WO2004090025A1 - Polymerised liquid crystal film with retardation or orientation pattern - Google Patents

Polymerised liquid crystal film with retardation or orientation pattern Download PDF

Info

Publication number
WO2004090025A1
WO2004090025A1 PCT/EP2004/003547 EP2004003547W WO2004090025A1 WO 2004090025 A1 WO2004090025 A1 WO 2004090025A1 EP 2004003547 W EP2004003547 W EP 2004003547W WO 2004090025 A1 WO2004090025 A1 WO 2004090025A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polymerisable
retardation
orientation
layer
Prior art date
Application number
PCT/EP2004/003547
Other languages
French (fr)
Inventor
Richard Harding
Shirley Ann Marden
Ian Victor Edward Hassall
Janice Mccreary
Karl Skjonnemand
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP2006504979A priority Critical patent/JP4717803B2/en
Priority to KR1020127004958A priority patent/KR101247822B1/en
Priority to EP04725365.3A priority patent/EP1611189B1/en
Priority to US10/552,710 priority patent/US7435357B2/en
Publication of WO2004090025A1 publication Critical patent/WO2004090025A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K19/2014Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups containing additionally a linking group other than -COO- or -OCO-, e.g. -CH2-CH2-, -CH=CH-, -C=C-; containing at least one additional carbon atom in the chain containing -COO- or -OCO- groups, e.g. -(CH2)m-COO-(CH2)n-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1

Definitions

  • the invention relates to a polymerised liquid crystal (LC) film comprising at least one photoisomerisable compound and having a pattern of regions with different retardation and/or different orientation of the LC material.
  • the invention further relates to methods of preparing such a film, and to its use as alignment layer, optical retardation film or optical waveguide in LC displays or other optical or electrooptical components or devices, or for decorative or security applications.
  • LC polymerised liquid crystal
  • Liquid crystal displays known from prior art usually contain an assortment of different functional layers, like for example alignment layers, colour filters and retardation layers.
  • Retardation films are used for example to convert between linear and circular polarised light and to compensate the deteriorating contrast and colour of the LCD at wide viewing angles.
  • the optical dispersion of conventional retardation films as used in prior art often results in non-perfect conversion, i.e. not all frequencies of visible light are converted between linear and circular polarised states. This is especially disadvantageous for colour LCDs of the active matrix type, where a colour filter is applied so that different pixels of the display in the addressd state show different primary colours (R, G, B).
  • One aim of the present invention is to provide a retardation film for use in LCDs, especially in active matrix colour LCDs, which does not have the drawbacks of prior art films mentioned above, and in particular allows more efficient conversion between linear and circular polarised states for light of different wavelengths. Another aim is to provide advantageous methods and materials for the preparation of such a retardation film. Another aim is to provide advantageous uses of such a retardation film. Other aims of the present invention are immediately evident to the person skilled in the art from the following detailed description.
  • the inventors have found that these aims can be achieved by providing a patterned or pixelated retardation layer prepared by the methods as described below, which comprises a pattern of different regions or pixels with different retardation.
  • the pixelated retardation layer can be applied to an LCD comprising a colour filter such that each pixel of the retardation layer has the correct retardation for the light passing through the corresponding pixel of the colour filter. In this way the polarised light passing through the display can be more efficiently converted.
  • the pixelated retarder according to the present invention is preferably prepared by exposing a polymerizable liquid crystal (LC) material incorporating compounds with photosensitive groups to UV light.
  • LC polymerizable liquid crystal
  • the methods and materials according to the present invention allow the preparation of retardation layers with different orientation of the LC material, for example planar and splayed layers. Thereby patterned films with a pattern of regions with different orientation and/or different retardation can be prepared. It is also possible to prepare a polymerised LC layer that acts as alignment layers for a subsequent layer, and stacks of films or layers having different orientation and/or retardation.
  • EP 02019792.7 discloses an optical retardation film with a retardation pattern comprising polymerised nematic LC material, and methods for its preparation by varying the polymerisation conditions and/or the composition of the polymerisable LC material. However, it does not disclose the films or methods according to the present invention. Summary of the Invention
  • the invention relates to a film comprising a polymerised liquid crystal (LC) material comprising at least one photoisomerisable compound, characterized in that said film comprises at least two regions with different retardation and/or at least two regions with different orientation of the LC material.
  • LC polymerised liquid crystal
  • the invention further relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation and at least two regions with different orientation of the LC material.
  • LC polymerised liquid crystal
  • the invention further relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation of the LC material.
  • LC polymerised liquid crystal
  • the invention further relates to a method of preparing a film as described above, comprising the following steps:
  • the invention further relates to a method of preparing a multilayer comprising al least two layers of polymerised LC material having different orientation, comprising the following steps:
  • LC material in at least one of said first and second layers, or in selected regions thereof, before polymerisation is exposed to photoradiation that causes isomerisation of the isomerisable compound, preferably UV radiation.
  • the invention further relates to a method of preparing a film or a multilayer as described above, wherein the LC material is exposed to radiation that causes photoisomerisation and photopolymerisation,. and wherein the steps of photoisomerisation and photopolymerisation are carried out under different conditions, in particular under different gas atmospheres, especially preferably wherein photoisomerisation is carried out in the presence of oxygen and photopolymerisation is carried out in the absence of oxygen.
  • the invention further relates to a film or a multilayer obtained by above methods.
  • the invention relates to a polymerisable LC material comprising at least one photoisomerisable compound as described above and below.
  • the invention further relates to the use of a film or multilayer as described above and below in liquid crystal displays (LCDs) or other optical or electrooptical components or devices, for decorative or security applications.
  • the invention further relates to the use of a film as described above and below as alignment layer, optical retardation film or optical waveguide.
  • the invention further relates to a patterned film comprising at least two regions having different retardation for use as optical retardation film in an active matrix colour LCD.
  • the invention further relates to an LCD comprising an optical retardation film as described above and below.
  • the invention further relates to the use of a film as described above and below, in particular a film having at least two regions or a pattern of regions with different retardation, as optical retardation film in an LCD, characterized in that the film is positioned between the substrates of the switchable LC cell.
  • the invention further relates to an LCD as described above and below, comprising a LC cell formed by two plane parallel substrates at least one of which is transparent to incident light, an electrode layer provided on the inside of at least one of said two transparent substrates and optionally superposed with an alignment layer, and an LC medium located between the two substrates that is switchable between at least two different states by application of an electric field, characterized in that the LCD comprises at least one film comprising polymerised LC material as described above and below that is positioned between the two plane parallel substrates forming the LC cell.
  • 'film' as used in this application includes self-supporting, i.e. free-standing, films that show more or less pronounced mechanical stability and flexibility, as well as coatings or layers on a supporting substrate or between two substrates.
  • the term 'liquid crystal or mesogenic material' or 'liquid crystal or mesogenic compound' should denote materials or compounds comprising one or more rod-shaped, board-shaped or disk-shaped mesogenic groups, i.e. groups with the ability to induce liquid crystal phase behaviour.
  • Liquid crystal (LC) compounds with rod-shaped or board-shaped groups are also known in the art as 'calamitic' liquid crystals.
  • Liquid crystal compounds with a disk-shaped group are also known in the art as 'discotic' liquid crystals.
  • the compounds or .. materials comprising mesogenic groups do not necessarily have to exhibit a liquid crystal phase themselves. It is also possible that they show liquid crystal phase behaviour only in mixtures with other compounds, or when the mesogenic compounds or materials, or the mixtures thereof, are poly
  • liquid crystal material' is used hereinafter for both liquid crystal materials and mesogenic materials.
  • Polymerisable compounds with one polymerisable group are also referred to as 'monoreactive' compounds, compounds with two polymerisable groups as 'direactive' compounds, and compounds with more than two polymerisable groups as 'multireactive' compounds.
  • RM 'reactive mesogen'
  • the term 'director' is known in prior art and means the preferred orientation direction of the long molecular axes (in case of calamitic compounds) or short molecular axis (in case of discotic compounds) of the mesogens in a liquid crystal material.
  • 'planar structure' or 'planar orientation' refers to a film wherein the optical axis is substantially parallel to the film plane.
  • 'homeotropic structure' or 'homeotropic orientation' refers to a film wherein the optical axis is substantially perpendicular to the film plane, i.e. substantially parallel to the film normal.
  • 'tilted structure' or 'tilted orientation refers to a film wherein the optical axis is tilted at an angle ⁇ between 0 and 90 degrees relative to the film plane.
  • 'splayed structure' or 'splayed orientation' means a tilted orientation as defined above, wherein the tilt angle additionally varies monotonuously in the range from 0 to 90 °, preferably from a minimum to a maximum value, in a direction perpendicular to the film plane.
  • the tilt angle of a splayed film hereinafter is given as the average tilt angle ⁇ ave , unless stated otherwise.
  • the average tilt angle ⁇ ave is defined as follows
  • ⁇ '(d') is the local tilt angle at the thickness d' within the film, and d is the total thickness of the film.
  • the optical axis of the film is given by the director of the liquid crystal material.
  • 'orientation' as used in connection with optical films, for example in the terms 'splayed or tilted orientation' or 'homeotropic orientation' or 'planar orientation', is intended to describe the general spatial orientation direction of the optical axis of the films. This should not be confused with a patterned film having planar alignment, wherein the optical axis or the liquid crystal molecules are all oriented in planes parallel to the film plane, but within said plane have different azimuthal 'orientation' directions in different regions.
  • Figure 1 shows the retardation versus irradiation time of a film prepared by a process according to example 1 of the present invention.
  • Figure 2 shows the retardation versus irradiation time of a film prepared by a process according to example 2 of the present invention.
  • Figure 3 shows a pixelated optical film according to example 2 of the present invention.
  • FIG. 4 schematically depicts an active-matrix colour LCD comprising an optical film according to the present invention.
  • Figure 5 schematically depicts a transflective colour LCD comprising an optical film according to the present invention.
  • One aspect of the invention relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation and at least two regions with different orientation of the LC material, wherein said regions differing in retardation can also differ in orientation, or they can be different regions.
  • LC polymerised liquid crystal
  • one embodiment relates to a film with a pattern of a first and a second region, wherein the first and said second region differ in both retardation and orientation.
  • Another embodiment relates for example to a film with a pattern of a first, a second and a third region, wherein said first and second region differ in one of retardation and orientation, and said third region differs in at least one of retardation and orientation from at least one of said first and said second region.
  • Another embodiment relates for example to a film with a pattern of a first, a second, a third and a fourth region, each of which has a retardation different from each other region, and two of said regions have the same orientation
  • the patterned film according to the present invention is preferably obtained by polymerisation or crosslinking of a polymerisable LC material, preferably by a process comprising steps a) to e) as described above.
  • steps a) to e) can be carried out according to standard procedures that are known to the expert and are described in the literature.
  • the polymerisable LC material comprises a photoisomerisable compound, preferably a photoisomerisable mesogenic or LC compound, very preferably a photoisomerisable compound that is also polymerisable.
  • the isomerisable compound changes its shape, e.g. by E-Z- isomerisation, when exposed to radiation of a specific wavelength, e.g. UV-radiation. This leads to disruption of the uniform planar orientation of the LC material, resulting in a drop of its birefringence.
  • the drop in birefringence also causes a decrease of the retardation in the irradiated parts of the LC material.
  • the orientation and retardation of the LC material is then fixed by in-situ polymerisation of the irradiated regions or of the entire film.
  • Polymerisation of the LC material is achieved for example by thermal or photopolymerisation.
  • the type of radiation used for photoisomerisation and for photopolymerisation of the LC material may be the same or different.
  • radiation e.g. UV-radiation
  • the steps of photoisomerisation and photopolymerisation are preferably carried out under different conditions, in particular under different gas atmospheres.
  • photoisomerisation is carried out in the presence of oxygen, like e.g. in air, and photopolymerisation is carried out in the absence of oxygen, especially preferably under an inert gas atmosphere of e.g.
  • oxygen or air is removed and replaced by an inert gas such as nitrogen or argon, thereby allowing polymerisation to occur. This allows better control of the process steps.
  • the degree of isomerisation and thus the birefringence change in the layer of LC material can be controlled e.g. by varying the radiation dose, i.e. the intensity, exposure time and/or power of the radiation. Also, by applying a photomask between the radiation source and the LC layer it is possible to prepare a film with a pattern of regions or pixels having specific values of the retardation that differ from each other. For example, a film comprised of two different values of retardation can be created using a simple, monochrome mask. A more complicated film exhibiting multiple regions of different retardation can be created using a grey-scale mask. After the desired retardation values are achieved the LC layer is polymerised.
  • the polymerisable LC material is preferably a nematic or smectic LC material, in particular a nematic material, and preferably comprises at least one di- or multireactive achiral RM and optionally one or more than one monoreactive achiral RMs.
  • di- or multireactive RMs a crosslinked film is obtained wherein the structure is permanently fixed, and which exhibits high mechanical stability and high stability of the optical properties against external influences like temperature or solvents. Films comprising crosslinked LC material are thus especially
  • Polymerizable mesogenic mono-, di- and multireactive compounds used for the present invention can be prepared by methods which are known per se and which are described, for example, in standard works of organic chemistry such as, for example, Houben-Weyl, _. Methoden der orga ischen Chemie, Thieme-Verlag, Stuttgart.
  • Suitable polymerizable mesogenic compounds that can be used as monomers or comonomers in a polymerizable LC mixture are disclosed for example in WO 93/22397, EP 0 261 712, DE 195 04 224, WO 95/22586, WO 97/00600 and GB 2 351 734.
  • the compounds disclosed in these documents, however, are to be regarded merely as examples that shall not limit the scope of this invention.
  • 'polar group' in this connection means a group selected from F, Cl, CN, N0 2) OH, OCH 3 , OCN, SCN, an optionally fluorinated alkycarbonyl, alkoxycarbonyl, alkylcarbonyloxy or aikoxycarbonyloxy group with up to 4 C atoms or a mono- oligo- or polyfluorinated alkyl or alkoxy group with 1 to 4 C atoms.
  • 'unpolar group' means an optionally halogenated alkyl, alkoxy, alkycarbonyl, alkoxycarbonyl, alkylcarbonyloxy or aikoxycarbonyloxy group with 1 or more, preferably 1 to 12 C atoms which is not covered by the above definition of 'polar group'.
  • mixtures comprising one or more polymerisable compounds comprising an acetylene or tolane group with high birefringence, like e.g. compounds of formula Ig above.
  • polymerisable tolanes are described for example in GB 2,351,734.
  • Suitable photoisomerisable compounds are known in prior art.
  • photoisomerisable compounds include azobenzenes, benzaldoximes, azomethines, stilbenes, spiropyrans, spirooxadines, fulgides, diarylethenes, cinnamates.
  • Further examples are 2- methyleneindane-1-ones as described for example in EP 1 247 796, and (bis-)benzylidenecycloalkanones as described for example in EP 1 247 797.
  • the LC material comprises one or more cinnamates, in particular cinnamate reactive mesogens (RMs) as described for example in US 5,770,107 (P0095421) and EP 02008230.1.
  • the LC material comprises one or more cinnamate RMs selected of the following formulae
  • L has one of the meanings of L 1 as defined above
  • Sp is a spacer group, like for example alkylene or alkyleneoxy with 1 to 12 C-atoms, or a single bond
  • R is Y or R° as defined above or denotes P-Sp.
  • cinnamate RMs containing a polar terminal group Y as defined above.
  • Very preferred are cinnamate RMs of formula III and IV wherein R is Y.
  • the photoradiation used to cause photoisomerisation in the LC material depends on the type of photoisomerisable compounds, and can be easily selected by the person skilled in the art. Generally, compounds that show photoisomerisation induced by UV-radiation are preferred. For example, for cinnamate compounds like those of formula III, IV and V, typically UV-radiation with a wavelength in the UV-A range (320-400 nm) or with a wavelength of 365 nm is used.
  • polymerisable LC materials containing a high amount of photoisomerisable compounds are especially useful to the purpose of the present invention, as these materials allow to easily control and adjust the retardation of the optical retardation film.
  • an oriented layer of LC mixture containing a high amount of photoisomerisable compounds, which is subjected to radiation inducing photoisomerisation shows a large decrease in retardation with increasing irradiation time.
  • the retardation can be altered within a broader range of values and can be controlled more accurately, e.g. by varying the irradiation time, compared to a material showing only a slight change of retardation.
  • the polymerisable component of the polymerisable LC material comprises at least 12 mol% of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
  • polymerisable component' refers to the polymerisable mesogenic and non-mesogenic compounds in the total polymerisable mixture, i.e. hot including other non-polymerisable components and additives like initiators, surfactants, stabilizers, solvents and the like.
  • the polymerisable component of the LC material comprises 12 to 100 mol %, very preferably from 40 to 100 mol %, in particular from 60 to 100 mol %, most preferably from 80 to 100 mol % of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
  • the polymerisable component of the LC material comprises from 20 to 99 mol %, preferably from 40 to 80 mol %, most preferably from 50 to 70 mol % of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
  • the polymerisable component of the LC material comprises 100 mol % photoisomerisable RMs, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
  • the tilt angle ⁇ of LC-molecules (directors) in the polymerised film can be determined from retardation measurements. These measurements show that, if the LO-material is exposed to the photoirradiation that is used for photoisomerisation for a longer time, or to a higher radiation intensity, its original planar orientation changes into tilted or splayed orientation. Remarkably, these splayed films do not exhibit reverse tilt defects, which are normally associated with splayed LC films formed on a low pretilt substrate. Therefore, the method according to the present invention provides an elegant way of obtaining a uniform, splayed retardation film.
  • the orientation of the LC material in the film is controlled by varying the irradiation time and/or intensity of the photoradiation used to cause isomerisation in the LC material.
  • This second preferred embodiment also relates to a method of preparing a polymerised LC film having splayed structure, and showing a reduced number of reverse tilt defects, or even being free of tilt defects, by varying the orientation in a layer of polymerisable LC material having planar orientation as described in steps a) to e) above.
  • This embodiment also relates to a splayed film obtained by said method, preferably having a thickness of less than 3 ⁇ m, very preferably from 0.5 to 2.5 ⁇ m.
  • the optimum irradiation time and radiation intensity depend on the type of LC material used, in particular on the type and amount of photoisomerisable compounds in the LC material. As mentioned above, the decrease in retardation of a polymerisable LC material containing for example cinnamate RMs is greater for mixtures with high concentrations of cinnamate RMs. On the other hand, irradiation of the polymerisable LC material with a high dose of
  • UV-light leads to the formation of splayed films.
  • Another method to control the change of retardation and orientation in the LC layer is by defining the maximum decrease _of retardation achieved by photoisomerisation, whilst still maintaining the planar orientation in the LC layer, as a function of the concentration of photoisomerisable compounds.
  • the polymerisable component preferably comprises 40 to 90 mol%, very preferably 50 to 70 % of photoisomerisable cinnamate compounds of formula III, IV and/or V.
  • the polymerisable component preferably comprises 100 % of photoisomerisable cinnamate compounds of formula III, IV and/or V.
  • a polymerisable LC mixture for use in a method of preparing a film according to the present invention, where an orientation change from planar to splayed is desired preferably does not comprise photoisomerisable cinnamate compounds of formula III or IV wherein R is an alkyl group.
  • patterned films comprising regions with different orientation and/or different retardation.
  • a film comprising at least one region having planar orientation and at least one region having splayed orientation.
  • a film comprising at least one region wherein the retardation is zero.
  • the method described above can also be used to prepare a multilayer comprising multiple polymerised LC films, each having with different orientation of the LC material, preferably by a method comprising steps A), B) and CJ'-as described above.
  • a multilayer comprising two or more, very preferably two, three or four polymerised LC films.
  • a first polymerised planar LC film is produced as described above. This film is used as substrate and subsequently coated with a second layer of the same LC mixture. The second layer is then also aligned into planar orientation. Thus, a stack comprising two planar polymerised LC films can be produced. If the second layer is irradiated e.g. with UV-light of a sufficient dose prior to polymerisation, it shows splayed structure. Thus, a stack comprising a planar and a splayed polymerised LC filiti can be produced.
  • the first layer shows yields a splayed LC film. If a second layer of the same LC mixture is coated onto this splayed film and irradiated prior to polymerization, the second layer forms a homeotropically aligned layer, thus a stack of splayed and homeotropic films can be produced.
  • a multilayer comprising at least one layer having planar orientation and at least one layer having splayed orientation. Further preferred is a multilayer comprising at least one layer having splayed orientation and at least one region having homeotropic orientation.
  • a . . multilayer comprising two or more layers, at least one of which has a pattern of regions with different orientation and/or with different retardation.
  • the film according to the present invention is used as optical retardation film in an LCD not outside the switchable LC cell of the display, but between the substrates, usually glass substrates, forming the switchable LC cell and containing the switchable LC medium (incell application).
  • a display where the optical film is attached outside of the glass substrates forming the LC cell usually suffers from parallax problems, which can severely impair viewing angle properties. If the retardation films is prepared inside the LC display cell, these parallax problems can be reduced or even avoided.
  • LC liquid crystal
  • a colour filter array provided on one of said substrates, preferably on the substrate opposite to that carrying the array of nonlinear elements, said colour filter optionally being covered by a planarisation layer,
  • first and second alignment layers provided on said first and second electrodes
  • said patterned optical retardation film 4 is situated between the first and second substrate of the LC cell, preferably between the colour filter and the liquid crystal medium, very preferably between the colour filter and one of said electrode layers, or if a planarisation layer is present, between the planarising layer and one of said electrode layers.
  • An LCD according to this preferred embodiment is exemplarily depicted in Figure 4, comprising two substrates (11a, 11b), a TFT array (12), a colour filter array (13a), a planarisation layer (13b), electrode layers (14) and optionally (15), optionally two alignment layers (16a, 16b), an LC medium (17), and an optical retardation film (4) according to the present invention that is positioned between the planarisation layer and LC medium and optionally provided on another alignment layer (16c).
  • the alignment layer (16a) and/or (16b), and one of the electrode layers (14) and (15) may also be omitted.
  • an alignment layer (16c) is present between the optical retardation film (4) and the planarisation layer (13b).
  • the optical retardation film (4) can also be positioned directly (i.e. without the presence of an intermediate layer) on the colour filter array (13a) without the presence of a planarisation layer (13b), so that the optical retardation film serves as planarisation layer. It is also possible that the optical retardation film (4) is positioned between the colour filter array (13a) and the planarisation layer (13b). Preferably, an alignment layer (16c) is present between the optical retardation film (4) and the colour filter (13a).
  • the optical retardation film (4) is prepared directly on top of the colour filter (13a) or the planarisation layer (13b) inside the display cell, i.e. the colour filter or planarisation layer, optionally covered by an alignment layer, serve as substrate for the LC film preparation.
  • colour filter (13a) any standard colour filter known in prior art for use in flat panel displays can be used.
  • a colour filter typcially has a pattern of different pixels transmitting one of the primary colours red, green and blue (R, G, B).
  • the optical retardation film (4) preferably exhibits a pattern of pixels with three different retardations, each of which is adjusted such that its efficiency of converting linearly polarised light into circularly polarised light is optimised for one of the colours R, G and B, and is preferably positioned on the colour filter such that each R-, G- or B-pixel of the colour filter is covered by a corresponding pixel of the optical retardation film having a retardation optimised for this colour.
  • the thickness of a film according to the present invention is preferably from 0.5 to 2.5 microns, very preferably from 0.6 to 2 microns, most preferably from 0.7 to 1.5 microns.
  • the on-axis retardation (i.e. at 0° viewing angle) of a film or layer according to the present invention is preferably from 60 nrn to 400 nm, especially preferably from 100 nm to 350 nm.
  • the optical retardation film shows a retardation of approximately 0.25 times of the wavelength of incident light, also known in prior art as quarter-wave retardation plate or film (QWF) or ⁇ /4-plate.
  • QWF quarter-wave retardation plate
  • Especially preferred retardations for use as QWF are from 90 to 200 nm, preferably from 100 to 175 nm.
  • a retardation film comprising regions with one or more, preferably one, two or three different values of the retardation, each of said values being adjusted such that its efficiency of converting linearly polarised light into circularly polarised light is optimised for light of one of the primary colours red, green and blue (R, G, B).
  • said values of retardation are as follows:
  • the retardation is from 140 to 190 nm, preferably 145 to 180 nm, very preferably 145 to 160 nm, most preferably 150 nm.
  • the retardation is from 122 to 152 nm, preferably 127 to 147 nm, very preferably 132 to 142 nm, most preferably 137 nm.
  • the retardation is from 85 to 120 nm, preferably 90 to 115 nm, very preferably 100 to 115 nm, most preferably 112 nm.
  • the films according to the present invention can also be used as alignment layers for LC materials.
  • a polymerised LC film according to the invention to align a subsequent layer of a polymerisable LC material coated thereon.
  • stacks of polymerised LC films can be prepared.
  • the orientation of the first polymerised LC layer influences the alignment on the subsequent layer, and the alignment in the LC material can be varied by varying radiation intenstiy, time and amount of photoisomerisable compounds, it is possible to prepare stacks with different combinations of planar, homeotropic and splayed films.
  • the polymerisable LC mixture is preferably coated onto a substrate, aligned, preferably into planar orientation, and polymerised in situ, for example by exposure to heat or actinic radiation, to fix the orientation of the LC molecules.
  • Alignment and curing are carried out in the LC phase of the mixture. This technique is well-known in the art and described for example in D.J. Broer, et al., Angew. Makromol. Chem. 183, (1990), 45-66.
  • Alignment of the LC material can be achieved for example by treatment of the substrate onto which the material is coated, by shearing the material during or after coating, by application of a magnetic or electric field to the coated material, or by the addition of surface-active compounds to the LC material.
  • Reviews of alignment techniques are given for example by I. Sage in "Thermotropic Liquid Crystals", edited by G. W. Gray, John Wiley & Sons, 1987, pages 75- 77, and by T. Uchida and H. Seki in “Liquid Crystals - Applications and Uses Vol. 3", edited by B. Bahadur, World Scientific Publishing, Singapore 1992, pages 1-63.
  • a review of alignment materials and techniques is given by J. Cognard, Mol. Cryst. Liq. Cryst. 78, Supplement 1 (1981), pages 1-77.
  • the polymerisable LC material comprises an additive that induces or enhances planar alignment of the LC molecules on the substrate.
  • the additive comprises one or more surfactants. Suitable surfactants are described for example in J.
  • non-ionic surfactants such as fluorad FC-171® (from 3M Co.), or Zonyl FSN ® (from 3M Co.).
  • fluorocarbon surfactants like for example the commercially available fluorocarbon surfactants Fluorad FC-171® (from 3M Co.), or Zonyl FSN ® (from 3M Co.).
  • the polymerisable LC material is preferably dissolved or dispersed in a solvent, preferably in an organic solvent.
  • the solution or dispersion is then coated onto the substrate, for example by spin-coating or other known techniques, and the solvent is evaporated off before polymerisation.
  • the polymerisable LC material may additionally comprise a polymeric binder or one or more monomers capable of forming a polymeric binder and/or one or more dispersion auxiliaries.
  • Suitable binders and dispersion auxiliaries are disclosed for example in WO 96/02597.
  • LC materials not containing a binder or dispersion auxiliary are particularly preferred.
  • Polymerisation can be achieved for example by exposure to heat or actinic radiation.
  • Actinic radiation means irradiation with light, like UV light, IR light or visible light, irradiation with X-rays or gamma rays or irradiation with high energy particles, such as ions or electrons.
  • Preferably polymerisation is carried out by UV irradiation at a non- absorbing wavelength.
  • a source for actinic radiation for example a single UV lamp or a set of UV lamps can be used. When using a high lamp power the curing time can be reduced.
  • Another possible source for actinic radiation is a laser, like e.g. a UV laser, an IR laser or a visible laser.
  • Polymerisation is preferably carried out in the presence of an initiator absorbing at the wavelength of the actinic radiation.
  • an initiator absorbing at the wavelength of the actinic radiation.
  • a photoinitiator can be used that decomposes under UV irradiation to produce free radicals or ions that start the polymerisation reaction.
  • a radical photoinitiator is used
  • curing polymerisable materials with vinyl, epoxide and oxetane groups preferably a cationic photoinitiator is used.
  • a polymerisation initiator that decomposes when heated to produce free radicals or ions that start the polymerisation.
  • a photoinitiator for radical polymerisation for example the commercially available Irgacure 651 , Irgacure 184, Darocure 1173 or Darocure 4205 (all from Ciba Geigy AG) can be used, whereas in case of cationic photopolymerisation the commercially available UVI 6974 (Union Carbide) can be used.
  • the polymerisable LC material can additionally comprise one or more other suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
  • suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
  • the optical retardation film according to the present invention can be used as retardation or compensation film or as alignment layer in conventional LCDs, in particular those of the DAP (deformation of aligned phases) or VA (vertically aligned) mode, like e.g. ECB (electrically controlled birefringence), CSH (colour super homeotropic), VAN or VAC (vertically aligned nematic or cholesteric) displays, MVA (multi-domain vertically aligned) or PVA (patterned vertically aligned) displays, in displays of the bend mode or hybrid type displays, like e.g.
  • DAP deformation of aligned phases
  • VA vertical aligned
  • ECB electrically controlled birefringence
  • CSH colour super homeotropic
  • VAN or VAC vertically aligned nematic or cholesteric
  • MVA multi-domain vertically aligned
  • PVA patterned vertically aligned
  • OCB optically compensated bend cell or optically compensated birefringence
  • R-OCB reflective OCB
  • HAN hybrid aligned nematic or pi-cell ( ⁇ -cell) displays
  • TN twisted nematic
  • HTN highly twisted nematic
  • STN super twisted nematic
  • AMD-TN active matrix driven TN
  • IPS in plane switching
  • TN TN
  • STN STN
  • VA IPS
  • IPS IPS
  • transflective displays are preferably TN, STN, VA and IPS displays, in particular those of the active-matrix type.
  • transflective displays are preferably TN, STN, VA and IPS displays, in particular those of the active-matrix type.
  • the films according to the present invention can also be used in optical or electrooptical devices for other purposes than those described above, for example as alignment layer, optical filter or polarization beam splitter, or in decorative or security applications.
  • they can be used as birefringent marking, image or pattern in decorat :iive or security applications.
  • the methods of the present invention it is possible to produce negative images in films which are only vis ible between crossed-polarisers.
  • a preferred use of these films is as security marking or security thread to authenticate and prevent counterfeiting of documents of value, or for identification of hidden images, informations or patterns. It can thus be applied to consumer products or household objects, car bodies, foils, packing materials, clothes or woven fabric, incorporated into plastic, or applied on documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with money value, like stamps, tickets, shares, cheques etc..
  • birefringent marking is a patterned film that is provided on or directly prepared on a reflective substrate, for example a metal or metallised film or foil, as described in EP 02019792.7.
  • Such a film can for example be prepared as follows: A polymerisable LC material as described above and below is flow-filled into a cell formed by two plane-parallel substrates provided with rubbed polyimide alignment layers to induce planar alignment. The LC material is then isomerised as described above through a grey-scale mask, which is created such that no UV passes in one region, gradually moving to a region where all UV passes. This creates a gradual change in refractive index in the film, while the thickness is constant. The LC material film is then polymerised in situ, e.g. by photopolymerisation, and the polymer film removed from the cell. This then provides a film with graduated refractive index suitable for an optical waveguide for light being passed up through the narrow part of the film.
  • the polymerisable LC material is preferably coated, aligned and polymerised between two substrates, e.g. in a cell formed by two rigid substrates such as glass or quartz plates.
  • Such a film can be used for example as an optical waveguide.
  • an optical waveguide for use as large area flat panel display or projection display.
  • the waveguide which consists of a flat, wedge- shaped glass or plastic panel having lateral dimensions up to more than 1 metre, and a thickness of for example from 0.5 to 2.5 mm that decreases continuously from one egde of the sheet to the opposite edge.
  • Light e.g. laserlight
  • the incident angle at which the light enters the wedge controls how far the light travels inside the wedge before leaving it.
  • WO 02/060187 suggests to use a planar panel with a diffraction grating embossed onto one of the surfaces.
  • the production of a large area panel with a wedge-shaped panel or an embossed diffraction grating requires complicated processing of expensive optical quality materials, like e.g. glass or acryl, with high accuracy.
  • a multilayer or patterned retardation film according to the present invention can also be used for optical effects like e.g. parallax barriers as described in US 6,437,915.
  • the polymerisable LC mixture M1 was formulated, wherein the polymerisable component consists exclusively of isomerisable RMs (i.e. the total amount of isomerisable compounds in the polymerisable component is 100 mol %)
  • Irgacure 651 is a commercially available photoinitiator (from Ciba AG, Basel, Switzerland).
  • Fluorad FC 171 is a commercially available non-ionic fluorocarbon surfactant (from 3M). The mixture was dissolved to create a 50 wt% solution in xylene. This solution was filtered (0.2 ⁇ m PTFE membrane) and spin coated onto glass/rubbed polyimide slides (low pretilt polyimide JSR AL1054 from Japan Synthetic Rubber). The films were exposed to 20 mWcm '2 365 nm radiation in air for varying lengths of time.
  • the films were photopolymerised using 20 mWcm "2 UV-A radiation, for 60 seconds in an N 2 -atmosphere.
  • the retardation, for viewing angles from -60° to + 60°, of each sample prepared was determined by measuring the transmission of the film between parallel polarisers, with the orientation axis of the film at an angle of 45° to the polariser axis.
  • the optical transmission was measured with an Oriel Spectrograph, for the wavelength range of 420-800nm, using a tungsten lamp as the light source (see O. Parri et al., Mol.Cryst.Liq.Cryst., Vol 332, p273, 1999).
  • the retardation values at normal incidence (0 °) are shown in Figure 1 as a function of irradiation time.
  • the tilt angle ⁇ of LC-molecules (directors) in the films was also determined from retardation measurements. These measurements show that films which were exposed with up to 20 seconds of 365 nm radiation maintained their original planar orientation. Films which had been exposed to 25 seconds or more of 365 nm radiation had a splayed orientation. Remarkably, these splayed films did not exhibit any reverse tilt defects, which are normally associated with such LC- films when they are formed on low pretilt substrates. Hence, this method provides an elegant way of obtaining a uniform, splayed retardation film.
  • Such a layer requires a retardation drop of approximately 40 nm, from an initial value of 150 nm, assuming blue pixels centred at 450 nm and red pixels centred at 600 nm.
  • the exact requirement of retardation range depends on the display type used. Films created using the above mixture M1 gave this drop in retardation. At the same time these films also changed from being a planar aligned to being splayed.
  • the polymerisable LC mixture M2 was formulated, containing 32 wt. % of non-isomerisable reactive mesogen (7).
  • the total amount of isomerisable compounds (3) to (6) in the polymerisable component (consisting of compounds (3) to (7)) is 72.8 mol %, and the amount of non-isomerisable compound (7) in the polymerisable component is 27.2 mol %.
  • a first splayed LC layer was prepared from mixture M1 as described in Example 1 and used as an alignment layer.
  • a second layer of the same LC mixture M1 was coated onto the side of the first splayed film showing maximum tilt angle, i.e. having approximately homeotropic orientation.
  • the mixture in the second layer was irradiated with UV light of 365 nm prior and then polymerised.
  • the LC material second layer was homeotropically aligned throughout the layer.
  • a stack of a splayed and a homeotropic LC film was produced.

Abstract

The invention relates to a polymerised liquid crystal (LC) film comprising at least one photoisomerisable compound and having a pattern of regions with different retardation and/or different orientation of the LC material, to methods of preparing such a film, and to its use as alignment layer, optical retardation film or optical waveguide in liquid crystal displays or other optical or electrooptical components or devices, or for decorative or security applications.

Description

Polymerised Liquid Crystal Film with Retardation or Orientation
Field of the Invention
The invention relates to a polymerised liquid crystal (LC) film comprising at least one photoisomerisable compound and having a pattern of regions with different retardation and/or different orientation of the LC material. The invention further relates to methods of preparing such a film, and to its use as alignment layer, optical retardation film or optical waveguide in LC displays or other optical or electrooptical components or devices, or for decorative or security applications.
Background and Prior Art
Liquid crystal displays (LCDs) known from prior art usually contain an assortment of different functional layers, like for example alignment layers, colour filters and retardation layers. Retardation films are used for example to convert between linear and circular polarised light and to compensate the deteriorating contrast and colour of the LCD at wide viewing angles. However, the optical dispersion of conventional retardation films as used in prior art often results in non-perfect conversion, i.e. not all frequencies of visible light are converted between linear and circular polarised states. This is especially disadvantageous for colour LCDs of the active matrix type, where a colour filter is applied so that different pixels of the display in the adressed state show different primary colours (R, G, B).
One aim of the present invention is to provide a retardation film for use in LCDs, especially in active matrix colour LCDs, which does not have the drawbacks of prior art films mentioned above, and in particular allows more efficient conversion between linear and circular polarised states for light of different wavelengths. Another aim is to provide advantageous methods and materials for the preparation of such a retardation film. Another aim is to provide advantageous uses of such a retardation film. Other aims of the present invention are immediately evident to the person skilled in the art from the following detailed description.
The inventors have found that these aims can be achieved by providing a patterned or pixelated retardation layer prepared by the methods as described below, which comprises a pattern of different regions or pixels with different retardation. The pixelated retardation layer can be applied to an LCD comprising a colour filter such that each pixel of the retardation layer has the correct retardation for the light passing through the corresponding pixel of the colour filter. In this way the polarised light passing through the display can be more efficiently converted. The pixelated retarder according to the present invention is preferably prepared by exposing a polymerizable liquid crystal (LC) material incorporating compounds with photosensitive groups to UV light.
It was also found that the methods and materials according to the present invention allow the preparation of retardation layers with different orientation of the LC material, for example planar and splayed layers. Thereby patterned films with a pattern of regions with different orientation and/or different retardation can be prepared. It is also possible to prepare a polymerised LC layer that acts as alignment layers for a subsequent layer, and stacks of films or layers having different orientation and/or retardation.
EP 02019792.7 discloses an optical retardation film with a retardation pattern comprising polymerised nematic LC material, and methods for its preparation by varying the polymerisation conditions and/or the composition of the polymerisable LC material. However, it does not disclose the films or methods according to the present invention. Summary of the Invention
The invention relates to a film comprising a polymerised liquid crystal (LC) material comprising at least one photoisomerisable compound, characterized in that said film comprises at least two regions with different retardation and/or at least two regions with different orientation of the LC material.
The invention further relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation and at least two regions with different orientation of the LC material.
The invention further relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation of the LC material.
The invention further relates to a method of preparing a film as described above, comprising the following steps:
a) providing a layer of a polymerisable LC material comprising at least one photoisomerisable compound onto a substrate, b) aligning the layer of LC material into planar orientation, c) exposing the LC material in the layer, or in selected regions thereof, to photoradiation that causes isomerisation of the isomerisable compound, preferably UV radiation, d) polymerising the LC material in at least a part of the exposed regions of the material, thereby fixing the orientation, and e) optionally removing the polymerised film from the substrate,
preferably a process comprising steps a)-e) wherein the retardation and/or orientation of the LC material is controlled by varying the amount and/or type of the photoisomerisable compound, and/or by varying the intensity of the photoradiation and/or the exposure time. The invention further relates to a method of preparing a multilayer comprising al least two layers of polymerised LC material having different orientation, comprising the following steps:
A) providing a first layer of a polymerisable LC material comprising at least one photoisomerisable compound onto a substrate,
B) aligning the first layer of LC material nto planar orientation and polymerising the material, thereby fixi ng the orientation, C)providing a second layer of LC materi al as described in steps A) and B), wherein the first layer serves as substrate,
wherein the LC material in at least one of said first and second layers, or in selected regions thereof, before polymerisation is exposed to photoradiation that causes isomerisation of the isomerisable compound, preferably UV radiation.
The invention further relates to a method of preparing a film or a multilayer as described above, wherein the LC material is exposed to radiation that causes photoisomerisation and photopolymerisation,. and wherein the steps of photoisomerisation and photopolymerisation are carried out under different conditions, in particular under different gas atmospheres, especially preferably wherein photoisomerisation is carried out in the presence of oxygen and photopolymerisation is carried out in the absence of oxygen.
The invention further relates to a film or a multilayer obtained by above methods.
The invention relates to a polymerisable LC material comprising at least one photoisomerisable compound as described above and below.
The invention further relates to the use of a film or multilayer as described above and below in liquid crystal displays (LCDs) or other optical or electrooptical components or devices, for decorative or security applications. The invention further relates to the use of a film as described above and below as alignment layer, optical retardation film or optical waveguide.
The invention further relates to a patterned film comprising at least two regions having different retardation for use as optical retardation film in an active matrix colour LCD.
The invention further relates to an LCD comprising an optical retardation film as described above and below.
The invention further relates to the use of a film as described above and below, in particular a film having at least two regions or a pattern of regions with different retardation, as optical retardation film in an LCD, characterized in that the film is positioned between the substrates of the switchable LC cell.
The invention further relates to an LCD as described above and below, comprising a LC cell formed by two plane parallel substrates at least one of which is transparent to incident light, an electrode layer provided on the inside of at least one of said two transparent substrates and optionally superposed with an alignment layer, and an LC medium located between the two substrates that is switchable between at least two different states by application of an electric field, characterized in that the LCD comprises at least one film comprising polymerised LC material as described above and below that is positioned between the two plane parallel substrates forming the LC cell.
Definition of Terms
The term 'film' as used in this application includes self-supporting, i.e. free-standing, films that show more or less pronounced mechanical stability and flexibility, as well as coatings or layers on a supporting substrate or between two substrates. The term 'liquid crystal or mesogenic material' or 'liquid crystal or mesogenic compound' should denote materials or compounds comprising one or more rod-shaped, board-shaped or disk-shaped mesogenic groups, i.e. groups with the ability to induce liquid crystal phase behaviour. Liquid crystal (LC) compounds with rod-shaped or board-shaped groups are also known in the art as 'calamitic' liquid crystals. Liquid crystal compounds with a disk-shaped group are also known in the art as 'discotic' liquid crystals. The compounds or .. materials comprising mesogenic groups do not necessarily have to exhibit a liquid crystal phase themselves. It is also possible that they show liquid crystal phase behaviour only in mixtures with other compounds, or when the mesogenic compounds or materials, or the mixtures thereof, are polymerised.
For the sake of simplicity, the term 'liquid crystal material' is used hereinafter for both liquid crystal materials and mesogenic materials.
Polymerisable compounds with one polymerisable group are also referred to as 'monoreactive' compounds, compounds with two polymerisable groups as 'direactive' compounds, and compounds with more than two polymerisable groups as 'multireactive' compounds.
Compounds without a polymerisable group are also referred to as
'non-reactive' compounds.
The term 'reactive mesogen' (RM) means a polymerisable mesogenic or liquid crystal compound.
The term 'director' is known in prior art and means the preferred orientation direction of the long molecular axes (in case of calamitic compounds) or short molecular axis (in case of discotic compounds) of the mesogens in a liquid crystal material.
The term 'planar structure' or 'planar orientation' refers to a film wherein the optical axis is substantially parallel to the film plane. The term 'homeotropic structure' or 'homeotropic orientation' refers to a film wherein the optical axis is substantially perpendicular to the film plane, i.e. substantially parallel to the film normal.
The terms 'tilted structure' or 'tilted orientation" refers to a film wherein the optical axis is tilted at an angle θ between 0 and 90 degrees relative to the film plane.
The term 'splayed structure' or 'splayed orientation' means a tilted orientation as defined above, wherein the tilt angle additionally varies monotonuously in the range from 0 to 90 °, preferably from a minimum to a maximum value, in a direction perpendicular to the film plane.
The tilt angle of a splayed film hereinafter is given as the average tilt angle θave, unless stated otherwise.
The average tilt angle θave is defined as follows
d'=0
"ave "~
wherein θ'(d') is the local tilt angle at the thickness d' within the film, and d is the total thickness of the film.
In planar, homeotropic and tilted optical films comprising uniaxially positive birefringent liquid crystal material with uniform orientation, the optical axis of the film is given by the director of the liquid crystal material.
The term 'orientation' as used in connection with optical films, for example in the terms 'splayed or tilted orientation' or 'homeotropic orientation' or 'planar orientation', is intended to describe the general spatial orientation direction of the optical axis of the films. This should not be confused with a patterned film having planar alignment, wherein the optical axis or the liquid crystal molecules are all oriented in planes parallel to the film plane, but within said plane have different azimuthal 'orientation' directions in different regions.
Brief Description of the Drawings
Figure 1 shows the retardation versus irradiation time of a film prepared by a process according to example 1 of the present invention.
Figure 2 shows the retardation versus irradiation time of a film prepared by a process according to example 2 of the present invention.
Figure 3 shows a pixelated optical film according to example 2 of the present invention.
Figure 4 schematically depicts an active-matrix colour LCD comprising an optical film according to the present invention.
Figure 5 schematically depicts a transflective colour LCD comprising an optical film according to the present invention.
Detailed Description of the Invention
One aspect of the invention relates to a patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation and at least two regions with different orientation of the LC material, wherein said regions differing in retardation can also differ in orientation, or they can be different regions. Thus, for example one embodiment relates to a film with a pattern of a first and a second region, wherein the first and said second region differ in both retardation and orientation. Another embodiment relates for example to a film with a pattern of a first, a second and a third region, wherein said first and second region differ in one of retardation and orientation, and said third region differs in at least one of retardation and orientation from at least one of said first and said second region. Another embodiment relates for example to a film with a pattern of a first, a second, a third and a fourth region, each of which has a retardation different from each other region, and two of said regions have the same orientation. Other combinations are also possible.
The patterned film according to the present invention is preferably obtained by polymerisation or crosslinking of a polymerisable LC material, preferably by a process comprising steps a) to e) as described above. Apart from the specific conditions and materials described in this invention, the steps a) to e) can be carried out according to standard procedures that are known to the expert and are described in the literature.
The polymerisable LC material comprises a photoisomerisable compound, preferably a photoisomerisable mesogenic or LC compound, very preferably a photoisomerisable compound that is also polymerisable. The isomerisable compound changes its shape, e.g. by E-Z- isomerisation, when exposed to radiation of a specific wavelength, e.g. UV-radiation. This leads to disruption of the uniform planar orientation of the LC material, resulting in a drop of its birefringence. Since the optical retardation of an oriented LC layer is given as the product d'Δn of the layer thickness d and the birefringence Δn of the LC material, the drop in birefringence also causes a decrease of the retardation in the irradiated parts of the LC material. The orientation and retardation of the LC material is then fixed by in-situ polymerisation of the irradiated regions or of the entire film.
Polymerisation of the LC material is achieved for example by thermal or photopolymerisation. In case photopolymerisation is used, the type of radiation used for photoisomerisation and for photopolymerisation of the LC material may be the same or different. In case radiation, e.g. UV-radiation, of a wavelength is used that can cause both photoisomerisation and photopolymerisation of the LC material, the steps of photoisomerisation and photopolymerisation are preferably carried out under different conditions, in particular under different gas atmospheres. In this case preferably photoisomerisation is carried out in the presence of oxygen, like e.g. in air, and photopolymerisation is carried out in the absence of oxygen, especially preferably under an inert gas atmosphere of e.g. nitrogen or a noble gas like argon. If the isomerisation step is performed in the presence of oxygen or in air, the oxygen scavenges the free radicals produced from the photoinitiator present in the material and thus prevents polymerisation. In the next step oxygen or air is removed and replaced by an inert gas such as nitrogen or argon, thereby allowing polymerisation to occur. This allows better control of the process steps.
The degree of isomerisation and thus the birefringence change in the layer of LC material can be controlled e.g. by varying the radiation dose, i.e. the intensity, exposure time and/or power of the radiation. Also, by applying a photomask between the radiation source and the LC layer it is possible to prepare a film with a pattern of regions or pixels having specific values of the retardation that differ from each other. For example, a film comprised of two different values of retardation can be created using a simple, monochrome mask. A more complicated film exhibiting multiple regions of different retardation can be created using a grey-scale mask. After the desired retardation values are achieved the LC layer is polymerised. In this way it is possible to create a polymer retardation film with values of retardation ranging from that of the initial LC layer to zero. The value of retardation for the initial layer of LC material is controlled by appropriate selection of the layer thickness and the type and amounts of the individual components of the LC material.
The polymerisable LC material is preferably a nematic or smectic LC material, in particular a nematic material, and preferably comprises at least one di- or multireactive achiral RM and optionally one or more than one monoreactive achiral RMs. By using di- or multireactive RMs a crosslinked film is obtained wherein the structure is permanently fixed, and which exhibits high mechanical stability and high stability of the optical properties against external influences like temperature or solvents. Films comprising crosslinked LC material are thus especially
Polymerizable mesogenic mono-, di- and multireactive compounds used for the present invention can be prepared by methods which are known per se and which are described, for example, in standard works of organic chemistry such as, for example, Houben-Weyl, _. Methoden der orga ischen Chemie, Thieme-Verlag, Stuttgart.
Examples of suitable polymerizable mesogenic compounds that can be used as monomers or comonomers in a polymerizable LC mixture are disclosed for example in WO 93/22397, EP 0 261 712, DE 195 04 224, WO 95/22586, WO 97/00600 and GB 2 351 734. The compounds disclosed in these documents, however, are to be regarded merely as examples that shall not limit the scope of this invention.
Examples of especially useful polymerisable mesogenic compounds (reactive mesogens) are shown in the following lists which should, however, be taken only as illustrative and is in no way intended to restrict, but instead to explain the present invention:
Figure imgf000013_0001
Figure imgf000014_0001
In the above formulae, P is a polymerisable group, preferably an acryl, methacryl, vinyl, vinyloxy, propenyl ether, epoxy, oxetane or styryl group, x and y are identical or different integers from 1 to 12 , A is 1 ,4- phenylene that is optionally mono-, di- or trisubstituted by L1, or 1 ,4- cyclohexylene, u and v are independently of each other 0 or 1 , Z° is - COO-, -OCO-, -CH2CH2-, -CH=CH-, -C≡C- or a single bond, R° is a polar group or an unpolar group, L, L1 and L2 are independently of each other H, F, Cl, CN or an optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkylcarbonyloxy, alkoxycarbonyl or aikoxycarbonyloxy group with 1 to 7 C atoms, and r is 0, 1 , 2, 3 or 4. The phenyl rings in the above formulae are optionally substituted by 1 , 2, 3 or 4 groups L.
The term 'polar group' in this connection means a group selected from F, Cl, CN, N02) OH, OCH3, OCN, SCN, an optionally fluorinated alkycarbonyl, alkoxycarbonyl, alkylcarbonyloxy or aikoxycarbonyloxy group with up to 4 C atoms or a mono- oligo- or polyfluorinated alkyl or alkoxy group with 1 to 4 C atoms. The term 'unpolar group' means an optionally halogenated alkyl, alkoxy, alkycarbonyl, alkoxycarbonyl, alkylcarbonyloxy or aikoxycarbonyloxy group with 1 or more, preferably 1 to 12 C atoms which is not covered by the above definition of 'polar group'.
Especially preferred are mixtures comprising one or more polymerisable compounds comprising an acetylene or tolane group with high birefringence, like e.g. compounds of formula Ig above. Suitable polymerisable tolanes are described for example in GB 2,351,734.
Suitable photoisomerisable compounds are known in prior art.
Examples of photoisomerisable compounds include azobenzenes, benzaldoximes, azomethines, stilbenes, spiropyrans, spirooxadines, fulgides, diarylethenes, cinnamates. Further examples are 2- methyleneindane-1-ones as described for example in EP 1 247 796, and (bis-)benzylidenecycloalkanones as described for example in EP 1 247 797. Especially preferably the LC material comprises one or more cinnamates, in particular cinnamate reactive mesogens (RMs) as described for example in US 5,770,107 (P0095421) and EP 02008230.1. Very preferably the LC material comprises one or more cinnamate RMs selected of the following formulae
Figure imgf000016_0001
wherein P, A and v have the meanings given above, L has one of the meanings of L1 as defined above, Sp is a spacer group, like for example alkylene or alkyleneoxy with 1 to 12 C-atoms, or a single bond, and R is Y or R° as defined above or denotes P-Sp.
Especially preferred are cinnamate RMs containing a polar terminal group Y as defined above. Very preferred are cinnamate RMs of formula III and IV wherein R is Y.
The photoradiation used to cause photoisomerisation in the LC material depends on the type of photoisomerisable compounds, and can be easily selected by the person skilled in the art. Generally, compounds that show photoisomerisation induced by UV-radiation are preferred. For example, for cinnamate compounds like those of formula III, IV and V, typically UV-radiation with a wavelength in the UV-A range (320-400 nm) or with a wavelength of 365 nm is used.
It was found that polymerisable LC materials containing a high amount of photoisomerisable compounds are especially useful to the purpose of the present invention, as these materials allow to easily control and adjust the retardation of the optical retardation film. For example, an oriented layer of LC mixture containing a high amount of photoisomerisable compounds, which is subjected to radiation inducing photoisomerisation, shows a large decrease in retardation with increasing irradiation time. In such a material the retardation can be altered within a broader range of values and can be controlled more accurately, e.g. by varying the irradiation time, compared to a material showing only a slight change of retardation.
Thus, according to a first preferred embodiment of the present invention, the polymerisable component of the polymerisable LC material comprises at least 12 mol% of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
The term 'polymerisable component' refers to the polymerisable mesogenic and non-mesogenic compounds in the total polymerisable mixture, i.e. hot including other non-polymerisable components and additives like initiators, surfactants, stabilizers, solvents and the like.
Preferably the polymerisable component of the LC material comprises 12 to 100 mol %, very preferably from 40 to 100 mol %, in particular from 60 to 100 mol %, most preferably from 80 to 100 mol % of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
In another preferred embodiment, the polymerisable component of the LC material comprises from 20 to 99 mol %, preferably from 40 to 80 mol %, most preferably from 50 to 70 mol % of photoisomerisable compounds, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
In another preferred embodiment, the polymerisable component of the LC material comprises 100 mol % photoisomerisable RMs, preferably cinnamate RMs, most preferably selected from formula III, IV and V.
The tilt angle θ of LC-molecules (directors) in the polymerised film can be determined from retardation measurements. These measurements show that, if the LO-material is exposed to the photoirradiation that is used for photoisomerisation for a longer time, or to a higher radiation intensity, its original planar orientation changes into tilted or splayed orientation. Remarkably, these splayed films do not exhibit reverse tilt defects, which are normally associated with splayed LC films formed on a low pretilt substrate. Therefore, the method according to the present invention provides an elegant way of obtaining a uniform, splayed retardation film.
Thus, according to a second preferred embodiment of the present invention, the orientation of the LC material in the film is controlled by varying the irradiation time and/or intensity of the photoradiation used to cause isomerisation in the LC material.
This second preferred embodiment also relates to a method of preparing a polymerised LC film having splayed structure, and showing a reduced number of reverse tilt defects, or even being free of tilt defects, by varying the orientation in a layer of polymerisable LC material having planar orientation as described in steps a) to e) above.
This embodiment also relates to a splayed film obtained by said method, preferably having a thickness of less than 3 μm, very preferably from 0.5 to 2.5 μm.
The optimum irradiation time and radiation intensity depend on the type of LC material used, in particular on the type and amount of photoisomerisable compounds in the LC material. As mentioned above, the decrease in retardation of a polymerisable LC material containing for example cinnamate RMs is greater for mixtures with high concentrations of cinnamate RMs. On the other hand, irradiation of the polymerisable LC material with a high dose of
UV-light leads to the formation of splayed films.
Thus, another method to control the change of retardation and orientation in the LC layer is by defining the maximum decrease _of retardation achieved by photoisomerisation, whilst still maintaining the planar orientation in the LC layer, as a function of the concentration of photoisomerisable compounds.
In a polymerisable LC mixture for use in a method of preparing a film according to the present invention, where an orientation change from planar to splayed is not required, the polymerisable component preferably comprises 40 to 90 mol%, very preferably 50 to 70 % of photoisomerisable cinnamate compounds of formula III, IV and/or V.
In a polymerisable LC mixture for use in a method of preparing a film according to the present invention, where an orientation change from planar to splayed is desired, the polymerisable component preferably comprises 100 % of photoisomerisable cinnamate compounds of formula III, IV and/or V.
Also, a polymerisable LC mixture for use in a method of preparing a film according to the present invention, where an orientation change from planar to splayed is desired, preferably does not comprise photoisomerisable cinnamate compounds of formula III or IV wherein R is an alkyl group.
By using photomask techniques, it is possible to use the method according to this second preferred embodiment to prepare patterned films comprising regions with different orientation and/or different retardation. Especially preferred is a film comprising at least one region having planar orientation and at least one region having splayed orientation.
Further preferred is a film comprising at least one region wherein the retardation is zero.
The method described above can also be used to prepare a multilayer comprising multiple polymerised LC films, each having with different orientation of the LC material, preferably by a method comprising steps A), B) and CJ'-as described above.
Especially preferred is a multilayer comprising two or more, very preferably two, three or four polymerised LC films.
For example, a first polymerised planar LC film is produced as described above. This film is used as substrate and subsequently coated with a second layer of the same LC mixture. The second layer is then also aligned into planar orientation. Thus, a stack comprising two planar polymerised LC films can be produced. If the second layer is irradiated e.g. with UV-light of a sufficient dose prior to polymerisation, it shows splayed structure. Thus, a stack comprising a planar and a splayed polymerised LC filiti can be produced.
If the LC mixture in the first layer is irradiated e.g. with UV-light of a sufficient dose prior to polymerisation, the first layer shows yields a splayed LC film. If a second layer of the same LC mixture is coated onto this splayed film and irradiated prior to polymerization, the second layer forms a homeotropically aligned layer, thus a stack of splayed and homeotropic films can be produced.
Especially preferred is a multilayer comprising at least one layer having planar orientation and at least one layer having splayed orientation. Further preferred is a multilayer comprising at least one layer having splayed orientation and at least one region having homeotropic orientation.
It is also possible to combine the above methods to prepare a film that has a pattern of regions with different orientation and regions with different retardation.
It is also possible to combine the above methods to prepare a .. multilayer comprising two or more layers, at least one of which has a pattern of regions with different orientation and/or with different retardation.
In a third preferred embodiment, the film according to the present invention is used as optical retardation film in an LCD not outside the switchable LC cell of the display, but between the substrates, usually glass substrates, forming the switchable LC cell and containing the switchable LC medium (incell application).
Compared to conventional displays where optical retarders are usually placed between the LC cell and the polarisers, incell application of an optical retardation film has several advantages. For example, a display where the optical film is attached outside of the glass substrates forming the LC cell usually suffers from parallax problems, which can severely impair viewing angle properties. If the retardation films is prepared inside the LC display cell, these parallax problems can be reduced or even avoided.
An LCD according to this embodiment preferably comprises
1 ) a liquid crystal (LC) cell comprising the following elements, starting from the edges to the centre of the cell in the sequence listed below
11) a first and a second substrate plane parallel to each other, at least one of which is transparent to incident light, 12) an array of nonlinear electric elements on one of said substrates which can be used to individually switch individual pixels of said LC cell, said elements being preferably active elements like transistors, very preferably TFTs,
13) a colour filter array provided on one of said substrates, preferably on the substrate opposite to that carrying the array of nonlinear elements, said colour filter optionally being covered by a planarisation layer,
14) a first electrode layer provided on the inside of said first substrate, 15) optionally a second electrode layer provided on the inside of said second substrate,
16) optionally first and second alignment layers provided on said first and second electrodes, 17) an LC medium that is switchable between at least two different states by application of an electric field,
2) a first linear polariser on one side of the LC cell,
3) optionally a second linear polariser on the side of the LC cell opposite to that of the first linear polariser, and
4) at least one patterned optical retardation film,
characterized in that said patterned optical retardation film 4) is situated between the first and second substrate of the LC cell, preferably between the colour filter and the liquid crystal medium, very preferably between the colour filter and one of said electrode layers, or if a planarisation layer is present, between the planarising layer and one of said electrode layers.
An LCD according to this preferred embodiment is exemplarily depicted in Figure 4, comprising two substrates (11a, 11b), a TFT array (12), a colour filter array (13a), a planarisation layer (13b), electrode layers (14) and optionally (15), optionally two alignment layers (16a, 16b), an LC medium (17), and an optical retardation film (4) according to the present invention that is positioned between the planarisation layer and LC medium and optionally provided on another alignment layer (16c). Depending on the display mode, the alignment layer (16a) and/or (16b), and one of the electrode layers (14) and (15) may also be omitted. Preferably, an alignment layer (16c) is present between the optical retardation film (4) and the planarisation layer (13b).
The optical retardation film (4) can also be positioned directly (i.e. without the presence of an intermediate layer) on the colour filter array (13a) without the presence of a planarisation layer (13b), so that the optical retardation film serves as planarisation layer. It is also possible that the optical retardation film (4) is positioned between the colour filter array (13a) and the planarisation layer (13b). Preferably, an alignment layer (16c) is present between the optical retardation film (4) and the colour filter (13a).
Especially preferably, the optical retardation film (4) is prepared directly on top of the colour filter (13a) or the planarisation layer (13b) inside the display cell, i.e. the colour filter or planarisation layer, optionally covered by an alignment layer, serve as substrate for the LC film preparation.
As colour filter (13a) any standard colour filter known in prior art for use in flat panel displays can be used. Such a colour filter typcially has a pattern of different pixels transmitting one of the primary colours red, green and blue (R, G, B). The optical retardation film (4) preferably exhibits a pattern of pixels with three different retardations, each of which is adjusted such that its efficiency of converting linearly polarised light into circularly polarised light is optimised for one of the colours R, G and B, and is preferably positioned on the colour filter such that each R-, G- or B-pixel of the colour filter is covered by a corresponding pixel of the optical retardation film having a retardation optimised for this colour.
The thickness of a film according to the present invention, or in case of multilayers the thickness of a single layer, is preferably from 0.5 to 2.5 microns, very preferably from 0.6 to 2 microns, most preferably from 0.7 to 1.5 microns. The on-axis retardation (i.e. at 0° viewing angle) of a film or layer according to the present invention is preferably from 60 nrn to 400 nm, especially preferably from 100 nm to 350 nm.
For practical applications in LCDs it is especially preferred that the optical retardation film shows a retardation of approximately 0.25 times of the wavelength of incident light, also known in prior art as quarter-wave retardation plate or film (QWF) or λ/4-plate. Especially preferred retardations for use as QWF are from 90 to 200 nm, preferably from 100 to 175 nm.
Further preferred is a retardation film comprising regions with one or more, preferably one, two or three different values of the retardation, each of said values being adjusted such that its efficiency of converting linearly polarised light into circularly polarised light is optimised for light of one of the primary colours red, green and blue (R, G, B). In particular, said values of retardation are as follows:
For red light of a wavelength of 600 nm the retardation is from 140 to 190 nm, preferably 145 to 180 nm, very preferably 145 to 160 nm, most preferably 150 nm.
For green light of a wavelength of 550 nm the retardation is from 122 to 152 nm, preferably 127 to 147 nm, very preferably 132 to 142 nm, most preferably 137 nm.
For blue light of a wavelength of 450 nm the retardation is from 85 to 120 nm, preferably 90 to 115 nm, very preferably 100 to 115 nm, most preferably 112 nm.
The films according to the present invention can also be used as alignment layers for LC materials. For example, it is possible to use a polymerised LC film according to the invention to align a subsequent layer of a polymerisable LC material coated thereon. In this way, stacks of polymerised LC films can be prepared. As the orientation of the first polymerised LC layer influences the alignment on the subsequent layer, and the alignment in the LC material can be varied by varying radiation intenstiy, time and amount of photoisomerisable compounds, it is possible to prepare stacks with different combinations of planar, homeotropic and splayed films.
To prepare a polymerised LC film, the polymerisable LC mixture is preferably coated onto a substrate, aligned, preferably into planar orientation, and polymerised in situ, for example by exposure to heat or actinic radiation, to fix the orientation of the LC molecules.
Alignment and curing are carried out in the LC phase of the mixture. This technique is well-known in the art and described for example in D.J. Broer, et al., Angew. Makromol. Chem. 183, (1990), 45-66.
Alignment of the LC material can be achieved for example by treatment of the substrate onto which the material is coated, by shearing the material during or after coating, by application of a magnetic or electric field to the coated material, or by the addition of surface-active compounds to the LC material. Reviews of alignment techniques are given for example by I. Sage in "Thermotropic Liquid Crystals", edited by G. W. Gray, John Wiley & Sons, 1987, pages 75- 77, and by T. Uchida and H. Seki in "Liquid Crystals - Applications and Uses Vol. 3", edited by B. Bahadur, World Scientific Publishing, Singapore 1992, pages 1-63. A review of alignment materials and techniques is given by J. Cognard, Mol. Cryst. Liq. Cryst. 78, Supplement 1 (1981), pages 1-77.
In a preferred embodiment the polymerisable LC material comprises an additive that induces or enhances planar alignment of the LC molecules on the substrate. Preferably the additive comprises one or more surfactants. Suitable surfactants are described for example in J.
Cognard, Mol.Cryst.Liq.Cryst. 78, Supplement 1 , 1-77 (1981).
Particularly preferred are non-ionic surfactants, very fluorocarbon surfactants, like for example the commercially available fluorocarbon surfactants Fluorad FC-171® (from 3M Co.), or Zonyl FSN ® (from
DuPont), and the surfactants described in GB 0227108.8. The polymerisable LC material is preferably dissolved or dispersed in a solvent, preferably in an organic solvent. The solution or dispersion is then coated onto the substrate, for example by spin-coating or other known techniques, and the solvent is evaporated off before polymerisation.
The polymerisable LC material may additionally comprise a polymeric binder or one or more monomers capable of forming a polymeric binder and/or one or more dispersion auxiliaries. Suitable binders and dispersion auxiliaries are disclosed for example in WO 96/02597. Especially preferred, however, are LC materials not containing a binder or dispersion auxiliary.
Polymerisation can be achieved for example by exposure to heat or actinic radiation. Actinic radiation means irradiation with light, like UV light, IR light or visible light, irradiation with X-rays or gamma rays or irradiation with high energy particles, such as ions or electrons. Preferably polymerisation is carried out by UV irradiation at a non- absorbing wavelength. As a source for actinic radiation for example a single UV lamp or a set of UV lamps can be used. When using a high lamp power the curing time can be reduced. Another possible source for actinic radiation is a laser, like e.g. a UV laser, an IR laser or a visible laser.
Polymerisation is preferably carried out in the presence of an initiator absorbing at the wavelength of the actinic radiation. For example, when polymerising by means of UV light, a photoinitiator can be used that decomposes under UV irradiation to produce free radicals or ions that start the polymerisation reaction. When curing polymerisable materials with acrylate or methacrylate groups, preferably a radical photoinitiator is used, when curing polymerisable materials with vinyl, epoxide and oxetane groups, preferably a cationic photoinitiator is used. It is also possible to use a polymerisation initiator that decomposes when heated to produce free radicals or ions that start the polymerisation. As a photoinitiator for radical polymerisation for example the commercially available Irgacure 651 , Irgacure 184, Darocure 1173 or Darocure 4205 (all from Ciba Geigy AG) can be used, whereas in case of cationic photopolymerisation the commercially available UVI 6974 (Union Carbide) can be used.
The polymerisable LC material can additionally comprise one or more other suitable components such as, for example, catalysts, sensitizers, stabilizers, inhibitors, chain-transfer agents, co-reacting monomers, surface-active compounds, lubricating agents, wetting agents, dispersing agents, hydrophobing agents, adhesive agents, flow improvers, defoaming agents, deaerators, diluents, reactive diluents, auxiliaries, colourants, dyes or pigments.
The optical retardation film according to the present invention can be used as retardation or compensation film or as alignment layer in conventional LCDs, in particular those of the DAP (deformation of aligned phases) or VA (vertically aligned) mode, like e.g. ECB (electrically controlled birefringence), CSH (colour super homeotropic), VAN or VAC (vertically aligned nematic or cholesteric) displays, MVA (multi-domain vertically aligned) or PVA (patterned vertically aligned) displays, in displays of the bend mode or hybrid type displays, like e.g. OCB (optically compensated bend cell or optically compensated birefringence), R-OCB (reflective OCB), HAN (hybrid aligned nematic) or pi-cell (π-cell) displays, furthermore in displays of the TN (twisted nematic), HTN (highly twisted nematic) or STN (super twisted nematic) mode, in AMD-TN (active matrix driven TN) displays, or in displays of the IPS (in plane switching) mode which are also known as 'super TFT' displays.
Especially preferred are TN, STN, VA and IPS displays, in particular those of the active-matrix type. Further preferred are transflective displays.
The films according to the present invention can also be used in optical or electrooptical devices for other purposes than those described above, for example as alignment layer, optical filter or polarization beam splitter, or in decorative or security applications.
For example, they can be used as birefringent marking, image or pattern in decorat :iive or security applications. With the methods of the present invention it is possible to produce negative images in films which are only vis ible between crossed-polarisers. A preferred use of these films is as security marking or security thread to authenticate and prevent counterfeiting of documents of value, or for identification of hidden images, informations or patterns. It can thus be applied to consumer products or household objects, car bodies, foils, packing materials, clothes or woven fabric, incorporated into plastic, or applied on documents of value like banknotes, credit cards or ID cards, national ID documents, licenses or any product with money value, like stamps, tickets, shares, cheques etc..
Especially preferred for use as birefringent marking is a patterned film that is provided on or directly prepared on a reflective substrate, for example a metal or metallised film or foil, as described in EP 02019792.7.
By using the method according to the present invention it is also possible to create a film with constant thickness and large lateral dimensions having a graded refractive index, i.e. wherein the refractive index continuously decreases in a direction parallel to the film plane from one edge to the opposite egde.
Such a film can for example be prepared as follows: A polymerisable LC material as described above and below is flow-filled into a cell formed by two plane-parallel substrates provided with rubbed polyimide alignment layers to induce planar alignment. The LC material is then isomerised as described above through a grey-scale mask, which is created such that no UV passes in one region, gradually moving to a region where all UV passes. This creates a gradual change in refractive index in the film, while the thickness is constant. The LC material film is then polymerised in situ, e.g. by photopolymerisation, and the polymer film removed from the cell. This then provides a film with graduated refractive index suitable for an optical waveguide for light being passed up through the narrow part of the film.
To achieve a film thickness in the range of several millimetres, the polymerisable LC material is preferably coated, aligned and polymerised between two substrates, e.g. in a cell formed by two rigid substrates such as glass or quartz plates. Such a film can be used for example as an optical waveguide.
For example, in WO 01/72037 and WO 02/060187 an optical waveguide is disclosed for use as large area flat panel display or projection display. The waveguide which consists of a flat, wedge- shaped glass or plastic panel having lateral dimensions up to more than 1 metre, and a thickness of for example from 0.5 to 2.5 mm that decreases continuously from one egde of the sheet to the opposite edge. Light, e.g. laserlight, enters the wedge at its small side having the higher thickness and propagates inside the wedge, being reflected at the inner surfaces with an increasing reflection angle, until a critical angle is reached where the light leaves the wedge. The incident angle at which the light enters the wedge controls how far the light travels inside the wedge before leaving it. Alternatively to the wedge shape, WO 02/060187 suggests to use a planar panel with a diffraction grating embossed onto one of the surfaces. However, the production of a large area panel with a wedge-shaped panel or an embossed diffraction grating requires complicated processing of expensive optical quality materials, like e.g. glass or acryl, with high accuracy.
This drawback can be avoided by using a film according to the present invention having constant thickness and a graded refractive index gradient. Due to its refractive index gradient the film operates in an optically similar way as a wedge having a constant refractive index but a thickness gradient, however, processing of the film to achieve a wedge-shape or surface gratings is not necessary. A multilayer or patterned retardation film according to the present invention can also be used for optical effects like e.g. parallax barriers as described in US 6,437,915.
The examples below shall illustrate the invention without limiting it. The examples below serve to illustrate the invention without limiting it. In these examples, all temperatures are given in degrees Celsius and all percentages are given as percentage by weight unless stated otherwise.
Example 1
The polymerisable LC mixture M1 was formulated, wherein the polymerisable component consists exclusively of isomerisable RMs (i.e. the total amount of isomerisable compounds in the polymerisable component is 100 mol %)
M1 :
(1) 9.0 %
(2) 23.0 %
(3) 14.4 %
(4) 18.0 %
(5) 17.0 %
(6) 17.0 %
Irgacure 651 1.0 %
Fluorad FC171 0.6 %
Figure imgf000030_0001
(1)
Figure imgf000031_0001
(2)
Figure imgf000031_0002
(3)
Figure imgf000031_0003
(4)
Figure imgf000031_0004
(5)
Figure imgf000031_0005
(6)
The compounds (1 ) to (6) are known in prior art. Irgacure 651 is a commercially available photoinitiator (from Ciba AG, Basel, Switzerland). Fluorad FC 171 is a commercially available non-ionic fluorocarbon surfactant (from 3M). The mixture was dissolved to create a 50 wt% solution in xylene. This solution was filtered (0.2 μm PTFE membrane) and spin coated onto glass/rubbed polyimide slides (low pretilt polyimide JSR AL1054 from Japan Synthetic Rubber). The films were exposed to 20 mWcm'2365 nm radiation in air for varying lengths of time. Subsequently, the films were photopolymerised using 20 mWcm"2 UV-A radiation, for 60 seconds in an N2-atmosphere. The retardation, for viewing angles from -60° to + 60°, of each sample prepared was determined by measuring the transmission of the film between parallel polarisers, with the orientation axis of the film at an angle of 45° to the polariser axis. The optical transmission was measured with an Oriel Spectrograph, for the wavelength range of 420-800nm, using a tungsten lamp as the light source (see O. Parri et al., Mol.Cryst.Liq.Cryst., Vol 332, p273, 1999). The retardation values at normal incidence (0 °) are shown in Figure 1 as a function of irradiation time.
From Figure 1 it is evident that continued irradiation with 365nm light leads to films with lower values of retardation. A film which had been exposed for 300 seconds was found to have zero retardation. The thickness of each of the polymerised samples was subsequently measured, using a KLA Tencor alpha-step 500, and found, within experimental error, to be constant at 1.1 + 0.1 μm. Since the retardation of the films is decreasing whilst the film thickness remains constant, the birefringence of the film is also decreasing.
The tilt angle θ of LC-molecules (directors) in the films was also determined from retardation measurements. These measurements show that films which were exposed with up to 20 seconds of 365 nm radiation maintained their original planar orientation. Films which had been exposed to 25 seconds or more of 365 nm radiation had a splayed orientation. Remarkably, these splayed films did not exhibit any reverse tilt defects, which are normally associated with such LC- films when they are formed on low pretilt substrates. Hence, this method provides an elegant way of obtaining a uniform, splayed retardation film.
As well as producing a splayed retardation film it is also desirable to produce a planar quarter-wave retardation plate. Such a layer requires a retardation drop of approximately 40 nm, from an initial value of 150 nm, assuming blue pixels centred at 450 nm and red pixels centred at 600 nm. The exact requirement of retardation range depends on the display type used. Films created using the above mixture M1 gave this drop in retardation. At the same time these films also changed from being a planar aligned to being splayed.
Example 2
The polymerisable LC mixture M2 was formulated, containing 32 wt. % of non-isomerisable reactive mesogen (7).
M2:
(3) 14.4 %
(4) 18.0 %
(5) 17.0 %
(6) 17.0 %
(7) 32.0 % (non-isomerisable)
Irgacure 651 1.0 %
Fluorad FC171 0.6 %
Figure imgf000033_0001
(7)
In M2, the total amount of isomerisable compounds (3) to (6) in the polymerisable component (consisting of compounds (3) to (7)) is 72.8 mol %, and the amount of non-isomerisable compound (7) in the polymerisable component is 27.2 mol %.
Films of this mixture were prepared and analysed as detailed in Example 1. The retardation at normal incidence is plotted as a function of irradiation time in Figure 2.
From the retardation data the orientation of the LC-molecules in the films was also determined. It was found that after exposure to 75 seconds of 20 mWcrn"2365 nm light the films produced changed from being planar to being splayed. Therefore, films of this mixture preserve their planar alignment better than those in Example 1. The film thickness was measured and also found to be constant (1.0 ± 0.1 μm) regardless of the alignment of the film. Therefore it is possible to create a planar aligned quarter wave film over the desired range of retardation values.
Further variation of the mixture by incorporating higher amounts of non-isomerisable RMs allows a greater shift in retardation whilst preserving the original planar alignment.
To further demonstrate the concept of producing a patterned retardation layer, a spin coated film was irradiated through a grey- scale (0:50:100 %T) mask and photopolymerised as detailed above. A photograph of the resultant pixelated retardation film, held between crossed polarisers, is shown in Figure 3.
Example 3
A) A first polymerised planar LC layer, prepared from mixture M1 as detailed in Example 1 , was used as substrate and subsequently coated with a second layer of the same LC mixture M1 that was then polymerised. The second layer was found to be planar aligned. Thus, a stack comprising two planar polymerised LC films was produced. B) A first and second polymerised LC layer were prepared as described in A), but the second layer was irradiated with a sufficient dose of UV light of 365 nm prior to polymerisation so that it showed splayed alignment. Thus, a stack comprising a planar and a splayed polymerised LC film was produced.
C) A first splayed LC layer was prepared from mixture M1 as described in Example 1 and used as an alignment layer. A second layer of the same LC mixture M1 was coated onto the side of the first splayed film showing maximum tilt angle, i.e. having approximately homeotropic orientation. The mixture in the second layer was irradiated with UV light of 365 nm prior and then polymerised. As a consequence, the LC material second layer was homeotropically aligned throughout the layer. Thus, a stack of a splayed and a homeotropic LC film was produced.

Claims

Patent Claims
1. Film comprising a polymerised liquid crystal (LC) material comprising at least one photoisomerisable compound, characterized in that said film comprises at least two regions with different retardation and/or at least two regions with different orientation of the LC material.
2. Film according to claim 1 , characterized in that it comprises. at least two regions with different retardation of the LC materfal.
3. Film according to claim 1 or 2, characterized in that it is obtained by polymerisation or crosslinking of a polymerisable LC material comprising at least one polymerisable and photoisomerisable compound.
4. Film according to at least one of claims 1 to 3, characterized in that the orientation of the LC material is controlled by varying the irradiation time and/or intensity of the photoradiation used to cause photoisomerisation in the LC material.
5. Film according to at least one of claims 1 to 4, characterized in that the polymerisable LC material comprises one or more photoisomerisable compounds selected from azobenzenes, benzaldoximes, azomethines, stilbenes, spiropyrans, spirooxadines, fulgides, diarylethenes, cinnamates, 2- methyleneindane-1-ones and (bis-)benzylidenecycloalkanones.
6. Film according to claim 5, characterized in that the polymerisable LC material comprises one or more photoisomerisable compounds selected from polymerisable mesogenic cinnamates.
7. Film according to at least one of claims 1 to 6, characterized in that the polymerisable LC material comprises one or more photoisomerisable compounds selected from the following formulae
Figure imgf000037_0001
wherein
A is 1 ,4-phenylene or 1 ,4-cyclohexylene,
P is a polymerisable group,
Sp is a spacer group or a single bond,
R is a polar group or an unpolar alkyl or alkoxy group with up to 15 C atoms,
L is in each occurrence independently H, F, Cl, CN or an optionally halogenated alkyl, alkoxy, alkylcarbonyl, alkoxycarbonyl or aikoxycarbonyloxy group with 1 to 7 C atoms, and
v is 0 or 1.
and wherein the phenylene rings are optionally mono- di-, tri- or tetrasubstituted by L.
Film according to at least one of claims 1 to 7, characterized in that the polymerisable component of the polymerisable LC material comprises at least 12 mol % of photoisomerisable compounds.
9. Film according to claim 8, characterized in that the polymerisable component of the polymerisable LC material comprises from 40 to 100 mol% of photoisomerisable compounds.
10. Film according to claim 8, characterized in that the polymerisable component of the polymerisable LC material comprises 100 % of photoisomerisable compounds.
11. Polymerisable LC material according to at least one of claims 8 to 10.
12. Patterned film comprising polymerised liquid crystal (LC) material, characterized in that it comprises at least two regions with different retardation and at least two regions with different orientation of the LC material.
13. Method of preparing a film according to at least one of claims 1 to 12, comprising the following steps:
a) providing a layer of a polymerisable LC material comprising at least one photoisomerisable compound onto a substrate, b) aligning the layer of LC material into planar orientation, c) exposing the LC material in the layer, or in selected regions thereof, to photoradiation that causes isomerisation of the isomerisable compound, d) polymerising the LC material in at least a part of the exposed regions the material, thereby fixing the orientation, and e) optionally removing the polymerised film from the substrate.,
14. Method according to claim 13, characterized in that the retardation and/or orientation of the LC material is controlled by varying the amount and/or type of the photoisomerisable compound, and/or by varying the intensity of the photoradiation and/or the exposure time.
15. Method of preparing a multilayer comprising at least two layers of polymerised LC material having different orientation, comprising the following steps:
A) providing a first layer of a polymerisable LC material comprising at least one photoisomerisable compound onto a substrate, ,. . . .-?"'.
B) aligning the first layer of LC material into planar orientation and polymerising the material, thereby fixing the orientation,
C)providing a second layer of LC material as described in steps A) and B), wherein the first layer serves as substrate,
wherein the LC material in at least one of said first and second layers, or in selected regions thereof, before polymerisation is exposed to photoradiation that causes isomerisation of the isomerisable compound.
16. Method according to at least one of claims 13 to 15, characterized in that the LC material is exposed to radiation that causes photoisomerisation and photopolymerisation, and photoisomerisation is carried out in the presence of oxygen and photopolymerisation is carried out in the absence of oxygen.
17.Film or a multilayer obtained by a method according to at least one of claims 13 to 16.
18. Film or a multilayer according to at least one of claims 1 to 17, characterized in that it comprises at least one region having planar orientation and at least one region having splayed orientation.
19. Multilayer according to claim 17 or 18, characterized in that it comprises at least one layer having planar orientation and at least one layer having splayed orientation.
20. Multilayer according to claim 17 or 18, characterized in that it comprises at least one layer having splayed orientation and at least one region having homeotropic orientation.
21. Use of a film or multilayer according to at least one of claims 1 to 20 in liquid crystal displays (LCDs) or other optical or electrooptical components devices, for decorative or security applications, as alignment layer, optical retardation film or optical waveguide.
22. Patterned film comprising at least two regions having different retardation for use as optical retardation film in an active matrix colour LCD.
23. LCD comprising an optical retardation film according to at least one of claims 1 to 22.
24. Use of a film according to at least one of claims 1 to 22 as optical retardation film in an LCD, characterized in that the film is positioned between the substrates of the switchable LC cell.
25. LCD comprising an LC cell formed by two plane parallel substrates at least one of which is transparent to incident light, an electrode layer provided on the inside of at least one of said two transparent substrates and optionally superposed with an alignment layer, and an LC medium located between the two substrates that is switchable between at least two different states by application of an electric field, characterized in that the LCD comprises at least one film according to at least one of claims 1 to 22 that is positioned between the two plane parallel substrates forming the LC cell.
6. LCD comprising
1) a liquid crystal (LC) cell comprising the following elements, starting from the edges to the centre of the cell in the sequence listed below
11) a first and a second substrate plane parallel to each other, at least one of which is transparent to incident light,
12) an array of nonlinear electric elements on one of said substrates which can be used to individually switch individual pixels of said LC cell, said elements beings preferably active elements like transistors, very preferably TFTs,
13) a colour filter array provided on one of said substrates, preferably on the substrate opposite to that carrying the array of nonlinear elements, said colour filter optionally being covered by a planarisation layer,
14) a first electrode layer provided on the inside of said first substrate, 15) optionally a second electrode layer provided on the inside of said second substrate,
16) optionally first and second alignment layers provided on said first and second electrodes, 17) an LC medium that is switchable between at least two different states by application of an electric field,
2) a first linear polariser on one side of the LC cell,
3) optionally a second linear polariser on the side of the LC cell opposite to that of the first linear polariser, and
4) at least one optical retardation film according to at least one of claims 1 to 22,
characterized in that said optical retardation film 4) is situated between the colour filter and the LC medium.
27. LCD according to claim 26, characterized in that the colour filter has a pattern of different pixels transmitting one of the primary colours red, green and blue (R, G, B), and the optical retardation film exhibits a pattern of pixels with three different retardations, each of which is adjusted such that its efficiency of converting linearly polarised light into circularly polarised light is optimised for one of the colours R, G and B, and the optical retardation film is positioned on the colour filter such that each R-, G- or B-pixel of the colour filter is covered by a corresponding pixel of the optical retardation film having a retardation optimised for this colour.
28. Optical waveguide comprising a film according to at least one of claims 1 to 22.
29. Optical waveguide according to claim 28, characterized in that has constant thickness and a refractive index gradient wherein the refractive index continuously decreases in a direction parallel to the film plane from one edge of the waveguide to its opposite egde.
PCT/EP2004/003547 2003-04-08 2004-04-02 Polymerised liquid crystal film with retardation or orientation pattern WO2004090025A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006504979A JP4717803B2 (en) 2003-04-08 2004-04-02 Polymerized liquid crystal film having retardation or orientation pattern
KR1020127004958A KR101247822B1 (en) 2003-04-08 2004-04-02 Polymerised liquid crystal film with retardation or orientation pattern
EP04725365.3A EP1611189B1 (en) 2003-04-08 2004-04-02 Polymerised liquid crystal film with retardation or orientation pattern
US10/552,710 US7435357B2 (en) 2003-04-08 2004-04-02 Polymerised liquid crystal film with retardation or orientation pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03007917 2003-04-08
EP03007917.2 2003-04-08

Publications (1)

Publication Number Publication Date
WO2004090025A1 true WO2004090025A1 (en) 2004-10-21

Family

ID=33155119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003547 WO2004090025A1 (en) 2003-04-08 2004-04-02 Polymerised liquid crystal film with retardation or orientation pattern

Country Status (6)

Country Link
US (1) US7435357B2 (en)
EP (1) EP1611189B1 (en)
JP (2) JP4717803B2 (en)
KR (2) KR101247822B1 (en)
TW (1) TWI457420B (en)
WO (1) WO2004090025A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072426A2 (en) * 2005-12-23 2007-06-28 Koninklijke Philips Electronics N.V. Method of manufacturing a polarization retardation film
EP1975687A1 (en) * 2007-03-29 2008-10-01 Rolic AG Method of uniform and defect free liquid crystal aligning layers
EP2404763A2 (en) 2010-07-09 2012-01-11 Fujifilm Corporation Counterfeiting prevention device having printing and birefringence pattern
EP2413168A1 (en) 2010-07-28 2012-02-01 Fujifilm Corporation Birefringence pattern builder
WO2012067128A1 (en) 2010-11-19 2012-05-24 富士フイルム株式会社 Double-refraction pattern transfer foil
CN102690215A (en) * 2006-07-11 2012-09-26 日东电工株式会社 Polyfunctional compound, optical recording material, optical recording medium, optical recording/reproducing apparatus, optical waveguide material, and photo-alignment film material
US8361345B2 (en) 2010-03-29 2013-01-29 Fujifilm Corporation Compound, polymerizable liquid crystal composition, polymer and film
US8394487B2 (en) 2008-05-21 2013-03-12 Fujifilm Corporation Birefringent pattern builder and laminated structure material for preventing forgery
JP2014044452A (en) * 2004-11-12 2014-03-13 Merck Patent Gmbh Transflective vertically aligned liquid crystal display having patterned quarter-wave retardation element in cell

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083913A1 (en) * 2003-03-21 2004-09-30 Koninklijke Philips Electronics N.V. Birefringent optical element, lcd device with a birefringent optical element, and manufacturing process for a birefringent optical element
KR101109879B1 (en) * 2003-04-08 2012-02-14 메르크 파텐트 게엠베하 Optical film inside a liquid crystal display
ATE334179T1 (en) * 2003-10-17 2006-08-15 Merck Patent Gmbh POLYMERIZABLE CINNAMIC ACID DERIVATIVES WITH A LATERAL SUBSTITUTION
US7936426B2 (en) * 2004-07-28 2011-05-03 Merck Patent Gmbh Transflective LCD comprising a patterned retardation film
US20070042189A1 (en) * 2004-10-06 2007-02-22 Kenji Shirai Retardation film and method for producing the same, optical functional film, polarizing film, and display device
US20060105115A1 (en) * 2004-11-16 2006-05-18 Keiji Kashima Retardation film and method for producing the same, optical functional film, polarizing film, and display device
WO2006085454A1 (en) * 2005-02-08 2006-08-17 Nippon Oil Corporation Homeotropically oriented liquid-crystal film, optical film comprising the same, and image display
JP4870436B2 (en) * 2006-01-10 2012-02-08 株式会社 日立ディスプレイズ Liquid crystal display
JP5606736B2 (en) * 2006-09-02 2014-10-15 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Particle beam method for orienting reactive mesogens.
JP5227596B2 (en) * 2008-01-22 2013-07-03 富士フイルム株式会社 Method for producing article having birefringence pattern
JP4753188B2 (en) * 2008-02-05 2011-08-24 林テレンプ株式会社 Processing method of latent image on film for latent image printing
JP4753190B2 (en) * 2008-03-17 2011-08-24 林テレンプ株式会社 Processing method of latent image on film for latent image printing
JP4955594B2 (en) * 2008-03-17 2012-06-20 富士フイルム株式会社 Optical material patterned in optical axis direction and phase difference
JP2009244670A (en) * 2008-03-31 2009-10-22 Toppan Printing Co Ltd Method of manufacturing retardation substrate
KR101689044B1 (en) 2008-12-22 2016-12-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Internally patterned multilayer optical films using spatially selective birefringence reduction
US8248301B2 (en) * 2009-07-31 2012-08-21 CSR Technology Holdings Inc. Method and apparatus for using GPS satellite state computations in GLONASS measurement processing
JP5712472B2 (en) * 2009-08-19 2015-05-07 Dic株式会社 Polymerizable liquid crystal composition
JP5604831B2 (en) * 2009-09-10 2014-10-15 凸版印刷株式会社 Security sheet manufacturing method
US8884817B2 (en) * 2009-12-31 2014-11-11 CSR Technology Holdings Inc. GPS with aiding from ad-hoc peer-to-peer bluetooth networks
JP5106561B2 (en) * 2010-03-15 2012-12-26 株式会社ジャパンディスプレイイースト Liquid crystal display
JP5412350B2 (en) 2010-03-26 2014-02-12 富士フイルム株式会社 Article with birefringence pattern
JP5743129B2 (en) * 2010-04-16 2015-07-01 Dic株式会社 Liquid crystal composition containing polymerizable compound and liquid crystal display device using the same
JP5660812B2 (en) * 2010-06-22 2015-01-28 富士フイルム株式会社 Polymerizable compound
WO2011162291A1 (en) * 2010-06-22 2011-12-29 富士フイルム株式会社 Polymerizable composition, polymer, and film
JP4963732B2 (en) * 2010-06-22 2012-06-27 富士フイルム株式会社 Optical film, method for producing the same, polarizing plate using the same, image display device, and stereoscopic image display system
ES2634491T3 (en) 2010-07-07 2017-09-28 California Institute Of Technology Photoinitiated on demand polymerization
WO2012144874A2 (en) * 2011-04-21 2012-10-26 주식회사 엘지화학 Liquid crystal composition
JP5697634B2 (en) * 2011-07-26 2015-04-08 富士フイルム株式会社 Optical film, security product, and authentication method
KR101509448B1 (en) 2013-05-07 2015-04-08 애경화학 주식회사 New Reactive Mesogen Compound having asymmetric linkage structure and the Method for Manufacturing the Same
JP6223215B2 (en) * 2014-01-31 2017-11-01 日東電工株式会社 Method for producing photoresponsive cross-linked liquid crystal polymer film and photoresponsive cross-linked liquid crystal polymer film obtained by the production method
JP6236327B2 (en) * 2014-01-31 2017-11-22 日東電工株式会社 Method for producing photoresponsive cross-linked liquid crystal polymer film
JP6392257B2 (en) * 2014-02-12 2018-09-19 Jxtgエネルギー株式会社 Retardation plate, laminated polarizing plate using retardation plate, and display device using retardation plate
WO2015198915A1 (en) * 2014-06-23 2015-12-30 Dic株式会社 Polymerizable liquid crystal composition, optically anisotropic body fabricated using composition, phase difference film, and phase difference patterning film
WO2016140803A1 (en) * 2015-03-03 2016-09-09 The Trustees Of The University Of Pennsylvania Direct mapping of local director field of nematic liquid crystals at the nanoscale
CN104614885B (en) * 2015-03-05 2017-04-05 京东方科技集团股份有限公司 A kind of display device and display system
KR102024250B1 (en) * 2015-10-05 2019-09-23 주식회사 엘지화학 Optical Film
JP6724486B2 (en) * 2016-03-31 2020-07-15 Jnc株式会社 Optically anisotropic substance in which polymerizable liquid crystal composition is spray-aligned
WO2018097625A2 (en) 2016-11-28 2018-05-31 주식회사 엘지화학 Liquid crystal alignment layer, method for manufacturing same, and liquid crystal display device using same
KR102065718B1 (en) 2017-10-17 2020-02-11 주식회사 엘지화학 Liquid crystal alignment film and liquid crystal display using the same
WO2019240048A1 (en) * 2018-06-12 2019-12-19 富士フイルム株式会社 Method for manufacturing optically anisotropic layer
JP7066042B2 (en) 2019-02-27 2022-05-12 富士フイルム株式会社 Laminate
US11266495B2 (en) 2019-10-20 2022-03-08 Rxsight, Inc. Light adjustable intraocular lens with a modulable absorption front protection layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0699938A2 (en) 1994-09-01 1996-03-06 Sharp Kabushiki Kaisha Liquid crystal display
US5528400A (en) 1994-06-08 1996-06-18 Fuji Photo Film Co., Ltd. Liquid crystal display device having negative uniaxial anisotropic film with inclined optical axis and protective films
EP0816905A2 (en) 1996-06-26 1998-01-07 Sharp Kabushiki Kaisha Twisted nematic liquid crystal device
WO1998004651A1 (en) 1996-07-26 1998-02-05 Merck Patent Gmbh Combination of optical elements
WO1998012584A1 (en) 1996-09-17 1998-03-26 Merck Patent Gmbh Optical retardation film
US5770107A (en) 1995-10-05 1998-06-23 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive liquid crystalline compound
WO2001020394A1 (en) 1999-09-16 2001-03-22 Merck Patent Gmbh Optical compensator and liquid crystal display i
EP2019792A1 (en) 2006-04-09 2009-02-04 Jeong-Min Lee Cap assembly having storage chamber for secondary material with movable working member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08328005A (en) * 1995-05-26 1996-12-13 Hitachi Chem Co Ltd Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
US6459847B1 (en) * 1998-12-07 2002-10-01 Koninklijke Philips Electronics N.V. Patterned layer of a polymer material having a cholesteric order
JP4363749B2 (en) * 2000-03-16 2009-11-11 日東電工株式会社 Optical film
JP2002122866A (en) * 2000-10-19 2002-04-26 Matsushita Electric Ind Co Ltd Color liquid crystal display panel, reflection type color liquid crystal display panel, and semitransmission type color liquid crystal display panel
WO2002040614A1 (en) * 2000-11-20 2002-05-23 Merck Patent Gmbh Chiral photoisomerizable compounds
CN100375910C (en) * 2003-01-10 2008-03-19 日东电工株式会社 Broad-band-cholesteric liquid-crystal film, process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display unit
WO2004083913A1 (en) * 2003-03-21 2004-09-30 Koninklijke Philips Electronics N.V. Birefringent optical element, lcd device with a birefringent optical element, and manufacturing process for a birefringent optical element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5528400A (en) 1994-06-08 1996-06-18 Fuji Photo Film Co., Ltd. Liquid crystal display device having negative uniaxial anisotropic film with inclined optical axis and protective films
EP0699938A2 (en) 1994-09-01 1996-03-06 Sharp Kabushiki Kaisha Liquid crystal display
US5770107A (en) 1995-10-05 1998-06-23 Merck Patent Gesellschaft Mit Beschrankter Haftung Reactive liquid crystalline compound
EP0816905A2 (en) 1996-06-26 1998-01-07 Sharp Kabushiki Kaisha Twisted nematic liquid crystal device
WO1998004651A1 (en) 1996-07-26 1998-02-05 Merck Patent Gmbh Combination of optical elements
WO1998012584A1 (en) 1996-09-17 1998-03-26 Merck Patent Gmbh Optical retardation film
WO2001020394A1 (en) 1999-09-16 2001-03-22 Merck Patent Gmbh Optical compensator and liquid crystal display i
EP2019792A1 (en) 2006-04-09 2009-02-04 Jeong-Min Lee Cap assembly having storage chamber for secondary material with movable working member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044452A (en) * 2004-11-12 2014-03-13 Merck Patent Gmbh Transflective vertically aligned liquid crystal display having patterned quarter-wave retardation element in cell
WO2007072426A2 (en) * 2005-12-23 2007-06-28 Koninklijke Philips Electronics N.V. Method of manufacturing a polarization retardation film
WO2007072426A3 (en) * 2005-12-23 2007-10-11 Koninkl Philips Electronics Nv Method of manufacturing a polarization retardation film
CN102690215A (en) * 2006-07-11 2012-09-26 日东电工株式会社 Polyfunctional compound, optical recording material, optical recording medium, optical recording/reproducing apparatus, optical waveguide material, and photo-alignment film material
EP1975687A1 (en) * 2007-03-29 2008-10-01 Rolic AG Method of uniform and defect free liquid crystal aligning layers
WO2008119449A1 (en) * 2007-03-29 2008-10-09 Rolic Ag Method of uniform and defect free liquid crystal aligning layers
US8394487B2 (en) 2008-05-21 2013-03-12 Fujifilm Corporation Birefringent pattern builder and laminated structure material for preventing forgery
US8361345B2 (en) 2010-03-29 2013-01-29 Fujifilm Corporation Compound, polymerizable liquid crystal composition, polymer and film
EP2404763A2 (en) 2010-07-09 2012-01-11 Fujifilm Corporation Counterfeiting prevention device having printing and birefringence pattern
EP2413168A1 (en) 2010-07-28 2012-02-01 Fujifilm Corporation Birefringence pattern builder
WO2012067128A1 (en) 2010-11-19 2012-05-24 富士フイルム株式会社 Double-refraction pattern transfer foil

Also Published As

Publication number Publication date
TWI457420B (en) 2014-10-21
JP2011141549A (en) 2011-07-21
JP2006526165A (en) 2006-11-16
KR101247822B1 (en) 2013-03-26
KR20060003340A (en) 2006-01-10
US20060193998A1 (en) 2006-08-31
EP1611189B1 (en) 2014-03-26
US7435357B2 (en) 2008-10-14
JP5367734B2 (en) 2013-12-11
TW200508368A (en) 2005-03-01
JP4717803B2 (en) 2011-07-06
EP1611189A1 (en) 2006-01-04
KR20120040255A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
EP1611189B1 (en) Polymerised liquid crystal film with retardation or orientation pattern
EP1763689B1 (en) Biaxial film having local birefringence that varies periodically
US6995825B2 (en) Process for preparing films of polymerized liquid crystal material having a first film of a polymerized liquid crystal material with uniform orientation and a second film of a polymerized liquid crystal material with uniform orientation directly on the first film
EP1453933B1 (en) Biaxial film
US7936426B2 (en) Transflective LCD comprising a patterned retardation film
US8287756B2 (en) Biaxial film II
EP1810074A1 (en) Transflective vertically aligned liquid crystal display with in-cell patterned quarter-wave retarder
GB2394718A (en) Polymerised liquid crystal film with retardation pattern and method of making
WO2004090627A1 (en) Compensated lcd of the ips mode
KR101114641B1 (en) Broadband reflective film
TWI390020B (en) Polymerised lc films with varying thickness
EP1363156A2 (en) Optical compensator for a liquid crystal display employing a positive and a negative birefringent retardation film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004725365

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006193998

Country of ref document: US

Ref document number: 10552710

Country of ref document: US

Ref document number: 1020057019083

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006504979

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004725365

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057019083

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10552710

Country of ref document: US