WO2004096070A1 - Endocardial dispersive electrode for use with a monopolar rf ablation pen - Google Patents

Endocardial dispersive electrode for use with a monopolar rf ablation pen Download PDF

Info

Publication number
WO2004096070A1
WO2004096070A1 PCT/US2004/012270 US2004012270W WO2004096070A1 WO 2004096070 A1 WO2004096070 A1 WO 2004096070A1 US 2004012270 W US2004012270 W US 2004012270W WO 2004096070 A1 WO2004096070 A1 WO 2004096070A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
incision
envelope
tissue
atrial
Prior art date
Application number
PCT/US2004/012270
Other languages
French (fr)
Inventor
Roderick E. Briscoe
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to EP04760306A priority Critical patent/EP1620026A1/en
Publication of WO2004096070A1 publication Critical patent/WO2004096070A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00107Coatings on the energy applicator
    • A61B2018/00148Coatings on the energy applicator with metal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart

Definitions

  • the present invention relates generally to devices for cardiac surgery, and more specifically to devices for ablation of cardiac tissue.
  • the present invention is directed toward treatment of tachyarrhythmias, which are heart rhythms in which one or more chambers of the heart exhibit an excessively fast rhythm.
  • the present invention is directed toward treatment of tachycardias, which are due to the presence of ectopic foci within the cardiac tissue or due to the presence of aberrant condition pathways within the cardiac tissue.
  • ablation of cardiac tissue can be used to cure various cardiac conditions.
  • Normal sinus rhythm of the heart begins with the sinoatrial node (or "SA node") generating a depolarization wave front.
  • SA node sinoatrial node
  • the impulse causes adjacent myocardial tissue cells in the atria to depolarize, which in turn causes adjacent myocardial tissue cells to depolarize.
  • the depolarization propagates across the atria, causing the atria to contract and empty blood from the atria into the ventricles.
  • the impulse is next delivered via the atrioventricular node (or " AV node") and the bundle of HIS (or “HIS bundle”) to myocardial tissue cells of the ventricles.
  • the depolarization of these cells propagates across the ventricles, causing the ventricles to contract.
  • This conduction system results in the described, organized sequence of myocardial contraction leading to a normal heartbeat.
  • aberrant conductive pathways develop in heart tissue, which disrupt the normal path of depolarization events.
  • anatomical obstacles in the atria or ventricles can disrupt the normal propagation of electrical impulses. These anatomical obstacles (called “conduction blocks”) can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called “reentry circuits,” disrupt the normal activation of the atria or ventricles.
  • arrhythmias The aberrant conductive pathways create abnormal, irregular, and sometimes life- threatening heart rhythms, called arrhythmias.
  • An arrhythmia can take place in the atria, for example, as in atrial tachycardia, atrial fibrillation or atrial flutter.
  • the arrhythmia can also take place in the ventricle, for example, as in ventricular tachycardia.
  • the lesions used to treat atrial fibrillation are typically long and thin and are carefully placed to interrupt the conduction routes of the most common reentry circuits. More specifically, the long thin lesions are used to create a maze pattern that creates a convoluted path for electrical propagation within the left and right atria. The lesions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The lesions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony.
  • Several surgical approaches have been developed with the intention of treating atrial fibrillation.
  • the "maze procedure” procedure is designed to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a prescribed pattern of incisions about the tissue wall.
  • the surgical "maze procedure" as performed in the left atrium generally includes forming vertical incisions from the two superior pulmonary veins and terminating in the region of the mitral valve annulus, traversing the inferior pulmonary veins en route. An additional horizontal line also connects the superior ends of the two vertical incisions.
  • the atrial wall region bordered by the pulmonary vein ostia is isolated from the other atrial tissue.
  • the mechanical sectioning of atrial tissue eliminates the precipitating conduction to the atrial arrhythmia by creating conduction blocks within the aberrant electrical conduction pathways.
  • Alcohol may be delivered to blood vessels supplying the tissue to be ablated, as described in "Transcoronary Chemical Ablation of Arrhythmias", by Nellens et al, Pace Vol. 15, pages 1368-1373, September 1992.
  • Alcohol can be delivered directly to the tissue to be ablated by means of a needle inserted through a catheter, as described in "Chemical Ablation by Subendocardial Injection of Ethanol via Catheter- Preliminary Results in the Pig Heart", by Weismuller et al, European Heart Journal, Volume 12, pages 1234-1239, 1991.
  • bipolar hemostats have been used to concentrate the current through a direct tissue path between closely spaced electrodes to provide improved ablation through smooth or heavily tribiculated tissue.
  • the bipolar hemostats require significant tissue cutting to provide complete access to necessary lesion sites. Some tissue cutting is required in a Maze procedure. In particular, the atrial appendages are typically removed.
  • Monopolar RF cardiac ablation requires significant additional tissue cutting in order to position the electrode in the proper positions to perform endocardial ablations.
  • the present invention includes devices and methods for ablation of cardiac tissue in which a hand-held, monopolar RF ablation device is used to ablate cardiac tissue in conjunction with an expandable endocardial electrode inserted into a heart chamber and urged against the chamber wall.
  • the endocardial electrode can be expandable or inflatable and have a conductive surface.
  • the endocardial electrode may be inserted through a small incision made in the heart chamber wall and/or through the opening made by the removal of the atrial appendage. The electrode can then be expanded or inflated, urging the conductive surface against the endocardium.
  • a monopolar RF ablation device can then be drawn along the desired lesion line on the epicardium.
  • a current path is thus formed between the epicardial RF device and the expanded surface electrode disposed against the endocardium.
  • the direct path between the external monopolar RF electrode and the endocardial surface internal electrode can provide a narrower, deeper lesion relative to the lesion created using a current path between the RF electrode and an external, indifferent electrode.
  • the incision required to insert the expandable or inflatable electrode can be significantly smaller than that required to insert and successfully maneuver the monopolar RF electrode endocardially.
  • the monopolar electrode tissue-contacting surface can be connected to one pole of a radio frequency generator while the other pole of the generator is connected to a large surface, endocardial electrode.
  • the epicardial monopolar electrode is a conventional radio frequency ablation device such as the Cardioblate ® pen available Medtronic, Inc.
  • the present invention includes methods for forming a lesion in a target tissue having a cavity within.
  • the methods can include providing a first RF electrode coupled to a RF current source and a second RF electrode electrically coupled to form a ground path for the first RF electrode, wherein the second RF electrode is electrically conductive and expandable, wherein the second electrode has a first, unexpanded configuration and a second, expanded configuration.
  • the second electrode can be inserted into the tissue cavity and expanded to the second configuration to contact the target tissue from within the cavity.
  • the first electrode can be disposed against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue.
  • the present invention includes methods for treating atrial fibrillation that do not require making any incisions in the right or left atria other than those to remove the left and/or right atrial appendages.
  • the methods can include making lesion paths of the Maze, Maze 3 or Modified Maze 3 procedures, while performing only the incisions to remove the atrial appendages.
  • the methods can include making lesions along the paths described in the: Cox, JL et al.; Cox, JL; and Sueda et al. publications, previously incorporated by reference in the present application.
  • an incision is made to remove the right atrial appendage and the method does not include making any other incisions in the right atrium.
  • One such method does not include making an incision from the right atrial appendage incision toward the inferior vena caval orifice.
  • Another such method does not include making a posterior longitudinal incision starting caudal to the superior caval cannulation site at the dorsal aspect of the right atrium.
  • an incision is made to remove the left atrial appendage, and the method does not include making any other incisions in the left atrium.
  • One such method does not include making a standard atriotomy in the inter-atrial groove between the left and right atria.
  • One device includes a shaft and an electrode including an envelope having an interior and an electrically conductive flexible surface disposed near the shaft distal region.
  • the second electrode surface can have a first configuration having a first interior volume within the conductive surface and a second, expanded configuration having a second interior volume within the conductive surface, with the second volume being greater than the first volume.
  • the electrically conductive surface includes an outer metallic layer disposed over a polymeric layer.
  • Some electrodes include an outer metallic mesh disposed over a polymeric layer.
  • the polymeric layer can be substantially resistant to fluid permeation, such that the polymeric layer is inflatable.
  • the envelope can be formed of an electrically conductive polymer.
  • Some envelopes according to the present invention are porous, and the electrically conductive surface can be the outer surface an electrically conductive porous mesh.
  • Some meshes are metallic meshes.
  • Some device embodiments have a fluid lumen extending through the shaft, which can be used to inflate the envelope.
  • Other embodiments have envelopes biased to expand when unconstrained.
  • Still other embodiment envelopes include shape memory materials that expand when heated to body temperature.
  • Figure 1 is a prior art, fragmentary, cross-sectional view of a heart chamber wall having tribiculated tissue, the wall being partially ablated using an external RF electrode and a remote, indifferent electrode;
  • Figure 2 is a fragmentary, cross-sectional view of the tribiculated heart chamber wall of Figure 1, being ablated using the RF electrode of Figure 1 and an internal, expandable surface electrode contacting the tribiculated tissue;
  • Figure 3 is a diagrammatic, longitudinal cross-sectional view of one device having an expandable surface electrode, shown in an un-expanded configuration
  • Figure 4 is a diagrammatic, longitudinal cross-sectional view of another device having an expandable surface electrode, shown in an un-expanded configuration
  • Figure 5 is a diagrammatic, longitudinal cross-sectional view of yet another device having an expandable surface electrode, shown in an un-expanded configuration within a retractable delivery sheath;
  • Figure 6 is a diagrammatic, longitudinal cross-sectional view of still another device having an expandable surface electrode, shown in an un-expanded configuration within a retractable delivery sheath;
  • Figure 7 is a diagrammatic, longitudinal cross-sectional view of a device having an expandable surface electrode, shown in an expanded configuration
  • Figure 8 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive material
  • Figure 9 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive material layer formed over another, more interior material
  • Figure 10 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive mesh formed over another, more interior material
  • Figure 1 1 is a fragmentary, side view of an envelope formed of an electrically conductive porous mesh.
  • Figure 1 illustrates a prior art method for ablating cardiac tissue in the atria.
  • a tribiculated region of the atria is illustrated.
  • An atrial region 30 is illustrated, having an atrial wall 32, an interior 34, and tribiculated tissue 36 is illustrated, having gaps or cavities 37 disposed between the tribiculated tissue regions.
  • a monopolar electrode 40 is illustrated, coupled to an RF energy source 42.
  • a lesion area 38 formed from the ablation is also illustrated.
  • a remote, indifferent electrode (not illustrated in Figure 1) provides the return path for the RF energy supplied by monopolar electrode 40.
  • lesion area 38 is fairly wide, and does not penetrate into tribiculated tissue regions 36.
  • the shallow and insufficiently deep lesions are formed due to the RF current dispersion, indicated at 44, as RF energy takes a path to the indifferent electrode that does not include penetrating directly into atrial wall 32.
  • RF current dispersion indicated at 44
  • monopolar ablation of some tissue regions may not be feasible using a monopolar electrode, due to the shallow penetration.
  • endocardial ablation, using electrode 40 may be required.
  • FIG. 2 illustrates atrial region 30 of Figure 1, using devices and methods according to the present invention.
  • Tribiculated tissue regions 36 may be seen, as discussed with respect to Figure 1.
  • a second electrode 46 may be seen, having an envelope surface 48 contacting the tissue of atrial wall 32 and tribiculated tissue regions 36.
  • Second electrode 46 may be described as an envelope or membrane, in various embodiments.
  • Second electrode 46 may be seen to contact tribiculated tissue 36 and other endocardial tissue directly, providing a short, direct current path, indicated at 50, between second electrode 46 and a monopolar electrode
  • FIG. 3 illustrates a device 70 that can be used to facilitate ablating cardiac tissue.
  • Device 70 includes a device shaft 72 having an interior 84, a proximal region 74, and a distal region 76.
  • An expandable envelope 78 may be seen affixed to shaft distal region 76.
  • Envelope 78 is shown in a first, unexpanded configuration, having folds 80 and an internal volume, indicated at 82.
  • Envelope 78 further includes a proximal mouth 77, secured to shaft distal region 77.
  • expandable refers to the envelope having an unexpanded and an expanded configuration, wherein the expanded configuration has a larger internal volume than the first configuration.
  • the term “expandable” does not require that the envelope be elastic or stretchable in any way.
  • proximal shaft While some embodiments include a proximal shaft, other embodiments have no shaft. Some embodiments utilize the proximal mouth of the envelope or balloon to expand or inflate the envelope or balloon. In such embodiments, the balloon or envelope can be inserted into the heart chamber through an opening and inflated through a fluid supplied to the balloon proximal mouth.
  • Shaft 72 may be solid in some embodiments and hollow in other embodiments, carrying an inflation lumen within.
  • shaft 72 has a length of between about 12 and 18 inches. Some embodiments have a shaft length less than 12 inches, while other embodiments have a shaft length less than 6 inches. Some shafts have an outer diameter of between about 20 Fr. and 30 Fr.
  • Shaft 72, and other shafts according to the present invention may be of shaft or tube materials well known to those skilled in the biomedical arts. Exemplary shaft materials include silicone,
  • PEBAX polyurethane
  • PVC polyurethane
  • Figure 4 illustrates another device 90 that can be used according to the present invention.
  • Device 90 includes a shaft 92 having a proximal region 94 and a distal region 96.
  • Shaft 92 further includes a lumen 100 within, carrying a proximal push rod 102 having a distal flange 104 attached to the push rod.
  • An envelope 98 may be seen, in an unexpanded configuration within shaft lumen 100.
  • push rod 102 can be used to force envelope 98 out of shaft 92, allowing envelope 98 to expand.
  • Envelope 98 may be self-expanding in some embodiments, and require fluid inflation, in other embodiments.
  • Figure 5 illustrates still another device 120 having a shaft 128 having an envelope 132 secured to a shaft distal region 129.
  • Envelope 132 may be seen to be in an unexpanded configuration.
  • Envelope 132 may be seen to be in a compressed, folded state.
  • Device 120 further includes an outer delivery sheath or sleeve 134 having a distal region 124 and a proximal region 126.
  • Sleeve 134 can be proximally retracted from shaft 128 bearing envelope 132, or shaft 128 and envelope 132 can be distally urged out of delivery sleeve 134.
  • envelope 132 is self- expanding.
  • envelope 132 is inflated with fluid supplied through a lumen extending through shaft 128.
  • Figure 6 illustrates still another device 140 having a delivery sheath 142 having distal region 144 and proximal region 146.
  • An expandable envelope 150 may be seen, secured to a shaft 148. Shaft 148 and envelope 150 are both disposed within delivery sheath 142.
  • envelope 150 is biased to expand radially outward to form a spherical or bulbous shape, when unconstrained by outer sheath 142.
  • the envelope for example, envelope 150, may be urged distally from a constraining tube, for example, sheath 142. After being distally urged from the outer tube, the envelope may be radially expanded and the outer tube used as a catheter to guide the now expanded envelope to the target site.
  • Figure 7 illustrates device 70 of Figure 3, in a second, expanded configuration.
  • Device 70 may be seen to have a much larger envelope internal volume 82.
  • Envelope 78 may be seen to be in a significantly expanded configuration relative to that seen in Figure 3.
  • envelope 78 is self-expanding.
  • envelope 78 is inflated with fluid provided through a lumen provided through shaft 72, within shaft interior 84.
  • saline is used as the inflation fluid.
  • Figure 8 illustrates a section of envelope material 160, wherein the entire thickness of the envelope material is electrically conductive.
  • envelope material includes a conductive polymer.
  • FIG. 9 illustrates another envelope 162.
  • Envelope 162 includes an inner layer 164 and an outer layer 166.
  • inner layer 164 is a polymeric, substantially nonconductive material.
  • Outer layer 166 can be an electrically conductive material, for example, a metallic film.
  • envelope 162 is formed of Mylar, having a metallic film disposed over a polymeric layer.
  • Figure 10 illustrates yet another envelope section 168 having an inner, substantially contiguous layer 170 and an outer mesh 172.
  • inner layer 170 is a polymeric layer that is substantially impervious to fluid flow, enabling the envelope to be fluid expanded.
  • mesh 172 is an electrically conductive, metallic mesh.
  • Mesh 172 can be formed of Nitinol in some embodiments and stainless steel in other embodiments.
  • electrically conductive mesh 172 is formed of an electrically conductive polymer.
  • mesh 172 is formed of a material biased to expand outwardly when unconstrained.
  • mesh 172 is formed of a shape memory material, set to expand outwardly when heated toward body temperature from room temperature.
  • room temperature may be defined as about 70 degrees Fahrenheit.
  • Figure 11 illustrates still another envelope section 174, having a porous mesh including braids or strands 176 having pores 178 disposed therebetween.
  • the mesh itself may be self-expandable or may be expanded through an inflation envelope disposed within the mesh.
  • a first RF electrode is provided, coupled to a RF current source.
  • a second RF electrode is also provided and coupled to form a ground path for the first RF electrode.
  • the second electrode can include an electrically conductive envelope surface defining an interior volume within.
  • the envelope can have a first, unexpanded configuration and a second, expanded configuration.
  • the second configuration can have an interior volume greater than the first, unexpanded configuration.
  • An incision can be made in a heart chamber wall.
  • a preferred use of the present invention is to ablate atrial wall tissue.
  • One such incision is an incision made to remove an atrial appendage. Such incisions are typically made as part of a maze procedure.
  • the second electrode can be inserted through the incision and into the heart chamber interior.
  • the second electrode can then be expanded to urge the second electrode conductive surface to contact a target region of the heart chamber endocardium.
  • the first electrode can be disposed against the target region epicardium while applying RF current through the first electrode.
  • a short, direct current path is thus formed between the first electrode on the epicardium and the expanded surface electrode bearing against the endocardium.
  • the second electrode can be urged against tribiculated tissue to provide direct contact with the second electrode and therefore provide a short and direct current path directed through the tribiculated tissue.
  • a lesion resulting from the current path formed between the first electrode and the second, interior electrode can thus be both deeper and narrower than lesions formed using the external electrode and a remote indifferent electrode.
  • the second electrode is biased to expand when unconstrained, and is freed from constraint after being inserted into the heart chamber through the incision.
  • a sleeve or delivery tube is retracted from about the constrained second electrode. While some electrodes are simply biased to expand outward when unconstrained, other internal electrodes are formed of a shape memory material that expands when heated toward body temperature.
  • Some methods include providing a fluid expandable or inflatable envelope.
  • a fluid for example, saline
  • a fluid for example, saline
  • a second, expanded surface internal electrode on the endocardium can be injected into the envelope interior to expand the envelope to its fully expanded shape.
  • an elecfrode drawn over the endocardial surface for example, a pen electrode. While forming a lesion using an inserted pen electrode may be efficacious, a large incision must be made through the heart chamber wall in order to properly direct the drawing of the pen electrode across the endocardium. Using the present invention, an incision only large enough to insert the expandable or inflatable envelope need be made.
  • target sites in the entire right and left atrial free wall regions may be ablated using RF ablation, and entirely through the atrial wall, where ablating these sites does not require making an incision in the right atrium from the excised atrial appendage parallel to the right atrioventricular groove toward the inferior vena cava (IVC), an incision from about 1 cm, above the IVC cannulation site to the top of the atrioventricular groove, or in the left atrium in the interatrial groove.
  • IVC inferior vena cava
  • the present invention provides methods for forming lesions in target tissue having a cavity within.
  • a first electrode is coupled to a RF current source and a second RF electrode is electrically coupled to form a ground path for the first RF electrode.
  • the second electrode can be inserted into the tissue cavity and expanded to contact the target tissue from within the cavity.
  • the first electrode can then be disposed against the target tissue from the outside, while applying RF current through the first electrode to ablate the target tissue.

Abstract

Methods and devices for forming a lesion in a target tissue having a cavity within. A first RF electrode and a second RF electrode can be coupled to opposite poles of an RF current source. The second electrode can be inserted into the tissue cavity and expanded to contact the target tissue from within. The first electrode can be externally disposed against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue. Some methods are directed to ablating tribiculated atrial wall tissue to treat atrial fibrillation. The second electrode can contact the tribiculated tissue directly from within to provide a direct path between the two electrodes. In some methods, the second electrode is inserted through an incision made to remove an atrial appendage. The methods can provide deeper, narrower lesions relative to those made using remote, indifferent electrodes. Atrial fibrillation ablation procedures can be performed using the invention, requiring fewer incisions than conventional methods.

Description

ENDOCARDIAL DISPERSIVE ELECTRODE FOR USE WITH A MONOPOLAR
RF ABLATION PEN
FIELD OF THE INVENTION
The present invention relates generally to devices for cardiac surgery, and more specifically to devices for ablation of cardiac tissue.
BACKGROUND OF THE INVENTION
The present invention is directed toward treatment of tachyarrhythmias, which are heart rhythms in which one or more chambers of the heart exhibit an excessively fast rhythm. In particular, the present invention is directed toward treatment of tachycardias, which are due to the presence of ectopic foci within the cardiac tissue or due to the presence of aberrant condition pathways within the cardiac tissue.
There are many medical treatments that involve instances of cutting, ablating, coagulating, destroying, or otherwise changing the physiological properties of tissue. These techniques can be used beneficially to change the electrophysiological properties of tissue. For example, ablation of cardiac tissue can be used to cure various cardiac conditions. Normal sinus rhythm of the heart begins with the sinoatrial node (or "SA node") generating a depolarization wave front. The impulse causes adjacent myocardial tissue cells in the atria to depolarize, which in turn causes adjacent myocardial tissue cells to depolarize. The depolarization propagates across the atria, causing the atria to contract and empty blood from the atria into the ventricles. The impulse is next delivered via the atrioventricular node (or " AV node") and the bundle of HIS (or "HIS bundle") to myocardial tissue cells of the ventricles. The depolarization of these cells propagates across the ventricles, causing the ventricles to contract. This conduction system results in the described, organized sequence of myocardial contraction leading to a normal heartbeat. Sometimes aberrant conductive pathways develop in heart tissue, which disrupt the normal path of depolarization events. For example, anatomical obstacles in the atria or ventricles can disrupt the normal propagation of electrical impulses. These anatomical obstacles (called "conduction blocks") can cause the electrical impulse to degenerate into several circular wavelets that circulate about the obstacles. These wavelets, called "reentry circuits," disrupt the normal activation of the atria or ventricles.
The aberrant conductive pathways create abnormal, irregular, and sometimes life- threatening heart rhythms, called arrhythmias. An arrhythmia can take place in the atria, for example, as in atrial tachycardia, atrial fibrillation or atrial flutter. The arrhythmia can also take place in the ventricle, for example, as in ventricular tachycardia.
The lesions used to treat atrial fibrillation, are typically long and thin and are carefully placed to interrupt the conduction routes of the most common reentry circuits. More specifically, the long thin lesions are used to create a maze pattern that creates a convoluted path for electrical propagation within the left and right atria. The lesions direct the electrical impulse from the SA node along a specified route through all regions of both atria, causing uniform contraction required for normal atrial transport function. The lesions finally direct the impulse to the AV node to activate the ventricles, restoring normal atrioventricular synchrony. Several surgical approaches have been developed with the intention of treating atrial fibrillation. One particular example is known as the "maze procedure," as is disclosed by Cox, JL et al. in "The surgical treatment of atrial fibrillation. I. Summary" Thoracic and Cardiovascular Surgery 101(3), pp. 402-405 (1991); and also by Cox, JL in "The surgical treatment of atrial fibrillation. IV. Surgical Technique", Thoracic and Cardiovascular Surgery 101(4), pp. 584-592 (1991), both of which are incorporated by reference herein in their entireties. In general, the "maze" procedure is designed to relieve atrial arrhythmia by restoring effective atrial systole and sinus node control through a prescribed pattern of incisions about the tissue wall. In the early clinical experiences reported, the "maze" procedure included surgical incisions in both the right and the left atrial chambers. However, more recent reports predict that the surgical "maze" procedure may be substantially efficacious when performed only in the left atrium, such as is disclosed in Sueda et al., "Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated With Mitral Valve Disease" (1996), which is incorporated herein by reference in its entirety.
When modifying the electrophysiological properties of cardiac tissue by ablation, or by other means of destroying tissue to create lesions, physicians must carefully place the lesions. Otherwise, tissue will be unnecessarily destroyed. In addition, the heart is in close proximity to nerves and other nervous tissue and the destruction of this tissue will result in severe harm to the patient. Anatomical methods are used to locate the areas to be ablated or otherwise modified. In other words, the physician locates key structures such as the mitral valve annulus and the pulmonary veins. Lesions are typically formed that block propagations near these structures. Additional lesions are then formed which connect these lesions and complete the so-called "maze pattern." However, the exact lesion pattern, and number of lesions created, can vary from patient to patient.
The surgical "maze procedure" as performed in the left atrium generally includes forming vertical incisions from the two superior pulmonary veins and terminating in the region of the mitral valve annulus, traversing the inferior pulmonary veins en route. An additional horizontal line also connects the superior ends of the two vertical incisions. Thus, the atrial wall region bordered by the pulmonary vein ostia is isolated from the other atrial tissue. In this process, the mechanical sectioning of atrial tissue eliminates the precipitating conduction to the atrial arrhythmia by creating conduction blocks within the aberrant electrical conduction pathways.
Injection of alcohol into heart tissue has also been employed to ablate cardiac tissue. Alcohol may be delivered to blood vessels supplying the tissue to be ablated, as described in "Transcoronary Chemical Ablation of Arrhythmias", by Nellens et al, Pace Vol. 15, pages 1368-1373, September 1992. Alternatively, alcohol can be delivered directly to the tissue to be ablated by means of a needle inserted through a catheter, as described in "Chemical Ablation by Subendocardial Injection of Ethanol via Catheter- Preliminary Results in the Pig Heart", by Weismuller et al, European Heart Journal, Volume 12, pages 1234-1239, 1991.
Although successful at treating AF, the surgical maze procedure is quite complex and is currently performed by only a few skilled cardiac surgeons in conjunction with other open-heart procedures. Tools that could reliably duplicate the Maze incisions by other means (e.g. radio frequency, laser, microwave, ultrasound energy) will reduce the time and invasiveness required for the maze procedure and make it more accessible to more surgeons. Problems faced by these methods, however, include (a) the creation of continuous, linear lesions in the atria for the prevention of atrial fibrillation, (b) minimization of clotting and thromboembolism, (c) the effect of heat loss due to circulating blood, (d) minimization of lesion width and minimization of atrial debulking, (e) conforming to an irregular myocardial thickness, (f) adaptability to a variety of lesion geometries and (g) usefulness from either the endocardial surface of an open heart, or the epicardial surface of a beating heart. One particular procedure, the monopolar RF ablation of cardiac atrial tissue to treat atrial fibrillation, causes wide, shallow lesions, due to current dispersion through the tissue. In heavily tribiculated tissue, monopolar ablation is only feasible endocardially. An epicardial approach using conventional methods will not efficiently transfer energy into the deep tissue folds, due to that tissue being out of the conductive path between the external epicardial electrode and the remote indifferent electrode. Bipolar hemostats have been used to concentrate the current through a direct tissue path between closely spaced electrodes to provide improved ablation through smooth or heavily tribiculated tissue. However, the bipolar hemostats require significant tissue cutting to provide complete access to necessary lesion sites. Some tissue cutting is required in a Maze procedure. In particular, the atrial appendages are typically removed. Monopolar RF cardiac ablation requires significant additional tissue cutting in order to position the electrode in the proper positions to perform endocardial ablations.
What would be desirable are methods that would reduce tissue cutting and improve the efficacy of epicardial ablation. What would be advantageous are devices that direct
RF current along the desired transmural path, creating narrower and deeper lesions.
SUMMARY OF THE INVENTION
The present invention includes devices and methods for ablation of cardiac tissue in which a hand-held, monopolar RF ablation device is used to ablate cardiac tissue in conjunction with an expandable endocardial electrode inserted into a heart chamber and urged against the chamber wall. The endocardial electrode can be expandable or inflatable and have a conductive surface. The endocardial electrode may be inserted through a small incision made in the heart chamber wall and/or through the opening made by the removal of the atrial appendage. The electrode can then be expanded or inflated, urging the conductive surface against the endocardium.
A monopolar RF ablation device can then be drawn along the desired lesion line on the epicardium. A current path is thus formed between the epicardial RF device and the expanded surface electrode disposed against the endocardium. The direct path between the external monopolar RF electrode and the endocardial surface internal electrode can provide a narrower, deeper lesion relative to the lesion created using a current path between the RF electrode and an external, indifferent electrode. The incision required to insert the expandable or inflatable electrode can be significantly smaller than that required to insert and successfully maneuver the monopolar RF electrode endocardially.
The monopolar electrode tissue-contacting surface can be connected to one pole of a radio frequency generator while the other pole of the generator is connected to a large surface, endocardial electrode. In one embodiment of the invention, the epicardial monopolar electrode is a conventional radio frequency ablation device such as the Cardioblate ® pen available Medtronic, Inc.
The present invention includes methods for forming a lesion in a target tissue having a cavity within. The methods can include providing a first RF electrode coupled to a RF current source and a second RF electrode electrically coupled to form a ground path for the first RF electrode, wherein the second RF electrode is electrically conductive and expandable, wherein the second electrode has a first, unexpanded configuration and a second, expanded configuration. The second electrode can be inserted into the tissue cavity and expanded to the second configuration to contact the target tissue from within the cavity. The first electrode can be disposed against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue. The present invention includes methods for treating atrial fibrillation that do not require making any incisions in the right or left atria other than those to remove the left and/or right atrial appendages. The methods can include making lesion paths of the Maze, Maze 3 or Modified Maze 3 procedures, while performing only the incisions to remove the atrial appendages. The methods can include making lesions along the paths described in the: Cox, JL et al.; Cox, JL; and Sueda et al. publications, previously incorporated by reference in the present application. In one method, an incision is made to remove the right atrial appendage and the method does not include making any other incisions in the right atrium. One such method does not include making an incision from the right atrial appendage incision toward the inferior vena caval orifice. Another such method does not include making a posterior longitudinal incision starting caudal to the superior caval cannulation site at the dorsal aspect of the right atrium.
In another method, an incision is made to remove the left atrial appendage, and the method does not include making any other incisions in the left atrium. One such method does not include making a standard atriotomy in the inter-atrial groove between the left and right atria.
One device includes a shaft and an electrode including an envelope having an interior and an electrically conductive flexible surface disposed near the shaft distal region. The second electrode surface can have a first configuration having a first interior volume within the conductive surface and a second, expanded configuration having a second interior volume within the conductive surface, with the second volume being greater than the first volume.
In some devices, the electrically conductive surface includes an outer metallic layer disposed over a polymeric layer. Some electrodes include an outer metallic mesh disposed over a polymeric layer. The polymeric layer can be substantially resistant to fluid permeation, such that the polymeric layer is inflatable. The envelope can be formed of an electrically conductive polymer. Some envelopes according to the present invention are porous, and the electrically conductive surface can be the outer surface an electrically conductive porous mesh. Some meshes are metallic meshes.
Some device embodiments have a fluid lumen extending through the shaft, which can be used to inflate the envelope. Other embodiments have envelopes biased to expand when unconstrained. Still other embodiment envelopes include shape memory materials that expand when heated to body temperature. BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a prior art, fragmentary, cross-sectional view of a heart chamber wall having tribiculated tissue, the wall being partially ablated using an external RF electrode and a remote, indifferent electrode;
Figure 2 is a fragmentary, cross-sectional view of the tribiculated heart chamber wall of Figure 1, being ablated using the RF electrode of Figure 1 and an internal, expandable surface electrode contacting the tribiculated tissue;
Figure 3 is a diagrammatic, longitudinal cross-sectional view of one device having an expandable surface electrode, shown in an un-expanded configuration;
Figure 4 is a diagrammatic, longitudinal cross-sectional view of another device having an expandable surface electrode, shown in an un-expanded configuration;
Figure 5 is a diagrammatic, longitudinal cross-sectional view of yet another device having an expandable surface electrode, shown in an un-expanded configuration within a retractable delivery sheath;
Figure 6 is a diagrammatic, longitudinal cross-sectional view of still another device having an expandable surface electrode, shown in an un-expanded configuration within a retractable delivery sheath;
Figure 7 is a diagrammatic, longitudinal cross-sectional view of a device having an expandable surface electrode, shown in an expanded configuration;
Figure 8 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive material;
Figure 9 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive material layer formed over another, more interior material; Figure 10 is a fragmentary, cross-sectional view of an envelope formed of an electrically conductive mesh formed over another, more interior material; and
Figure 1 1 is a fragmentary, side view of an envelope formed of an electrically conductive porous mesh. DETAILED DESCRIPTION OF THE INVENTION
Figure 1 illustrates a prior art method for ablating cardiac tissue in the atria. In particular, a tribiculated region of the atria is illustrated. An atrial region 30 is illustrated, having an atrial wall 32, an interior 34, and tribiculated tissue 36 is illustrated, having gaps or cavities 37 disposed between the tribiculated tissue regions. A monopolar electrode 40 is illustrated, coupled to an RF energy source 42. A lesion area 38 formed from the ablation is also illustrated. In Figure 1, a remote, indifferent electrode (not illustrated in Figure 1) provides the return path for the RF energy supplied by monopolar electrode 40. As may be seen from inspection of Figure 1, lesion area 38 is fairly wide, and does not penetrate into tribiculated tissue regions 36. The shallow and insufficiently deep lesions are formed due to the RF current dispersion, indicated at 44, as RF energy takes a path to the indifferent electrode that does not include penetrating directly into atrial wall 32. As maybe seen from inspection of Figure 1 , monopolar ablation of some tissue regions may not be feasible using a monopolar electrode, due to the shallow penetration. In such cases, endocardial ablation, using electrode 40, may be required.
Figure 2 illustrates atrial region 30 of Figure 1, using devices and methods according to the present invention. Tribiculated tissue regions 36 may be seen, as discussed with respect to Figure 1. In Figure 2 however, a second electrode 46 may be seen, having an envelope surface 48 contacting the tissue of atrial wall 32 and tribiculated tissue regions 36. Second electrode 46 may be described as an envelope or membrane, in various embodiments. Second electrode 46 may be seen to contact tribiculated tissue 36 and other endocardial tissue directly, providing a short, direct current path, indicated at 50, between second electrode 46 and a monopolar electrode
40. As a result of the more direct current path, a deeper and narrower lesion 52 may be formed between monopolar electrode 40 and second electrode 46. As illustrated in Figure 2, the present invention can provide a lesion formed entirely through the heart chamber wall, using an external electrode and the second, internal electrode. Figure 3 illustrates a device 70 that can be used to facilitate ablating cardiac tissue. Device 70 includes a device shaft 72 having an interior 84, a proximal region 74, and a distal region 76. An expandable envelope 78 may be seen affixed to shaft distal region 76. Envelope 78 is shown in a first, unexpanded configuration, having folds 80 and an internal volume, indicated at 82. Envelope 78 further includes a proximal mouth 77, secured to shaft distal region 77. As used herein, "expandable" refers to the envelope having an unexpanded and an expanded configuration, wherein the expanded configuration has a larger internal volume than the first configuration. The term "expandable" does not require that the envelope be elastic or stretchable in any way.
While some embodiments include a proximal shaft, other embodiments have no shaft. Some embodiments utilize the proximal mouth of the envelope or balloon to expand or inflate the envelope or balloon. In such embodiments, the balloon or envelope can be inserted into the heart chamber through an opening and inflated through a fluid supplied to the balloon proximal mouth.
Shaft 72 may be solid in some embodiments and hollow in other embodiments, carrying an inflation lumen within. In some embodiments, shaft 72 has a length of between about 12 and 18 inches. Some embodiments have a shaft length less than 12 inches, while other embodiments have a shaft length less than 6 inches. Some shafts have an outer diameter of between about 20 Fr. and 30 Fr. Shaft 72, and other shafts according to the present invention may be of shaft or tube materials well known to those skilled in the biomedical arts. Exemplary shaft materials include silicone,
PEBAX, polyurethane, and PVC.
Figure 4 illustrates another device 90 that can be used according to the present invention. Device 90 includes a shaft 92 having a proximal region 94 and a distal region 96. Shaft 92 further includes a lumen 100 within, carrying a proximal push rod 102 having a distal flange 104 attached to the push rod. An envelope 98 may be seen, in an unexpanded configuration within shaft lumen 100. In use, push rod 102 can be used to force envelope 98 out of shaft 92, allowing envelope 98 to expand. Envelope 98 may be self-expanding in some embodiments, and require fluid inflation, in other embodiments. Figure 5 illustrates still another device 120 having a shaft 128 having an envelope 132 secured to a shaft distal region 129. Envelope 132 may be seen to be in an unexpanded configuration. Envelope 132 may be seen to be in a compressed, folded state. Device 120 further includes an outer delivery sheath or sleeve 134 having a distal region 124 and a proximal region 126. Sleeve 134 can be proximally retracted from shaft 128 bearing envelope 132, or shaft 128 and envelope 132 can be distally urged out of delivery sleeve 134. In some embodiments, envelope 132 is self- expanding. In other embodiments, envelope 132 is inflated with fluid supplied through a lumen extending through shaft 128.
Figure 6 illustrates still another device 140 having a delivery sheath 142 having distal region 144 and proximal region 146. An expandable envelope 150 may be seen, secured to a shaft 148. Shaft 148 and envelope 150 are both disposed within delivery sheath 142. In some embodiments, envelope 150 is biased to expand radially outward to form a spherical or bulbous shape, when unconstrained by outer sheath 142. In some embodiments, the envelope, for example, envelope 150, may be urged distally from a constraining tube, for example, sheath 142. After being distally urged from the outer tube, the envelope may be radially expanded and the outer tube used as a catheter to guide the now expanded envelope to the target site.
Figure 7 illustrates device 70 of Figure 3, in a second, expanded configuration. Device 70 may be seen to have a much larger envelope internal volume 82. Envelope 78 may be seen to be in a significantly expanded configuration relative to that seen in Figure 3. In some embodiments, envelope 78 is self-expanding. In other embodiments, envelope 78 is inflated with fluid provided through a lumen provided through shaft 72, within shaft interior 84. In some methods, saline is used as the inflation fluid.
Figure 8 illustrates a section of envelope material 160, wherein the entire thickness of the envelope material is electrically conductive. One such envelope material includes a conductive polymer.
Figure 9 illustrates another envelope 162. Envelope 162 includes an inner layer 164 and an outer layer 166. In some embodiments, inner layer 164 is a polymeric, substantially nonconductive material. Outer layer 166 can be an electrically conductive material, for example, a metallic film. In some embodiments, envelope 162 is formed of Mylar, having a metallic film disposed over a polymeric layer.
Figure 10 illustrates yet another envelope section 168 having an inner, substantially contiguous layer 170 and an outer mesh 172. In some embodiments, inner layer 170 is a polymeric layer that is substantially impervious to fluid flow, enabling the envelope to be fluid expanded. In some envelopes, mesh 172 is an electrically conductive, metallic mesh. Mesh 172 can be formed of Nitinol in some embodiments and stainless steel in other embodiments. In still other embodiments, electrically conductive mesh 172 is formed of an electrically conductive polymer. In some envelopes, mesh 172 is formed of a material biased to expand outwardly when unconstrained. In other embodiments, mesh 172 is formed of a shape memory material, set to expand outwardly when heated toward body temperature from room temperature. For the purposes of the present invention, room temperature may be defined as about 70 degrees Fahrenheit. Figure 11 illustrates still another envelope section 174, having a porous mesh including braids or strands 176 having pores 178 disposed therebetween. In embodiments having a porous mesh, the mesh itself may be self-expandable or may be expanded through an inflation envelope disposed within the mesh.
In one method according to the present invention, a first RF electrode is provided, coupled to a RF current source. A second RF electrode is also provided and coupled to form a ground path for the first RF electrode. The second electrode can include an electrically conductive envelope surface defining an interior volume within. The envelope can have a first, unexpanded configuration and a second, expanded configuration. The second configuration can have an interior volume greater than the first, unexpanded configuration. An incision can be made in a heart chamber wall. A preferred use of the present invention is to ablate atrial wall tissue. One such incision is an incision made to remove an atrial appendage. Such incisions are typically made as part of a maze procedure.
After the incision is made, the second electrode can be inserted through the incision and into the heart chamber interior. The second electrode can then be expanded to urge the second electrode conductive surface to contact a target region of the heart chamber endocardium. The first electrode can be disposed against the target region epicardium while applying RF current through the first electrode.
A short, direct current path is thus formed between the first electrode on the epicardium and the expanded surface electrode bearing against the endocardium. The second electrode can be urged against tribiculated tissue to provide direct contact with the second electrode and therefore provide a short and direct current path directed through the tribiculated tissue. A lesion resulting from the current path formed between the first electrode and the second, interior electrode, can thus be both deeper and narrower than lesions formed using the external electrode and a remote indifferent electrode.
In some methods, the second electrode is biased to expand when unconstrained, and is freed from constraint after being inserted into the heart chamber through the incision. In some such methods, a sleeve or delivery tube is retracted from about the constrained second electrode. While some electrodes are simply biased to expand outward when unconstrained, other internal electrodes are formed of a shape memory material that expands when heated toward body temperature.
Some methods include providing a fluid expandable or inflatable envelope. In such methods, a fluid, for example, saline, can be injected into the envelope interior to expand the envelope to its fully expanded shape. Applicant believes that the present invention provides novel methods for forming lesions entirely through the atrial wall using a first, external electrode on the epicardium and a second, expanded surface internal electrode on the endocardium, simultaneously. This may be contrasted with using an elecfrode drawn over the endocardial surface, for example, a pen electrode. While forming a lesion using an inserted pen electrode may be efficacious, a large incision must be made through the heart chamber wall in order to properly direct the drawing of the pen electrode across the endocardium. Using the present invention, an incision only large enough to insert the expandable or inflatable envelope need be made.
Applicant believes that target sites in the entire right and left atrial free wall regions may be ablated using RF ablation, and entirely through the atrial wall, where ablating these sites does not require making an incision in the right atrium from the excised atrial appendage parallel to the right atrioventricular groove toward the inferior vena cava (IVC), an incision from about 1 cm, above the IVC cannulation site to the top of the atrioventricular groove, or in the left atrium in the interatrial groove. In general, the present invention provides methods for forming lesions in target tissue having a cavity within. In the general case of the invention, a first electrode is coupled to a RF current source and a second RF electrode is electrically coupled to form a ground path for the first RF electrode. The second electrode can be inserted into the tissue cavity and expanded to contact the target tissue from within the cavity. The first electrode can then be disposed against the target tissue from the outside, while applying RF current through the first electrode to ablate the target tissue.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. The entire disclosure of each patent and publication cited herein is incorporated by reference, as if each such patent or publication were individually incorporated by reference herein.

Claims

1. A device for facilitating cardiac tissue ablation, the device comprising: a shaft having a proximal region and a distal region; an electrode including an envelope, the envelope having an interior and an electrically conductive surface disposed near the shaft distal region, wherein the surface has a first configuration having a first interior volume within the conductive surface and a second, expanded configuration having a second interior volume within the conductive surface, wherein the second volume is greater than the first volume.
2. A device as in claim 1, wherein the electrically conductive surface includes an outer metallic layer disposed over a polymeric layer.
3. A device as in claim 1, wherein the electrically conductive surface includes an outer metallic mesh disposed over a polymeric layer.
4. A device as in claim 3, wherein the polymeric layer is substantially resistant to fluid permeation, and wherein the polymeric layer is inflatable.
5. A device as in claim 1 , wherein the electrically conductive surface is the outer surface of an electrically conductive polymeric layer.
6. A device as in claim 1, wherein the envelope is porous and the electrically conductive surface is the outer surface an electrically conductive porous mesh.
7. A device as in claim 1, wherein the device shaft includes a lumen extending along the shaft length and in fluid communication with the envelope interior for inflating the electrode surface.
8. A device as in claim 7, wherein the lumen is disposed within the shaft.
9. A device as in claim 1, wherein the device shaft includes a lumen within, wherein the lumen is in fluid communication with the envelope interior for inflating the surface electrode.
10. A device as in claim 1, wherein the device has a length of less than about 12 inches when expanded.
1 1. A device as in claim 1 , wherein the device has a length of less than about 6 inches when expanded.
12. A device as in claim 1, wherein the envelope is biased to expand outwardly when unconstrained.
13. A device as in claim 12, wherein the envelope includes a metallic mesh that is biased to expand outwardly when unconstrained.
14. A device as in claim 1, wherein the envelope includes an electrically conductive shape memory metallic mesh that expands outwardly when heated to body temperature from room temperature.
15. A method for forming a lesion in cardiac tissue, the method comprising: providing a first RF electrode coupled to a RF current source; providing a second RF electrode electrically coupled to form a current path for the first RF electrode, wherein the second RF electrode includes an electrically conductive envelope surface defining an interior volume within, wherein the envelope has a first, unexpanded configuration and a second, expanded configuration, wherein the second configuration has an interior volume greater that the first configuration interior volume; making an incision in a heart chamber wall; inserting the second electrode through the incision and into the heart chamber interior; expanding the second electrode conductive surface to the second configuration to contact a target region of the heart chamber endocardium; and disposing the first electrode against the target region epicardium while applying RF current between the first and second electrodes.
16. A method as in claim 15, wherein the second electrode is biased to expand when unconstrained, and wherein the expanding step includes allowing the second electrode to expand inside the heart chamber.
17. A method as in claim 15, wherein the second electrode includes a shape memory material that expands when heated to body temperature, and wherein the expanding step includes allowing the second electrode to expand inside the heart chamber.
18. A method as in claim 15, further comprising providing a sheath over the envelope in the first, unexpanded envelope configuration, and retracting the sheath relative to the envelope.
19. A method as in claim 15, wherein the second electrode is fluid inflatable, and wherein the expanding step includes injecting fluid into the second electrode interior to expand the second electrode inside the heart chamber.
20. A method as in claim 15, wherein the making incision includes making an incision to remove an atrial appendage.
21. A method as in claim 15, wherein making the incision includes amputating the right atrial appendage.
22. A method as in claim 21 , wherein inserting the second electrode through the incision includes inserting the second electrode through the incision amputating the right atrial appendage.
23. A method as in claim 22, wherein the target region includes a region disposed between the middle of the anterolateral aspect of the incision amputating the right atrial appendage and the inferior vena caval orifice.
24. A method as in claim 22, wherein the lesion is formed using the first and second electrodes, from the middle of the anterolateral aspect of the incision amputating the right atrial appendage towards the inferior vena caval orifice.
25. A method as in claim 23, further comprising making a second lesion that is slightly curved and extends along the border of the inter-atrial septum and ends at the atrioventricular groove, where the second lesion is formed by applying RF current between the first and second electrodes, where the second electrode has been inserted through the incision amputating the right atrial appendage.
26. A method as in claim 15, wherein making the incision includes amputating the left atrial appendage.
27. A method as in claim 26, wherein inserting the second elecfrode through the incision includes inserting the second electrode through the incision amputating the left atrial appendage.
28. A method as in claim 27, wherein the target region includes a region disposed within the inter-atrial groove between the left and right atria.
29. A method as in claim 28, wherein the lesion is formed by applying RF current between the first and second electrodes.
30. A method for forming a lesion in a target tissue having a cavity within, the method comprising: providing a first RF electrode coupled to one pole of an RF current source; providing a second RF electrode electrically coupled to the other pole of the RF current source, wherein the second RF electrode has an electrically conductive expandable surface; inserting the second electrode into the tissue cavity; expanding the second electrode to contact the target tissue from within the cavity; and disposing the first electrode against the target tissue while applying RF current between the first and second electrodes to ablate the target tissue.
31. A method as in claim 30, wherein the target tissue in atrial tissue and the cavity is the atria, wherein the expanding includes expanding the second electrode by inflating the electrode within the atria.
32. A method for performing a maze procedure to treat atrial fibrillation by ablating atrial tissue to form at least one lesion in the atrial tissue, the method comprising: providing a first RF electrode coupled to one pole of an RF current source; providing a second RF electrode electrically coupled to the other pole of the RF current source; inserting the second electrode into the atrial chamber; and disposing the first electrode against the target tissue and drawing paths with the first electrode to form the maze lesions while applying RF current between the first and second electrodes to ablate the target tissue in a maze pattern, wherein the inserting is done through an incision made at the atrial appendage.
33. A method as in claim 32, wherein the incision is made to remove the right atrial appendage and the method does not include making any other incisions in the right atrium.
34. A method as in claim 32, wherein the incision is made to remove the right atrial appendage and wherein the method does not include making an incision from the right atrial appendage incision toward the inferior vena caval orifice.
35. A method as in claim 32, wherein the incision is made to remove the right atrial appendage, and wherein the method does not include making a posterior longitudinal incision starting caudal to the superior caval cannulation site at the dorsal aspect of the right atrium.
36. A method as in claim 32, wherein the incision is made to remove the left atrial appendage, and wherein the method does not include making any other incisions in the left atrium.
37. A method as in claim 32, wherein the incision is made to remove the left atrial appendage, wherein the method does not include making an atriotomy in the inter-atrial groove between the left and right atria.
PCT/US2004/012270 2003-04-29 2004-04-20 Endocardial dispersive electrode for use with a monopolar rf ablation pen WO2004096070A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04760306A EP1620026A1 (en) 2003-04-29 2004-04-20 Endocardial dispersive electrode for use with a monopolar rf ablation pen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/425,531 US7497857B2 (en) 2003-04-29 2003-04-29 Endocardial dispersive electrode for use with a monopolar RF ablation pen
US10/425,531 2003-04-29

Publications (1)

Publication Number Publication Date
WO2004096070A1 true WO2004096070A1 (en) 2004-11-11

Family

ID=33309706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/012270 WO2004096070A1 (en) 2003-04-29 2004-04-20 Endocardial dispersive electrode for use with a monopolar rf ablation pen

Country Status (3)

Country Link
US (2) US7497857B2 (en)
EP (1) EP1620026A1 (en)
WO (1) WO2004096070A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871409B2 (en) 2003-04-29 2011-01-18 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US6706039B2 (en) 1998-07-07 2004-03-16 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6537248B2 (en) 1998-07-07 2003-03-25 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US8285393B2 (en) 1999-04-16 2012-10-09 Laufer Michael D Device for shaping infarcted heart tissue and method of using the device
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US8048070B2 (en) 2000-03-06 2011-11-01 Salient Surgical Technologies, Inc. Fluid-assisted medical devices, systems and methods
US6514250B1 (en) 2000-04-27 2003-02-04 Medtronic, Inc. Suction stabilized epicardial ablation devices
AU2001253654A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6926669B1 (en) 2000-10-10 2005-08-09 Medtronic, Inc. Heart wall ablation/mapping catheter and method
US7740623B2 (en) 2001-01-13 2010-06-22 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US8961541B2 (en) 2007-12-03 2015-02-24 Cardio Vascular Technologies Inc. Vascular closure devices, systems, and methods of use
US9345460B2 (en) 2001-04-24 2016-05-24 Cardiovascular Technologies, Inc. Tissue closure devices, device and systems for delivery, kits and methods therefor
US20080109030A1 (en) 2001-04-24 2008-05-08 Houser Russell A Arteriotomy closure devices and techniques
US8992567B1 (en) 2001-04-24 2015-03-31 Cardiovascular Technologies Inc. Compressible, deformable, or deflectable tissue closure devices and method of manufacture
US6699240B2 (en) 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US7959626B2 (en) 2001-04-26 2011-06-14 Medtronic, Inc. Transmural ablation systems and methods
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US6807968B2 (en) 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
CA2446920A1 (en) 2001-05-21 2002-11-28 Medtronic, Inc. Trans-septal catheter with retention mechanism
JP4341907B2 (en) 2001-09-05 2009-10-14 セイリアント・サージカル・テクノロジーズ・インコーポレーテッド Fluid-assisted medical device, system and method
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US7294143B2 (en) 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
WO2005112812A1 (en) 2004-05-14 2005-12-01 Medtronic, Inc. Method and devices for treating atrial fibrillation by mass ablation
EP1750608B1 (en) 2004-06-02 2012-10-03 Medtronic, Inc. Ablation device with jaws
ATE516762T1 (en) 2004-06-02 2011-08-15 Medtronic Inc ABLATION AND STAPLE INSTRUMENT
WO2005120374A1 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Compound bipolar ablation device and method
WO2005120375A2 (en) 2004-06-02 2005-12-22 Medtronic, Inc. Loop ablation apparatus and method
US8409219B2 (en) 2004-06-18 2013-04-02 Medtronic, Inc. Method and system for placement of electrical lead inside heart
US8926635B2 (en) 2004-06-18 2015-01-06 Medtronic, Inc. Methods and devices for occlusion of an atrial appendage
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
US7455670B2 (en) * 2005-01-14 2008-11-25 Co-Repair, Inc. System and method for the treatment of heart tissue
WO2006135690A1 (en) * 2005-06-10 2006-12-21 Wilson-Cook Medical Inc. Cautery catheter
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US9814511B2 (en) * 2006-06-28 2017-11-14 Medtronic Cryocath Lp Variable geometry cooling chamber
US20080161893A1 (en) * 2006-12-29 2008-07-03 Saurav Paul Fabric electrode head
US7867227B2 (en) * 2007-02-22 2011-01-11 A David Slater Bipolar cardiac ablation system and method
JP5443386B2 (en) 2007-12-28 2014-03-19 サリエント・サージカル・テクノロジーズ・インコーポレーテッド Fluid-assisted electrosurgical device, method and system
US10695126B2 (en) 2008-10-06 2020-06-30 Santa Anna Tech Llc Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US9254168B2 (en) 2009-02-02 2016-02-09 Medtronic Advanced Energy Llc Electro-thermotherapy of tissue using penetrating microelectrode array
WO2010096809A1 (en) 2009-02-23 2010-08-26 Salient Surgical Technologies, Inc. Fluid-assisted electrosurgical device and methods of use thereof
CN102497832B (en) 2009-09-08 2015-09-09 显著外科技术公司 For case assembly and the using method thereof of electro-surgical device, electrosurgical unit
EP2544616B1 (en) 2010-03-11 2017-09-06 Medtronic Advanced Energy LLC Bipolar electrosurgical cutter with position insensitive return electrode contact
US20110238058A1 (en) * 2010-03-29 2011-09-29 Estech, Inc. (Endoscopic Technologies, Inc.) Indifferent electrode pad systems and methods for tissue ablation
US20110295249A1 (en) * 2010-05-28 2011-12-01 Salient Surgical Technologies, Inc. Fluid-Assisted Electrosurgical Devices, and Methods of Manufacture Thereof
US9138289B2 (en) 2010-06-28 2015-09-22 Medtronic Advanced Energy Llc Electrode sheath for electrosurgical device
US8920417B2 (en) 2010-06-30 2014-12-30 Medtronic Advanced Energy Llc Electrosurgical devices and methods of use thereof
US8906012B2 (en) 2010-06-30 2014-12-09 Medtronic Advanced Energy Llc Electrosurgical devices with wire electrode
US9023040B2 (en) 2010-10-26 2015-05-05 Medtronic Advanced Energy Llc Electrosurgical cutting devices
US9427281B2 (en) 2011-03-11 2016-08-30 Medtronic Advanced Energy Llc Bronchoscope-compatible catheter provided with electrosurgical device
US9750565B2 (en) 2011-09-30 2017-09-05 Medtronic Advanced Energy Llc Electrosurgical balloons
US8870864B2 (en) 2011-10-28 2014-10-28 Medtronic Advanced Energy Llc Single instrument electrosurgery apparatus and its method of use
US9226792B2 (en) 2012-06-12 2016-01-05 Medtronic Advanced Energy Llc Debridement device and method
US11234760B2 (en) 2012-10-05 2022-02-01 Medtronic Advanced Energy Llc Electrosurgical device for cutting and removing tissue
EP2769695A1 (en) 2013-02-20 2014-08-27 Cook Medical Technologies LLC Expandable mesh platform for large area ablation
US10631914B2 (en) 2013-09-30 2020-04-28 Covidien Lp Bipolar electrosurgical instrument with movable electrode and related systems and methods
US10314647B2 (en) 2013-12-23 2019-06-11 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US10813686B2 (en) 2014-02-26 2020-10-27 Medtronic Advanced Energy Llc Electrosurgical cutting instrument
US9974599B2 (en) 2014-08-15 2018-05-22 Medtronic Ps Medical, Inc. Multipurpose electrosurgical device
US9956029B2 (en) 2014-10-31 2018-05-01 Medtronic Advanced Energy Llc Telescoping device with saline irrigation line
US10188456B2 (en) 2015-02-18 2019-01-29 Medtronic Xomed, Inc. Electrode assembly for RF energy enabled tissue debridement device
WO2016134156A1 (en) 2015-02-18 2016-08-25 Medtronic Xomed, Inc. Rf energy enabled tissue debridement device
US10376302B2 (en) 2015-02-18 2019-08-13 Medtronic Xomed, Inc. Rotating electrical connector for RF energy enabled tissue debridement device
US11389227B2 (en) 2015-08-20 2022-07-19 Medtronic Advanced Energy Llc Electrosurgical device with multivariate control
US11051875B2 (en) 2015-08-24 2021-07-06 Medtronic Advanced Energy Llc Multipurpose electrosurgical device
US10716612B2 (en) 2015-12-18 2020-07-21 Medtronic Advanced Energy Llc Electrosurgical device with multiple monopolar electrode assembly
US11331140B2 (en) 2016-05-19 2022-05-17 Aqua Heart, Inc. Heated vapor ablation systems and methods for treating cardiac conditions
US10194975B1 (en) 2017-07-11 2019-02-05 Medtronic Advanced Energy, Llc Illuminated and isolated electrosurgical apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989284A (en) * 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
US6254598B1 (en) * 1994-06-24 2001-07-03 Curon Medical, Inc. Sphincter treatment apparatus
WO2001087169A1 (en) * 2000-05-16 2001-11-22 Atrionix, Inc. Apparatus and method incorporating an ultrasound transducer onto a delivery member
WO2002087456A1 (en) * 2001-05-01 2002-11-07 C.R. Bard, Inc. Method and apparatus for altering conduction properties in the heart and in adjacent vessels

Family Cites Families (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2371978A (en) 1941-12-13 1945-03-20 Roy G Perham Clamp for retaining the edges of a wound in apposition
US3496932A (en) 1967-12-22 1970-02-24 Gen Motors Corp Method and apparatus for substernal cardiac massage
US3823575A (en) 1971-06-07 1974-07-16 Univ Melbourne Cryogenic apparatus
US3736936A (en) 1971-12-13 1973-06-05 Hughes Aircraft Co Cryogenic heat transfer device
GB1438759A (en) 1972-06-02 1976-06-09 Spembly Ltd Cryo-surgical apparatus
US3886945A (en) 1972-06-14 1975-06-03 Frigitronics Of Conn Inc Cryosurgical apparatus
US3807403A (en) 1972-06-14 1974-04-30 Frigitronics Of Conn Inc Cryosurgical apparatus
US3830239A (en) 1972-09-12 1974-08-20 Frigitronics Of Conn Inc Cryosurgical device
US3823718A (en) 1972-09-15 1974-07-16 T Tromovitch Portable cryosurgical apparatus
US3856016A (en) 1972-11-03 1974-12-24 H Davis Method for mechanically applying an occlusion clip to an anatomical tubular structure
US3827436A (en) 1972-11-10 1974-08-06 Frigitronics Of Conn Inc Multipurpose cryosurgical probe
US3854482A (en) 1972-11-22 1974-12-17 Avis Res Inc Umbilical cord clamp
US3924628A (en) 1972-12-01 1975-12-09 William Droegemueller Cyrogenic bladder for necrosing tissue cells
US3856018A (en) 1973-02-26 1974-12-24 P Perisse Process for ligating sectioned blood vessels
NL176833C (en) 1973-04-26 1985-06-17 Draegerwerk Ag HEAT-INSULATING FLEXIBLE PIPE.
US3859986A (en) 1973-06-20 1975-01-14 Jiro Okada Surgical device
US3907339A (en) 1973-07-23 1975-09-23 Frigitronics Of Conn Inc Cryogenic delivery line
US3862627A (en) 1973-08-16 1975-01-28 Sr Wendel J Hans Suction electrode
US4022215A (en) 1973-12-10 1977-05-10 Benson Jerrel W Cryosurgical system
GB1513565A (en) 1975-04-22 1978-06-07 Spembly Ltd Cryosurgical instruments
US4018227A (en) 1975-10-09 1977-04-19 Cryomedics, Inc. Cryosurgical instrument
US4072152A (en) 1976-02-23 1978-02-07 Linehan John H Orthopedic cryosurgical apparatus
DE2730691C2 (en) 1976-07-16 1982-12-16 Maruho Co. Ltd., Osaka Surgical clip, connecting element for several surgical clips and forceps for opening and closing the same
GB1534162A (en) 1976-07-21 1978-11-29 Lloyd J Cyosurgical probe
US4061135A (en) 1976-09-27 1977-12-06 Jerrold Widran Binocular endoscope
US4275734A (en) 1977-08-12 1981-06-30 Valleylab, Inc. Cryosurgical apparatus and method
US4226239A (en) 1978-01-31 1980-10-07 Kli, Inc. Surgical ligating instrument and method
DE2831199C3 (en) 1978-07-15 1981-01-08 Erbe Elektromedizin Gmbh & Co Kg, 7400 Tuebingen Cryosurgical device
US4248224A (en) 1978-08-01 1981-02-03 Jones James W Double venous cannula
CA1129015A (en) 1980-06-11 1982-08-03 Timofei S. Gudkin Thermoelectric cryoprobe
US4377168A (en) 1981-02-27 1983-03-22 Wallach Surgical Instruments, Inc. Cryosurgical instrument
US4493319A (en) 1981-06-29 1985-01-15 Cabot Medical Corporation Ring applicator having floating inner tube
US4598698A (en) 1983-01-20 1986-07-08 Warner-Lambert Technologies, Inc. Diagnostic device
US4601290A (en) 1983-10-11 1986-07-22 Cabot Medical Corporation Surgical instrument for cutting body tissue from a body area having a restricted space
US5143073A (en) 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
US4664110A (en) 1985-03-18 1987-05-12 University Of Southern California Controlled rate freezing for cryorefractive surgery
SE8502048D0 (en) 1985-04-26 1985-04-26 Astra Tech Ab VACUUM FIXED HALLS FOR MEDICAL USE
US4917095A (en) 1985-11-18 1990-04-17 Indianapolis Center For Advanced Research, Inc. Ultrasound location and therapy method and apparatus for calculi in the body
US4872346A (en) 1986-07-18 1989-10-10 Indianapolis Center For Advanced Research Multiple frequencies from single crystal
US4791707A (en) 1986-08-26 1988-12-20 Tucker Wilson H Clip applicator, spreadable clips and method for applying the clips
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US5044165A (en) 1986-12-03 1991-09-03 Board Of Regents, The University Of Texas Cryo-slammer
US4779611A (en) 1987-02-24 1988-10-25 Grooters Ronald K Disposable surgical scope guide
US5366459A (en) 1987-05-14 1994-11-22 Inbae Yoon Surgical clip and clip application procedures
US4802475A (en) 1987-06-22 1989-02-07 Weshahy Ahmed H A G Methods and apparatus of applying intra-lesional cryotherapy
US4815470A (en) 1987-11-13 1989-03-28 Advanced Diagnostic Medical Systems, Inc. Inflatable sheath for ultrasound probe
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US5029574A (en) 1988-04-14 1991-07-09 Okamoto Industries, Inc. Endoscopic balloon with a protective film thereon
US5147355A (en) 1988-09-23 1992-09-15 Brigham And Womens Hospital Cryoablation catheter and method of performing cryoablation
US5108390A (en) 1988-11-14 1992-04-28 Frigitronics, Inc. Flexible cryoprobe
GB2226497B (en) 1988-12-01 1992-07-01 Spembly Medical Ltd Cryosurgical probe
GB8829525D0 (en) 1988-12-17 1989-02-01 Spembly Medical Ltd Cryosurgical apparatus
US4917677A (en) 1989-03-29 1990-04-17 Mccarthy John A Surgical clamp assembly and method
US4936281A (en) 1989-04-13 1990-06-26 Everest Medical Corporation Ultrasonically enhanced RF ablation catheter
US4946460A (en) 1989-04-26 1990-08-07 Cryo Instruments, Inc. Apparatus for cryosurgery
US4916922A (en) 1989-05-09 1990-04-17 Mullens Patrick L Rapid freezing apparatus
US5516505A (en) 1989-07-18 1996-05-14 Mcdow; Ronald A. Method for using cryogenic agents for treating skin lesions
US5100388A (en) 1989-09-15 1992-03-31 Interventional Thermodynamics, Inc. Method and device for thermal ablation of hollow body organs
US5217473A (en) 1989-12-05 1993-06-08 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5026379A (en) 1989-12-05 1991-06-25 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
GB9004427D0 (en) 1990-02-28 1990-04-25 Nat Res Dev Cryogenic cooling apparatus
US5013312A (en) 1990-03-19 1991-05-07 Everest Medical Corporation Bipolar scalpel for harvesting internal mammary artery
US5080660A (en) 1990-05-11 1992-01-14 Applied Urology, Inc. Electrosurgical electrode
ZA917281B (en) 1990-09-26 1992-08-26 Cryomedical Sciences Inc Cryosurgical instrument and system and method of cryosurgery
US5119804A (en) 1990-11-19 1992-06-09 Anstadt George L Heart massage apparatus
US5269291A (en) 1990-12-10 1993-12-14 Coraje, Inc. Miniature ultrasonic transducer for plaque ablation
US5324255A (en) 1991-01-11 1994-06-28 Baxter International Inc. Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm
US5465717A (en) 1991-02-15 1995-11-14 Cardiac Pathways Corporation Apparatus and Method for ventricular mapping and ablation
US5316000A (en) 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
US5178133A (en) 1991-03-26 1993-01-12 Pena Louis T Laparoscopic retractor and sheath
US5207674A (en) 1991-05-13 1993-05-04 Hamilton Archie C Electronic cryogenic surgical probe apparatus and method
EP0766533A1 (en) 1991-05-17 1997-04-09 InnerDyne, Inc. Method and device for thermal ablation
US5370134A (en) 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US5361752A (en) 1991-05-29 1994-11-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
EP0835639A3 (en) 1991-05-29 1999-04-07 Origin Medsystems, Inc. Retraction apparatus for endoscopic surgery
US5232516A (en) 1991-06-04 1993-08-03 Implemed, Inc. Thermoelectric device with recuperative heat exchangers
US5217860A (en) 1991-07-08 1993-06-08 The American National Red Cross Method for preserving organs for transplantation by vitrification
US5452733A (en) 1993-02-22 1995-09-26 Stanford Surgical Technologies, Inc. Methods for performing thoracoscopic coronary artery bypass
US5735290A (en) 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5571215A (en) 1993-02-22 1996-11-05 Heartport, Inc. Devices and methods for intracardiac procedures
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
US5520682A (en) 1991-09-06 1996-05-28 Cryomedical Sciences, Inc. Cryosurgical instrument with vent means and method using same
US5254116A (en) 1991-09-06 1993-10-19 Cryomedical Sciences, Inc. Cryosurgical instrument with vent holes and method using same
US5697281A (en) 1991-10-09 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
US5217001A (en) 1991-12-09 1993-06-08 Nakao Naomi L Endoscope sheath and related method
US5228923A (en) 1991-12-13 1993-07-20 Implemed, Inc. Cylindrical thermoelectric cells
US5697882A (en) 1992-01-07 1997-12-16 Arthrocare Corporation System and method for electrosurgical cutting and ablation
FR2685872A1 (en) 1992-01-07 1993-07-09 Edap Int APPARATUS OF EXTRACORPOREAL ULTRASONIC HYPERTHERMIA WITH VERY HIGH POWER AND ITS OPERATING METHOD.
US5400770A (en) 1992-01-15 1995-03-28 Nakao; Naomi L. Device utilizable with endoscope and related method
US5486193A (en) * 1992-01-22 1996-01-23 C. R. Bard, Inc. System for the percutaneous transluminal front-end loading delivery of a prosthetic occluder
US5222501A (en) 1992-01-31 1993-06-29 Duke University Methods for the diagnosis and ablation treatment of ventricular tachycardia
US5555883A (en) 1992-02-24 1996-09-17 Avitall; Boaz Loop electrode array mapping and ablation catheter for cardiac chambers
US5263493A (en) 1992-02-24 1993-11-23 Boaz Avitall Deflectable loop electrode array mapping and ablation catheter for cardiac chambers
AU4026793A (en) 1992-04-10 1993-11-18 Cardiorhythm Shapable handle for steerable electrode catheter
US5318525A (en) 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
WO1993020768A1 (en) * 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5423807A (en) 1992-04-16 1995-06-13 Implemed, Inc. Cryogenic mapping and ablation catheter
US5281215A (en) 1992-04-16 1994-01-25 Implemed, Inc. Cryogenic catheter
US5277201A (en) 1992-05-01 1994-01-11 Vesta Medical, Inc. Endometrial ablation apparatus and method
US5443470A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Method and apparatus for endometrial ablation
US5562720A (en) 1992-05-01 1996-10-08 Vesta Medical, Inc. Bipolar/monopolar endometrial ablation device and method
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5324284A (en) 1992-06-05 1994-06-28 Cardiac Pathways, Inc. Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method
US5336252A (en) 1992-06-22 1994-08-09 Cohen Donald M System and method for implanting cardiac electrical leads
US5275595A (en) 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
WO1994002077A2 (en) * 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5435308A (en) 1992-07-16 1995-07-25 Abbott Laboratories Multi-purpose multi-parameter cardiac catheter
GB2269107B (en) 1992-07-31 1996-05-08 Spembly Medical Ltd Cryosurgical ablation
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5322520A (en) 1992-11-12 1994-06-21 Implemed, Inc. Iontophoretic structure for medical devices
US5676693A (en) 1992-11-13 1997-10-14 Scimed Life Systems, Inc. Electrophysiology device
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
CA2109980A1 (en) 1992-12-01 1994-06-02 Mir A. Imran Steerable catheter with adjustable bend location and/or radius and method
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5469853A (en) 1992-12-11 1995-11-28 Tetrad Corporation Bendable ultrasonic probe and sheath for use therewith
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5324286A (en) 1993-01-21 1994-06-28 Arthur A. Fowle, Inc. Entrained cryogenic droplet transfer method and cryosurgical instrument
US5409483A (en) 1993-01-22 1995-04-25 Jeffrey H. Reese Direct visualization surgical probe
IL104506A (en) 1993-01-25 1997-11-20 Israel State Fast changing heating- cooling device and method, particularly for cryogenic and/or surgical use
US5645082A (en) * 1993-01-29 1997-07-08 Cardima, Inc. Intravascular method and system for treating arrhythmia
US6161543A (en) 1993-02-22 2000-12-19 Epicor, Inc. Methods of epicardial ablation for creating a lesion around the pulmonary veins
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
US5630837A (en) 1993-07-01 1997-05-20 Boston Scientific Corporation Acoustic ablation
US5571088A (en) 1993-07-01 1996-11-05 Boston Scientific Corporation Ablation catheters
US5487757A (en) * 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5545200A (en) 1993-07-20 1996-08-13 Medtronic Cardiorhythm Steerable electrophysiology catheter
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5921982A (en) 1993-07-30 1999-07-13 Lesh; Michael D. Systems and methods for ablating body tissue
US5928191A (en) 1993-07-30 1999-07-27 E.P. Technologies, Inc. Variable curve electrophysiology catheter
WO1995005212A2 (en) * 1993-08-11 1995-02-23 Electro-Catheter Corporation Improved ablation electrode
US5405376A (en) 1993-08-27 1995-04-11 Medtronic, Inc. Method and apparatus for ablation
US5431649A (en) 1993-08-27 1995-07-11 Medtronic, Inc. Method and apparatus for R-F ablation
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5396887A (en) 1993-09-23 1995-03-14 Cardiac Pathways Corporation Apparatus and method for detecting contact pressure
US5607462A (en) * 1993-09-24 1997-03-04 Cardiac Pathways Corporation Catheter assembly, catheter and multi-catheter introducer for use therewith
US5496312A (en) * 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5400783A (en) 1993-10-12 1995-03-28 Cardiac Pathways Corporation Endocardial mapping apparatus with rotatable arm and method
US5582609A (en) 1993-10-14 1996-12-10 Ep Technologies, Inc. Systems and methods for forming large lesions in body tissue using curvilinear electrode elements
US5673695A (en) 1995-08-02 1997-10-07 Ep Technologies, Inc. Methods for locating and ablating accessory pathways in the heart
WO1995010322A1 (en) 1993-10-15 1995-04-20 Ep Technologies, Inc. Creating complex lesion patterns in body tissue
US5545193A (en) * 1993-10-15 1996-08-13 Ep Technologies, Inc. Helically wound radio-frequency emitting electrodes for creating lesions in body tissue
WO1995010225A1 (en) 1993-10-15 1995-04-20 Ep Technologies, Inc. Multiple electrode element for mapping and ablating
US5575810A (en) 1993-10-15 1996-11-19 Ep Technologies, Inc. Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like
US5575766A (en) 1993-11-03 1996-11-19 Daig Corporation Process for the nonsurgical mapping and treatment of atrial arrhythmia using catheters guided by shaped guiding introducers
US5427119A (en) 1993-11-03 1995-06-27 Daig Corporation Guiding introducer for right atrium
US5497774A (en) * 1993-11-03 1996-03-12 Daig Corporation Guiding introducer for left atrium
US5722400A (en) * 1995-02-16 1998-03-03 Daig Corporation Guiding introducers for use in the treatment of left ventricular tachycardia
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
EP0861676B1 (en) 1993-11-10 2003-10-01 Medtronic Cardiorhythm Electrode array catheter
US5730127A (en) * 1993-12-03 1998-03-24 Avitall; Boaz Mapping and ablation catheter system
US5487385A (en) 1993-12-03 1996-01-30 Avitall; Boaz Atrial mapping and ablation catheter system
US5921924A (en) 1993-12-03 1999-07-13 Avitall; Boaz Mapping and ablation catheter system utilizing multiple control elements
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
ES2129803T3 (en) 1993-12-22 1999-06-16 Sulzer Osypka Gmbh ULTRASONICALLY MARKED CARDIAC ABLATION CATHETER.
US5462545A (en) 1994-01-31 1995-10-31 New England Medical Center Hospitals, Inc. Catheter electrodes
DE69516444T2 (en) 1994-03-11 2001-01-04 Intravascular Res Ltd Ultrasonic transducer arrangement and method for its production
US5425740A (en) 1994-05-17 1995-06-20 Hutchinson, Jr.; William B. Endoscopic hernia repair clip and method
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5560362A (en) 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5617854A (en) 1994-06-22 1997-04-08 Munsif; Anand Shaped catheter device and method
US5681278A (en) 1994-06-23 1997-10-28 Cormedics Corp. Coronary vasculature treatment method
US5505730A (en) 1994-06-24 1996-04-09 Stuart D. Edwards Thin layer ablation apparatus
US5681308A (en) 1994-06-24 1997-10-28 Stuart D. Edwards Ablation apparatus for cardiac chambers
US5575788A (en) 1994-06-24 1996-11-19 Stuart D. Edwards Thin layer ablation apparatus
US5452582A (en) 1994-07-06 1995-09-26 Apd Cryogenics, Inc. Cryo-probe
US5680860A (en) 1994-07-07 1997-10-28 Cardiac Pathways Corporation Mapping and/or ablation catheter with coilable distal extremity and method for using same
US5690611A (en) 1994-07-08 1997-11-25 Daig Corporation Process for the treatment of atrial arrhythima using a catheter guided by shaped giding introducers
US5545195A (en) 1994-08-01 1996-08-13 Boston Scientific Corporation Interstitial heating of tissue
US5810802A (en) 1994-08-08 1998-09-22 E.P. Technologies, Inc. Systems and methods for controlling tissue ablation using multiple temperature sensing elements
US5885278A (en) * 1994-10-07 1999-03-23 E.P. Technologies, Inc. Structures for deploying movable electrode elements
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US6152920A (en) 1997-10-10 2000-11-28 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body
US5836947A (en) 1994-10-07 1998-11-17 Ep Technologies, Inc. Flexible structures having movable splines for supporting electrode elements
US6464700B1 (en) 1994-10-07 2002-10-15 Scimed Life Systems, Inc. Loop structures for positioning a diagnostic or therapeutic element on the epicardium or other organ surface
US5722402A (en) * 1994-10-11 1998-03-03 Ep Technologies, Inc. Systems and methods for guiding movable electrode elements within multiple-electrode structures
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5573532A (en) 1995-01-13 1996-11-12 Cryomedical Sciences, Inc. Cryogenic surgical instrument and method of manufacturing the same
US5595183A (en) * 1995-02-17 1997-01-21 Ep Technologies, Inc. Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes
US5897553A (en) 1995-11-02 1999-04-27 Medtronic, Inc. Ball point fluid-assisted electrocautery device
US6409722B1 (en) * 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6063081A (en) 1995-02-22 2000-05-16 Medtronic, Inc. Fluid-assisted electrocautery device
US5676662A (en) 1995-03-17 1997-10-14 Daig Corporation Ablation catheter
WO1996034646A1 (en) 1995-05-01 1996-11-07 Medtronic Cardiorhythm Dual curve ablation catheter and method
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US5735280A (en) 1995-05-02 1998-04-07 Heart Rhythm Technologies, Inc. Ultrasound energy delivery system and method
EP0957792A4 (en) 1995-05-02 2000-09-20 Heart Rhythm Tech Inc System for controlling the energy delivered to a patient for ablation
US5827216A (en) 1995-06-07 1998-10-27 Cormedics Corp. Method and apparatus for accessing the pericardial space
US6293943B1 (en) 1995-06-07 2001-09-25 Ep Technologies, Inc. Tissue heating and ablation systems and methods which predict maximum tissue temperature
US6022346A (en) 1995-06-07 2000-02-08 Ep Technologies, Inc. Tissue heating and ablation systems and methods using self-heated electrodes
US5718241A (en) * 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US6132438A (en) 1995-06-07 2000-10-17 Ep Technologies, Inc. Devices for installing stasis reducing means in body tissue
US6113592A (en) 1995-06-09 2000-09-05 Engineering & Research Associates, Inc. Apparatus and method for controlling ablation depth
US5697925A (en) 1995-06-09 1997-12-16 Engineering & Research Associates, Inc. Apparatus and method for thermal ablation
US5678550A (en) 1995-08-11 1997-10-21 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Apparatus and method for in situ detection of areas of cardiac electrical activity
US5836311A (en) 1995-09-20 1998-11-17 Medtronic, Inc. Method and apparatus for temporarily immobilizing a local area of tissue
US5667518A (en) 1995-10-02 1997-09-16 Pannell; William P. Method and implements for performing a vasectomy
US5590657A (en) * 1995-11-06 1997-01-07 The Regents Of The University Of Michigan Phased array ultrasound system and method for cardiac ablation
US5716389A (en) * 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
US5707355A (en) 1995-11-15 1998-01-13 Zimmon Science Corporation Apparatus and method for the treatment of esophageal varices and mucosal neoplasms
US5733280A (en) * 1995-11-15 1998-03-31 Avitall; Boaz Cryogenic epicardial mapping and ablation
US5906606A (en) 1995-12-04 1999-05-25 Target Therapuetics, Inc. Braided body balloon catheter
US5925038A (en) * 1996-01-19 1999-07-20 Ep Technologies, Inc. Expandable-collapsible electrode structures for capacitive coupling to tissue
US5671747A (en) 1996-01-24 1997-09-30 Hewlett-Packard Company Ultrasound probe having interchangeable accessories
US5904711A (en) 1996-02-08 1999-05-18 Heartport, Inc. Expandable thoracoscopic defibrillation catheter system and method
US5800482A (en) 1996-03-06 1998-09-01 Cardiac Pathways Corporation Apparatus and method for linear lesion ablation
US5895417A (en) 1996-03-06 1999-04-20 Cardiac Pathways Corporation Deflectable loop design for a linear lesion ablation apparatus
US5755760A (en) 1996-03-11 1998-05-26 Medtronic, Inc. Deflectable catheter
US5676692A (en) 1996-03-28 1997-10-14 Indianapolis Center For Advanced Research, Inc. Focussed ultrasound tissue treatment method
US5779699A (en) 1996-03-29 1998-07-14 Medtronic, Inc. Slip resistant field focusing ablation catheter electrode
US6302880B1 (en) 1996-04-08 2001-10-16 Cardima, Inc. Linear ablation assembly
NL1003024C2 (en) * 1996-05-03 1997-11-06 Tjong Hauw Sie Stimulus conduction blocking instrument.
US5800428A (en) 1996-05-16 1998-09-01 Angeion Corporation Linear catheter ablation system
US5730074A (en) * 1996-06-07 1998-03-24 Farmer Fabrications, Inc. Liquid dispenser for seed planter
US5882346A (en) * 1996-07-15 1999-03-16 Cardiac Pathways Corporation Shapable catheter using exchangeable core and method of use
US5720775A (en) * 1996-07-31 1998-02-24 Cordis Corporation Percutaneous atrial line ablation catheter
US5993447A (en) 1996-08-16 1999-11-30 United States Surgical Apparatus for thermal treatment of tissue
US5846187A (en) 1996-09-13 1998-12-08 Genzyme Corporation Redo sternotomy retractor
US5697928A (en) 1996-09-23 1997-12-16 Uab Research Foundation Cardic electrode catheter
US6311692B1 (en) 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
US6237605B1 (en) 1996-10-22 2001-05-29 Epicor, Inc. Methods of epicardial ablation
US5893848A (en) 1996-10-24 1999-04-13 Plc Medical Systems, Inc. Gauging system for monitoring channel depth in percutaneous endocardial revascularization
US5785706A (en) 1996-11-18 1998-07-28 Daig Corporation Nonsurgical mapping and treatment of cardiac arrhythmia using a catheter contained within a guiding introducer containing openings
US5910150A (en) 1996-12-02 1999-06-08 Angiotrax, Inc. Apparatus for performing surgery
US5931810A (en) 1996-12-05 1999-08-03 Comedicus Incorporated Method for accessing the pericardial space
US5782828A (en) 1996-12-11 1998-07-21 Irvine Biomedical, Inc. Ablation catheter with multiple flexible curves
US6071279A (en) 1996-12-19 2000-06-06 Ep Technologies, Inc. Branched structures for supporting multiple electrode elements
US5916213A (en) 1997-02-04 1999-06-29 Medtronic, Inc. Systems and methods for tissue mapping and ablation
US5844349A (en) 1997-02-11 1998-12-01 Tetrad Corporation Composite autoclavable ultrasonic transducers and methods of making
US5788636A (en) 1997-02-25 1998-08-04 Acuson Corporation Method and system for forming an ultrasound image of a tissue while simultaneously ablating the tissue
US5899898A (en) 1997-02-27 1999-05-04 Cryocath Technologies Inc. Cryosurgical linear ablation
US5897554A (en) 1997-03-01 1999-04-27 Irvine Biomedical, Inc. Steerable catheter having a loop electrode
US5873845A (en) * 1997-03-17 1999-02-23 General Electric Company Ultrasound transducer with focused ultrasound refraction plate
US5954661A (en) 1997-03-31 1999-09-21 Thomas Jefferson University Tissue characterization and treatment using pacing
US5879295A (en) * 1997-04-02 1999-03-09 Medtronic, Inc. Enhanced contact steerable bowing electrode catheter assembly
US5906580A (en) 1997-05-05 1999-05-25 Creare Inc. Ultrasound system and method of administering ultrasound including a plurality of multi-layer transducer elements
US6012457A (en) * 1997-07-08 2000-01-11 The Regents Of The University Of California Device and method for forming a circumferential conduction block in a pulmonary vein
US5971983A (en) 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US5792140A (en) 1997-05-15 1998-08-11 Irvine Biomedical, Inc. Catheter having cooled multiple-needle electrode
US5849028A (en) 1997-05-16 1998-12-15 Irvine Biomedical, Inc. Catheter and method for radiofrequency ablation of cardiac tissue
US6217576B1 (en) 1997-05-19 2001-04-17 Irvine Biomedical Inc. Catheter probe for treating focal atrial fibrillation in pulmonary veins
US5876399A (en) * 1997-05-28 1999-03-02 Irvine Biomedical, Inc. Catheter system and methods thereof
US6117101A (en) 1997-07-08 2000-09-12 The Regents Of The University Of California Circumferential ablation device assembly
US6245064B1 (en) 1997-07-08 2001-06-12 Atrionix, Inc. Circumferential ablation device assembly
US6096037A (en) 1997-07-29 2000-08-01 Medtronic, Inc. Tissue sealing electrosurgery device and methods of sealing tissue
US5908029A (en) 1997-08-15 1999-06-01 Heartstent Corporation Coronary artery bypass with reverse flow
US6120496A (en) 1998-05-05 2000-09-19 Scimed Life Systems, Inc. Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and coupling device for use with same
US6610055B1 (en) 1997-10-10 2003-08-26 Scimed Life Systems, Inc. Surgical method for positioning a diagnostic or therapeutic element on the epicardium or other organ surface
US6007499A (en) 1997-10-31 1999-12-28 University Of Washington Method and apparatus for medical procedures using high-intensity focused ultrasound
US6120500A (en) 1997-11-12 2000-09-19 Daig Corporation Rail catheter ablation and mapping system
US6270471B1 (en) 1997-12-23 2001-08-07 Misonix Incorporated Ultrasonic probe with isolated outer cannula
US6251092B1 (en) 1997-12-30 2001-06-26 Medtronic, Inc. Deflectable guiding catheter
US6142993A (en) 1998-02-27 2000-11-07 Ep Technologies, Inc. Collapsible spline structure using a balloon as an expanding actuator
US6042563A (en) * 1998-03-27 2000-03-28 Cardiothoracic Systems, Inc. Methods and apparatus for occluding a blood vessel
US6527767B2 (en) * 1998-05-20 2003-03-04 New England Medical Center Cardiac ablation system and method for treatment of cardiac arrhythmias and transmyocardial revascularization
US6231518B1 (en) 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US6186951B1 (en) 1998-05-26 2001-02-13 Riverside Research Institute Ultrasonic systems and methods for fluid perfusion and flow rate measurement
US6706039B2 (en) * 1998-07-07 2004-03-16 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6537272B2 (en) * 1998-07-07 2003-03-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US6537248B2 (en) * 1998-07-07 2003-03-25 Medtronic, Inc. Helical needle apparatus for creating a virtual electrode used for the ablation of tissue
US6238393B1 (en) 1998-07-07 2001-05-29 Medtronic, Inc. Method and apparatus for creating a bi-polar virtual electrode used for the ablation of tissue
US6016811A (en) * 1998-09-01 2000-01-25 Fidus Medical Technology Corporation Method of using a microwave ablation catheter with a loop configuration
US6251128B1 (en) 1998-09-01 2001-06-26 Fidus Medical Technology Corporation Microwave ablation catheter with loop configuration
US6042556A (en) * 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6385472B1 (en) 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6425867B1 (en) 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US6245062B1 (en) 1998-10-23 2001-06-12 Afx, Inc. Directional reflector shield assembly for a microwave ablation instrument
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6296619B1 (en) 1998-12-30 2001-10-02 Pharmasonics, Inc. Therapeutic ultrasonic catheter for delivering a uniform energy dose
US6461314B1 (en) 1999-02-02 2002-10-08 Transurgical, Inc. Intrabody hifu applicator
US6217528B1 (en) 1999-02-11 2001-04-17 Scimed Life Systems, Inc. Loop structure having improved tissue contact capability
US6280415B1 (en) 1999-03-10 2001-08-28 W. Dudley Johnson Tissue traction device
US6325797B1 (en) 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
US6702811B2 (en) * 1999-04-05 2004-03-09 Medtronic, Inc. Ablation catheter assembly with radially decreasing helix and method of use
US20010007070A1 (en) 1999-04-05 2001-07-05 Medtronic, Inc. Ablation catheter assembly and method for isolating a pulmonary vein
US20050010095A1 (en) * 1999-04-05 2005-01-13 Medtronic, Inc. Multi-purpose catheter apparatus and method of use
US6488689B1 (en) 1999-05-20 2002-12-03 Aaron V. Kaplan Methods and apparatus for transpericardial left atrial appendage closure
US6398792B1 (en) 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US6235024B1 (en) 1999-06-21 2001-05-22 Hosheng Tu Catheters system having dual ablation capability
US6461356B1 (en) 1999-07-01 2002-10-08 C.R. Bard, Inc. Medical device having an incrementally displaceable electrode
US6371955B1 (en) 1999-08-10 2002-04-16 Biosense Webster, Inc. Atrial branding iron catheter and a method for treating atrial fibrillation
US6416554B1 (en) 1999-08-24 2002-07-09 Spiration, Inc. Lung reduction apparatus and method
US6328689B1 (en) 2000-03-23 2001-12-11 Spiration, Inc., Lung constriction apparatus and method
US6332881B1 (en) 1999-09-01 2001-12-25 Cardima, Inc. Surgical ablation tool
EP1152369B1 (en) * 1999-09-17 2007-03-21 Dai Nippon Printing Co., Ltd. Information recorded medium, device for reading the information, information recorded medium transfer foil, and method for producing information recorded medium
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6368275B1 (en) 1999-10-07 2002-04-09 Acuson Corporation Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy
US6428548B1 (en) * 1999-11-18 2002-08-06 Russell F. Durgin Apparatus and method for compressing body tissue
US6645199B1 (en) 1999-11-22 2003-11-11 Scimed Life Systems, Inc. Loop structures for supporting diagnostic and therapeutic elements contact with body tissue and expandable push devices for use with same
US6413254B1 (en) 2000-01-19 2002-07-02 Medtronic Xomed, Inc. Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US6692450B1 (en) * 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6595934B1 (en) 2000-01-19 2003-07-22 Medtronic Xomed, Inc. Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6361531B1 (en) * 2000-01-21 2002-03-26 Medtronic Xomed, Inc. Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
EP1265674B1 (en) 2000-03-24 2008-09-17 ProRhythm, Inc. Apparatus for intrabody thermal treatment
US7056294B2 (en) 2000-04-13 2006-06-06 Ev3 Sunnyvale, Inc Method and apparatus for accessing the left atrial appendage
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6652517B1 (en) * 2000-04-25 2003-11-25 Uab Research Foundation Ablation catheter, system, and method of use thereof
AU2001253654A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6546935B2 (en) * 2000-04-27 2003-04-15 Atricure, Inc. Method for transmural ablation
US6488680B1 (en) 2000-04-27 2002-12-03 Medtronic, Inc. Variable length electrodes for delivery of irrigated ablation
US6514250B1 (en) 2000-04-27 2003-02-04 Medtronic, Inc. Suction stabilized epicardial ablation devices
WO2001082811A1 (en) 2000-04-27 2001-11-08 Medtronic, Inc. System and method for assessing transmurality of ablation lesions
US6558382B2 (en) 2000-04-27 2003-05-06 Medtronic, Inc. Suction stabilized epicardial ablation devices
US6896684B2 (en) 2000-06-12 2005-05-24 Niti Medical Technologies Ltd. Surgical clip applicator device
WO2001097696A1 (en) 2000-06-19 2001-12-27 Image-Guided Neurologics, Inc. System and method of minimally-invasive exovascular aneurysm treatment
US6477396B1 (en) 2000-07-07 2002-11-05 Biosense Webster, Inc. Mapping and ablation catheter
JP2004506469A (en) * 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
JP2004508879A (en) * 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
US20020111641A1 (en) 2001-01-08 2002-08-15 Incisive Surgical, Inc. Bioabsorbable surgical clip with engageable expansion structure
US20040138621A1 (en) 2003-01-14 2004-07-15 Jahns Scott E. Devices and methods for interstitial injection of biologic agents into tissue
US7628780B2 (en) 2001-01-13 2009-12-08 Medtronic, Inc. Devices and methods for interstitial injection of biologic agents into tissue
US6807968B2 (en) * 2001-04-26 2004-10-26 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US7250048B2 (en) 2001-04-26 2007-07-31 Medtronic, Inc. Ablation system and method of use
US6663627B2 (en) * 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
US6699240B2 (en) * 2001-04-26 2004-03-02 Medtronic, Inc. Method and apparatus for tissue ablation
US7209783B2 (en) * 2001-06-15 2007-04-24 Cardiac Pacemakers, Inc. Ablation stent for treating atrial fibrillation
US6491706B1 (en) 2001-07-10 2002-12-10 Spiration, Inc. Constriction device including fixation structure
WO2003007825A1 (en) * 2001-07-19 2003-01-30 Atritech, Inc. Individually customized device for covering the ostium of left atrial appendage
US6585733B2 (en) * 2001-09-28 2003-07-01 Ethicon, Inc. Surgical treatment for atrial fibrillation using radiofrequency technology
US7749157B2 (en) 2001-12-04 2010-07-06 Estech, Inc. (Endoscopic Technologies, Inc.) Methods and devices for minimally invasive cardiac surgery for atrial fibrillation
US6849075B2 (en) * 2001-12-04 2005-02-01 Estech, Inc. Cardiac ablation devices and methods
US20050149069A1 (en) 2001-12-04 2005-07-07 Bertolero Arthur A. Left atrial appendage devices and methods
US6656175B2 (en) 2001-12-11 2003-12-02 Medtronic, Inc. Method and system for treatment of atrial tachyarrhythmias
US7967816B2 (en) 2002-01-25 2011-06-28 Medtronic, Inc. Fluid-assisted electrosurgical instrument with shapeable electrode
US6827715B2 (en) 2002-01-25 2004-12-07 Medtronic, Inc. System and method of performing an electrosurgical procedure
US7118566B2 (en) 2002-05-16 2006-10-10 Medtronic, Inc. Device and method for needle-less interstitial injection of fluid for ablation of cardiac tissue
US7294143B2 (en) * 2002-05-16 2007-11-13 Medtronic, Inc. Device and method for ablation of cardiac tissue
US20040073241A1 (en) 2002-10-11 2004-04-15 Spiration, Inc. Implantable tissue constriction device and method for suppressing leakage of fluid from resectioned body tissue
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US7497857B2 (en) * 2003-04-29 2009-03-03 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen
US20050149068A1 (en) 2003-12-17 2005-07-07 Mathew Williams Left atrial appendage exclusion device
WO2005112812A1 (en) * 2004-05-14 2005-12-01 Medtronic, Inc. Method and devices for treating atrial fibrillation by mass ablation
US7645285B2 (en) 2004-05-26 2010-01-12 Idx Medical, Ltd Apparatus and methods for occluding a hollow anatomical structure
WO2005120375A2 (en) * 2004-06-02 2005-12-22 Medtronic, Inc. Loop ablation apparatus and method
WO2006009729A2 (en) * 2004-06-18 2006-01-26 Medtronic, Inc. Methods and devices for occlusion of an atrial appendage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6254598B1 (en) * 1994-06-24 2001-07-03 Curon Medical, Inc. Sphincter treatment apparatus
US5989284A (en) * 1997-02-18 1999-11-23 Hearten Medical, Inc. Method and device for soft tissue modification
WO2001087169A1 (en) * 2000-05-16 2001-11-22 Atrionix, Inc. Apparatus and method incorporating an ultrasound transducer onto a delivery member
WO2002087456A1 (en) * 2001-05-01 2002-11-07 C.R. Bard, Inc. Method and apparatus for altering conduction properties in the heart and in adjacent vessels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7871409B2 (en) 2003-04-29 2011-01-18 Medtronic, Inc. Endocardial dispersive electrode for use with a monopolar RF ablation pen

Also Published As

Publication number Publication date
US20090138008A1 (en) 2009-05-28
EP1620026A1 (en) 2006-02-01
US7871409B2 (en) 2011-01-18
US7497857B2 (en) 2009-03-03
US20040220560A1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US7497857B2 (en) Endocardial dispersive electrode for use with a monopolar RF ablation pen
US11364074B2 (en) Vacuum coagulation probes
US10702330B2 (en) Vacuum coagulation probes
US8795271B2 (en) Surgical probe for supporting inflatable therapeutic devices in contact with tissue in or around body orifice and within tumors
US7438714B2 (en) Vacuum-based catheter stabilizer
US7063698B2 (en) Vacuum coagulation probes
US6907297B2 (en) Expandable intracardiac return electrode and method of use
US8801707B2 (en) Method and devices for treating atrial fibrillation by mass ablation
US8632532B2 (en) Catheter with tissue protecting assembly
US20080114355A1 (en) Vacuum coagulation probes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004760306

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004760306

Country of ref document: EP