WO2005018340A2 - Microwavable french fries, packaging and processing - Google Patents

Microwavable french fries, packaging and processing Download PDF

Info

Publication number
WO2005018340A2
WO2005018340A2 PCT/US2004/026623 US2004026623W WO2005018340A2 WO 2005018340 A2 WO2005018340 A2 WO 2005018340A2 US 2004026623 W US2004026623 W US 2004026623W WO 2005018340 A2 WO2005018340 A2 WO 2005018340A2
Authority
WO
WIPO (PCT)
Prior art keywords
potato pieces
potato
panel
oil
pieces
Prior art date
Application number
PCT/US2004/026623
Other languages
French (fr)
Other versions
WO2005018340A3 (en
Inventor
Linda E. Tiffany
Patricia A. Mason
Gary Neff
Original Assignee
H. J. Heinz Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H. J. Heinz Company filed Critical H. J. Heinz Company
Priority to CA2535966A priority Critical patent/CA2535966C/en
Publication of WO2005018340A2 publication Critical patent/WO2005018340A2/en
Publication of WO2005018340A3 publication Critical patent/WO2005018340A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • B65D81/3446Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package specially adapted to be heated by microwaves
    • B65D81/3453Rigid containers, e.g. trays, bottles, boxes, cups
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • A23L19/12Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops of potatoes
    • A23L19/14Original non-roasted or non-fried potato pieces
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L19/00Products from fruits or vegetables; Preparation or treatment thereof
    • A23L19/10Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops
    • A23L19/12Products from fruits or vegetables; Preparation or treatment thereof of tuberous or like starch containing root crops of potatoes
    • A23L19/18Roasted or fried products, e.g. snacks or chips
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/10General methods of cooking foods, e.g. by roasting or frying
    • A23L5/15General methods of cooking foods, e.g. by roasting or frying using wave energy, irradiation, electrical means or magnetic fields, e.g. oven cooking or roasting using radiant dry heat
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/11Coating with compositions containing a majority of oils, fats, mono/diglycerides, fatty acids, mineral oils, waxes or paraffins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P20/00Coating of foodstuffs; Coatings therefor; Making laminated, multi-layered, stuffed or hollow foodstuffs
    • A23P20/10Coating with edible coatings, e.g. with oils or fats
    • A23P20/12Apparatus or processes for applying powders or particles to foodstuffs, e.g. for breading; Such apparatus combined with means for pre-moistening or battering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/54Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing
    • B65D5/545Lines of weakness to facilitate opening of container or dividing it into separate parts by cutting or tearing for opening containers formed by erecting a "cross-like" blank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3401Cooking or heating method specially adapted to the contents of the package
    • B65D2581/3402Cooking or heating method specially adapted to the contents of the package characterised by the type of product to be heated or cooked
    • B65D2581/3412Cooking fried food
    • B65D2581/3413Fish sticks or french fries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3486Dielectric characteristics of microwave reactive packaging
    • B65D2581/3494Microwave susceptor
    • B65D2581/3495Microwave susceptor attached to the lid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2581/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D2581/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within
    • B65D2581/3437Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within specially adapted to be heated by microwaves
    • B65D2581/3486Dielectric characteristics of microwave reactive packaging
    • B65D2581/3494Microwave susceptor
    • B65D2581/3498Microwave susceptor attached to the base surface

Definitions

  • This invention generally concerns potato pieces that can be reconstituted through use of microwave energy as well a microwave interactive package therefor. More particularly, the invention concerns crinkle-cut French fry potato pieces specially processed so as to be uniquely adapted for reconstitution with microwave energy. Further, the invention concerns a special carton have microwave susceptor inserts which contact the potato pieces while restricting steam egress.
  • French fries has been known for many years. Likewise, various forms of packaging for such French fries has also been known for a long time. Also, reconstitution of frozen French fries by baking, deep frying in oil, exposure to microwave radiation, and other heating processes are also known. According to U.S. Patent No. 5,310,977 issued to Stenkamp et al, Ore-Ida® has used a paperboard box measuring 5.375 inches by 4 inches by 1.375 inches to package crinkle-cut potatoes. Stenkamp et al. proposed the use of microwave susceptor material placed between layers of crinkle-cut French fries, where the microwave susceptor material has been configured with angular pleats, sinusoidal undulations, or an array of pyramids.
  • the container includes a microwave susceptor insert having a plurality of longitudinal slots sized and arranged to receive individual French fry potato pieces.
  • U.S. Patent No. 5,000,970 issued to Shanbhag et al. concerns a process for preparing reheatable French fried potatoes. After finish frying, the potato strips are sprinkled with finely ground salt in an amount of 0.25 to about 1.0 percent by weight. Specifically, fat-encapsulated salt granules may be used.
  • U.S. Patent No. 5,049,710 issued to Prosise et al. discloses a package for food items such as French fried potato strips that are uniform in size and shape. The package is arranged such that each of three layers of food items contact microwave susceptor material on two opposite sides.
  • the package includes vent panels that are open during microwave heating of the food items.
  • Another vented microwave heating package for elongated food products such as French fries, is disclosed by U.S. Patent No. 5,096,723 issued to Turpin.
  • the Turpin package has an internal tray component.
  • U.S. Patent No. 5,175,404 issued to Andreas et al. discloses a vented package having microwave receptive heating sheets arranged so that individual elongated food sticks are heated on at least three sides.
  • the known packages for microwavable French fries generally require special arrangements of the potato pieces.
  • the containers discussed above require that the potato pieces be aligned parallel with one another in susceptor packages to have the necessary contact with microwave susceptor surfaces.
  • the potato pieces are normally randomly oriented.
  • those packaging arrangements necessitating special orientation of the potato pieces also require additional handling equipment which adds processing expense.
  • a crinkle-cut French fried potato piece includes longitudinal surfaces having rounded peaks separated by rounded grooves where the depth of the grooves is about 50% greater than the depth of conventional crinkle-cut French fried potato pieces.
  • the deeper grooves have a depth selected so that at least about 50% of the volume of the potato piece includes the ridge portion of the crinkle-cut French fries, whereas less than 50% of the volume of the potato piece occupies the solid core of the crinkle-cut potato piece.
  • a process for preparing potato pieces for microwave reconstitution includes making potato pieces having a relatively high total solid content, coating frozen potato pieces with soybean oil, and applying encapsulated salt.
  • Another broad aspect of the invention concerns a specialized package adapted to receive randomly position French fry potato pieces.
  • the package includes microwave susceptor material positioned on the inside of the two major surfaces. In use, one major surface of the package is removed, the potato pieces are aligned so as to be one layer thick, the lid is pressed into contact with the potato pieces, and the prepared package subjected to microwave heating.
  • Other more detailed aspects of the crinkle-cut potato pieces, the process for preparing those pieces, the package, as well as the process of reconstituting French fried potatoes using that package are described in more detail in the specification below.
  • FIG. 1 is a perspective view of a typical elongated potato piece
  • FIG. 2 is an enlarged, partial cross-sectional view taken along the line 2-2 of
  • FIG. 1; FIG. 3 is a further enlarged, cross-sectional view of a portion of the surface of the potato of FIG. 2;
  • FIG. 4 is an enlarged, cross-sectional view of a corresponding portion of the surface of a prior art potato piece;
  • FIG. 5 is a flow diagram of the process steps involved in making a microwavable potato piece according to this invention;
  • FIG. 6 is a plan view of a carton blank prior to forming, according to this invention;
  • FIG. 7 is an isometric view of a completed package according to this invention;
  • FIG. 8 is an isometric view of an opened package according to this invention; and
  • FIG. 9 is an isometric view of an opened package according to this invention prepared for microwave heating.
  • an elongated potato piece 20 in accord with this invention is generally illustrated.
  • the potato piece is generally elongated and generally square in cross section.
  • Typical cross-sectional dimensions of the finished potato piece are 3/8 inch by 3/8 inch to 2 inch by 2 inch.
  • Those typical dimensions of the finished piece are, however, somewhat smaller that the typical dimensions of the raw, pre- processing, potato piece.
  • the finished potato piece may by Vz inch by V2 inch while the same potato piece started with 9/16 inch by 9/16 inch dimensions when raw.
  • the length of a typical potato piece lies in the range of 1 V2 to 5 inches. Potato pieces with these typical dimensions are known as French fries. While the surface of the potato pieces may be generally smooth as illustrated in FIG.
  • the surface may have any other known configuration.
  • the preferred configuration for microwavable French fries according to this invention is commonly known as crinkle-cut.
  • the longitudinally extending surfaces 22, 24 of the potato piece have undulations which may be smooth as illustrated.
  • the undulations of each surface define a plurality of peaks 26, with each adjacent pair of peaks 26 being separated by groove 28.
  • the peak-to-peak distance, p, between crests of the undulations preferably remains constant.
  • those peaks 26 are ridges that extend transversely to the longitudinal axis of the French fry potato piece.
  • those ridges are perpendicular to the longitudinal axis of the French fry, but during the cutting process, the ridges do not always form in a perpendicular relationship to that axis. Accordingly, due to the manner the crinkle-cut surfaces are formed, the grooves and crests on any given surface, while parallel to one another, may extend at an angle other than 90 s to the longitudinal axis. To further define the surface of the crinkle-cut French fry potato pieces, that peak-to-peak distance, p, or the ridge-to-ridge distance, is measured perpendicularly to the parallelly extending ridges.
  • the grooves 28 between the ridges 26, are parallel to the ridges 26 and extend transversely to the longitudinal axis of the potato piece.
  • the grooves between adjacent ridges of the crinkle-cut potato piece have a depth, A.
  • the crinkle-cut potato piece thus has ridges 26 on each side and a solid core, c, which is not penetrated by the grooves 28.
  • the depth, A, of the grooves 28 is the same as the height of the ridges and is a very important feature of the present invention. More particularly, the depth, A, of the grooves is selected to be about 50% greater than the corresponding depth of conventional crinkle-cut potato pieces. In the past, the depth of the grooves was typically about 1/16 inch.
  • the depth, A, of the grooves is in the range of 0.08 to 0.11 inches, preferably about 0.094 or 3/32 inch.
  • the curved features of the grooves and the ridges, when viewed in cross section, is another important feature of the invention. More specifically, the curved or rounded shape of the bottom of the grooves 26 exposes more of the core of the potato piece to processing. That is, the distance to the surface of the potato piece is shorter with the deeper, curved grooves than in prior known potato pieces. That distance has important effects on process steps used to prepare potato pieces for microwave reconstitution.
  • FIGs. 3-4 illustrate the differences between crinkle-cut potato pieces of this invention and the prior art.
  • FIG. 3 is a further enlarged cross section of a potato piece, similar to the view of FIG. 2.
  • FIG. 4 is an enlarged view of a prior art crinkle-cut potato piece, with the same scale as FIG. 3.
  • the depth, B, of the grooves 32 was typically about 1/16 inch for commercial potato pieces.
  • Another prior art surface treatment (not illustrated) is l ⁇ iown in the art as a concertina cut and is characterized by peaks separated by deep grooves, where the peaks on one side of the potato piece are directly opposite corresponding peaks on the opposite side of the potato piece.
  • the concertina cut is different from the crinkle-cut because the peaks on one side of the crinkle-cut potato piece are directly opposite corresponding grooves on the opposite side of the potato piece.
  • the depth, A, of the groove is selected to be about 50% larger than the depth, B, of the prior art crinkle-cut potato piece.
  • that 1/16 inch depth, B resulted in 60% of the potato piece being in the core region while about 40% of the potato piece was in the ridges.
  • the ridges contain 49-63% of the potato-piece volume, whereas the solid core contains 37-51% of the potato-piece volume.
  • the cutting process may give smooth surfaces, crinkle-cut surfaces, or concertina cut surfaces since the process of this invention yields improved microwave reconstitution for any surface configuration.
  • the preferred surface configuration for the cutting step 100 is a crinkle-cut with the deeper grooves for each longitudinal surface of the potato piece.
  • the knives used for the crinkle-cutting step are selected and designed such that the knives cut grooves with a depth of about 0.08 to 0.110 inch, i.e., about 50% deeper than conventional crinkle- cut potato pieces.
  • the volume of the core may be less than about 50% of the volume for the potato piece.
  • the potato pieces are then processed, 120, until the resulting pieces have a 40% to 45% total solid content, preferably about 42.5%.
  • This characteristic of the potato piece is sharply contrasted to, and about 33% greater than, the nominal solid content of conventional potato pieces, which is about 31%.
  • These solid content values are weight percentages and are preferably determined using standard chemical analysis techniques - specifically the AOAC vacuum oven method.
  • the step of processing the potato pieces to about 42.5% total solids 120 involves several intermediate steps.
  • the cut potato pieces are blanched 122 following standard conventional processing procedures.
  • the blanched potato pieces are dried 124 to effect a weight loss of 10-15% by weight.
  • the drying step occurs in a forced air dryer at a temperature in the range of 100 2 to 180 2 F.
  • the potato pieces are parfried 124 in hot oil until the total solids are concentrated to the range of 27% to 30% total solids.
  • the oil temperature lies in the range of 330 s to 360 a F.
  • the potato pieces are equilibrated 128 at ambient temperature for a period of 30 to 60 seconds.
  • the equilibrated potato pieces are subjected to a second parfry step 129.
  • the total solid content of the potato pieces is concentrated to 40 to 45%, preferably about 42.5%.
  • the second parfry step 129 is also conducted using hot oil, but at a higher temperature than that of the first parfry step.
  • the second parfry step 129 uses oil at 375 s to 395-F.
  • the potato pieces are frozen in a conventional manner 130.
  • a spiral freezer or any other conventional freezing apparatus may be used.
  • the frozen potato pieces are coated with oil, 140.
  • the potato pieces are conveyed through a drum with fins that tumble 142 the potato pieces.
  • soybean oil is sprayed 144 onto the surface of the potato pieces so that the oil constitutes about 1% by weight of the potato piece.
  • the oil is preferably applied to the entire surface area of each potato piece.
  • the oil must be liquid at temperatures of 50 a F or more and must become solid at 32 a F. Oil which solidifies at higher temperatures solidifies too quickly on the frozen potato pieces. Then, the potato pieces are coated with salt 150 so that the salt represents
  • the quantity of salt on the potato pieces is determined using a Corning Chloride meter and the Corning Analytical Method.
  • Encapsulated salt is used.
  • the soybean oil coating functions as a tacking agent for the encapsulated salt and the oil must remain tacky long enough that the salt can adhere before the oil solidifies. It has been determined that salt brine and regular salt cannot be substituted for encapsulated salt in this invention. In particular, salt brine has been found to pull water out of the potato pieces. Similarly, regular salt pulls water out of the potato pieces. Encapsulated salt, on the other hand, does not act to pull water out of the potato pieces.
  • the dielectric character of salt causes it to heat the surface of the potato pieces and make it crisp.
  • the combination of oil and encapsulated salt improves the tender crispness of the resulting product.
  • the potato pieces are packaged, 160, and transferred to freezers for storage 170.
  • the carton used for the product is also a part of the invention. More particularly, the preferred package comprises the carton filled with a foodstuff and is sized to fit in conventional microwave ovens having a turntable.
  • the preferred foodstuff here comprises microwavable crinkle-cut French fry potato pieces prepared as described above.
  • the preferred package includes a carton fabricated from a paperboard blank 200.
  • the paperboard itself may be 18 point (0.018 inch) solid bleached sulfate (SBS) paperboard having 48 gauge (0.00048 inch) metalized oriented polyester (OPET) adhesive laminated to the interior surface and being clay coated on the outside surfaces to enhance printability.
  • SBS solid bleached sulfate
  • OPET metalized oriented polyester
  • the carton blank 200 includes two major surfaces 202, 204 which are generally square, the surface 202 eventually becomes the bottom of the carton while the surface 204 eventually becomes the top of the carton.
  • Integrally attached to two side edges of the first major surface 202 are a pair of inner side panels 206, 208.
  • a locking slot 216 is provided at each end of each inner side panel 206, 208.
  • Integrally attached to the other two side edges of the first major surface 202 are an inner front panel 210 and a back panel 212.
  • Each end of both the inner front panel 210 and the back panel 212 includes a laterally extending locking tab 214 having a hook 215 designed to cooperate with the slot 216 of the adjacent inner side panel 206, 208.
  • the locking tab 214, the hook 215, and the slot 216 comprise a mechanical attachment means operable to hold the adjacent panels together. Cooperation between the hook 215 and the associated slot 216 helps establish a rigid corner for the resulting carton.
  • the second major surface 204 of the blank 200 is integrally comiected along one side to the back panel 212 so that the two major surfaces 202, 204 are aligned with one another. Integrally attached to parallel sides of the second major panel 204 are a pair of outer side panels 218, 220. Each outer side panel 218, 200 is longitudinally aligned with a corresponding one of the imier side panels 206, 208. Integrally attached to the remaining side of the second major surface 204 is an outer front panel 230.
  • That front panel 230 is scored at 232, 234 to define a lifting tab 238. Moreover, the front panel 230 is notched 236 at two places to provide easy access to the lifting tab 238 for removal. Suitable conventional scoring and creasing is used to define folds (shown as broken lines) in the blank 200 so that carton forming machinery can form an open tray and, when the tray is filled with potato pieces, close and seal the top.
  • the inner surface of the blank 200 also includes two microwave susceptor surfaces 240, 242.
  • the first susceptor surface 240 is attached to the first major surface 202 and is square, with dimensions sufficient to substantially cover the first major surface 202 while leaving a space of about 1/8 inch between the perimeter of the first susceptor surface 240 and the perimeter of the first major surface 202.
  • the first susceptor surface 240 should be substantially coextensive with the first major surface 202. While a 1/8 inch distance between the respective perimeters meets the condition of substantial coextensivity, distances greater than 1/8 inch can also be accommodated as long as the products to be heated will have substantial surface contact with the susceptor material.
  • the second susceptor surface 242 is attached to the second major surface 204 and is generally square but includes chamfered corners. The perimeter of the second susceptor surface 242 is configured and sized to be slightly inside the score line 244, 246 along which the inside of the second major panel 204 can be opened.
  • a distance of about 1/8 inch from that score line, and from the hinge line with the back panel 212 provides substantial coextensivity between the second susceptor surface 242 and a removable portion of the second major surface 204.
  • the inner side panels 206, 208, the inner front panel 210, and the rear panel 212 are folded relative to the first major surface 202 so that the first susceptor surface 240 is located at the bottom.
  • the projections 215 are attached to the respective slots 216 so that a self supporting tray is formed with an integral lid.
  • the carton is then filled with a predetermined weight of product.
  • the preferred product is potato pieces, and in particular, crinkle-cut French fried potato pieces having the deep grooves described above.
  • the open tray of the carton here is that the potato pieces can be deposited randomly into the tray. With the depth of the tray being on the order of 1.25 inches, when the potato pieces are deposited some can be on top of others without adversely affecting the ability to close the carton to form the package.
  • the filled package is subsequently closed and sealed.
  • the second major surface 204 is folded along the hinge formed between it and the rear panel 212 into position overlying the tray. Thereafter, the outer side panels 218, 220 are sealed to the corresponding inner side panels 206, 208 and the outer front panel 230 is sealed to the inner front panel 210.
  • the completed package is illustrated in FIG. 7.
  • the completed package has score lines 246', 244' extending from the notches on the outer front panel 230 around the lifting tab 238, along edges between the second major surface 204 and the outer side panels 218, 220 (not visible), such that a generally triangular gusset is defined at each corner of the carton on the top surface of the carton.
  • the score lines 244, 246 (see FIG. 6) on the inside of the second major surface 204, are laterally offset from the score lines 244' 246'(see FIG. 7) on the outside of the second major surface 204. That offset allows deep, substantially continuous score lines to be used on both sides of the surface 204 while maintaining a seal for the product.
  • the paper board fails between the offset score lines to leave thinner, flexible edges on the top 204.
  • the consumer To prepare the package for reconstitution of the product, the consumer must lift the top from the carton. To do so, the lifting tab 238 is pulled out and up. The notches 236 facilitate this step.
  • the second major surface 204 is peeled back along the score lines 246', 244' so that a gusset 250, 252, 254, 256 remains at each corner. (See FIG. 8). These gussets stiffen the corners of the remaining tray and help keep the side walls stiff. Furthermore, the gussets help keep the carton sides from springing outwardly during microwave reconstitution. Then the second major surface 204 is separated from the rear panel 212 along the hinge line there between.
  • the product is then arranged by the consumer in the tray so that a single layer of product rests on the first susceptor surface 240.
  • the single layer of product has a substantially uniform depth which is considerably less than the depth of the tray.
  • the consumer replaces the upper major surface 204 on top of the tray such that the second susceptor surface faces the product.
  • the top is then pressed down into the tray until the second susceptor surface contacts the product. That is, the product is sandwiched between the two susceptor surfaces and has contact with both surfaces.
  • the first major surface 205 is frictionally held in position contacting the product by the sides of the carton.
  • a generally triangular vent opening 260 is defined at each corner of the lid, between the lid and the adj acent walls .
  • Reconstitution 180 of the frozen potato pieces, prepared in accord with this invention is accomplished by placing the package of FIG. 9, in a microwave oven.
  • microwave heating steam is generally trapped inside the package until it reaches the generally triangular vent openings 260 at the corners.
  • the individual potato pieces are browned and rendered crispy on the exterior, while the steam heats the interior and keeps the interior moist.
  • the carton sides are free to spring out, thereby allowing the top, i.e., the second major surface 204, to be lifted up off the fries. If the top is spaced above the potato pieces by a distance exceeding about 5 mm, the product is not properly crisped by the upper susceptor surface.
  • the length of time required for microwave reconstitution depends on the foodstuff in the package and the amount of that foodstuff which is present.
  • the foodstuff in the package comprises crinkle-cut microwavable French fry potato pieces according to this invention, where about 4.75 ounces are present, the French fries are reconstituted when microwaved for about 4 minutes using a microwave oven rated at an output of about 1000 watts. Larger quantities require longer heating times while smaller quantities need shorter heating times.
  • the consumer grasps the portion of the lifting tab 238 which extends above the inner front panel 210, lifts that tab 238 and removes the top 204 to expose the hot product.

Abstract

A microwavable crinkle-cut French fry potato includes deep groves and coatings of oil and encapsulated salt. Crinkle-cut potato pieces are prepared with a solid content of 40-45% by weight, frozen, sprayed with oil and coated with encapsulated salt. A carton for the potato pieces is formed from a single-piece blank provided with a pair of microwave susceptor surfaces and reinforced corners. A removable lid contacts the potato pieces during microwave reconstitution.

Description

MICROWAVABLE FRENCH FRIES, PACKAGING AND PROCESSING
Field of the Invention This invention generally concerns potato pieces that can be reconstituted through use of microwave energy as well a microwave interactive package therefor. More particularly, the invention concerns crinkle-cut French fry potato pieces specially processed so as to be uniquely adapted for reconstitution with microwave energy. Further, the invention concerns a special carton have microwave susceptor inserts which contact the potato pieces while restricting steam egress.
Description of the Related Art Processing of potatoes for reconstitution by consumers and institutions as
French fries has been known for many years. Likewise, various forms of packaging for such French fries has also been known for a long time. Also, reconstitution of frozen French fries by baking, deep frying in oil, exposure to microwave radiation, and other heating processes are also known. According to U.S. Patent No. 5,310,977 issued to Stenkamp et al, Ore-Ida® has used a paperboard box measuring 5.375 inches by 4 inches by 1.375 inches to package crinkle-cut potatoes. Stenkamp et al. proposed the use of microwave susceptor material placed between layers of crinkle-cut French fries, where the microwave susceptor material has been configured with angular pleats, sinusoidal undulations, or an array of pyramids. Such arrangements complicate the packaging process as they require careful layering of the product and the microwave susceptor materials. According to U.S. Patent No. 4,931,296 issued to Shanbhag et al., potato granule coated French fries are known, which may be crinkle-cut, where finely ground salt is applied at a concentration of 0.5 to 1.5% by weight to provide an acceptable taste. Shanbhag et al. hypothesize that their thin coating on the potato strip forms inhibits steam generated in the potato during heating from escaping during finish frying so that an invisible gap is formed between the coating and the product interior. In U.S. Patent No. 4,935,592, Oppenheimer discloses a microwave cooking container for browning potato products. The container includes a microwave susceptor insert having a plurality of longitudinal slots sized and arranged to receive individual French fry potato pieces. U.S. Patent No. 5,000,970 issued to Shanbhag et al. concerns a process for preparing reheatable French fried potatoes. After finish frying, the potato strips are sprinkled with finely ground salt in an amount of 0.25 to about 1.0 percent by weight. Specifically, fat-encapsulated salt granules may be used. U.S. Patent No. 5,049,710 issued to Prosise et al. discloses a package for food items such as French fried potato strips that are uniform in size and shape. The package is arranged such that each of three layers of food items contact microwave susceptor material on two opposite sides. The package includes vent panels that are open during microwave heating of the food items. Another vented microwave heating package for elongated food products, such as French fries, is disclosed by U.S. Patent No. 5,096,723 issued to Turpin. The Turpin package has an internal tray component. Further, U.S. Patent No. 5,175,404 issued to Andreas et al. discloses a vented package having microwave receptive heating sheets arranged so that individual elongated food sticks are heated on at least three sides. The known packages for microwavable French fries generally require special arrangements of the potato pieces. For example, the containers discussed above require that the potato pieces be aligned parallel with one another in susceptor packages to have the necessary contact with microwave susceptor surfaces. In processing of French fried potatoes, and in the packaging thereof, the potato pieces are normally randomly oriented. Thus, those packaging arrangements necessitating special orientation of the potato pieces also require additional handling equipment which adds processing expense.
Background of the Invention There continues to be a need in the industry for a microwavable French fry potato product that exhibits a uniformly crisp surface texture, a uniformly moist tender interior texture, and a flavor comparable to restaurant fries after reconstitution by microwave heating. Known processes for making French fry potato pieces have not satisfied that need as shown, for example, by the prior art patents discussed above. Moreover, there continues to be a need in the industry for a packaging system that accepts French fried potato pieces with a random orientation for storage, sale, and ultimate reconstitution by the consumer.
Summary of the Invention In accord with one broad aspect of the invention, a crinkle-cut French fried potato piece includes longitudinal surfaces having rounded peaks separated by rounded grooves where the depth of the grooves is about 50% greater than the depth of conventional crinkle-cut French fried potato pieces. Preferably, the deeper grooves have a depth selected so that at least about 50% of the volume of the potato piece includes the ridge portion of the crinkle-cut French fries, whereas less than 50% of the volume of the potato piece occupies the solid core of the crinkle-cut potato piece. Consistent with another broad aspect of the invention, a process for preparing potato pieces for microwave reconstitution includes making potato pieces having a relatively high total solid content, coating frozen potato pieces with soybean oil, and applying encapsulated salt. Use of encapsulated salt enhances the microwave reconstitution of the potato pieces since encapsulation maintains integrity of the salt so that it can function as a dielectric during the microwave heating process. Another broad aspect of the invention concerns a specialized package adapted to receive randomly position French fry potato pieces. The package includes microwave susceptor material positioned on the inside of the two major surfaces. In use, one major surface of the package is removed, the potato pieces are aligned so as to be one layer thick, the lid is pressed into contact with the potato pieces, and the prepared package subjected to microwave heating. Other more detailed aspects of the crinkle-cut potato pieces, the process for preparing those pieces, the package, as well as the process of reconstituting French fried potatoes using that package are described in more detail in the specification below.
Brief Description of the Drawing Figures Many objects and advantages of this invention will be apparent to those skilled in the art when this specification is read in conjunction with the attached drawings wherein like reference numerals have been applied to like elements and wherein: FIG. 1 is a perspective view of a typical elongated potato piece; FIG. 2 is an enlarged, partial cross-sectional view taken along the line 2-2 of
FIG. 1; FIG. 3 is a further enlarged, cross-sectional view of a portion of the surface of the potato of FIG. 2; FIG. 4 is an enlarged, cross-sectional view of a corresponding portion of the surface of a prior art potato piece; FIG. 5 is a flow diagram of the process steps involved in making a microwavable potato piece according to this invention; FIG. 6 is a plan view of a carton blank prior to forming, according to this invention; FIG. 7 is an isometric view of a completed package according to this invention; FIG. 8 is an isometric view of an opened package according to this invention; and FIG. 9 is an isometric view of an opened package according to this invention prepared for microwave heating.
Detailed Description of the Invention Turning to FIG. 1, an elongated potato piece 20 in accord with this invention is generally illustrated. The potato piece is generally elongated and generally square in cross section. Typical cross-sectional dimensions of the finished potato piece are 3/8 inch by 3/8 inch to 2 inch by 2 inch. Those typical dimensions of the finished piece are, however, somewhat smaller that the typical dimensions of the raw, pre- processing, potato piece. For example, the finished potato piece may by Vz inch by V2 inch while the same potato piece started with 9/16 inch by 9/16 inch dimensions when raw. The length of a typical potato piece lies in the range of 1 V2 to 5 inches. Potato pieces with these typical dimensions are known as French fries. While the surface of the potato pieces may be generally smooth as illustrated in FIG. 1, the surface may have any other known configuration. The preferred configuration for microwavable French fries according to this invention, however, is commonly known as crinkle-cut. For example, in FIG. 2, the longitudinally extending surfaces 22, 24 of the potato piece have undulations which may be smooth as illustrated. The undulations of each surface define a plurality of peaks 26, with each adjacent pair of peaks 26 being separated by groove 28. The peak-to-peak distance, p, between crests of the undulations preferably remains constant. On the actual surface of the crinkle-cut French fry, those peaks 26 are ridges that extend transversely to the longitudinal axis of the French fry potato piece. Ideally, those ridges are perpendicular to the longitudinal axis of the French fry, but during the cutting process, the ridges do not always form in a perpendicular relationship to that axis. Accordingly, due to the manner the crinkle-cut surfaces are formed, the grooves and crests on any given surface, while parallel to one another, may extend at an angle other than 90s to the longitudinal axis. To further define the surface of the crinkle-cut French fry potato pieces, that peak-to-peak distance, p, or the ridge-to-ridge distance, is measured perpendicularly to the parallelly extending ridges. Moreover, the grooves 28 between the ridges 26, are parallel to the ridges 26 and extend transversely to the longitudinal axis of the potato piece. As seen in FIG. 2, the grooves between adjacent ridges of the crinkle-cut potato piece have a depth, A. The crinkle-cut potato piece thus has ridges 26 on each side and a solid core, c, which is not penetrated by the grooves 28. The depth, A, of the grooves 28 is the same as the height of the ridges and is a very important feature of the present invention. More particularly, the depth, A, of the grooves is selected to be about 50% greater than the corresponding depth of conventional crinkle-cut potato pieces. In the past, the depth of the grooves was typically about 1/16 inch. However, according to this invention, the depth, A, of the grooves is in the range of 0.08 to 0.11 inches, preferably about 0.094 or 3/32 inch. The curved features of the grooves and the ridges, when viewed in cross section, is another important feature of the invention. More specifically, the curved or rounded shape of the bottom of the grooves 26 exposes more of the core of the potato piece to processing. That is, the distance to the surface of the potato piece is shorter with the deeper, curved grooves than in prior known potato pieces. That distance has important effects on process steps used to prepare potato pieces for microwave reconstitution. FIGs. 3-4 illustrate the differences between crinkle-cut potato pieces of this invention and the prior art. FIG. 3 is a further enlarged cross section of a potato piece, similar to the view of FIG. 2. FIG. 4, is an enlarged view of a prior art crinkle-cut potato piece, with the same scale as FIG. 3. In FIG. 4, the depth, B, of the grooves 32 was typically about 1/16 inch for commercial potato pieces. Another prior art surface treatment (not illustrated) is lαiown in the art as a concertina cut and is characterized by peaks separated by deep grooves, where the peaks on one side of the potato piece are directly opposite corresponding peaks on the opposite side of the potato piece. In that respect, the concertina cut is different from the crinkle-cut because the peaks on one side of the crinkle-cut potato piece are directly opposite corresponding grooves on the opposite side of the potato piece. In accord with the present invention, the depth, A, of the groove is selected to be about 50% larger than the depth, B, of the prior art crinkle-cut potato piece. In the context of a Vz by Λfa inch French fried potato piece, that 1/16 inch depth, B, resulted in 60% of the potato piece being in the core region while about 40% of the potato piece was in the ridges. With the deeper grooves of the present invention (i.e., with the depth, A), the ridges contain 49-63% of the potato-piece volume, whereas the solid core contains 37-51% of the potato-piece volume. After processing and reconstitution by microwave heating, it has been determined that the deeper grooves (or higher ridges) of the present invention give the fries more surface area where the solids of the potato are concentrated and this higher surface area will deliver a crisp exterior and while the smaller core of the fry provides the moist potato interior characteristic of a deep-fried French fry. We turn now to the process for preparing the potato pieces, see FIG. 5. Initially, the potatoes are washed and peeled, 100, using standard conventional processing procedures. Next, the potatoes are cut into elongated pieces, 110. Those elongated pieces typically have a generally square cross section. In the cutting step 110, the cutting process may give smooth surfaces, crinkle-cut surfaces, or concertina cut surfaces since the process of this invention yields improved microwave reconstitution for any surface configuration. Nevertheless, the preferred surface configuration for the cutting step 100 is a crinkle-cut with the deeper grooves for each longitudinal surface of the potato piece. The knives used for the crinkle-cutting step are selected and designed such that the knives cut grooves with a depth of about 0.08 to 0.110 inch, i.e., about 50% deeper than conventional crinkle- cut potato pieces. As a result, the volume of the core may be less than about 50% of the volume for the potato piece. The potato pieces are then processed, 120, until the resulting pieces have a 40% to 45% total solid content, preferably about 42.5%. This characteristic of the potato piece is sharply contrasted to, and about 33% greater than, the nominal solid content of conventional potato pieces, which is about 31%. These solid content values are weight percentages and are preferably determined using standard chemical analysis techniques - specifically the AOAC vacuum oven method. The step of processing the potato pieces to about 42.5% total solids 120 involves several intermediate steps. In particular, the cut potato pieces are blanched 122 following standard conventional processing procedures. The blanched potato pieces are dried 124 to effect a weight loss of 10-15% by weight. Preferably the drying step occurs in a forced air dryer at a temperature in the range of 100 2 to 1802 F. After drying, the potato pieces are parfried 124 in hot oil until the total solids are concentrated to the range of 27% to 30% total solids. Preferably, the oil temperature lies in the range of 330s to 360aF. Following that parfry step 124, the potato pieces are equilibrated 128 at ambient temperature for a period of 30 to 60 seconds. Then, the equilibrated potato pieces are subjected to a second parfry step 129. In the second parfry step 129, the total solid content of the potato pieces is concentrated to 40 to 45%, preferably about 42.5%. The second parfry step 129 is also conducted using hot oil, but at a higher temperature than that of the first parfry step. Specifically, the second parfry step 129 uses oil at 375s to 395-F. After processing to the 40% to 45% total solid content, the potato pieces are frozen in a conventional manner 130. For example, a spiral freezer or any other conventional freezing apparatus may be used. Next, the frozen potato pieces are coated with oil, 140. To effect the oil coating, the potato pieces are conveyed through a drum with fins that tumble 142 the potato pieces. As the potato pieces are tumbling, soybean oil is sprayed 144 onto the surface of the potato pieces so that the oil constitutes about 1% by weight of the potato piece. The oil is preferably applied to the entire surface area of each potato piece. To be suitable for subsequent processing steps, the oil must be liquid at temperatures of 50aF or more and must become solid at 32aF. Oil which solidifies at higher temperatures solidifies too quickly on the frozen potato pieces. Then, the potato pieces are coated with salt 150 so that the salt represents
0.80% to 1.5% by weight of the potato piece, preferably about 1.25%. The quantity of salt on the potato pieces is determined using a Corning Chloride meter and the Corning Analytical Method. Encapsulated salt is used. The soybean oil coating functions as a tacking agent for the encapsulated salt and the oil must remain tacky long enough that the salt can adhere before the oil solidifies. It has been determined that salt brine and regular salt cannot be substituted for encapsulated salt in this invention. In particular, salt brine has been found to pull water out of the potato pieces. Similarly, regular salt pulls water out of the potato pieces. Encapsulated salt, on the other hand, does not act to pull water out of the potato pieces. Furthermore, since salt is a dielectric, and since encapsulation causes the salt to retain its crystalline form, during the microwave reconstitution of these potato pieces, the dielectric character of salt causes it to heat the surface of the potato pieces and make it crisp. As a result, the combination of oil and encapsulated salt improves the tender crispness of the resulting product. When the potato pieces have been coated with encapsulated salt, the potato pieces are packaged, 160, and transferred to freezers for storage 170. The carton used for the product is also a part of the invention. More particularly, the preferred package comprises the carton filled with a foodstuff and is sized to fit in conventional microwave ovens having a turntable. The preferred foodstuff here comprises microwavable crinkle-cut French fry potato pieces prepared as described above. Package depth is selected such that the package will stand on its side on a typical freezer shelf in an upright freezer case of a grocery store. In addition, the package depth must be sufficient that it can be easily filled and sealed using mechanical carton-forming equipment. Based upon those considerations, it has been found that a suitable carton is 7.25 inch square by 1.25 inch high. Turning now to FIG. 6, the preferred package includes a carton fabricated from a paperboard blank 200. The paperboard itself may be 18 point (0.018 inch) solid bleached sulfate (SBS) paperboard having 48 gauge (0.00048 inch) metalized oriented polyester (OPET) adhesive laminated to the interior surface and being clay coated on the outside surfaces to enhance printability. The carton blank 200 includes two major surfaces 202, 204 which are generally square, the surface 202 eventually becomes the bottom of the carton while the surface 204 eventually becomes the top of the carton. Integrally attached to two side edges of the first major surface 202 are a pair of inner side panels 206, 208. A locking slot 216 is provided at each end of each inner side panel 206, 208. Integrally attached to the other two side edges of the first major surface 202 are an inner front panel 210 and a back panel 212. Each end of both the inner front panel 210 and the back panel 212 includes a laterally extending locking tab 214 having a hook 215 designed to cooperate with the slot 216 of the adjacent inner side panel 206, 208. The locking tab 214, the hook 215, and the slot 216 comprise a mechanical attachment means operable to hold the adjacent panels together. Cooperation between the hook 215 and the associated slot 216 helps establish a rigid corner for the resulting carton. The second major surface 204 of the blank 200 is integrally comiected along one side to the back panel 212 so that the two major surfaces 202, 204 are aligned with one another. Integrally attached to parallel sides of the second major panel 204 are a pair of outer side panels 218, 220. Each outer side panel 218, 200 is longitudinally aligned with a corresponding one of the imier side panels 206, 208. Integrally attached to the remaining side of the second major surface 204 is an outer front panel 230. That front panel 230 is scored at 232, 234 to define a lifting tab 238. Moreover, the front panel 230 is notched 236 at two places to provide easy access to the lifting tab 238 for removal. Suitable conventional scoring and creasing is used to define folds (shown as broken lines) in the blank 200 so that carton forming machinery can form an open tray and, when the tray is filled with potato pieces, close and seal the top. The inner surface of the blank 200 also includes two microwave susceptor surfaces 240, 242. The first susceptor surface 240 is attached to the first major surface 202 and is square, with dimensions sufficient to substantially cover the first major surface 202 while leaving a space of about 1/8 inch between the perimeter of the first susceptor surface 240 and the perimeter of the first major surface 202. To properly heat the potato pieces, the first susceptor surface 240 should be substantially coextensive with the first major surface 202. While a 1/8 inch distance between the respective perimeters meets the condition of substantial coextensivity, distances greater than 1/8 inch can also be accommodated as long as the products to be heated will have substantial surface contact with the susceptor material. The second susceptor surface 242 is attached to the second major surface 204 and is generally square but includes chamfered corners. The perimeter of the second susceptor surface 242 is configured and sized to be slightly inside the score line 244, 246 along which the inside of the second major panel 204 can be opened. Again, a distance of about 1/8 inch from that score line, and from the hinge line with the back panel 212 provides substantial coextensivity between the second susceptor surface 242 and a removable portion of the second major surface 204. To assemble the package, the inner side panels 206, 208, the inner front panel 210, and the rear panel 212 are folded relative to the first major surface 202 so that the first susceptor surface 240 is located at the bottom. The projections 215 are attached to the respective slots 216 so that a self supporting tray is formed with an integral lid. The carton is then filled with a predetermined weight of product. In the case of this invention the preferred product is potato pieces, and in particular, crinkle-cut French fried potato pieces having the deep grooves described above. One advantage of the open tray of the carton here is that the potato pieces can be deposited randomly into the tray. With the depth of the tray being on the order of 1.25 inches, when the potato pieces are deposited some can be on top of others without adversely affecting the ability to close the carton to form the package. The filled package is subsequently closed and sealed. In particular, the second major surface 204 is folded along the hinge formed between it and the rear panel 212 into position overlying the tray. Thereafter, the outer side panels 218, 220 are sealed to the corresponding inner side panels 206, 208 and the outer front panel 230 is sealed to the inner front panel 210. The completed package is illustrated in FIG. 7. It should be noted that the completed package has score lines 246', 244' extending from the notches on the outer front panel 230 around the lifting tab 238, along edges between the second major surface 204 and the outer side panels 218, 220 (not visible), such that a generally triangular gusset is defined at each corner of the carton on the top surface of the carton. Moreover, in the preferred arrangement, the score lines 244, 246 (see FIG. 6) on the inside of the second major surface 204, are laterally offset from the score lines 244' 246'(see FIG. 7) on the outside of the second major surface 204. That offset allows deep, substantially continuous score lines to be used on both sides of the surface 204 while maintaining a seal for the product. During opening, the paper board fails between the offset score lines to leave thinner, flexible edges on the top 204. To prepare the package for reconstitution of the product, the consumer must lift the top from the carton. To do so, the lifting tab 238 is pulled out and up. The notches 236 facilitate this step. Next, the second major surface 204 is peeled back along the score lines 246', 244' so that a gusset 250, 252, 254, 256 remains at each corner. (See FIG. 8). These gussets stiffen the corners of the remaining tray and help keep the side walls stiff. Furthermore, the gussets help keep the carton sides from springing outwardly during microwave reconstitution. Then the second major surface 204 is separated from the rear panel 212 along the hinge line there between. The product is then arranged by the consumer in the tray so that a single layer of product rests on the first susceptor surface 240. The single layer of product has a substantially uniform depth which is considerably less than the depth of the tray. Next, see FIG. 9, the consumer replaces the upper major surface 204 on top of the tray such that the second susceptor surface faces the product. The top is then pressed down into the tray until the second susceptor surface contacts the product. That is, the product is sandwiched between the two susceptor surfaces and has contact with both surfaces. The first major surface 205 is frictionally held in position contacting the product by the sides of the carton. In addition, a generally triangular vent opening 260 is defined at each corner of the lid, between the lid and the adj acent walls . Reconstitution 180 of the frozen potato pieces, prepared in accord with this invention, is accomplished by placing the package of FIG. 9, in a microwave oven. During microwave heating, steam is generally trapped inside the package until it reaches the generally triangular vent openings 260 at the corners. By virtue of contact with the microwave susceptor surfaces, the individual potato pieces are browned and rendered crispy on the exterior, while the steam heats the interior and keeps the interior moist. Without the gussets, the carton sides are free to spring out, thereby allowing the top, i.e., the second major surface 204, to be lifted up off the fries. If the top is spaced above the potato pieces by a distance exceeding about 5 mm, the product is not properly crisped by the upper susceptor surface. The length of time required for microwave reconstitution depends on the foodstuff in the package and the amount of that foodstuff which is present. By way of example, where the foodstuff in the package comprises crinkle-cut microwavable French fry potato pieces according to this invention, where about 4.75 ounces are present, the French fries are reconstituted when microwaved for about 4 minutes using a microwave oven rated at an output of about 1000 watts. Larger quantities require longer heating times while smaller quantities need shorter heating times. For access to the heated product, the consumer grasps the portion of the lifting tab 238 which extends above the inner front panel 210, lifts that tab 238 and removes the top 204 to expose the hot product. Where crinkle-cut potato pieces are used, the resulting potato pieces are comparable to restaurant prepared, oil-fried, French fried potatoes. This result is accomplished because the high solid content in the larger ridge portion of the crinkle-cut pieces causes the ridges to be well heated through contact with the susceptor surfaces. It should now be apparent to those skilled in the art that this invention has describes a new microwavable French fried potato product, an improved package for microwave reconstitution of frozen French fried potato products, an improved process for preparing those frozen French fried potato products, as well as a new method for reconstitution of those products. Nevertheless, this specification is intended to be illustrative, and not limiting, as it will be apparent to those skilled in the art that many substitutions, variations, and equivalents exist for the features which have been described. Accordingly, the full scope of this invention is defined by the appended claims including all legal equivalents to the elements and features set forth therein.

Claims

WHAT IS CLAIMED IS:
1. A potato piece comprising: an elongated potato piece having a generally square cross section, a generally longitudinal axis, and longitudinally extending sides; each longitudinally extending side having a plurality of ridges separated by grooves, the ridges and grooves oriented generally transverse to the longitudinal axis, and cooperating to define a core portion; the ridges being rounded in cross section; the grooves being rounded in cross section; where the potato piece includes an oil coating comprising 1% by weight; and where the potato piece includes a coating of encapsulated salt in amount in the range of 0.8 to 1.5% by weight.
2. The potato piece of Claim 1 wherein the oil is solid at temperatures below 32aF and is liquid at temperatures above 50aF.
3. The potato piece of Claim 2 wherein the oil is soybean oil.
4. The potato piece of Claim 1 having a solid content in the range of 40 to 50% by weight.
5. A process for making elongated potato pieces adapted for microwave reconstitution comprising the steps of: processing elongated potato pieces to a total solids in the range of 40 to 50% by weight; freezing the elongated potato pieces; applying oil to the frozen potato pieces, where the oil is solid at temperatures at and below 32eF and is liquid at temperatures at and above 50aF; and coating the frozen potato pieces with encapsulated salt so that the oil adheres the encapsulated salt to the potato pieces, where the encapsulated salt comprises 0.8 to 1.5% by weight of the potato pieces.
6. The process of Claim 5 wherein the elongated potato pieces are processed to a total solids of 42.5% by weight.
7. The process of Claim 5 further including the step of packaging the elongated potato pieces in a carton having two microwave susceptor surfaces.
8. The process of Claim 5 wherein the step of applying oil to the frozen potato pieces applies a coating of about 1% by weight of oil.
9. The process of Claim 8 wherein the step of applying oil includes the steps of: tumbling frozen potato pieces; and spraying the tumbling potato pieces with soybean oil.
10. The process of Claim 5 wherein the processing to a solid content in the range of 40 to 45% by weight includes the steps of: blanching the potato pieces; drying the potato pieces to reduce the solid content by 10 to 15 weight percent; parfrying the dried potato pieces at a temperature in the range of 330 to 360aF; equilibrating the parfried potato pieces; and parfrying the equilibrated potato pieces at a temperature in the range of 375 to 395aF.
11. The process of Claim 10 wherein the parfry steps are oil parfry steps.
12. The process of Claim 5 including the step of providing elongated potato pieces having crinkle-cut longitudinal surfaces.
13. A microwavable carton for edible foodstuffs comprising: a top panel; a bottom panel; a back panel integrally connected to the top panel and the bottom panel; a pair of inner side panels integrally connected to the bottom panel; an im er front panel integrally connected to the bottom panel; mechanical latching means connected among the inner front panel, the back panel, and the inner side panels for joining the inner front panel, the back panel, and the inner side panels to form a tray; a pair of outer side panels integrally connected to the top panel; a front panel integrally connected to the top panel; and a pair of microwave susceptor surfaces, one substantially coextensive with the bottom panel, and on substantially coextensive with the top panel, both susceptor surfaces positioned to be on the inside of the carton.
14. The microwavable carton for edible foodstuffs of Claim 13 wherein: each outer side panel is secured to a corresponding inner side panel; and the outer front panel is secured to the inner front panel.
15. The microwavable carton for edible foodstuffs of Claim 13 wherein: the top panel includes weakened lines defining a removable portion; and the weakened lines also define a gusset at each comer of the carton when the removable portion of the top panel is removed.
16. A method of reconstituting frozen potato pieces in a package having weakened lines defining an openable top and wherein the package has a pair of microwave susceptor surfaces, comprising the steps of: removing the openable top to expose the frozen potato pieces; detaching the openable top from the package; arranging the frozen potato pieces in a single layer in the package; pressing the detached openable top into the package until it contacts the frozen potato pieces; and heating the package with microwave energy until the potato pieces are hot.
PCT/US2004/026623 2003-08-18 2004-08-17 Microwavable french fries, packaging and processing WO2005018340A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2535966A CA2535966C (en) 2003-08-18 2004-08-17 Microwavable french fries, packaging and processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/642,347 2003-08-18
US10/642,347 US7108878B2 (en) 2003-08-18 2003-08-18 Process for making microwavable French fries

Publications (2)

Publication Number Publication Date
WO2005018340A2 true WO2005018340A2 (en) 2005-03-03
WO2005018340A3 WO2005018340A3 (en) 2005-05-12

Family

ID=34193650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/026623 WO2005018340A2 (en) 2003-08-18 2004-08-17 Microwavable french fries, packaging and processing

Country Status (3)

Country Link
US (3) US7108878B2 (en)
CA (2) CA2752188C (en)
WO (1) WO2005018340A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE429390T1 (en) * 2005-01-14 2009-05-15 Graphic Packaging Int Inc PACKAGING FOR BAKING DOUGH-BASED FOODS TO GOLD BROWN AND CRISPY IN A MICROWAVE OVEN
CA2612088C (en) * 2005-06-17 2012-05-15 Graphic Packaging International, Inc. Susceptors capable of balancing stress and effectiveness
US8853601B2 (en) 2006-03-31 2014-10-07 Graphic Packaging International, Inc. Microwavable construct for heating, browning, and crisping rounded food items
ATE488452T1 (en) * 2006-03-31 2010-12-15 Graphic Packaging Int Inc CONTAINER FOR HEATING, CRISPING AND BROWNING ROUND FOODS IN A MICROWAVE OVEN
US8435583B2 (en) * 2006-07-06 2013-05-07 J.R. Simplot Company French fry production method with reduced crumb generation
EP2772452B1 (en) * 2006-07-27 2016-01-06 Graphic Packaging International, Inc. Microwave heating construct
US8247750B2 (en) * 2008-03-27 2012-08-21 Graphic Packaging International, Inc. Construct for cooking raw dough product in a microwave oven
EP2138410A1 (en) * 2008-06-26 2009-12-30 Nestec S.A. A one-piece microwaveable package
EP2610196B1 (en) 2008-08-14 2014-07-30 Graphic Packaging International, Inc. Microwave heating construct and method of using same
AR073657A1 (en) * 2008-09-22 2010-11-24 Heinz Co H J SUITABLE CARTON PACK FOR MICROWAVE THAT HAS MULTIPLE APPROACHES SUSCEPTORS
US8815317B2 (en) * 2009-01-12 2014-08-26 Graphic Packaging International, Inc. Elevated microwave heating construct
US20150140198A1 (en) 2012-06-29 2015-05-21 Mccain Foods Usa, Inc. Blade assembly and method of making cut food products
EP3346847A1 (en) * 2015-09-11 2018-07-18 Industrie Rolli Alimentari S.p.A. Frozen packaged agricultural food product
US20210195925A1 (en) * 2016-05-27 2021-07-01 Potandon Produce, Llc Seasoned food product and method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198437A (en) * 1973-06-15 1980-04-15 Ore-Ida Foods, Inc. French fried potato product
US4219575A (en) * 1978-11-13 1980-08-26 Amfac Foods, Inc. Potato segment and process for preparing frozen french fried potatoes suitable for microwave reheating
US4935592A (en) * 1988-12-05 1990-06-19 Oppenheimer Douglas F Microwave cooking carton for browning and crisping food products
US5004616A (en) * 1988-05-12 1991-04-02 Horizons International Foods, Inc. Process for preparing microwave-reheatable french fried potatoes and product thereof
US5049710A (en) * 1989-12-29 1991-09-17 The Procter & Gamble Company Microwave food carton having two integral layer-divider panels and blank therefor
US5096723A (en) * 1990-07-23 1992-03-17 Golden Valley Microwave Foods Inc. Microwave food heating package with serving tray
US5997938A (en) * 1996-04-29 1999-12-07 The Procter & Gamble Company Process for preparing improved oven-finished french fries

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256101A (en) * 1963-04-22 1966-06-14 Robert G Arns Method of microwave heating
US3865964A (en) * 1971-03-15 1975-02-11 Ore Ida Foods Coating the surface of frozen, fried french fries with atomized fat globules
US5175404A (en) 1988-03-15 1992-12-29 Golden Valley Microwave Foods Inc. Microwave receptive heating sheets and packages containing them
US4931296A (en) 1988-05-12 1990-06-05 Horizons International Foods Inc. Process for preparing potato granule coated french fried potatoes
US5310977A (en) 1989-02-03 1994-05-10 Minnesota Mining And Manufacturing Company Configured microwave susceptor
US5000970A (en) 1989-06-30 1991-03-19 Horizons International Foods, Inc. Process for preparing reheatable french fried potatoes
USH2091H1 (en) * 1998-08-13 2003-12-02 Timothy Alan Scavone Oven-baked french fries having extended hold time
US6781101B1 (en) * 2003-02-05 2004-08-24 General Mills, Inc. Reconfigurable microwave package for cooking and crisping food products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4198437A (en) * 1973-06-15 1980-04-15 Ore-Ida Foods, Inc. French fried potato product
US4219575A (en) * 1978-11-13 1980-08-26 Amfac Foods, Inc. Potato segment and process for preparing frozen french fried potatoes suitable for microwave reheating
US5004616A (en) * 1988-05-12 1991-04-02 Horizons International Foods, Inc. Process for preparing microwave-reheatable french fried potatoes and product thereof
US4935592A (en) * 1988-12-05 1990-06-19 Oppenheimer Douglas F Microwave cooking carton for browning and crisping food products
US5049710A (en) * 1989-12-29 1991-09-17 The Procter & Gamble Company Microwave food carton having two integral layer-divider panels and blank therefor
US5096723A (en) * 1990-07-23 1992-03-17 Golden Valley Microwave Foods Inc. Microwave food heating package with serving tray
US5997938A (en) * 1996-04-29 1999-12-07 The Procter & Gamble Company Process for preparing improved oven-finished french fries

Also Published As

Publication number Publication date
CA2752188A1 (en) 2005-03-03
WO2005018340A3 (en) 2005-05-12
US20060286225A1 (en) 2006-12-21
US8029839B2 (en) 2011-10-04
US20060286224A1 (en) 2006-12-21
CA2752188C (en) 2014-02-04
US20050042360A1 (en) 2005-02-24
CA2535966A1 (en) 2005-03-03
CA2535966C (en) 2012-12-18
US7108878B2 (en) 2006-09-19

Similar Documents

Publication Publication Date Title
US8029839B2 (en) Processing method for microwavable french fries
US6896919B2 (en) Cooking pouch containing a raw protein portion, a raw or blanched vegetable portion and a sauce and method of making
US5096723A (en) Microwave food heating package with serving tray
US5175404A (en) Microwave receptive heating sheets and packages containing them
US5510132A (en) Method for cooking a food item in microwave heating package having end flaps for elevating and venting the package
EP0573127B1 (en) Microwave receptive heating sheets and packages containing them
US5034234A (en) Microwave heating and serving package
US9073679B2 (en) Frozen food package and method of use
US5084601A (en) Microwave receptive heating sheets and packages containing them
US20090208614A1 (en) Microwave food packaging
MX2011003061A (en) Microwaveable carton having multiple focused susceptors.
US9242780B2 (en) Frozen food package and method of use
US20080199579A1 (en) Frozen food package and method of use
WO2013188224A1 (en) Microwave package for single-step cooking of multi-component foodstuffs
CA2544652A1 (en) Microwave cooking container with separate compartments for crisping and steaming
JP2002255254A (en) Container and package for microwave oven
US20070275136A1 (en) Microwave Cooking Device for Crisping
US20160107780A1 (en) Tray meals with heat staked lidding film
WO2024030675A1 (en) Microwave food product with vent for roasting
US20080008792A1 (en) Microwavable food product packaging and method of making and using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2535966

Country of ref document: CA

122 Ep: pct application non-entry in european phase