WO2005008802A1 - Automatic device for biological exposure to ultraviolet radiation, and exposure method - Google Patents

Automatic device for biological exposure to ultraviolet radiation, and exposure method Download PDF

Info

Publication number
WO2005008802A1
WO2005008802A1 PCT/ES2004/000305 ES2004000305W WO2005008802A1 WO 2005008802 A1 WO2005008802 A1 WO 2005008802A1 ES 2004000305 W ES2004000305 W ES 2004000305W WO 2005008802 A1 WO2005008802 A1 WO 2005008802A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
exposure
cover
biofilm
equipment according
Prior art date
Application number
PCT/ES2004/000305
Other languages
Spanish (es)
French (fr)
Inventor
Rosa De La Torre Noetzel
Jose Ramon De Mingo Martin
Jose Antonio Martinez Porras
Jose Manuel Andujar Marquez
Manuel Joaquin Redondo Gonzalez
Jose Manuel Bravo Caro
Juan Rios Gutierrez
Ricardo Villalba Gonzalez
Gerda Horneck
Kertin Scherer
Petra Rettberg
Original Assignee
Instituto Nacional De Tecnica Aeroespacial 'esteban Terradas'
Universidad De Huelva
DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Nacional De Tecnica Aeroespacial 'esteban Terradas', Universidad De Huelva, DEUTSCHES ZENTRUM FüR LUFT-UND RAUMFAHRT E.V. filed Critical Instituto Nacional De Tecnica Aeroespacial 'esteban Terradas'
Publication of WO2005008802A1 publication Critical patent/WO2005008802A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light

Definitions

  • the present invention relates to a device capable of automatically and controlled exposing a sensor material to a radiation or energy source that is to be quantified. More specifically, the device is specially designed to automatically perform measurements of UV (Ultra Violet) radiation on the biosphere and in particular on living beings, through the use of biosensors.
  • UV Ultra Violet
  • the invention also relates to a method for carrying out exposures to UV radiation on a biosensor.
  • the measurement of UV radiation is based on biological dosimetry techniques in which biological material arranged on a film is used, constituting a biosensor
  • the UV radiation to which the biological material is exposed causes alterations or damage to it, such as the death of bacteria, and that can be quantified after a subsequent development of the biofilm, thus allowing to know the degree of UV radiation to which This biological material has been exposed.
  • German patent DE-4039002 of the DLR holder (Deutsches Anlagens GmbH für Heil- und Kunststofffahrt e.V.) describes a biosensor of these characteristics, as well as a method for the biological detection of UV radiation using said biosensor.
  • UV radiation measurements are made with manual units by manually opening each exposure field in the biofilm, usually 20 circular fields successively, and closing it after the exposure time previously calculated to reach a given UV dose.
  • a stopwatch clock is used to change the field.
  • the calibration is carried out in a similar way, that is to say with a manual unit in which 7 fields are defined, which are exposed to a UV-C light source (range C of the ultraviolet spectrum), by successive opening, according to the times of Calibration previously calculated.
  • the invention provides an automatic equipment for exposing a sensor material to a radiation or energy source that is to be quantified.
  • the invention allows the automatic exposure of a biological material to UV radiation, in order to replace existing manual units so far, and enable the study of trends in UV climatology or the impact of UV radiation on the Biosphere (people, plants, animals, ecosystems, etc.).
  • the automatic biological exposure equipment comprises a cylindrical housing that houses a radiation sensitive sensor element that is intended to be quantified.
  • said sensor element consists of a circular biosensor or biofilm which is covered by an interchangeable top cover, as well as means for actuating said cover and programmable electronic means, so that based on a set time a window arranged in said lid, exposes certain areas of the biofilm sequentially to UV radiation.
  • the invention also allows the exposure measurement process and the calibration process to be carried out with the same equipment, which until now was impossible to carry out with a single unit. With all this, some of the most relevant advantages of the invention are the following:
  • Automatic exposure equipment automatically records effective biological UV radiation with temporal resolution.
  • Conventional measurement techniques with spectrometers and optoelectronic radiometers allow to obtain a temporary resolution in the UV measurement, but not a direct record of biological effectiveness, while the biological UV dosimeters (biosensors) provide an effective biological dose, but without temporal resolution .
  • Measuring manually, as is being carried out to obtain daily profiles of effective biological UV radiation is not applicable for routine measurements, nor for measurements in remote areas that may be of interest ecological.
  • the present invention therefore represents a great advance in the automation of the measurement system, which allows to achieve greater precision in obtaining UV irradiance data, independently, in places inaccessible to other types of UV instrumentation, without needing to connect to the mains, or to a computer, that is, an improvement in the UV exposure technique for biosensors is achieved.
  • the automatic exposure equipment can be used to quantify any other type of radiation, energy or light source, for which only the biofilm will have to be replaced by another type of radiation-sensitive material or energy to be measured, and program the equipment appropriately for that particular type of measurement.
  • a method for the exposure of a sensor material to a radiation is to provide a circularly shaped sensor element housed in a circular disk drive where it remains hidden from said radiation except for a first localized exposure zone thereof, which it remains exposed to said radiation for a predetermined time, and to relatively move said sensor element and said disk drive so that said first exposure zone is hidden and a second exposure zone is opened, this sequence being repeated a certain number of times.
  • This process can be repeated in a similar way, in a different and concentric area of the sensor element in order to obtain more radiation exposures, for example to obtain calibration measurements. To do this, the area of the previously used sensor element is hidden from radiation.
  • Figure 1 shows a longitudinal section of the equipment object of the invention, in which the mounted exposure cover has been shown. In the lower portion of the figure a top plan view of the equipment is shown.
  • Figure 2 shows an enlarged detail of the upper part of the exhibition equipment.
  • Figure 3 shows a view in elevation and section of the exposure cover, and a lower view of the bottom of said cover.
  • Figure 4 shows a view in elevation and section of the calibration cover, and a bottom plan view of said cover.
  • Figure 5.- shows a schematic diagram of the functions performed by the electronic means available to the equipment object of the invention.
  • Figure 6 shows a perspective view of the equipment object of the invention.
  • Figure 7.- shows in perspective of the main parts of which the equipment object of the invention is composed.
  • Figure 8.- shows a perspective view of the plate that serves as support for the motor and cogwheels available to the team.
  • Figure 9 shows a representation of the exposure fields and calibration fields that are created on the biofilm after exposure to UV radiation.
  • the automatic exposure equipment (1) comprises a cylindrical housing, which is divided into an upper housing
  • the upper housing (2) is fixed with detachable character on the intermediate cover (6) through a perimeter threading (11), with the assistance of an O-ring seal (13) that guarantees the tightness between both bodies.
  • the upper housing (2) and the intermediate cover (6) rest on the upper edge of the lower housing
  • the tightness of the equipment (1) is essential since it is installed outdoors, so it is necessary to adequately protect the mechanical and electronic components inside, as well as the biosensor.
  • the upper and lower housing (2), (3) are fixed by crabs (8) (fixing elements known in the state of the art), which retain both bodies by pressing them together, and which in turn allow their release by a simple manual action, in a manner already known in the state of the art.
  • the lower housing (3) inferiorly forms a base (9) that determines a flat surface by which the equipment (1) is installed outdoors on a suitable surface.
  • Conventional spirit levels (32) allow its installation in perfect horizontal position, for which there are also adjustable screws (7) by which the equipment (1) is fixed and its horizontal position is leveled conveniently. As can be seen in Figure 1, the screws (7) are arranged according to the vertices of an equilateral triangle to allow adequate leveling of the equipment (1).
  • the upper chamber (4) is intended to accommodate the electronic board (34) as seen in Figure 7, as well as a stepper motor (15) and the mechanical means that are part of the equipment.
  • the lower chamber (5) houses the batteries (not shown), there is logically the necessary wiring to power the motor and board housed in the upper chamber
  • the purpose of this structure is that the electronic board (34), the stepper motor (15), the sprockets (17) and (19), and the biosensor, remain protected at all times inside the upper housing (2 ), such as during maintenance in which the batteries have to be replaced once their energy has been used up.
  • the operator only has to release the crabs (8), remove the upper housing (2) and access the lower chamber (5) where the batteries are located, without at any time any unwanted element, such as it can be water, dust etc. can access the upper chamber (4).
  • the stepper motor (15) is mounted, which drives a small cogwheel (19) through its axle (19) and this in turn moves a larger cogwheel (17) to the one that is engaged, and which can rotate with respect to the support plate (16) through its axis (35) and the corresponding bearings (20).
  • the major cogwheel is mounted, which drives a small cogwheel (19) through its axle (19) and this in turn moves a larger cogwheel (17) to the one that is engaged, and which can rotate with respect to the support plate (16) through its axis (35) and the corresponding bearings (20).
  • the upper part of the upper housing (2) is permanently closed by a base cover (29) also circular, which remains motionless and is fixed on the perimeter edge of the housing (2) and also touches the perimeter edge of the support plate (16) contributing to its stability.
  • the base cover (29) has in its center a hole (44) through which a neck (36) passes over which the aforementioned studs (24) are arranged.
  • the upper housing (2) is closed by the lid exposure (28), which is replaced by the calibration cap (21) during the calibration process. Both covers (28) form a first perimeter skirt (37), and similarly the calibration cover (21) forms a second perimeter skirt (38), so that both covers are superimposed on the outer face of the upper housing
  • the exposure cover (28) also has clamping screws (23), whose usefulness is to immobilize said cover during transport of the equipment, but which allow the cover to rotate freely during normal use.
  • the exposure cover (28) has a first set of holes (45) for the insertion of the lugs (24).
  • the calibration cover (21) also has in its center a second group of holes (46) distributed circumferentially, intended to receive the lugs (24).
  • the cover (28), as can be seen especially in Figure 3, has a circular window (27) that is located off-center and close to the edge of said cover (28), which has the function of allowing UV radiation to pass through. that it reaches a localized area of the biofilm, said zone determining a radiation exposure field as will be described later.
  • the circular window (27) is covered by a quartz crystal (26) of the neutral Hearasil type to isolate the Biofilm from the outside, mainly from moisture but without altering the passage of UV radiation.
  • the calibration cover (21) has an inverted "C” shaped window (21), that is to say semi-circumferential, designed to allow exposure of localized areas of the biofilm to UV radiation during the calibration process. , as will be explained later.
  • This "C” shaped window (21) is closer to the center of the biofilm than the circular window (27) of the exposure cover (28), so that in the calibration process a zone is exposed to UV radiation of the biofilm other than where the exposure fields are created.
  • the exposure cover (28) has on its inner face a first annular surface (46) and a second annular surface (47), both concentric and covered by a black felt.
  • the exposure cover (21) has on its inner face a third annular surface (48) and a fourth annular surface (49), also concentric and covered by a black felt.
  • the base cover (29) has on its inner face a fifth annular surface (31) and a sixth annular surface (39) concentric and covered by a black felt, so that these last two surfaces (31) and (39) face or overlap with respect to the above-mentioned surfaces of the covers (28) and (21) when mounted on the equipment (1) during use as can be seen in Figure 2.
  • the biofilm is housed in the interstitium between the annular surfaces (31) and (39) of the base cap (29), and the annular surfaces (46), (47) of the exposure cover (28), or the surfaces (46), (49) of the calibration cover (21). In this way it is possible to reduce the friction surface with the biofilm and at the same time maintain its stability during the rotation of the exposure cover (28) or the calibration one (21).
  • the inner faces of the covers (28), (21) and (29) are also coated with black felt that prevents the spread of radiation.
  • the biosensor or biofilm (not shown) consists of a transparent disk on which the biological material is deposited uniformly.
  • the biofilm is inserted into the disk drive (30) formed by the exposure cover (28) or the calibration cover (21) and the base cover (29), and where it remains static.
  • AD ⁇ (and skin erythema).
  • the equipment allows measurements to be made using two different models, temporary exposure and UV radiation exposure.
  • exposure mode temporary the user sets the time intervals during the successive exposures, for which use is made of a real time clock (40), and the data obtained is the dose of radiation UN accumulated in the biological material in the preset time.
  • the real time clock allows the possibility of programming exhibitions even several days in advance.
  • the user sets a radiation level UN, and the data obtained is the time it has taken to reach the radiation level that was set.
  • a pyranometer can optionally be used for the correlation of data, consisting of equipment outside the exposure equipment, and by means of which the equipment calculates the accumulated radiation and compares it with the limit set by the user.
  • radioactive transfer models are used, such as (Hermán et.al. Zeng et.al. 1998), also taking into account the maximum UV saturation level of the biofilm (2 MED) and different variables in situ, such as the concentration of total ozone, the level of aerosols, height above sea level, latitude and longitude etc. These models also serve to obtain the exposure times necessary to reach each UV dose, which will be introduced during the previous programming of the automatic unit before the exposure of the biofilm. Finally, the image analysis system used in the laboratory for the interpretation of the measurements obtained from UN exposure, allows to obtain the real distribution of accumulated biological UV doses during the exhibition campaign, providing the experimental data.
  • each 5-second interval converts the signal provided by the pyranometer and calculates the accumulated UV dose per minute and with that of the entire exposure.
  • the equipment for calculating radiation UN operates:
  • N is the number of readings or measurements and Je the time elapsed between them.
  • the UV value is always given as an integer value without decimal part.
  • the microcontroller takes samples every 5 seconds, which means 12 readings per minute of the voltage signal. Thanks to these values, we can find the average value of the signal it has received in that minute.
  • the cumulative dose in one minute will be added to the total cumulative dose in the field.
  • the team compares the accumulated dose with the data stored as ONE limit (UV ”) for the UV exposure model, or to save it at the end of the exposure, for the temporary.
  • UV ONE limit
  • the exposure cover (28) is used so that the entire surface of the biofilm is hidden from the UN radiation except the circular area that in a given period of time is just below the circular window (27 ) and where a field of exposure to UV radiation is therefore established.
  • the exposure cover (28) moves successively to certain stable positions, to expose new areas of the biofilm to radiation thus defining successive exposure fields.
  • the exposure time of each field is controlled by electronic means as programmed by an operator.
  • the exposure time depends on the annual UV climatology existing at the time of measurement and can vary from 20 minutes per exposure field up to 2 hours, with the maximum total exposure time for the biofilm (biosensor) used in this preferred embodiment of the invention, up to one week (with neutral filters).
  • the number of exposure fields are determined by the operator through the electronic means of control of the equipment.
  • the number of fields that are exposed to solar radiation is 21, of which one is canceled due to overexposure, since that dead or resting field is from which the displacements of the exposure cover (28).
  • the exposure cover (28) is manually removed and replaced by the calibration cover (21), for which you just have to place this cover (21) so that the lugs (24) are inserted in the group of holes (46) so that it It can rotate by the action of the motor (15) and the sprockets (17) and (19).
  • the calibration cover (21) is similar to the exposure cover (28), except that it has the "C" shaped window (25) for the exposure of the calibration fields.
  • the process of taking measurements for calibration the measurement is performed by accumulation of radiation.
  • the biofilm area where the exposure fields are to be created is hidden under the calibration cover (21), under the area not affected by the "C" window (25).
  • the calibration cover (21) rotates a certain angle by opening a first exposure field during a given exposure time. After this time, the cover (21) rotates again by opening a second exposure field, and at the same time allowing UN-C radiation to continue to accumulate in the first field.
  • the process is repeated with the following fields, until seven calibration fields are completed. With successive turns of the lid (21), the first field that was exposed is closed and so on until all fields are closed.
  • the twenty-one circumferentially distributed exposure fields (50) have been represented, and the seven calibration fields (51) which, as can be seen, have the shape of a circular crown segment.
  • the biofilm is extracted from the automatic equipment to start its processing in the laboratory, where an incubation is carried out (with culture medium so that I know develop Bacillus subtilis spores), a stain, fixation and subsequent washing of the biofilm, to finally perform the evacuation of data with an analysis system in a computer.
  • the electronic board (34) is based on a microcontroller together with the necessary peripheral devices, such as memories, communication ports, real time unit etc. Through a connection (33) communication is established between the electronic board (34) with an external computer equipment, such as a personal computer.
  • a BNC connector can also be provided for connection with a UVB pyranometer.
  • Figure 5 schematically represents the functions performed by the programmable electronic means of the exposure equipment, that is, the electronic board (34).
  • a real time unit (40) provides the current date and time to the microcontroller (41) and based on which the exact moment at which a turn of the exposure cover (28) or of the cover is to be determined calibration (21).
  • the data acquisition system UN (42) consists of a pyranometer or radiation biometer UN already known in the state of the art, which also provides its information to the microcontroller (41).
  • the UVB-1 pyranometer measures UV-B radiation (range B of the ultraviolet spectrum) according to the sensitivity of skin erythema, that is, the total irradiance of UN-B, received through global radiation.
  • a computer (43) is available, through which the mode of operation of the exposure equipment (1) is programmed based on commands. .
  • the temporary exposure model, the UV exposure model, the calibration mode, selection of the number of fields to be used in the exposure, exposure time of each field, day and time in which it is selected is selected You must start the exposure, you get data on the current state of the equipment etc.
  • the equipment can incorporate a thermal control device that acts in cases of extreme temperatures to guarantee the stability of the data and the correct functioning of the equipment.
  • This thermal control device can consist of any conventional system.
  • a simple but effective design (not shown in the figures) is preferably used, consisting of a temperature sensor and a set of metallic power resistors that dissipate a large amount of heat (5.8 ° C / W). These resistors heat a circular plate of aluminum (2mm thick x 73mm radius) that greatly reduces energy consumption, one of the objectives pursued, since the power will be carried out by battery almost always.
  • the material used to manufacture the structure of the unit is a stainless steel of the F-300 series, designated "stainless steel 13 Cr, type F-312, which is non-toxic and resistant to extreme weather conditions. Heat absorption has covered the equipment by a layer of white plastic paint to maximize sun reflection.

Abstract

The invention relates to a device which is designed to take automatic UV (ultraviolet) radiation measurements on the biosphere, using biosensors, whereby the automation of same offers numerous advantages over manual measurement methods. The automatic, biological exposure device comprises a cylindrical casing housing a circular biofilm or biosensor which is covered with an upper cover, means for actuating said cover and programmable electronic means. According to the invention, a window is provided in the aforementioned cover in order to expose determined areas of the biofilm sequentially to UV radiation, based on pre-established periods of time. The invention also relates to a method of exposing a biosensor to UV radiation. The invention is particularly suitable for use in the field relating to UV measurement instrumentation.

Description

EQUIPO AUTOMÁTICO DE EXPOSICIÓN BIOLÓGICA A LA RADIACIÓN ULTRAVIOLETA Y MÉTODO PARA REALIZAR DICHA EXPOSICIÓN AUTOMATIC EQUIPMENT OF BIOLOGICAL EXPOSURE TO UV RADIATION AND METHOD FOR PERFORMING SUCH EXPOSURE
D E S C R I P C I Ó ND E S C R I P C I Ó N
OBJETO DE LA INVENCIÓNOBJECT OF THE INVENTION
La presente invención se refiere a un dispositivo capacitado para exponer de forma automática y controlada, un material sensor a una radiación o fuente de energía que se desea cuantificar. De forma más concreta, el dispositivo está especialmente destinado a realizar de forma automática mediciones de radiación UV (Ultra Violeta) sobre la biosfera y en particular sobre seres vivos, a través del empleo de biosensores. La automatización de estos ensayos aporta numerosas ventajas respecto a los métodos manuales de medición.The present invention relates to a device capable of automatically and controlled exposing a sensor material to a radiation or energy source that is to be quantified. More specifically, the device is specially designed to automatically perform measurements of UV (Ultra Violet) radiation on the biosphere and in particular on living beings, through the use of biosensors. The automation of these tests provides numerous advantages over manual measurement methods.
La invención también se refiere a un método para llevar a cabo exposiciones a la radiación UV sobre un biosensor.The invention also relates to a method for carrying out exposures to UV radiation on a biosensor.
ANTECEDENTES DE LA INVENCIÓN El notable incremento de la radiación ultravioleta UV emitida por el sol que alcanza la superficie terrestre, implica una creciente necesidad de disponer la instrumentación necesaria para llevar a cabo una efectiva medición de este tipo de radiación para determinar sus efectos a nivel celular y molecular en los seres vivos y en la biosfera.BACKGROUND OF THE INVENTION The notable increase in UV radiation emitted by the sun that reaches the earth's surface implies a growing need to have the necessary instrumentation to carry out an effective measurement of this type of radiation to determine its effects at the cellular level. and molecular in living beings and in the biosphere.
La medición de radiación UV se basa en técnicas de dosimetría biológica en las que se emplea material biológico dispuesto sobre un film, constituyendo un biosensor. La radiación UV a la que está expuesta el material biológico provoca alteraciones o daños sobre el mismo, como puede ser la muerte de las bacterias, y que puede ser cuantificado tras un revelado posterior del biofilm, permitiendo conocer así el grado de radiación UV al que ha sido expuesto dicho material biológico.The measurement of UV radiation is based on biological dosimetry techniques in which biological material arranged on a film is used, constituting a biosensor The UV radiation to which the biological material is exposed causes alterations or damage to it, such as the death of bacteria, and that can be quantified after a subsequent development of the biofilm, thus allowing to know the degree of UV radiation to which This biological material has been exposed.
A este respecto, la patente alemana DE-4039002 del titular DLR (Deutsches Forschungsanstalt für Luft- und Raumfahrt e.V.) describe un biosensor de estas características, así como un método para la detección biológica de radiación UV utilizando dicho biosensor.In this regard, the German patent DE-4039002 of the DLR holder (Deutsches Forschungsanstalt für Luft- und Raumfahrt e.V.) describes a biosensor of these characteristics, as well as a method for the biological detection of UV radiation using said biosensor.
Convencionalmente las mediciones de radiación UV se realizan con unidades manuales mediante apertura manual de cada campo de exposición en el biofilm, normalmente 20 campos circulares sucesivamente, y cerrándolo después del tiempo de exposición previamente calculado para alcanzar una dosis UV determinada. Para el cambio de campo se utiliza un reloj cronómetro. La calibración se realiza de forma similar, es decir con una unidad manual en la que están definidos 7 campos, que se van exponiendo a una fuente de luz UV-C (rango C del espectro ultravioleta) , por apertura sucesiva, según los tiempos de calibración previamente calculados.Conventionally, UV radiation measurements are made with manual units by manually opening each exposure field in the biofilm, usually 20 circular fields successively, and closing it after the exposure time previously calculated to reach a given UV dose. A stopwatch clock is used to change the field. The calibration is carried out in a similar way, that is to say with a manual unit in which 7 fields are defined, which are exposed to a UV-C light source (range C of the ultraviolet spectrum), by successive opening, according to the times of Calibration previously calculated.
La problemática que plantean estos equipos es la plena dedicación de una persona durante el proceso de medida, a veces durante un período temporal prolongado (8 - 9 horas) , y en caso de realizar una campaña en varias estaciones de medida simultáneamente el personal necesario generalmente no está disponible. La precisión de las medidas no es suficientemente satisfactoria. DESCRIPCIÓN DE LA INVENCIÓNThe problem posed by these equipment is the full dedication of a person during the measurement process, sometimes for a prolonged period of time (8 - 9 hours), and in the case of campaigning at several measurement stations simultaneously the necessary personnel generally not available. The accuracy of the measurements is not satisfactory enough. DESCRIPTION OF THE INVENTION
La invención proporciona un equipo automático de exposición de un material sensor a una radiación o fuente de energía que se desea cuantificar. En particular la invención permite la exposición automática de una material biológico a la radiación UV, con objeto de sustituir a las unidades manuales existentes hasta ahora, y posibilitar el estudio de tendencias en la climatología UV o en el impacto de la radiación UV sobre la Biosfera (personas, plantas, animales, ecosistemas, etc.).The invention provides an automatic equipment for exposing a sensor material to a radiation or energy source that is to be quantified. In particular, the invention allows the automatic exposure of a biological material to UV radiation, in order to replace existing manual units so far, and enable the study of trends in UV climatology or the impact of UV radiation on the Biosphere (people, plants, animals, ecosystems, etc.).
El equipo automático de exposición biológica comprende una carcasa cilindrica que aloja a un elemento sensor sensible a la radiación que se pretende cuantificar. En concreto, dicho elemento sensor consiste en un biosensor o biofilm circular el cual queda cubierto por una tapa superior intercambiable, así como medios de accionamiento de dicha tapa y medios electrónicos programables, de modo que en base a unos tiempos preestablecidos una ventana dispuesta en dicha tapa, expone de forma secuencial a la radiación UV determinadas zonas del biofilm. La invención permite además realizar con el mismo equipo el proceso de medida por exposición y el proceso de calibración, lo cual hasta ahora era imposible llevar a cabo con una sola unidad. Con todo ello, algunas de las ventajas más relevantes de la invención son las siguientes:The automatic biological exposure equipment comprises a cylindrical housing that houses a radiation sensitive sensor element that is intended to be quantified. Specifically, said sensor element consists of a circular biosensor or biofilm which is covered by an interchangeable top cover, as well as means for actuating said cover and programmable electronic means, so that based on a set time a window arranged in said lid, exposes certain areas of the biofilm sequentially to UV radiation. The invention also allows the exposure measurement process and the calibration process to be carried out with the same equipment, which until now was impossible to carry out with a single unit. With all this, some of the most relevant advantages of the invention are the following:
Registro de radiación UV de forma automática y continuada en zonas de estudio interesantes y de difícil acceso y climatología (zonas montañosas) , debido al reducido volumen y peso de la unidad que permite su fácil portabi1idad.Registration of UV radiation automatically and continuously in interesting and difficult-to-reach study areas and climatology (mountainous areas), due to the reduced volume and weight of the unit that allows easy portability.
Correlación de tendencias estacionales climatológicas UV con el proceso de disminución del ozono estratosférico con el uso simultáneo de varios equipos automáticos de exposición en varias zonas de medida.Correlation of seasonal UV weather trends with the stratospheric ozone depletion process with the simultaneous use of several automatic exposure equipment in several measurement areas.
Correlación con datos UV (MED, irradiancias UV) registrados por biómetros conectados al equipo.Correlation with UV data (MED, UV irradiance) recorded by biometers connected to the equipment.
El equipo automático de exposición registra automáticamente la radiación UV biológica efectiva con resolución temporal . Hasta ahora no existe un instrumento que mida directamente la efectividad biológica de la radiación UV y que registre con resolución temporal la intensidad de la radiación UV en un período temporal determinado (horas, días) . Las técnicas de medida convencionales con espectrorradiómetros y con radiómetros optoelectrónicos permiten obtener una resolución temporal en la medida UV, pero no un registro directo de la efectividad biológica, mientras que los dosímetros biológicos UV (biosensores) aportan una dosis efectiva biológica, pero sin resolución temporal. La realización de medidas de forma manual, como se viene llevando a cabo para la obtención de perfiles diarios de radiación UV biológica efectiva (p.ej. Biofilm), no es aplicable para medidas rutinarias, ni para medidas en zonas remotas que puedan tener interés ecológico.Automatic exposure equipment automatically records effective biological UV radiation with temporal resolution. Until now there is no instrument that directly measures the biological effectiveness of UV radiation and that records the intensity of UV radiation in a specific time period (hours, days) with a temporary resolution. Conventional measurement techniques with spectrometers and optoelectronic radiometers allow to obtain a temporary resolution in the UV measurement, but not a direct record of biological effectiveness, while the biological UV dosimeters (biosensors) provide an effective biological dose, but without temporal resolution . Measuring manually, as is being carried out to obtain daily profiles of effective biological UV radiation (eg Biofilm), is not applicable for routine measurements, nor for measurements in remote areas that may be of interest ecological.
La presente invención supone por lo tanto un gran avance en la automatización del sistema de medida, lo que permite alcanzar una mayor precisión en la obtención de datos de irradiancia UV, de forma independiente, en lugares inaccesibles para otro tipo de instrumentación UV, sin necesitar la conexión a la red eléctrica, ni a un ordenador, es decir, se consigue una mejora en la técnica de exposición UV para biosensores. El equipo automático de exposición, puede ser utilizado para cuantificar cualquier otro tipo de radiación, energía o fuente de luz, para lo cual tan solo habrá que reemplazar el biofilm, por otro tipo de material sensible a la radiación o energía que se desea medir, y programar el equipo de forma adecuada para ese tipo particular de mediciones.The present invention therefore represents a great advance in the automation of the measurement system, which allows to achieve greater precision in obtaining UV irradiance data, independently, in places inaccessible to other types of UV instrumentation, without needing to connect to the mains, or to a computer, that is, an improvement in the UV exposure technique for biosensors is achieved. The automatic exposure equipment can be used to quantify any other type of radiation, energy or light source, for which only the biofilm will have to be replaced by another type of radiation-sensitive material or energy to be measured, and program the equipment appropriately for that particular type of measurement.
Un método para la exposición de un material sensor a una radiación según la invención, consiste en disponer un elemento sensor de forma circular alojado en una disquetera circular donde permanece oculto de dicha radiación a excepción de una primera zona de exposición localizada del mismo, la cual permanece expuesta a dicha radiación durante un tiempo preestablecido, y desplazar relativamente dicho elemento sensor y dicha disquetera de modo que se oculta dicha primera zona de exposición y se abre una segunda zona de exposición, repitiéndose esta secuencia un número determinado de veces . Este proceso puede repetirse de forma similar, en una zona distinta y concéntrica del elemento sensor con objeto de obtener más exposiciones a la radiación, por ejemplo para obtener medidas de calibración. Para ello, se oculta a la radiación la zona del elemento sensor utilizada previamente.A method for the exposure of a sensor material to a radiation according to the invention is to provide a circularly shaped sensor element housed in a circular disk drive where it remains hidden from said radiation except for a first localized exposure zone thereof, which it remains exposed to said radiation for a predetermined time, and to relatively move said sensor element and said disk drive so that said first exposure zone is hidden and a second exposure zone is opened, this sequence being repeated a certain number of times. This process can be repeated in a similar way, in a different and concentric area of the sensor element in order to obtain more radiation exposures, for example to obtain calibration measurements. To do this, the area of the previously used sensor element is hidden from radiation.
DESCRIPCIÓN DE LOS DIBUJOSDESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, in accordance with a preferred example of practical realization thereof, is attached as an integral part of said description, a set of drawings in which, for illustrative and non-limiting purposes, the following has been represented:
La figura 1.- muestra una sección longitudinal del equipo objeto de la invención, en el que se ha representado la tapa de exposición montada. En la porción inferior de la figura se muestra una vista en planta superior del equipo.Figure 1 shows a longitudinal section of the equipment object of the invention, in which the mounted exposure cover has been shown. In the lower portion of the figure a top plan view of the equipment is shown.
La figura 2.- muestra un detalle ampliado de la parte superior del equipo de exposición.Figure 2 shows an enlarged detail of the upper part of the exhibition equipment.
La figura 3. - muestra superiormente una vista en alzado y sección de la tapa de exposición, e inferior ente una vista en planta inferior de dicha tapa. La figura 4.- muestra superiormente una vista en alzado y sección de la tapa de calibración, e inferiormente una vista en planta inferior de dicha tapa.Figure 3 shows a view in elevation and section of the exposure cover, and a lower view of the bottom of said cover. Figure 4 shows a view in elevation and section of the calibration cover, and a bottom plan view of said cover.
La figura 5.- muestra un diagrama esquemático las funciones que llevan a cabo los medios electrónicos con los que cuenta el equipo objeto de la invención.Figure 5.- shows a schematic diagram of the functions performed by the electronic means available to the equipment object of the invention.
La figura 6.- muestra una vista en perspectiva del equipo objeto de la invención.Figure 6 shows a perspective view of the equipment object of the invention.
La figura 7.- muestra en perspectiva de las principales partes de las que se compone el equipo objeto de la invención. La figura 8.- muestra una vista en perspectiva del plato que sirve de soporte para el motor y ruedas dentadas de las que dispone el equipo.Figure 7.- shows in perspective of the main parts of which the equipment object of the invention is composed. Figure 8.- shows a perspective view of the plate that serves as support for the motor and cogwheels available to the team.
La figura 9.- muestra una representación de los campos de exposición y los campos de calibración que se crean sobre el biofilm tras la exposición a la radiación UV.Figure 9 shows a representation of the exposure fields and calibration fields that are created on the biofilm after exposure to UV radiation.
REALIZACIÓN PREFERENTE DE LA INVENCIÓNPREFERRED EMBODIMENT OF THE INVENTION
A la vista de las figuras puede observarse como el equipo de exposición automática (1) comprende una carcasa cilindrica, que se divide en una carcasa superiorIn view of the figures it can be seen how the automatic exposure equipment (1) comprises a cylindrical housing, which is divided into an upper housing
(2) y una carcasa inferior (3) , las cuales son acoplables entre sí a través de una tapa intermedia (6) alojada en el interior de dicho equipo (1) , de modo que esta tapa intermedia (6) determina una cámara superior (4) y una cámara inferior (5) . La carcasa superior (2) está fijada con carácter desmontable sobre la tapa intermedia (6) a través de un roscado perimetral (11) , con la asistencia de una junta de estanqueidad tórica (13) que garantiza la estanqueidad entre ambos cuerpos .(2) and a lower housing (3), which are attachable to each other through an intermediate cover (6) housed inside said equipment (1), so that this intermediate cover (6) determines an upper chamber (4) and a lower chamber (5). The upper housing (2) is fixed with detachable character on the intermediate cover (6) through a perimeter threading (11), with the assistance of an O-ring seal (13) that guarantees the tightness between both bodies.
La carcasa superior (2) y la tapa intermedia (6) reposan sobre el borde superior de la carcasa inferiorThe upper housing (2) and the intermediate cover (6) rest on the upper edge of the lower housing
(3) , disponiéndose de una segunda junta tórica (14) que asegura la estanqueidad en esa unión. Una falda perimetral (12) de la tapa intermedia (6) sobresale de la carcasa (3) para cubrir la zona de unión y contribuir así a la estanqueidad de la misma. La estanqueidad del equipo (1) es fundamental dado que el mismo se instala a la intemperie, por lo que es necesario proteger adecuadamente los componentes mecánicos y electrónicos que aloja en su interior, así como el biosensor. La carcasa superior e inferior (2) , (3) , se fijan mediante unos cangrejos (8) (elementos de fijación conocidos en el estado de la técnica) , que retienen ambos cuerpos presionándolos entre sí, y que a su vez permiten su liberación mediante una simple acción manual, de forma ya conocida en el estado de la técnica.(3), having a second O-ring (14) that ensures the tightness in that joint. A perimeter skirt (12) of the intermediate cover (6) protrudes from the housing (3) to cover the joint area and thus contribute to its sealing. The tightness of the equipment (1) is essential since it is installed outdoors, so it is necessary to adequately protect the mechanical and electronic components inside, as well as the biosensor. The upper and lower housing (2), (3), are fixed by crabs (8) (fixing elements known in the state of the art), which retain both bodies by pressing them together, and which in turn allow their release by a simple manual action, in a manner already known in the state of the art.
La carcasa inferior (3) forma inferiormente una base (9) que determina una superficie plana mediante la cual el equipo (1) se instala a la intemperie sobre una superficie adecuada. Unos convencionales niveles de burbuja (32) permiten su instalación en perfecta posición horizontal, para lo cual se cuenta además con unos tornillos regulables (7) mediante los que se fija el equipo (1) y se nivela su posición horizontal convenientemente. Como se puede apreciar en la figura 1, los tornillos (7) se disponen según los vértices de un triángulo equilátero para permitir una adecuada nivelación del equipo (1) .The lower housing (3) inferiorly forms a base (9) that determines a flat surface by which the equipment (1) is installed outdoors on a suitable surface. Conventional spirit levels (32) allow its installation in perfect horizontal position, for which there are also adjustable screws (7) by which the equipment (1) is fixed and its horizontal position is leveled conveniently. As can be seen in Figure 1, the screws (7) are arranged according to the vertices of an equilateral triangle to allow adequate leveling of the equipment (1).
La cámara superior (4) está destinada a alojar a la placa electrónica (34) como se aprecia en la figura 7, así como a un motor paso a paso (15) y los medios mecánicos que forman parte del equipo. Por su parte la cámara inferior (5) aloja las baterías (no representadas) , existiendo lógicamente el cableado necesario para alimentar al motor y placa alojados en la cámara superiorThe upper chamber (4) is intended to accommodate the electronic board (34) as seen in Figure 7, as well as a stepper motor (15) and the mechanical means that are part of the equipment. For its part, the lower chamber (5) houses the batteries (not shown), there is logically the necessary wiring to power the motor and board housed in the upper chamber
(4) a través de orificios existentes en la tapa intermedia (6) .(4) through holes in the intermediate cover (6).
Esta estructura tiene por finalidad el que la placa electrónica (34) , el motor paso a paso (15) , las ruedas dentadas (17) y (19) , y el biosensor, permanezcan en todo momento protegidos dentro de la carcasa superior (2) , como por ejemplo durante las tareas de mantenimiento en las que hay que reemplazar las baterías una vez se ha agotado la energía de las mismas. Para esta tarea, el operario tan solo tiene que liberar los cangrejos (8) , retirar la carcasa superior (2) y acceder a la cámara inferior (5) donde se encuentran las baterías, sin que en ningún momento algún elemento no deseado, como puede ser agua, polvo etc. pueda acceder a la cámara superior (4) .The purpose of this structure is that the electronic board (34), the stepper motor (15), the sprockets (17) and (19), and the biosensor, remain protected at all times inside the upper housing (2 ), such as during maintenance in which the batteries have to be replaced once their energy has been used up. For this task, the operator only has to release the crabs (8), remove the upper housing (2) and access the lower chamber (5) where the batteries are located, without at any time any unwanted element, such as it can be water, dust etc. can access the upper chamber (4).
En la parte superior de la carcasa (2) se dispone de un plato soporte (16) el cual se apoya por su perímetro en el interior de la carcasa superior (2) donde está fijado de forma estable. En este plato soporte (16) está montado el motor paso a paso (15) , el cual a través de su eje (18) acciona una rueda dentada pequeña (19) y ésta a su vez mueve una rueda dentada mayor (17) a la que se encuentra engranada, y el cual puede girar respecto al plato soporte (16) a través de su eje (35) y los correspondientes rodamientos (20) . La rueda dentada mayorIn the upper part of the housing (2) there is a support plate (16) which is supported by its perimeter inside the upper housing (2) where it is fixed stably. In this support plate (16) the stepper motor (15) is mounted, which drives a small cogwheel (19) through its axle (19) and this in turn moves a larger cogwheel (17) to the one that is engaged, and which can rotate with respect to the support plate (16) through its axis (35) and the corresponding bearings (20). The major cogwheel
(17) dispone en una cara superior una serie de tetones (24) sobre un cuello (36) , los cuales sirven para transmitir su acción de giro sobre la tapa de exposición(17) has on its upper face a series of lugs (24) on a neck (36), which serve to transmit its turning action on the exposure cover
(28) o sobre la tapa de calibración (21) .(28) or on the calibration cover (21).
La parte superior de la carcasa superior (2) está cerrada de forma permanente mediante una tapa base (29) también circular, la cual permanece inmóvil y está fijada sobre el canto perimetral de la carcasa (2) y además toca sobre el canto perimetral del plato soporte (16) contribuyendo a su estabilidad.The upper part of the upper housing (2) is permanently closed by a base cover (29) also circular, which remains motionless and is fixed on the perimeter edge of the housing (2) and also touches the perimeter edge of the support plate (16) contributing to its stability.
La tapa base (29) dispone en su centro de un orificio (44) por el cual pasa un cuello (36) sobre el cual se disponen los anteriormente referidos tetones (24) . La carcasa superior (2) está cerrada por la tapa de exposición (28) , la cual es sustituida por la tapa de calibración (21) durante el proceso de calibración. Ambas tapas (28) forma una primera falda perimetral (37) , y de modo análogo la tapa de calibración (21) forma una segunda falda perimetral (38) , de modo que ambas tapas quedan superpuestas a la cara exterior de la carcasa superiorThe base cover (29) has in its center a hole (44) through which a neck (36) passes over which the aforementioned studs (24) are arranged. The upper housing (2) is closed by the lid exposure (28), which is replaced by the calibration cap (21) during the calibration process. Both covers (28) form a first perimeter skirt (37), and similarly the calibration cover (21) forms a second perimeter skirt (38), so that both covers are superimposed on the outer face of the upper housing
(2) . La tapa de exposición (28) cuenta además con unos tornillos de apriete (23) , cuya utilidad es la de inmovilizar dicha tapa durante el transporte del equipo, pero que permiten que la tapa gire libremente durante su normal utilización.(two) . The exposure cover (28) also has clamping screws (23), whose usefulness is to immobilize said cover during transport of the equipment, but which allow the cover to rotate freely during normal use.
La tapa de exposición (28) dispone de un primer grupo de orificios (45) para la inserción de los tetones (24) . La tapa de calibración (21) disponen igualmente en su centro de un segundo grupo de orificios (46) distribuidos circunferencialmente, destinados a recibir a los tetones (24) . Por estos medios, las tapas (28) y (21) son giratorias por la acción del motor paso a paso (15) y las correspondientes ruedas dentadas (19) y (17) .The exposure cover (28) has a first set of holes (45) for the insertion of the lugs (24). The calibration cover (21) also has in its center a second group of holes (46) distributed circumferentially, intended to receive the lugs (24). By these means, the covers (28) and (21) are rotatable by the action of the stepper motor (15) and the corresponding sprockets (19) and (17).
La tapa de exposición (28) o la tapa de calibración (21) , forman junto con la tapa base (29) , una cavidad plana y circular determinante de una disquetera (30) en la cual se aloja el biofilm (no representado) .The exposure cover (28) or the calibration cover (21), together with the base cover (29), form a flat and circular cavity that determines a floppy disk drive (30) in which the biofilm (not shown) is housed.
La tapa (28) como puede apreciarse especialmente en la figura 3, dispone de una ventana circular (27) que se sitúa descentrada y próxima al borde de dicha tapa (28) , la cual tiene por función permitir el paso de la radiación UV para que ésta alcance una zona localizada del biofilm, determinando dicha zona un campo de exposición a la radiación tal y como se describirá más adelante. La ventana circular (27) está cubierta por un cristal de cuarzo (26) del tipo Hearasil neutro para aislar el biofilm del exterior, principalmente de la humedad pero sin alterar el paso de la radiación UV.The cover (28), as can be seen especially in Figure 3, has a circular window (27) that is located off-center and close to the edge of said cover (28), which has the function of allowing UV radiation to pass through. that it reaches a localized area of the biofilm, said zone determining a radiation exposure field as will be described later. The circular window (27) is covered by a quartz crystal (26) of the neutral Hearasil type to isolate the Biofilm from the outside, mainly from moisture but without altering the passage of UV radiation.
Por su parte la tapa de calibración (21) dispone de una ventana en forma de "C" invertida (21) , es decir semicircunferencial, destinada a permitir la exposición de zonas localizadas del biofilm a la radiación UV durante el proceso de calibración del mismo, tal y como se explicará más adelante. Esta ventana en forma de "C" (21) está más próxima al centro del biofilm que la ventana circular (27) de la tapa de exposición (28) , por lo que en el proceso de calibración se expone a la radiación UV una zona del biofilm distinta a donde se crean los campos de exposición.For its part, the calibration cover (21) has an inverted "C" shaped window (21), that is to say semi-circumferential, designed to allow exposure of localized areas of the biofilm to UV radiation during the calibration process. , as will be explained later. This "C" shaped window (21) is closer to the center of the biofilm than the circular window (27) of the exposure cover (28), so that in the calibration process a zone is exposed to UV radiation of the biofilm other than where the exposure fields are created.
La tapa de exposición (28) dispone en su cara interna de una primera superficie anular (46) y una segunda superficie anular (47) , ambas concéntricas y recubiertas por un fieltro de color negro. De manera similar, la tapa de exposición (21) dispone en su cara interna de una tercera superficie anular (48) y una cuarta superficie anular (49) , también concéntricas y recubiertas por un fieltro negro. De manera complementaria, la tapa base (29) dispone en su cara interna de una quinta superficie anular (31) y una sexta superficie anular (39) concéntricas y recubiertas por un fieltro negro, de modo que estas dos ultimas superficies (31) y (39) quedan enfrentadas o superpuestas respecto a las superficies anteriormente referidas de las tapas (28) y (21) cuando están montadas sobre el equipo (1) durante su utilización como puede apreciarse en la figura 2.The exposure cover (28) has on its inner face a first annular surface (46) and a second annular surface (47), both concentric and covered by a black felt. Similarly, the exposure cover (21) has on its inner face a third annular surface (48) and a fourth annular surface (49), also concentric and covered by a black felt. In a complementary manner, the base cover (29) has on its inner face a fifth annular surface (31) and a sixth annular surface (39) concentric and covered by a black felt, so that these last two surfaces (31) and (39) face or overlap with respect to the above-mentioned surfaces of the covers (28) and (21) when mounted on the equipment (1) during use as can be seen in Figure 2.
El biofilm queda alojado en el intersticio comprendido entre las superficies anulares (31) y (39) de la tapa base (29) , y las superficies anulares (46) , (47) de la tapa de exposición (28) , o las superficies (46) , (49) de la tapa de calibración (21) . De esta forma se consigue reducir la superficie de rozamiento con el biofilm y al mismo tiempo mantener su estabilidad durante el giro de la tapa de exposición (28) o la de calibración (21) .The biofilm is housed in the interstitium between the annular surfaces (31) and (39) of the base cap (29), and the annular surfaces (46), (47) of the exposure cover (28), or the surfaces (46), (49) of the calibration cover (21). In this way it is possible to reduce the friction surface with the biofilm and at the same time maintain its stability during the rotation of the exposure cover (28) or the calibration one (21).
Al mismo tiempo, la superposición de las superficies (39) y (47) o (39) y (49) en función de si se utiliza la tapa de exposición o de calibración, impiden que la radiación UV que entra por la ventana circular (27) o por la ventana en "C" (25) , se desplace lateralmente por el interior de la disquetera (30) y alcance indeseadamente a una zona del biofilm que no se desee exponer a la radiación en ese momento e invalide los campos restantes. Para este mismo efecto, las caras interiores de las tapas (28) , (21) y (29) también están recubiertas con fieltro negro que impida la propagación de la radiación. El biosensor o biofilm (no representado) consiste en un disco transparente sobre el cual el material biológico está depositado de forma uniforme. El biofilm se inserta en la disquetera (30) formada por la tapa de exposición (28) o bien la tapa de calibración (21) y la tapa base (29) , y donde permanece estático. En esta realización práctica se utilizan preferentemente los biosensores desarrollados por el DLR (Instituto de Medicina Aeroespacial de Colonia) descritos en la patente alemana DE-4039002, sensibles especialmente en el rango UN-B, que permiten determinar el daño realizado sobre elAt the same time, overlapping surfaces (39) and (47) or (39) and (49), depending on whether the exposure or calibration cover is used, prevents UV radiation entering through the circular window ( 27) or through the "C" window (25), move laterally inside the floppy drive (30) and undesirably reach an area of the biofilm that you do not want to expose to radiation at that time and invalidate the remaining fields . For this same effect, the inner faces of the covers (28), (21) and (29) are also coated with black felt that prevents the spread of radiation. The biosensor or biofilm (not shown) consists of a transparent disk on which the biological material is deposited uniformly. The biofilm is inserted into the disk drive (30) formed by the exposure cover (28) or the calibration cover (21) and the base cover (29), and where it remains static. In this practical embodiment, the biosensors developed by the DLR (Institute of Aerospace Medicine of Cologne) described in the German patent DE-4039002, especially sensitive in the UN-B range, which allow to determine the damage done on the
ADΝ (y eritema piel) .ADΝ (and skin erythema).
El equipo permite realizar las medidas mediante dos modelos distintos, la exposición temporal y la exposición por radiación UV. En el modo de exposición temporal, el usuario fija los intervalos de tiempo que duran las sucesivas exposiciones, para lo cual se hace uso de un reloj de tiempo real (40) , y el dato que se obtiene es la dosis de radiación UN acumulada en el material biológico en el tiempo preestablecido. El reloj de tiempo real, permite la posibilidad de programar exposiciones incluso con varios días de antelación.The equipment allows measurements to be made using two different models, temporary exposure and UV radiation exposure. In exposure mode temporary, the user sets the time intervals during the successive exposures, for which use is made of a real time clock (40), and the data obtained is the dose of radiation UN accumulated in the biological material in the preset time. The real time clock allows the possibility of programming exhibitions even several days in advance.
En el modo de exposición por radiación UN, el usuario fija un nivel de radiación UN, y el dato que se obtiene es el tiempo que se ha tardado en alcanzar el nivel de radiación que se había fijado.In the radiation exposure mode UN, the user sets a radiation level UN, and the data obtained is the time it has taken to reach the radiation level that was set.
En este modelo de exposición opcionalmente se puede emplear un piranómetro para la correlación de datos, consistente en un equipo exterior al equipo de exposición, y mediante el cual el equipo calcula la radiación acumulada y la compara con el límite fijado por el usuario.In this exposure model, a pyranometer can optionally be used for the correlation of data, consisting of equipment outside the exposure equipment, and by means of which the equipment calculates the accumulated radiation and compares it with the limit set by the user.
Para el cálculo teórico de la distribución de dosis eritémicas en un día despejado, se utilizan modelos de transferencia radiactiva, como el de (Hermán et.al. Zeng et.al. 1998), teniendo en cuenta además el nivel de saturación máximo UV del biofilm (2 MED) y diferentes variables in situ, como la concentración de ozono total, el nivel de aerosoles, altura sobre el nivel del mar, latitud y longitud etc. Estos modelos sirven también para obtener los tiempos de exposición necesarios para alcanzar cada dosis UV, que se introducirán durante la programación previa de la unidad automática antes de la exposición del biofilm. Finalmente, el sistema de análisis de imágenes utilizado en el laboratorio para la interpretación de las medidas obtenidas de exposición UN, permite obtener la distribución real de dosis UV biológicas acumuladas durante la campaña de exposición, proporcionando los datos experimentales .For the theoretical calculation of the distribution of erythemic doses on a clear day, radioactive transfer models are used, such as (Hermán et.al. Zeng et.al. 1998), also taking into account the maximum UV saturation level of the biofilm (2 MED) and different variables in situ, such as the concentration of total ozone, the level of aerosols, height above sea level, latitude and longitude etc. These models also serve to obtain the exposure times necessary to reach each UV dose, which will be introduced during the previous programming of the automatic unit before the exposure of the biofilm. Finally, the image analysis system used in the laboratory for the interpretation of the measurements obtained from UN exposure, allows to obtain the real distribution of accumulated biological UV doses during the exhibition campaign, providing the experimental data.
Durante el periodo que dura la exposición, cada intervalo de 5 segundos se realiza la conversión de la señal proporcionada por el piranómetro y se calcula la dosis UV acumulada por minuto y con ésta la de toda la exposición. A modo ilustrativo, a continuación se explica la forma en la que opera el equipo para el cálculo de la radiación UN:During the period of exposure, each 5-second interval converts the signal provided by the pyranometer and calculates the accumulated UV dose per minute and with that of the entire exposure. By way of illustration, the following explains the way in which the equipment for calculating radiation UN operates:
La fórmula que proporciona el UN recibido es: yV 0.141•∑(60 • k) » M¡ UV = i≡! 210The formula provided by the UN received is: Yv 0.141 • Σ (60 • k) 'M UV = i≡! 210
donde dada la resolución del convertidor Mi = TENSIÓN * 196/10000; ywhere given the resolution of the converter M i = VOLTAGE * 196/10000; and
N es el n° de lecturas o medidas y Je el tiempo transcurrido entre ellas.N is the number of readings or measurements and Je the time elapsed between them.
En ella, sólo aparece una variable (TENSIÓN) , de la que depende el valor UV obtenido. Dada la gran complejidad de operación con números decimales es necesario pasar al primer término la constante decimal. Igualmente las constantes que intervienen en el cálculo del UV se trasladan al término de la izquierda, por esto el dato de UV límite del PC debe tener un formato especial . w-.E0._1421ü.ftíw.1HTO.10190600In it, only one variable (VOLTAGE) appears, on which the obtained UV value depends. Given the great complexity of operation with decimal numbers it is necessary to pass the decimal constant to the first term. Likewise, the constants involved in the calculation of the UV are transferred to the end of the left, so the limit UV data of the PC must have a special format. w -.E0._14 2 1ü.ftí w . 1HTO .10 19 0 6 00
El valor de UV siempre se da como valor entero sin parte decimal .The UV value is always given as an integer value without decimal part.
En el desarrollo del programa, el microcontrolador va tomando muestras cada 5 segundos, lo que supone 12 lecturas por cada minuto de la señal de tensión. Gracias a estos valores, podemos hallar el valor medio de la señal que ha recibido en ese minuto.In the development of the program, the microcontroller takes samples every 5 seconds, which means 12 readings per minute of the voltage signal. Thanks to these values, we can find the average value of the signal it has received in that minute.
, _ TENSIÓN • 60 * 196 _ TENSIÓN• 147 min'" ~ 10000 ~ 125, _ VOLTAGE • 60 * 196 _ VOLTAGE • 147 min '" ~ 10000 ~ 125
A la dosis acumulada en un minuto se añadirá a la dosis total acumulada en el campo. En el transcurso del programa el equipo compara la dosis acumulada con el dato almacenado como UN límite (UV") para el modelo de exposición UV, o de guardarlo al término de la exposición, para el temporal .The cumulative dose in one minute will be added to the total cumulative dose in the field. During the program, the team compares the accumulated dose with the data stored as ONE limit (UV ") for the UV exposure model, or to save it at the end of the exposure, for the temporary.
Durante el proceso de exposición, se utiliza la tapa de exposición (28) de modo que toda la superficie del biofilm está oculta a la radiación UN excepto el área circular que en un periodo de tiempo determinado se encuentre justo debajo de la ventana circular (27) y donde se establece por lo tanto un campo de exposición a la radiación UV. Para realizar diversas medidas, la tapa de exposición (28) se desplaza sucesivamente a determinadas posiciones estables, para exponer nuevas áreas del biofilm a la radiación definiendo así sucesivos campos de exposición. El tiempo de exposición de cada campo está controlado por los medios electrónicos según hayan sido programados por un operador.During the exposure process, the exposure cover (28) is used so that the entire surface of the biofilm is hidden from the UN radiation except the circular area that in a given period of time is just below the circular window (27 ) and where a field of exposure to UV radiation is therefore established. To perform various measurements, the exposure cover (28) moves successively to certain stable positions, to expose new areas of the biofilm to radiation thus defining successive exposure fields. The exposure time of each field is controlled by electronic means as programmed by an operator.
El tiempo de exposición depende de la climatología UV anual existente en el momento de la medida y pueden variar desde 20 minutos por campo de exposición hasta 2 horas, siendo el tiempo máximo total de exposición para el biofilm (biosensor) utilizado en esta realización preferente de la invención, hasta una semana (con filtros neutros) .The exposure time depends on the annual UV climatology existing at the time of measurement and can vary from 20 minutes per exposure field up to 2 hours, with the maximum total exposure time for the biofilm (biosensor) used in this preferred embodiment of the invention, up to one week (with neutral filters).
El número de campos de exposición son determinados por el operario mediante los medios electrónicos de control del equipo. En este ejemplo de realización, el número de campos que se exponen a la radiación solar es de 21, de los cuales uno se anula por sobreexposición, ya que ese campo muerto o de reposo es a partir del cual se inicia y acaban los desplazamientos de la tapa de exposición (28) .The number of exposure fields are determined by the operator through the electronic means of control of the equipment. In this exemplary embodiment, the number of fields that are exposed to solar radiation is 21, of which one is canceled due to overexposure, since that dead or resting field is from which the displacements of the exposure cover (28).
Para el correcto procesamiento de las medidas obtenidas con el biofilm, es necesario obtener además medidas adicionales de radiación que permitan la posterior calibración del mismo, tal y como es conocido en el estado de la técnica. El análisis de las medidas de calibración se realiza posteriormente en un laboratorio utilizando una fuente estándar de UV. En la presente invención, las medidas de calibración se realizan utilizando determinadas zonas del propio biofilm.For the correct processing of the measurements obtained with the biofilm, it is also necessary to obtain additional radiation measurements that allow subsequent calibration thereof, as is known in the state of the art. The analysis of the calibration measurements is subsequently carried out in a laboratory using a standard UV source. In the present invention, calibration measurements are performed using certain areas of the biofilm itself.
Para tomar las muestras de calibración, se retira manualmente la tapa de exposición (28) y se reemplaza por la tapa de calibración (21) , para lo cual tan solo hay que colocar esta tapa (21) de modo que los tetones (24) queden insertados en el grupo de orificios (46) para que la misma pueda girar por la acción del motor (15) y de las ruedas dentadas (17) y (19) . La tapa de calibración (21) es similar a la de exposición (28) , salvo que ésta dispone de la ventana en forma de "C" (25) para la exposición de los campos de calibración.To take the calibration samples, the exposure cover (28) is manually removed and replaced by the calibration cover (21), for which you just have to place this cover (21) so that the lugs (24) are inserted in the group of holes (46) so that it It can rotate by the action of the motor (15) and the sprockets (17) and (19). The calibration cover (21) is similar to the exposure cover (28), except that it has the "C" shaped window (25) for the exposure of the calibration fields.
El proceso de toma de medidas para la calibración, la medida se realiza por acumulación de radiación. Antes de iniciar las medidas de calibración, la zona del biofilm donde se van a crear los campos de exposición se encuentran oculta debajo de la tapa de calibración (21) , bajo la zona no afectada por la ventana en "C" (25) . La tapa de calibración (21) gira un determinado ángulo abriendo un primer campo de exposición durante un tiempo de exposición determinado. Tras este tiempo, la tapa (21) gira nuevamente abriendo un segundo campo de exposición, y permitiendo al mismo tiempo que la radiación UN-C se siga acumulando en el primer campo. El proceso se repite con los siguientes campos, hasta completar siete campos de calibración. Con sucesivos giros de la tapa (21) , se cierra el primer campo que quedó expuesto y así sucesivamente hasta cerrar todos los campos . En la figura 9 se han representado los veintiún campos de exposición (50) distribuidos circunferencialmente, y los siete campos de calibración (51) que como se puede observar tienen forma de segmento de corona circular.The process of taking measurements for calibration, the measurement is performed by accumulation of radiation. Before starting the calibration measurements, the biofilm area where the exposure fields are to be created is hidden under the calibration cover (21), under the area not affected by the "C" window (25). The calibration cover (21) rotates a certain angle by opening a first exposure field during a given exposure time. After this time, the cover (21) rotates again by opening a second exposure field, and at the same time allowing UN-C radiation to continue to accumulate in the first field. The process is repeated with the following fields, until seven calibration fields are completed. With successive turns of the lid (21), the first field that was exposed is closed and so on until all fields are closed. In figure 9 the twenty-one circumferentially distributed exposure fields (50) have been represented, and the seven calibration fields (51) which, as can be seen, have the shape of a circular crown segment.
Después de las campañas de campo en las que se obtienen las mediciones de radiación UN, y las mediciones de calibración, se extrae el biofilm del equipo automático para iniciar su procesado en el laboratorio, donde se realiza una incubación (con medio de cultivo para que se desarrollen las esporas de Bacillus subtilis) , una tinción, una fijación y un lavado posterior del biofilm, para finalmente realizar la evacuación de datos con un sistema de análisis en un ordenador.After the field campaigns in which the UN radiation measurements are obtained, and the calibration measurements, the biofilm is extracted from the automatic equipment to start its processing in the laboratory, where an incubation is carried out (with culture medium so that I know develop Bacillus subtilis spores), a stain, fixation and subsequent washing of the biofilm, to finally perform the evacuation of data with an analysis system in a computer.
La placa electrónica (34) está basada en un microcontrolador junto con los necesarios dispositivos periféricos, como son las memorias, puertos de comunicación, unidad de tiempo real etc. Mediante una conexión (33) se establece la comunicación entre la placa electrónica (34) con un equipo informático exterior, como por ej emplo puede ser un ordenador personal . Igualmente se puede disponer un conector BNC para la conexión con un piranómetro UVB.The electronic board (34) is based on a microcontroller together with the necessary peripheral devices, such as memories, communication ports, real time unit etc. Through a connection (33) communication is established between the electronic board (34) with an external computer equipment, such as a personal computer. A BNC connector can also be provided for connection with a UVB pyranometer.
La figura 5 representa esquemáticamente las funciones que realiza los medios electrónicos programables del equipo de exposición, es decir, la placa electrónica (34) . Una unidad de tiempo real (40) proporciona la fecha actual y la hora al microcontrolador (41) y en base a los cuales se determina el momento exacto en el que debe producirse un giro de la tapa de exposición (28) o de la tapa de calibración (21) . El sistema de adquisición de datos UN (42) consiste en un piranómetro o biómetro de radiación UN ya conocido en el estado de la técnica, que también proporciona su información al microcontrolador (41) . El piranómetro UVB-1 mide la radiación UV-B (rango B del espectro ultravioleta) según la sensibilidad del eritema de la piel, es decir la irradiancia total del UN-B , recibida a través de la radiación global . Su respuesta espectral es semejante a la del eritema y a la del ADΝ, aplicándose en estudios climatológicos de radiación UV sobre la biosfera (seres vivos, ecosistemas, etc.). La intercomparación de los datos recogidos en campaña con datos cuantificados biológicamente por medio de biosensores, como el Biofilm, hace de él un complemento idóneo en estudios de impacto de radiación UV, mejorando la aplicación de la dosimetría UV.Figure 5 schematically represents the functions performed by the programmable electronic means of the exposure equipment, that is, the electronic board (34). A real time unit (40) provides the current date and time to the microcontroller (41) and based on which the exact moment at which a turn of the exposure cover (28) or of the cover is to be determined calibration (21). The data acquisition system UN (42) consists of a pyranometer or radiation biometer UN already known in the state of the art, which also provides its information to the microcontroller (41). The UVB-1 pyranometer measures UV-B radiation (range B of the ultraviolet spectrum) according to the sensitivity of skin erythema, that is, the total irradiance of UN-B, received through global radiation. Its spectral response is similar to that of erythema and ADΝ, being applied in climatological studies of UV radiation on the biosphere (living beings, ecosystems, etc.). The Intercomparison of the data collected in the campaign with biologically quantified data through biosensors, such as Biofilm, makes it an ideal complement in UV radiation impact studies, improving the application of UV dosimetry.
Para la introducción y registro de datos por parte del usuario antes y después de los procesos de medida, se dispone de un ordenador (43) , a través del cual se programa a base de comandos el modo de operar del equipo de exposición (1) . Mediante el ordenador (43) se selecciona el modelo de exposición temporal, el modelo de exposición UV, el modo de calibración, selección del número de campos a utilizar en la exposición, tiempo de exposición de cada campo, día y hora en la que se debe iniciar la exposición, se obtienen datos sobre el estado actual del equipo etc .For the introduction and registration of data by the user before and after the measurement processes, a computer (43) is available, through which the mode of operation of the exposure equipment (1) is programmed based on commands. . Using the computer (43) the temporary exposure model, the UV exposure model, the calibration mode, selection of the number of fields to be used in the exposure, exposure time of each field, day and time in which it is selected is selected You must start the exposure, you get data on the current state of the equipment etc.
Asimismo, el usuario puede recuperar los datos que se han obtenido durante la última exposición realizada, y grabarlos en una memoria EEPROM, con objeto de disponer de estos datos en caso de fallo de la alimentación de las baterías. Opcionalmente el equipo puede incorporar un dispositivo de control térmico que actúe en casos de temperaturas extremas para garantizar la estabilidad de los datos y el correcto funcionamiento del equipo. Este dispositivo de control térmico puede consistir en cualquier sistema convencional. No obstante, preferentemente se utiliza un simple pero efectivo diseño (no representado en las figuras) , formado por un sensor de temperatura y un juego de resistencias metálicas de potencia que disipan gran cantidad de calor (5.8° C/W) . Estas resistencias calientan una placa circular de aluminio (2mm de espesor x 73mm de radio) que reduce mucho el consumo de energía, uno de los objetivos perseguidos, ya que la alimentación se va a realizar mediante batería prácticamente siempre.Likewise, the user can retrieve the data that was obtained during the last exposure made, and record it in an EEPROM memory, in order to have this data in case of battery power failure. Optionally, the equipment can incorporate a thermal control device that acts in cases of extreme temperatures to guarantee the stability of the data and the correct functioning of the equipment. This thermal control device can consist of any conventional system. However, a simple but effective design (not shown in the figures) is preferably used, consisting of a temperature sensor and a set of metallic power resistors that dissipate a large amount of heat (5.8 ° C / W). These resistors heat a circular plate of aluminum (2mm thick x 73mm radius) that greatly reduces energy consumption, one of the objectives pursued, since the power will be carried out by battery almost always.
El material empleado para la fabricación de la estructura de la unidad es un acero inoxidable de la serie F-300, designado "acero inoxidable 13 Cr, tipo F-312, que no es tóxico y es resistente a condiciones meteorológicas extremas. Para evitar la absorción de calor se ha recubierto el equipo por una capa de pintura plástica de color blanco para maximizar la reflexión del sol.The material used to manufacture the structure of the unit is a stainless steel of the F-300 series, designated "stainless steel 13 Cr, type F-312, which is non-toxic and resistant to extreme weather conditions. Heat absorption has covered the equipment by a layer of white plastic paint to maximize sun reflection.
A la vista de esta descripción y juego de figuras, el experto en la materia podrá entender que las realizaciones de la invención que se han descrito pueden ser combinadas de múltiples maneras dentro del objeto de la invención. La invención ha sido descrita según algunas realizaciones preferentes de la misma, pero para el experto en la materia resultará evidente que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes sin salir del objeto de la invención reivindicada. In view of this description and set of figures, the person skilled in the art will be able to understand that the embodiments of the invention that have been described can be combined in multiple ways within the scope of the invention. The invention has been described according to some preferred embodiments thereof, but it will be apparent to the person skilled in the art that multiple variations can be introduced in said preferred embodiments without departing from the object of the claimed invention.

Claims

R E I V I N D I C A C I O N E SR E I V I N D I C A C I O N E S
Ia.- Equipo automático de exposición de un material sensor a una radiación caracterizado porque comprende : un elemento sensor de forma circular alojado dentro de una disquetera también circular mediante la cual está parcialmente protegido de dicha radiación, una apertura en dicha disquetera que permite el acceso de la radiación hasta dicho elemento sensor en una zona localizada del mismo, teniendo capacidad de desplazamiento relativo entre dicho elemento sensor y la disquetera en la que se encuentra alojado, medios electromecánicos para producir dicho desplazamiento relativo, y medios electrónicos programables para controlar la acción de dichos medios electromecánicos. 2a.- Equipo según la reivindicación Ia, caracterizado porque el elemento sensor consiste en un biofilm circular sensible a la radiación ultravioleta, y dicha radiación es radiación ultravioleta UN. 3a.- Equipo según la reivindicación Ia caracterizado porque en dicho biofilm circular existen al menos dos zonas concéntricas y diferenciadas para la obtención de diferentes tipos de medidas por exposición a la radiación UV. 4a.- Equipo según la reivindicación Ia caracterizado porque dicha disquetera está formada por una tapa base y una tapa superior intercambiable en función del tipo de medida de radiación que se desea obtener, ya sea un proceso de exposición o un proceso de calibración. I-.- Automation exposure of a sensor material to a characterized radiation comprising: a sensor element circular housed within a disk drive also circular which is partially protected from said radiation, an opening in said floppy disk drive which allows the radiation access to said sensor element in a localized area thereof, having relative displacement capacity between said sensor element and the disk drive in which it is housed, electromechanical means to produce said relative displacement, and programmable electronic means to control the action of said electromechanical means. 2 .- Equipment according to claim I, wherein the sensor element consists of a round biofilm sensitive to ultraviolet radiation, and said radiation is an ultraviolet radiation. 3 .- Equipment according to claim I characterized in that the circulating biofilm exist least two concentric zones and differentiated to obtain different types of measurements by exposure to UV radiation. 4 .- Equipment according to claim I to wherein said disk drive comprises a lid base and an interchangeable top cover according to the type of measurement radiation to be obtained, whether an exposure process or a calibration process.
5a- Equipo según la reivindicación 4a caracterizado porque la tapa superior consiste en una tapa de exposición en la cual existe una ventana circular descentrada.5 - Equipment according to claim 4 characterized in that the upper cover consists of a platen cover in which there is a circular window offset.
6a.- Equipo según la reivindicación 4a, caracterizado porque la tapa superior consiste en una tapa de calibración en la que existe una ventana en forma de "C" .6 .- Equipment according to claim 4, characterized in that top cover is a calibration cap in which there is a window in the form of "C".
7a.- Equipo según las reivindicaciones 4a a 6a, caracterizado porque la ventana circular y la ventana en forma de "C" permiten el acceso de la radiación UV a zonas localizadas y distintas del biofilm.7 .- Equipment according to claims 4 to 6, characterized in that circular window and the window as "C" allow access of UV radiation and different localized areas of the biofilm.
8a.- Equipo según las reivindicaciones anteriores caracterizado porque la tapa de exposición, la tapa de calibración y la tapa base disponen de medios para impedir el desplazamiento lateral de la radiación en el interior de la disquetera a zonas no deseadas del biofilm.8 .- Equipment according to previous claims characterized in that the platen cover, the calibration cap and the base cap have means to prevent lateral displacement of the radiation inside the drive to unwanted areas of the biofilm.
9a.- Equipo según reivindicaciones anteriores caracterizado porque el biofilm y la tapa base son estáticos y la tapa superior se desplaza sobre ellos.9 .- Equipment according to previous claims characterized in that the biofilm and the base cover are static and top cap moves over them.
10a.- Equipo según reivindicaciones anteriores caracterizado porque los medios electromecánicos de accionamiento consisten en un motor paso a paso que acciona unas ruedas dentadas, que a su vez accionan la tapa superior para producir su desplazamiento.10 .- Equipment according to previous claims characterized in that the electromechanical drive means consist of a stepper motor driving sprockets that in turn drive the top cover to produce its displacement.
11a.- Equipo según las reivindicaciones anteriores caracterizado porque la disquetera conteniendo al biofilm, los medios electromecánicos y los medios electrónicos programables están alojados en una carcasa cilindrica, la cual está cerrada superiormente por dicha tapa superior y dispone de medios para su fijación a la intemperie sobre una superficie adecuada.11 .- Equipment according to previous claims characterized in that the drive containing a biofilm, the electromechanical means and programmable electronic means are housed in a cylindrical housing which is closed at the top by said top cover and has means for attachment to the weathering on a suitable surface.
12a.- Equipo según al reivindicación 11a, caracterizado porque la carcasa se compone de una carcasa superior y de una carcasa inferior acoplables entre sí con carácter desmontable, y dispone de una tapa intermedia en su interior que separa dichas carcasas y define con ellas respectivamente una cámara superior y una cámara inferior independientes entre sí, de modo que la disquetera, los medios electromecánicos y los medios electrónicos están alojados en la cámara superior y en la cámara inferior se alojan unas baterías de alimentación del equipo.12 .- Equipment according to the claim 11, wherein the housing comprises an upper housing and a mating lower housing together detachably, and has an intermediate cover inside separating said housing and defining with them respectively, an upper chamber and a lower chamber independent of each other, so that the floppy disk drive, the electromechanical means and the electronic means are housed in the upper chamber and in the lower chamber are housed power batteries of the equipment.
13a.- Método para la exposición automática de un elemento sensor a una radiación, caracterizado porque consiste en disponer de un elemento sensor de forma circular alojado en una disquetera circular donde permanece oculto de dicha radiación a excepción de una primera zona de exposición localizada del mismo, la cual permanece expuesta a dicha radiación durante un tiempo preestablecido, y desplazar relativamente dicho elemento sensor y dicha disquetera de modo que se oculta dicha primera zona de exposición y se abre una segunda zona de exposición, repitiéndose esta secuencia un número determinado de veces . 14a.- Método según la reivindicación 13a caracterizado porque se utiliza más de una zona concéntrica del elemento sensor para su exposición a la radiación, ocultando la zonas concéntricas anteriormente utilizadas. 13 a .- Method for the automatic exposure of a sensor element to a radiation, characterized in that it consists of having a circular circular sensor element housed in a circular disk drive where it remains hidden from said radiation except for a first localized exposure zone of the same, which remains exposed to said radiation for a predetermined time, and relatively displaces said sensor element and said disk drive so that said first exposure zone is hidden and a second exposure zone is opened, this sequence being repeated a certain number of times . 14 .- Method of claim 13 characterized in that more than one concentric zone of the sensor element is used for exposure to radiation, hiding the concentric zones previously used.
PCT/ES2004/000305 2003-07-16 2004-06-30 Automatic device for biological exposure to ultraviolet radiation, and exposure method WO2005008802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200301675 2003-07-16
ES200301675A ES2222807B1 (en) 2003-07-16 2003-07-16 AUTOMATIC EQUIPMENT OF BIOLOGICAL EXPOSURE TO THE ULTRAVIOLET RADIATION AND METHOD TO PERFORM SUCH EXPOSURE.

Publications (1)

Publication Number Publication Date
WO2005008802A1 true WO2005008802A1 (en) 2005-01-27

Family

ID=34072911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000305 WO2005008802A1 (en) 2003-07-16 2004-06-30 Automatic device for biological exposure to ultraviolet radiation, and exposure method

Country Status (2)

Country Link
ES (1) ES2222807B1 (en)
WO (1) WO2005008802A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
GB2596045A (en) * 2020-04-14 2021-12-22 Reset And Protect Ltd An ultra violet (UV) exposure device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308459A (en) * 1980-05-22 1981-12-29 Williams Gwyn P Ultraviolet radiation detection device
EP0282029A2 (en) * 1987-03-12 1988-09-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Measuring device for the electromagnetic radiation from the half-space or from the space
DE4039002A1 (en) * 1990-12-06 1992-06-11 Deutsche Forsch Luft Raumfahrt Detecting radiation from its effect on microbial protein synthesis - by exposing microorganisms coated on flat substrate to radiation, then incubating in culture medium and photometric evaluation of proteins
EP0706228A1 (en) * 1994-10-08 1996-04-10 INSTITUT FÜR BIOPROZESS- UND ANALYSENMESSTECHNIK e.V. Process for the production of a biosensor for electromagnetic radiation
DE4440692A1 (en) * 1994-11-15 1996-05-23 Ilka Praezimatik Kryotechnik G Sampling air for the presence of nuclides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4308459A (en) * 1980-05-22 1981-12-29 Williams Gwyn P Ultraviolet radiation detection device
EP0282029A2 (en) * 1987-03-12 1988-09-14 Deutsches Zentrum für Luft- und Raumfahrt e.V. Measuring device for the electromagnetic radiation from the half-space or from the space
DE4039002A1 (en) * 1990-12-06 1992-06-11 Deutsche Forsch Luft Raumfahrt Detecting radiation from its effect on microbial protein synthesis - by exposing microorganisms coated on flat substrate to radiation, then incubating in culture medium and photometric evaluation of proteins
EP0706228A1 (en) * 1994-10-08 1996-04-10 INSTITUT FÜR BIOPROZESS- UND ANALYSENMESSTECHNIK e.V. Process for the production of a biosensor for electromagnetic radiation
DE4440692A1 (en) * 1994-11-15 1996-05-23 Ilka Praezimatik Kryotechnik G Sampling air for the presence of nuclides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109981B2 (en) 2005-01-25 2012-02-07 Valam Corporation Optical therapies and devices
GB2596045A (en) * 2020-04-14 2021-12-22 Reset And Protect Ltd An ultra violet (UV) exposure device

Also Published As

Publication number Publication date
ES2222807A1 (en) 2005-02-01
ES2222807B1 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
Heydenreich et al. Miniature personal electronic UVR dosimeter with erythema response and time‐stamped readings in a wristwatch
Karentz et al. Evaluation ofbiologically harmful ultraviolet radiation in Antarctica with a biological dosimeter designed for aquatic environments
US5008548A (en) Personal UV radiometer
Huang et al. Review of wearable and portable sensors for monitoring personal solar UV exposure
Häder et al. ELDONET—European light dosimeter network hardware and software
KR20130031816A (en) Dosimeter with rfid tag
Gies et al. Solar UVR exposures of primary school children at three locations in Queensland
US20070013897A1 (en) Instrument and method to measure available light energy for photosynthesis
Butson et al. Ultraviolet radiation dosimetry with radiochromic film
ES2222807B1 (en) AUTOMATIC EQUIPMENT OF BIOLOGICAL EXPOSURE TO THE ULTRAVIOLET RADIATION AND METHOD TO PERFORM SUCH EXPOSURE.
Heydenreich et al. Personal electronic UVR dosimeter measurements: specific and general uncertainties
Munakata Genotoxic action of sunlight upon Bacillus subtilis spores: monitoring studies at Tokyo, Japan
US10739253B2 (en) Methods, systems, and devices for calibrating light sensing devices
Allen et al. Electronic UV dosimeters for research and education
WO2019008206A1 (en) Autonomous system for recording solar irradiance
Häder et al. European light dosimeter network (ELDONET): 1998 data
Munakata et al. Spore dosimetry of solar UV radiation: applications to monitoring of daily irradiance and personal exposure
Arthofer et al. Ultra-low activities of a common radioisotope for permission-free tracking of a drosophilid fly in its natural habitat
Osman et al. Solar ultraviolet measurement: A mini review
Ingram et al. Diagnostic and monitoring procedures for nursery crops
Parisi et al. Solar UV exposures measured simultaneously to all arbitrarily oriented leaves on a plant
RU2731592C1 (en) Integrated radon radiometer with dielectric track detector
Othman et al. Seasonal variations of solar UVB and UVA in Syria
ES2363538B1 (en) GRAN CAMPO ATMOSPHERIC LIGHT POLLUTION AND EXTINCTION MONITOR.
Turner et al. Dosimeter for the measurement of plant damaging solar UV exposures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase