WO2004112860A1 - Material for cell adhesion and proliferation - Google Patents

Material for cell adhesion and proliferation Download PDF

Info

Publication number
WO2004112860A1
WO2004112860A1 PCT/JP2003/007731 JP0307731W WO2004112860A1 WO 2004112860 A1 WO2004112860 A1 WO 2004112860A1 JP 0307731 W JP0307731 W JP 0307731W WO 2004112860 A1 WO2004112860 A1 WO 2004112860A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
cells
degree
mol
crosslinking
Prior art date
Application number
PCT/JP2003/007731
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihito Osada
Jian Ping Gong
Original Assignee
Hokkaido Technology Licensing Office Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido Technology Licensing Office Co., Ltd. filed Critical Hokkaido Technology Licensing Office Co., Ltd.
Priority to AU2003242464A priority Critical patent/AU2003242464A1/en
Priority to PCT/JP2003/007731 priority patent/WO2004112860A1/en
Publication of WO2004112860A1 publication Critical patent/WO2004112860A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices

Definitions

  • the present invention relates to a bioadhesive / proliferative material suitable for cell culture, preferably, capable of culturing cells to a confluent or subconfelt state, in particular, a biomaterial comprising a hydrogel made of a synthetic polymer as a raw material
  • a biomaterial comprising a hydrogel made of a synthetic polymer as a raw material
  • the present invention relates to the above-mentioned material which can be used as a medical device. Background art
  • Hyde-mouth gel has attracted attention as an important application as a support for cell culture and tissue regeneration in advanced medical fields such as tissue engineering and regenerative medical engineering. Since biosafety and biocompatibility are required for use in these applications, hydrogels mainly using collagen derived from living organisms are mainly used.
  • Japanese Patent Application Laid-Open No. 2002-1866874 proposes a hydrogel similarly using a naturally occurring silk fiber mouth protein as a raw material.
  • This silk-fiber mouth protein is a material that is also used as a surgical suture, and is a natural polymer with excellent biocompatibility and produced from silkworms.
  • the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a cell adhesion / proliferation material composed of a hydrogel using a synthetic polymer as a raw material. Disclosure of the invention
  • the present invention (1) is a cell adhesion / proliferation material comprising a polyacrylic acid octaidogel.
  • the present invention (2) is the cell adhesion / proliferation material according to the above-mentioned invention (1), wherein the degree of crosslinking is in the range of 0.5 to 2.5 mol%.
  • the present invention (3) is the cell adhesion / proliferation material according to the above invention (1) or (2), wherein the polyacrylic acid hydrate mouth gel has a swelling degree of 20 to 30.
  • the present invention (4) is a medical device using the cell adhesion / proliferative material according to any one of the inventions (1) to (3).
  • the present invention (5) is the above-mentioned invention, which is an artificial blood vessel or a template for cell culture.
  • Figure 1 shows the results obtained by rolling the human vascular endothelial cells for the polyacrylic acid hydrated mouth gel of Example 1 (crosslinking degree: 2 mol%) and the polymethacrylic acid hydrated mouth gel of Comparative Example 1 (crosslinking degree: 2 mol%) after 6 hours.
  • 1 shows the cell morphology.
  • the black part is in the extended state (the cells are attached to the substrate gel and is extended), the gray part is weakly adsorbed (the cells are attached to the substrate gel but the shape is round), and white The part shows floating (the cells are not attached to the gel of the substrate).
  • FIG. 1 shows the results obtained by rolling the human vascular endothelial cells for the polyacrylic acid hydrated mouth gel of Example 1 (crosslinking degree: 2 mol%) and the polymethacrylic acid hydrated mouth gel of Comparative Example 1 (crosslinking degree: 2 mol%) after 6 hours.
  • 1 shows the cell morphology.
  • the black part is in the extended state (the cells are attached to the substrate gel and is
  • FIG. 2 shows the polyacrylic acid hydrate mouth gel (degree of crosslinking: 2 mol%) of Example 1, the polyacrylic acid hydrate mouth gel (degree of crosslinking: 3 mol%), and the polymethacrylate hydrogel (degree of crosslinking: (2 mol%), showing the results of counting the cells in an extended state over time after rolling human vascular endothelial cells.
  • the vertical axis indicates the number of extending cells, and the horizontal axis indicates time (h).
  • FIG. 3 shows the results of the cells on the polyacrylic acid hydrated mouth gel (cross-linking degree: 2 mol%) of Example 1 at 6 hours (a) and 192 hours (b) after the human vascular endothelial cells were wound. This is an electronic photograph of the situation.
  • FIG. 2 shows the polyacrylic acid hydrate mouth gel (degree of crosslinking: 2 mol%) of Example 1, the polyacrylic acid hydrate mouth gel (degree of crosslinking: 3 mol%), and the polymethacrylate hydrogel (degree of cross
  • FIG. 4 shows the extension rate of various polyacrylic acid hydrogels having different degrees of swelling in the culture medium after the human vascular endothelial cells were wounded for 6 hours.
  • the vertical axis shows the extension rate (%)
  • the horizontal axis shows the degree of swelling.
  • Figure 5 Fig. 3 shows the cell morphology (after 6 hours) of the BC-AA double network gel (cross-linking degree: 2 mo 1%) of Example 3.
  • the black part is in the extended state (the cell is attached to the gel on the substrate and stretched), the gray part is weakly adsorbed (the cell is attached to the gel on the substrate but the shape is round), The shaded area indicates floating (the cells are not attached to the gel on the substrate).
  • FIG. 1 shows the extension rate of various polyacrylic acid hydrogels having different degrees of swelling in the culture medium after the human vascular endothelial cells were wounded for 6 hours.
  • the vertical axis shows the extension rate (%)
  • the horizontal axis shows the degree of swelling.
  • FIG. 6 is an endothelial cell growth curve of the BC-AA double network gel (cross-linking degree: 2 mol%) of Example 3.
  • FIG. 7 shows the cell morphology (after 6 hours) of Examples 5 and 6 ⁇ AA—A Am—AA triple (TN, triple mesh) gel ⁇ .
  • the gray part is in the extended state (the cell is attached to the gel of the substrate and stretched), the black part is weakly adsorbed (the cell is attached to the gel of the substrate but the shape is round), The white part indicates suspension (the cells are not attached to the gel on the substrate).
  • FIG. 8 is an endothelial cell growth curve of an AA-AAm-AA triple (TN) gel of Example 6. BEST MODE FOR CARRYING OUT THE INVENTION
  • a feature of the present invention is that a polyacrylic acid hydrate gel using synthetic polyacrylic acid as a raw material is used as a cell adhesion / proliferation material. That is, this polyacrylic acid hydrate mouth gel has cell adhesion and proliferation properties similar to a natural polymer, unlike a hydrogel obtained from another synthetic polymer, although it is made of a synthetic polymer as a raw material.
  • This feature was first discovered by the present inventors. It is unknown at this time why this gel has such properties, but one possible reason is that the gel surface provides optimal tension for cells to spread, There is a very high possibility that the adsorption of related adhesive proteins (eg, laminin, fibronectin, etc.) is extremely high.
  • the polyacrylic acid octaidogel used in the present invention preferably has a degree of crosslinking of 1 to
  • crosslinking degree refers to a value expressed as a percentage of the molar concentration of the crosslinking agent to the molar concentration of the monomer charged. Actually, there may be a few monomers that did not participate in the polymerization and some crosslinking agents that did not participate in the crosslinking.
  • the degree of crosslinking of the gel in this specification is as described above.
  • the polyacrylic acid hydrate mouth gel used in the present invention preferably has a degree of swelling in the range of 20 to 30.
  • swelling degree is represented by the following formula:
  • Degree of swelling a value obtained by swelling gel weight (W w ) / dry gel weight (W D ).
  • the “hide mouth gel” as used herein refers to a gel in which the solvent is water, but may contain a water-soluble solvent (eg, alcohol) in an amount that does not affect the gel.
  • the polyacrylic acid hydrate mouth gel used in the present invention may be an interpenetrating network hydrogel or a semi-interpenetrating network hydrogel from the viewpoint of improving the strength.
  • the other network structure is uniformly entangled with the base network structure (crosslinked product of polyacrylic acid) throughout the gel.
  • the linear network is uniformly entangled with the base network structure (crosslinked product of polyacrylic acid) throughout the gel.
  • the other network structure and linear polymer are not particularly limited as long as they have biocompatibility, and may be natural products such as collagen or bacterium cellulose (BC), or PN a SS (styrene sulfone). It may be a synthetic polymer (a crosslinked product thereof) such as a sodium acid polymer.
  • interpenetrating network structure octaid gel and “semi-interpenetrating network structure hydrating gel” are concepts that include not only double network type but also gels with triple or quadruple network structure. .
  • the cell adhesion / proliferation material which is the use of the polyacrylic acid hydrated mouth gel, is a cell in the advanced medical field such as tissue engineering or regenerative medicine engineering, which requires cell adhesion and cell proliferation. It refers to a material used as a culture support or a tissue regeneration support, and includes, for example, materials used for medical devices such as artificial blood vessels or cell culture templates.
  • tissue adhesion refers to a property to which anchorage-dependent cells can adhere
  • “cell proliferative” means that the proliferated cells are in a state of a confluent or subconfelted state. .
  • the cells to be proliferated are anchorage-dependent cells, regardless of established cells or primary cells, for example, fibroblasts, smooth muscle cells, vascular endothelial cells, and epithelial cells are listed. I can do it.
  • the polyacrylic acid hydrate mouth gel according to the present invention can be produced, for example, by adding acrylic acid, a polymerization initiator and a cross-linking agent to a suitable solvent (for example, water) and subjecting to thermal polymerization.
  • a suitable solvent for example, water
  • a suitable solvent for example, water
  • the polymerization initiator for example, a water-soluble thermal catalyst such as potassium persulfate, and a redox initiator such as potassium persulfate-sodium thiosulfate can be used.
  • the crosslinking agent for example, N, N'-methylenebisacrylamide can be used.
  • the solvent (7J) finally contained in the gel may be replaced with water by using water as a solvent from the production stage or by exchanging the solvent after production.
  • the polyacrylic acid hydrogel according to the present invention can be used as a cell adhesion-proliferating medical device, and can be said to be particularly suitable for an artificial blood vessel.
  • Artificial blood vessels currently in use are prone to clots and do not have the permeability of substances to the outside of blood vessels, so they have a large effect on blood vessels.
  • the material comprising the polyacrylic acid hydrogel according to the present invention is flexible, has a selective substance permeability, and has cell adhesion and proliferation properties. The reason is that cells can be constructed. It is also suitable for use as a template for cell culture.
  • Example 1 Example 1
  • Example 1 Example of producing PAA gel having a degree of crosslinking of 2 mol%
  • Example 2 In the same manner as in Example 1, the amount of the crosslinking agent was changed by 0.6 mol / L to produce a PAA gel having a degree of crosslinking of 3 mo 1%. The degree of swelling of the obtained PAA gel was 26. Comparative Example 1 (Production example of PMAA gel with a degree of crosslinking of 2 mol%)
  • a PMAA gel having a degree of crosslinking of 2 mol% was prepared in the same manner as in Example 1 except that the monomer was changed to methacrylic acid.
  • Test Example 1 Adhesion test of human vascular endothelial cells
  • Example 1 The osmotic pressure of each of the hydrated gels (swollen gels) of Example 1 and Comparative Example 1 was adjusted with a HEP ES buffer solution and then with an Earle's balanced salt solution. Then, after sterilization by autoclave, the sterilization gel in serum-free medium, placed in C_ ⁇ 2 incubator in one of 37 ° C, allowed to equilibrate swell again. The gel was spread on a cell, and endothelial cells suspended in a medium containing serum were seeded on the gel ( 4 ⁇ 10 4 human vascular endothelial cells / 1.9 lcm 2 gel). After 6 hours, the morphology of endothelial cells on the gel was examined. Figure 1 shows the results.
  • Example 2 Proliferation test of human vascular endothelial cells
  • Example 1 In each of Examples 1 and 2 and Comparative Example 1 (swelled gel), The osmotic pressure was adjusted with an impingement solution and then with an Earl's balanced salt solution. Then, after sterilization by autoclave, the sterilization gel in serum-free medium, placed into the C_ ⁇ 2 incubator 37 ° C, allowed to equilibrate swell again. The gel was spread on a cell, and endothelial cells suspended in a medium containing serum were seeded on the gel (4 ⁇ 10 4 human vascular endothelial cells / 1.9 lcm 2 gel). Then, the number of extending cells was counted over time. Figure 2 shows the results. As can be seen from FIG.
  • Example 3 Provided by the method described in Example 1, various PAA hydrogels having different degrees of swelling were produced, and the morphology of endothelial cells on the gel 6 hours after winding was examined in the same manner as in Test Example 1 above.
  • Fig. 4 shows the results. As can be seen from Fig. 4, a particularly high elongation was observed when the degree of swelling was in the range of 20 to 30.
  • Example 3 ⁇ Production of BC-PAA gel (DN gel) having a degree of crosslinking of 2 mol% ⁇
  • HS medium Bacto Pepton 0.5%, Yeast Extract 0.5%, disodium hydrogen phosphate 0.27%, citric acid 0.115%, glucose 2% were dissolved in deionized water to obtain HS medium. .
  • the medium was divided into about 15-30 ml portions of an Erlenmeyer flask, the flask was capped, and autoclaved at 120 ° C. for 20 minutes. Thereafter, the acetic acid bacteria (ATCC 53582) stored at -80 were removed and transferred to the medium. Then, when allowed to stand at 28-30 ° C for about 2-3 days, bacterial cellulose starts to be produced from the air interface side of the culture medium. Further culturing was continued until the thickness became about 2 bandits. The obtained bacterial cellulose was washed with a 1% &# 11 aqueous solution for 1 day, and further subjected to solvent exchange with pure water for 2 days. Incidentally, the swelling degree of this pacteria cellulose was 46.
  • a frame of 80mmX 80 face, width 5rai was cut out, and a groove of three bandits was made in one place of the frame.
  • the silicon frame was sandwiched between two glass plates of 10 Omm x 100 mm and 3 thicknesses, and a polymerization container was assembled.
  • UV-rays 22 W, 0.34 A
  • UV-rays with a wavelength of 365 nm were irradiated with ultraviolet rays at room temperature for 6 hours to polymerize, producing an 88-gel with a cross-linking degree of 0.511101%.
  • aqueous solution 50 ml of a 2 mol / L acrylamide (AAm) aqueous solution as a monomer, 0.1 ml / L of ⁇ , ⁇ '-methylenebisacrylamide ( ⁇ ) aqueous solution as a cross-linking agent, and 0.1 lmol / L as an initiator L and 1 ml of 2-oxodaltaric acid aqueous solution were combined and adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). This immersion solution was deoxygenated using nitrogen gas.
  • the gel was taken out of the immersion liquid, cut into an appropriate size, and then sandwiched between two glass plates having a width of 100 dragons, a length of 10 Omm, and a thickness of 3 mm so that air bubbles would not be mixed. .
  • ultraviolet rays were irradiated for 6 hours at room temperature using a 365 nm wavelength UV lamp (22 W, 0.34 A).
  • the AAm monomer diffused in the gel was polymerized to obtain a double network gel.
  • the degree of crosslinking of the second network structure of this double network gel was 0.1 mol%.
  • the dipping solution and 4 g of the double network type gel were placed in a sealed container having a sufficiently larger capacity than the gel.
  • This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the immersion solution were diffused and permeated into the gel.
  • the container was occasionally gently shaken in order to equalize the concentration of the immersion liquid.
  • the gel was taken out from the immersion liquid, cut into an appropriate size, and then sandwiched between two glass plates having a width of 10 Omm, a length of 100, and a thickness of 3 mm to prevent air bubbles from being mixed.
  • ultraviolet light was irradiated for 6 hours at room temperature using a 365 nm wavelength UV lamp (22 W, 0.34 A).
  • the AA monomer diffused in the gel was polymerized to obtain a triple gel.
  • the degree of crosslinking of the third network structure of the triple gel was 1 mol%.
  • Example 5 Human vascular endothelial cell adhesion / proliferation test

Abstract

A material for cell adhesion and proliferation which is made of a polyacrylic acid hydrogel and appropriately usable in culturing cells, preferably culturing cells to a confluent or subconfluent state.

Description

明 細 書  Specification
細胞接着 ·増殖性材料 技術分野  Cell adhesion and proliferative materials
本発明は、 細胞培養に適した、 好適には、 細胞をコンフルェント又はサブコン フェルトの状態まで培養可能な細胞接着,増殖性材料、 特に、 合成高分子を原料 とするハイドロゲルからなる、 生体材料等の医療具としても使用可能な前記材料 に関する。 背景技術  The present invention relates to a bioadhesive / proliferative material suitable for cell culture, preferably, capable of culturing cells to a confluent or subconfelt state, in particular, a biomaterial comprising a hydrogel made of a synthetic polymer as a raw material The present invention relates to the above-mentioned material which can be used as a medical device. Background art
近年、 ハイド口ゲルは、 その重要な用途として、 組織工学や再生医工学という 先端医療分野における細胞培養支持体や組織再生支持体として注目を集めている。 これらの用途に利用するためには、 生体安全性や生体親和性が宴求されるため、 主として生体由来のコラーゲンを中心としたハイドロゲルが利用されている。 ま た、 特開 2 0 0 2— 1 8 6 8 4 7公報には、 同じく天然由来の絹フイブ口インタ ンパク質を原料としたハイドロゲルが提案されている。 この絹フイブ口インタン パク質は、 手術用縫合糸としても使用されている材料であり、 生体親和性に優れ た、 蚕から生産される天然高分子である。  In recent years, Hyde-mouth gel has attracted attention as an important application as a support for cell culture and tissue regeneration in advanced medical fields such as tissue engineering and regenerative medical engineering. Since biosafety and biocompatibility are required for use in these applications, hydrogels mainly using collagen derived from living organisms are mainly used. In addition, Japanese Patent Application Laid-Open No. 2002-1866874 proposes a hydrogel similarly using a naturally occurring silk fiber mouth protein as a raw material. This silk-fiber mouth protein is a material that is also used as a surgical suture, and is a natural polymer with excellent biocompatibility and produced from silkworms.
しかしながら、 天然物を原料とする場合には、 品質が不均一になったり、 生産 コストが嵩む等、 工業生産上の問題が生じる。 例えば、 コラーゲンに関しては、 動物組織からの抽出により生産され、 かつォートクレーブ滅菌が不可能であるこ とから、 未知病原体による汚染等の可能性もあるといわれている。 他方、 合成高 分子の利用も検討されてはいるが、 これまで、 合成高分子ゲル上で、 内皮細胞が コンフルェント又はサブコンフェルトの状態まで培養された例は報告されていな い。  However, when using natural products as raw materials, there are problems in industrial production, such as uneven quality and increased production costs. For example, it is said that collagen is produced by extraction from animal tissues and cannot be sterilized in an autoclave, which may cause contamination with unknown pathogens. On the other hand, although the use of synthetic macromolecules has been studied, no examples have been reported so far in which endothelial cells were cultured to a confluent or subconfelted state on synthetic polymer gels.
本発明は、 上記従来の問題点に鑑みなされたものであって、 その目的は、 合成 高分子を原料としたハイドロゲルからなる細胞接着 ·増殖性材料を提供すること にある。 発明の開示 The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to provide a cell adhesion / proliferation material composed of a hydrogel using a synthetic polymer as a raw material. Disclosure of the invention
本発明 (1) は、 ポリアクリル酸八イド口ゲルからなる、 細胞接着,増殖性材 料である。  The present invention (1) is a cell adhesion / proliferation material comprising a polyacrylic acid octaidogel.
本発明 (2) は、 架橋度が 0. 5〜2. 5mol%の範囲である、 前記発明 ( 1 ) の細胞接着 ·増殖性材料である。  The present invention (2) is the cell adhesion / proliferation material according to the above-mentioned invention (1), wherein the degree of crosslinking is in the range of 0.5 to 2.5 mol%.
本発明 (3) は、 ポリアクリル酸ハイド口ゲルの膨潤度が 20〜30である、 前記発明 (1) 又は (2) の細胞接着 ·増殖性材料である。  The present invention (3) is the cell adhesion / proliferation material according to the above invention (1) or (2), wherein the polyacrylic acid hydrate mouth gel has a swelling degree of 20 to 30.
本発明 (4) は、 前記発明 (1) 〜 (3) のいずれか一つの細胞接着 ·増殖性 材料を用いた医療具である。  The present invention (4) is a medical device using the cell adhesion / proliferative material according to any one of the inventions (1) to (3).
本発明 (5) は、 人工血管又は細胞培養用テンプレートである、 前記発明 The present invention (5) is the above-mentioned invention, which is an artificial blood vessel or a template for cell culture.
(4) の医療具である。 図面の簡単な説明 It is a medical device of (4). BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1のポリアクリル酸ハイド口ゲル (架橋度 2mol%) と比較例 1のポリメタクリル酸ハイド口ゲル (架橋度 2mol%) について、 ヒト血管内皮 細胞を捲き 6時間経過した後の細胞の形態を示したものである。 図中、 黒色部分 は伸展状態 (細胞が基板のゲルにくっついていて伸ばされている状態)、 灰色部 分は弱い吸着 (細胞は基板のゲルにくっついてはいるが形状が丸い状態)、 白色 部分は浮遊 (細胞が基板のゲルにくっついていない状態) を示す。 図 2は、 実施 例 1のポリアクリル酸ハイド口ゲル (架橋度 2mol%)、 実施例 2のポリアクリル 酸ハイド口ゲル (架橋度 3mol%) 及び比較例 1のポリメタクリル酸ハイドロゲ ル (架橋度 2mol%) の夫々にっき、 ヒト血管内皮細胞を捲いた後、 伸展状態に ある細胞を経時的にカウントした結果を示したものである。 図中、 縦軸は伸展し ている細胞数を、 横軸は時間 (h) を示す。 図 3は、 実施例 1のポリアクリル酸 ハイド口ゲル (架橋度 2mol%) にっき、 ヒト血管内皮細胞を捲いてから 6時間 後 (a) 及び 192時間後 (b) における、 ゲル上の細胞の様子を撮影した電子 写真である。 図 4は、 培養液中の膨潤度の異なる各種ポリアクリル酸ハイドロゲ ルについて、 ヒト血管内皮細胞を捲き 6時間経過した後の、 該細胞の伸展率を調 ベたものである。 図中、 縦軸は伸展率 (%) を、 横軸は膨潤度を示す。 図 5は、 実施例 3の B C— A Aダブルネットワークゲル (架橋度 2 mo 1 %) の細胞形態 ( 6時間後) である。 尚、 図中、 黒色部分は伸展状態 (細胞が基板のゲルにくつ ついていて伸ばされている状態)、 灰色部分は弱い吸着 (細胞は基板のゲルに くっついてはいるが形状が丸い状態)、 斜線部分は浮遊 (細胞が基板のゲルに くっついていない状態) を示す。 図 6は、 実施例 3の B C— A Aダブルネット ワークゲル (架橋度 2 mol %) の内皮細胞増殖曲線である。 図 7は、 実施例 5及 び 6 { A A— A Am— A Aのトリプル (T N、 三重網目) ゲル } の細胞形態 ( 6時間後) である。 尚、 図中、 灰色部分は伸展状態 (細胞が基板のゲルにくつ ついていて伸ばされている状態)、 黒色部分は弱い吸着 (細胞は基板のゲルに くっついてはいるが形状が丸い状態)、 白色部分は浮遊 (細胞が基板のゲルに くっついていない状態) を示す。 図 8は、 実施例 6の AA— AAm— A Aのトリ プル (T N) ゲルの内皮細胞増殖曲線である。 発明を実施するための最良の形態 Figure 1 shows the results obtained by rolling the human vascular endothelial cells for the polyacrylic acid hydrated mouth gel of Example 1 (crosslinking degree: 2 mol%) and the polymethacrylic acid hydrated mouth gel of Comparative Example 1 (crosslinking degree: 2 mol%) after 6 hours. 1 shows the cell morphology. In the figure, the black part is in the extended state (the cells are attached to the substrate gel and is extended), the gray part is weakly adsorbed (the cells are attached to the substrate gel but the shape is round), and white The part shows floating (the cells are not attached to the gel of the substrate). FIG. 2 shows the polyacrylic acid hydrate mouth gel (degree of crosslinking: 2 mol%) of Example 1, the polyacrylic acid hydrate mouth gel (degree of crosslinking: 3 mol%), and the polymethacrylate hydrogel (degree of crosslinking: (2 mol%), showing the results of counting the cells in an extended state over time after rolling human vascular endothelial cells. In the figure, the vertical axis indicates the number of extending cells, and the horizontal axis indicates time (h). FIG. 3 shows the results of the cells on the polyacrylic acid hydrated mouth gel (cross-linking degree: 2 mol%) of Example 1 at 6 hours (a) and 192 hours (b) after the human vascular endothelial cells were wound. This is an electronic photograph of the situation. FIG. 4 shows the extension rate of various polyacrylic acid hydrogels having different degrees of swelling in the culture medium after the human vascular endothelial cells were wounded for 6 hours. In the figure, the vertical axis shows the extension rate (%), and the horizontal axis shows the degree of swelling. Figure 5 Fig. 3 shows the cell morphology (after 6 hours) of the BC-AA double network gel (cross-linking degree: 2 mo 1%) of Example 3. In the figure, the black part is in the extended state (the cell is attached to the gel on the substrate and stretched), the gray part is weakly adsorbed (the cell is attached to the gel on the substrate but the shape is round), The shaded area indicates floating (the cells are not attached to the gel on the substrate). FIG. 6 is an endothelial cell growth curve of the BC-AA double network gel (cross-linking degree: 2 mol%) of Example 3. FIG. 7 shows the cell morphology (after 6 hours) of Examples 5 and 6 {AA—A Am—AA triple (TN, triple mesh) gel}. In the figure, the gray part is in the extended state (the cell is attached to the gel of the substrate and stretched), the black part is weakly adsorbed (the cell is attached to the gel of the substrate but the shape is round), The white part indicates suspension (the cells are not attached to the gel on the substrate). FIG. 8 is an endothelial cell growth curve of an AA-AAm-AA triple (TN) gel of Example 6. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 具体的に本発明を説明する。 本発明の特徴は、 細胞接着 ·増殖性材料と して、 合成高分子であるポリアクリル酸を原料とした、 ポリアクリル酸ハイド口 ゲルに着目した点にある。 即ち、 このポリアクリル酸ハイド口ゲルは、 合成高分 子を原料としているにもかかわらず、 他の合成高分子より得られるハイドロゲル と異なり、 天然高分子同様、 細胞接着,増殖性を有しているという特徴があり、 この特徴は、 本発明者らにより初めて見出されたのである。 このゲルがなぜ故に そのような性質を有するかは現時点では不明であるが、.考えられる理由としては、 このゲル表面が、 細胞が伸展するのに最適な張力を与え、 細胞の伸展や増殖に関 係する接着タンパク (例えば、 ラミニン、 フイブロネクチンなど) の吸着が極め て高い可能性を挙げることができる。  Hereinafter, the present invention will be specifically described. A feature of the present invention is that a polyacrylic acid hydrate gel using synthetic polyacrylic acid as a raw material is used as a cell adhesion / proliferation material. That is, this polyacrylic acid hydrate mouth gel has cell adhesion and proliferation properties similar to a natural polymer, unlike a hydrogel obtained from another synthetic polymer, although it is made of a synthetic polymer as a raw material. This feature was first discovered by the present inventors. It is unknown at this time why this gel has such properties, but one possible reason is that the gel surface provides optimal tension for cells to spread, There is a very high possibility that the adsorption of related adhesive proteins (eg, laminin, fibronectin, etc.) is extremely high.
本発明で用いられるポリアクリル酸八イド口ゲルは、 好適には、 架橋度が 1〜 The polyacrylic acid octaidogel used in the present invention preferably has a degree of crosslinking of 1 to
4mol %、 特に好適には、 0 . 5〜2 . 5 mol %の範囲であるものである。 It is in the range from 4 mol%, particularly preferably from 0.5 to 2.5 mol%.
ここで、 「架橋度」 とは、 モノマーの仕込みモル濃度に対する架橋剤のモル濃 度の比をパーセントで表した値をいう。 なお、 実際には、 重合に関与しなかった モノマーや架橋に関与しなかった架橋剤も僅かにある場合があるが、 この際も、 本明細書におけるゲルの架橋度は、 前記の通りとする。 また、 本発明で用いられ るポリアクリル酸ハイド口ゲルは、 好適には、 膨潤度が 2 0〜3 0の範囲である ものである。 ここで、 「膨潤度」 とは、 以下の式: Here, the “crosslinking degree” refers to a value expressed as a percentage of the molar concentration of the crosslinking agent to the molar concentration of the monomer charged. Actually, there may be a few monomers that did not participate in the polymerization and some crosslinking agents that did not participate in the crosslinking. The degree of crosslinking of the gel in this specification is as described above. The polyacrylic acid hydrate mouth gel used in the present invention preferably has a degree of swelling in the range of 20 to 30. Here, “swelling degree” is represented by the following formula:
膨潤度 =膨潤させたゲルの重量 (Ww) /乾燥ゲルの重量 (WD) で求められる値をいう。 尚、 本明細書にいう 「ハイド口ゲル」 とは、 溶媒が水で あるゲルをいうが、 影響しない程度の量、 水可溶性溶媒 (例えばアルコール) 等 ' を含有していてもよい。 Degree of swelling = a value obtained by swelling gel weight (W w ) / dry gel weight (W D ). The “hide mouth gel” as used herein refers to a gel in which the solvent is water, but may contain a water-soluble solvent (eg, alcohol) in an amount that does not affect the gel.
また、 本発明で用いられるポリアクリル酸ハイド口ゲルは、 強度を向上させる 観点から、 相互侵入網目構造ハイドロゲル又はセミ相互侵入網目構造ハイドロゲ ルであってもよい。 例えば、 相互侵入網目構造ハイド口ゲルの場合は、 ベースと なる網目構造 (ポリアクリル酸の架橋物) に、 他の網目構造がゲル全体において 均一に絡みついている態様である。 また、 セミ相互侵入網目構造ハイド口ゲルの 場合は、 ベースとなる網目構造 (ポリアクリル酸の架橋物) に、 直鎖状ポリマー が、 ゲル全体において均一に絡みついている態様である。 尚、 他の網目構造及び 直鎖状ポリマーは、 生体適合性がある限り特に限定されず、 コラーゲンやバクテ リアセルロース (B C) のような天然物であってもよいし、 P N a S S (スチレ ンスルホン酸ナトリウムのポリマー) のような合成ポリマー (の架橋物) であつ てもよい。 また、 「相互侵入網目構造八イド口ゲル」 及び 「セミ相互侵入網目構 造ハイド口ゲル」 は、 ダブルネットワーク型のみでなく、 三重や四重以上の網目 構造を有するゲルをも含む概念である。  Further, the polyacrylic acid hydrate mouth gel used in the present invention may be an interpenetrating network hydrogel or a semi-interpenetrating network hydrogel from the viewpoint of improving the strength. For example, in the case of a gel having an interpenetrating network structure with a mouth opening, the other network structure is uniformly entangled with the base network structure (crosslinked product of polyacrylic acid) throughout the gel. In addition, in the case of a semi-interpenetrating network structure mouth-opening gel, the linear network is uniformly entangled with the base network structure (crosslinked product of polyacrylic acid) throughout the gel. The other network structure and linear polymer are not particularly limited as long as they have biocompatibility, and may be natural products such as collagen or bacterium cellulose (BC), or PN a SS (styrene sulfone). It may be a synthetic polymer (a crosslinked product thereof) such as a sodium acid polymer. In addition, "interpenetrating network structure octaid gel" and "semi-interpenetrating network structure hydrating gel" are concepts that include not only double network type but also gels with triple or quadruple network structure. .
次に、 前記ポリアクリル酸ハイド口ゲルの用途であるところの、 細胞接着 ·増 殖性材料とは、 細胞接着性及び細胞増殖性が求められる、 組織工学や再生医工学 という先端医療分野における細胞培養支持体や組織再生支持体として用いられる ような材料を指し、 例えば、 人工血管又は細胞培養用テンプレート等の医療具に 用いられるものを挙げることができる。 ここで、 「細胞接着性」 とは、 足場依存 性の細胞が付着できる性質を指し、 また、 「細胞増殖性」 とは、 増殖した細胞が コンフェルト又はサブコンフェルトの状態になることを意味する。  Next, the cell adhesion / proliferation material, which is the use of the polyacrylic acid hydrated mouth gel, is a cell in the advanced medical field such as tissue engineering or regenerative medicine engineering, which requires cell adhesion and cell proliferation. It refers to a material used as a culture support or a tissue regeneration support, and includes, for example, materials used for medical devices such as artificial blood vessels or cell culture templates. Here, “cell adhesion” refers to a property to which anchorage-dependent cells can adhere, and “cell proliferative” means that the proliferated cells are in a state of a confluent or subconfelted state. .
また、 増殖の対象となる細胞は、 足場依存性の細胞であれば、 株化細胞、 初代 細胞を問わず、 例えば、 線維芽細胞、 平滑筋細胞、 血管内皮細胞、 上皮細胞を挙 げることができる。 In addition, if the cells to be proliferated are anchorage-dependent cells, regardless of established cells or primary cells, for example, fibroblasts, smooth muscle cells, vascular endothelial cells, and epithelial cells are listed. I can do it.
次に、 本発明に係るポリアクリル酸八ィドロゲルの製造方法について説明する。 本発明に係るポリアクリル酸ハイド口ゲルは、 例えば、 適当な溶媒 (例えば、 水) 中に、 アクリル酸、 重合開始剤及び架橋剤を添加し、 熱重合することにより 製造することができる。 重合開始剤としては、 例えば、 過硫酸カリウムなどの水 溶性熱触媒、 過硫酸力リウムーチォ硫酸ナトリウムなどのレドックス開始剤を用 いることができる。 また、 架橋剤としては、 例えば、 N, N ' —メチレンビスァ クリルアミドを使用することができる。 尚、 最終的にゲル中に含まれる溶媒 (7J に関しては、 製造段階から溶媒として水を使っても、 或いは、 製造後に溶 媒交換を行うことで水に置換してもよい。  Next, the method for producing polyacrylic acid hydrogel according to the present invention will be described. The polyacrylic acid hydrate mouth gel according to the present invention can be produced, for example, by adding acrylic acid, a polymerization initiator and a cross-linking agent to a suitable solvent (for example, water) and subjecting to thermal polymerization. As the polymerization initiator, for example, a water-soluble thermal catalyst such as potassium persulfate, and a redox initiator such as potassium persulfate-sodium thiosulfate can be used. As the crosslinking agent, for example, N, N'-methylenebisacrylamide can be used. The solvent (7J) finally contained in the gel may be replaced with water by using water as a solvent from the production stage or by exchanging the solvent after production.
最後に、 本発明に係るポリアクリル酸ハイドロゲルの使用方法にっき説明する。 本発明に係るポリアクリル酸ハイドロゲルは、 細胞接着'増殖性医療具として使 用可能であり、 特に、 人工血管に適しているといえる。 現在使われている人工血 管は、 血栓が生じやすく、 血管外部への物質の透過性がないことがら、 血管外部 への影響が大きい。 本発明に係るポリアクリル酸ハイドロゲルからなる材料は、 柔軟性があり、 選択的物質の透過性をも有し、 かつ、 細胞接着 ·増殖性を有する ので、 血管内部に抗血栓作用を有する内皮細胞が構築可能であることがその理由 である。 また、 細胞培養用テンプレートとしての用途も適している。 実施例  Finally, the method of using the polyacrylic acid hydrogel according to the present invention will be described. The polyacrylic acid hydrogel according to the present invention can be used as a cell adhesion-proliferating medical device, and can be said to be particularly suitable for an artificial blood vessel. Artificial blood vessels currently in use are prone to clots and do not have the permeability of substances to the outside of blood vessels, so they have a large effect on blood vessels. The material comprising the polyacrylic acid hydrogel according to the present invention is flexible, has a selective substance permeability, and has cell adhesion and proliferation properties. The reason is that cells can be constructed. It is also suitable for use as a template for cell culture. Example
以下、 実施例を参照しながら、 本発明をより具体的に説明することとする。 尚、 本発明が実施例に限定されないことはいうまでもない。 実施例 1 (架橋度 2 mol %の P AAゲルの製造例)  Hereinafter, the present invention will be described more specifically with reference to examples. It goes without saying that the present invention is not limited to the examples. Example 1 (Example of producing PAA gel having a degree of crosslinking of 2 mol%)
モノマーである 2 mol/Lのアクリル酸 (AA) 水溶液 4 0 ml と、 架橋剤である 40 ml of a 2 mol / L aqueous solution of acrylic acid (AA) as a monomer and a crosslinking agent
0 . 4 mol/L の Ν, Ν ' ーメチレンビスアクリルアミド (Μ Β ΑΑ) 水溶液 4 ml と、 開始剤である 0 . 1 mo 1/Lの 2—ォキソダルタル酸水溶液 l mlとを合わせ、 水で調整して 8 0 ml の水溶液を得た。 この水溶液を窒素ガスを用いて脱酸素し た。 つづいて、 この脱酸素水溶液を、 実施例 1と同様な重合容器の一方のガラス 板に置かれたシリコン板の開口部に流し込み、 シリコン板上に他方のガラス板を 重ねて前記開口部周辺をシールした後、 波長 3 6 5 nm の U Vランプ (22W, 0. 34 A) を用いて紫外線を常温で 6時間照射して重合させること により、 架橋度が 2mol%の PAAゲルを作製した。 尚、 得られた PAAゲルの 膨潤度は 30であった。 実施例 2 (架橋度 3mol%の PAAゲルの製造例) Combine 4 ml of a 0.4 mol / L aqueous solution of Ν, Ν'-methylenebisacrylamide (Μ Β ΑΑ) with 1 ml of a 0.1 mo 1 / L aqueous solution of 2-oxodaltalic acid, which is an initiator, and mix with water. Adjustment gave 80 ml of aqueous solution. This aqueous solution was deoxygenated using nitrogen gas. Subsequently, this deoxygenated aqueous solution was added to one glass of a polymerization vessel similar to that in Example 1. After pouring into the opening of the silicon plate placed on the plate, overlaying the other glass plate on the silicon plate and sealing around the opening, a UV lamp with a wavelength of 365 nm (22 W, 0.34 A) was used. The polymer was irradiated with ultraviolet rays at room temperature for 6 hours to polymerize it, thereby producing a PAA gel having a degree of crosslinking of 2 mol%. The swelling degree of the obtained PAA gel was 30. Example 2 (Example of manufacturing PAA gel having a degree of crosslinking of 3 mol%)
実施例 1と同様の方法で、 伹し、 架橋剤の量を 0. 6mol/L変えることにより、 架橋度が 3 mo 1 %の P A Aゲルを作製した。 得られた P A Aゲルの膨潤度は 26であった。 比較例 1 (架橋度 2mol%の PMAAゲルの製造例)  In the same manner as in Example 1, the amount of the crosslinking agent was changed by 0.6 mol / L to produce a PAA gel having a degree of crosslinking of 3 mo 1%. The degree of swelling of the obtained PAA gel was 26. Comparative Example 1 (Production example of PMAA gel with a degree of crosslinking of 2 mol%)
実施例 1と同様の方法で、 但し、 モノマーをメタクリル酸に変えることにより、 架橋度が 2mol%の PMAAゲルを作製した。 試験例 1 (ヒト血管内皮細胞の接着性試験)  A PMAA gel having a degree of crosslinking of 2 mol% was prepared in the same manner as in Example 1 except that the monomer was changed to methacrylic acid. Test Example 1 (Adhesion test of human vascular endothelial cells)
実施例 1及び比較例 1のハイド口ゲル (膨潤したゲル) の夫々にっき、 HEP ES緩衝液、 次に平衡塩溶液 (Earl e's balanced salt solution)で浸透圧を調節 した。 次いで、 オートクレープで滅菌した後、 この滅菌ゲルを無血清培地で、 37 °Cの C〇2インキュベータ一内に入れて、 再び平衡膨潤させた。 このゲルを セルに敷き、 血清を含む培地に懸濁した内皮細胞をゲル上に播種した (4 X 104個のヒト血管内皮細胞/ 1. 9 lcm2のゲル)。 そして、 それから 6時間経 過した後のゲル上の内皮細胞の形態を調べた。 その結果を図 1に示す。 この図よ り分かるように、 実施例 1の PAAハイド口ゲルは、 伸展状態の細胞が 80%近 くであり、 浮遊状態の細胞が殆ど存在しなかったのに対し、 比較例 1の PMAA ハイドロゲルは、 伸展状態の細胞が 50%にも満たないことが判明した。 試験例 2 (ヒト血管内皮細胞の増殖性試験) The osmotic pressure of each of the hydrated gels (swollen gels) of Example 1 and Comparative Example 1 was adjusted with a HEP ES buffer solution and then with an Earle's balanced salt solution. Then, after sterilization by autoclave, the sterilization gel in serum-free medium, placed in C_〇 2 incubator in one of 37 ° C, allowed to equilibrate swell again. The gel was spread on a cell, and endothelial cells suspended in a medium containing serum were seeded on the gel ( 4 × 10 4 human vascular endothelial cells / 1.9 lcm 2 gel). After 6 hours, the morphology of endothelial cells on the gel was examined. Figure 1 shows the results. As can be seen from the figure, the PAA hydrated gel of Example 1 had nearly 80% of the cells in the extended state and almost no cells in the suspended state, whereas the PMAA hydrogel of Comparative Example 1 The gel was found to have less than 50% stretched cells. Test Example 2 (Proliferation test of human vascular endothelial cells)
実施例 1及び 2並びに比較例 1 (膨潤したゲル) の夫々にっき、 HEPES緩 衝液、 次に平衡塩溶液 (Earl e's balanced salt solution)で浸透圧を調節した。 次いで、 オートクレープで滅菌した後、 この滅菌ゲルを無血清培地で、 37°Cの C〇2インキュベーター内に入れて、 再び平衡膨潤させた。 このゲルをセルに敷 き、 血清を含む培地に懸濁した内皮細胞をゲル上に播種した (4X 104個のヒ ト血管内皮細胞 /1. 9 lcm2のゲル)。 そして、 その後の伸展している細胞の 数を経時的にカウントした。 その結果を図 2に示す。 図 2より分かるように、 実 施例 1及び 2の PAAハイドロゲルは、 時間の経過と共に伸展状態にある細胞が 順調に増殖し、 また、 実施例 1の PAAハイド口ゲルについては、 コンフェルト 状態にまで移行したが、 比較例 1の PMAAハイド口ゲルは、 時間の経過と共に 細胞数が減少し、 100時間経過後にはすべての細胞が死滅した。 尚、 実施例 1の PAAハイドロゲルについては、 更に 192時間後 (8日間) まで細胞の様 子を観察した。 図 3は、 捲いてから 6時間後 (a) と 192時間後 (b) のゲル 上の細胞の様子を撮影したものである。 試験例 3 (膨潤度と伸展率との関係試験) In each of Examples 1 and 2 and Comparative Example 1 (swelled gel), The osmotic pressure was adjusted with an impingement solution and then with an Earl's balanced salt solution. Then, after sterilization by autoclave, the sterilization gel in serum-free medium, placed into the C_〇 2 incubator 37 ° C, allowed to equilibrate swell again. The gel was spread on a cell, and endothelial cells suspended in a medium containing serum were seeded on the gel (4 × 10 4 human vascular endothelial cells / 1.9 lcm 2 gel). Then, the number of extending cells was counted over time. Figure 2 shows the results. As can be seen from FIG. 2, in the PAA hydrogels of Examples 1 and 2, the cells in the extended state grew steadily over time, and the PAA hydrated gel of Example 1 However, in the PMAA hydrated mouth gel of Comparative Example 1, the number of cells decreased over time, and all cells died after 100 hours. In the case of the PAA hydrogel of Example 1, cells were observed for a further 192 hours (8 days). Figure 3 shows images of the cells on the gel at 6 hours (a) and 192 hours (b) after rolling. Test Example 3 (Relationship test between degree of swelling and extension)
実施例 1に記載の方法に準じ、 膨潤度の異なる各種 PAA八ィドロゲルを製造 し、 上記試験例 1と同様にして、 捲いてから 6時間経過後のゲル上の内皮細胞の 形態を調べた。 その結果を図 4に示す。 図 4からわかるように、 膨潤度が 20〜 30の範囲において、 特に高い伸展率が観察された。 実施例 3 {架橋度 2mol%の BC - PAAゲル (DNゲル) の製造 }  According to the method described in Example 1, various PAA hydrogels having different degrees of swelling were produced, and the morphology of endothelial cells on the gel 6 hours after winding was examined in the same manner as in Test Example 1 above. Fig. 4 shows the results. As can be seen from Fig. 4, a particularly high elongation was observed when the degree of swelling was in the range of 20 to 30. Example 3 {Production of BC-PAA gel (DN gel) having a degree of crosslinking of 2 mol%}
〈バクテリアセルロースの製造〉  <Manufacture of bacterial cellulose>
Bacto Pepton 0. 5 %, Yeast Extract 0. 5 %、 リン酸水素ニナトリウム 0. 27%、 クェン酸 0. 115%、.グルコース 2%、 の仕込みで脱イオン水に 溶解し HS培地を得た。 次いで、 この培地を三角フラスコに 15〜30ml 程度 の分量で取分けた後、 フラスコにキャップをし、 そのままオートクレープ滅菌を 120°C、 20分間行った。 その後、 — 80でに保存してある酢酸菌 (ATCC 53582) を取り出して培地に移した。 そして、 28〜30°Cの間で約 2〜 3日間静置をすると、 培地の空気界面側からバクテリアセルロースが生産始め、 更に厚さが約 2匪 になるまで培養を続けた。 得られたバクテリアセルロースに ついて、 1% &〇11水溶液にょる洗浄を1日、 更に純水による溶媒交換を 2日 行った。 尚、 このパクテリアセルロースの膨潤度は 46であった。 Bacto Pepton 0.5%, Yeast Extract 0.5%, disodium hydrogen phosphate 0.27%, citric acid 0.115%, glucose 2% were dissolved in deionized water to obtain HS medium. . Next, the medium was divided into about 15-30 ml portions of an Erlenmeyer flask, the flask was capped, and autoclaved at 120 ° C. for 20 minutes. Thereafter, the acetic acid bacteria (ATCC 53582) stored at -80 were removed and transferred to the medium. Then, when allowed to stand at 28-30 ° C for about 2-3 days, bacterial cellulose starts to be produced from the air interface side of the culture medium. Further culturing was continued until the thickness became about 2 bandits. The obtained bacterial cellulose was washed with a 1% &# 11 aqueous solution for 1 day, and further subjected to solvent exchange with pure water for 2 days. Incidentally, the swelling degree of this pacteria cellulose was 46.
〈ダブルネットワーク化〉  <Double networking>
モノマーである lmol/Lのアクリル酸 (AA) 水溶液 40ml と、 架橋剤である 40 ml of lmol / L acrylic acid (AA) aqueous solution as monomer and crosslinker
0. 2mol/L の N, Ν' —メチレンビスアクリルアミド (ΜΒΑΑ) 水溶液 4ml と、 開始剤である 0. lmol/Lの 2—ォキソダルタル酸水溶液 lmlとを合わせ、 水で調整して 80ml の水溶液を得た。 この水溶液を窒素ガスを用いて脱酸素し た。 つづいて、 バクテリアセルロースをこの脱酸素水溶液に含浸させ、 波長 365nm の UVランプ (22W, 0. 34 A) を用いて紫外線を常温で 6時間 照射して重合させることにより、 架橋度が 2moI% {(MBAA量 0. 2mol/lX 4ml/AA量 lmol/lX 40ml) = 2mol } の B C— AAダブルネットワークゲ ルを作製した。 尚、 ゲルの重合に関しては、 実施例 1と同じ容器及び手順に従つ た。 このダブルネットワークゲルの膨潤度は 17であった。 試験例 4 (ヒト血管内皮細胞の接着性 ·増殖性試験) 4 ml of an aqueous solution of 0.2 mol / L of N, Ν'-methylenebisacrylamide (と) and 1 ml of an aqueous solution of 0.1 mol / L of 2-oxodaltalic acid are combined and adjusted with water to obtain an 80 ml aqueous solution. Obtained. This aqueous solution was deoxygenated using nitrogen gas. Subsequently, bacterial cellulose is impregnated with the deoxygenated aqueous solution, and irradiated with ultraviolet rays at room temperature for 6 hours using a 365-nm wavelength UV lamp (22 W, 0.34 A) to polymerize, so that the degree of crosslinking is 2 mol% { (MBAA amount: 0.2 mol / lX 4 ml / AA amount: lmol / lX 40 ml) = 2 mol} was prepared. The same container and procedure as in Example 1 were used for the polymerization of the gel. The swelling degree of this double network gel was 17. Test Example 4 (Adhesion and proliferation test of human vascular endothelial cells)
実施例 3の DNゲルにつき、 試験例 1及び 2と同様の手順に従い、 4 X 104個のヒト血管内皮細胞をゲル上に播いてから 6時間経過した後の、 ゲル上 の内皮細胞の形態を調べた。 その結果を図 5に示す。 この図より分かるように、 このゲル上で伸展している細胞が 30%も見られた。 更に長時間観察を続けると、 約 9日後にサブコンフルェントに達した。 実施例 5 (AA— AAm AAのトリプル (TN) ゲルの製造) The morphology of endothelial cells on the gel after 6 hours had passed since 4 × 10 4 human vascular endothelial cells were seeded on the gel according to the same procedure as in Test Examples 1 and 2 for the DN gel of Example 3 Was investigated. Figure 5 shows the results. As can be seen from this figure, as much as 30% of the cells were extended on this gel. When observation was continued for a long time, it reached subconfluent after about 9 days. Example 5 (Production of triple (TN) gel of AA—AAm AA)
<シングルネットワーク型ゲルの作製 >  <Preparation of single network type gel>
面積 1 0 OmmX 1 00蘭、 厚さ 2腿 のシリコン板からカッターで外辺長 Area 100 OmmX 100 orchid, thickness 2 thighs perimeter with cutter from silicon plate
80mmX 80顏、 幅 5rai の枠を切りだし、 枠の 1箇所 3匪 の溝を空けた。 この シリコン枠を 2枚の 10 OmmX 100mm、 厚さ 3誦 のガラス板に挟み、 重合容 器を組み立てた。 A frame of 80mmX 80 face, width 5rai was cut out, and a groove of three bandits was made in one place of the frame. The silicon frame was sandwiched between two glass plates of 10 Omm x 100 mm and 3 thicknesses, and a polymerization container was assembled.
モノマーである 2mol/Lのアクリル酸 (AA) 水溶液 40mlと、 架橋剤である 0. lmol/L の N, N' ーメチレンビスアクリルアミド (MBAA) 水溶液 4ml と、 開始剤である 0. lmol/Lの 2 _ォキソダルタル酸水溶液 lmlとを合わせ、 水で調整して 80ml の水溶液を得た。 この水溶液を窒素ガスを用いて脱酸素し た。 つづいて、 この脱酸素水溶液を、 上記重合容器の一方のガラス板に置かれた シリコン板の開口部に流し込み、 シリコン板上に他方のガラス板を重ねて前記開 口部周辺をシールした後、 波長 365nm の UVランプ (22W, 0. 34 A) を用いて紫外線を常温で 6時間照射して重合させることにより、 架橋度が 0. 511101%の八八ゲルを作製した。 40 ml of 2 mol / L acrylic acid (AA) aqueous solution as monomer and cross-linking agent 0.1 mol / L of N, N'-methylenebisacrylamide (MBAA) aqueous solution (4 ml) and 0.1 mol / L of 2 oxodaltalic acid aqueous solution (1 ml) are combined and adjusted with water to obtain 80 ml of the aqueous solution. Obtained. This aqueous solution was deoxygenated using nitrogen gas. Subsequently, the deoxygenated aqueous solution is poured into an opening of a silicon plate placed on one glass plate of the polymerization vessel, and the other glass plate is stacked on the silicon plate to seal around the opening. UV-rays (22 W, 0.34 A) with a wavelength of 365 nm were irradiated with ultraviolet rays at room temperature for 6 hours to polymerize, producing an 88-gel with a cross-linking degree of 0.511101%.
<ダブルネットワーク型ゲルの製造 >  <Manufacture of double network type gel>
モノマ一である 2mol/Lのアクリルアミド (AAm) 水溶液 50mlと、 架橋剤 である 0. lmol/L の Ν, Ν' —メチレンビスアクリルアミド (ΜΒΑΑ) 水溶 液 lml と、 開始剤である 0. lmol/L の 2—ォキソダルタル酸水溶液 lml とを 合わせ、 水で調整して 200ml の水溶液 (浸漬溶液) を得た。 この浸漬溶液を 窒素ガスを用いて脱酸素した。  50 ml of a 2 mol / L acrylamide (AAm) aqueous solution as a monomer, 0.1 ml / L of 架橋, Ν'-methylenebisacrylamide (ΜΒΑΑ) aqueous solution as a cross-linking agent, and 0.1 lmol / L as an initiator L and 1 ml of 2-oxodaltaric acid aqueous solution were combined and adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). This immersion solution was deoxygenated using nitrogen gas.
次いで、 前記浸漬溶液と前記シングルネットワーク型ゲル 4 gを、 そのゲルよ り十分に大きな容量のシ一ル容器に入れた。 この容器を 4 °Cの冷蔵庫に 24時間 設置し、 前記浸漬溶液中のモノマー、 架橋剤および開始剤を前記ゲルに拡散,浸 透させた。 この工程において、 浸漬液の濃度を一様にする目的で時々容器を静か に振盪した。  Next, 4 g of the immersion solution and the single network type gel were placed in a seal container having a sufficiently larger capacity than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the immersion solution were diffused and permeated into the gel. In this process, the container was occasionally gently shaken in order to equalize the concentration of the immersion liquid.
次いで、 前記浸漬液からゲルを取り出し、 適当の大きさに裁断した後、 このゲ ルを幅 100龍 X長さ 10 OmmX厚さ 3丽 の 2枚のガラス板の間に気泡が混入 しないように挟持した。 この 2枚のガラス板の周囲 4辺をシールした後、 波長 365nm の UVランプ (22W, 0. 34 A) を用いて紫外線を常温で 6時間 照射した。 このとき、 前記ゲル中に拡散した AAmモノマーが重合してダブル ネットワーク型ゲルが得られた。 このダブルネットワーク型ゲルの第二の網目構 造の架橋度は、 0. 1モル%であった。  Next, the gel was taken out of the immersion liquid, cut into an appropriate size, and then sandwiched between two glass plates having a width of 100 dragons, a length of 10 Omm, and a thickness of 3 mm so that air bubbles would not be mixed. . After sealing the four sides of the two glass plates, ultraviolet rays were irradiated for 6 hours at room temperature using a 365 nm wavelength UV lamp (22 W, 0.34 A). At this time, the AAm monomer diffused in the gel was polymerized to obtain a double network gel. The degree of crosslinking of the second network structure of this double network gel was 0.1 mol%.
<トリプル型ゲルの製造 >  <Manufacture of triple gel>
モノマーである 2 mol/L のアクリル酸水溶液 2 0 ml と、 架橋剤である 0. lmol/L の N, N' —メチレンビスアクリルアミド (MBAA) 水溶液 4ml と、 開始剤である 0. 1 mo 1/Lの 2 _ォキソダルタル酸水溶液 lmlとを合わせ、 水で調整して 200ml の水溶液 (浸漬溶液) を得た。 この浸漬溶液を窒素ガス を用いて脱酸素した。 20 ml of a 2 mol / L acrylic acid aqueous solution as a monomer and 4 ml of a 0.1 mol / L N, N'-methylenebisacrylamide (MBAA) aqueous solution as a crosslinking agent Was combined with 1 ml of 0.1 mo 1 / L aqueous 2-oxodaltaric acid solution as an initiator, and adjusted with water to obtain 200 ml of an aqueous solution (immersion solution). This immersion solution was deoxygenated using nitrogen gas.
次いで、 前記浸漬溶液と前記ダブルネットワーク型ゲル 4 gを、 そのゲルより 十分に大きな容量のシール容器に入れた。 この容器を 4°Cの冷蔵庫に 24時間設 置し、 前記浸漬溶液中のモノマー、 架橋剤および開始剤を前記ゲルに拡散 ·浸透 させた。 この工程において、 浸漬液の濃度を一様にする目的で時々容器を静かに 振盪した。  Next, the dipping solution and 4 g of the double network type gel were placed in a sealed container having a sufficiently larger capacity than the gel. This container was placed in a refrigerator at 4 ° C. for 24 hours, and the monomer, crosslinking agent and initiator in the immersion solution were diffused and permeated into the gel. In this step, the container was occasionally gently shaken in order to equalize the concentration of the immersion liquid.
次いで、 前記浸漬液からゲルを取り出し、 適当の大きさに裁断した後、 このゲ ルを幅 10 OmmX長さ 100匪 X厚さ 3mm の 2枚のガラス板の間に気泡が混入 しないように挟持した。 この 2枚のガラス板の周囲 4辺をシールした後、 波長 365nm の UVランプ (22W, 0. 34 A) を用いて紫外線を常温で 6時間 照射した。 このとき、 前記ゲル中に拡散した A Aモノマーが重合してトリプル型 ゲルが得られた。 このトリプル型ゲルの第三の網目構造の架橋度は、 1モル%で あった。 実施例 6 (A A— A Am— A Aのトリプル (TN) ゲルの製造)  Next, the gel was taken out from the immersion liquid, cut into an appropriate size, and then sandwiched between two glass plates having a width of 10 Omm, a length of 100, and a thickness of 3 mm to prevent air bubbles from being mixed. After sealing the four sides around the two glass plates, ultraviolet light was irradiated for 6 hours at room temperature using a 365 nm wavelength UV lamp (22 W, 0.34 A). At this time, the AA monomer diffused in the gel was polymerized to obtain a triple gel. The degree of crosslinking of the third network structure of the triple gel was 1 mol%. Example 6 (Preparation of triple (TN) gel of A A—A Am—A A)
トリプル型ゲルの製造工程において、 MB AAを 6ml 甩ぃたことを除き、 実 施例 5と同様の方法で、 標記ゲルを製造した。 このトリプル型ゲルの第三の網目 構造の架橋度は、 1. 5モル%であった。 試験例 5 (ヒト血管内皮細胞の接着性 ·増殖性試験)  The title gel was produced in the same manner as in Example 5, except that 6 ml of MBAA was used in the production process of the triple gel. The degree of crosslinking of the third network structure of this triple gel was 1.5 mol%. Test Example 5 (Human vascular endothelial cell adhesion / proliferation test)
実施例 5及び 6の TNゲルにつき、 試験例 1と同様の手順に従い、 4 X 104個のヒト血管内皮細胞をゲル上に播いてから 6時間経過した後の、 ゲル上 の内皮細胞の形態を調べた。 その結果を図 7に示す。 この図より分かるように、 このゲル上で伸展している細胞が 40%も見られた。 更に、 実施例 6の TNゲル にっき、 試験例 2と同様の手順に従い、 更に長時間観察を続けると、 144時間 後にコンフルェントに達した。 For the TN gels of Examples 5 and 6, following the same procedure as in Test Example 1, the morphology of endothelial cells on the gel 6 hours after 4 × 10 4 human vascular endothelial cells were seeded on the gel Was investigated. Figure 7 shows the results. As can be seen from this figure, as much as 40% of the cells were extended on this gel. Furthermore, when the TN gel of Example 6 was applied and the observation was continued for a long time according to the same procedure as in Test Example 2, the confluent reached 144 hours later.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリアクリル酸ハイド口ゲルからなる、 細胞接着 ·増殖性材料。 1. Cell adhesion and proliferation material consisting of polyacrylic acid hydrated mouth gel.
2. 架橋度が 0. 5〜2. 5mol%の範囲である、 請求の範囲第 1項記載の細胞 接着 ·増殖性材料。  2. The cell-adhesive / proliferative material according to claim 1, wherein the degree of crosslinking is in the range of 0.5 to 2.5 mol%.
3. ポリアクリル酸ハイド口ゲルの膨潤度が 20〜30である、 請求の範囲第 1項又は第 2項記載の細胞接着 ·増殖性材料。  3. The cell adhesion / proliferation material according to claim 1 or 2, wherein the polyacrylic acid hydrate mouth gel has a swelling degree of 20 to 30.
4. 請求の範囲第 1項〜第 3項のいずれか一項記載の細胞接着 ·増殖性材料を用 いた医療具。  4. A medical device using the cell adhesion / proliferative material according to any one of claims 1 to 3.
5. 人工血管又は細胞培養用テンプレートである、 請求の範囲第 4項記載の医療 具。  5. The medical device according to claim 4, which is an artificial blood vessel or a template for cell culture.
PCT/JP2003/007731 2003-06-18 2003-06-18 Material for cell adhesion and proliferation WO2004112860A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003242464A AU2003242464A1 (en) 2003-06-18 2003-06-18 Material for cell adhesion and proliferation
PCT/JP2003/007731 WO2004112860A1 (en) 2003-06-18 2003-06-18 Material for cell adhesion and proliferation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007731 WO2004112860A1 (en) 2003-06-18 2003-06-18 Material for cell adhesion and proliferation

Publications (1)

Publication Number Publication Date
WO2004112860A1 true WO2004112860A1 (en) 2004-12-29

Family

ID=33524146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007731 WO2004112860A1 (en) 2003-06-18 2003-06-18 Material for cell adhesion and proliferation

Country Status (2)

Country Link
AU (1) AU2003242464A1 (en)
WO (1) WO2004112860A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049782A (en) * 2011-08-31 2013-03-14 Mitsubishi Rayon Co Ltd Gel and method of producing the same
WO2015041357A1 (en) * 2013-09-20 2015-03-26 国立大学法人京都大学 Device and method for immunosuppressant-free transplantation, and usage thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017847A1 (en) * 1993-12-30 1995-07-06 Boston Scientific Corporation Bodily sample collection
JPH07308186A (en) * 1994-10-26 1995-11-28 Kanegafuchi Chem Ind Co Ltd Tool for controlling cell sequence and method for controlling cell sequence
US5695778A (en) * 1993-08-21 1997-12-09 Lts Lohmann Therapie-Systeme Gmbh therapeutic system for the treatment of psoriasis
WO1999044643A1 (en) * 1998-03-06 1999-09-10 Biosepra Medical Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
WO1999052356A1 (en) * 1998-04-09 1999-10-21 Charlotte-Mecklenberg Hospital Authority Creation of three-dimensional tissues
JP2000178180A (en) * 1998-12-14 2000-06-27 Univ Kyoto Material for forming neovascular bed for use in making capillary-rich tissue in vivo
EP1145621A1 (en) * 1998-11-06 2001-10-17 M &amp; M Laboratory Co., Ltd. Water-holding carriers for plants and water-holding materials for growing plants
US20010051834A1 (en) * 1999-03-24 2001-12-13 Chondros, Inc. Method for composite cell-based implants

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5695778A (en) * 1993-08-21 1997-12-09 Lts Lohmann Therapie-Systeme Gmbh therapeutic system for the treatment of psoriasis
WO1995017847A1 (en) * 1993-12-30 1995-07-06 Boston Scientific Corporation Bodily sample collection
JPH07308186A (en) * 1994-10-26 1995-11-28 Kanegafuchi Chem Ind Co Ltd Tool for controlling cell sequence and method for controlling cell sequence
WO1999044643A1 (en) * 1998-03-06 1999-09-10 Biosepra Medical Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
WO1999052356A1 (en) * 1998-04-09 1999-10-21 Charlotte-Mecklenberg Hospital Authority Creation of three-dimensional tissues
EP1145621A1 (en) * 1998-11-06 2001-10-17 M &amp; M Laboratory Co., Ltd. Water-holding carriers for plants and water-holding materials for growing plants
JP2000178180A (en) * 1998-12-14 2000-06-27 Univ Kyoto Material for forming neovascular bed for use in making capillary-rich tissue in vivo
US20010051834A1 (en) * 1999-03-24 2001-12-13 Chondros, Inc. Method for composite cell-based implants

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013049782A (en) * 2011-08-31 2013-03-14 Mitsubishi Rayon Co Ltd Gel and method of producing the same
WO2015041357A1 (en) * 2013-09-20 2015-03-26 国立大学法人京都大学 Device and method for immunosuppressant-free transplantation, and usage thereof
CN105764538A (en) * 2013-09-20 2016-07-13 国立大学法人京都大学 Device and method for immunosuppressant-free transplantation, and usage thereof
JPWO2015041357A1 (en) * 2013-09-20 2017-03-02 国立大学法人京都大学 Devices, methods and uses for immunosuppressant-free implantation

Also Published As

Publication number Publication date
AU2003242464A1 (en) 2005-01-04

Similar Documents

Publication Publication Date Title
JP4214051B2 (en) Elastin crosslinked body and method for producing the same
Kundu et al. Silk sericin/polyacrylamide in situ forming hydrogels for dermal reconstruction
CN111662464B (en) Preparation method of chitosan/sodium alginate double-network hydrogel
Chiaoprakobkij et al. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts
EP0793511B1 (en) Biopolymer foams having extracellular matrix particulates
CN112300420B (en) Injectable antibacterial interpenetrating double-network hydrogel and preparation method and application thereof
Stumpf et al. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes
US20020004573A1 (en) Hydrogels
CN110721346B (en) Biological 3D printing ink and preparation method thereof
CN108484936B (en) Hydrogel prepared from graft modified material and preparation method and application thereof
US8394366B2 (en) Thermosensitive polymers for therapeutic use and methods of preparation
JPH02504221A (en) Cell culture methods, culture products and culture products
CN114796620B (en) Interpenetrating network hydrogel used as medical implant material and preparation method and application thereof
CN111166931A (en) Methacrylic acid sericin/chitosan quaternary ammonium salt hydrogel and preparation method and application thereof
CN116083240B (en) Engineered bacteria, preparation method and application thereof
US20230295387A1 (en) Unidirectional nanopore dehydration-based functional polymer membrane or hydrogel membrane, preparation method thereof and device thereof
WO2004112860A1 (en) Material for cell adhesion and proliferation
JP3437430B2 (en) Collagen molded article and method for producing collagen molded article
Sipehia et al. Towards an artificial cornea: surface modifications of optically clear, oxygen permeable soft contact lens materials by ammonia plasma modification technique for the enhanced attachment and growth of corneal epithelial cells
JP2005110537A (en) Cell culture carrier
CN113683787B (en) Hydrogel material with secondary crosslinking characteristic and preparation method and application thereof
CN116589861A (en) Hydrogel and preparation method and application thereof
CN115887772A (en) Gelatin/sodium alginate hydrogel-based 3D printing biological ink and application thereof
KR100783228B1 (en) Preparation of cross-linked poly(vinyl alcohol)-collagen hydrogel scaffold for cell culture
US20040157328A1 (en) Carrier for cell culture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP