WO2004111635A1 - Composition for aldehyde detection - Google Patents

Composition for aldehyde detection Download PDF

Info

Publication number
WO2004111635A1
WO2004111635A1 PCT/JP2003/007470 JP0307470W WO2004111635A1 WO 2004111635 A1 WO2004111635 A1 WO 2004111635A1 JP 0307470 W JP0307470 W JP 0307470W WO 2004111635 A1 WO2004111635 A1 WO 2004111635A1
Authority
WO
WIPO (PCT)
Prior art keywords
composition
mda
present
urine
frt
Prior art date
Application number
PCT/JP2003/007470
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Kimura
Yoshinari Hirota
Xiaohong Wu
Toshitaka Okada
Fumiko Suzuki
Yasuo Inagaki
Original Assignee
Toyo Hakko Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Hakko Co., Ltd. filed Critical Toyo Hakko Co., Ltd.
Priority to AU2003242311A priority Critical patent/AU2003242311A1/en
Priority to JP2005500747A priority patent/JPWO2004111635A1/en
Priority to PCT/JP2003/007470 priority patent/WO2004111635A1/en
Publication of WO2004111635A1 publication Critical patent/WO2004111635A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • composition for aldehyde detection Composition for aldehyde detection
  • the present invention relates to a composition for detecting an aldehyde in a biological sample as an indicator of lipid peroxidation or active oxygen.
  • the first target is the unsaturated fatty acids that make up the biological membrane of cells.
  • Various low molecular aldehydes are produced from unsaturated fatty acids by a chain reaction caused by reactive oxygen attack.
  • the generated low molecular aldehydes are highly reactive and attack biological components such as proteins, nucleic acids, and lipids, and damage the living body by modifying them.
  • MDA malondialdehyde
  • Acrolein is another known aldehyde.
  • Acrolein is a highly reactive aldehyde generated by heating cooking oil and burning tobacco, and has been reported to have strong cytotoxicity and mutagenicity.
  • acrolein is produced by the peroxidation of lipids in vitro, and its presence has been confirmed in atherosclerotic lesions in humans, and is useful as a marker for lipid oxidation damage in vivo. Sex is expected.
  • Lipids are also more susceptible to oxidation than nucleic acids and proteins, producing hydroperoxide. Hydroperoxide also reacts with nucleophilic sites on proteins to form complex modifications that cause protein degradation. Therefore, hydroveloxide has also attracted interest as an oxidized stress marker in recent years.
  • Simple methods for detecting aldehydes in biological samples include Schiff reagents.
  • Known Schiff reagents are obtained by decolorizing Magiening, which has been used as a dye for a long time, through a sulfurous acid gas, and used for the detection of aldehyde or the periodic acid Schiff staining method (PAS).
  • decolorizing Magiening which has been used as a dye for a long time, through a sulfurous acid gas, and used for the detection of aldehyde or the periodic acid Schiff staining method (PAS).
  • the present inventors have surprisingly found that by using phosphoric acid having a buffering capacity instead of hydrochloric acid, the stability of the composition can be increased and the detection sensitivity of aldehydes can be improved.
  • the present invention has been completed. Disclosure of the invention
  • the present invention relates to a composition for detecting aldehyde, comprising basic fuchsin, sodium bisulfite, and phosphoric acid.
  • the present invention relates to a composition for detecting aldehyde, comprising 0.1 to 0.5% by weight of basic fuchsin, 0.5 to 5% by weight of phosphoric acid, and 1 to 5% by weight of sodium bisulfite. About.
  • Known Schiff reagent compositions include basic fuchsin and sodium bisulfite, and optionally, hydrochloric acid.
  • the composition of the present invention is characterized by containing basic fuchsin, sodium bisulfite and phosphoric acid.
  • Known Schiff reagents include formaldehyde (HCHO) or malondialdehyde. Very low reactivity to MDA.
  • HCHO formaldehyde
  • MDA malondialdehyde
  • the composition of the present invention has high reactivity to HCHO and MDA, while having low or no reactivity to biological samples, for example, urine, For example, it has reactivity to urine and its sensitivity is high.
  • Phosphoric acid was used in place of hydrochloric acid used in known Schiff reagents for the following reasons.
  • the rate of this condensation reaction depends on the acid concentration, and as the pH is increased, the reaction rate reaches a maximum at a certain pH.
  • the value of p H of the reaction rate is maximized, greatly depends on 1 the nature of R- 1 ⁇ 11 2.
  • the optimum pH is the pH at which the conjugate acid, a carboxylate compound, is at an appropriate concentration and RNH 2 is not completely RNH 3 + but the reaction proceeds.
  • phosphoric acid has a buffering ability and can maintain stability against the pH value of the solution. In addition, it can be adapted in biological samples.
  • the aldehyde detected by the composition of the present invention is preferably malondial.
  • the composition of the present invention can be obtained, for example, by the following method.
  • compositions of the present invention can be used for detecting aldehydes in biological samples. You.
  • the biological sample is preferably urine.
  • the composition of the present invention can be used for measuring lipid peroxide and active oxygen.
  • the present invention also relates to a container containing the above-described aldehyde detection composition and an aldehyde detection kit including instructions.
  • composition of the present invention can easily measure the oxidation state in the body and can provide an important index for maintaining health.
  • aldehydes such as MDA excreted in urine, which could not be detected by the conventional Schiff reagent, can be detected simply and quickly.
  • the data obtained by using the composition of the present invention can be used as an index of the state of oxidative stress in a living body, and can be used as a guide for nutrition intake and as a guide to the auxiliary effect of an antioxidant. .
  • Figures 1A and B show the relationship between lifestyle and MDA levels.
  • FIGS. 2A and B show the absorbance intensity obtained using the composition of the present invention and the FRT kit.
  • FIG. 3A shows the correlation between the absorbance value obtained using the composition of the present invention and the MDA value contained in urine.
  • Figure 3B shows absorbance values obtained using the FRT kit and MD contained in urine.
  • MDA was obtained by hydrolyzing 1,1,3,3-tetraethoxypropane (TEP) with HC1. Using purified water, 0.05, 0.1 and ImM in MDA was prepared and used as an MDA standard solution.
  • HCHO was prepared by diluting a commercially available reagent, formaldehyde, with purified water to prepare HCHO solutions of 0.05, 0.1, and ImM, which were used as HCHO standard solutions.
  • the reactivity to MDA showed a very low coloration with the FRT solution, while the present invention composition showed a high coloration result.
  • the reactivity of the composition of the present invention to MDA tended to increase depending on the concentration of MDA.
  • MDA in vivo (blood and urine) MDA is an oxidative degradation product of an unsaturated fatty acid which is a biological component.
  • the normal value of MDA generated in vivo is still unknown, but at present the value differs depending on the measurement method.
  • composition of the present invention Reactivity of the composition of the present invention with human urine
  • the OD value was determined by reacting at room temperature with urine: composition of the present invention at a ratio of 10: 1. This is a value obtained by measuring the absorbance at 532 nm.
  • the color development for 5 minutes in each individual using the composition of the present invention was distributed at various levels, was very diverse, and was considered to be more reliable than the FRT kit.
  • the percentage of (+) is 10%, whereas the percentage of the highest level (+ + + +) is 10% in the population without smoking and drinking habits, and the next highest level (+ + The percentage of +) is 30%, the percentage of the intermediate color level (++) is 20%, and the low color level
  • the coloration degree is below 10 and the low level is 10 and above and 10 and above
  • the high level is 10% for smokers and drinkers, and the high level is 90% for smokers and drinkers. Accounted for.
  • urinary MDAi can be obtained from literature (W.G.Niehaus, Jr. and B. Samuelesson, Eur.
  • MDA was an equivalent value when TEP was used as a standard.
  • the correlation between the absorbance obtained for each and the urinary MDA value was determined.
  • the number of specimens belonging to (10) and (P) was 15 (43%), 12 (34%), 7 (20%), and 1 (3%), respectively.
  • the color reaction was very strong and no diversity could be detected in each sample.
  • the composition of the present invention was used, the degree of coloration (range of the obtained OD value) was determined by the levels “+++”, “ten”, “ten”, and “earth”. The ratios belonging to “1” and “1” indicate that the detection is rich in diversity, highly concentration-dependent, and enables more reliable detection (Fig. 2).
  • the correlation coefficient between the absorbance obtained using the composition of the present invention and the FRT kit and the MDA value was determined. As a result, the correlation coefficient between the absorbance obtained using the composition of the present invention and the MDA value was 0.45, whereas the correlation coefficient between the absorbance obtained using the FRT kit and the MDA value was found. The relationship number was 0.31, indicating that the composition of the present invention had a higher correlation than the FRT kit (FIG. 3).

Abstract

A composition comprising a basic fuchsine, sodium hydrogen sulfite, and phosphoric acid. It is for use in detecting aldehydes, e.g., malondialdehyde (MDA), contained in a biological sample. The aldehydes are an index to lipid peroxidation or active oxygen.

Description

明 細 書  Specification
アルデヒ ド検出用組成物 技術分野 Composition for aldehyde detection
本発明は、 脂質過酸化や活性酸素の指標としての、 生物学的試料中のアルデヒ ドの検出を行うための組成物に関する。 背景技術  The present invention relates to a composition for detecting an aldehyde in a biological sample as an indicator of lipid peroxidation or active oxygen. Background art
生体に酸化ストレスの障害が与えられると、 まずターゲットとなるのが細胞の 生体膜を構成する不飽和脂肪酸である。 活性酸素の攻撃によって生じる連鎖反応 によって、 不飽和脂肪酸から種種の低分子アルデヒ ドが生成される。 生成された 低分子アルデヒ ドは、 反応性が高く、 タンパク質、 核酸、 脂質等の生体成分を攻 撃し、 修飾することによって生体に障害を与える。  When an oxidative stress disorder is given to a living body, the first target is the unsaturated fatty acids that make up the biological membrane of cells. Various low molecular aldehydes are produced from unsaturated fatty acids by a chain reaction caused by reactive oxygen attack. The generated low molecular aldehydes are highly reactive and attack biological components such as proteins, nucleic acids, and lipids, and damage the living body by modifying them.
上記のアルデヒ ドとしては、 マロンジアルデヒ ド (MD A) が知られている。 MD Aは、 生体内の抗酸化機構によって代謝され、 血液を経て尿中に排泄される。 したがって、 生物学的試料、 例えば尿中の MD A濃度を測定することによって、 活性酸素の生成レベルを推定することができる。 また、 日常の食生活のバランス ゃ抗酸化物質のレベルなどを判断することができる。  As the above aldehyde, malondialdehyde (MDA) is known. MDA is metabolized by the body's antioxidant mechanism and excreted in the urine via the blood. Thus, by measuring the concentration of MDA in a biological sample, such as urine, the level of active oxygen production can be estimated. You can also judge the balance of your daily diet and antioxidant levels.
別のアルデヒ ドとしては、 ァクロレインが知られている。 ァクロレインは、 食 用油の加熱、 タバコの燃焼などによって発生する非常に反応性の高いアルデヒ ド で、 強い細胞毒性、 変異原性を有することが報告されている。 近年、 インビトロ における脂質の過酸化反応によってァクロレインが生成されることが証明され、 さらにヒ 卜の動脈硬化症病巣においてもその存在が確認されており、 生体内にお ける脂質酸化損傷のマーカーとして有用性が期待されている。  Acrolein is another known aldehyde. Acrolein is a highly reactive aldehyde generated by heating cooking oil and burning tobacco, and has been reported to have strong cytotoxicity and mutagenicity. In recent years, it has been demonstrated that acrolein is produced by the peroxidation of lipids in vitro, and its presence has been confirmed in atherosclerotic lesions in humans, and is useful as a marker for lipid oxidation damage in vivo. Sex is expected.
また、 脂質は、 核酸やタンパク質よりも酸化を受けやすく、 ヒ ドロペルォキシ ドを生成する。 ヒ ドロペルォキシドは、 さらにタンパク質の求核部位と反応して 複雑な修飾物を形成し、 タンパク質の劣化を引き起こす。 したがって、 ヒ ドロべ ルォキシドは、 酸化ス トレスマーカーとしても近年関心を集めている。  Lipids are also more susceptible to oxidation than nucleic acids and proteins, producing hydroperoxide. Hydroperoxide also reacts with nucleophilic sites on proteins to form complex modifications that cause protein degradation. Therefore, hydroveloxide has also attracted interest as an oxidized stress marker in recent years.
したがって、 生物学的試料中の MD A濃度を測定することによって、 脂質の過 酸化のレベルを知ることができる。 Therefore, by measuring the concentration of MDA in a biological sample, You can know the level of oxidation.
生物学的試料における従来のアルデヒ ド検出方法としては、 HPLC GC— MAS等の機器分析による方法があるが、 高価な機器や高度な技術を必要とし、 また操作が複雑であるという問題があつた。  As a conventional method for detecting aldehydes in biological samples, there is a method based on instrumental analysis such as HPLC GC-MAS, but it requires expensive equipment and advanced technology, and has the problem of complicated operation. .
生物学的試料におけるアルデヒ ド類の簡易な検出方法としては、 シッフ試薬 Simple methods for detecting aldehydes in biological samples include Schiff reagents.
(塩基性フクシン及び亜硫酸水素ナトリウム、 及び場合により塩酸を含む) を用 いる方法が知られている。 (Including basic fuchsin and sodium bisulfite and, optionally, hydrochloric acid) are known.
公知のシッフ試薬は、 古くから染料として用いられているマジエングに、 亜硫 酸ガスを通じて脱色したもので、 アルデヒ ドの検出又は過ヨウ素酸シッフ染色法 (PAS) に用いられている。  Known Schiff reagents are obtained by decolorizing Magiening, which has been used as a dye for a long time, through a sulfurous acid gas, and used for the detection of aldehyde or the periodic acid Schiff staining method (PAS).
しかし、 公知のシッフ試薬は、 生物学的試料、 例えば、 尿に対する反応性が極 めて弱いか又は無反応性であり、 また、 ホルムアルデヒ ド (HCHO) やマロン ジアルデヒ ド (MDA) を検出することができなかった。  However, known Schiff reagents have very low or no reactivity with biological samples, such as urine, and may detect formaldehyde (HCHO) or malondialdehyde (MDA). Could not.
したがって、 生物学的試料におけるアルデヒ ド類の簡易な検出方法に用いるこ とができる安価な組成物の開発が待たれていた。  Therefore, development of an inexpensive composition that can be used for a simple method for detecting aldehydes in a biological sample has been awaited.
本発明者は、 塩酸の代わりに緩衝能を有するリン酸を使用することによって、 驚くべきことに、 組成物の安定性を高めることができ、 かつ、 アルデヒ ド類の検 出感度を向上させることができることを見出し、 本発明を完成させた。 発明の開示  The present inventors have surprisingly found that by using phosphoric acid having a buffering capacity instead of hydrochloric acid, the stability of the composition can be increased and the detection sensitivity of aldehydes can be improved. The present invention has been completed. Disclosure of the invention
本発明は、 塩基性フクシン、 亜硫酸水素ナトリウム、 リン酸を含む、 アルデヒ ド検出用組成物に関する。  The present invention relates to a composition for detecting aldehyde, comprising basic fuchsin, sodium bisulfite, and phosphoric acid.
より具体的には、 本発明は、 塩基性フクシン 0. 1〜0. 5重量%、 リン酸 0. 5〜5重量%、 亜硫酸水素ナトリウム 1〜 5重量%を含む、 アルデヒ ド検出 用組成物に関する。  More specifically, the present invention relates to a composition for detecting aldehyde, comprising 0.1 to 0.5% by weight of basic fuchsin, 0.5 to 5% by weight of phosphoric acid, and 1 to 5% by weight of sodium bisulfite. About.
公知のシッフ試薬の組成物は、 塩基性フクシン及び亜硫酸水素ナトリゥム塩酸、 及び場合により塩酸を含む。 これに対して、 本発明の組成物は、 塩基性フクシン、 亜硫酸水素ナトリゥム及びリン酸を含むことを特徴とする。  Known Schiff reagent compositions include basic fuchsin and sodium bisulfite, and optionally, hydrochloric acid. On the other hand, the composition of the present invention is characterized by containing basic fuchsin, sodium bisulfite and phosphoric acid.
公知のシッフ試薬では、 ホルムアルデヒ ド (HCHO) 又はマロンジアルデヒ ド (MDA) に対する反応性が、 非常に低い。 また、 生物学的試料、 例えば、 尿 に対する反応性が低いか又は反応性を有しないのに対し、 本発明の組成物は、 H CHO及び MDAに対する反応性が高く、 また、 生物学的試料、 例えば、 尿に対 する反応性を有し、 その感度も高い。 Known Schiff reagents include formaldehyde (HCHO) or malondialdehyde. Very low reactivity to MDA. In addition, whereas the composition of the present invention has high reactivity to HCHO and MDA, while having low or no reactivity to biological samples, for example, urine, For example, it has reactivity to urine and its sensitivity is high.
公知のシッフ試薬で用いられている塩酸の代わりにリン酸を用いたのは、 下記 の理由による。  Phosphoric acid was used in place of hydrochloric acid used in known Schiff reagents for the following reasons.
カルボニル化合物と RNH2誘導体との縮合 (C = OH + H2N_R— C = N 一 R + H20) には、 通常、 酸性触媒が必要である。 The condensation of the carbonyl compound and RNH 2 derivative (C = OH + H 2 N_R- C = N one R + H 2 0), usually requires acidic catalysts.
この縮合反応の速度は、 酸濃度に依存し、 pHを上げていくと反応速度は、 あ る pHで最大となる。 反応速度が最大となる p Hの値は、 R— 1^112の1 の性質 に大きく依存する。 The rate of this condensation reaction depends on the acid concentration, and as the pH is increased, the reaction rate reaches a maximum at a certain pH. The value of p H of the reaction rate is maximized, greatly depends on 1 the nature of R- 1 ^ 11 2.
速度に最大値があるのは、 RNH2とカルボニル化合物との間の平衡 (RNH 2 + H+ = RNH3 +) によって理解される。 ここで、 RNH2の窒素の非共有電子 対にプロ トンが付くと、 カルボニル基の炭素を攻撃できなくなってしまう。 一方、 カルボニル基がプロ トン化されると、 求核試薬に対する反応性が大きくなる (R C = O + H+ RC = OH+)。 The maximum in rate is understood by the equilibrium between RNH 2 and the carbonyl compound (RNH 2 + H + = RNH 3 + ). Here, if a proton is attached to the lone pair of the nitrogen of RNH 2 , the carbon of the carbonyl group cannot be attacked. On the other hand, when the carbonyl group is protonated, the reactivity with the nucleophile increases (RC = O + H + RC = OH +).
したがって、 最適な pHは、 共役酸であるカルボ-ル化合物を適切な濃度とし、 RNH2が完全に RNH3 +にはならないが、 反応が進行する p Hである。 Therefore, the optimum pH is the pH at which the conjugate acid, a carboxylate compound, is at an appropriate concentration and RNH 2 is not completely RNH 3 + but the reaction proceeds.
よって、 濃塩酸 (pKa =—8) よりリン酸 (pKa = 2. 14) の方がこの 反応系を促進していると考えられる。  Therefore, it is considered that phosphoric acid (pKa = 2.14) promotes this reaction system rather than concentrated hydrochloric acid (pKa = -8).
また、 リン酸は、 緩衝能を有し、 液の pH値に対する安定性を保つことができ る。 さらに、 生物学的試料において適応することができる。  Further, phosphoric acid has a buffering ability and can maintain stability against the pH value of the solution. In addition, it can be adapted in biological samples.
本発明の組成物によって検出されるアルデヒ ドは、 好ましくは、 マロンジアル 本発明の組成物は、 例えば、 下記の方法によって得ることができる。  The aldehyde detected by the composition of the present invention is preferably malondial. The composition of the present invention can be obtained, for example, by the following method.
塩基性フクシン 30 Omg を水 10 Oml に溶解し、 これに亜硫酸水素ナトリウ ム 3. Og を入れて完全に溶解するまで振り混ぜる。 その後、 8 5%リン酸 2. O gを加える。 この液に活性炭 1. 0 gを加え濾過したものを使用する。 本発明の組成物は、 生物学的試料におけるアルデヒ ド検出に用いることができ る。 Dissolve 30 fmg of basic fuchsin in 10 ml of water, add 3. Og of sodium bisulfite, and shake until completely dissolved. Then add 2. Og of 85% phosphoric acid. Activated carbon (1.0 g) was added to this solution and filtered. The compositions of the present invention can be used for detecting aldehydes in biological samples. You.
生物学的試料は、 好ましくは、 尿である。  The biological sample is preferably urine.
本発明の組成物は、 過酸化脂質や活性酸素の測定に用いることができる。 また、 本発明は、 上記のアルデヒ ド検出組成物を含む容器、 指示書を含むアル デヒ ド検出用キットにも関する。  The composition of the present invention can be used for measuring lipid peroxide and active oxygen. The present invention also relates to a container containing the above-described aldehyde detection composition and an aldehyde detection kit including instructions.
本発明の組成物は、 体内の酸化状態を簡易に測定することができ、 健康の維持 のための重要な指標を提供することができる。  The composition of the present invention can easily measure the oxidation state in the body and can provide an important index for maintaining health.
本発明の組成物を用いることによって、 従来のシッフ試薬では検出することが できなかった、 尿中に排泄された MD A等のアルデヒ ドを簡便かつ迅速に検出す ることができる。  By using the composition of the present invention, aldehydes such as MDA excreted in urine, which could not be detected by the conventional Schiff reagent, can be detected simply and quickly.
本発明の組成物を用いて得られたデータは、 生体内の酸化ス トレス状態の指標 とすることができ、 また、 栄養摂取指導ゃ抗酸化剤の補助効果等の目安とするこ とができる。  The data obtained by using the composition of the present invention can be used as an index of the state of oxidative stress in a living body, and can be used as a guide for nutrition intake and as a guide to the auxiliary effect of an antioxidant. .
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1A及び Bは、 生活習慣と MD Aレベルとの関連を示す。  Figures 1A and B show the relationship between lifestyle and MDA levels.
図 2 A及び Bは、 本発明の組成物と FRTキットを用いて得られた吸光度の強 さを示す。  FIGS. 2A and B show the absorbance intensity obtained using the composition of the present invention and the FRT kit.
図 3 Aは、 本発明の組成物を用いて得られた吸光度値と尿中に含まれている M D A値との相関性を示す。  FIG. 3A shows the correlation between the absorbance value obtained using the composition of the present invention and the MDA value contained in urine.
図 3 Bは、 FRTキットを用いて得られた吸光度値と尿中に含まれている MD Figure 3B shows absorbance values obtained using the FRT kit and MD contained in urine.
A値との相関性を示す。 実施例 The correlation with the A value is shown. Example
以下、 本発明を実施例により詳細に説明をするが、 これらに制限されるもので はない。  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
1. 標準物質である MDA、 HCHOに対する反応性  1. Reactivity to standard substances MDA and HCHO
1 - 1. 標準物質の調製 1-1. Preparation of standard
MDAは、 1, 1, 3, 3—テトラーエトキシプロパン (TEP) を HC 1で 加水分解して得た。 精製水を用いて、 0. 05、 0. 1及び ImM の MDA溶液 を調製し、 MDA標準液とした。 MDA was obtained by hydrolyzing 1,1,3,3-tetraethoxypropane (TEP) with HC1. Using purified water, 0.05, 0.1 and ImM in MDA Was prepared and used as an MDA standard solution.
HCHOは、 市販の試薬ホルムアルデヒ ドを精製水で希釈し、 0. 0 5 , 0. 1及び ImMの HCHO溶液を調製し、 HCHO標準液とした。  HCHO was prepared by diluting a commercially available reagent, formaldehyde, with purified water to prepare HCHO solutions of 0.05, 0.1, and ImM, which were used as HCHO standard solutions.
1 - 2. FRT液による検出  1-2. Detection with FRT solution
FRT液は、 原産国一米国で、 日本食養科学株式会社から入手した。 反応は、 FRT液: MDA又はHCHO標準液= l : 10の割合で行った。  The FRT solution was obtained from Nippon Shokuyo Kagaku Co., Ltd., the country of origin and the United States. The reaction was performed at a ratio of FRT solution: MDA or HCHO standard solution = 1: 1.
その結果を下記に示す。  The results are shown below.
Figure imgf000006_0001
Figure imgf000006_0001
1 -3. 本発明の組成物による検出 1-3. Detection by the composition of the present invention
方法は、 本発明組成物: MD A又は HCHO標準液: 0の割合で行った その結果を下記に示す。  The method was carried out at a ratio of the composition of the present invention: MDA or HCHO standard solution: 0. The results are shown below.
表 2
Figure imgf000006_0002
Table 2
Figure imgf000006_0002
MDAに対する反応性は FRT液では非常に低い呈色を示すのに対して、 本発 明組成物では高い呈色結果を示した。 また、 本発明組成物の MD Aに対する反応 性は、 MDAの濃度に依存的に高くなる傾向が観察された。 The reactivity to MDA showed a very low coloration with the FRT solution, while the present invention composition showed a high coloration result. In addition, it was observed that the reactivity of the composition of the present invention to MDA tended to increase depending on the concentration of MDA.
2. 生体物尿に対する反応性 2. Reactivity to biological urine
2- 1. FRTによる反応性  2- 1. Reactivity by FRT
健常ヒ ト (n = 20) の早朝尿 (起床して最初の尿) を収集した。 反応は、 FRT :尿 = 1 : 10の割合で行い、 その呈色反応を検出した。  Morning urine (the first urine after waking up) from healthy humans (n = 20) was collected. The reaction was performed at a ratio of FRT: urine = 1: 10, and the color reaction was detected.
その結果を下記に示す。 表 3 The results are shown below. Table 3
Figure imgf000007_0001
番号 11 12 13 14 15 16 17 18 19 20 レベル ++ »++++ 》++++ ++ I I I I 》++++ 》++++
Figure imgf000007_0001
No. 11 12 13 14 15 16 17 18 19 20 Level ++ »++++》 ++++ ++ IIII》 ++++》 ++++
OD値 0.416 0.166 6.004 7.67 5.358 0.49 2.009 1.645 5.166 2.402 OD value 0.416 0.166 6.004 7.67 5.358 0.49 2.009 1.645 5.166 2.402
OD値は、 室温にて尿液: FRTキッ ト = 1 0 : 1 との割合で反応をさせ、 5分間後反応液 1 50 μΐ を 96穴プレートに速やかに入れ、 マイクロプレート リーダーで波長 532 nmにて吸光度を測定した値である。 The OD value was determined by reacting at room temperature with the ratio of urine fluid: FRT kit = 10: 1. After 5 minutes, 150 µΐ of the reaction solution was quickly placed in a 96-well plate, and the wavelength was 532 nm using a microplate reader. Is the value obtained by measuring the absorbance.
レべノレ 目視法 OD範囲  Lebenore Visual method OD range
尿の色 (黄色)  Urine color (yellow)
士 : 微発色 0. 05 <±≤ 0. 1  :: slight color development 0.05 <± ≤ 0.1
+ : 薄ピンク 0. 1 < +≤ 0. 4  +: Light pink 0.1 <+ ≤ 0.4
+ + やや赤色 0. 4 < + +≤ 0. 7  + + Slightly red 0.4 <+ + ≤ 0.7
赤色 0. 7 < + + +≤ 1. 2  Red 0.7 <+ + + ≤ 1.2
濃赤色 : . 2  Dark red: .2
上記表に示したように、 FRTキットを用いた各個体における 5分間の発色度 は、 非常に高く、 各個体に対する多様性を検出することができなかった。  As shown in the above table, the color development for each individual using the FRT kit for 5 minutes was extremely high, and it was not possible to detect diversity for each individual.
周知のように、 生体内 (血液及び尿中) の MDAは、 生体成分である不飽和脂 肪酸の酸化分解生成物である。 生体内で生成された MDAの正常値は、 まだ不明 であるが、 測定方法によつて値が異なるのが現状である。  As is well known, in vivo (blood and urine) MDA is an oxidative degradation product of an unsaturated fatty acid which is a biological component. The normal value of MDA generated in vivo is still unknown, but at present the value differs depending on the measurement method.
文献では正常ヒ トの場合は、 血液中の MD A量がおよそ 1 OnmolMDAノ ml 以下であることが記載されている。 FRTキットの尿に対する反応は、 非常に強 く、 濃く発色する。 しかし、 尿中の MDA量を正確に反映しているか否かは疑問 であり、 反応結果の信用性は、 非常に低いと考えられる。  The literature states that in normal humans, the amount of MDA in blood is about 1 OnmolMDA or less. The reaction of the FRT kit to urine is very strong and develops a deep color. However, it is questionable whether it accurately reflects the amount of MDA in urine, and the credibility of the reaction results is considered to be very low.
2-2. 本発明の組成物のヒ ト尿に対する反応性 2-2. Reactivity of the composition of the present invention with human urine
健常ヒ ト (n = 20) の早朝尿 (朝起床して最初の尿) を収集した。 反応は、 本発明の組成物:尿 = 1 0の割合で行い、 その呈色反応を検出した。 Morning urine (the first urine after getting up in the morning) of healthy humans (n = 20) was collected. The reaction is The composition of the present invention: urine = 10 was performed, and the color reaction was detected.
その結果を下記に示す。  The results are shown below.
表 4 Table 4
Figure imgf000008_0001
Figure imgf000008_0001
OD値は、 室温にて尿液:本発明組成物液 = 1 0 : 1との割合で反応をさせ、 5分間後反応液 1 50 1 を 96穴プレートに速やかに入れ、 マイクロプレート リーダーで波長 532nmにて吸光度を測定した値である。 The OD value was determined by reacting at room temperature with urine: composition of the present invention at a ratio of 10: 1. This is a value obtained by measuring the absorbance at 532 nm.
レべノレ 目視法 OD範囲  Lebenore Visual method OD range
尿の色 (黄色)  Urine color (yellow)
土 : 微発色 0. 05 <±≤ 0. 1  Soil: slight color development 0.05 <± ≤ 0.1
+ : 薄ピンク 0. 1 < +≤ 0. 4  +: Light pink 0.1 <+ ≤ 0.4
+ + やや赤色 0. 4 < + +≤ 0. 7  + + Slightly red 0.4 <+ + ≤ 0.7
赤色 0. 7 < + + +≤ 1. 2  Red 0.7 <+ + + ≤ 1.2
濃赤色 .. 2  Dark red .. 2
本発明組成物を用いた各個体における 5分間の発色度は、 様々なレベルに分布 し、 非常に多様性に富み、 FRTキットより信用性が髙いと考えられた。  The color development for 5 minutes in each individual using the composition of the present invention was distributed at various levels, was very diverse, and was considered to be more reliable than the FRT kit.
3. 各個体における生活習慣との関連 3. Relationship to lifestyle of each individual
健常者 20人、 喫煙者かつ飲酒者 10名、 非喫煙者かつ非飲酒者 10名の早朝 尿を集め、 本発明組成物を用いて、 測定を行った。 その結果を図 1に示した。 測定結果 Early morning urine was collected from 20 healthy subjects, 10 smokers and drinkers, and 10 non-smokers and non-drinkers, and measured using the composition of the present invention. The results are shown in FIG. Measurement result
喫煙者 +飲酒者 非喫煙者 +非飲酒者  Smoker + Drinker Non-smoker + Non-drinker
(目視法)  (Visual method)
0 0  0 0
土 0 1  Sat 0 1
+ 1 3  + 1 3
+ + 4 2  + + 4 2
5 3  5 3
0 1 喫煙者かつ飲酒習慣のある個体群では、 赤発色の高いレベル (+ + + ) のヒ ト の割合は 5 0%、 中間発色レベル (++) の割合は 4 0%、 低い発色レベル 0 1 In populations with smokers and drinking habits, 50% of humans have a high level of red coloring (+++), 40% have a medium level of coloring (++), and 40% have a low level of coloring.
(+ ) の割合は 10%であるのに対し、 喫煙かつ飲酒習慣のない個体群では、 最 高レベル (+ + + +) の割合は 10%で、 次に発色度の高いレベル (+ + +) の 割合は 30%で、 中間発色レベル ( + + ) の割合は 20%で、 低い発色レベルThe percentage of (+) is 10%, whereas the percentage of the highest level (+ + + +) is 10% in the population without smoking and drinking habits, and the next highest level (+ + The percentage of +) is 30%, the percentage of the intermediate color level (++) is 20%, and the low color level
(+ ) の割合は 30%で、 また非常に低い発色レベル又は無発色 (土) に近いヒ トの割合は 10%であった。 The percentage of (+) was 30% and the percentage of humans with very low color development levels or near no color development (soil) was 10%.
また、 発色度 「十」 以下を低レベル、 「十十」 及び 「十十」 以上を高レベルと すると、 喫煙者かつ飲酒者では低レベルの割合は 1 0 %、 高レベルの割合は 90%を占めた。  Also, if the coloration degree is below 10 and the low level is 10 and above and 10 and above, the high level is 10% for smokers and drinkers, and the high level is 90% for smokers and drinkers. Accounted for.
これに対して、 非喫煙者かつ非飲酒者では低レベルの割合は 40%、 高レベル の割合は 60%を占めた。 喫煙かつ飲酒習慣のない個体群に比べて喫煙かつ飲酒 習慣のある群において本発明組成物を用いた結果は高いことが明らかとなった。 酸化ス トレスは喫煙や飲酒、 過度な運動等で生じることが明らかにされている。 喫煙は活性酸素種 (ROS : Reactive Oxygen Species) 生成の一因となり、 D NAや蛋白質、 脂質に対して癌、 心血管疾患など疾病に関連のある酸化的傷害を 誘発する畏れがある。  In contrast, low levels accounted for 40% of non-smokers and non-drinkers, while high levels accounted for 60%. It was revealed that the results of using the composition of the present invention were higher in the group having smoking and drinking habits than in the group of individuals having no smoking and drinking habits. Oxidative stress has been shown to occur in smoking, drinking, and excessive exercise. Smoking contributes to the production of Reactive Oxygen Species (ROS) and may induce oxidative damage to DNA, proteins and lipids associated with diseases such as cancer and cardiovascular disease.
4. 本発明の組成物及び FRTキットを用いて得られた吸光度と MD A値との相 関性について 本発明の組成物及び FRTキットを用いて得られた吸光度値と尿中に含まれて いる MD A値との相関性を比較するために、 更に 1 5検体を追加して上記と同様 な方法によって、 本発明組成物及び FRTキットを用いて各検体について吸光度 を測定した。 4. Correlation between absorbance obtained using the composition of the present invention and FRT kit and MDA value In order to compare the correlation between the absorbance value obtained using the composition of the present invention and the FRT kit and the MDA value contained in urine, a method similar to the above was carried out with the addition of 15 more samples. The absorbance of each sample was measured using the composition of the present invention and the FRT kit.
また、 尿中 MDAi直を、 文献 (W. G. Niehaus, Jr. and B. Samuelesson, Eur. In addition, urinary MDAi can be obtained from literature (W.G.Niehaus, Jr. and B. Samuelesson, Eur.
J. Biochem. 6, 126(1968); E. D. Wills, Biochem. J. 113, 315(1969)) の方法 にしたがって測定した。 J. Biochem. 6, 126 (1968); ED Wills, Biochem. J. 113, 315 (1969)).
測定値は、 TEPを標準物として用いた場合の相当値を MD Aとした。 それぞ れについて得られた吸光度と尿中 MDA値との相関性を求めた。  As the measured value, MDA was an equivalent value when TEP was used as a standard. The correlation between the absorbance obtained for each and the urinary MDA value was determined.
その結果、 発明組成物を用いた場合には、 発色レベル (+ + + )、 (+十)、 As a result, when the inventive composition is used, the coloring level (+++), (+ ten),
(十)、 (士) に属する検体数が、 それぞれ 1 5 (4 3%)、 1 2 (34%)、 7 (20%)、 1 (3%) であった。 The number of specimens belonging to (10) and (P) was 15 (43%), 12 (34%), 7 (20%), and 1 (3%), respectively.
これに対して、 FRTキッ トを用いた場合には、 発色レベル (+ + +)、 ( + 十)、 (十)、 (士) に属する検体数が、 それぞれ、 30 (86%)、 4 (1 1%)、 1 (3%)、 0 (0%) 検体であった。  In contrast, when the FRT kit was used, the number of samples belonging to the coloring levels (+ + +), (+ tens), (ten), (1 1%), 1 (3%) and 0 (0%) samples.
FRTキットを用いた場合には、 呈色反応が非常に強く、 各検体における多様 性を検出できなかった。 これに対して、 本発明の組成物を用いた場合には、 呈色 の程度 (得られた OD値の範囲) は、 レベル 「 + + +」、 「十十」、 「十」、 「土」 と 「一」 に属する割合が、 多様性に富み、 濃度依存性が高く、 より信頼性の高い検 出ができることを示した (図 2)。  When the FRT kit was used, the color reaction was very strong and no diversity could be detected in each sample. On the other hand, when the composition of the present invention was used, the degree of coloration (range of the obtained OD value) was determined by the levels “+++”, “ten”, “ten”, and “earth”. The ratios belonging to “1” and “1” indicate that the detection is rich in diversity, highly concentration-dependent, and enables more reliable detection (Fig. 2).
本発明の組成物及び F R Tキットを用いて得られた吸光度と MD A値との相関 係数を求めた。 その結果、 本発明の組成物を用いて得られた吸光度と MD A値と の相関係数は、 0. 45であるのに対し、 FRTキッ ト用いて得られた吸光度と MDA値との相関係数は、 0. 31であり、 本発明の組成物が FRTキットに比 ベてより高い相関性が認められた (図 3)。  The correlation coefficient between the absorbance obtained using the composition of the present invention and the FRT kit and the MDA value was determined. As a result, the correlation coefficient between the absorbance obtained using the composition of the present invention and the MDA value was 0.45, whereas the correlation coefficient between the absorbance obtained using the FRT kit and the MDA value was found. The relationship number was 0.31, indicating that the composition of the present invention had a higher correlation than the FRT kit (FIG. 3).

Claims

請 求 の 範 囲 The scope of the claims
1 . 塩基性フクシン、 亜硫酸水素ナトリウム、 リン酸を含む、 アルデヒ ド検出 用組成物。 1. A composition for detecting aldehydes, comprising basic fuchsin, sodium bisulfite, and phosphoric acid.
2 . アルデヒ ドが、 ホルムアルデヒ ド又はマロンジアルデヒ ドである、 請求の 範囲第 1項記載の組成物。  2. The composition according to claim 1, wherein the aldehyde is formaldehyde or malondialdehyde.
3 . 生物学的試料における測定に用いる、 請求の範囲第 1項又は第 2項記載の 組成物。  3. The composition according to claim 1 or 2, which is used for measurement in a biological sample.
4 . 生物学的試料が、 尿である、 請求の範囲第 1項〜第 3項のいずれか 1項記 載の組成物。  4. The composition according to any one of claims 1 to 3, wherein the biological sample is urine.
5 . 過酸化脂質の測定に用いる、 請求の範囲第 1項〜第 4項のいずれか 1項記 載の組成物。  5. The composition according to any one of claims 1 to 4, which is used for measuring lipid peroxide.
6 . 活性酸素の測定に用いる、 請求の範囲第 1項〜第 4項のいずれか 1項記載 の組成物。  6. The composition according to any one of claims 1 to 4, which is used for measuring active oxygen.
7 . 請求の範囲第 1項〜第 6項のいずれか 1項記載の組成物を含む容器、 指示 書を含むアルデヒ ド検出用キット。  7. A container for containing the composition according to any one of claims 1 to 6, and a kit for detecting aldehydes containing instructions.
PCT/JP2003/007470 2003-06-12 2003-06-12 Composition for aldehyde detection WO2004111635A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003242311A AU2003242311A1 (en) 2003-06-12 2003-06-12 Composition for aldehyde detection
JP2005500747A JPWO2004111635A1 (en) 2003-06-12 2003-06-12 Composition for aldehyde detection
PCT/JP2003/007470 WO2004111635A1 (en) 2003-06-12 2003-06-12 Composition for aldehyde detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007470 WO2004111635A1 (en) 2003-06-12 2003-06-12 Composition for aldehyde detection

Publications (1)

Publication Number Publication Date
WO2004111635A1 true WO2004111635A1 (en) 2004-12-23

Family

ID=33549000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007470 WO2004111635A1 (en) 2003-06-12 2003-06-12 Composition for aldehyde detection

Country Status (3)

Country Link
JP (1) JPWO2004111635A1 (en)
AU (1) AU2003242311A1 (en)
WO (1) WO2004111635A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139558A (en) * 2005-11-17 2007-06-07 Miyagi Prefecture Measuring method of carbonyl value in oil and fat, and carbonyl value measuring composition
WO2008072112A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Detection of formaldehyde in urine samples
JP2013185944A (en) * 2012-03-07 2013-09-19 Toyota Boshoku Corp Lower alcohol detection reagent and lower alcohol detection method using the same
KR101312686B1 (en) * 2011-10-20 2013-09-27 홍성창 Reagent composition for the quantitation of active oxygen
CN103698324A (en) * 2013-11-27 2014-04-02 厦门理工学院 Air formaldehyde self testing kit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144692A (en) * 1975-06-08 1976-12-11 Gunze Ltd Simple detecting part of aldehydes
JP2002328122A (en) * 2001-03-16 2002-11-15 Ethicon Inc Method of measuring aliphatic aldehyde

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51144692A (en) * 1975-06-08 1976-12-11 Gunze Ltd Simple detecting part of aldehydes
JP2002328122A (en) * 2001-03-16 2002-11-15 Ethicon Inc Method of measuring aliphatic aldehyde

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139558A (en) * 2005-11-17 2007-06-07 Miyagi Prefecture Measuring method of carbonyl value in oil and fat, and carbonyl value measuring composition
WO2008072112A1 (en) * 2006-12-14 2008-06-19 Kimberly-Clark Worldwide, Inc. Detection of formaldehyde in urine samples
US8012761B2 (en) 2006-12-14 2011-09-06 Kimberly-Clark Worldwide, Inc. Detection of formaldehyde in urine samples
KR101312686B1 (en) * 2011-10-20 2013-09-27 홍성창 Reagent composition for the quantitation of active oxygen
JP2013185944A (en) * 2012-03-07 2013-09-19 Toyota Boshoku Corp Lower alcohol detection reagent and lower alcohol detection method using the same
CN103698324A (en) * 2013-11-27 2014-04-02 厦门理工学院 Air formaldehyde self testing kit

Also Published As

Publication number Publication date
JPWO2004111635A1 (en) 2006-07-27
AU2003242311A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
Grotto et al. Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification
Apak et al. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays
Halliwell et al. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean?
Ipson et al. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress
Amaliya et al. Java project on periodontal diseases: the relationship between vitamin C and the severity of periodontitis
US6454723B1 (en) Metabolic fitness training apparatus
Lärstad et al. Determination of malondialdehyde in breath condensate by high-performance liquid chromatography with fluorescence detection
Wang et al. Imaging endogenous HClO in atherosclerosis using a novel fast-response fluorescence probe
Ramdzan et al. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes
JP2012051816A (en) Discrimination method of biogenic amine
Quimbar et al. Chemiluminescent measurement of hydrogen peroxide in the exhaled breath condensate of healthy and asthmatic adults
WO2013118960A1 (en) Hemolysis reagent composition for hemoglobin a1c quantitative analysis using enzymatic method
Pryor et al. Detection of aldehydes in bronchoalveolar lavage of rats exposed to ozone
Lemineur et al. Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how?
Karunakaran et al. Enzymatic biosensors
Zhang et al. Twisted intramolecular charge transfer (TICT) based fluorescent probe for lighting up serum albumin with high sensitivity in physiological conditions
Dos Santos et al. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia
Al Jaseem et al. Mechanistic insight into glycation inhibition of human serum albumin by vitamin B9: Multispectroscopic and molecular docking approach
Bagchi et al. Development and characterization of carbonic anhydrase-based CO 2 biosensor for primary diagnosis of respiratory health
WO2004111635A1 (en) Composition for aldehyde detection
Carrero-Ferrer et al. Plasmonic sensor for hydrogen sulphide in saliva: Multisensor platform and bag format
CN110878085B (en) Rapid high-selectivity hypobromous acid fluorescent probe, preparation method and application
Tabrizi A cloud point extraction-spectrofluorimetric method for determination of thiamine in urine
CN114032095B (en) Preparation method and application of silicon-carbon quantum dots
Wittkopp et al. Vascular endothelium as a target for perfluroalkyl substances (PFAs)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500747

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1)EPC (EPO FORM 1205A OF 28.04.2006)

122 Ep: pct application non-entry in european phase