country of ref document: EP