WO2005012962A1 - 複屈折性光学フィルム - Google Patents

複屈折性光学フィルム Download PDF

Info

Publication number
WO2005012962A1
WO2005012962A1 PCT/JP2004/010469 JP2004010469W WO2005012962A1 WO 2005012962 A1 WO2005012962 A1 WO 2005012962A1 JP 2004010469 W JP2004010469 W JP 2004010469W WO 2005012962 A1 WO2005012962 A1 WO 2005012962A1
Authority
WO
WIPO (PCT)
Prior art keywords
birefringent
layer
axis
optical film
polymer
Prior art date
Application number
PCT/JP2004/010469
Other languages
English (en)
French (fr)
Inventor
Yuuichi Nishikouji
Hiroyuki Yoshimi
Nao Murakami
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/540,486 priority Critical patent/US7535531B2/en
Publication of WO2005012962A1 publication Critical patent/WO2005012962A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to a birefringent optical film.
  • a biaxial birefringent optical film In order to obtain good contrast in a liquid crystal display device, a biaxial birefringent optical film has conventionally been used as a retardation plate.
  • This biaxial birefringent optical film is generally produced by stretching an isotropic polymer film (for example, see Patent Documents 1 and 2).
  • a biaxial birefringent optical film can also be produced by stretching a uniaxial polymer film (for example, see Patent Document 3) (for example, see Patent Document 4).
  • a liquid crystal display device incorporating such a biaxial birefringent optical film can obtain good contrast, but the biaxial birefringent optical film has a limited narrow and range And value. Therefore, a wide viewing angle corresponding to various mode types could not be sufficiently realized.
  • a liquid crystal display device incorporating the biaxial birefringent optical film has a problem that, for example, a VA mode liquid crystal display device has a problem that the display is colored.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 33337/1991 Gazette
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-24502
  • Patent Document 3 JP-A-8-511812
  • Patent document 4 JP-A-2000-190385
  • An object of the present invention is to provide a birefringent optical film for realizing good contrast, a wide viewing angle, and prevention of coloring of a liquid crystal display device.
  • the present invention provides a birefringent optical filter including one or more birefringent A layers and one or more birefringent B layers.
  • the birefringent A layer has a characteristic of ny ⁇ nz> nx or nz>ny> nx.
  • the birefringent B layer is a birefringent optical film having the property of nx ⁇ ny> nz
  • nx, ny, and nz are the X-, Y-, and Z-axis directions of the birefringent A layer.
  • the X axis is in the same axial direction as the X axis in the birefringent B layer described later
  • the Y axis is in the same axial direction as the Y axis in the birefringent B layer described later
  • the axis indicates a thickness direction perpendicular to the X axis and the Y axis.
  • nx, ny, and nz are the X-, Y-, and Z-axis directions in the birefringent B layer.
  • the X axis is an axis direction indicating the maximum refractive index in the plane of the birefringent B layer
  • the Y axis is an axis direction perpendicular to the X axis in the plane.
  • the Z axis indicates the thickness direction perpendicular to the X axis and the Y axis.
  • FIG. 1 is a graph showing an example of wavelength dispersion characteristics of a birefringent A layer and a birefringent B layer in the optical film of the present invention.
  • FIG. 2 is a graph showing an example of wavelength dispersion characteristics (reverse wavelength dispersion) of the optical film of the present invention.
  • the birefringent optical film of the present invention including the two types of birefringent layers as described above has a wide ⁇ nd value and can realize a wide viewing angle.
  • the birefringent optical film of the present invention can achieve a wide viewing angle even with a powerful liquid crystal display device that cannot be compensated for by a conventional birefringent optical film.
  • the birefringent optical film of the present invention has a sufficiently large Rth value, so that good contrast can be obtained.
  • the birefringent optical film of the present invention can realize prevention of coloring when incorporated in a liquid crystal display device.
  • the birefringent B layer preferably satisfies the condition represented by the following formula (1).
  • Nx and nz indicate the refractive index in the X-axis and Z-axis directions of the birefringent B layer b b
  • the X axis is an axial direction showing the maximum refractive index in the plane of the birefringent B layer, and the Z axis is a thickness direction perpendicular to the X axis.
  • the birefringent A layer may be formed of at least one of a polymer having negative orientation birefringence and a polymer having positive orientation birefringence, Alternatively, a mixed force of a polymer having negative orientation birefringence and a polymer having positive orientation birefringence may be formed!
  • the birefringent B layer may be formed of a polymer having positive orientation birefringence.
  • the polymer having positive orientation birefringence is at least one polymer selected from the group consisting of polyamide, polyimide, polyester, polyetherketone, polyaryletherketone, polyamideimide and polyesterimide. Is preferred.
  • the birefringent optical film of the present invention preferably satisfies the condition represented by the following formula (4).
  • the orientation axis precision refers to the in-plane variation of the slow axis.
  • the birefringent optical film of the present invention preferably has an in-plane retardation as a laminate having an inverse wavelength dispersion characteristic.
  • the birefringent optical film of the present invention more preferably satisfies the conditions represented by the following formulas (5) and (6).
  • nx and ny represent the refractive index of the birefringent A layer in the X-axis and Y-axis directions.
  • the X axis is in the same axial direction as the X axis in the birefringent B layer described later, and the Y axis is in the same axial direction as the Y axis in the birefringent B layer described later.
  • d indicates the thickness of the birefringent A layer a
  • nx and ny represent the refractive index of the birefringent B layer in the X-axis and Y-axis directions.
  • the X axis is an axial direction showing the maximum refractive index in the plane of the birefringent B layer
  • the Y axis is an axial direction perpendicular to the X axis in the plane.
  • d indicates the thickness of the birefringent b-fold B layer.
  • the And and And are the multiple a430nm a550nm at wavelengths of 430nm and 550nm.
  • the And and And are the multiple b430nm and b550nm at wavelengths of 430nm and 550nm.
  • the laminated polarizing plate of the present invention is a laminated polarizing plate including the birefringent optical film of the present invention.
  • the liquid crystal panel of the present invention is a liquid crystal panel including a liquid crystal cell and an optical member, wherein the optical member is disposed on at least one surface of the liquid crystal cell. It is a board.
  • the liquid crystal display device of the present invention is a liquid crystal display device including the liquid crystal panel of the present invention.
  • the image display device of the present invention includes the birefringent optical film of the present invention or the laminated polarizing plate of the present invention.
  • the birefringent A layer has a characteristic of ny ⁇ nz> nx or nz> ny> nx. With this characteristic, when incorporated in an image display device, it is also effective in reducing light leakage from the oblique direction.
  • the birefringent A layer having such properties is composed of a polymer having negative orientation birefringence, a polymer having positive orientation birefringence, or a polymer having negative orientation birefringence and a polymer having positive orientation birefringence. It is preferably formed from a mixture of refractive polymers. Further, the birefringent A layer is preferably formed from a polymer having a negative orientation birefringence, or a mixture of a polymer having a negative orientation birefringence and a polymer having a positive orientation birefringence. preferable.
  • the polymer having negative orientation birefringence means a polymer that has a minimum refractive index in the stretching direction when the polymer-formed film is stretched.
  • the polymer having negative orientation birefringence includes, for example, a homopolymer of a single monomer such as polystyrene, acryl, and poly (methyl methacrylate), or another polymer for improving mechanical properties and the like. And the like. It is generally known that styrene 'maleic anhydride copolymer, styrene' maleimide copolymer, copolymer containing olefin unit and acrylic unit, nitrile unit and styrene unit are used. And copolymers containing the same.
  • nitrile compounds include compounds having an ⁇ , ⁇ -disubstituted olefinic unsaturated bond such as acrylonitrile and metathalonitrile and ⁇ -substituted unsaturated-tolyl such as fumaro-tolyl.
  • examples of the styrene compound include styrene, vinyltoluene, methoxystyrene, and unsubstituted or substituted styrene compounds such as chlorostyrene and ⁇ -methylstyrene.
  • the polymer having a positive orientation birefringence means a polymer that has a maximum refractive index in the stretching direction when the polymer-formed film is stretched.
  • Examples of the polymer having positive orientation birefringence include acetate resin, polyester resin, polyethersulfone resin, polycarbonate resin, polyamide resin, polyimide resin, and polynorbornene resin. Fats, polyolefin resins, polyethylene oxide, propylene ether, or those containing alkene units, substituted or unsubstituted maleimide units, and butyl-based units to improve the heat resistance and mechanical strength of the film. For example, a olefin 'maleimide copolymer and the like can be mentioned.
  • Polymers having a positive orientation birefringence include, for example, polyamide, polyimide, polyester, polyetherketone, polyamideimide, and polyesterimide because they are excellent in heat resistance, chemical resistance, transparency and rigidity. And the like are also preferable. Any one of these non-crystalline polymers may be used alone, and for example, It may be used as a mixture of two or more kinds having different functional groups, such as a mixture of terketone and polyamide. Among such non-liquid crystalline polymers, polyimide is particularly preferred because of its high transparency, high orientation and high stretchability.
  • the molecular weight of the non-liquid crystalline polymer is not particularly limited, but, for example, the weight average molecular weight (Mw) is preferably in the range of 1,000 to 1,000,000, and more preferably 2,000 to 1,000,000. In the range of 500,000.
  • Mw weight average molecular weight
  • polyimide for example, a polyimide soluble in an organic solvent having high in-plane orientation is preferable.
  • R 3 —R 6 are a hydrogen atom, a halogen atom, a phenyl group, a phenyl group substituted with 14 halogen atoms or a C alkyl group, and C Archi
  • a group power is at least one kind of substituent independently selected.
  • R 3 — R 6 are a halogen atom, a phenyl group, a phenyl group substituted by a halogen atom or a C alkyl group, and a C alkyl group.
  • Z is, for example, a C 4 tetravalent aromatic group, preferably
  • Z ′ is, for example, a covalent bond, a C (R 7 ) group, a CO group, an O atom, an S atom,
  • W represents an integer from 1 to 10.
  • R 7 is each independently hydrogen or C (R 9 ).
  • R 8 is a hydrogen atom, carbon atom number 1
  • R 9 is each independently a hydrogen atom, a fluorine atom, or a chlorine atom.
  • Examples of the polycyclic aromatic group include naphthalene, fluorene, benzofluorene and a tetravalent group induced by anthracene force.
  • Examples of the substituted derivative of the polycyclic aromatic group include a C 4 alkyl group, a fluorinated derivative thereof, and F
  • a group power of a halogen atom such as an atom or a C1 atom is provided.
  • the above-mentioned polycyclic aromatic group substituted with at least one selected group.
  • a homopolymer described in JP-T-8-511812 whose repeating unit is represented by the following general formula (3) or (4), or whose repeating unit is represented by the following general formula
  • Examples of the polyimide include the polyimide shown in 5).
  • the polyimide represented by the following general formula (5) is a preferred form of the homopolymer represented by the following general formula (3).
  • G and G ′ are, for example, a covalent bond, a CH group, a C (CH 2) group
  • L represents a substituent, and d and e represent the number of substitutions.
  • L is, for example, a halogen atom, a C alkyl group,
  • Examples of the substituted phenyl group include a halogen atom and C
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • d is an integer from 0 to 2
  • e is an integer from 0 to 3.
  • Q represents a substituent
  • f represents the number of substitutions.
  • Q represents, for example, a hydrogen atom, a halogen atom, an alkyl group, a substituted alkyl group, a nitro group, a cyano group, a thioalkyl group, an alkoxy group, an aryl group, a substituted aryl group, an alkyl ester group, and a substituted alkyl ester group.
  • Force If the atom or group to be selected and Q is more than one, the forces are the same or different, respectively.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the substituted alkyl group include a halogenated alkyl group.
  • Examples of the substituted aryl group include a halogenated aryl group.
  • f is an integer from 0 to 4
  • g and h are integers from 0 to 3 and 1 to 3, respectively.
  • g and h are preferably larger than 1.
  • R 1C> and R 11 are each independently selected from the group consisting of a hydrogen atom, a halogen atom, a phenyl group, a substituted phenyl group, an alkyl group, and a substituted alkyl group. Is the chosen group. Among them, R 1C) and R 11 are preferably each independently a halogenated alkyl group! /.
  • M 1 and M 2 are the same or different, and are, for example, a halogen atom, a C monoalkyl group, a C halogenated alkyl group, a phenyl group, or a substituted phenyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom and iodine.
  • substituted phenol group for example, a group strength selected from a halogen atom, a C alkyl group, and a C halogenated alkyl group is selected.
  • a substituted fluorine group having at least one type of substituent is exemplified.
  • polyimide represented by the general formula (3) include, for example, those represented by the following general formula (6).
  • polyimide for example, an acid other than the above-mentioned skeleton (repeating unit) Copolymers obtained by appropriately copolymerizing dianhydride diamine are exemplified.
  • Examples of the acid dianhydride include aromatic tetracarboxylic dianhydrides.
  • Examples of the aromatic tetracarboxylic dianhydride include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, and heterocyclic aromatic tetracarboxylic dianhydride And 2,2'-substituted biphenyltetracarboxylic dianhydrides.
  • Examples of the pyromellitic dianhydride include pyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3,6-bis (trifluoromethyl) pyromellitic dianhydride, 3,6-Dibu mouth Mopyromellitic dianhydride, 3,6-dichloropyromellitic dianhydride and the like.
  • benzophenonetetracarboxylic dianhydride examples include 3,3 ', 4,4'-benzophenonetetracarboxylic dianhydride and 2,3,3', 4'-benzophenonetetracarboxylic acid Acid dianhydride, 2,2 ', 3,3'-benzophenonetetracarboxylic dianhydride and the like.
  • naphthalenetetracarboxylic dianhydride examples include 2,3,6,7-naphthalene-tetracarboxylic dianhydride, 1,2,5,6-naphthalene-tetracarboxylic dianhydride, 2,6 -Dichloro-naphthalene-1,4,5,8-tetracarboxylic dianhydride and the like.
  • heterocyclic aromatic tetracarboxylic dianhydride include thiophene-2,3,4,5-tetracarboxylic dianhydride and virazine-2,3,5,6-tetracarboxylic dianhydride. Pyridine-2,3,5,6-tetracarboxylic dianhydride and the like.
  • Examples of the 2,2′-substituted biphenyltetracarboxylic dianhydride include, for example, 2,2′-dibromo-4,4 ′, 5,5′-biphenyltetracarboxylic dianhydride, 2'-Dichloro-4,4 ', 5,5'-biphenyltetracarboxylic dianhydride, 2,2'-bis (trifluoromethyl) -4,4', 5,5 Letetracarboxylic dianhydride and the like.
  • aromatic tetracarboxylic dianhydride examples include 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride and bis (2,3-dicarboxylate).
  • Phenol) methane dianhydride bis (2,5,6-trifluo mouth-3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) ) -1,1,1,3,3,3-hexafluoropropane dianhydride, 4,4'-bis (3,4-dicarboxyphenyl) -2,2-diphenylpropane
  • aromatic tetracarboxylic dianhydride 2,2′-substituted biphenyltetracarboxylic dianhydride is more preferable, and 2,2′-bis (trihalomethyl )-4,4 ', 5,5'-biphenyltetracarboxylic dianhydride, more preferably 2,2'-bis (trifluoromethyl) -4,4', 5,5 Biphenyltetracarboxylic dianhydride.
  • diamine examples include aromatic diamines, and specific examples include benzene diamine, diaminobenzophenone, naphthalenediamine, heterocyclic aromatic diamine, and other aromatic diamines.
  • Examples of the benzenediamine include o-, m- and p-phenylenediamine, 2,4-diaminotoluene, 1,4-diamino-2-methoxybenzene, 1,4-diamino-2-phenylbenzene and And diamines selected from the group consisting of benzenediamines such as 1,3-diamino-4-chlorobenzene.
  • Examples of the diaminobenzophenone include 2,2'-diaminobenzophenone, and 3,3 diaminobenzophenone.
  • naphthalene diamine examples include 1,8-diamino naphthalene and 1,5-diamino naphthalene.
  • heterocyclic aromatic diamine examples include 2,6-diaminopyridine, 2,4-diaminopyridine, and 2,4-diamino-S-triazine.
  • aromatic diamine in addition to the above, 4,4'-diaminobiphenyl, 4,4'-diaminodiphenylmethane, 4,4 '-(9-fluorenylidene) -dialine, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminodiphenylmethane, 2,2'-dichloro-4,4'-diaminobiph Enyl, 2,2 ', 5,5'-tetraclo-benzidine, 2,2-bis (4-aminophenoxyphene) propane, 2,2-bis (4-aminophene) propane, 2 , 2-bis (4-aminophenyl)-1,1,1,3,3,3-hexafluoropropane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether
  • polyether ketone examples include those described in JP-A-2001-49110.
  • X represents a substituent
  • q represents the number of the substituents.
  • X is, for example, a halogen atom, a lower alkyl group, a halogenated alkyl group, a lower alkoxy group, or a halogenated alkoxy group.
  • Xs are the same or different.
  • halogen atom examples include a fluorine atom, a bromine atom, a chlorine atom and an iodine atom, and among these, a fluorine atom is preferable.
  • the lower alkyl group for example, a C linear or branched lower alkyl group is more preferable.
  • halogenated alkyl group examples include halogenated compounds of the lower alkyl group such as a trifluoromethyl group.
  • the lower alkoxy group for example, a C
  • a 1-6 or branched alkoxy group is preferred, more preferably a C straight or branched chain.
  • alkoxy group It is an alkoxy group. Specifically, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group are more preferable. is there.
  • the halogenated alkoxy group include a halogenated product of the lower alkoxy group such as a trifluoromethoxy group.
  • q is an integer from 0 to 4.
  • q 0 It is preferable that the carboxy group bonded to both ends of the benzene ring and the oxygen atom of the ether are present at the para position with respect to each other.
  • R 1 is a group represented by the following general formula (8), and m is an integer of 0 or 1.
  • X represents a substituent, for example, the same as X in the general formula (7).
  • X ′ represents the same or different.
  • P is an integer of 0 or 1.
  • R 2 represents a divalent aromatic group.
  • the divalent aromatic group include an o-, m- or p-phenylene group, or naphthalene, biphenyl, anthracene, o-, m- or p-terphenyl, phenanthrene, Examples include dibenzofuran, biphenyl ether, or a divalent group from which biphenylsulfone power is also induced.
  • These divalent aromatic groups may be substituted with a hydrogen atom, a lower alkyl group or a lower alkoxy group directly bonded to the aromatic.
  • an aromatic group whose group power is selected as well as the following general formula (9)-(15) is preferable.
  • R 1 is preferably a group represented by the following general formula (16).
  • R 2 and p are Synonymous with (8).
  • n represents a degree of polymerization, for example, in the range of 2-5000, and preferably in the range of 5-500.
  • the polymerization may be a repetitive unit force having the same structure or a repetitive unit force having a different structure. In the latter case, the polymerization form of the repeating unit may be block polymerization or random polymerization.
  • the terminal of the polyaryletherketone represented by the general formula (7) is preferably such that the P-tetrafluorobenzoylene group side is fluorine and the oxyalkylene group side is hydrogen atom.
  • a polyaryl ether ketone is represented, for example, by the following general formula (17). I can do it.
  • n represents the same degree of polymerization as in the general formula (7).
  • polyaryl ether ketone represented by the general formula (7) include those represented by the following general formulas (18) to (21). In (21), n represents the same degree of polymerization as in the general formula (7).
  • examples of the polyamide or polyester include polyamide and polyester described in JP-T-10-508048.
  • the unit can be represented, for example, by the following general formula (22).
  • Y is a ⁇ atom or a ⁇ group.
  • represents, for example, a covalent bond, a C alkylene group, a halogenated C alkylene group, a CH group, a C (CX) group (where X is
  • the group powers such as 22 and N (R) are also at least one type of group selected and may be the same or different.
  • R represents a C alkyl group and a C
  • It is at least one kind of alkyl group, and is located at the meta or para position with respect to the carbonyl functional group or the Y group.
  • P is an integer from 0 to 3
  • q is an integer from 1 to 3
  • r is an integer from 0 to 3.
  • the A is, for example, a hydrogen atom, a halogen atom, a C alkyl group, a C
  • a ′ is, for example, halogen
  • substituent on the phenolic ring of the substituted phenyl group include a halogen atom, a C alkyl group,
  • Examples include an alkyl halide group and a combination thereof.
  • the t is an integer from 0 to 4, and the z is an integer from 0 to 3.
  • the repeating units of the polyamide or polyester represented by the general formula (22) those represented by the following general formula (23) are preferable.
  • A, A ′ and Y are as defined in the general formula (22), and V is an integer of 0 to 3, preferably an integer of 0 to 2. .
  • X and y are each 0 or 1, but not both 0.
  • the polymer having a positive orientation birefringence forming the birefringence A layer is preferably a polyester resin among the polymers having the positive orientation birefringence.
  • the mixing ratio of the mixture of the polymer having the negative orientation birefringence and the polymer having the positive orientation birefringence forming the birefringence A layer is ny ⁇ nz> nx or nz> naaaay. It can be appropriately determined from the viewpoint of obtaining a birefringent A layer having a characteristic of> nx.
  • the polymer exhibiting negative orientation birefringence and the polymer exhibiting positive orientation birefringence contained in the mixture forming the birefringent A layer are preferably compatible with each other.
  • the combination of the polymer having the negative orientation birefringence and the polymer having the positive orientation birefringence a combination of polymethyl methacrylate and polyethylene oxide, a combination of polystyrene and polyphenylene ether, Combination of styrene 'maleimide copolymer and polyphenylene ether; combination of olefin' maleimide copolymer and acrylo-tolyl; styrene copolymer; combination of styrene 'maleic anhydride copolymer and polycarbonate; For example, yarn bonding of polystyrene and polycarbonate may be mentioned.
  • the birefringent B layer may have a characteristic of nx ⁇ ny> nz.
  • the birefringent B layer having such characteristics is preferably formed by a polymer having the positive orientation birefringence.
  • the birefringent B layer is more preferably formed of polyimide because of having high birefringence characteristics among the polymers having the positive orientation birefringence.
  • the birefringent B layer preferably satisfies the condition represented by the following expression (1), for example, in the VA mode and the OCB mode, since black display of the liquid crystal cell can be favorably compensated.
  • the birefringent B layer preferably satisfies 0.011 ⁇ 0.15.0.015 ⁇
  • a birefringent B layer having the property of nx ⁇ ny> nz can be formed by those skilled in the art.
  • the birefringent optical film of the present invention includes at least one birefringent A layer and at least one birefringent B layer. As described above, such a birefringent optical film has a wide nd value and a large Rth value, so that when incorporated in a liquid crystal display device or the like, a wide viewing angle and a good contrast are obtained. I can do it.
  • the thickness of the birefringent A layer is not particularly limited.
  • 00 ⁇ m preferably 1 to 300 ⁇ m, more preferably 1 to 200 ⁇ m.
  • the thickness of the birefringent B layer is also not particularly limited, but is, for example, 0.1 to 30 m, preferably 0.3 to 25 m, and more preferably 0.5 to 20 m. It is.
  • the birefringent A layer may be laminated on one side or both sides of the birefringent B layer, for example.
  • the number of layers may be one or two or more.
  • the birefringent A layer, the The birefringent layer may be directly laminated on the layer B, or another layer may be disposed between the layers. The same applies to the birefringent B layer as to the birefringent A layer.
  • the birefringent optical film of the present invention preferably satisfies the condition represented by the following formula (4).
  • the birefringent optical film of the present invention that satisfies such conditions does not lower the front contrast when incorporated in a liquid crystal display device or the like.
  • the orientation axis accuracy is as defined above.
  • the birefringent optical film more preferably satisfies 2 ° ⁇ orientation axis accuracy ⁇ 2 °, and still more preferably satisfies -1.5 ° ⁇ orientation axis accuracy ⁇ 1.5 °.
  • the birefringent optical film preferably satisfies 2 ° ⁇ alignment axis accuracy ⁇ 2 °.
  • the birefringent optical film of the present invention preferably has reverse wavelength dispersion characteristics.
  • the reason for this is that if the birefringent optical film of the present invention is incorporated in a liquid crystal display device or the like, coloring of the screen is further prevented if the film has the reverse wavelength dispersion characteristic.
  • the inverse wavelength dispersion characteristic means that as the wavelength increases, the in-plane retardation value (And) increases.
  • the birefringent optical film of the present invention having a reverse wavelength dispersion characteristic can be used as a reverse dispersion film.
  • the birefringent optical film satisfies the conditions represented by the following formulas (5) and (6). If the conditions shown in the above formulas (5) and (6) are satisfied, the birefringent optical film also has a power having an inverse wavelength dispersion characteristic. That is, in the present invention, the birefringent layers A and B have their slow axes orthogonal to each other, and the in-plane retardation An of the entire optical film is the in-plane retardation A of the birefringent A layer. Difference between nd and in-plane retardation A nd of birefringent B layer
  • the change A in the wavelength dispersion characteristic of the absolute value of the in-plane retardation An of And is the in-plane phase of the birefringent B layer.
  • the wavelength dispersion characteristic of the optical film of the present invention is the difference between the in-plane retardation of the two layers A and B, and consequently reverse wavelength dispersion.
  • Figures 1 and 2 These graphs are for explaining the wavelength dispersion characteristics, and the present invention is not limited to these graphs.
  • the birefringent optical film of the present invention can be produced, for example, by preparing the birefringent A layer and forming the birefringent B layer thereon.
  • the birefringent A layer is prepared.
  • the birefringence A layer is formed of, for example, a polymer having negative orientation birefringence, a polymer having positive orientation birefringence, or a polymer having negative orientation birefringence and a polymer having positive orientation birefringence. Mixture forces are also formed.
  • the polymer is as described above.
  • the birefringent A layer is formed, for example, of a polymer having a negative orientation birefringence, a polymer having a negative orientation birefringence by a conventionally known method, for example, extrusion molding, a calendar method, a solvent casting method, film casting, or the like. It can be formed from a polymer having refraction, or a mixture of a polymer having negative orientation birefringence and a polymer having positive orientation birefringence.
  • a solution or melt of the polymer forming the birefringent A layer is coated on a suitable substrate, and solidified by an appropriate means (heating or cooling).
  • the material is also peeled off to obtain a film.
  • the substrate is not particularly limited, and a substrate of an inorganic compound (SUS belt, copper thin plate, glass, Si wafer, or the like), a polymer film, a metal plate, or the like can be used.
  • Specific examples of the material for forming the polymer film of the base material include polyolefin (polyethylene, polypropylene, and the like), amorphous polyolefin, polyimide, polyamide imide, polyamide, polyetherimide, polyetheretherketone, and polyetheretherketone.
  • a liquid crystal polymer or the like can be used as a material for forming the base material.
  • a thermoplastic resin having a substituted imide group or an unsubstituted imide group in a side chain and a thermoplastic resin having a side chain as described in JP-A-2001-343529 (WO 01/37007).
  • a thermoplastic resin having a substituted or unsubstituted file group and a -tolyl group include, for example, a mixture of an alternating copolymer of isobutene and N-methylmaleimide, and a copolymer of acrylonitrile and styrene.
  • the resin can be produced by extrusion molding, a calendar method, a solvent casting method, or the like. Further, the polymer film is preferably a stretched (uniaxial, biaxial, etc.) stretched polymer film. That's right.
  • a film which has been subjected to a surface treatment such as a hydrophilic treatment, a hydrophobic treatment, and a treatment for reducing the solubility of a substrate can be used.
  • the thickness of the polymer film is usually from 10 ⁇ m to 200 ⁇ m, preferably from 20 ⁇ m to 150 ⁇ m, particularly preferably from 30 ⁇ m to 100 ⁇ m.
  • the polymer concentration in the polymer solution forming the birefringent A layer is not particularly limited.
  • the polymer is dissolved in 100 parts by weight of the solvent.
  • the amount of the polymer is at least 0.5 part by weight with respect to 100 parts by weight of the solvent, a viscosity suitable for coating is obtained, so that it is preferable.
  • the amount is 50 parts by weight or less, a viscosity capable of forming a smooth coated surface is obtained, so that it is preferable.
  • the solvent of the polymer solution forming the birefringent A layer is not particularly limited, and may be appropriately determined depending on the type of the polymer as long as the polymer can be dissolved. Specific examples include halogenated hydrocarbons such as chloroform, dichloromethane, carbon tetrachloride, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, cyclobenzene, orthocyclobenzene, and the like; phenol, parachlorophenol, and the like.
  • Phenols aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene, and 1,2-dimethoxybenzene; acetone, methylethylketone, methylisobutylketone, cyclohexanone, cyclopentanone, Ketone solvents such as 2-pyrrolidone and N-methylolone 2-pyrrolidone; ester solvents such as ethyl acetate and butyl acetate; t-butyl alcohol, glycerin, ethylene glycolone, triethylene glycol, ethylene glycol monomethyl ether, and diethyl ether Alcohol-based solvents such as lene glycol dimethyl ether, propylene glycol, dipropylene glycol, 2-methyl-2,4-pentanediol; amide-based solvents such as dimethylformamide and dimethylacetamide; -Tolyl solvents; ether solvents such as getyl ether
  • the polymer solution for forming the birefringent A layer may further contain, for example, a stabilizer if necessary. And various additives such as plasticizers, metals, and compatibilizers.
  • the amount of the additive is, for example, 0 to 50% by weight based on the polymer, and preferably, 0-30% by weight.
  • the polymer solution forming the birefringent A layer may contain another different resin.
  • the other resin include various general-purpose resins, engineering plastics, thermoplastic resins, and thermosetting resins.
  • Examples of the general-purpose resin include polyethylene (PE), polypropylene (PP), polystyrene (PS), polymethyl methacrylate (PMMA), ABS resin, and AS resin.
  • Examples of the engineering plastic include polyacetate (POM), polycarbonate (PC), polyamide (PA: nylon), polyethylene terephthalate (PET), and polybutylene terephthalate (PBT).
  • Examples of the thermoplastic resin include polyphenylene sulfide (PPS), polyether sulfone (PES), polyketone (PK), polyimide (PI), polycyclohexane dimethanol terephthalate (PCT), and polyarylate (PAR).
  • Examples of the thermosetting resin include an epoxy resin and a phenol novolak resin.
  • the blending amount is, for example, 0 to 50% by weight based on the polymer. %, Preferably from 0 to 30% by weight.
  • the coating method of the polymer solution for forming the birefringent A layer includes, for example, a spin coating method, a roll coating method, a flow coating method, a die coating method, a blade coating method, a printing method, a diving coating method, and a casting method.
  • a film forming method, a bar coating method, a gravure printing method and the like can be mentioned.
  • a superposition method of a polymer layer can be adopted as necessary.
  • the melt of the polymer forming the birefringent A layer is not particularly limited, and examples thereof include a solution obtained by heating and melting the polymer as described above.
  • the melt of the polymer forming the birefringent A layer may further contain, for example, various additives such as the above-mentioned stabilizers, plasticizers and metals, and other different resins, if necessary. Good.
  • a coating layer of a polymer forming the birefringent A layer applied on the base material is formed. Solidify to form a layer on one side of the substrate.
  • the method of solidification is not particularly limited as long as the polymer forming the birefringent A layer is solidified to form a layer, and examples thereof include drying such as natural drying and heat drying. I can do it.
  • the conditions are also determined by, for example, the type of the polymer forming the birefringent A layer and, in the case of a solution, the force which can be appropriately determined according to the type of the solvent.
  • the temperature is usually 40 ° C. to 250 ° C. And preferably 50 ° C to 200 ° C.
  • the solidification may be performed at a constant temperature, or may be performed while increasing or decreasing the temperature stepwise.
  • the solidification time is not particularly limited, but when a solution of the polymer forming the birefringent A layer is used, it is necessary to use conditions for removing the solvent by solidification.
  • the setting time is 10 seconds to 60 minutes, preferably 30 seconds to 30 minutes.
  • the thickness of the layer formed on the substrate is not particularly limited, but is, for example, in a range of 0.2 to 100 m, preferably in a range of 0.5 to 50 m, and more preferably. It is in the range of 11-20 m.
  • the birefringent A layer can be formed on the base material.
  • This birefringent A layer is also used as a film in the following steps because the base material is also peeled off and used as a film in the following steps. Is also good.
  • the peeling method includes a method of mechanically peeling using a roll or the like, a method of mechanically peeling after immersing in a poor solvent for all the materials of the laminate, and a method of applying ultrasonic waves in the poor solvent. And a method in which a temperature change is applied by utilizing the difference in the coefficient of thermal expansion between the base material and the film layer to perform separation. Since the releasability of the substrate and the film layer differs depending on the material used for forming the film layer and the adhesion between the substrate and the substrate, the most suitable method can be adopted as appropriate.
  • the birefringent B layer is disposed on the birefringent A layer to obtain the birefringent optical finolem of the present invention.
  • birefringent A layer for example, a solution or a melt of a polymer having a positive orientation birefringence is applied and solidified to form a birefringent B layer on the birefringent A layer. Can be formed to obtain the birefringent optical film of the present invention.
  • the birefringent layer A contains a polymer having a positive orientation birefringence
  • the positive orientation birefringence forming the birefringent layer B is provided.
  • the polymer having the fold may be the same as or different from the polymer.
  • the method for applying the polymer melt and the method and conditions for solidifying the polymer solution or the melt forming the birefringent B layer are the same as those described for the birefringent A layer.
  • the birefringence B layer is formed, for example, by applying a solution or a melt of a polymer having a positive orientation birefringence on an appropriate base material, and curing the applied solution by heating or cooling.
  • the material can be peeled off from the substrate and formed separately.
  • the birefringent B layer thus separately formed is bonded to the birefringent A layer by using an adhesive or a pressure-sensitive adhesive, thereby comprising the birefringent A layer and the birefringent B layer.
  • a refractive optical film can also be formed.
  • the adhesive or pressure-sensitive adhesive used for bonding is not particularly limited, but is preferably one having excellent optical transparency and exhibiting appropriate wettability, cohesiveness and adhesive pressure-sensitive adhesive properties.
  • the adhesive include an adhesive made of a polymer such as an acrylic, a butyl alcohol, a silicone, a polyester, a polyurethane, and a polyether, and a rubber adhesive.
  • Adhesives which also have a water-soluble cross-linking agent for vinyl alcohol polymers such as boric acid, borax, dartartaldehyde, melamine, oxalic acid and the like can also be used.
  • Examples of the pressure-sensitive adhesive include a pressure-sensitive adhesive prepared by appropriately using a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyether, or a synthetic rubber as a base polymer.
  • a polymer such as an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyether, or a synthetic rubber as a base polymer.
  • the birefringent optical film of the present invention comprises, for example, preparing a precursor layer of the birefringent A layer, forming a precursor layer of the birefringent B layer thereon, and forming a laminate of the precursor layer. Stretching or shrinking.
  • the precursor layer of the birefringent A layer has the same material and It can be formed using a forming method. Also, the precursor layer of the birefringent B layer can be formed using the same material and the same forming method as the above-described birefringent B layer. For example, the birefringent A layer has a property of ny ⁇ nz> nx or nz>ny> nx
  • the precursor layer of the birefringent A layer does not have the above properties.
  • the precursor layer of the birefringent B layer also differs from the birefringent B layer only in that it does not have the property of nx ⁇ ny> nz.
  • the stretching method is not particularly limited, and may be uniaxial stretching or biaxial stretching.
  • the stretching direction may be either the MD direction or the TD direction of the film of the laminate.
  • the specific stretching method is not particularly limited, and a force that can use a known method as appropriate.
  • the birefringent optical film and the polarizing plate or the polarizer can be easily bonded in a long length, so that the maximum bending in the plane of the birefringent optical film can be achieved.
  • An elliptically polarizing plate having an arrangement in which the direction of the fold ratio and the absorption axis of the polarizing plate are orthogonal to each other can be obtained, so that a so-called “Roll To Roll” can be manufactured, and the manufacturing efficiency can be improved.
  • the stretching ratio of the laminate varies depending on the stretching method, but is usually 0 to 100% of the length of the unstretched laminate.
  • the stretch ratio of the laminate is preferably 0 to 70% with respect to the length of the unstretched laminate.
  • the temperature at which the laminate is stretched is appropriately selected according to the glass transition point (Tg) of the laminate to be used, the type of additive in the laminate, and the like.
  • the temperature at which the laminate is stretched is, for example, 40 to 250 ° C, preferably 80 to 220 ° C, and particularly preferably 100 to 200 ° C.
  • the temperature at which the laminate is stretched is preferably around Tg or above Tg of the laminate to be stretched.
  • the method for shrinking the laminate is not particularly limited, but an ordinary method can be used.
  • a precursor is used to form the precursor layer of the birefringent A layer
  • the laminate is shrunk by calorie heating or cooling the laminate to shrink the entire laminate.
  • a substrate having a contracting ability such as a heat-shrinkable film can be used.
  • heat-shrinkable film examples include films of polyester, polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyvinyl chloride, and polyvinylidene.
  • a precursor layer of the birefringent A layer or a precursor layer of the birefringent B layer is prepared.
  • the birefringent A layer or the birefringent B layer may be formed by stretching or shrinking the precursor layer as described above.
  • the birefringent A layer or the birefringent B layer is formed by stretching a precursor layer of a birefringent A layer or a precursor layer of a birefringent B layer formed from a polymarker having a positive orientation birefringence. Is preferred.
  • the birefringent optical film includes, for example, three birefringent A layers
  • the birefringent optical film can be formed as follows. First, three precursor layers of the birefringent A layer are prepared and laminated. An adhesive layer is formed at the boundary between the layers. That The three-layer laminate can be integrally stretched or shrunk as described above to form the birefringent A layer of the three-layer laminate.
  • the birefringent optical film of the present invention preferably satisfies the condition represented by the following formula (4).
  • the birefringent optical film of the present invention which satisfies such conditions has a practical force when incorporated in a liquid crystal display device or the like.
  • the orientation axis accuracy is as defined above.
  • the birefringent optical film of the present invention preferably satisfies the conditions represented by the following formulas (5) and (6). This is because, if the conditions represented by the above formulas (5) and (6) are satisfied, the birefringent optical film has the inverse wavelength dispersion characteristics as described above, and the coloring of the screen is further prevented.
  • the And, And, a and ⁇ are as defined above.
  • the birefringent optical film of the present invention can be used for various optical applications as a film alone or as a laminate in combination with another optical film or the like, if necessary, specifically, for various liquid crystal display devices. It can be used as an optical compensation member.
  • an industrially produced iodine-based or dye-based polarizing plate (or polarizer) with the birefringent optical film of the present invention, the function of compensating and adjusting the birefringence of the liquid crystal display element is provided. Can be obtained.
  • the polarizing plate used in any combination with the birefringent optical film of the present invention is not particularly limited, but its basic configuration is such that a protective layer (film) is laminated on one or both sides of a polarizer. It is.
  • the polarizer is not particularly limited.
  • a conventionally known method is used to adsorb and dye a dichroic substance such as iodine or a dichroic dye on various films. Those prepared by crosslinking, stretching and drying can be used.
  • a film that transmits linearly polarized light when natural light is incident thereon is preferably excellent in light transmittance and polarization degree.
  • Various films for adsorbing the dichroic substance include, for example, polyvinyl chloride.
  • PVA Alcohol
  • partially formalized PVA-based film partially formalized PVA-based film
  • ethylene-butyl acetate copolymer-based partially quenched film cellulose-based film and other hydrophilic polymer films, and the like.
  • a polyene oriented film such as a dehydrated product of PVA or a dehydrochlorinated product of polychlorinated vinyl can be used.
  • a PVA-based film in which iodine or a dichroic dye is adsorbed and oriented is preferable.
  • the thickness of the polarizing film is usually in the range of 118 to 80 m, but is not limited thereto.
  • the protective layer (film) is not particularly limited, and a conventionally known transparent film can be used.
  • the protective layer (film) is excellent in transparency, mechanical strength, heat stability, moisture barrier property, isotropy, and the like. Are preferred.
  • Specific examples of the material of such a transparent protective layer include cellulosic resins such as triacetylcellol, polyester, polycarbonate and polyamide.
  • Transparent resins such as polyimide, polyethersulfone, polysulfone, polystyrene, polynorbornene, polyolefin, acrylic, and acetate, and thermoplastic resins having a substituted imido group or unsubstituted imide group in the side chain.
  • thermoplastic resin having a substituted phenyl group or an unsubstituted phenyl group and a -tolyl group in the side chain and a liquid crystal polymer.
  • the above-mentioned thermosetting resin or ultraviolet curable resin such as acrylic, urethane, acrylic urethane, epoxy, and silicone resins can also be used.
  • a TAC film whose surface is treated with an alkali or the like is preferred from the viewpoint of polarization characteristics and durability.
  • Examples of the protective layer include a polymer film described in JP-A-2001-343529 (WO01Z37007).
  • Examples of the polymer material include a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenol group or a -tolyl group in a side chain.
  • a resin composition can be used, for example, a resin composition having an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile'styrene copolymer.
  • the polymer film may be, for example, an extruded product of the resin composition.
  • the protective layer is not colored, for example.
  • the retardation value (Rth) in the film thickness direction represented by the following formula is preferably in the range of 1S 90 nm- + 75 nm, more preferably 80 nm- + 60 nm, and particularly preferably -70 nm. — + The range is 45 nm.
  • coloring (optical coloring) of the polarizing plate caused by the protective film can be sufficiently eliminated.
  • nx, ny, and nz are the same as described above, and d indicates the film thickness.
  • Rth ⁇ [(nx + ny) / 2]-nz ⁇ ⁇ d
  • the transparent protective layer may further have an optical compensation function.
  • the transparent protective layer having the optical compensation function is used, for example, to prevent coloring and the like and to increase the viewing angle for good visibility due to a change in the viewing angle based on the phase difference in the liquid crystal cell.
  • Known objectives can be used. Specifically, for example, various stretched films obtained by uniaxially or biaxially stretching the transparent resin described above, an alignment film such as a liquid crystal polymer, and a laminate in which an alignment layer such as a liquid crystal polymer is disposed on a transparent base material. can give.
  • the liquid crystal polymer alignment film is preferred because it can achieve a wide viewing angle with good visibility.
  • the optical compensation layer which also has a tilted alignment layer force of a discotic / nematic liquid crystal polymer, is used as the optical compensation layer.
  • An optical compensation retarder supported by a triacetyl cellulose film or the like is preferred. Examples of such an optical compensation retarder include commercially available products such as “WV film” manufactured by Fuji Photo Film Co., Ltd.
  • the optical compensation retardation plate may be one in which optical characteristics such as retardation are controlled by laminating two or more film supports such as the retardation film and a triacetyl cellulose film.
  • the thickness of the transparent protective layer is not particularly limited, and is, for example, a force that can be appropriately determined according to the phase difference, the protection strength, and the like. For example, it is 500 ⁇ m or less, preferably 5 to 300 ⁇ m, more preferably Or between 5 and 150 m.
  • the transparent protective layer can be formed by a conventional method such as, for example, a method of applying the various transparent resins to a polarizing film, a method of laminating the transparent resin film, the optical compensation retardation plate, or the like on the polarizing film. It can be appropriately formed by a known method, and a commercially available product can also be used.
  • the transparent protective layer may be further subjected to, for example, a hard coat treatment, an antireflection treatment, a treatment for preventing or diffusing sticking, an antiglare, or the like.
  • the hard coat treatment is for the purpose of preventing scratches on the polarizing plate surface and the like.
  • a hardened film formed of a curable resin and having excellent hardness and slipperiness is formed on the surface of the transparent protective layer. This is the process of forming.
  • the curable resin for example, an ultraviolet curable resin such as a silicone-based, urethane-based, acrylic-based, or epoxy-based resin can be used, and the treatment can be performed by a conventionally known method.
  • the purpose of preventing stateing is to prevent adhesion between adjacent layers.
  • the antireflection treatment is for preventing reflection of external light on the polarizing plate surface, and can be performed by forming a conventionally known antireflection layer or the like.
  • the anti-glare treatment is for the purpose of preventing visual disturbance of light transmitted through the polarizing plate due to reflection of external light on the surface of the polarizing plate, and is performed by, for example, a conventionally known method. It can be performed by forming a fine uneven structure on the surface of the transparent protective layer. Examples of the method of forming such a concavo-convex structure include a method of roughening by sandblasting or embossing, and a method of forming the transparent protective layer by blending transparent fine particles with the transparent resin as described above. can give.
  • the transparent fine particles include silica, alumina, titer, zirconia, oxidized tin, indium oxide, oxidized cadmium, antimony oxidized, and the like. It is also possible to use inorganic fine particles or organic fine particles composed of crosslinked or uncrosslinked polymer particles.
  • the average particle size of the transparent fine particles is not particularly limited, but is, for example, in the range of 0.5 to 20 m.
  • the blending ratio of the transparent fine particles is not particularly limited, but is, for example, in the range of 2 to 70 parts by weight, preferably 5 to 50 parts by weight per 100 parts by weight of the transparent resin as described above. .
  • the antiglare layer containing the transparent fine particles can be used, for example, as the transparent protective layer itself, or may be formed as a coating layer or the like on the surface of the transparent protective layer. Further, the anti-glare layer may also serve as a diffusion layer (such as a visual compensation function) for diffusing light transmitted through the polarizing plate to increase the viewing angle.
  • a diffusion layer such as a visual compensation function
  • the anti-reflection layer, anti-staking layer, diffusion layer, anti-glare layer and the like are provided separately from the transparent protective layer, for example, as an optical layer which also has a sheet or the like provided with these layers. You may laminate
  • the method of laminating the components is not particularly limited, and can be performed by a conventionally known method.
  • the same pressure-sensitive adhesives and adhesives as described above can be used, and the type of the pressure-sensitive adhesive or the Can decide.
  • the adhesive include an acrylic adhesive, a vinyl alcohol adhesive, a silicone adhesive, a polyester adhesive, a polyurethane adhesive, and a polyether adhesive, and a rubber adhesive.
  • the above-mentioned pressure-sensitive adhesives and adhesives have excellent light transmittance and degree of polarization, which are hardly peeled off even under the influence of humidity or heat.
  • a PVA-based adhesive is preferable, for example, from the viewpoint of the stability of the bonding treatment and the like.
  • These adhesives and pressure-sensitive adhesives may be applied to the surface of the polarizer or the transparent protective layer as they are, for example, and a layer such as a tape or sheet composed of the adhesive or pressure-sensitive adhesive may be applied to the surface. It may be arranged. Further, for example, when prepared as an aqueous solution, other additives or a catalyst such as an acid may be blended as necessary.
  • an adhesive layer is not particularly limited, but is, for example, lnm-500 nm, preferably lOnm-300 nm, and more preferably 20 nm-100 nm.
  • an adhesive such as an acrylic polymer / a vinyl alcohol polymer can be employed.
  • the birefringent optical film of the present invention can also be used in combination with various retardation plates, diffusion control films, brightness enhancement films, and the like.
  • the retardation plate include those obtained by subjecting a polymer to -axis extension, those subjected to biaxial extension, those subjected to a Z-axis alignment treatment, and those coated with a liquid crystalline polymer.
  • the diffusion control film a film using diffusion, scattering, and refraction for controlling a viewing angle, a film using diffusion, scattering, and refraction for controlling glare, scattered light, and the like related to resolution, and the like can be used.
  • a brightness enhancement film using selective reflection of cholesteric liquid crystal and a ⁇ 4 plate, a scattering film utilizing anisotropic scattering due to a polarization direction, or the like can be used. It may also be used in combination with a wire grid polarizer!
  • the laminated polarizing plate according to the present invention can be preferably used for forming various liquid crystal display devices and the like. However, when applied, a reflective plate or a semi-transparent reflective film may be provided via an adhesive layer or an adhesive layer as necessary. One or two or more other optical layers such as a plate and a brightness enhancement film can be laminated.
  • a reflective polarizing plate or a transflective polarizing plate An example of a reflective polarizing plate or a transflective polarizing plate will be described.
  • the reflective type In the polarizing plate a reflective plate is further laminated on the laminated polarizing plate of the present invention, and in the semi-transmissive reflective polarizing plate, a semi-transmissive reflective plate is further laminated on the laminated polarizing plate of the present invention.
  • the reflection type polarizing plate is usually arranged on the back side of a liquid crystal cell, and is used for a liquid crystal display device (reflection type liquid crystal display device) of a type that reflects incident light from a viewing side (display side) to display. Can be used.
  • a liquid crystal display device reflection type liquid crystal display device
  • Such a reflective polarizing plate has an advantage that, for example, a built-in light source such as a backlight can be omitted, so that the liquid crystal display device can be made thinner.
  • the reflective polarizing plate can be manufactured by a conventionally known method such as a method of forming a reflective plate made of metal or the like on one surface of a polarizing plate exhibiting the elastic modulus. Specifically, for example, one surface (exposed surface) of the transparent protective layer in the polarizing plate is matted as necessary, and a metal foil made of a reflective metal such as aluminum is deposited on the surface. A reflection type polarizing plate formed as a reflection plate may be used.
  • a reflective polarizer is formed by forming a reflective plate reflecting the fine uneven structure on a transparent protective layer having a fine uneven structure formed by adding fine particles to various transparent resins as described above. And so on.
  • a reflector having a fine uneven structure on its surface has an advantage that, for example, diffused incident light can be diffused by irregular reflection, directivity can be prevented, and uneven brightness can be suppressed.
  • Such a reflection plate can be formed, for example, on the uneven surface of the transparent protective layer by a conventionally known method such as a vacuum deposition method, an ion plating method, or a sputtering method. ⁇ ⁇ ⁇ It can be formed as a metal deposition film.
  • a reflective sheet in which a reflective layer is provided on a suitable film such as the transparent protective film as the reflective plate. Etc. may be used. Since the reflection layer of the reflection plate is usually made of a metal, for example, from the viewpoint of preventing a decrease in reflectance due to oxidation, a long-term persistence of the initial reflectance, and avoiding separate formation of a transparent protective layer. It is preferable that the reflection layer of the reflection layer is covered with the film, the polarizing plate, or the like.
  • the transflective polarizing plate has a transflective reflecting plate instead of the reflecting plate in addition to the reflective polarizing plate.
  • the semi-transmissive reflector include a half mirror that reflects light on a reflective layer and transmits light.
  • the transflective polarizing plate is usually provided on the back side of a liquid crystal cell, and reflects incident light from the viewing side (display side) when a liquid crystal display device or the like is used in a relatively bright atmosphere.
  • Liquid crystal display device that displays an image and displays the image using a built-in light source such as a backlight that is built into the back side of a transflective polarizing plate in a relatively dark atmosphere.
  • the semi-transmissive polarizing plate can save energy for use of a light source such as a backlight in a bright atmosphere, and can be used by using the built-in light source even in a relatively dark atmosphere. Useful for forming liquid crystal display devices.
  • the brightness enhancement film is not particularly limited.
  • linearly polarized light having a predetermined polarization axis such as a multilayer thin film of a dielectric or a multilayer laminate of thin films having different refractive index anisotropy is used.
  • a material that transmits light and reflects other light can be used.
  • An example of such a brightness enhancement film is “D-BEF” (trade name, manufactured by 3M).
  • a cholesteric liquid crystal layer particularly an alignment film of a cholesteric liquid crystal polymer, or a film in which the alignment liquid crystal layer is supported on a film substrate can be used.
  • Nitto Denko's product name ⁇ PCF350 '', Merck's product name ⁇ Transmax '', etc. can give.
  • the optical member in which two or more optical layers are laminated can be formed, for example, by a method of sequentially and separately laminating in a manufacturing process of a liquid crystal display device or the like. For example, there is an advantage that, for example, the stability of quality and the workability of assembling are excellent, and the manufacturing efficiency of a liquid crystal display device or the like can be improved.
  • various bonding means such as an adhesive layer can be used for lamination as described above.
  • the birefringent optical film, the laminated polarizing plate, and the like of the present invention further have a pressure-sensitive adhesive layer or an adhesive layer, for example, because they can be easily laminated on another member such as a liquid crystal cell.
  • a pressure-sensitive adhesive layer or an adhesive layer for example, because they can be easily laminated on another member such as a liquid crystal cell.
  • these can be arranged on one or both sides of the birefringent optical film, the laminated polarizing plate or the like.
  • the material of the adhesive layer is not particularly limited, and a conventionally known material such as an acrylic polymer can be used.
  • an adhesive layer or the like which contains fine particles and exhibits light diffusibility may be used.
  • the formation of the pressure-sensitive adhesive layer on the surface of the optical film, the laminated polarizing plate, or the like is performed by, for example, applying a solution or a melt of various adhesive materials to the optical film or the laminated film by a developing method such as casting and coating.
  • the adhesive (contact) adhesion layer provided on the birefringent optical film, the laminated polarizing plate, or the like is exposed on the surface, contamination prevention or the like is performed until the adhesive (contact) adhesion layer is put to practical use. It is preferable to temporarily cover with a separator for the purpose.
  • This separator can be formed by, for example, a method of providing a release coat with a release agent such as a silicone-based, long-chain alkyl-based, fluorine-based, or molybdenum sulfate on an appropriate film such as the transparent protective film. .
  • the layers such as the polarizer and the transparent protective film constituting the birefringent optical film and the laminated polarizing plate, and the viscous (contact) adhesion layer are made of, for example, a salicylate compound, a benzophenone compound, A triazole-based compound, a compound having an ultraviolet absorbing ability by an appropriate method such as a method of treating with a UV-absorbing agent such as a cyanoacrylate-based compound or a -chels complex-based compound may be used.
  • the birefringent optical film and the laminated polarizing plate of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the polarizing plate is arranged on one side or both sides of a liquid crystal cell.
  • the present invention can be used for a liquid crystal display device such as a reflection type, a transflective type, and a transmissive / reflective type.
  • the liquid crystal cell forming the liquid crystal display device is arbitrary, and for example, an active matrix drive type represented by a thin film transistor type, a simple matrix drive type represented by a twisted nematic type and a one-part istnematic type, etc. It may use a liquid crystal cell of an appropriate type.
  • STN Super Twisted Nematic
  • TN Transmission Nematic
  • IPS In-Plane Switching
  • VA Very Aligned
  • OCB Optically Aligned Birefringence
  • HAN Hybrid Aligned Nematic
  • ASM Analog Aligned Microcell
  • ferroelectric / anti-ferroelectric cell and those having regular V ⁇ orientation division and those having random orientation division are included.
  • the birefringent optical film of the present invention is very excellent in optical compensation of VA (Vertical Aligned) cells.
  • the optical film of the present invention is very excellent in optical compensation of a VA (Vertical Aligned) cell, and thus can be most preferably used as a viewing angle compensation film for a VA mode liquid crystal display device.
  • VA Very Aligned
  • the liquid crystal cell usually has a structure in which liquid crystal is injected into a gap between opposing liquid crystal cell substrates.
  • the liquid crystal cell substrate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate. Can be used.
  • the material of the plastic substrate is not particularly limited, and may be a conventionally known material.
  • polarizing plates and optical members are provided on both sides of the liquid crystal cell, they may be of the same type or different. Further, when forming the liquid crystal display device, one or more layers of appropriate components such as a prism array sheet, a lens array sheet, a light diffusion plate, and a backlight can be arranged at appropriate positions.
  • the birefringent optical film and the laminated polarizing plate of the present invention are not limited to the liquid crystal display device as described above.
  • an organic electroluminescent (EL) display, a plasma display (PD) It can also be used for self-luminous display devices such as FED (Field Emission Display).
  • FED Field Emission Display
  • a self-luminous flat display for example, by setting the in-plane retardation value ⁇ nd of the birefringent layer of the birefringent optical film of the present invention to ⁇ / 4, circularly polarized light can be obtained.
  • the EL display device of the present invention is a display device having the birefringent optical film or the laminated polarizing plate of the present invention, and the EL device may be either an organic EL or an inorganic EL.
  • an optical film such as a polarizer or a polarizing plate together with a ⁇ / 4 plate, for example, to prevent reflection of electrode force in a black state.
  • the laminated polarizing plate / birefringent optical film of the present invention when either polarized light of circularly polarized light or elliptically polarized light is emitted, or when natural light is emitted in the front direction, but the emitted light in the oblique direction is partially polarized, it is very Useful.
  • the organic EL display device generally has a light emitting body (organic EL light emitting body) in which a transparent electrode, an organic light emitting layer, and a metal electrode are laminated in this order on a transparent substrate.
  • the organic light-emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer having a triphenylamine derivative or the like and a light-emitting layer of a fluorescent organic solid such as anthracene or the like.
  • Various combinations such as a laminate of such a light emitting layer and an electron injection layer made of a perylene derivative, and a laminate of the hole injection layer, the light emitting layer, and the electron injection layer are given.
  • the organic EL display device at least one electrode needs to be transparent in order to extract light emitted from the organic light emitting layer. Therefore, a transparent conductive material such as indium tin oxide (ITO) is usually used. A transparent electrode formed of a body is used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material with a small work function for the cathode, and metal electrodes such as Mg-Ag and A1-Li are usually used. .
  • ITO indium tin oxide
  • the organic light emitting layer is formed of an extremely thin film having a thickness of, for example, about 10 nm. This is because even in the organic light emitting layer, light is transmitted almost completely as in the case of the transparent electrode. As a result, when the light is not emitted, the light that enters from the surface of the transparent substrate, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode exits to the surface of the transparent substrate again. Therefore, when viewed from the outside, the display surface of the organic EL display device looks like a mirror surface.
  • the organic EL display device includes, for example, a transparent electrode on the surface side of the organic light emitting layer,
  • the birefringent optical film or the laminated polarizing plate of the present invention is disposed on the surface of the transparent electrode. Further, it is preferable that a ⁇ ⁇ 4 plate is disposed between the polarizing plate and the EL element.
  • a retardation plate is further disposed between the transparent electrode and the birefringent optical film.
  • the retardation plate and the birefringent optical film have, for example, an action of polarizing light incident from the outside and reflected by the metal electrode.
  • a polarizing plate There is an effect that the mirror surface of the electrode is not visually recognized by an external force.
  • the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to ⁇ Z4
  • the mirror surface of the metal electrode can be completely shielded. Can be. That is, as for the external light incident on the organic EL display device, only the linearly polarized light component is transmitted by the polarizing plate.
  • the linearly polarized light is generally converted into elliptically polarized light by the retardation plate.
  • the retardation plate is a 1Z4 wavelength plate and the angle is ⁇ 4
  • the linearly polarized light is circularly polarized light.
  • this circularly polarized light passes through a transparent substrate, a transparent electrode, and an organic thin film, is reflected by a metal electrode, again passes through the organic thin film, the transparent electrode, and the transparent substrate, and passes through the retardation plate. Again, it becomes linearly polarized light. And, since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot pass through the polarizing plate. As a result, as described above, the mirror surface of the metal electrode can be completely shielded. is there.
  • phase difference and orientation axis accuracy are measured using a phase difference meter (manufactured by Oji Scientific Instruments, trade name KOBRA21).
  • the film thickness was measured by an optical interference method at a wavelength of 700 to 900 nm using an autograph spectrophotometer (Otsuka Electronics Co., Ltd. And the product name (MCPD-2000).
  • the ⁇ , ny, and ⁇ ⁇ indicate the refractive index in the X-axis, ⁇ -axis, and ⁇ -axis directions of the respective layers (films), and the X-axis is the birefringent ⁇ layer or the birefringent optical film.
  • is an axis direction showing the maximum refractive index in each plane
  • ⁇ axis is an axis direction perpendicular to the X axis in each plane
  • ⁇ axis is the X axis
  • ⁇ axis Shows the thickness direction perpendicular to the direction.
  • d represents the thickness of each layer (film).
  • the And and And represent the respective layers at wavelengths of 430 nm and 550 nm.
  • the polyimide solution was applied by a casting method on one surface of "Acryprene" (trade name, 120 m) manufactured by Mitsubishi Rayon Co., Ltd. to a thickness of 6.2 m to obtain a laminate. After the application, the coating was dried at 90 ° C for 10 minutes, and the laminate was stretched uniaxially at 8 ° C by 8% at 100 ° C to obtain a birefringent A layer formed from the ataliprene and a birefringent B formed from the polyimide coating layer. Layer product A birefringent optical film as a layered product was obtained. Obtained birefringence A layer thickness d, And, Rt
  • Acrylonitrile styrene copolymer resin was dissolved in dichloromethane to prepare a 30% by weight solution. This solution was applied on a polyethylene terephthalate film (PET (substrate)) by a casting method, left at 100 ° C. for 30 minutes, and peeled from the PET to obtain a 150-m thick film. The obtained film was stretched at 120 ° C. by 30% at the free end to obtain a birefringent layer having a thickness of 132 ⁇ m.
  • PET polyethylene terephthalate film
  • This polyimide solution was applied on one surface of a TAC film (80 ⁇ m in thickness) by a casting method to a thickness of 10.8 m to obtain a laminate. After the application, the laminate was dried at 100 ° C for 10 minutes, and the laminate was stretched at 150 ° C by 3% at the fixed end in the transverse uniaxial direction and peeled from the TAC film to obtain a birefringent B layer.
  • birefringent A layer and the birefringent B layer are bonded together via an acrylic pressure-sensitive adhesive layer (thickness: 20 ⁇ m) such that their maximum refractive index directions are orthogonal to each other.
  • an acrylic pressure-sensitive adhesive layer thinness: 20 ⁇ m
  • Table 1 shows the thicknesses d, And, and Rth of the foldable optical film.
  • a biaxially stretched polypropylene film (thickness: 60 ⁇ m) was bonded to both sides of the polycarbonate film via an acrylic pressure-sensitive adhesive layer (thickness: 20 ⁇ m).
  • the laminate was uniaxially stretched at 150 ° C by 7% at the free end to obtain a birefringent A layer having a thickness of 40 m.
  • 2,2,1-bis (3,4-dicarboxyphenyl) hexafluoropropane and 2,2, bis (trifluoromethyl) 4,4'diaminobiphenol were synthesized.
  • a polyimide having a weight average molecular weight (Mw) of 100,000 represented by the above formula (24) was dissolved in methyl isobutyl ketone to prepare a 20% by weight solution.
  • This polyimide solution was applied on one surface of a TAC film (80 ⁇ m in thickness) to a thickness of 9.5 m by a casting method to obtain a laminate. After the application, the laminate was dried at 100 ° C. for 10 minutes, and the laminate was stretched at 150 ° C. by 7% at the fixed end, and peeled from the TAC film to obtain a birefringent B layer.
  • birefringent A layer and the birefringent B layer are bonded together via an acrylic pressure-sensitive adhesive layer (thickness: 20 ⁇ m) such that their maximum refractive index directions are orthogonal to each other.
  • an acrylic pressure-sensitive adhesive layer thinness: 20 ⁇ m
  • Table 1 shows the thicknesses d, And, and Rth of the foldable optical film.
  • This polyimide solution was applied to one surface of "Zeonor” (trade name, manufactured by Nippon Zeon Co., Ltd.) (thickness: 100 Pm) to a thickness of 6 Pm by a casting method to obtain a laminate. After coating, the laminate was dried at 130 ° C for 5 minutes, and the laminate was stretched at 130 ° C by 7% at the fixed end. The birefringence A layer formed from the ZEONOR and the birefringence formed from the polyimide coating layer were applied. A birefringent optical film as a laminate of the layer B was obtained. The thickness of the obtained birefringent A layer d, And, Rth a a a
  • the polyimide solution was applied on one surface of a TAC (base material) in a thickness of 6.5 ⁇ m by a casting method. After coating, dry at 100 ° C for 10 minutes, unite the base material and the coating layer, stretch at 10% fixed end laterally at 150 ° C, peel off from TAC (base material), and only birefringent B layer A birefringent optical film was obtained. Thickness of the obtained birefringent B layer d, And, Rth, ⁇ , a
  • Table 1 shows b b b b and optical characteristics.
  • Example 1 119 --15 -14 1.05 ny>nz> nx 6 80 245 0.041 1.12 nx> ny > nz 125 65 231
  • Example 2 132 -102 -100 1.06 ny>nz> nx 10.5 25 390 0.037 1.12 nx>ny> nz 162.5 -77 290
  • Example 3 40 -218 -109 1.09 ny>nz> tix 9 62 360 0.040 1.12 nx>ny> nz 69 -156 251 Comparative Example 1 95 28 52 1.01 nx>ny> nz 5.6 37 220 0.042 1.12 nx>ny> nz 100.6 65 272
  • Comparative Example 2 83 49 118 I.01 nx>ny> nz 83 49 118 Comparative Example 3 90 53
  • the birefringent optical films obtained in Examples 13 and 14 and Comparative Examples 14 were placed on a polarizing plate (trade name: SEG1425DU, manufactured by Nitto Denko Corporation) via an acrylic pressure-sensitive adhesive layer (thickness: 20 ⁇ m). To obtain a laminated polarizing plate. In the laminated polarizing plate, the birefringent B layer of the birefringent optical film was disposed at a position facing the polarizing plate.
  • the laminated polarizing plate and a polarizing plate are arranged on both sides of the VA-type liquid crystal cell such that the respective slow axes of the polarizing plates are orthogonal to each other to form a liquid crystal display device. Obtained.
  • the laminated polarizing plate was arranged so that the polarizing plate was in contact with the liquid crystal cell, and was arranged on the rear side of the liquid crystal cell.
  • the viewing angle of contrast ratio (Co) ⁇ 10 of each of the obtained liquid crystal display devices in the vertical, horizontal, diagonal (45 °-225 °) and diagonal (135 °-315 °) directions. was measured.
  • the contrast ratio is such that a white image and a black image are displayed on the liquid crystal display device, and the device (trade name: Ez contra st 160D: manufactured by ELDIM) is used.
  • the Y value, X value, and y value of the XYZ display system were measured. Then, the Y value (Y) in the white image
  • the contrast ratio (Y / Y) at each viewing angle was calculated. If the omnidirectional contrast ratio is 10 or more, set it to “ ⁇ ”, and if it is less than 10, set it to “X”.
  • the liquid crystal display device obtained as described above was visually evaluated as follows.
  • the birefringent optical film of the present invention was able to achieve good contrast, a wide viewing angle, and prevention of coloring of a liquid crystal display device incorporating the birefringent optical film.
  • the birefringent optical film of the present invention can realize good contrast, a wide viewing angle, and prevention of coloring of a liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

 nya≧nza>nxaまたはnza>nya>nzaの特性を有する、1以上の複屈折A層と、nxb≧nyb>nzbの特性を有する、1以上の複屈折B層とを有する複屈折性光学フィルムにより、液晶表示装置の良好なコントラストと、広い視野角と、着色防止を実現できる複屈折性光学フィルムを提供する。        

Description

明 細 書
複屈折性光学フィルム
技術分野
[0001] 本発明は、複屈折性光学フィルムに関する。
背景技術
[0002] 液晶表示装置において良好なコントラストを得るため、従来は二軸性複屈折性光学 フィルムが位相差板として用いられている。この二軸性複屈折性光学フィルムは、一 般に等方性ポリマーフィルムを延伸して製造される(例えば、特許文献 1および 2参照 )。
[0003] また、二軸性複屈折性光学フィルムは、一軸性ポリマーフィルム(例えば、特許文献 3参照)を延伸して製造することもできる(例えば、特許文献 4参照)。このような二軸 性複屈折性光学フィルムを組み込んだ液晶表示装置は良好なコントラストを得ること はできるが、前記二軸性複屈折性光学フィルムは限られた狭 、範囲の And値を有 するものであったため、種々のモードタイプに応じた広い視野角を充分に実現できて いなかった。また、前記の二軸性複屈折性光学フィルムを組み込んだ液晶表示装置 は、例えば VAモードの液晶表示装置は、表示に着色が生じるという問題点があった 特許文献 1:特開平 3 - 33719号公報公報
特許文献 2:特開平 3 - 24502号公報公報
特許文献 3:特開平 8— 511812号公報
特許文献 4:特開 2000-190385号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、液晶表示装置の良好なコントラストと、広い視野角と、着色防止とを実現 するための、複屈折性光学フィルムを提供することを目的とする。
課題を解決するための手段
[0005] 本発明は、 1以上の複屈折 A層と、 1以上の複屈折 B層とを含む複屈折性光学フィ ルムであって、前記複屈折 A層が、 ny≥nz >nxまたは nz >ny >nxの特性を有
a a a a a a
し、前記複屈折 B層が、 nx≥ny >nzの特性を有する複屈折性光学フィルムである
b b b
[0006] 前記 nx、 nyおよび nzは、前記複屈折 A層における X軸、 Y軸および Z軸方向の
a a a
屈折率を示し、前記 X軸は、後記複屈折 B層における X軸と同じ軸方向であって、前 記 Y軸は、後記複屈折 B層における Y軸と同じ軸方向であって、前記 Z軸は、前記 X 軸および Y軸に垂直な厚み方向を示す。
[0007] 前記 nx、 nyおよび nzは、前記複屈折 B層における X軸、 Y軸および Z軸方向の
b b b
屈折率を示し、前記 X軸とは、前記複屈折 B層の面内において最大の屈折率を示す 軸方向であり、 Y軸は、前記面内において前記 X軸に対して垂直な軸方向であり、 Z 軸は、前記 X軸および Y軸に垂直な厚み方向を示す。
発明の効果
[0008] 本発明の複屈折光学フィルムを使用することで、液晶表示装置の良好なコントラスト と、広い視野角と、着色防止を実現できる。
図面の簡単な説明
[0009] [図 1]本発明の光学フィルムにおいて、複屈折 A層と複屈折 B層との波長分散特性の 一例を示すグラフである。
[図 2]本発明の光学フィルムの波長分散特性 (逆波長分散)の一例を示すグラフであ る。
発明を実施するための最良の形態
[0010] 前記のような 2種類の複屈折層を含む本発明の複屈折性光学フィルムは、幅広い △nd値を有し、広い視野角を実現することが可能である。特に、本発明の複屈折性 光学フィルムは、従来の複屈折性光学フィルムが補償することができな力つた種類の 液晶表示装置に対しても、広い視野角を実現することが可能である。
[0011] さらに本発明の複屈折性光学フィルムは、充分大きな Rth値を有するので、良好な コントラストを得ることもできる。
[0012] さらに、本発明の複屈折性光学フィルムは、液晶表示装置に組み込んだ際の着色 防止を実現できる。 [0013] 本発明の複屈折性光学フィルムにおいては、前記複屈折 B層は、下記の式(1)に 示す条件を満たすのが好まし ヽ。
0. 005≤Δη≤0. 2 (1)
b
目 ij' ci式(1)にお ヽて、 Δη =ηχ— ηζ、
b b b
前記 nxおよび nzは、前記複屈折 B層における X軸および Z軸方向の屈折率を示 b b
し、前記 X軸とは、前記複屈折 B層の面内において最大の屈折率を示す軸方向であ り、 Z軸は、前記 X軸に垂直な厚み方向を示す。
[0014] 本発明の複屈折性光学フィルムにおいては、前記複屈折 A層は、負の配向複屈折 を有するポリマーおよび正の配向複屈折を有するポリマーの少なくとも 1つ力 形成 されてもよいし、または負の配向複屈折を有するポリマーと、正の配向複屈折を有す るポリマーとの混合物力も形成されてもよ!、。
[0015] 本発明の複屈折性光学フィルムにおいては、前記複屈折 B層は、正の配向複屈折 を有するポリマーから形成されてもょ 、。
[0016] また、前記正の配向複屈折を有するポリマーは、ポリアミド、ポリイミド、ポリエステル 、ポリエーテルケトン、ポリアリールエーテルケトン、ポリアミドイミド及びポリエステルイ ミドカもなる群力も選択される 1以上のポリマーであるのが好ましい。
[0017] 本発明の複屈折性光学フィルムは、下記の式 (4)に示す条件を満たすのが好まし い。
3° ≤配向軸精度≤3° (4)
前記配向軸精度とは、遅相軸の面内のバラツキをいう。
[0018] 本発明の複屈折性光学フィルムは、積層体としての面内位相差が、逆波長分散特 性を有するのが好ましい。
[0019] 本発明の複屈折性光学フィルムは、下記の式 (5)および (6)に示す条件を満たす のがより好ましい。
I And (5)
a I > I And |
b
a < a (o
a b
前記式(5)および(6)にお!/ヽて、
And =、nx— ny ) · d And = (nx— ny ) e d
b b b b
a = Δηά Z And
a a430nm a550nm
a = Δηά
b b430nm Z And
b550nm
[0020] 前記 nxおよび nyは、前記複屈折 A層における X軸および Y軸方向の屈折率を示 a a
し、前記 X軸は、後記複屈折 B層における X軸と同じ軸方向であって、前記 Y軸は、 後記複屈折 B層における Y軸と同じ軸方向である。 dは前記複屈折 A層の厚みを示 a
す。
[0021] 前記 nxおよび nyは、前記複屈折 B層における X軸および Y軸方向の屈折率を示 b b
す。前記 X軸とは、前記複屈折 B層の面内において最大の屈折率を示す軸方向であ り、 Y軸は、前記面内において前記 X軸に対して垂直な軸方向である。 dは前記複屈 b 折 B層の厚みを示す。
[0022] 前記 And および And は、波長 430nmおよび 550nmにおける前記複 a430nm a550nm
屈折 A層の Andを示す。
a
[0023] 前記 And および And は、波長 430nmおよび 550nmにおける前記複 b430nm b550nm
屈折 B層の Andを示す。
b
[0024] 本発明の積層偏光板は、本発明の複屈折性光学フィルムを含む積層偏光板であ る。
[0025] 本発明の液晶パネルは、液晶セルおよび光学部材を含み、前記液晶セルの少なく とも一方の表面に前記光学部材が配置された液晶パネルであって、前記光学部材 力 本発明の積層偏光板である。
[0026] 本発明の液晶表示装置は、本発明の液晶パネルを含む液晶表示装置である。
[0027] 本発明の画像表示装置は、本発明の複屈折性光学フィルムまたは本発明の積層 偏光板を含む。
[0028] 本発明において、複屈折 A層は、 ny≥nz >nxまたは nz >ny >nxの特性を有 a a a a a a することが必要である。この特性を有すれば、画像表示装置に組み込んだ場合、斜 め方向からの光漏れを減少させることに有効だ力もである。
[0029] このような特性を有する複屈折 A層は、負の配向複屈折を有するポリマー、正の配 向複屈折を有するポリマー、または負の配向複屈折を有するポリマーと正の配向複 屈折を有するポリマーの混合物から形成されるのが好ましい。また、前記複屈折 A層 は、負の配向複屈折を有するポリマーから形成されるか、または負の配向複屈折を 有するポリマーと正の配向複屈折を有するポリマーの混合物力 形成されるのがより 好ましい。
[0030] 負の配向複屈折を有するポリマーとは、そのポリマー力 形成したフィルムを延伸し たとき、延伸方向の屈折率が最小になるようなポリマーを意味する。
[0031] 負の配向複屈折を有するポリマーとしては、例えば、ポリスチレン、アクリル、ポリメ チルメタタリレート等の単独モノマー系の単独重合体や、若しくは機械的特性などを 改善するために他のポリマーとの共重合体などがあげられる。一般的に知られている ものとして、スチレン '無水マレイン酸共重合体、スチレン 'マレイミド共重合体、ォレフ イン単位とアクリル系単位とを含む共重合体や、二トリル単位とスチレン系単位とを含 む共重合体があげられる。二トリル系化合物としては、アクリロニトリル、メタタリロニトリ ルのような α—置換不飽和-トリル、ならびにフマロ-トリルのような α , β—二置換ォ レフイン性不飽和結合を有するものがあげられる。一方、スチレン系化合物としては、 スチレン、ビニルトルエン、メトキシスチレン、またはクロロスチレン、 α—メチルスチレ ン等の非置換または置換スチレン系化合物があげられる。
[0032] 正の配向複屈折を有するポリマーとは、そのポリマー力 形成したフィルムを延伸し たとき、延伸方向の屈折率が最大になるようなポリマーを意味する。
[0033] 正の配向複屈折を有するポリマーとしては、アセテート系榭脂、ポリエステル系榭脂 、ポリエーテルスルホン系榭脂、ポリカーボネート系榭脂、ポリアミド系榭脂、ポリイミド 系榭脂、ポリノルボルネン系榭脂、ポリオレフイン系榭脂、ポリエチレンオキサイド、ポ リフエ-レンエーテル、もしくはフィルムの耐熱性や機械的強度を向上させるために、 アルケン単位と置換あるいは非置換マレイミド単位、ビュル系単位などを含むものも あげることができ、例えば、ォレフイン'マレイミド共重合体などがあげられる。
[0034] 正の配向複屈折を有するポリマーとしては、例えば、耐熱性、耐薬品性、透明性に 優れ、剛性にも富むことから、ポリアミド、ポリイミド、ポリエステル、ポリエーテルケトン 、ポリアミドイミド、ポリエステルイミド等の非液晶性ポリマーも好ましい。これらの非液 晶性ポリマーは、いずれか一種類を単独で使用してもよいし、例えば、ポリアリールェ ーテルケトンとポリアミドとの混合物のように、異なる官能基を持つ 2種以上の混合物 として使用してもよい。このような非液晶性ポリマーの中でも、高透明性、高配向性、 高延伸性であることから、ポリイミドが特に好ま 、。
[0035] 前記非液晶性ポリマーの分子量は、特に制限されな!、が、例えば、重量平均分子 量(Mw)が 1 ,000— 1 ,000,000の範囲であることが好ましく、より好ましくは 2,000— 500,000の範囲である。
[0036] 前記ポリイミドとしては、例えば、面内配向性が高ぐ有機溶剤に可溶なポリイミドが 好ましい。具体的には、例えば、特表 2000-511296号公報に開示された、 9,9-ビ ス (アミノアリール)フルオレンと芳香族テトラカルボン酸二無水物との縮合重合生成物 を含み、下記一般式(1)に示す繰り返し単位を 1つ以上含むポリマーが使用できる。
[0037] [化 1]
Figure imgf000007_0001
[0038] 前記一般式(1)中、 R3— R6は、水素原子、ハロゲン原子、フエ-ル基、 1一 4個の ハロゲン原子または C アルキル基で置換されたフエ-ル基、および C アルキ
1— 10 1— 10 ル基力 なる群力 それぞれ独立に選択される少なくとも一種類の置換基である。好 ましくは、 R3— R6は、ハロゲン原子、フエ-ル基、 1一 4個のハロゲン原子または C アルキル基で置換されたフヱ-ル基、および C アルキル基力 なる群力 それぞ
0 1— 10
れ独立に選択される少なくとも一種類の置換基である。
[0039] 前記一般式(1)中、 Zは、例えば、 C の 4価芳香族基であり、好ましくは、ピロメリ
6—20
ット基、多環式芳香族基、多環式芳香族基の誘導体、または、下記一般式 (2)で表さ れる基である。 [0040] [化 2]
Figure imgf000008_0001
[0041] 前記一般式 (2)中、 Z'は、例えば、共有結合、 C(R7)基、 CO基、 O原子、 S原子、
2
SO基、 Si(C H )基、または、 NR8基であり、複数の場合、それぞれ同一であるかま
2 2 5 2
たは異なる。また、 wは、 1から 10までの整数を表す。 R7は、それぞれ独立に、水素ま たは C (R9)である。 R8は、水素原子、炭素原子数 1
3 一約 20のアルキル基、または C
6
—20ァリール基であり、複数の場合、それぞれ同一である力または異なる。 R9は、それ ぞれ独立に、水素原子、フッ素原子、または塩素原子である。
[0042] 前記多環式芳香族基としては、例えば、ナフタレン、フルオレン、ベンゾフルオレン またはアントラセン力 誘導される 4価の基があげられる。また、前記多環式芳香族基 の置換誘導体としては、例えば、 C のアルキル基、そのフッ素化誘導体、および F
1— 10
原子や C1原子等のハロゲン原子力 なる群力 選択される少なくとも一つの基で置 換された前記多環式芳香族基があげられる。
[0043] この他にも、例えば、特表平 8-511812号公報に記載された、繰り返し単位が下記 一般式 (3)または (4)で示されるホモポリマーや、繰り返し単位が下記一般式 (5)で 示されるポリイミド等があげられる。なお、下記一般式(5)のポリイミドは、下記一般式 (3)のホモポリマーの好まし 、形態である。
[0044] [化 3]
Figure imgf000009_0001
[0045] 前記一般式(3)— (5)中、 Gおよび G'は、例えば、共有結合、 CH基、 C(CH )基
2 3 2
、 C(CF )基、 C(CX )基 (ここで、 Xは、ハロゲン原子である。 )、 CO基、 O原子、 S原
3 2 3 2
子、 SO基、 Si(CH CH )基、および、 N(CH )基力 なる群から、それぞれ独立し
2 2 3 2 3
て選択される基を表し、それぞれ同一でも異なってもよい。
[0046] 前記一般式(3)および前記一般式(5)中、 Lは、置換基であり、 dおよび eは、その 置換数を表す。 Lは、例えば、ハロゲン原子、 C アルキル基、 C ハロゲン化アル
1一 3 1— 3
キル基、フエ-ル基、または、置換フエニル基であり、複数の場合、それぞれ同一で ある力または異なる。前記置換フエニル基としては、例えば、ハロゲン原子、 C アル
1—3 キル基、および C ノ、ロゲン化アルキル基力 なる群力も選択される少なくとも一種
1—3
類の置換基を有する置換フエニル基があげられる。また、前記ハロゲン原子としては 、例えば、フッ素原子、塩素原子、臭素原子またはヨウ素原子があげられる。 dは、 0 から 2までの整数であり、 eは、 0から 3までの整数である。 [0047] 前記一般式(3)— (5)中、 Qは置換基であり、 fはその置換数を表す。 Qとしては、 例えば、水素原子、ハロゲン原子、アルキル基、置換アルキル基、ニトロ基、シァノ基 、チォアルキル基、アルコキシ基、ァリール基、置換ァリール基、アルキルエステル基 、および置換アルキルエステル基力 なる群力 選択される原子または基であって、 Qが複数の場合、それぞれ同一である力または異なる。前記ハロゲン原子としては、 例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子があげられる。前記置換 アルキル基としては、例えば、ハロゲンィ匕アルキル基があげられる。また前記置換ァリ ール基としては、例えば、ハロゲンィ匕ァリール基があげられる。 fは、 0から 4までの整 数であり、 gおよび hは、それぞれ 0から 3および 1から 3までの整数である。また、 gお よび hは、 1より大きいことが好ましい。
[0048] 前記一般式 (4)中、 R1C>および R11は、水素原子、ハロゲン原子、フエニル基、置換 フエニル基、アルキル基、および置換アルキル基カゝらなる群から、それぞれ独立に選 択される基である。その中でも、 R1C)および R11は、それぞれ独立に、ハロゲン化アル キル基であることが好まし!/、。
[0049] 前記一般式(5)中、 M1および M2は、同一である力または異なり、例えば、ハロゲン 原子、 C一アルキル基、 C ハロゲン化アルキル基、フエ-ル基、または、置換フエ
1 3 1— 3
ニル基である。前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原 子およびヨウ素があげられる。また、前記置換フエ-ル基としては、例えば、ハロゲン 原子、 C アルキル基、および C ハロゲンィ匕アルキル基力 なる群力 選択される
1—3 1—3
少なくとも一種類の置換基を有する置換フ -ル基があげられる。
[0050] 前記一般式(3)に示すポリイミドの具体例としては、例えば、下記一般式 (6)で表さ れるもの等があげられる。
[0051] [化 4]
Figure imgf000010_0001
[0052] さらに、前記ポリイミドとしては、例えば、前述のような骨格 (繰り返し単位)以外の酸 二無水物ゃジァミンを、適宜共重合させたコポリマーがあげられる。
[0053] 前記酸二無水物としては、例えば、芳香族テトラカルボン酸二無水物があげられる 。前記芳香族テトラカルボン酸二無水物としては、例えば、ピロメリト酸ニ無水物、ベ ンゾフエノンテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、複素 環式芳香族テトラカルボン酸二無水物、 2,2'-置換ビフエ-ルテトラカルボン酸二無 水物等があげられる。
[0054] 前記ピロメリト酸ニ無水物としては、例えば、ピロメリト酸ニ無水物、 3,6-ジフ -ル ピロメリト酸ニ無水物、 3,6-ビス (トリフルォロメチル)ピロメリト酸ニ無水物、 3,6-ジブ口 モピロメリト酸ニ無水物、 3,6-ジクロロピロメリト酸ニ無水物等があげられる。前記ベン ゾフエノンテトラカルボン酸二無水物としては、例えば、 3,3',4,4'-ベンゾフエノンテト ラカルボン酸二無水物、 2,3, 3',4'-ベンゾフエノンテトラカルボン酸二無水物、 2,2', 3 ,3'-ベンゾフエノンテトラカルボン酸二無水物等があげられる。前記ナフタレンテトラ カルボン酸二無水物としては、例えば、 2,3,6,7-ナフタレン-テトラカルボン酸二無水 物、 1,2,5, 6-ナフタレン-テトラカルボン酸二無水物、 2,6-ジクロロ-ナフタレン- 1,4,5 ,8-テトラカルボン酸二無水物等があげられる。前記複素環式芳香族テトラカルボン 酸二無水物としては、例えば、チォフェン- 2,3,4,5-テトラカルボン酸二無水物、ビラ ジン- 2,3, 5, 6-テトラカルボン酸二無水物、ピリジン- 2,3, 5, 6-テトラカルボン酸二無 水物等があげられる。前記 2, 2'-置換ビフヱ-ルテトラカルボン酸二無水物としては、 例えば、 2,2'-ジブロモ- 4,4', 5, 5'-ビフエ-ルテトラカルボン酸二無水物、 2,2'-ジク ロロ- 4,4', 5, 5'-ビフエ-ルテトラカルボン酸二無水物、 2,2'-ビス (トリフルォロメチル )-4,4', 5,5しビフエ-ルテトラカルボン酸二無水物等があげられる。
[0055] また、前記芳香族テトラカルボン酸二無水物のその他の例としては、 3,3',4,4'-ビフ ェ -ルテトラカルボン酸二無水物、ビス (2, 3-ジカルボキシフエ-ル)メタン二無水物、 ビス (2,5, 6-トリフルォ口- 3,4-ジカルボキシフエ-ル)メタン二無水物、 2,2-ビス (3,4- ジカルボキシフエ-ル) -1, 1, 1,3, 3, 3-へキサフルォロプロパン二無水物、 4,4'-ビス( 3,4-ジカルボキシフエ-ル)- 2,2-ジフエ-ルプロパン二無水物、ビス (3,4-ジカルボ キシフエ-ル)エーテル二無水物、 4,4しォキシジフタル酸二無水物、ビス (3,4-ジカ ルボキシフエ-ル)スルホン酸二無水物、 3,3',4,4しジフエ-ルスルホンテトラカルボ ン酸ニ無水物、 4,4'-[4,4'-イソプロピリデン-ジ (p-フエ-レンォキシ)]ビス (フタル酸 無水物)、 N,N-(3,4-ジカルボキシフエ-ル)- N-メチルァミン二無水物、ビス (3,4-ジ カルボキシフエ-ル)ジェチルシラン二無水物等があげられる。
[0056] これらの中でも、前記芳香族テトラカルボン酸二無水物としては、 2,2'-置換ビフエ -ルテトラカルボン酸二無水物が好ましぐより好ましくは、 2, 2しビス (トリハロメチル) - 4,4', 5,5'-ビフエ-ルテトラカルボン酸二無水物であり、さらに好ましくは、 2,2'-ビス( トリフルォロメチル) -4,4', 5,5しビフエ-ルテトラカルボン酸二無水物である。
[0057] 前記ジァミンとしては、例えば、芳香族ジァミンがあげられ、具体例としては、ベンゼ ンジァミン、ジァミノべンゾフエノン、ナフタレンジァミン、複素環式芳香族ジァミン、お よびその他の芳香族ジァミンがあげられる。
[0058] 前記ベンゼンジァミンとしては、例えば、 o-、 m-および p-フエ-レンジァミン、 2,4- ジァミノトルエン、 1,4-ジァミノ- 2-メトキシベンゼン、 1,4-ジァミノ- 2-フエニルベンゼ ンおよび 1,3-ジァミノ- 4-クロ口ベンゼンのようなベンゼンジァミンから成る群から選択 されるジァミン等があげられる。前記ジァミノべンゾフエノンの例としては、 2,2'-ジアミ ノベンゾフエノン、および 3, 3しジァミノべンゾフエノン等があげられる。前記ナフタレン ジァミンとしては、例えば、 1,8-ジァミノナフタレン、および 1,5-ジァミノナフタレン等 があげられる。前記複素環式芳香族ジァミンの例としては、 2,6-ジァミノピリジン、 2,4 -ジァミノピリジン、および 2,4-ジァミノ- S-トリアジン等があげられる。
[0059] また、前記芳香族ジァミンとしては、これらの他に、 4,4'-ジアミノビフエ-ル、 4,4'- ジアミノジフエ-ルメタン、 4,4し (9-フルォレニリデン)-ジァ-リン、 2,2'-ビス (トリフル ォロメチル) -4,4'-ジアミノビフエニル、 3,3'-ジクロロ- 4,4'-ジアミノジフエ二ルメタン、 2,2'-ジクロロ- 4,4'-ジアミノビフエニル、 2,2', 5, 5'-テトラクロ口べンジジン、 2,2-ビス( 4-ァミノフエノキシフエ-ノレ)プロパン、 2,2-ビス (4-ァミノフエ-ノレ)プロパン、 2,2-ビス (4-ァミノフエ-ル)- 1,1,1,3,3,3-へキサフルォロプロパン、 4,4'-ジアミノジフエ-ル エーテル、 3,4'-ジアミノジフエ-ルエーテル、 1,3-ビス (3-アミノフエノキシ)ベンゼン 、 1,3-ビス (4-アミノフエノキシ)ベンゼン、 1,4-ビス (4-アミノフエノキシ)ベンゼン、 4,4 '-ビス (4-アミノフエノキシ)ビフエ-ル、 4,4'-ビス (3-アミノフエノキシ)ビフエ-ル、 2,2- ビス [4- (4-アミノフエノキシ)フエ-ル]プロパン、 2, 2-ビス [4- (4-アミノフエノキシ)フエ ニル] -1 , 1 , 1 , 3, 3, 3-へキサフルォロプロパン、 4,4'-ジァミノジフヱ二ルチオエーテル
、 4,4'-ジアミノジフエ-ルスルホン等があげられる。
[0060] 前記ポリエーテルケトンとしては、例えば、特開 2001— 49110号公報に記載された
、下記一般式(7)で表されるポリアリールエーテルケトンがあげられる。
[0061] [化 5]
Figure imgf000013_0001
[0062] 前記一般式(7)中、 Xは、置換基を表し、 qは、その置換数を表す。 Xは、例えば、 ハロゲン原子、低級アルキル基、ハロゲン化アルキル基、低級アルコキシ基、または 、ハロゲン化アルコキシ基であり、 Xが複数の場合、それぞれ同一である力または異 なる。
[0063] 前記ハロゲン原子としては、例えば、フッ素原子、臭素原子、塩素原子およびヨウ 素原子があげられ、これらの中でも、フッ素原子が好ましい。前記低級アルキル基と しては、例えば、 C の直鎖または分岐鎖の低級アルキル基が好ましぐより好ましく
1—6
はじ の直鎖または分岐鎖のアルキル基である。具体的には、メチル基、ェチル基
1一 4
、プロピル基、イソプロピル基、ブチル基、イソブチル基、 sec-ブチル基、および、 tert-ブチル基が好ましぐ特に好ましくは、メチル基およびェチル基である。前記ハロ ゲンィ匕アルキル基としては、例えば、トリフルォロメチル基等の前記低級アルキル基 のハロゲンィ匕物があげられる。前記低級アルコキシ基としては、例えば、 C の直鎖
1—6 または分岐鎖のアルコキシ基が好ましぐより好ましくは C の直鎖または分岐鎖の
1—4
アルコキシ基である。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロボ キシ基、ブトキシ基、イソブトキシ基、 sec-ブトキシ基、および、 tert-ブトキシ基力 さら に好ましぐ特に好ましくはメトキシ基およびエトキシ基である。前記ハロゲン化アルコ キシ基としては、例えば、トリフルォロメトキシ基等の前記低級アルコキシ基のハロゲ ン化物があげられる。
[0064] 前記一般式(7)中、 qは、 0から 4までの整数である。前記式(7)においては、 q = 0 であり、かつ、ベンゼン環の両端に結合したカルボ-ル基とエーテルの酸素原子とが 互いにパラ位に存在することが好まし 、。
[0065] また、前記一般式(7)中、 R1は、下記一般式 (8)で表される基であり、 mは、 0また は 1の整数である。
[0066] [化 6]
Figure imgf000014_0001
[0067] 前記一般式 (8)中、 X,は置換基を表し、例えば、前記一般式(7)における Xと同様 である。前記一般式 (8)において、 X'が複数の場合、それぞれ同一であるかまたは 異なる。 q'は、前記 X'の置換数を表し、 0から 4までの整数であって、 q' = 0が好まし い。また、 pは、 0または 1の整数である。
[0068] 前記一般式 (8)中、 R2は、 2価の芳香族基を表す。この 2価の芳香族基としては、 例えば、 o-、 m-もしくは p-フエ-レン基、または、ナフタレン、ビフエ-ル、アントラセ ン、 o-、 m-もしくは p-テルフエ-ル、フエナントレン、ジベンゾフラン、ビフエ-ルエー テル、もしくは、ビフヱ-ルスルホン力も誘導される 2価の基等があげられる。これらの 2価の芳香族基において、芳香族に直接結合している水素力 ハロゲン原子、低級 アルキル基または低級アルコキシ基で置換されてもよい。これらの中でも、前記 と しては、下記一般式 (9)一(15)力もなる群力も選択される芳香族基が好ましい。
[0069] [化 7]
(9) (10)
Figure imgf000015_0001
[0070] 前記一般式(7)中、前記 R1としては、下記一般式(16)で表される基が好ましぐ下 記一般式(16)において、 R2および pは、前記一般式(8)と同義である。
[0071] [化 8]
Figure imgf000015_0002
[0072] さらに、前記一般式(7)中、 nは重合度を表し、例えば、 2— 5000の範囲であり、好 ましくは、 5— 500の範囲である。また、その重合は、同じ構造の繰り返し単位力 な るものであってもよく、異なる構造の繰り返し単位力 なるものであってもよい。後者の 場合には、繰り返し単位の重合形態は、ブロック重合であってもよいし、ランダム重合 でもよい。
[0073] さらに、前記一般式(7)で示されるポリアリールエーテルケトンの末端は、 P-テトラフ ルォ口べンゾィレン基側がフッ素であり、ォキシアルキレン基側が水素原子であること が好ましぐこのようなポリアリールエーテルケトンは、例えば、下記一般式(17)で表 すことができる。なお、下記一般式(17)において、 nは、前記一般式(7)と同様の重 合度を表す。
[0074] [化 9]
(17)
Figure imgf000016_0001
[0075] 前記一般式(7)で示されるポリアリールエーテルケトンの具体例としては、下記一般 式(18)—(21)で表されるもの等があげられ、下記各一般式(18)—(21)において、 nは、前記一般式 (7)と同様の重合度を表す。
[0076] [化 10]
Figure imgf000016_0002
[0077] また、これらの他に、前記ポリアミドまたはポリエステルとしては、例えば、特表平 10 —508048号公報に記載されるポリアミドやポリエステルがあげられ、それらの繰り返 し単位は、例えば、下記一般式(22)で表すことができる。
[0078] [化 11]
Figure imgf000017_0001
[0079] 前記一般式(22)中、 Yは、 Ο原子または ΝΗ基である。また、 Εは、例えば、共有結 合、 Cアルキレン基、ハロゲン化 Cアルキレン基、 CH基、 C(CX )基(ここで、 Xは、
2 2 2 3 2 ハロゲン原子または水素原子である。 )、 CO基、 O原子、 S原子、 SO基、 Si(R)基、
2 2 および、 N(R)基力 なる群力も選ばれる少なくとも一種類の基であり、それぞれ同一 でもよいし異なってもよい。前記 Eにおいて、 Rは、 C アルキル基および C ハロゲ
1一 3 1— 3 ン化アルキル基の少なくとも一種類であり、カルボニル官能基または Y基に対してメタ 位またはパラ位にある。
[0080] また、前記一般式(22)中、 Aおよび A'は、置換基であり、 tおよび zは、それぞれの 置換数を表す。また、 Pは、 0から 3までの整数であり、 qは、 1から 3までの整数であり、 rは、 0から 3までの整数である。
[0081] 前記 Aは、例えば、水素原子、ハロゲン原子、 C アルキル基、 C ハロゲン化ァ
1一 3 1— 3
ルキル基、 OR (ここで、 Rは、前記定義のものである。)で表されるアルコキシ基、ァリ ール基、ハロゲン化等による置換ァリール基、 C アルコキシカルボ-ル基、 C 了
1一 9 1一 9 ルキルカルボニルォキシ基、 C ァリールォキシカルボニル基、 C ァリールカル
1一 12 1— 12
ボニルォキシ基およびその置換誘導体、 c ァリール力ルバモイル基、ならびに、
1— 12
C ァリールカルボ-ルァミノ基およびその置換誘導体力 なる群力 選択され、複
1— 12
数の場合、それぞれ同一である力または異なる。前記 A'は、例えば、ハロゲン、 C
1—3 アルキル基、 C ハロゲン化アルキル基、フエニル基および置換フエニル基からなる
1—3
群から選択され、複数の場合、それぞれ同一である力または異なる。前記置換フエ- ル基のフエ-ル環上の置換基としては、例えば、ハロゲン原子、 C アルキル基、 C
1一 3 1 ハロゲン化アルキル基およびこれらの組み合わせがあげられる。前記 tは、 0力 4 までの整数であり、前記 zは、 0から 3までの整数である。 [0082] 前記一般式(22)で表されるポリアミドまたはポリエステルの繰り返し単位の中でも、 下記一般式(23)で表されるものが好ま 、。
[0083] [化 12]
Figure imgf000018_0001
[0084] 前記一般式(23)中、 A、 A'および Yは、前記一般式(22)で定義したものであり、 V は 0から 3の整数、好ましくは、 0から 2の整数である。 Xおよび yは、それぞれ 0または 1 であるが、共に 0であることはない。
[0085] 前記複屈折 A層を形成する正の配向複屈折を有するポリマーとしては、前記正の 配向複屈折を有するポリマーのうち、ポリエステル系榭脂が好ましい。
[0086] また、前記複屈折 A層を形成する前記負の配向複屈折性を示すポリマーと前記正 の配向複屈折性を示すポリマーの混合物の混合比は、 ny≥nz >nxまたは nz >n a a a a y >nxの特性を有する複屈折 A層を得る観点から適宜決定できる。
a a
[0087] 前記複屈折 A層を形成する混合物に含まれる前記負の配向複屈折性を示すポリマ 一と前記正の配向複屈折性を示すポリマーは、互いに相溶性であるものが好ましい 。例えば、前記負の配向複屈折性を示すポリマーと前記正の配向複屈折性を示すポ リマーの組み合わせとしては、ポリメチルメタタリレートとポリエチレンオキサイドの組み 合わせ、ポリスチレンとポリフエ-レンエーテルの組み合わせ、スチレン 'マレイミド共 重合体とポリフエ-レンエーテルの組み合わせ、ォレフイン'マレイミド共重合体とァク リロ-トリル.スチレン共重合体の組み合わせ、スチレン '無水マレイン酸共重合体と ポリカーボネートの糸且み合わせ、ポリスチレンとポリカーボネートの糸且み合わせなどが 挙げられる。
[0088] なお、 ny≥nz >nxまたは nz >ny >nxの特性を有する複屈折 A層は、当該技 a a a a a a
術における当業者であれば、例えば、前記のようなポリマーの種類、延伸または収縮 等の製造条件を適宜設定することにより、過度の実験を行うことなく調製することがで きる。
[0089] 次に、本発明において、前記複屈折 B層は、 nx ≥ny >nzの特性を有することが
b b b
必要である。この特性を有すれば、液晶セル内において、チルト配向、ベンド配向、 ノ、イブリツド配向、ホメオト口ピック配向等の状態にある液晶分子を、光学的に補償す るのに適当だ力 である。
[0090] このような特性を有する前記複屈折 B層は、前記正の配向複屈折を有するポリマー 力 形成されるのが好ましい。前記複屈折 B層は、前記正の配向複屈折を有するポリ マーのうち、高い複屈折特性を有することからポリイミドより形成されるのがより好まし い。
[0091] 前記複屈折 B層は、下記式(1)に示す条件を満たすのが、例えば、 VAモードや O CBモードにぉ 、て液晶セルの黒表示を良好に補償できるので、好ま 、。
0. 005≤Δη ≤0. 2 ( 1)
b
前記式(1)において、 Δη
bは前記で定義したとおりである。
前記複屈折 B層は、 0. 01≤Δη ≤0. 15を満たすのがより好ましぐ 0. 015≤Δη
b b
≤ο. 1を満たすのがさらに好ましい。
[0092] なお、 nx ≥ny >nzの特性を有する複屈折 B層は、当該技術における当業者で
b b b
あれば、例えば、前記のようなポリマーの種類、延伸または収縮等の製造条件を適宜 設定することにより、過度の実験を行うことなく調製することができる。
[0093] なお、本発明の複屈折性光学フィルムは、 1以上の前記複屈折 A層と、 1以上の前 記複屈折 B層とを含む。このような複屈折性光学フィルムは、前述のように、幅広い△ nd値と大きな Rth値を有するので、液晶表示装置等に組み込まれた際に、広い視野 角と良好なコン卜ラス卜を得ることちできる。
[0094] 本発明において、前記複屈折 A層の厚みは、特に限定されないが、例えば、 1一 5
00 μ mであり、好ましくは 1一 300 μ m、より好ましくは 1一 200 μ mである。
[0095] 前記複屈折 B層の厚みも、特に限定されないが、例えば、 0. 1一 30 mであり、好 ましくは 0. 3— 25 m、さら〖こ好ましくは 0. 5— 20 mである。
[0096] 前記複屈折 A層は、例えば、前記複屈折 B層の片面または両面に積層されてもよく
、その積層数は、 1層でもよいし、 2層以上でもよい。また、前記複屈折 A層は、前記 複屈折 B層上に直接、積層されていてもよぐ前記両者の間に別の層が配置されて いてもよい。前記複屈折 B層についても、前記複屈折 A層についてと同様である。
[0097] また、例えば、本発明の複屈折性光学フィルムは、下記式 (4)に示す条件を満たす のが好ましい。このような条件を満たす本発明の複屈折性光学フィルムは、液晶表示 装置等に組み込まれた際に、正面コントラストを低下させることがない。
3° ≤配向軸精度≤3° (4)
前記配向軸精度は、前記で定義したとおりである。
[0098] 前記複屈折性光学フィルムは、 2° ≤配向軸精度≤ 2° を満たすのがより好ましく 、—1. 5° ≤配向軸精度≤ 1. 5° を満たすのがさらに好ましい。特に、 VAモードの 液晶セルに対しては、前記複屈折性光学フィルムは、 2° ≤配向軸精度≤ 2° を満 たすのが好ましい。本発明において、前記複屈折 A層と前記複屈折 B層の積層体と して収縮若しくは延伸させた場合、軸精度のバラツキが少なくなるので好ま 、。
[0099] さらに、本発明の複屈折性光学フィルムは、逆波長分散特性を有するのが好ましい 。逆波長分散特性を有すると、本発明の複屈折性光学フィルムが液晶表示装置等に 組み込まれた際に、画面の着色が更に防止されるからである。逆波長分散特性とは 、波長が大きくなるに従い、面内位相差値(A nd)が大きい値を示すことをいう。逆波 長分散特性を有する本発明の複屈折性光学フィルムは、逆分散フィルムとして用い ることがでさる。
[0100] 例えば、前記複屈折性光学フィルムが、下記式 (5)および (6)に示す条件を満たす のが好ましい。前記式 (5)および (6)に示す条件を満たせば、前記複屈折性光学フ イルムが、逆波長分散特性を有する力もである。すなわち、本発明において、複屈折 層 Aと複屈折層 Bは、それぞれの遅相軸が直交しており、光学フィルム全体の面内位 相差 A ndは、複屈折 A層の面内位相差 A ndと複屈折 B層の面内位相差 A ndの差
a b
( Δ ηά= I A nd -A nd | )となる。そして、図 1のグラフに示すように、複屈折 A層
a b
の面内位相差 A ndの絶対値の波長分散特性の変化 Aは、複屈折 B層の面内位相
a
差 A ndの絶対値の波長分散特性の変化 Bの変化に比べて、小さい。したがって、 b
図 2のグラフに示すように、本発明の光学フィルムの波長分散特性は、前記両層 A, Bの面内位相差の差になるため、結果として逆波長分散となる。なお、図 1および図 2 のグラフは、波長分散特性を説明するためのものであり、本発明は、これらのグラフに 限定されない。
I And I > I And | (5)
a b
a < a (6)
a b
前記式(5)および(6)において、 And、 And、 aおよび α は、前記で定義したと
a b a b
おりである。
[0101] 前記式 (5)および (6)に示す条件を満たすためには、例えば、複屈折 A層と複屈折 B層の形成材料の種類を選択することにより実現することができる。例えば、複屈折 B 層の形成材料としてポリイミドを選択すると、波長分散が大きくなる。つまり、低波長に おける A ndが大きぐ高波長における A ndが小さくなる。その結果、複屈折 A層の形 成材料がいかなるものであっても、積層体としての A ndは、逆分散特性を示す。
[0102] 本発明の複屈折性光学フィルムは、例えば、前記複屈折 A層を準備し、その上に、 前記複屈折 B層を形成することにより製造することができる。
[0103] まず、前記複屈折 A層を準備する。
[0104] 前記複屈折 A層は、例えば、負の配向複屈折を有するポリマー、正の配向複屈折 を有するポリマー、または負の配向複屈折を有するポリマーと正の配向複屈折を有 するポリマーの混合物力も形成される。前記ポリマーは、前述のとおりである。
[0105] 前記複屈折 A層は、例えば、従来公知の方法、例えば押出成形、カレンダ一法、 溶媒キャスティング法、フィルム流延等を用いて、負の配向複屈折を有するポリマー、 正の配向複屈折を有するポリマー、または負の配向複屈折を有するポリマーと正の 配向複屈折を有するポリマーの混合物から形成することができる。
[0106] 例えば、以下に、フィルム流延を用いて前記複屈折 A層を形成する方法を説明す る。
[0107] 例えば、前記複屈折 A層を形成するポリマーの溶液または溶融液を、適当な基材 上に塗工し、適当な手段 (加熱または冷却)によりこれを固化させ、固化した材料を基 材カも剥離してフィルムを得る。基材としては、特に限定されず、無機化合物の基材( SUSベルト、銅薄板、ガラス、 Siウェハ等)、ポリマーフィルムまたは金属板等を用い ることがでさる。 [0108] 前記基材のポリマーフィルムの形成材料として、具体的には、例えば、ポリオレフィ ン(ポリエチレン、ポリプロピレン等)、アモルファスポリオレフイン、ポリイミド、ポリアミド イミド、ポリアミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケト ン、ポリケトンスルフイド、ポリエーテルスルホン、ポリスルホン、ポリフエ-レンスルフィ ド、ポリフエ-レンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート 、ポリエチレンナフタレート、ポリアセタール、ポリカーボネート、ポリアリレート、ポリメ チノレメタタリレート、ポリメタタリレート、ポリアタリレート、ポリスチレン、ポリプロピレン、 セルロース系ポリマー(トリアセチルセルロース(TAC)等)、エポキシ榭脂、フエノー ル榭脂、ノルボルネン系榭脂、ポリエステル榭脂、ポリエーテルスルホン榭脂、ポリス ルホン樹脂、ポリカーボネート榭脂、ポリアミド榭脂、ポリイミド榭脂、ポリオレフイン榭 脂、アクリル榭脂、ポリノルボルネン榭脂、ポリアリレート榭脂、ポリスチレン榭脂、ポリ ビュルアルコール榭脂、ポリ塩化ビュル榭脂、ポリ塩化ビニリデン榭脂、ポリアクリル 榭脂や、これらの混合物等が挙げられる。
[0109] また、これらの他に、前記基材の形成材料として、液晶ポリマー等も使用できる。さ らに、例えば、特開平 2001— 343529号公報 (WO 01/37007号)に記載されて いるような、側鎖に置換イミド基または非置換イミド基を有する熱可塑性榭脂と、側鎖 に置換フエ-ル基または非置換フエ-ル基と-トリル基とを有する熱可塑性榭脂との 混合物等も使用できる。具体例としては、例えば、イソブテンと N—メチルマレイミドの 交互共重合体と、アクリロニトリルとスチレンの共重合体との混合物等である。
[0110] これらの前記基材の形成材料の中でも、例えば、ポリエチレン、ポリプロピレン、ポリ エチレンテレフタレート、ポリエチレンナフタレート、ポリメチノレメタタリレート、ポリカー ボネート、ポリアリレート、セノレロース系ポリマー、ポリエーテルスルホン、ノルボルネン 系榭脂、イソブテンと N-メチルマレイミドの交互共重合体と、アクリロニトリルとスチレ ンの共重合体の混合物、側鎖に置換イミド基または非置換イミド基を有する熱可塑性 榭脂と、側鎖に置換フ ニル基または非置換フ ニル基と-トリル基とを有する熱可 塑性榭脂との混合物が好ましい。前記ポリマーフィルムとしては、前記榭脂を、押出 成形、カレンダ一法、溶媒キャスティング法等で製造することができる。さらに、ポリマ 一フィルムは、延伸(一軸、二軸等)されてもよぐ延伸されたポリマーフィルムが好ま しい。前記ポリマーフィルムとしては、親水化処理や疎水化処理、基材の溶解性を低 減する処理等の表面処理を施したものを用いることもできる。前記ポリマーフィルムの 厚みは、通常 10 μ m以上 200 μ m以下であり、好ましくは 20 μ m以上 150 μ m以上 、特に好ましくは 30 μ m以上 100 μ m以下である。
[0111] 前記複屈折 A層を形成するポリマー溶液におけるポリマー濃度は、特に制限されな いが、例えば、塗工が容易な粘度となることから、溶媒 100重量部に対して、前記ポリ マーが、例えば 0. 5— 50重量部、好ましくは 1一 40重量部、より好ましくは 2— 30重 量部である。溶媒 100重量部に対して前記ポリマーが 0. 5重量部以上であると、塗 ェに適した粘度が得られるので好ましい。また、 50重量部以下であると、滑らかな塗 工面を形成できる粘度が得られるので好まし 、。
[0112] 前記複屈折 A層を形成するポリマー溶液の溶媒としては、特に制限されず、例えば 、前記ポリマーを溶解できればよぐ前記ポリマーの種類に応じて適宜決定できる。 具体例としては、例えば、クロ口ホルム、ジクロロメタン、四塩化炭素、ジクロロエタン、 テトラクロロェタン、トリクロロエチレン、テトラクロロエチレン、クロ口ベンゼン、オルソジ クロ口ベンゼン等のハロゲン化炭化水素類;フエノール、パラクロロフェノール等のフ ェノール類;ベンゼン、トルエン、キシレン、メトキシベンゼン、 1, 2—ジメトキシベンゼ ン等の芳香族炭化水素類;アセトン、メチルェチルケトン、メチルイソプチルケトン、シ クロへキサノン、シクロペンタノン、 2—ピロリドン、 N—メチノレー 2—ピロリドン等のケトン系 溶媒;酢酸ェチル、酢酸ブチル等のエステル系溶媒; t ブチルアルコール、グリセリ ン、エチレングリコーノレ、トリエチレングリコール、エチレングリコールモノメチルエーテ ル、ジエチレングリコールジメチルエーテル、プロピレングリコール、ジプロピレングリ コール、 2—メチルー 2, 4 ペンタンジオールのようなアルコール系溶媒;ジメチルホル ムアミド、ジメチルァセトアミドのようなアミド系溶媒;ァセトニトリル、ブチ口-トリルのよ うな-トリル系溶媒;ジェチルエーテル、ジブチルエーテル、テトラヒドロフランのような エーテル系溶媒;あるいは二硫化炭素、ェチルセルソルブ、ブチルセルソルブ等が 挙げられる。これらの溶媒は、一種類でもよいし、二種類以上を併用してもよい。また 、前記基材を侵食しないものが好ましい。
[0113] 前記複屈折 A層を形成するポリマー溶液は、例えば、必要に応じて、さらに安定剤 、可塑剤、金属類、相溶化剤等の種々の添加剤を配合してもよい。
[0114] 前記添加剤を、前記複屈折 A層を形成するポリマー溶液に配合する場合、その配 合量は、例えば、前記ポリマーに対して、例えば、 0— 50重量%であり、好ましくは、 0— 30重量%である。
[0115] また、前記複屈折 A層を形成するポリマー溶液は、異なる他の榭脂を含有してもよ い。前記他の榭脂としては、例えば、各種汎用榭脂、エンジニアリングプラスチック、 熱可塑性榭脂、熱硬化性榭脂等があげられる。
[0116] 前記汎用榭脂としては、例えば、ポリエチレン (PE)、ポリプロピレン (PP)、ポリスチ レン (PS)、ポリメチルメタタリレート(PMMA)、 ABS榭脂、および AS榭脂等があげ られる。前記エンジニアリングプラスチックとしては、例えば、ポリアセテート(POM)、 ポリカーボネート(PC)、ポリアミド(PA:ナイロン)、ポリエチレンテレフタレート(PET) 、およびポリブチレンテレフタレート (PBT)等があげられる。前記熱可塑性榭脂として は、例えば、ポリフエ-レンスルフイド(PPS)、ポリエーテルスルホン(PES)、ポリケト ン(PK)、ポリイミド(PI)、ポリシクロへキサンジメタノールテレフタレート(PCT)、ポリ ァリレート (PAR)、および液晶ポリマー (LCP)等があげられる。前記熱硬化性榭脂と しては、例えば、エポキシ榭脂、フエノールノボラック榭脂等があげられる。
[0117] このように、前記他の榭脂等を、前記複屈折 A層を形成するポリマー溶液に配合す る場合、その配合量は、例えば、前記ポリマーに対して、例えば、 0— 50重量%であ り、好ましくは、 0— 30重量%である。
[0118] 前記複屈折 A層を形成するポリマー溶液の塗工方法としては、例えば、スピンコー ト法、ロールコート法、フローコート法、ダイコート法、ブレードコート法、プリント法、デ イッブコート法、流延成膜法、バーコート法、グラビア印刷法等があげられる。また、塗 ェに際しては、必要に応じて、ポリマー層の重畳方式も採用できる。
[0119] 前記複屈折 A層を形成するポリマーの溶融液は、特に限定されないが、例えば前 述のようなポリマーを加熱溶融した液が挙げられる。前記複屈折 A層を形成するポリ マーの溶融液は、例えば、必要に応じて、上述の安定剤、可塑剤、金属類等の種々 の添加剤および異なる他の榭脂をさらに含有してもよい。
[0120] そして、前記基材上に塗工された前記複屈折 A層を形成するポリマーの塗工層を 固化させて、前記基材の片面に層を形成する。
[0121] 前記固化の方法としては、前記複屈折 A層を形成するポリマーを固化させ、層を形 成する方法であれば、特に制限されず、例えば、自然乾燥や加熱乾燥等の乾燥があ げられる。その条件も、例えば、前記複屈折 A層を形成するポリマーの種類や、溶液 の場合には前記溶媒の種類等に応じて適宜決定できる力 例えば、温度は、通常、 40°C— 250°Cであり、好ましくは 50°C— 200°Cである。なお、固化は、一定温度で 行っても良いし、段階的に温度を上昇または下降させながら行っても良い。固化時間 も特に制限されないが、前記複屈折 A層を形成するポリマーの溶液を用いた場合、 固化により溶媒を除去する条件を用いる必要がある。通常、固化時間は、 10秒一 60 分、好ましくは 30秒一 30分である。
[0122] 前記基材上に形成される層の厚みは、特に制限されないが、例えば、 0. 2— 100 mの範囲であり、好ましくは 0. 5— 50 mの範囲であり、より好ましくは 1一 20 m の範囲である。
[0123] このようにして、基材上に、前記複屈折 A層を形成することができる。この複屈折 A 層は、基材カも剥離されて以下の工程でフィルムとして用いられる力 基材の種類に よっては、基材から剥離せず、基材と一体として以下の工程で用いられてもよい。
[0124] 前記剥離方法は、ロール等を用いて機械的に剥離する方法、積層物の材料すベ てに対する貧溶媒に浸潰したのち機械的に剥離する方法、前記貧溶媒中で超音波 をあてて剥離する方法、前記基材と前記フィルム層との熱膨張係数の差を利用して 温度変化を与えて剥離する方法等が挙げられる。前記基材と前記フィルム層の剥離 性は、前記フィルム層を形成するのに用いた材料と、前記基材との密着性によって異 なるため、適宜、最も適した方法を採用することができる。
[0125] 次いで、複屈折 B層を前記複屈折 A層上に配置させて、本発明の複屈折性光学フ イノレムを得る。
[0126] 例えば、前記複屈折 A層上に、例えば、正の配向複屈折を有するポリマーの溶液 または溶融液を塗工し、これを固化させて前記複屈折 A層上に、複屈折 B層を形成 して、本発明の複屈折性光学フィルムを得ることができる。前記複屈折 A層が、正の 配向複屈折を有するポリマーを含む場合、前記複屈折層 Bを形成する正の配向複屈 折を有するポリマーは、前記ポリマーと同一であっても、異なっていてもよい。
[0127] 前記複屈折 B層を形成するポリマー溶液におけるポリマー濃度、前記複屈折 B層を 形成するポリマー溶液の溶媒、前記複屈折 B層を形成するポリマー溶液および溶融 液が任意に含む添加剤および他の榭脂、前記複屈折 B層を形成するポリマーに対 する添加剤や他の樹脂の配合割合、前記複屈折 B層を形成するポリマー溶液の塗 ェ方法、前記複屈折 B層を形成するポリマー溶融液の塗工方法、前記複屈折 B層を 形成するポリマー溶液または溶融液の固化の方法や条件などは、前記複屈折 A層 について説明したものと、同様である。
[0128] 一方、前記複屈折 B層は、例えば、正の配向複屈折を有するポリマーの溶液または 溶融液を、適当な基材上に塗工し、加熱または冷却によりこれを硬化させ、硬化した 材料を基材から剥離して別途形成することもできる。このように別途形成した複屈折 B 層は、前記複屈折 A層と、接着剤または粘着剤を用いて貼り合せることにより、前記 複屈折 A層と複屈折 B層とを含む、本発明の複屈折性光学フィルムを形成することも できる。
[0129] 貼り合せの際に用いられる、接着剤または粘着剤は、特に制限はないが、光学的 透明性に優れ、適度な濡れ性、凝集性や接着性の粘着特性を示すものが好ましい。 前記接着剤としては、例えば、アクリル系、ビュルアルコール系、シリコーン系、ポリエ ステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤や、ゴム系接着剤 等があげられる。また、ホウ酸、ホウ砂、ダルタルアルデヒド、メラミン、シユウ酸等のビ -ルアルコール系ポリマーの水溶性架橋剤等力も構成される接着剤等も使用できる
[0130] 前記粘着剤としては、例えば、アクリル系ポリマーやシリコーン系ポリマー、ポリエス テル、ポリウレタン、ポリエーテル、合成ゴム等のポリマーを適宜ベースポリマーとして 調製された粘着剤等が挙げられる。
[0131] また、本発明の複屈折性光学フィルムは、例えば、前記複屈折 A層の前駆層を準 備し、その上に、前記複屈折 B層の前駆層を形成し、その積層体を延伸または収縮 すること〖こより製造することちでさる。
[0132] 前記複屈折 A層の前駆層は、前述のような、前記複屈折 A層と同様の材料および 形成方法を用いて形成することができる。また、前記複屈折 B層の前駆層も、前述の ような、前記複屈折 B層と同様の材料および形成方法を用いて形成することができる 。例えば、前記複屈折 A層は、 ny≥nz >nxまたは nz >ny >nxの特性を有する
a a a a a a
力 前記複屈折 A層の前駆層は、前記特性を有さない点のみが相違する。このような 場合、前記特性を変化させ、所望の特性を得るように、前記複屈折 A層の前駆層を 延伸または収縮して、前記複屈折 A層を形成することが考えられる。前記複屈折 B層 の前駆層も、 nx≥ny >nzの特性を有さない点のみが、前記複屈折 B層と相違す
b b b
る。前記と同様、前記複屈折 B層の前駆層を延伸または収縮することにより、所望の 特性を得、前記複屈折 B層を形成することが可能である。
[0133] 前記延伸方法は特に限定されず、一軸延伸でも二軸延伸でも良い。また、延伸方 向も、前記積層物のフィルム MD方向または TD方向のいずれでもよい。具体的な延 伸方法も特に限定されず、公知の方法を適宜使用することができる力 例えば、ロー ル法縦延伸、テンター横延伸、フィルムの MD方向に一軸に延伸する自由端縦延伸 、フィルムの MD方向は固定しながら TD方向に一軸に延伸する固定端横延伸、 TD 方向に延伸しながら同時に MD方向に収縮される同時二軸延伸、 MD方向に延伸し た後に TD方向にも延伸する二軸延伸などが挙げられる。
[0134] また、フィルム TD方向は固定しながら MD方向に延伸すると、よりフィルム内の面方 向の分子配列を制御しやす 、ため、小さ 、値の Andを有する延伸フィルムを得るこ とがでさる。
[0135] また、フィルム MD方向は固定しながら TD方向に延伸、例えば固定端横延伸する と、小さい値の Andを有する延伸フィルムを得ることができる。さらに、延伸した TD方 向とは逆方向に収縮させると、 And, Rthおよび配向軸性度が向上した延伸フィルム を得ることちでさる。
[0136] さらに、フィルム MD方向に収縮させながら TD方向に延伸すると、固定端横延伸の 場合よりも、大きな Andおよび向上した配向軸精度を有する延伸フィルムを得ること ができる。
[0137] また、 TD方向に延伸した場合には、前記複屈折性光学フィルムと偏光板もしくは 偏光子を長尺で容易に貼り合せることにより、複屈折性光学フィルムの面内の最大屈 折率の向きと偏光板の吸収軸が直交するような配置を有する楕円偏光板を得ること ができ、いわゆる「Roll To Roll」の製造が可能になり、製造効率を向上させることがで きる。
[0138] 前記積層物の延伸倍率は、延伸方法によって異なるが、通常前記未延伸の積層 物の長さに対して、 0— 100%延伸する。前記積層物の延伸倍率は、前記未延伸の 積層物の長さに対して、 0— 70%が好ましい。
[0139] 前記積層物を延伸する温度は、使用する前記積層物のガラス転移点 (Tg)や前記 積層物中の添加物の種類などに応じて適宜選択される。前記積層物を延伸する温 度は、例えば 40— 250°C、好ましくは 80— 220°C、特に好ましくは 100— 200°Cで ある。特に、前記積層物を延伸する温度は、延伸される前記積層物の Tg付近または Tg以上であるのが好ましい。
[0140] 前記積層物の収縮方法としては、特に制限されないが、通常の方法を用いることが できる。例えば、前記複屈折 A層の前駆層を形成する際に基材を用い、積層物をカロ 熱または冷却することにより、その基材を収縮させて、積層物全体を収縮させることが できる。そのような基材としては、熱収縮性フィルムなどの収縮能を有する基材を用い ることができる。収縮能を有する基材を用いる場合、延伸機を利用して、基材の収縮 率を制御することが好ましい。具体的には、テンター延伸機で延伸倍率を 1未満に設 定する方法や、縦一軸延伸機にて等倍に設定し、幅収縮を行う方法が挙げられる。
[0141] 熱収縮性フィルムの例としては、ポリエステル、ポリスチレン、ポリエチレン、ポリプロ ピレン、ポリ塩化ビニル、ポリ塩ィ匕ビユリデンなどのフィルムが挙げられる。
[0142] また、前記製造方法にお!、て、前記複屈折 A層または前記複屈折 B層を準備する 際、前記複屈折 A層の前駆層または前記複屈折 B層の前駆層を準備し、前記前駆 層を前述のように延伸または収縮して、前記複屈折 A層または前記複屈折 B層を形 成してもよい。特に、複屈折 A層または複屈折 B層は、正の配向複屈折を有するポリ マーカゝら形成される複屈折 A層の前駆層または複屈折 B層の前駆層を延伸処理して 形成されるのが好ましい。また、前記複屈折性光学フィルムが、例えば 3層の前記複 屈折 A層を含む場合、以下のようにして形成することができる。まず、前記複屈折 A 層の前駆層を 3層準備し、積層させる。各層の境界には、接着剤層を形成する。その 3層積層物を一体として、前述のように延伸または収縮して、 3層積層物の前記複屈 折 A層を形成することができる。
[0143] また、本発明の複屈折性光学フィルムは、上述のように、下記の式 (4)に示す条件 を満たすのが好ま ヽ。このような条件を満たす本発明の複屈折性光学フィルムは、 液晶表示装置等に組み込まれた際に、実用的である力もである。
3° ≤配向軸精度≤3° (4)
前記配向軸精度は、先に定義したとおりである。
[0144] さらに、本発明の複屈折性光学フィルムは、下記の式 (5)および (6)に示す条件を 満たすのが好ましい。前記の式 (5)および (6)に示す条件を満たせば、前記複屈折 性光学フィルムは、前述したように、逆波長分散特性を有し、画面の着色が更に防止 されるからである。
I And I > I And | (5)
a b
a < a (o
前記 And、 And、 aおよび α は、先に定義したとおりである。
a b a b
[0145] 次に、本発明の複屈折性光学フィルムは、フィルム単独または必要に応じて他の光 学フィルム等と組み合わせた積層体として各種の光学用途、具体的には、各種液晶 表示素子の光学補償部材として利用することができる。例えば、工業的に製造されて いるヨウ素系や染料系の偏光板 (または偏光子)と本発明の複屈折性光学フィルムと を組み合わせることにより、液晶表示素子の複屈折性を補償、調整する機能を有す る積層偏光板とすることができる。
[0146] 本発明の複屈折性光学フィルムと任意に組み合わせて用いる偏光板は、特に限定 されないが、その基本的な構成は、偏光子の片側または両側に、保護層(フィルム) を積層したものである。
[0147] 前記偏光子 (偏光フィルム)としては、特に制限されず、例えば、従来公知の方法に より、各種フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて染色し、架 橋、延伸、乾燥することによって調製したもの等が使用できる。この中でも、自然光を 入射させると直線偏光を透過するフィルムが好ましぐ光透過率や偏光度に優れるも のが好ましい。前記二色性物質を吸着させる各種フィルムとしては、例えば、ポリビ- ルアルコール(PVA)系フィルム、部分ホルマール化 PVA系フィルム、エチレン '酢 酸ビュル共重合体系部分ケンィ匕フィルム、セルロース系フィルム等の親水性高分子 フィルム等があげられ、これらの他にも、例えば、 PVAの脱水処理物やポリ塩化ビ- ルの脱塩酸処理物等のポリェン配向フィルム等も使用できる。これらの中でも、好まし くはヨウ素または二色性染料を吸着配向させた PVA系フィルムである。また、前記偏 光フィルムの厚みは、通常、 1一 80 mの範囲である力 これには限定されない。
[0148] 前記保護層(フィルム)としては、特に制限されず、従来公知の透明フィルムを使用 できるが、例えば、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優 れるものが好ましい。このような透明保護層の材質の具体例としては、トリァセチルセ ルロール等のセルロース系榭脂や、ポリエステル系、ポリカーボネート系、ポリアミド系
、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボ ルネン系、ポリオレフイン系、アクリル系、アセテート系等の透明榭脂、側鎖に置換イミ ド基または非置換イミド基を有する熱可塑性榭脂と、側鎖に置換フエニル基または非 置換フエニル基と-トリル基とを有する熱可塑性榭脂との混合物、液晶ポリマー等が あげられる。また、前記アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリ コーン系等の熱硬化型榭脂または紫外線硬化型榭脂等もあげられる。この中でも、 偏光特性や耐久性の点から、表面をアルカリ等でケンィ匕処理した TACフィルムが好 ましい。
[0149] また、前記保護層としては、特開 2001— 343529号公報 (WO01Z37007)に記 載のポリマーフィルムが挙げられる。このポリマー材料としては、例えば、側鎖に置換 または非置換のイミド基を有する熱可塑性榭脂と、側鎖に置換または非置換のフエ- ル基ならびに-トリル基を有す熱可塑性榭脂を含有する榭脂組成物が使用でき、例 えば、イソブテンと N-メチルマレイミドからなる交互共重合体と、アクリロニトリル'スチ レン共重合体とを有する榭脂組成物があげられる。なお、前記ポリマーフィルムは、 例えば、前記榭脂組成物の押出成形物であってもよ 、。
[0150] また、前記保護層は、例えば、色付きが無いことが好ましい。具体的には、下記式 で表されるフィルム厚み方向の位相差値(Rth) 1S 90nm— + 75nmの範囲である ことが好ましぐより好ましくは 80nm— + 60nmであり、特に好ましくは— 70nm— + 45nmの範囲である。前記位相差値カ 90nm— + 75nmの範囲であれば、十分に 保護フィルムに起因する偏光板の着色 (光学的な着色)を解消できる。なお、下記式 において、 nx, ny, nzは、前述と同様であり、 dは、その膜厚を示す。
Rth = { [ (nx+ny) /2] - nz } · d
また、前記透明保護層は、さらに光学補償機能を有するものでもよい。このように光 学補償機能を有する透明保護層としては、例えば、液晶セルにおける位相差に基づ く視認角の変化が原因である、着色等の防止や、良視認の視野角の拡大等を目的と した公知のものが使用できる。具体的には、例えば、前述した透明榭脂を一軸延伸 または二軸延伸した各種延伸フィルムや、液晶ポリマー等の配向フィルム、透明基材 上に液晶ポリマー等の配向層を配置した積層体等があげられる。これらの中でも、良 視認の広い視野角を達成できることから、前記液晶ポリマーの配向フィルムが好まし ぐ特に、ディスコティック系ゃネマチック系の液晶ポリマーの傾斜配向層力も構成さ れる光学補償層を、前述のトリァセチルセルロースフィルム等で支持した光学補償位 相差板が好ましい。このような光学補償位相差板としては、例えば、富士写真フィル ム株式会社製「WVフィルム」等の市販品があげられる。なお、前記光学補償位相差 板は、前記位相差フィルムゃトリアセチルセルロースフィルム等のフィルム支持体を 2 層以上積層させることによって、位相差等の光学特性を制御したもの等でもよい。
[0151] 前記透明保護層の厚みは、特に制限されず、例えば、位相差や保護強度等に応じ て適宜決定できる力 例えば、 500 μ m以下であり、好ましくは 5— 300 μ m、より好ま しくは 5— 150 mの範囲である。
[0152] 前記透明保護層は、例えば、偏光フィルムに前記各種透明榭脂を塗布する方法、 前記偏光フィルムに前記透明榭脂製フィルムや前記光学補償位相差板等を積層す る方法等の従来公知の方法によって適宜形成でき、また市販品を使用することもでき る。
[0153] また、前記透明保護層は、さらに、例えば、ハードコート処理、反射防止処理、ステ イツキングの防止や拡散、アンチグレア等を目的とした処理等が施されたものでもよい 。前記ハードコート処理とは、偏光板表面の傷付き防止等を目的とし、例えば、前記 透明保護層の表面に、硬化型榭脂から構成される、硬度や滑り性に優れた硬化被膜 を形成する処理である。前記硬化型榭脂としては、例えば、シリコーン系、ウレタン系 、アクリル系、エポキシ系等の紫外線硬化型榭脂等が使用でき、前記処理は、従来 公知の方法によって行うことができる。ステイツキングの防止は、隣接する層との密着 防止を目的とする。前記反射防止処理とは、偏光板表面での外光の反射防止を目 的とし、従来公知の反射防止層等の形成により行うことができる。
[0154] 前記アンチグレア処理とは、偏光板表面にぉ 、て外光が反射することによる、偏光 板透過光の視認妨害を防止すること等を目的とし、例えば、従来公知の方法によつ て、前記透明保護層の表面に、微細な凹凸構造を形成することによって行うことがで きる。このような凹凸構造の形成方法としては、例えば、サンドブラスト法やエンボス 加工等による粗面化方式や、前述のような透明樹脂に透明微粒子を配合して前記透 明保護層を形成する方式等があげられる。
[0155] 前記透明微粒子としては、例えば、シリカ、アルミナ、チタ-ァ、ジルコユア、酸ィ匕錫 、酸化インジウム、酸ィ匕カドミウム、酸ィ匕アンチモン等があげられ、この他にも導電性 を有する無機系微粒子や、架橋または未架橋のポリマー粒状物等から構成される有 機系微粒子等を使用することもできる。前記透明微粒子の平均粒径は、特に制限さ れないが、例えば、 0. 5— 20 mの範囲である。また、前記透明微粒子の配合割合 は、特に制限されないが、例えば、前述のような透明榭脂 100重量部あたり 2— 70重 量部の範囲であり、好ましくは 5— 50重量部の範囲である。
[0156] 前記透明微粒子を配合したアンチグレア層は、例えば、透明保護層そのものとして 使用することもでき、また、透明保護層表面に塗工層等として形成されてもよい。さら に、前記アンチグレア層は、偏光板透過光を拡散して視角を拡大するための拡散層 (視覚補償機能等)を兼ねるものであってもよ 、。
[0157] なお、前記反射防止層、ステイツキング防止層、拡散層、アンチグレア層等は、前記 透明保護層とは別個に、例えば、これらの層を設けたシート等力も構成される光学層 として、偏光板に積層してもよい。
[0158] 各構成物同士 (複屈折性光学フィルム、偏光子、透明保護層等)の積層方法は、特 に制限されず、従来公知の方法によって行うことができる。一般には、前述と同様の 粘着剤や接着剤等が使用でき、その種類は、前記各構成物の材質等によって適宜 決定できる。前記接着剤としては、例えば、アクリル系、ビニルアルコール系、シリコ ーン系、ポリエステル系、ポリウレタン系、ポリエーテル系等のポリマー製接着剤や、 ゴム系接着剤等があげられる。前述のような粘着剤、接着剤は、例えば、湿度や熱の 影響によっても剥がれ難ぐ光透過率や偏光度にも優れる。具体的には、前記偏光 子が PVA系フィルムの場合、例えば、接着処理の安定性等の点から、 PVA系接着 剤が好ましい。これらの接着剤や粘着剤は、例えば、そのまま偏光子や透明保護層 の表面に塗布してもよ ヽし、前記接着剤や粘着剤から構成されたテープやシートのよ うな層を前記表面に配置してもよい。また、例えば、水溶液として調製した場合、必要 に応じて、他の添加剤や、酸等の触媒を配合してもよい。
[0159] なお、前記接着剤を塗布する場合は、例えば、前記接着剤水溶液に、さらに、他の 添加剤や、酸等の触媒を配合してもよい。このような接着層の厚みは、特に制限され ないが、例えば、 lnm— 500nmであり、好ましくは lOnm— 300nmであり、より好ま しくは 20nm— lOOnmである。特に限定されず、例えば、アクリル系ポリマーゃビ- ルアルコール系ポリマー等の接着剤等を使用した従来公知の方法が採用できる。
[0160] 本発明の複屈折性光学フィルムは、各種位相差板、拡散制御フィルム、輝度向上 フィルム等と組み合わせて用いることもできる。位相差板としては、ポリマーをー軸延 伸したもの、二軸延伸したもの、 Z軸配向処理したもの、液晶性高分子を塗布したも の等が挙げられる。拡散制御フィルムは、視野角を制御するための拡散、散乱、屈折 を利用したフィルムや、解像度に関わるギラツキ、散乱光等を制御する拡散、散乱、 屈折を利用したフィルム等を用いることができる。輝度向上フィルムは、コレステリック 液晶の選択反射と λ Ζ4板を用いた輝度向上フィルムや、偏光方向による異方性散 乱を利用した散乱フィルム等を用いることができる。また、ワイヤーグリッド型偏光子と 組み合わせて用いてもよ!、。
[0161] 本発明による積層偏光板は、各種液晶表示装置の形成などに好ましく用いることが できるが、その適用に際しては、必要に応じ接着層や粘着層を介して、反射板、半透 過反射板、輝度向上フィルムなどの他の光学層の 1層または 2層以上を積層すること ができる。
[0162] 反射型偏光板または半透過反射型偏光板の一例について説明する。前記反射型 偏光板は、本発明の積層偏光板にさらに反射板が、前記半透過反射型偏光板は、 本発明の積層偏光板にさらに半透過反射板が、それぞれ積層されている。
[0163] 前記反射型偏光板は、通常、液晶セルの裏側に配置され、視認側(表示側)からの 入射光を反射させて表示するタイプの液晶表示装置 (反射型液晶表示装置)等に使 用できる。このような反射型偏光板は、例えば、バックライト等の光源の内蔵を省略で きるため、液晶表示装置の薄型化を可能にする等の利点を有する。
[0164] 前記反射型偏光板は、例えば、前記弾性率を示す偏光板の片面に、金属等から 構成される反射板を形成する方法等、従来公知の方法によって作製できる。具体的 には、例えば、前記偏光板における透明保護層の片面 (露出面)を、必要に応じてマ ット処理し、前記面に、アルミニウム等の反射性金属からなる金属箔ゃ蒸着膜を反射 板として形成した反射型偏光板等があげられる。
[0165] また、前述のように各種透明樹脂に微粒子を含有させて表面を微細凹凸構造とし た透明保護層の上に、その微細凹凸構造を反映させた反射板を形成した、反射型 偏光板等もあげられる。その表面が微細凹凸構造である反射板は、例えば、入射光 を乱反射により拡散させ、指向性ゃギラギラした見栄えを防止し、明暗のムラを抑制 できるという利点を有する。このような反射板は、例えば、前記透明保護層の凹凸表 面に、真空蒸着方式、イオンプレーティング方式、スパッタリング方式等の蒸着方式 ゃメツキ方式等、従来公知の方法により、直接、前記金属箔ゃ金属蒸着膜として形 成することができる。
[0166] また、前述のように偏光板の透明保護層に前記反射板を直接形成する方式に代え て、反射板として、前記透明保護フィルムのような適当なフィルムに反射層を設けた 反射シート等を使用してもよい。前記反射板における前記反射層は、通常、金属から 構成されるため、例えば、酸化による反射率の低下防止、ひいては初期反射率の長 期持続や、透明保護層の別途形成を回避する点等から、その使用形態は、前記反 射層の反射面が前記フィルムや偏光板等で被覆された状態であることが好ましい。
[0167] 一方、前記半透過型偏光板は、前記反射型偏光板にぉ 、て、反射板に代えて、半 透過型の反射板を有するものである。前記半透過型反射板としては、例えば、反射 層で光を反射し、かつ、光を透過するハーフミラー等があげられる。 [0168] 前記半透過型偏光板は、通常、液晶セルの裏側に設けられ、液晶表示装置等を比 較的明るい雰囲気で使用する場合には、視認側 (表示側)からの入射光を反射して 画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内 蔵されて!ヽるバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示 装置等に使用できる。すなわち、前記半透過型偏光板は、明るい雰囲気下では、バ ックライト等の光源使用のエネルギーを節約でき、一方、比較的暗い雰囲気下にお いても、前記内蔵光源を用 ヽて使用できるタイプの液晶表示装置等の形成に有用で める。
[0169] つぎに、本発明の複屈折性光学フィルムや積層偏光板等に、さらに輝度向上フィ ルムが積層された複屈折性光学フィルムや積層偏光板等の一例を説明する。
[0170] 前記輝度向上フィルムとしては、特に限定されず、例えば、誘電体の多層薄膜や、 屈折率異方性が相違する薄膜フィルムの多層積層体のような、所定偏光軸の直線偏 光を透過して、他の光は反射する特性を示すもの等が使用できる。このような輝度向 上フィルムとしては、例えば、 3M社製の商品名「D-BEF」等があげられる。また、コ レステリック液晶層、特にコレステリック液晶ポリマーの配向フィルムや、その配向液 晶層をフィルム基材上に支持したもの等が使用できる。これらは、左右一方の円偏光 を反射して、他の光は透過する特性を示すものであり、例えば、 日東電工社製の商 品名「PCF350」、 Merck社製の商品名「Transmax」等があげられる。
[0171] 前記の 2層以上の光学層を積層した光学部材は、例えば、液晶表示装置等の製造 過程において、順次別個に積層する方式によっても形成できるが、予め積層した光 学部材として使用すれば、例えば、品質の安定性や組立作業性等に優れ、液晶表 示装置等の製造効率を向上できるという利点がある。なお、積層には、前述と同様に 、粘着層等の各種接着手段を用いることができる。
[0172] 本発明の複屈折性光学フィルムや積層偏光板等は、例えば、液晶セル等の他の 部材への積層が容易になることから、さらに粘着剤層や接着剤層を有していることが 好ましぐこれらは、前記複屈折性光学フィルムや積層偏光板等の片面または両面 に配置することができる。前記粘着層の材料としては、特に制限されず、アクリル系ポ リマー等の従来公知の材料が使用でき、特に、吸湿による発泡や剥離の防止、熱膨 張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に 優れる液晶表示装置の形成性等の点より、例えば、吸湿率が低くて耐熱性に優れる 粘着層となることが好ましい。また、微粒子を含有して光拡散性を示す粘着層等でも よい。前記光学フィルムや積層偏光板等の表面への前記粘着剤層の形成は、例え ば、各種粘着材料の溶液または溶融液を、流延ゃ塗工等の展開方式により、前記光 学フィルムや積層偏光板等の所定の面に直接添加して層を形成する方式や、同様 にして後述するセパレータ上に粘着剤層を形成させて、それを前記複屈折性光学フ イルムや積層偏光板等の所定面に移着する方式等によって行うことができる。
[0173] 複屈折性光学フィルムや積層偏光板等に設けた粘 (接)着層が表面に露出する場 合には、その粘 (接)着層を実用に供するまでの間、汚染防止等を目的にセパレータ にて仮着カバーすることが好ましい。このセパレータは、前記透明保護フィルム等の ような適当なフィルムに、必要に応じて、シリコーン系、長鎖アルキル系、フッ素系、硫 化モリブデン等の剥離剤による剥離コートを設ける方法等によって形成できる。
[0174] なお、上記の複屈折性光学フィルムや積層偏光板を構成する偏光子や透明保護 フィルム、粘 (接)着層などの各層は、例えばサリチル酸エステル系化合物やべンゾフ ヱノン系化合物、ベンゾトリアゾール系化合物ゃシァノアクリレート系化合物、 -ッケ ル錯塩系化合物等の紫外線吸収剤で処理する方式等の適宜な方式により紫外線吸 収能を持たせたもの等であってもよ 、。
[0175] 本発明の複屈折性光学フィルムや積層偏光板は、液晶表示装置等の各種装置の 形成などに好ましく用いることができ、例えば、偏光板を液晶セルの片側又は両側に 配置してなる反射型や半透過型、あるいは透過'反射両用型等の液晶表示装置に 用いることができる。液晶表示装置を形成する液晶セルは任意であり、例えば薄膜ト ランジスタ型に代表されるアクティブマトリクス駆動型のもの、ツイストネマチック型ゃス 一パーツイストネマチック型に代表される単純マトリクス駆動型のものなどの適宜なタ イブの液晶セルを用いたものであってよ 、。
[0176] 例えば STN (Super Twisted Nematic)セル、 TN (Twisted Nematic)セル、 IPS ( In-Plane Switching)セノレ、 VA (Vertical Aligned)セノレ、 OCB (Optically Aligned Birefringence)セノレ、 HAN (Hybrid Aligned Nematic)セノレ、 ASM (Axially Symmetric Aligned Microcell)セル、強誘電 ·反強誘電セル及びこれらに規則正し Vヽ配向分割を行ったもの、ランダムな配向分割を行った物等の各種のセルが含まれ る。本発明の複屈折性光学フィルムは、 VA (Vertical Aligned)セルの光学補償に非 常に優れている。
[0177] なお、本発明の光学フィルムは、 VA (Vertical Aligned)セルの光学補償に非常に 優れているので、 VAモードの液晶表示装置用の視角補償フィルムとして、最も好適 に用いることができる。
[0178] また、前記液晶セルは、通常、対向する液晶セル基板の間隙に液晶が注入された 構造であって、前記液晶セル基板としては、特に制限されず、例えば、ガラス基板や プラスチック基板が使用できる。なお、前記プラスチック基板の材質としては、特に制 限されず、従来公知の材料があげられる。
[0179] また、液晶セルの両側に偏光板や光学部材を設ける場合、それらは同じ種類のも のであってもよいし、異なっていてもよい。さらに、液晶表示装置の形成に際しては、 例えばプリズムアレイシートやレンズアレイシート、光拡散板やバックライトなどの適宜 な部品を適宜な位置に 1層又は 2層以上配置することができる。
[0180] また、本発明の複屈折性光学フィルムや積層偏光板は、前述のような液晶表示装 置には限定されず、例えば、有機エレクト口ルミネッセンス (EL)ディスプレイ、プラズ マディスプレイ(PD)、 FED (電界放出ディスプレイ: Field Emission Display)等の自 発光型表示装置にも使用できる。自発光型フラットディスプレイに使用する場合は、 例えば、本発明の複屈折性光学フィルムの複屈折層の面内位相差値 Δ ndを λ /4 にすることで、円偏光を得ることができるため、反射防止フィルタ一として利用できる。
[0181] 以下に、本発明の積層偏光板を備えるエレクト口ルミネッセンス (EL)表示装置につ いて説明する。本発明の EL表示装置は、本発明の複屈折性光学フィルムまたは積 層偏光板を有する表示装置であり、この EL装置は、有機 ELおよび無機 ELのいずれ でもよい。
[0182] 近年、 EL表示装置においても、黒状態における電極力 の反射防止として、例え ば、偏光子や偏光板等の光学フィルムを λ Ζ4板とともに使用することが提案されて いる。本発明の積層偏光板ゃ複屈折性光学フィルムは、特に、 EL層から、直線偏光 、円偏光もしくは楕円偏光のいずれかの偏光が発光されている場合、あるいは、正面 方向に自然光を発光して 、ても、斜め方向の出射光が部分偏光して 、る場合等に、 非常に有用である。
[0183] ここで、一般的な有機 EL表示装置について説明する。前記有機 EL表示装置は、 一般に、透明基板上に、透明電極、有機発光層および金属電極がこの順序で積層 された発光体 (有機 EL発光体)を有している。前記有機発光層は、種々の有機薄膜 の積層体であり、例えば、トリフエニルァミン誘導体等力もなる正孔注入層とアントラセ ン等の蛍光性有機固体からなる発光層との積層体や、このような発光層とペリレン誘 導体等からなる電子注入層との積層体や、また、前記正孔注入層と発光層と電子注 入層との積層体等、種々の組み合わせがあげられる。
[0184] そして、このような有機 EL表示装置は、前記陽極と陰極とに電圧を印加することに よって、前記有機発光層に正孔と電子とが注入され、前記正孔と電子とが再結合す ることによって生じるエネルギーが、蛍光物質を励起し、励起された蛍光物質が基底 状態に戻るときに光を放射する、という原理で発光する。前記正孔と電子との再結合 というメカニズムは、一般のダイオードと同様であり、電流と発光強度とは、印加電圧 に対して整流性を伴う強 ヽ非線形性を示す。
[0185] 前記有機 EL表示装置においては、前記有機発光層での発光を取り出すために、 少なくとも一方の電極が透明であることが必要なため、通常、酸化インジウムスズ (IT O)等の透明導電体で形成された透明電極が陽極として使用される。一方、電子注 入を容易にして発光効率を上げるには、陰極に、仕事関数の小さな物質を用いるこ とが重要であり、通常、 Mg— Ag、 A1— Li等の金属電極が使用される。
[0186] このような構成の有機 EL表示装置において、前記有機発光層は、例えば、厚み 10 nm程度の極めて薄い膜で形成されることが好ましい。これは、前記有機発光層にお いても、透明電極と同様に、光をほぼ完全に透過させるためである。その結果、非発 光時に、前記透明基板の表面から入射して、前記透明電極と有機発光層とを透過し て前記金属電極で反射した光が、再び前記透明基板の表面側へ出る。このため、外 部から視認した際に、有機 EL表示装置の表示面が鏡面のように見えるのである。
[0187] この有機 EL表示装置は、例えば、前記有機発光層の表面側に透明電極を備え、 前記有機発光層の裏面側に金属電極を備えた前記有機 EL発光体を含む有機 EL 表示装置において、前記透明電極の表面に、本発明の複屈折性光学フィルムまた は積層偏光板が配置されることが好ましぐさらに λ Ζ4板を偏光板と EL素子との間 に配置することが好ましい。このように、本発明の複屈折性光学フィルムを配置するこ とによって、外界の反射を抑え、視認性向上が可能であるという効果を示す有機 EL 表示装置となる。また、前記透明電極と複屈折性光学フィルムとの間に、さらに位相 差板が配置されることが好まし 、。
[0188] 前記位相差板および複屈折性光学フィルム (偏光板等)は、例えば、外部から入射 して前記金属電極で反射してきた光を偏光する作用を有するため、その偏光作用に よって前記金属電極の鏡面を外部力も視認させないという効果がある。特に、位相差 板として 1Z4波長板を使用し、かつ、前記偏光板と前記位相差板との偏光方向のな す角を π Z4に調整すれば、前記金属電極の鏡面を完全に遮蔽することができる。 すなわち、この有機 EL表示装置に入射する外部光は、前記偏光板によって直線偏 光成分のみが透過する。この直線偏光は、前記位相差板によって、一般に楕円偏光 となるが、特に前記位相差板が 1Z4波長板であり、しかも前記角が π Ζ4の場合に は、円偏光となる。
[0189] この円偏光は、例えば、透明基板、透明電極、有機薄膜を透過し、金属電極で反 射して、再び、有機薄膜、透明電極、透明基板を透過して、前記位相差板で再び直 線偏光となる。そして、この直線偏光は、前記偏光板の偏光方向と直交しているため 、前記偏光板を透過できず、その結果、前述のように、金属電極の鏡面を完全に遮 蔽することができるのである。
[0190] (実施例)
以下、実施例及び比較例を用いて本発明を更に具体的に説明するが、本発明は 以下の実施例に限定されるものではない。また、光学フィルムの特性は以下の方法 で評価した。
[0191] 位相差および配向軸精度は、位相差計 (王子計測機器社製、商品名 KOBRA21
ADH)を用いて測定した。
[0192] 膜厚は、波長 700— 900nmで光干渉法により、自記分光光度計 (大塚電子 (株) 製、商品名 MCPD-2000)を用いて測定した。
[0193] なお、複屈折 A層、複屈折 B層および複屈折性光学フィルムにおける And、 Rthお よび αは、下記の式を用いて得た。
Δηά= (ηχ— ny) · ά
Rth= (ηχ— ηζ) · ά
α = Δηά And
430nm Ζ 550nm
[0194] 前記 ηχ、 nyおよび ηζは、前記各層(フィルム)における X軸、 Υ軸および Ζ軸方向の 屈折率を示し、前記 X軸とは、前記複屈折 Β層または前記複屈折性光学フィルムの それぞれの面内において最大の屈折率を示す軸方向であり、 Υ軸は、前記それぞれ の面内において前記 X軸に対して垂直な軸方向であり、 Ζ軸は、前記 X軸および Υ軸 に垂直な厚み方向を示す。 dは、前記各層(フィルム)の厚みを表す。
[0195] 前記 And および And は、波長 430nmおよび 550nmにおける前記各層
430nm 550nm
の Andを示す。
[0196] (実施例 1)
2, 2' ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパンと、 2, 2' ビス( トリフルォロメチル) 4, 4'ージアミノビフエ-ルカ 合成された、以下の式(24)に示 す重量平均分子量(Mw) 100, 000のポリイミドを、メチルイソブチルケトンに溶解さ せて、 20重量%溶液を調製した。
[0197] [化 13]
Figure imgf000040_0001
[0198] このポリイミド溶液を、キャスティング法により三菱レイヨン株式会社製の商品名「ァク リプレン」(厚み 120 m)の片面上に 6. 2 mの厚さで塗布し、積層物を得た。塗布 後、 90°Cで 10分間乾燥させ、この積層物を 100°Cで 8%縦一軸延伸し、前記アタリ プレンから形成された複屈折 A層と、ポリイミド塗布層から形成された複屈折 B層の積 層物である複屈折性光学フィルムを得た。得られた複屈折 A層の厚み d 、 And 、 Rt
a a h 、 aおよび光学特性、得られた複屈折 B層の厚み d 、 And 、 Rth 、 Δηχζ, α お a a b b b b よび光学特性、ならびに得られた複屈折性光学フィルムの厚み d、 Andおよび Rthを 表 1に示す。なお、 Δ ηχζとは、 Δ ηχζ = ηχ—ηζであって、前記 ηχおよび前記 ηζは、 前述のとおりである。
[0199] (実施例 2)
アクリロニトリル スチレン共重合榭脂を、ジクロロメタンに溶解させて、 30重量%溶 液を調製した。この溶液を、ポリエチレンテレフタレートフィルム (PET (基材))上にキ ヤスティング法により塗布し、 100°Cで 30分間放置し、 PETより剥離して厚み 150 mのフィルムを得た。得られたフィルムを 120°Cで 30%自由端縦延伸し、厚み 132 μ mの複屈折 Α層を得た。
[0200] 一方、 2, 2,一ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパンと、 2, 2, ビス(トリフルォロメチル) 4, 4 'ージアミノビフエ-ルカ 合成された、前記式(24) に示す重量平均分子量(Mw) 100, 000のポリイミドを、メチルイソブチルケトンに溶 解させて、 20重量%溶液を調製した。
[0201] このポリイミド溶液を、キャスティング法により TACフィルム(厚み 80 μ m)の片面上 に 10. 8 mの厚さで塗布し、積層物を得た。塗布後、 100°Cで 10分間乾燥させ、こ の積層物を 150°Cで 3%固定端横一軸延伸し、前記 TACフィルムより剥離して、複 屈折 B層を得た。
[0202] 前記複屈折 A層と、前記複屈折 B層を、それぞれの最大屈折率方位が直交するよ うに、アクリル系粘着剤層(厚み 20 μ m)を介して貼り合せ、複屈折光学フィルムを得 た。得られた複屈折 A層の厚み d 、 And 、 Rth 、 aおよび光学特性、得られた複屈
a a a a
折 B層の厚み d 、 And 、 Rth 、 Δηχζ, a および光学特性、ならびに得られた複屈
b b b b
折性光学フィルムの厚み d、 Andおよび Rthを表 1に示す。
[0203] (実施例 3)
ポリカーボネートフィルムの両面に、二軸延伸されたポリプロピレンフィルム(厚み 60 μ m)を、アクリル系粘着剤層(厚み 20 μ m)を介して貼り合せた。その積層物を、 15 0°Cで 7%自由端縦一軸延伸し、厚み 40 mの複屈折 A層を得た。 [0204] 一方、 2, 2,一ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパンと、 2, 2, ビス(トリフルォロメチル) 4, 4 'ージアミノビフエ-ルカ 合成された、前記式(24) に示す重量平均分子量(Mw) 100, 000のポリイミドを、メチルイソブチルケトンに溶 解させて、 20重量%溶液を調製した。
[0205] このポリイミド溶液を、キャスティング法により TACフィルム(厚み 80 μ m)の片面上 に 9. 5 mの厚さで塗布し、積層物を得た。塗布後、 100°Cで 10分間乾燥させ、こ の積層物を 150°Cで 7%固定端横延伸し、前記 TACフィルムより剥離して複屈折 B 層を得た。
[0206] 前記複屈折 A層と、前記複屈折 B層を、それぞれの最大屈折率方位が直交するよ うに、アクリル系粘着剤層(厚み 20 μ m)を介して貼り合せ、複屈折光学フィルムを得 た。得られた複屈折 A層の厚み d 、 And 、 Rth 、 aおよび光学特性、得られた複屈
a a a a
折 B層の厚み d 、 And 、 Rth 、 Δηχζ, a および光学特性、ならびに得られた複屈
b b b b
折性光学フィルムの厚み d、 Andおよび Rthを表 1に示す。
[0207] (比較例 1)
2, 2 ' ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパンと、 2, 2 ' ビス( トリフルォロメチル) 4, 4 'ージアミノビフエ-ルカ 合成された、前記の式(24)に示 す重量平均分子量(Mw) 100, 000のポリイミドを、メチルイソブチルケトンに溶解さ せて、 15重量%溶液を調製した。
[0208] このポリイミド溶液を、キャスティング法により、 日本ゼオン株式会社製の商品名「ゼ ォノア」(厚み 100 μ m)の片面上に 6 μ mの厚さで塗布して積層物を得た。塗布後、 130°Cで 5分間乾燥させ、前記積層物を 130°Cで 7%固定端横延伸し、前記ゼオノ ァから形成された複屈折 A層と、ポリイミド塗布層から形成された複屈折 B層の積層 物である複屈折性光学フィルムを得た。得られた複屈折 A層の厚み d 、 And 、 Rth a a a
、 および光学特性、得られた複屈折 B層の厚み d 、 And 、 Rth 、 Δηχζ, α およ a b b b b び光学特性、ならびに得られた複屈折性光学フィルムの厚み d、 Andおよび Rthを 表 1に示す。
[0209] (比較例 2)
JSR株式会社製の商品名「アートン」(厚み 100 μ m)フィルムを、 175°Cで 20%固 定端横延伸し、複屈折 A層のみの複屈折性光学フィルムを得た。得られた複屈折 A 層の厚み d、 And、 Rth、 aおよび光学特性を表 1に示す。
a a a a
[0210] (比較例 3)
三菱レイヨン株式会社製の商品名「アタリプレン」(厚み 120 m)フィルムを、 100 °Cで 60%自由端縦延伸し、複屈折 A層のみの複屈折性光学フィルムを得た。得られ た複屈折 A層の厚み d、 And、 Rth、 aおよび光学特性を表 1に示す。
a a a a
[0211] (比較例 4)
2, 2 ' ビス(3, 4—ジカルボキシフエ-ル)へキサフルォロプロパンと、 2, 2 ' ビス( トリフルォロメチル) 4, 4 'ージアミノビフエ-ルカ 合成された、前記の式(24)に示 す重量平均分子量(Mw) 100, 000のポリイミドを、メチルイソブチルケトンに溶解さ せて、 15重量%溶液を調製した。
[0212] このポリイミド溶液を、キャスティング法により TAC (基材)の片面上に 6. 5 μ mの厚 さで塗布した。塗布後、 100°Cで 10分間乾燥させ、基材と塗布層とを一体として、 15 0°Cで 10%固定端横延伸し、前記 TAC (基材)から剥離して複屈折 B層のみの複屈 折性光学フィルムを得た。得られた複屈折 B層の厚み d、 And、 Rth、 Δηχζ, a
b b b b および光学特性を表 1に示す。
[0213] [表 1]
B層 複屈折性光学フィルム
△nda tha aa db Andb Rth¾ Δηχζ b d △tid Rth
( m) (Ml) (nm) (^m) (nm) (nm) ( m) (nm) (nm) 実施例 1 119 —15 -14 1.05 ny>nz>nx 6 80 245 0.041 1.12 nx>ny>nz 125 65 231 実施例 2 132 -102 -100 1.06 ny>nz>nx 10.5 25 390 0.037 1.12 nx>ny>nz 162.5 -77 290 実施例 3 40 -218 -109 1.09 ny>nz>tix 9 62 360 0.040 1.12 nx>ny>nz 69 -156 251 比較例 1 95 28 52 1.01 nx>ny>nz 5.6 37 220 0.042 1.12 nx>ny>nz 100.6 65 272 比較例 2 83 49 118 I.01 nx>ny>nz 83 49 118 比較例 3 90 53 1.2 1.05 ny>nz>nx 90 53 1.2 比較例 4 6 60 240 0.04 1.02 nx>ny>nz 6 60 240
[0214] (パネル視野角特性の評価)
実施例 1一 3および比較例 1一 4で得られた複屈折性光学フィルムを、偏光板 (商品 名: SEG1425DU、 日東電工社製)と、アクリル系粘着剤層(厚み 20 μ m)を介して 貼り合わせ、積層偏光板を得た。前記積層偏光板中、前記複屈折性光学フィルムの 複屈折 B層が、前記偏光板と向きあう位置に配置した。その積層偏光板と、偏光板( 商品名: SEG1425DU、 日東電工社製)とを、 VA型液晶セルの両面に、偏光板の 互いの遅相軸が直交するように配置して液晶表示装置を得た。なお、積層偏光板は 、偏光板が前記液晶セルに接するように配置され、前記液晶セルのリア側に配置し た。
[0215] 次に得られた液晶表示装置の上下、左右、対角(45° — 225° )、対角(135° — 315° )の各方向でのコントラスト比(Co)≥ 10の視野角を測定した。コントラスト比は 、前記液晶表示装置に、白画像および黒画像を表示させ、装置(商品名 Ez contra st 160D : ELDIM社製)〖こより、表示画面の正面、上下左右について、視野角 0— 70° における XYZ表示系の Y値、 X値、 y値をそれぞれ測定した。そして、白画像に おける Y値 (Y )
Wと、黒画像における Y値 (Y )
Bとから、各視野角におけるコントラスト 比 (Y /Y )を算出した。全方位コントラスト比が 10以上を「〇」とし、 10未満を「X」
W B
とした。その結果を表 2に示す。
[0216] (パネル着色防止の評価)
上記のようにして得た液晶表示装置を、目視で、以下のようにして評価した。
◎ 全く着色が見られない
〇 若干着色が見られるが、実用レベルで問題がない
X 実用レベルで耐えることができな 、レベルの着色が見られる
その結果を表 2に示す。
[0217] [表 2] パネル視野角特 パネル着色防止 正面コントラス
性 卜
実施例 1 〇 〇 8 4 0
実施例 2 〇 8 3 0
実施例 3 〇 © 7 0 0
比較例 1 〇 X 3 2 0
比較例 2 X X 2 8 0
比較例 3 X X 8 5 0
比較例 4 〇 X 6 0 0
[0218] 表 2に示すように、本発明の複屈折性光学フィルムは、それを組み込んだ液晶表示 装置の良好なコントラストと、広い視野角と、着色防止を実現できた。
産業上の利用可能性
[0219] 以上のように、本発明の複屈折光学フィルムは、液晶表示装置の良好なコントラスト と、広い視野角と、着色防止を実現できる。

Claims

請求の範囲
[1] 1以上の複屈折 A層と、 1以上の複屈折 B層とを含む複屈折性光学フィルムであつ て、
前記複屈折 A層が、 ny≥nz >nxまたは nz >ny >nxの特性を有し、
a a a a a a
前記複屈折 B層が、 nx≥ny >nzの特性を有する複屈折性光学フィルム。
b b b
前記 nx、 nyおよび nzは、前記複屈折 A層における X軸、 Y軸および Z軸方向の a a a
屈折率を示し、前記 X軸は、後記複屈折 B層における X軸と同じ軸方向であって、前 記 Y軸は、後記複屈折 B層における Y軸と同じ軸方向であって、前記 Z軸は、前記 X 軸および Y軸に垂直な厚み方向を示す。
前記 nx、 nyおよび nzは、前記複屈折 B層における X軸、 Y軸および Z軸方向の b b b
屈折率を示し、前記 X軸は、前記複屈折 B層の面内において最大の屈折率を示す軸 方向であり、前記 Y軸は、前記面内において前記 X軸に対して垂直な軸方向であり、 前記 Z軸は、前記 X軸および Y軸に垂直な厚み方向を示す。
[2] 前記複屈折 B層が、下記の式 (1)に示す条件を満たす請求項 1に記載の複屈折性 光学フィルム。
0. 005≤Δη≤0. 2 (1)
b
j ti式 (1)にお ヽて、 Δη =ηχ— nz、
b b b
前記 nxおよび nzは、前記複屈折 B層における X軸および Z軸方向の屈折率を示 b b
し、前記 X軸とは、前記複屈折 B層の面内において最大の屈折率を示す軸方向であ り、 Z軸は、前記 X軸に垂直な厚み方向を示す。
[3] 前記複屈折 A層が、負の配向複屈折を有するポリマーおよび正の配向複屈折を有 するポリマーの少なくとも 1つ力 形成される請求項 1に記載の複屈折性光学フィルム
[4] 前記複屈折 A層が、負の配向複屈折を有するポリマーと、正の配向複屈折を有す るポリマーとの混合物力 形成される請求項 3に記載の複屈折性光学フィルム。
[5] 前記複屈折 B層が、正の配向複屈折を有するポリマーから形成される請求項 1に記 載の複屈折性光学フィルム。
[6] 前記正の配向複屈折を有するポリマーが、ポリアミド、ポリイミド、ポリエステル、ポリ エーテルケトン、ポリアリールエーテルケトン、ポリアミドイミド及びポリエステルイミドか らなる群力 選択される 1以上のポリマーである請求項 5に記載の複屈折性光学フィ ノレム。
[7] 下記の式 (4)に示す条件を満たす請求項 1に記載の複屈折性光学フィルム。
3° ≤配向軸精度≤3° (4)
前記配向軸精度は、遅相軸の面内のバラツキである。
[8] 面内位相差が、逆波長分散特性を有する請求項 1に記載の複屈折性光学フィルム
[9] 前記複屈折性光学フィルムが、下記の式 (5)および (6)に示す条件を満たす請求 項 1に記載の複屈折性光学フィルム。
I And
a I > I And | (5)
b
a < a (6)
a b
前記式(5)および(6)にお!/、て、
And = (nx— ny ) · d
a a a a
And = (nx— ny ) · d
b b b b
= Δηά
a a430nm Z And
a550nm
= Δηά Z And
b b430nm b550nm
前記 nxおよび nyは、前記複屈折 A層における X軸および Y軸方向の屈折率を示 a a
し、前記 X軸は、後記複屈折 B層における X軸と同じ軸方向であって、前記 Y軸は、 後記複屈折 B層における Y軸と同じ軸方向である。 dは前記複屈折 A層の厚みを示 a
す。
前記 nxおよび nyは、前記複屈折 B層における X軸および Y軸方向の屈折率を示 b b
す。前記 X軸は、前記複屈折 B層の面内において最大の屈折率を示す軸方向であり 、 Y軸は、前記面内において前記 X軸に対して垂直な軸方向である。 dは前記複屈 b
折 B層の厚みを示す。
前記 And および And は、波長 430nmおよび 550nmにおける前記複 a430nm a550nm
屈折 A層の Andを示す。
a
前記 And および And は、波長 430nmおよび 550nmにおける前記複 b430nm b550nm 屈折 B層の Andを示す。
b
[10] 複屈折性光学フィルムを含む積層偏光板であって、前記複屈折性光学フィルムが 請求項 1に記載の複屈折性光学フィルムである積層偏光板。
[11] 液晶セルおよび光学部材を含み、前記液晶セルの少なくとも一方の表面に前記光 学部材が配置された液晶パネルであって、前記光学部材が、請求項 1に記載の複屈 折性光学フィルムまたは請求項 10に記載の積層偏光板である液晶パネル。
[12] 液晶パネルを含む液晶表示装置であって、前記液晶パネルが請求項 11に記載の 液晶パネルである液晶表示装置。
[13] 請求項 1に記載の複屈折性光学フィルムまたは請求項 10に記載の積層偏光板を 含むことを特徴とする画像表示装置。
[14] 前記複屈折 A層を形成する混合物に含まれる、負の配向複屈折を有するポリマー と、正の配向複屈折を有するポリマーとが、互いに相溶性である請求項 4に記載の複 屈折性光学フィルム。
[15] 1つの前記複屈折 A層と、 1一 3の前記複屈折 B層とを含む請求項 1に記載の複屈折 性光学フィルム。
[16] 前記複屈折 A層が、負の配向複屈折を有するポリマーおよび正の配向複屈折を有 するポリマーの少なくとも 1つ力 形成され、前記複屈折 B層が、正の配向複屈折を 有するポリマー力 形成される請求項 1に記載の複屈折性光学フィルム。
PCT/JP2004/010469 2003-08-01 2004-07-23 複屈折性光学フィルム WO2005012962A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/540,486 US7535531B2 (en) 2003-08-01 2004-07-23 Birefringent optical film, laminated polarizing plate, liquid crystal display and image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-285192 2003-08-01
JP2003285192A JP4236098B2 (ja) 2003-08-01 2003-08-01 複屈折性光学フィルム

Publications (1)

Publication Number Publication Date
WO2005012962A1 true WO2005012962A1 (ja) 2005-02-10

Family

ID=34113869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010469 WO2005012962A1 (ja) 2003-08-01 2004-07-23 複屈折性光学フィルム

Country Status (6)

Country Link
US (1) US7535531B2 (ja)
JP (1) JP4236098B2 (ja)
KR (1) KR100910149B1 (ja)
CN (1) CN100362373C (ja)
TW (1) TW200506422A (ja)
WO (1) WO2005012962A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005118686A1 (ja) * 2004-06-01 2005-12-15 Kaneka Corporation 可溶性ポリイミド及びこれを使用した光学補償部材
WO2007001999A1 (en) * 2005-06-23 2007-01-04 Nitto Denko Corporation Multilayered optical compensator
US7211304B2 (en) 2004-06-03 2007-05-01 Nitto Denko Corporation Multilayer optical compensator, liquid crystal display, and process
WO2007047100A3 (en) * 2005-10-18 2007-08-09 Nitto Denko Corp Optical compensation films
US7479309B2 (en) 2003-07-31 2009-01-20 Nitto Denko Corporation Multi-layered compensation film using specified Tg material as a birefringent layer

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613079B2 (ja) * 2005-03-04 2011-01-12 富士フイルム株式会社 液晶組成物、位相差板および楕円偏光板
JP2006293281A (ja) * 2005-03-17 2006-10-26 Seiko Epson Corp 光学部品及びプロジェクタ
JP2007025649A (ja) * 2005-06-13 2007-02-01 Teijin Ltd 積層光学フィルム、積層偏光板および液晶表示装置
JP2007078810A (ja) * 2005-09-12 2007-03-29 Fujifilm Corp 液晶表示装置及び発光素子
JP2007108529A (ja) * 2005-10-14 2007-04-26 Jsr Corp 位相差フィルムの製造方法、位相差フィルムおよびその用途
US20070247712A1 (en) * 2006-04-21 2007-10-25 Eastman Kodak Company Optical elements having reverse dispersion
US20080020186A1 (en) * 2006-07-18 2008-01-24 3M Innovative Properties Company Calendering process for making an optical film
JP2008165185A (ja) * 2006-12-07 2008-07-17 Nitto Denko Corp 積層光学フィルム、積層光学フィルムを用いた液晶パネル、および液晶表示装置
JP4751312B2 (ja) * 2006-12-22 2011-08-17 日東電工株式会社 光学フィルム、偏光板、および画像表示装置
WO2008130014A1 (ja) * 2007-04-18 2008-10-30 Tosoh Corporation 光学補償膜、光学補償フィルム及びそれらの製造方法
DE102008018663A1 (de) * 2008-04-11 2009-10-29 Novaled Ag Elektrooptisches organisches Bauelement
KR20130080789A (ko) * 2010-05-07 2013-07-15 니폰 가야꾸 가부시끼가이샤 광학소자 및 이것을 사용한 편광필름의 시야각 개량방법
WO2012073462A1 (ja) * 2010-12-02 2012-06-07 株式会社日本触媒 位相差フィルムとその製造方法ならびに画像表示装置
US9377571B2 (en) 2011-08-05 2016-06-28 Lg Chem, Ltd. Optical film
JP5972106B2 (ja) * 2012-08-28 2016-08-17 日東電工株式会社 偏光板の製造方法
US9535202B2 (en) * 2013-02-04 2017-01-03 Zeon Corporation Multilayer retardation film and method for producing same
KR101705934B1 (ko) * 2013-09-30 2017-02-10 주식회사 엘지화학 역파장분산 특성을 갖는 광학 필름 및 그 제조 방법
KR101727357B1 (ko) * 2013-09-30 2017-04-14 주식회사 엘지화학 역파장분산 특성을 가지는 위상차 필름 및 그 제조 방법
KR102302323B1 (ko) 2013-11-25 2021-09-16 쓰리엠 이노베이티브 프로퍼티즈 컴파니 지연 층을 포함하는 광학 필름 스택
KR101719056B1 (ko) * 2014-09-30 2017-03-22 주식회사 엘지화학 광학 필름의 제조 방법, 이를 이용하여 제조되는 광학 필름, 이를 포함하는 편광판 및 액정표시장치
JP6348045B2 (ja) * 2014-10-16 2018-06-27 富士フイルム株式会社 共重合体及びそれを含有する樹脂組成物、フィルム、位相差フィルム
CN117908178A (zh) * 2015-11-30 2024-04-19 日东电工株式会社 带相位差层的偏振片及图像显示装置
JP6877945B2 (ja) * 2015-11-30 2021-05-26 日東電工株式会社 位相差層付偏光板および画像表示装置
CN106154389A (zh) * 2016-08-31 2016-11-23 武汉优光科技有限责任公司 一种宽入射角相位延迟器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527118A (ja) * 1991-07-17 1993-02-05 Nitto Denko Corp 位相差板及び円偏光板
JP2000162436A (ja) * 1998-11-24 2000-06-16 Nitto Denko Corp 位相差フィルムの製造方法、光学部材及び液晶表示装置
JP2000227520A (ja) * 1999-02-08 2000-08-15 Nitto Denko Corp 位相差板、積層偏光板及び液晶表示装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2809712B2 (ja) 1989-06-22 1998-10-15 株式会社クラレ 位相差板
WO1990016006A1 (en) * 1989-06-22 1990-12-27 Citizen Watch Co., Ltd. Liquid crystal display device and phase difference plates
JP2765066B2 (ja) 1989-06-29 1998-06-11 住友化学工業株式会社 液晶表示装置
JPH04194820A (ja) * 1990-11-22 1992-07-14 Sharp Corp 液晶表示装置
JPH0675221A (ja) 1992-08-26 1994-03-18 Nitto Denko Corp 光学補償フィルム、偏光板及び液晶表示装置
JP3224451B2 (ja) * 1993-03-16 2001-10-29 シチズン時計株式会社 液晶表示装置
EP0698052B1 (en) 1993-04-21 2000-06-14 The University of Akron Negative birefringent polyimide films
US5580950A (en) 1993-04-21 1996-12-03 The University Of Akron Negative birefringent rigid rod polymer films
US5344916A (en) 1993-04-21 1994-09-06 The University Of Akron Negative birefringent polyimide films
JPH07110405A (ja) 1993-10-08 1995-04-25 Fuji Photo Film Co Ltd 光学補償フィルム及びそれを用いた液晶表示装置
JPH08278500A (ja) * 1994-10-07 1996-10-22 Seiko Instr Inc 液晶表示パネル
JP3445689B2 (ja) 1995-07-11 2003-09-08 新日本石油株式会社 液晶性光学フィルムおよび液晶性光学フィルムから成る液晶表示素子用補償フィルム並びに該補償フィルムを備えた液晶表示装置
CA2204809A1 (en) * 1996-05-09 1997-11-09 Masato Kuwabara Optically anisotropic film and liquid crystal display apparatus
US5750641A (en) 1996-05-23 1998-05-12 Minnesota Mining And Manufacturing Company Polyimide angularity enhancement layer
US6208396B1 (en) * 1996-10-25 2001-03-27 Sumitomo Chemical Company, Limited Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics
US6567143B1 (en) * 1997-06-05 2003-05-20 Guardian Industries Corp. NW twisted nematic LCD with negative and tilted retarders on each side of liquid crystal cell to improve vertical contrast ratios
KR100310092B1 (ko) * 1998-11-18 2001-11-07 윤종용 광통신용 폴리이미드, 그 제조방법 및 그것을 이용한 다층 폴리이미드막의 형성방법
JP4107741B2 (ja) 1998-12-28 2008-06-25 新日本石油株式会社 光学フィルムの製造法、光学フィルム及び液晶表示装置
WO2000062121A1 (en) * 1999-04-08 2000-10-19 Koninklijke Philips Electronics N.V. Display device
WO2000075718A1 (fr) * 1999-06-07 2000-12-14 Citizen Watch Co., Ltd. Afficheur à cristaux liquides
JP3539897B2 (ja) 1999-08-10 2004-07-07 株式会社日本触媒 低誘電性樹脂組成物
EP1160591A1 (en) 1999-11-12 2001-12-05 Kaneka Corporation Transparent film
JP2001343529A (ja) 2000-03-30 2001-12-14 Kanegafuchi Chem Ind Co Ltd 偏光子保護フィルムおよびその製造方法
JP2003029038A (ja) * 2001-07-17 2003-01-29 Nitto Denko Corp 光学フィルム、偏光板及び表示装置
JP2003121642A (ja) * 2001-10-10 2003-04-23 Nitto Denko Corp 広視角偏光板及び液晶表示装置
JP2003306558A (ja) * 2001-11-02 2003-10-31 Nitto Denko Corp 光学フィルムとその製造方法、および光学素子、画像表示装置
JP4007811B2 (ja) 2002-01-17 2007-11-14 日東電工株式会社 負複屈折性フィルムの製造方法
CN1313848C (zh) 2002-01-23 2007-05-02 日东电工株式会社 光学膜、叠层偏振片、使用它们的液晶显示装置和自发光型显示装置
KR20030079513A (ko) * 2002-04-04 2003-10-10 삼성전자주식회사 보상 필름을 이용한 액정 표시 장치
US6995816B2 (en) * 2002-04-12 2006-02-07 Eastman Kodak Company Optical devices comprising high performance polarizer package
JP4133460B2 (ja) * 2002-05-27 2008-08-13 シャープ株式会社 投影型画像表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527118A (ja) * 1991-07-17 1993-02-05 Nitto Denko Corp 位相差板及び円偏光板
JP2000162436A (ja) * 1998-11-24 2000-06-16 Nitto Denko Corp 位相差フィルムの製造方法、光学部材及び液晶表示装置
JP2000227520A (ja) * 1999-02-08 2000-08-15 Nitto Denko Corp 位相差板、積層偏光板及び液晶表示装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479309B2 (en) 2003-07-31 2009-01-20 Nitto Denko Corporation Multi-layered compensation film using specified Tg material as a birefringent layer
WO2005118686A1 (ja) * 2004-06-01 2005-12-15 Kaneka Corporation 可溶性ポリイミド及びこれを使用した光学補償部材
US7211304B2 (en) 2004-06-03 2007-05-01 Nitto Denko Corporation Multilayer optical compensator, liquid crystal display, and process
US7288296B2 (en) 2004-06-03 2007-10-30 Nitto Denko Corporation Multilayer optical compensator, liquid crystal display, and process
WO2007001999A1 (en) * 2005-06-23 2007-01-04 Nitto Denko Corporation Multilayered optical compensator
WO2007047100A3 (en) * 2005-10-18 2007-08-09 Nitto Denko Corp Optical compensation films
US7713595B2 (en) 2005-10-18 2010-05-11 Nitto Denko Corporation Optical compensation films produced by a carrier-web-casting process

Also Published As

Publication number Publication date
JP4236098B2 (ja) 2009-03-11
CN100362373C (zh) 2008-01-16
CN1806188A (zh) 2006-07-19
KR20060056276A (ko) 2006-05-24
TW200506422A (en) 2005-02-16
US20060072221A1 (en) 2006-04-06
KR100910149B1 (ko) 2009-07-30
JP2005055601A (ja) 2005-03-03
TWI297399B (ja) 2008-06-01
US7535531B2 (en) 2009-05-19

Similar Documents

Publication Publication Date Title
KR100618368B1 (ko) 광학 필름 및 그 제조방법
KR100910149B1 (ko) 복굴절성 광학필름
KR100752092B1 (ko) 적층위상차판, 이를 사용한 적층편광판 및 화상표시장치
KR100591056B1 (ko) 광학 필름, 적층 편광판, 이들을 사용한 액정 표시 장치및 자발광형 표시 장치 및 광학필름의 제조방법
KR100773283B1 (ko) 광학 필름, 그 제조방법 및 그것을 사용한 화상표시장치
JP3762751B2 (ja) 光学フィルムの製造方法
WO2003100480A1 (fr) Film optique
JP2004264345A (ja) 位相差フィルムおよびその製造方法
JP3838508B2 (ja) 積層位相差板の製造方法
WO2003093881A1 (fr) Plaque de polarisation à fonction de compensation optique et dispositif d&#39;affichage à cristaux liquides utilisant ladite plaque
WO2005022214A1 (ja) 複合複屈折部材
JP3897743B2 (ja) 光学フィルムの製造方法
JP2003315554A (ja) 積層偏光板、およびそれを用いた画像表示装置
JP2004046097A (ja) 積層位相差板、それを用いた積層偏光板、ならびに画像表示装置
JP3791806B2 (ja) 光学フィルムの製造方法
JP2006195478A (ja) 光学フィルムの製造方法
JP3838522B2 (ja) 積層位相差板の製造方法
JP3764440B2 (ja) 光学フィルムの製造方法
JP2004046068A (ja) 複屈折層の製造方法、および前記複屈折層を含む光学フィルム
JP2004226945A (ja) 複屈折性フィルムの製造方法
JP3976328B2 (ja) Vaモード液晶表示装置用光学フィルムの製造方法
JP2004309800A (ja) 光学補償フィルムの製造方法および光学補償フィルム
JP2004004755A (ja) 光学補償機能付き偏光板、及びそれを用いた液晶表示装置
JP2006113601A5 (ja)
JP4137651B2 (ja) 複屈折層の製造方法、および前記複屈折層を含む光学フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006072221

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540486

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057019367

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048167930

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10540486

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057019367

Country of ref document: KR

122 Ep: pct application non-entry in european phase