WO2004107489A1 - Simplified method of monitoring cells in a fuel cell - Google Patents

Simplified method of monitoring cells in a fuel cell Download PDF

Info

Publication number
WO2004107489A1
WO2004107489A1 PCT/FR2004/050206 FR2004050206W WO2004107489A1 WO 2004107489 A1 WO2004107489 A1 WO 2004107489A1 FR 2004050206 W FR2004050206 W FR 2004050206W WO 2004107489 A1 WO2004107489 A1 WO 2004107489A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
stack
parts
fuel cell
cell
Prior art date
Application number
PCT/FR2004/050206
Other languages
French (fr)
Inventor
Thomas Nietsch
Olivier Verdu
Original Assignee
Helion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helion filed Critical Helion
Publication of WO2004107489A1 publication Critical patent/WO2004107489A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04246Short circuiting means for defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04671Failure or abnormal function of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a simplified method for monitoring the cells of a fuel cell, said method being capable of detecting an operational failure of one or more of these cells.
  • the current economic development of industrialized countries implies an ever growing need for alternative energy sources, the ideal energy source being as far as possible renewable, high efficiency, silent and developing high power densities.
  • Many sectors of activity constitute potential users of such an energy source and applications are envisaged in both the military and civil sectors.
  • Military applications include the propulsion of submarines, mobile electric generators and low power units, replacing batteries.
  • Commercial applications concern the transport sector (cars, buses, trucks, trains), but also stationary applications, for production localized electricity, and possibly the use of co-generated heat.
  • the fuel cell is a high-performance electrochemical energy conversion device, which directly converts chemical energy from a fuel, in some cases renewable, into electrical energy.
  • the most advanced technology in the field of temperatures below 100 C C is that of polymer electrolyte fuel cells.
  • a fuel cell is made up of an assembly of elementary cells, stacked on top of each other and arranged in sufficient numbers to ensure the electrochemical production of electricity under desired voltage and current conditions.
  • the fuel cell involves, without mixing them, a fuel (for example hydrogen, methanol, ...) and an oxidizer which is generally oxygen taken from the air.
  • the operating principle of this electrochemical generator is based on the electrochemical synthesis reaction of water.
  • the cell core consists of an anode, supplied with fuel, a cathode, supplied with oxygen, and an electrolyte.
  • the hydrogen undergoes catalytic oxidation which releases protons and electrons.
  • the electrons circulate along the external electrical circuit, while the protons are transported in the electrolyte towards the cathode, where they recombine with electrons and oxygen, under the effect of a catalytic reduction, to produce water.
  • EME membrane-electrode assembly
  • the electrolyte is a proton exchange membrane.
  • This membrane must fulfill three roles: to be impermeable to gas in order to play its role of gas separator, to be electronically insulating in order to avoid any short circuit, and finally, to be a good ionic conductor for ensuring the transport of protons from the anode. towards the cathode.
  • the elementary cell 1 is composed of two electrodes, an anode 2 and a cathode 3, separated by an electrolyte 4.
  • the assembly 2, 3, and 4 constitutes an EME.
  • the anode 2 and the cathode 3 are respectively supplied with fuel (fuel entering 5 into the cell and fuel leaving 15 from the cell) and by oxidizer (oxidizer entering 6 into the cell and oxidizer leaving 16 of the cell).
  • the hydrogen is catalytically oxidized in the active layer to give protons and electrons.
  • the electrons use an external electrical circuit towards the cathode 3 and supply the load 7, while the electrolyte 4, which is here a proton exchange membrane, ensures the exclusive transport of the protons from the anode 2 to the cathode 3, but also separation of reactant gases.
  • the oxygen undergoes a catalytic reduction and recombines with the protons and the electrons to give water. The water produced and any inert substances are removed by excess gas flow, either continuously or periodically using purges.
  • An elementary cell is generally characterized by its polarization curve 11 (see FIG. 2), that is to say by the voltage-current pairs.
  • polarization curve 11 see FIG. 2
  • the reference polarization curve In normal operation of the fuel cell and knowing the current and the operating conditions which are applied to it, one can predict what the voltage of each elementary cell should be by referring to the reference polarization curve.
  • this results in a reduction of the voltage across the terminals of this cell. This fall is generally several hundred mV.
  • the current passing through the stack of cells is the same as the current passing through each cell of the stack.
  • the measurement of the tension of the stack does not give detailed information on the tension individual cells and therefore on the possible presence of defects in the cells.
  • the numerous monitoring systems intended to detect faults in the cells of a fuel cell are currently implemented on the principle of measuring the individual voltage of each cell. For example, for a fuel cell composed of a number N of cells, the N cell voltages are measured and then the N signals originating from the cells are processed by a monitoring system. Knowing that for applications targeting powers greater than one kilowatt the number N can vary from 10 to 100, we realize the difficulties involved in the monitoring systems of the prior art. Indeed, to obtain these powers and still have a system capable of monitoring the fuel cell, this in practice requires wiring the N cells and providing a monitoring system associated with each of these N cells. This way of proceeding is therefore damaging in terms of complexity, volume, reliability and cost of the surveillance system. We see in particular that such a system is not suitable for industrial production.
  • a simplified version of this monitoring system exists and consists in measuring only the voltage of a group of cells typically consisting of 3 to 5 cells. But for a stack of 100 cells, this still involves wiring 20 to 30 groups of cells, which remains restrictive.
  • Another problem with existing monitoring systems is that they are based on measurements of cell or group of cell voltages. In these systems, faults are detected through a reduction in voltage. The voltage of a cell is not constant. It depends on the current flowing through it and on the operating conditions that are applied to the cell. For example, a cell voltage of 0.5V is characteristic of a fault at low current density (less than 0.5 A / cm 2 ), but is normal for high current densities (greater than 1 A / cm 2 ). To be effective, cell voltage measurements therefore require a perfect knowledge of the polarization curve and the operating conditions of each cell in order to really know whether a voltage is characteristic of a fault or not.
  • the object of the invention is to provide a method for monitoring the state of the elementary cells constituting a fuel cell which would not present the problems of the prior art.
  • each stack of elementary cells must be separated into two parts (part A and part B) comprising the same number of elementary cells and being arranged symmetrically in the stack of elementary cells with respect to the middle of said stack . Then, for each of these stacks, the voltage of part A (U A ) and part B (U B ) is measured. Finally we compare these two measures.
  • the comparison of the voltage measurements of parts A and B is carried out by subtracting the voltage measurements of parts A and B so as to obtain an absolute value.
  • the comparison of the voltage measurements of parts A and B is then carried out by comparing the absolute value with a determined absolute threshold value.
  • a determined absolute threshold value if the absolute value obtained for one or more of the stacks is greater than the determined absolute threshold value, it can be concluded that said stack or said stacks in question contains one or more faulty cells among the cells of part A and / or of part B.
  • the absolute value obtained for one or more of the stacks is less than the determined absolute threshold value, said stack or said stacks in question contains no faulty cells among cells in Part A and Part B.
  • the method according to the invention makes it possible to detect the presence in the stack of one or more pierced membranes. Similarly, the method can also make it possible to monitor the homogeneity of the gas supplies to the elementary cells or to monitor the evacuation of the inert elementary cells. Furthermore, the method makes it possible to distinguish different failures, that is to say that it will be possible to distinguish, for example, a failure due to the presence of a hole in a membrane, from a failure due to a poor supply of gas from one or more cells.
  • Another advantage of this process lies in the fact that it can make it possible to control a purging device, the function of which is to evacuate the water produced in the stack and the various inert materials.
  • FIG. 1 is a diagram illustrating the operating principle of an elementary PEMFC cell
  • FIG. 2 represents the polarization curve of an elementary cell
  • FIG. 3 is a diagram illustrating the principle of the method according to the invention in which the voltages of parts A and B of the stack are measured.
  • FIG. 3 illustrates the principle of the monitoring method according to the invention.
  • a stack formed of N cells.
  • the monitoring process involves separating virtually stacking in two parts (A and B). Parts A and B are made up of the same number of elementary cells (m cells). Parts A and B are arranged symmetrically in the stack of elementary cells making up the stack (the middle of the stack is represented by a broken line).
  • FIG. 3 it can be seen that there are thus parts C and D (having p cells) and a part E (q cells) on either side of parts A and B.
  • the method then consists in measuring and simply compare the voltages, U A and U B , of the two parts A and B.
  • the value of the voltage difference ⁇ u is high (typically greater than 0.3V)
  • the probability that a simultaneous defect appears on the two parts A and B of the stack and leads to voltage drops which compensate for each other is negligible, we come to the conclusion that if we detect sudden variations in ⁇ u or too high values, we can conclude that one or more cells of the parts are malfunctioning A and B.
  • the first test illustrates the behavior of a fuel cell in normal operation, that is to say that no fault is recorded.
  • This test to be representative of the operation of a fuel cell, is carried out for a period of approximately two hours and alternates operations in stationary regime (constant current) and operations in dynamic regime (the current varying from 10 to 90 AT) .
  • the individual monitoring of the cell tensions shows that all the cells have the same level of tension and shows the absence of any defect in the cells examined in parts A and B.
  • ⁇ u
  • the second test is representative of the behavior of a fuel cell when certain of these cells are pierced.
  • this threshold is located at around 0.4-0.5V.
  • ⁇ u is not stable and varies from -2V to 8V.
  • the third test shows the behavior of a fuel cell in the case where certain cells are poorly supplied with gas. It is noted that the voltages of the cells are very dispersed and that certain voltages fall below the low threshold acceptable for a cell (located at around 0.4-0.5V). During this test, it can be seen that ⁇ u is not stable and varies from -1 to IV. By imposing a limit threshold on ⁇ u around 0.5V, we are able to detect the presence of a malfunction in one or more of the cells.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The invention relates to a method of monitoring the correct operation of cells in a fuel cell comprising one or more stacks of unit cells which are connected in series to one another, said stacks being interconnected in series and/or in parallel by means of electrical connections. The inventive method comprises the following steps consisting in: regarding each unit cell stack as two parts (part A and part B) which comprise the same number of unit cells and which are disposed symmetrically in the stack in relation to the centre thereof; and, for each stack, measuring the voltages of parts A and B, and comparing said measurements.

Description

PROCEDE DE SURVEILLANCE SIMPLIFIE DES CELLULES D'UNE PILE A COMBUSTIBLE METHOD FOR SIMPLIFIED MONITORING OF CELLS IN A FUEL CELL
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUETECHNICAL AREA
L'invention concerne un procédé de surveillance simplifié des cellules d'une pile à combustible, ledit procédé étant capable de détecter une défaillance de fonctionnement d'une ou de plusieurs de ces cellules.The invention relates to a simplified method for monitoring the cells of a fuel cell, said method being capable of detecting an operational failure of one or more of these cells.
ETAT DE LA TECHNIQUE ANTERIEURESTATE OF THE PRIOR ART
Le développement économique actuel des pays industrialisés implique un besoin sans cesse croissant de sources d'énergie alternatives, la source d'énergie idéale étant dans la mesure du possible renouvelable, à haut rendement, silencieuse et développant des densités de puissance élevées. Nombreux sont les secteurs d'activité constituant des utilisateurs potentiels d'une telle source d'énergie et les applications sont envisagées aussi bien dans le secteur militaire que civil. Les applications militaires incluent notamment la propulsion des sous-marins, les générateurs électriques mobiles et les unités de basses puissances, en remplacement des batteries. Les applications commerciales concernent le secteur du transport (automobiles, autobus, camions, trains) , mais aussi les applications stationnaires, pour la production localisée d'électricité, et éventuellement l'utilisation de la chaleur co-générée. Il existe d'autres applications potentielles dans le domaine des dispositifs portables et miniaturisés. La pile à combustible est un dispositif électrochimique de conversion d'énergie hautement performant, qui convertit directement l'énergie chimique dérivant d'un combustible, dans certains cas renouvelable, en énergie électrique. La technologie la plus avancée dans le domaine des températures inférieures à 100CC est celle des piles à combustible à electrolyte polymère.The current economic development of industrialized countries implies an ever growing need for alternative energy sources, the ideal energy source being as far as possible renewable, high efficiency, silent and developing high power densities. Many sectors of activity constitute potential users of such an energy source and applications are envisaged in both the military and civil sectors. Military applications include the propulsion of submarines, mobile electric generators and low power units, replacing batteries. Commercial applications concern the transport sector (cars, buses, trucks, trains), but also stationary applications, for production localized electricity, and possibly the use of co-generated heat. There are other potential applications in the field of portable and miniaturized devices. The fuel cell is a high-performance electrochemical energy conversion device, which directly converts chemical energy from a fuel, in some cases renewable, into electrical energy. The most advanced technology in the field of temperatures below 100 C C is that of polymer electrolyte fuel cells.
Une pile à combustible est composée d'un assemblage de cellules élémentaires, empilées les unes sur les autres et disposées en nombre suffisant pour assurer la production électrochimique d'électricité dans des conditions de tension et courant voulues. La pile à combustible met en jeu, sans les mélanger, un combustible (par exemple de l'hydrogène, du méthanol,...) et un comburant qui est généralement de l'oxygène prélevé dans l'air.A fuel cell is made up of an assembly of elementary cells, stacked on top of each other and arranged in sufficient numbers to ensure the electrochemical production of electricity under desired voltage and current conditions. The fuel cell involves, without mixing them, a fuel (for example hydrogen, methanol, ...) and an oxidizer which is generally oxygen taken from the air.
Le principe de fonctionnement de ce générateur électrochimique repose sur la réaction de synthèse électrochimique de l'eau. Le cœur de pile est constitué d'une anode, alimentée en combustible, d'une cathode, alimentée en oxygène, et d'un electrolyte. A l'anode, l'hydrogène subit une oxydation catalytique qui libère protons et électrons. Les électrons circulent le long du circuit électrique extérieur, tandis que les protons sont transportés dans 1' electrolyte vers la cathode, où ils se recombinent avec les électrons et l'oxygène, sous l'effet d'une réduction catalytique, pour produire de l'eau.The operating principle of this electrochemical generator is based on the electrochemical synthesis reaction of water. The cell core consists of an anode, supplied with fuel, a cathode, supplied with oxygen, and an electrolyte. At the anode, the hydrogen undergoes catalytic oxidation which releases protons and electrons. The electrons circulate along the external electrical circuit, while the protons are transported in the electrolyte towards the cathode, where they recombine with electrons and oxygen, under the effect of a catalytic reduction, to produce water.
Le rendement de la pile à combustible, théoriquement voisin de l'unité, atteint des valeurs pratiques deux fois supérieures à celles des moteurs thermiques. De plus, elle est silencieuse et peu polluante, même si le combustible est un composé organique. Ce bon rendement et cette pollution plus faible sont parmi les raisons de recherche et de développement dans ce domaine.The efficiency of the fuel cell, theoretically close to unity, reaches practical values twice that of thermal engines. In addition, it is silent and not very polluting, even if the fuel is an organic compound. This good yield and this lower pollution are among the reasons for research and development in this field.
Une des composantes essentielles d'une pile à combustible à electrolyte polymère est l'ensemble membrane-électrodes (EME) qui comprend une membrane échangeuse protonique et deux électrodes catalytiques à diffusion de gaz, constituées d'une couche active et d'une couche de diffusion. L'EME est installée entre deux plaques assurant l'apport des gaz réactifs, et ce système est refermé par deux collecteurs de courant, l'ensemble constituant une cellule d'un cœur de pile à combustible.One of the essential components of a polymer electrolyte fuel cell is the membrane-electrode assembly (EME) which comprises a proton exchange membrane and two catalytic gas diffusion electrodes, consisting of an active layer and a layer of diffusion. The EME is installed between two plates ensuring the supply of reactive gases, and this system is closed by two current collectors, the assembly constituting a cell of a fuel cell core.
Dans le cas d'une pile à combustible de type PEM (« Proton Exchange Membrane » en anglais) , l' electrolyte est une membrane échangeuse de protons. Cette membrane doit assurer trois rôles : être imperméable au gaz afin de jouer son rôle de séparateur des gaz, être électroniquement isolante afin d'éviter tout court circuit, et enfin, être un bon conducteur ionique pour assurer le transport des protons depuis l'anode vers la cathode. Comme on peut le voir sur la figure 1, la cellule élémentaire 1 est composée de deux électrodes, une anode 2 et une cathode 3, séparées par un electrolyte 4. Dans le cas d'une pile à combustible à membrane échangeuse de protons, l'ensemble 2, 3, et 4 constitue un EME. L'anode 2 et la cathode 3 sont alimentées respectivement en combustible (combustible entrant 5 dans la cellule et combustible sortant 15 de la cellule) et en comburant (comburant entrant 6 dans la cellule et comburant sortant 16 de la cellule) .In the case of a PEM (Proton Exchange Membrane) fuel cell, the electrolyte is a proton exchange membrane. This membrane must fulfill three roles: to be impermeable to gas in order to play its role of gas separator, to be electronically insulating in order to avoid any short circuit, and finally, to be a good ionic conductor for ensuring the transport of protons from the anode. towards the cathode. As can be seen in FIG. 1, the elementary cell 1 is composed of two electrodes, an anode 2 and a cathode 3, separated by an electrolyte 4. In the case of a fuel cell with a proton exchange membrane, the assembly 2, 3, and 4 constitutes an EME. The anode 2 and the cathode 3 are respectively supplied with fuel (fuel entering 5 into the cell and fuel leaving 15 from the cell) and by oxidizer (oxidizer entering 6 into the cell and oxidizer leaving 16 of the cell).
De manière générale, la réaction bilan ayant lieu dans chaque cellule élémentaire est :In general, the balance reaction taking place in each elementary cell is:
H2 + -O2 →π2oH 2 + -O 2 → π 2 o
A l'anode 2, après diffusion au travers de la couche de diffusion, l'hydrogène est oxydé catalytiquement dans la couche active pour donner protons et électrons . Les électrons empruntent un circuit électrique extérieur vers la cathode 3 et alimentent la charge 7, tandis que l' electrolyte 4, qui est ici une membrane échangeuse protonique, assure le transport exclusif des protons de l'anode 2 vers la cathode 3, mais aussi la séparation des gaz réactants. A la cathode 3, l'oxygène subit une réduction catalytique et se recombine avec les protons et les électrons pour donner de l'eau. L'eau produite et les éventuels inertes sont évacués par excès de flux de gaz, soit continuellement, soit périodiquement à l'aide de purges.At anode 2, after diffusion through the diffusion layer, the hydrogen is catalytically oxidized in the active layer to give protons and electrons. The electrons use an external electrical circuit towards the cathode 3 and supply the load 7, while the electrolyte 4, which is here a proton exchange membrane, ensures the exclusive transport of the protons from the anode 2 to the cathode 3, but also separation of reactant gases. At cathode 3, the oxygen undergoes a catalytic reduction and recombines with the protons and the electrons to give water. The water produced and any inert substances are removed by excess gas flow, either continuously or periodically using purges.
Dans la pratique, plusieurs dizaines de cellules élémentaires sont nécessaires pour réaliser une pile combustible de puissance moyenne. Ces cellules élémentaires sont empilées et associées pour obtenir ladite puissance moyenne. Les cellules élémentaires sont raccordées électriquement en série au sein d'un même empilement (« stack » en anglais) . Les empilements peuvent ensuite être associés électriquement en série ou en parallèle afin de pouvoir ajuster la tension et l'intensité de la pile à combustible aux besoins.In practice, several tens of elementary cells are necessary to make a fuel cell of average power. These cells elementals are stacked and combined to obtain said average power. The elementary cells are electrically connected in series within the same stack. The stacks can then be electrically associated in series or in parallel so that the voltage and intensity of the fuel cell can be adjusted as required.
Une cellule élémentaire est généralement caractérisée par sa courbe de polarisation 11 (voir figure 2), c'est à dire par les couples tension- intensité. En fonctionnement normal de la pile à combustible et connaissant le courant et les conditions opératoires qui lui sont appliquées, on peut prévoir quelle devrait être la tension de chaque cellule élémentaire en se reportant à la courbe de polarisation de référence. Ainsi, s'il y a un défaut de fonctionnement au niveau d'une cellule, comme par exemple une rupture de la membrane de la cellule ou une mauvaise alimentation en gaz, cela entraîne une diminution de la tension aux bornes de cette cellule. Cette chute est en général de plusieurs centaines de mV.An elementary cell is generally characterized by its polarization curve 11 (see FIG. 2), that is to say by the voltage-current pairs. In normal operation of the fuel cell and knowing the current and the operating conditions which are applied to it, one can predict what the voltage of each elementary cell should be by referring to the reference polarization curve. Thus, if there is a malfunction at the level of a cell, such as for example a rupture of the membrane of the cell or a poor gas supply, this results in a reduction of the voltage across the terminals of this cell. This fall is generally several hundred mV.
Or, les cellules étant associées en série au sein d'un même empilement, le courant traversant l'empilement de cellules est le même que le courant traversant chaque cellule de l'empilement. En mesurant le courant de l'empilement, on connaît ainsi le courant débité par chaque cellule.However, the cells being associated in series within the same stack, the current passing through the stack of cells is the same as the current passing through each cell of the stack. By measuring the current of the stack, we thus know the current delivered by each cell.
En revanche, la mesure de la tension de l'empilement ne renseigne pas finement sur la tension individuelle des cellules et donc sur la présence éventuelle de défauts dans les cellules.On the other hand, the measurement of the tension of the stack does not give detailed information on the tension individual cells and therefore on the possible presence of defects in the cells.
Les nombreux systèmes de surveillance destinés à détecter les défauts des cellules d'une pile à combustible sont réalisés à l'heure actuelle sur le principe de la mesure de la tension individuelle de chaque cellule. Par exemple, pour une pile à combustible composée d'un nombre N de cellules, les N tensions de cellules sont mesurées puis les N signaux provenant des cellules sont traités par un système de surveillance. Sachant que pour des applications visant des puissances supérieures au kilowatt le nombre N peut varier de 10 à 100, on se rend compte des difficultés qu'impliquent les systèmes de surveillance de l'art antérieur. En effet, pour obtenir ces puissances et disposer quand même d'un système pouvant surveiller la pile à combustible, cela impose en pratique de câbler les N cellules et de prévoir un système de surveillance associé à chacune de ces N cellules. Cette façon de procéder est donc dommageable en terme de complexité, de volume, de fiabilité et de coût du système de surveillance. On voit en particulier qu'un tel système n'est pas adapté à une production industrielle.The numerous monitoring systems intended to detect faults in the cells of a fuel cell are currently implemented on the principle of measuring the individual voltage of each cell. For example, for a fuel cell composed of a number N of cells, the N cell voltages are measured and then the N signals originating from the cells are processed by a monitoring system. Knowing that for applications targeting powers greater than one kilowatt the number N can vary from 10 to 100, we realize the difficulties involved in the monitoring systems of the prior art. Indeed, to obtain these powers and still have a system capable of monitoring the fuel cell, this in practice requires wiring the N cells and providing a monitoring system associated with each of these N cells. This way of proceeding is therefore damaging in terms of complexity, volume, reliability and cost of the surveillance system. We see in particular that such a system is not suitable for industrial production.
Une version simplifiée de ce système de surveillance existe et consiste à ne mesurer que la tension d'un groupe de cellules constitué typiquement de 3 à 5 cellules. Mais pour un empilement de 100 cellules, cela implique encore de câbler de 20 à 30 groupes de cellules, ce qui reste contraignant. Par ailleurs, un autre problème des systèmes de surveillance existants est qu'ils se basent sur des mesures de tensions de cellules ou de groupes de cellules. Dans ces systèmes, les défauts sont détectés au travers d'une diminution de tension. Or la tension d'une cellule n'est pas constante. Elle dépend en effet du courant qui la traverse et des conditions opératoires qui sont appliquées à la cellule. Par exemple, une tension de cellule de 0,5V est caractéristique d'un défaut à faible densité de courant (inférieure à 0,5 A/cm2) , mais est normale pour de fortes densités de courant (supérieures à 1 A/cm2) . Pour être efficaces, les mesures de tensions de cellules requièrent donc une parfaite connaissance de la courbe de polarisation et des conditions opératoires de chaque cellule pour réellement savoir si une tension est caractéristique d'un défaut ou non.A simplified version of this monitoring system exists and consists in measuring only the voltage of a group of cells typically consisting of 3 to 5 cells. But for a stack of 100 cells, this still involves wiring 20 to 30 groups of cells, which remains restrictive. Another problem with existing monitoring systems is that they are based on measurements of cell or group of cell voltages. In these systems, faults are detected through a reduction in voltage. The voltage of a cell is not constant. It depends on the current flowing through it and on the operating conditions that are applied to the cell. For example, a cell voltage of 0.5V is characteristic of a fault at low current density (less than 0.5 A / cm 2 ), but is normal for high current densities (greater than 1 A / cm 2 ). To be effective, cell voltage measurements therefore require a perfect knowledge of the polarization curve and the operating conditions of each cell in order to really know whether a voltage is characteristic of a fault or not.
EXPOSÉ DE L'INVENTION Le but de l'invention est de fournir un procédé de surveillance de l'état des cellules élémentaires constituant une pile à combustible qui ne présenterait pas les problèmes de l'art antérieur.PRESENTATION OF THE INVENTION The object of the invention is to provide a method for monitoring the state of the elementary cells constituting a fuel cell which would not present the problems of the prior art.
Ce but et d'autres encore sont atteints, conformément à l'invention, par un procédé de surveillance du bon fonctionnement des cellules d'une pile à combustible, la pile à combustible étant constituée d'un ou de plusieurs empilements (ou « stacks ») de cellules élémentaires reliées en série les unes aux autres, lesdits empilements étant reliés entre eux en série et/ou en parallèle par des raccordements électriques. Le procédé, objet de l'invention, comporte plusieurs étapes.This object and others are achieved, in accordance with the invention, by a process for monitoring the proper functioning of the cells of a fuel cell, the fuel cell consisting of one or more stacks (or "stacks"). ”) Of elementary cells connected in series with each other, said stacks being connected together in series and / or in parallel by electrical connections. The process which is the subject of the invention comprises several stages.
Tout d'abord, on doit séparer virtuellement chaque empilement de cellules élémentaires en deux parties (partie A et partie B) comprenant un même nombre de cellules élémentaires et étant disposées de manière symétrique dans l'empilement des cellules élémentaires par rapport au milieu dudit empilement . Puis, pour chacun de ces empilements, on mesure la tension de la partie A (UA) et de la partie B (UB) . Enfin on compare ces deux mesures .First of all, virtually each stack of elementary cells must be separated into two parts (part A and part B) comprising the same number of elementary cells and being arranged symmetrically in the stack of elementary cells with respect to the middle of said stack . Then, for each of these stacks, the voltage of part A (U A ) and part B (U B ) is measured. Finally we compare these two measures.
On obtient ainsi une surveillance de la symétrie et de l'état d'homogénéité des parties A et B de l'empilement. En effet, en l'absence de cellule défaillante au sein des parties A et B, la tension de la partie A (UA) et la tension de la partie B (UB) sont semblables. En revanche, en présence d'une cellule défaillante au sein des parties A et/ou B, la tension de la partie A (UA) et la tension de la partie B (UB) sont différentes.This gives a monitoring of the symmetry and the state of homogeneity of the parts A and B of the stack. Indeed, in the absence of a faulty cell within parts A and B, the voltage of part A (U A ) and the voltage of part B (U B ) are similar. On the other hand, in the presence of a faulty cell within parts A and / or B, the voltage of part A (U A ) and the voltage of part B (U B ) are different.
Avantageusement, la comparaison des mesures de tension des parties A et B s'effectue en soustrayant les mesures de tension des parties A et B de manière à obtenir une valeur absolue. Avantageusement, la comparaison des mesures de tension des parties A et B s'effectue ensuite en comparant la valeur absolue avec une valeur seuil absolue déterminée. Ainsi, si la valeur absolue obtenue pour l'un ou plusieurs des empilements est supérieure à la valeur seuil absolue déterminée, on peut en conclure que ledit empilement ou lesdits empilements en question contient une ou plusieurs cellules défaillantes parmi les cellules de la partie A et/ou de la partie B. De même, si la valeur absolue obtenue pour l'un ou plusieurs des empilements est inférieure à la valeur seuil absolue déterminée, ledit empilement ou lesdits empilements en question ne contient aucune cellule défaillante parmi les cellules de la partie A et de la partie B.Advantageously, the comparison of the voltage measurements of parts A and B is carried out by subtracting the voltage measurements of parts A and B so as to obtain an absolute value. Advantageously, the comparison of the voltage measurements of parts A and B is then carried out by comparing the absolute value with a determined absolute threshold value. Thus, if the absolute value obtained for one or more of the stacks is greater than the determined absolute threshold value, it can be concluded that said stack or said stacks in question contains one or more faulty cells among the cells of part A and / or of part B. Likewise, if the absolute value obtained for one or more of the stacks is less than the determined absolute threshold value, said stack or said stacks in question contains no faulty cells among cells in Part A and Part B.
Notons que si les parties A et B constituent l'intégralité de l'empilement, alors le procédé selon l'invention permet d'effectuer la surveillance de la symétrie et de l'état d'homogénéité de l'empilement entier.Note that if parts A and B constitute the entire stack, then the method according to the invention makes it possible to monitor the symmetry and the state of homogeneity of the entire stack.
Un des avantages de ce procédé réside dans le fait que l'on obtient un système simple à mettre en œuvre, qui repose simplement sur deux mesures de tension et cela quel que soit le nombre de cellules composant l'empilement. Ce procédé a également l'avantage de permettre une interprétation et une surveillance simplifiée, puisque la valeur absolue de la différence des tensions Δu=|uA-UB| des parties A et B constituées uniquement de cellules non défaillantes est quasi nulle, quels que soient le courant de l'empilement et les conditions opératoires appliquées.One of the advantages of this method resides in the fact that a system is obtained which is simple to implement, which is simply based on two voltage measurements, regardless of the number of cells making up the stack. This process also has the advantage of allowing a simplified interpretation and monitoring, since the absolute value of the difference in voltages Δu = | u A -U B | parts A and B consisting only of non-failing cells is almost zero, whatever the current of the stack and the operating conditions applied.
D'une manière générale, le procédé selon l'invention permet de détecter la présence dans la pile d'une ou plusieurs membranes percées. De même, le procédé peut également permettre de surveiller l'homogénéité des alimentations en gaz des cellules élémentaires ou de surveiller l'évacuation des inertes des cellules élémentaires. Par ailleurs, le procédé permet de distinguer des défaillances différentes, c'est à dire qu'on saura distinguer, par exemple, une défaillance due à la présence d'un trou dans une membrane, d'une défaillance due à une mauvaise alimentation en gaz d'une ou de plusieurs cellules.In general, the method according to the invention makes it possible to detect the presence in the stack of one or more pierced membranes. Similarly, the method can also make it possible to monitor the homogeneity of the gas supplies to the elementary cells or to monitor the evacuation of the inert elementary cells. Furthermore, the method makes it possible to distinguish different failures, that is to say that it will be possible to distinguish, for example, a failure due to the presence of a hole in a membrane, from a failure due to a poor supply of gas from one or more cells.
Un autre avantage de ce procédé réside dans le fait qu' il peut permettre de piloter un dispositif de purge, dont la fonction est d'évacuer l'eau produite dans la pile et les différents inertes.Another advantage of this process lies in the fact that it can make it possible to control a purging device, the function of which is to evacuate the water produced in the stack and the various inert materials.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
L'invention sera mieux comprise et d'autres avantages et particularités apparaîtront à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, accompagnée des dessins annexés parmi lesquels :The invention will be better understood and other advantages and features will appear on reading the description which follows, given by way of nonlimiting example, accompanied by the appended drawings among which:
- la figure 1 est un schéma illustrant le principe de fonctionnement d'une cellule élémentaire PEMFC, - la figure 2 représente la courbe de polarisation d'une cellule élémentaire,FIG. 1 is a diagram illustrating the operating principle of an elementary PEMFC cell, FIG. 2 represents the polarization curve of an elementary cell,
- la figure 3 est un schéma illustrant le principe du procédé selon l'invention dans lequel on mesure les tensions des parties A et B de l'empilement.- Figure 3 is a diagram illustrating the principle of the method according to the invention in which the voltages of parts A and B of the stack are measured.
EXPOSE DETAILLE DE MODES DE REALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
La figure 3 illustre le principe du procédé de surveillance selon l'invention. Dans cette figure, on a représenté un empilement formé de N cellules . Le procédé de surveillance consiste à séparer virtuellement l'empilement en deux parties (A et B) . Les parties A et B sont composées du même nombre de cellules élémentaires (m cellules) . Les parties A et B sont disposées de manière symétrique dans l'empilement des cellules élémentaires composant l'empilement (le milieu de l'empilement est représenté par une ligne interrompue) . Dans la figure 3, on voit qu'il y a ainsi des parties C et D (ayant p cellules) et une partie E (q cellules) de part et d'autre des parties A et B. Le procédé consiste ensuite à mesurer et comparer simplement les tensions, UA et UB, des deux parties A et B. En effet, en théorie et dans le cas d'un profil de tension parfaitement symétrique, on a : Δu= |uA-UB | =0V. Or, il s'avère que dans la pratique, le profil de tension n'est pas parfaitement symétrique. On observe généralement une différence de tension Δu < 0,05V. Comme le profil de tension a toujours la même allure quels que soit les conditions opératoires et le point de fonctionnement de l'empilement, Δu est une valeur quasi constante. Par conséquent, si une ou plusieurs cellules connaissent un défaut quelconque (par exemple, une rupture de membrane ou une mauvaise alimentation en gaz) , cela va entraîner la chute de leur tension et cela va donc rendre l'empilement fortement « dissymétrique ». Par exemple, si on constate que la valeur de la différence de tension Δu est élevée (typiquement supérieure à 0,3V), on pourra en conclure qu'une ou plusieurs des cellules des parties A et/ou B sont défaillantes. En d'autres termes, si on prend en compte que la probabilité qu'un défaut simultané apparaisse sur les deux parties A et B de l'empilement et entraîne des chutes de tensions qui se compensent est négligeable, on en vient à la conclusion que si on détecte des variations brutales de Δu ou des valeurs trop élevées, on pourra conclure à un défaut de fonctionnement d'une ou de plusieurs cellules des parties A et B.FIG. 3 illustrates the principle of the monitoring method according to the invention. In this figure, there is shown a stack formed of N cells. The monitoring process involves separating virtually stacking in two parts (A and B). Parts A and B are made up of the same number of elementary cells (m cells). Parts A and B are arranged symmetrically in the stack of elementary cells making up the stack (the middle of the stack is represented by a broken line). In FIG. 3, it can be seen that there are thus parts C and D (having p cells) and a part E (q cells) on either side of parts A and B. The method then consists in measuring and simply compare the voltages, U A and U B , of the two parts A and B. Indeed, in theory and in the case of a perfectly symmetrical voltage profile, we have: Δu = | u A -U B | = 0V. However, it turns out that in practice, the tension profile is not perfectly symmetrical. There is generally a difference in voltage Δu <0.05V. As the tension profile always has the same shape whatever the operating conditions and the operating point of the stack, Δu is an almost constant value. Consequently, if one or more cells experience any defect (for example, a rupture of the membrane or a poor gas supply), this will cause the voltage to drop and this will therefore make the stack highly "asymmetrical". For example, if it is found that the value of the voltage difference Δu is high (typically greater than 0.3V), it can be concluded that one or more of the cells of parts A and / or B are faulty. In other words, if we take into account that the probability that a simultaneous defect appears on the two parts A and B of the stack and leads to voltage drops which compensate for each other is negligible, we come to the conclusion that if we detect sudden variations in Δu or too high values, we can conclude that one or more cells of the parts are malfunctioning A and B.
Pour illustrer ces différentes affirmations, on prend une pile à combustible constituée d'un seul empilement de cellules élémentaires comprenant 34 cellules et on réalise trois essais afin de comparer les résultats obtenus selon que les cellules sont ou non défaillantes, les parties A et B étant constituées chacune de 17 cellules.To illustrate these various assertions, we take a fuel cell made up of a single stack of elementary cells comprising 34 cells and we carry out three tests in order to compare the results obtained depending on whether the cells are or are not failing, parts A and B being each consisting of 17 cells.
Le premier essai illustre le comportement d'une pile à combustible en fonctionnement normal, c'est à dire qu'aucun défaut n'est enregistré. Cet essai, pour être représentatif du fonctionnement d'une pile à combustible, est effectué pendant une durée d'environ deux heures et alterne des fonctionnements en régime stationnaire (courant constant) et des fonctionnements en régime dynamique (le courant variant de 10 à 90 A) . Au cours de cet essai, le suivi individuel des tensions des cellules montre que toutes les cellules ont un même niveau de tension et montre l'absence de tout défaut dans les cellules examinées des parties A et B. On constate également que Δu=|UA-UB| est inférieur à 0,1V durant tout l'essai, y compris en régime dynamique et si on omet le bruit de fond sur la mesure, cette valeur est stable. Le deuxième essai est représentatif du comportement d'une pile à combustible lorsque certaines de ces cellules sont percées. Dans ce cas particulier, on constate que les tensions des cellules sont très dispersées et que certaines tensions passent sous le seuil bas acceptable pour une cellule (d'après la figure 2, ce seuil est situé à environ 0,4-0,5V). Durant cet essai, Δu n'est pas stable et varie de -2V à 8V. En imposant un seuil sur Δu autour de 0,5V, on est ainsi capable de détecter un tel défaut.The first test illustrates the behavior of a fuel cell in normal operation, that is to say that no fault is recorded. This test, to be representative of the operation of a fuel cell, is carried out for a period of approximately two hours and alternates operations in stationary regime (constant current) and operations in dynamic regime (the current varying from 10 to 90 AT) . During this test, the individual monitoring of the cell tensions shows that all the cells have the same level of tension and shows the absence of any defect in the cells examined in parts A and B. It is also noted that Δu = | U A -U B | is less than 0.1V during the whole test, including in dynamic regime and if the background noise is omitted from the measurement, this value is stable. The second test is representative of the behavior of a fuel cell when certain of these cells are pierced. In this particular case, we see that the cell voltages are very dispersed and that certain voltages fall below the low threshold acceptable for a cell (from Figure 2, this threshold is located at around 0.4-0.5V) . During this test, Δu is not stable and varies from -2V to 8V. By imposing a threshold on Δu around 0.5V, we are thus able to detect such a fault.
Enfin, le troisième essai montre le comportement d'une pile à combustible dans le cas où certaines cellules sont mal alimentées en gaz. On constate que les tensions des cellules sont très dispersées et que certaines tensions passent sous le seuil bas acceptable pour une cellule (situé à environ 0,4-0,5V). Durant cet essai, on constate que Δu n'est pas stable et varie de -1 à IV. En imposant un seuil limite sur Δu autour de 0,5V, on est capable de détecter la présence d'un défaut de fonctionnement dans une ou plusieurs des cellules. Finally, the third test shows the behavior of a fuel cell in the case where certain cells are poorly supplied with gas. It is noted that the voltages of the cells are very dispersed and that certain voltages fall below the low threshold acceptable for a cell (located at around 0.4-0.5V). During this test, it can be seen that Δu is not stable and varies from -1 to IV. By imposing a limit threshold on Δu around 0.5V, we are able to detect the presence of a malfunction in one or more of the cells.

Claims

REVENDICATIONS
1. Procédé de surveillance du bon fonctionnement des cellules d'une pile à combustible, la pile à combustible étant constituée d' un ou de plusieurs empilements de cellules élémentaires reliées en série les unes aux autres, lesdits empilements étant reliés entre eux en série et/ou en parallèle par des raccordements électriques, ledit procédé comprenant les étapes consistant à :1. Method for monitoring the proper functioning of the cells of a fuel cell, the fuel cell consisting of one or more stacks of elementary cells connected in series with each other, said stacks being connected together in series and / or in parallel by electrical connections, said method comprising the steps consisting in:
- dans chaque empilement de cellules élémentaires, considérer deux parties (partie A et partie B) comprenant un même nombre de cellules élémentaires et étant disposées de manière symétrique dans l'empilement des cellules élémentaires par rapport au milieu dudit empilement,- in each stack of elementary cells, consider two parts (part A and part B) comprising the same number of elementary cells and being arranged symmetrically in the stack of elementary cells with respect to the middle of said stack,
- pour chaque empilement,- for each stack,
- mesurer les tensions des deux parties A et B, - comparer ces deux mesures.- measure the voltages of the two parts A and B, - compare these two measurements.
2. Procédé de surveillance selon la revendication 1, caractérisé en ce que la comparaison des mesures de tension des parties A et B s'effectue en soustrayant les mesures de tension des parties A et B de manière à obtenir une valeur absolue.2. Monitoring method according to claim 1, characterized in that the comparison of the voltage measurements of parts A and B is carried out by subtracting the voltage measurements of parts A and B so as to obtain an absolute value.
3. Procédé de surveillance selon la revendication précédente, caractérisé en ce que la comparaison des mesures de tension des parties A et B s'effectue en comparant la valeur absolue avec une valeur seuil absolue déterminée. 3. Monitoring method according to the preceding claim, characterized in that the comparison of the voltage measurements of parts A and B is performed by comparing the absolute value with a determined absolute threshold value.
PCT/FR2004/050206 2003-05-27 2004-05-26 Simplified method of monitoring cells in a fuel cell WO2004107489A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350188A FR2855657B1 (en) 2003-05-27 2003-05-27 PROCESS FOR SIMPLIFIED MONITORING OF CELLS OF A FUEL CELL.
FR0350188 2003-05-27

Publications (1)

Publication Number Publication Date
WO2004107489A1 true WO2004107489A1 (en) 2004-12-09

Family

ID=33427713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050206 WO2004107489A1 (en) 2003-05-27 2004-05-26 Simplified method of monitoring cells in a fuel cell

Country Status (2)

Country Link
FR (1) FR2855657B1 (en)
WO (1) WO2004107489A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271357A (en) * 1986-05-19 1987-11-25 Nippon Kokan Kk <Nkk> Cell damage detecting device for redox-flow cell
WO1991019328A1 (en) * 1990-06-08 1991-12-12 Ballard Power Systems Method and apparatus for monitoring fuel cell performance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271357A (en) * 1986-05-19 1987-11-25 Nippon Kokan Kk <Nkk> Cell damage detecting device for redox-flow cell
WO1991019328A1 (en) * 1990-06-08 1991-12-12 Ballard Power Systems Method and apparatus for monitoring fuel cell performance
US5170124A (en) * 1990-06-08 1992-12-08 Minister Of National Defence Of Her Majesty's Canadian Government Method and apparatus for monitoring fuel cell performance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 158 (E - 608) 13 May 1988 (1988-05-13) *

Also Published As

Publication number Publication date
FR2855657B1 (en) 2006-01-21
FR2855657A1 (en) 2004-12-03

Similar Documents

Publication Publication Date Title
EP2774201B1 (en) Device for measuring voltage in a fuel cell
US20040137292A1 (en) Method of operation fuel cell system and fuel cell system
EP3391451A1 (en) Stand-alone system for clamping a high-temperature soec/sofc stack
WO2012171918A1 (en) Membrane/electrode assembly for an electrolysis device
EP2732497B1 (en) Method of depollution and of regeneration of a fuel cell electrode poisoned by sulphur compounds
Touhami et al. Anode aging in polymer electrolyte membrane fuel cells I: Anode monitoring by electrochemical impedance spectroscopy
EP3235037B1 (en) System for measuring the hygrometry of an ion exchange membrane in a fuel cell
JP2016520981A (en) Health monitoring of electrochemical cell stack
EP3005454B1 (en) Fuel cell system
FR2985610A1 (en) Method for determining distribution of local current in core of proton exchange membrane fuel cell, involves calculating local current density around considered wire for each of various values of total current density by applying Ohm&#39;s law
WO2012130932A1 (en) Fuel cell comprising a proton-exchange membrane, having an increased service life
EP2788532B1 (en) Method for operating a high-temperature electrolyzer comprising a step of reducing the material of the cathodes
WO2004107489A1 (en) Simplified method of monitoring cells in a fuel cell
FR3086896A1 (en) INSTALLATION FOR STORING ELECTRIC ENERGY FROM THE BRAKING OF ONE OR MORE RAIL VEHICLES AND ASSOCIATED STORAGE SYSTEM
EP3813168B1 (en) Fuel cell adapted for characterising at least one pollutant present in a reagent gas
WO2011004134A1 (en) Method and device for increasing the lifespan of a proton exchange membrane fuel cell
JP2004335448A (en) Operating method for polymer electrolyte fuel cell
WO2020148505A1 (en) Method and device for evaluating the clamping state of a fuel cell
JP2014232672A (en) Output test method of fuel cell
FR3068827A1 (en) METHOD FOR MANAGING TRANSITING ELECTRICAL ENERGY IN A METAL-AIR BATTERY AND ASSOCIATED CELL
JP6517899B2 (en) Fuel cell output inspection method
FR3110289A1 (en) Method of activating a fuel cell
EP2669983B1 (en) Method for the optimization of fuel supply comprising a carbonyl compound to the catalytic electrode of a fuel cell
Martínez Development of Membraneless Mixed-Reactant Microfluidic Fuel Cells: Electrocatalysis and Evolution Through Numerical Simulation
JP2021174618A (en) Fuel cell system and method for determining reusability of fuel cell stack

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase