WO2005024895A2 - Polymergemische für gedruckte polymerelektronik-schaltungen - Google Patents

Polymergemische für gedruckte polymerelektronik-schaltungen Download PDF

Info

Publication number
WO2005024895A2
WO2005024895A2 PCT/DE2004/001930 DE2004001930W WO2005024895A2 WO 2005024895 A2 WO2005024895 A2 WO 2005024895A2 DE 2004001930 W DE2004001930 W DE 2004001930W WO 2005024895 A2 WO2005024895 A2 WO 2005024895A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
semiconducting
polymer mixture
polymers
mixture according
Prior art date
Application number
PCT/DE2004/001930
Other languages
English (en)
French (fr)
Other versions
WO2005024895A3 (de
Inventor
Adolf Bernds
Wolfgang Clemens
Alexander Friedrich Knobloch
Andreas Ullmann
Original Assignee
Polyic Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyic Gmbh & Co. Kg filed Critical Polyic Gmbh & Co. Kg
Priority to US10/569,233 priority Critical patent/US7678857B2/en
Publication of WO2005024895A2 publication Critical patent/WO2005024895A2/de
Publication of WO2005024895A3 publication Critical patent/WO2005024895A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • Plastics are known as insulators. But there are also some remarkable polymers with conductive and even semiconducting properties. Taken together, all three properties enable the production of fully functioning integrated circuits from polymers.
  • the attraction of polymer electronics lies in their simple manufacture, because the polymers can be separated into layers from the solution. This means that, in particular, inexpensive printing techniques can be used with which the individual structured layers of integrated circuits can be produced.
  • every printing process places special demands on the materials to be printed, in this case the polymer solutions. Rarely do the properties of the polymer solutions match the printing requirements right from the start. For example, the viscosity of the polymer solutions is significantly too low for most printing processes. This is particularly true of polymeric semiconductor material.
  • the object of the invention is to make semiconducting polymers accessible to standard printing processes.
  • a polymer mixture in particular a polymer solution, contains one or more semiconducting polymers and one or more non-semiconducting, that is to say insulating and / or conducting, polymers.
  • Polythiophene in particular poly (3-hexylthiophene) (P3HT), has proven to be particularly advantageous as a semiconducting polymer.
  • P3HT poly (3-hexylthiophene)
  • polyfluorene or polythienylene vinylene and a mixture of two or three of the semiconducting polymers mentioned.
  • PS Polystyrene
  • PMMA polymethyl methacrylate
  • Cymel polyisobutyl
  • PIB polyisobutyl
  • solvents can also be present in the polymer mixture, in particular chloroform, toluene, ketones, dioxane and / or heptane.
  • the polymer mixture can contain conductive polymers, oligomers, conductive molecules and / or semiconducting molecules (monomers, "small molecules", in particular pentacene and / or C60), particles and other non-detachable materials or from a selection of the substances mentioned and possibly conventional additives consist.
  • the desired viscosity of the polymer solution can be set by the above-mentioned mixing of semiconducting and non-semiconducting polymers.
  • a viscosity of more than 8 mPas is preferably set, in particular more than 80 mPas. This makes the polymer solution suitable for screen or pad printing and other standard printing processes.
  • a polymer mixture of the type described can preferably be used in a printing process, in particular in a screen, flexographic, offset, gravure and / or pad printing process.
  • a polymer mixture of the type described can be used to produce a double layer which contains one or more semiconducting polymers in its first layer and one or more non-semiconducting polymers in its second layer.
  • a printed electronic circuit can be produced with a polymer mixture of the type described, it being possible to produce semiconducting polymer structures in screen and / or pad printing during the production.
  • the polymer mixture can also be used generally for the production of electrical components, for example for organic transistors, diodes, capacitors, resistors, light-emitting diodes, photovoltaic cells, photodetectors, display elements, etc.
  • Preferred configurations of the printing process, the double layer, the method for producing the double layer and the electronic circuit result from the preferred configurations of the polymer mixture and vice versa.
  • Figure 1 shows the characteristic of an organic field effect transistor with a semiconducting layer which consists purely of semiconducting polymer
  • Figure 2 shows the characteristic of an organic field effect transistor with a semiconducting layer, which consists of non-semiconducting polymer and semiconducting polymer in a weight ratio of 1: 3;
  • Figure 3 shows the characteristic of an organic field effect transistor with a semiconducting layer, which consists of non-semiconducting and semiconducting polymer in a weight ratio of 1: 1.
  • Polythiophene as a semiconducting polymer, was mixed with polystyrene and polymethyl methacrylate. It can be seen that the semiconductor function is still retained in the mixed polymer system. At the same time, the corresponding polymer solution has an increased viscosity, which makes it more printable.
  • polyaniline is a conductive polymer. Like polythiophene, it belongs to the class of conjugated polymers.
  • Polymer blends retain their conductive function to a high degree, as described in Speakman SP et al. : "Organic Electronics 2 (2) ", 2001, pages 65 to 73. What applies here to polyaniline can apparently also be used for polythiophene. Secondly, it is a known phenomenon that polymer mixtures tend to separate after being separated from the solution. This is described, for example, in Garbassi F. et al.: “Polymer Surfaces", 1998, pages 289 to 300. The polymer system minimizes its total energy in that the material with the lower surface energy forms the top layer.
  • Figures 1 to 3 show the characteristics of three organic field effect transistors (OFETs) with different mass ratios of polystyrene (PS) and pol (3-hexylthiophene) (P3HT) in the semiconducting layer.
  • OFETs organic field effect transistors
  • PS polystyrene
  • P3HT polyhexylthiophene
  • the ratio of PS to P3HT is 0: 100
  • Figure 2 the ratio of PS to P3HT is 25:75
  • Figure 3 the ratio of PS to P3HT is 50:50.
  • the layer thicknesses are unchanged for better comparison.
  • the OFETs with PS and P3HT work just as well as the OFET with P3HT, the characteristics of which are shown in FIG. 1, except that the current decreases with increasing PS content.
  • the OFF current decreases more than the ON current, even the transistor characteristic of the ON / ⁇ FF ratio improves.
  • P3HT polyisobutyl
  • PIB polyisobutyl
  • polythiophene brings the semiconducting property and polystyrene the higher viscosity in the polymer solution.
  • the polythiophene alone in solution would be difficult to print due to the low viscosity, while the addition of polystyrene gives the solution higher viscosity, making it more printable.
  • Further advantages can be seen in the case of the above-mentioned segregation. They relate to the solid double layer remaining after the evaporation of the solvent, for example of insulator and semiconductor. The individual advantages are as follows:
  • solvent compatibility is irrelevant, i.e. there is no detachment of the lower layer when the upper layer is applied
  • the special type of layer formation through segregation has a positive influence on the layer quality, for example in the manner of low defect density and high structural order of the (conjugated) polymers.

Abstract

Um die Viskosität halbleitender Polymere in Lösung zu erhöhen, werden diese mit nicht-halbleitenden Polymeren gemischt.

Description

Polymergemische für gedruckte Polymerelektronik-Schaltungen
Kunststoffe (Polymere) sind als Isolatoren bekannt. Es gibt aber auch einige bemerkenswerte Polymere mit leitenden und sogar halbleitenden Eigenschaften. Alle drei Eigenschaften zusammen genommen ermöglichen die Herstellung voll funktionierender integrierter Schaltungen aus Polymeren. Der Reiz der Polymerelektronik liegt in ihrer einfachen Herstellbarkeit, weil die Polymere aus der Lösung zu Schichten abscheidbar sind. Das heißt, dass insbesondere kostengünstige Drucktechniken einsetzbar sind, mit denen die einzelnen strukturierten Schichten integrierter Schaltungen hergestellt werden können. Jedes Druckverfahren stellt jedoch spezielle Anforderungen an die zu verdruckenden Stoffe, also hier die Polymerlösungen. Selten stimmen die Eigenschaften der Polymerlösungen von vorneherein mit den drucktechnischen Anforderungen überein. So ist beispielsweise die Viskosität der Polymerlösungen für die meisten Druckverfahren erheblich zu niedrig. Das trifft besonders auf polymeres Halbleitermaterial zu.
Aus Nalwa H. S. (Herausgeber) : "Organic Conductive Molecules and Polymers", Band 2, 1997, Seiten 334 bis 335 ist eine Tintenstrahltechnik zum Drucken niederviskosen Halbleitermaterials bekannt. Tintenstrahldruck wird aber für die Massenproduktion am wenigsten favorisiert .
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, halbleitende Polymere Standard-Druckverfahren zugänglich zu machen.
Dieser Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen. Dementsprechend enthält ein Polymergemisch, insbesondere eine Polymerlösung, ein oder mehrere halbleitende Polymere und ein oder mehrere nicht-halbleitende, also isolierende und/oder leitende, Polymere.
Als halbleitendes Polymer hat sich Polythiophen, insbesondere Poly (3-hexylthiophen) (P3HT) als besonders vorteilhaft herausgestellt. Möglich ist aber auch der Einsatz von Polyfluoren oder Polythienylenvinylen sowie einer Mischung zweier oder dreier der genannte halbleitenden Polymere.
Als nicnt-halbleitende Polymere haben sich Polystyrol (PS) , Polymethylmethacrylat (PMMA) , Cymel und Polyisobutyl (PIB) oder Mischungen daraus als besonders geeignet herausgestellt.
Um eine Polymerlösung zu ergeben, können im Polymergemisch auch noch Lösungsmittel vorhanden sein, insbesondere Chloroform, Toluol, Ketone, Dioxan und/oder Heptan.
Daneben kann das Polymergemisch leitende Polymere, Oligomere, leitende Moleküle und/oder halbleitende Moleküle (Monomere, „small molecules", insbesondere Pentacen und/oder C60) , Partikel sowie sonstige nichtlösbare Materialien enthalten bzw. aus einer Auswahl der genannten Stoffe und eventuell üblichen Zusatzstoffen bestehen.
Durch die genannte Vermischung von halbleitenden und nicht- halbleitenden Polymeren lässt sich die gewünschte Viskosität der Polymerlösung einstellen. Vorzugsweise wird eine Viskosität von mehr als 8 mPas eingestellt, insbesondere mehr als 80 mPas . Dadurch ist die Polymerlösung für den Sieb- bzw. Tampondruck und weitere Standarddruckverfahren geeignet .
Ein Polymergemisch der beschriebenen Art kann bevorzugt in einem Druckverfahren, insbesondere in einem Sieb-, Flexo-, Offset-, Tief- und/oder Tampondruckverfahren, verwendet werden . Durch ein Polymergemisch der beschriebenen Art lässt sich eine Doppelschicht herstellen, die in ihrer ersten Schicht ein oder mehrere halbleitende Polymere enthält und in ihrer zweiten Schicht ein oder mehrere nicht-halbleitende Polymere.
Dies kann beispielsweise in einem Verfahren zur Herstellung der Doppelschicht geschehen, bei dem ein Polymergemisch der beschriebenen Art verwendet wird, das sich beim Abscheiden aus der Lösung entmischt und dadurch die Doppelschicht bildet .
Mit einem Polymergemisch der beschriebenen Art lässt sich eine gedruckte elektronische Schaltung herstellen, wobei bei der Herstellung halbleitende Polymerstrukturen im Siebund/oder Tampondruck erstellt werden können. Alternativ oder ergänzend lässt sich das Polymergemisch auch allgemein zur Herstellung von elektrischen Bauelementen einsetzen, beispielsweise für organische Transistoren, Dioden, Kondensatoren, Widerstände, Leuchtdioden, Fotovoltaikzellen, Fotodetektoren, Anzeige-Elemente etc.
Bevorzugte Ausgestaltungen des Druckverfahrens, der Doppelschicht, des Verfahrens zur Herstellung der Doppelschicht und der elektronischen Schaltung ergeben sich aus den bevorzugten Ausgestaltungen des Polymergemisches und umgekehrt .
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung von Ausführungsbeispielen anhand der Zeichnung. Dabei zeigt:
Figur 1 die Kennlinie eines organischen Feldeffekt- Transistors mit einer halbleitenden Schicht, die rein aus halbleitendem Polymer besteht; Figur 2 die Kennlinie eines organischen Feldeffekt- Transistors mit einer halbleitenden Schicht, die aus nicht-halbleitendem Polymer und halbleitendem Polymer im Gewichtsverhältnis 1:3 besteht;
Figur 3 die Kennlinie eines organischen Feldeffekt- Transistors mit einer halbleitenden Schicht, die aus nicht-halbleitendem und halbleitendem Polymer im Gewichtsverhältnis 1:1 besteht.
Es wird vorgeschlagen, die funktionalen, also halbleitenden, Polymere mit anderen Polymeren zu mischen, um auf diese Weise eine Anpassung an einen weiten Bereich drucktechnischer Anforderungen zu erzielen. Die Mischung von Polymeren (Polymerblends) ist ein gebräuchliches Verfahren zur
Erzielung bestimmter Eigenschaftskombinationen. Jedoch sind im Fall der Halbleiterpolymere solche Mischungen noch nicht angedacht worden. Würde man sich eine solche Mischung theoretisch vorstellen, so würde man für Halbleiterpolymere durch Zugabe anderer Materialien ein nahezu vollständiges
Verschwinden der halbleitenden Eigenschaften erwarten. Eigene Versuche zeigen jedoch, dass dies nicht der Fall ist.
Es wurde Polythiophen, als halbleitendes Polymer, mit Polystyrol und Polymethylmethacrylat gemischt. Es zeigt sich, dass auch in dem gemischten Polymersystem die Halbleiterfunktion noch erhalten ist. Gleichzeitig besitzt die entsprechende Polymerlösung eine erhöhte Viskosität, was sie besser druckfähig macht.
Die Ursache, warum die halbleitenden Eigenschaften so gut erhalten bleiben, ist nicht genau bekannt, aber zwei Argumente lassen dies möglich erscheinen. Einmal ist Polyanilin ein leitfähiges Polymer. Ebenso wie Polythiophen gehört es zur Klasse der konjugierten Polymere. In
Polymergemischen behält es seine leitende Funktion in hohem Grade, wie dies in Speakman S. P. et al . : "Organic Electronics 2 (2)", 2001, Seiten 65 bis 73 beschrieben ist. Was hier für Polyanilin gilt, kann anscheinend auch für Polythiophen herangezogen werden. Zum zweiten ist es ein bekanntes Phänomen, dass Polymergemische nach dem Abscheiden aus der Lösung zur Entmischung neigen. Dies ist beispielsweise in Garbassi F. et al . : "Polymer Surfaces", 1998, Seiten 289 bis 300 beschrieben. Das Polymersystem minimiert seine Gesamtenergie dadurch, dass das Material mit der niedrigeren Oberflächenenergie die oberste Schicht bildet.
In unserem Fall entstehen zwei Schichten, von denen die erste im Wesentlichen aus dem beigemischten Polymer (PS oder PMMA) besteht. Die zweite Schicht ist eine nahezu reine Polythiophenschicht . Sie verleiht dem System die
Halbleitereigenschaft. Was hier am Beispiel des Polythiophens gezeigt ist, ist auch mit anderen halbleitenden Polymeren möglich, beispielsweise Polyfluoren und Polythienylenvinylen.
Die Figuren 1 bis 3 zeigen die Kennlinien von drei organischen Feldeffekt-Transistoren (OFETs) mit unterschiedlichen Massenverhältnissen von Polystyrol (PS) und Pol (3-hexylthiophen) (P3HT) in der halbleitenden Schicht. In Figur 1 ist das Verhältnis von PS zu P3HT 0:100, in Figur 2 ist das Verhältnis von PS zu P3HT 25:75 und in Figur 3 ist das Verhältnis von PS zu P3HT 50:50. Die Schichtdicken sind zum besseren Vergleich unverändert .
Die OFETs mit PS und P3HT, deren Kennlinien in den Figuren 2 und 3 dargestellt ist, funktionieren ebenso gut wie der OFET mit P3HT, dessen Kennlinien in Figur 1 dargestellt sind, nur dass der Strom mit zunehmenden PS-Anteil abnimmt. Da aber der OFF-Strom stärker abnimmt als der ON-Strom, verbessert sich sogar der Transistorkennwert des ON-/θFF-Verhältnisses .
Ein weiteres getestetes Ausführungsbeispiel ist das System P3HT und Polyisobutyl (PIB) . P3HT hat bei maximaler Lδslichkeitsmenge von 2,5 % Polymerfeststoff in Chloroform eine Viskosität von 2 mPas . Durch Zugabe von PIB gelöst in' Heptan kann die Viskosität je nach Mischungsverhältnis auf Werte bis zu 100 mPas erhöht werden. Das erfüllt die Anforderungen von Siebdruck, bei dem die Viskosität größer oder gleich 10 mPas sein muss, und von Tampondruck, bei dem die Viskosität größer gleich 100 mPas sein muss. In Versuchen sind auch mit diesem Halbleitergemisch funktionstüchtige OFETs hergestellt worden.
Durch die Erfindung werden die Eigenschaften verschiedener Polymere miteinander kombiniert. Beispielsweise bringt Polythiophen die halbleitende Eigenschaft und Polystyrol die höhere Viskosität in der Polymerlösung. Das Polythiophen allein in Lösung wäre aufgrund der zu niedrigen Viskosität schlecht druckbar, während die Zugabe von Polystyrol der Lösung höhere Viskosität verleiht, was sie besser druckbar macht. Weitere Vorteile sind für den Fall der oben erwähnten Entmischung zu sehen. Sie betreffen die nach dem Verdampfen des Lösungsmittels zurückbleibende feste Doppelschicht, beispielsweise von Isolator und Halbleiter. Im Einzelnen sind es folgende Vorteile:
- Einsparung eines Arbeitsschritts durch simultane Erzeugung beider Schichten,
- Erzeugung einer extrem dünnen Halbleiterschicht, was durch direktes Drucken lediglich der Halbleiterlösung nicht möglich ist,
- perfekte Verbindung (Haftung) beider Schichten untereinander,
- die Schichten liegen exakt passgenau aufeinander, insbesondere in gedruckten Strukturen (Seif-Alignment) ,
- die Lösungsmittelkompatibilität spielt keine Rolle, das heißt, es gibt kein Anlösen der unteren Schicht beim Aufbringen der oberen Schicht,
- es ist zu erwarten, dass die spezielle Art der Schichtbildung durch Entmischung einen positiven Einfluss auf die Schichtqualität hat, beispielsweise in der Art niedriger Defektdichte und hoher struktureller Ordnung der (konjugierten) Polymere.

Claims

Patentansprüche
1. Polymergemisch enthaltend
- ein oder mehrere halbleitende Polymere, - ein oder mehrere nicht-halbleitende Polymere.
2. Polymergemisch nach Anspruch 1, dadurch gekennzeichnet, dass das halbleitende Polymer/die halbleitenden Polymere Polythiophen, Polyfluoren oder/und Polythienylenvinylen ist/sind.
3. Polymergemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das nicht-halbleitende Polymer/die nicht-halbleitenden Polymere Polystyrol, Polymethylmethacrylat, Cymel oder/und Polyisobutyl ist/sind.
4. Polymergemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es Lösungsmittel enthält, insbesondere Chloroform, Toluol , Ketone, Dioxan und/oder Heptan.
5. Polymergemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass es kleiner Moleküle als Polymere enthält, insbesondere Oligomere, leitende Moleküle und/oder halbleitende Moleküle
6. Polymergemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass es aus den genannten Stoffen und üblichen Zusatzstoffen besteht .
7. Polymergemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet , dass es eine Viskosität von mehr als 8 mPas aufweist, insbesondere mehr als 80 mPas .
8. Druckverfahren, insbesondere Sieb-, Flexo-, Offset-, Tief- und/oder Tampondruckverfahren, bei dem ein Polymergemisch nach einem der vorhergehenden Ansprüche verwendet wird.
9. Doppelschicht enthaltend
- in ihrer einen Schicht ein oder mehrere halbleitende Polymere ,
- in ihrer anderen Schicht ein oder mehrere nicht- halbleitende Polymere.
10. Verfahren zur Herstellung einer Doppelschicht nach Anspruch 9 , bei dem ein Polymergemisch nach einem der Ansprüche 1 bis 7 verwendet wird.
11. Elektronisches Bauelement, insbesondere Schaltung, das mit einem Polymergemisch nach einem der Ansprüche 1 bis 7 hergestellt ist und/oder eine Doppelschicht nach Anspruch 9 aufweist.
PCT/DE2004/001930 2003-09-03 2004-08-31 Polymergemische für gedruckte polymerelektronik-schaltungen WO2005024895A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/569,233 US7678857B2 (en) 2003-09-03 2004-08-31 Polymer mixtures for printed polymer electronic circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340643A DE10340643B4 (de) 2003-09-03 2003-09-03 Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht
DE10340643.3 2003-09-03

Publications (2)

Publication Number Publication Date
WO2005024895A2 true WO2005024895A2 (de) 2005-03-17
WO2005024895A3 WO2005024895A3 (de) 2005-06-09

Family

ID=34258380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001930 WO2005024895A2 (de) 2003-09-03 2004-08-31 Polymergemische für gedruckte polymerelektronik-schaltungen

Country Status (3)

Country Link
US (1) US7678857B2 (de)
DE (1) DE10340643B4 (de)
WO (1) WO2005024895A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737027A1 (de) * 2004-08-20 2006-12-27 Matsushita Electric Industrial Co., Ltd. Beschichtungsflüssigkeit zum formen von organischen mehrschichtfolien, verfahren zur herstellung eines feldeffekttransistors und feldeffekttransistor
WO2007093282A1 (de) * 2006-02-13 2007-08-23 Merck Patent Gmbh Elektronisches bauteil, verfahren zu dessen herstellung und dessen verwendung
WO2008001123A1 (en) * 2006-06-29 2008-01-03 Cambridge Enterprise Limited Blended polymer fets

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005031448A1 (de) 2005-07-04 2007-01-11 Polyic Gmbh & Co. Kg Aktivierbare optische Schicht
US7569415B2 (en) 2005-09-30 2009-08-04 Alcatel-Lucent Usa Inc. Liquid phase fabrication of active devices including organic semiconductors
US7488834B2 (en) 2005-09-30 2009-02-10 Alcatel-Lucent Usa Inc. Organic semiconductors
US8951828B1 (en) * 2011-11-21 2015-02-10 The United States Of America As Represented By The Secretary Of The Navy Thin-film electro devices based on derivatized poly(benao-isimidazobenzophenanthroline) ladder polymers
US9356240B1 (en) 2011-11-21 2016-05-31 The United States Of America As Represented By The Secretary Of The Navy Tetraamino pyrazine based ladder polymer for electroactive applications

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB723598A (en) 1951-09-07 1955-02-09 Philips Nv Improvements in or relating to methods of producing electrically conductive mouldings from plastics
US3512052A (en) * 1968-01-11 1970-05-12 Gen Motors Corp Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric
US3769096A (en) * 1971-03-12 1973-10-30 Bell Telephone Labor Inc Pyroelectric devices
JPS543594B2 (de) * 1973-10-12 1979-02-24
DE2407110C3 (de) * 1974-02-14 1981-04-23 Siemens AG, 1000 Berlin und 8000 München Sensor zum Nachweis einer in einem Gas oder einer Flüssigkeit einthaltenen Substanz
JPS54101176A (en) * 1978-01-26 1979-08-09 Shinetsu Polymer Co Contact member for push switch
US4442019A (en) * 1978-05-26 1984-04-10 Marks Alvin M Electroordered dipole suspension
US4246298A (en) * 1979-03-14 1981-01-20 American Can Company Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application
JPS5641938U (de) 1979-09-10 1981-04-17
US4340057A (en) * 1980-12-24 1982-07-20 S. C. Johnson & Son, Inc. Radiation induced graft polymerization
EP0108650A3 (de) 1982-11-09 1986-02-12 Zytrex Corporation Programmierbarer MOS-Transistor
DE3321071A1 (de) 1983-06-10 1984-12-13 Basf Ag Druckschalter
DE3338597A1 (de) 1983-10-24 1985-05-02 GAO Gesellschaft für Automation und Organisation mbH, 8000 München Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben
US4554229A (en) * 1984-04-06 1985-11-19 At&T Technologies, Inc. Multilayer hybrid integrated circuit
JPS6265472A (ja) 1985-09-18 1987-03-24 Toshiba Corp Mis型半導体素子
DE3768112D1 (de) * 1986-03-03 1991-04-04 Toshiba Kawasaki Kk Strahlungsdetektor.
DE3751376T2 (de) 1986-10-13 1995-11-16 Canon Kk Schaltungselement.
GB2215307B (en) * 1988-03-04 1991-10-09 Unisys Corp Electronic component transportation container
DE68912426T2 (de) 1988-06-21 1994-05-11 Gec Avery Ltd Herstellung von tragbaren elektronischen Karten.
US5364735A (en) * 1988-07-01 1994-11-15 Sony Corporation Multiple layer optical record medium with protective layers and method for producing same
US4937119A (en) * 1988-12-15 1990-06-26 Hoechst Celanese Corp. Textured organic optical data storage media and methods of preparation
US5892244A (en) * 1989-01-10 1999-04-06 Mitsubishi Denki Kabushiki Kaisha Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor
US6331356B1 (en) * 1989-05-26 2001-12-18 International Business Machines Corporation Patterns of electrically conducting polymers and their application as electrodes or electrical contacts
EP0418504B1 (de) 1989-07-25 1995-04-05 Matsushita Electric Industrial Co., Ltd. Speicherbauelement aus organischem Halbleiter mit einer MISFET-Struktur und sein Kontrollverfahren
FI84862C (fi) * 1989-08-11 1992-01-27 Vaisala Oy Kapacitiv fuktighetsgivarkonstruktion och foerfarande foer framstaellning daerav.
US5206525A (en) * 1989-12-27 1993-04-27 Nippon Petrochemicals Co., Ltd. Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
FI91573C (sv) 1990-01-04 1994-07-11 Neste Oy Sätt att framställa elektroniska och elektro-optiska komponenter och kretsar
JP2969184B2 (ja) 1990-04-09 1999-11-02 カシオ計算機株式会社 薄膜トランジスタメモリ
FR2664430B1 (fr) * 1990-07-04 1992-09-18 Centre Nat Rech Scient Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques.
FR2673041A1 (fr) * 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
EP0501456A3 (de) 1991-02-26 1992-09-09 Sony Corporation Mit eine optischen Plattenantrieb ausgerüsteter Videospielcomputer
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
EP0511807A1 (de) 1991-04-27 1992-11-04 Gec Avery Limited Apparat und Sensoreinheit zur Anzeige von zeitabhängigen Änderungen in einer physikalischen Grösse
JP3224829B2 (ja) 1991-08-15 2001-11-05 株式会社東芝 有機電界効果型素子
JPH0580530A (ja) * 1991-09-24 1993-04-02 Hitachi Ltd 薄膜パターン製造方法
US5173835A (en) 1991-10-15 1992-12-22 Motorola, Inc. Voltage variable capacitor
JPH0770470B2 (ja) * 1991-10-30 1995-07-31 フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン 照射装置
JP2709223B2 (ja) * 1992-01-30 1998-02-04 三菱電機株式会社 非接触形携帯記憶装置
EP0603939B1 (de) 1992-12-21 1999-06-16 Koninklijke Philips Electronics N.V. Leitfähiges N-Typ-Polymer und Methode zur Herstellung desselben
DE4243832A1 (de) 1992-12-23 1994-06-30 Daimler Benz Ag Tastsensoranordnung
JP3457348B2 (ja) * 1993-01-15 2003-10-14 株式会社東芝 半導体装置の製造方法
FR2701117B1 (fr) * 1993-02-04 1995-03-10 Asulab Sa Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose.
EP0615256B1 (de) 1993-03-09 1998-09-23 Koninklijke Philips Electronics N.V. Herstellungsverfahren eines Musters von einem elektrisch leitfähigen Polymer auf einer Substratoberfläche und Metallisierung eines solchen Musters
US5567550A (en) * 1993-03-25 1996-10-22 Texas Instruments Incorporated Method of making a mask for making integrated circuits
JPH0722669A (ja) * 1993-07-01 1995-01-24 Mitsubishi Electric Corp 可塑性機能素子
AU7563294A (en) * 1993-08-24 1995-03-21 Metrika Laboratories, Inc. Novel disposable electronic assay device
JP3460863B2 (ja) * 1993-09-17 2003-10-27 三菱電機株式会社 半導体装置の製造方法
FR2710413B1 (fr) * 1993-09-21 1995-11-03 Asulab Sa Dispositif de mesure pour capteurs amovibles.
US5556706A (en) * 1993-10-06 1996-09-17 Matsushita Electric Industrial Co., Ltd. Conductive layered product and method of manufacturing the same
IL111151A (en) 1994-10-03 1998-09-24 News Datacom Ltd Secure access systems
WO1995031833A2 (en) * 1994-05-16 1995-11-23 Philips Electronics N.V. Semiconductor device provided with an organic semiconductor material
IL110318A (en) * 1994-05-23 1998-12-27 Al Coat Ltd Solutions containing polyaniline for making transparent electrodes for liquid crystal devices
US5684884A (en) 1994-05-31 1997-11-04 Hitachi Metals, Ltd. Piezoelectric loudspeaker and a method for manufacturing the same
JP3246189B2 (ja) * 1994-06-28 2002-01-15 株式会社日立製作所 半導体表示装置
US5574291A (en) * 1994-12-09 1996-11-12 Lucent Technologies Inc. Article comprising a thin film transistor with low conductivity organic layer
US5630986A (en) * 1995-01-13 1997-05-20 Bayer Corporation Dispensing instrument for fluid monitoring sensors
JP3068430B2 (ja) * 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5652645A (en) * 1995-07-24 1997-07-29 Anvik Corporation High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates
US5625199A (en) 1996-01-16 1997-04-29 Lucent Technologies Inc. Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors
US6326640B1 (en) 1996-01-29 2001-12-04 Motorola, Inc. Organic thin film transistor with enhanced carrier mobility
GB2310493B (en) * 1996-02-26 2000-08-02 Unilever Plc Determination of the characteristics of fluid
JP3080579B2 (ja) * 1996-03-06 2000-08-28 富士機工電子株式会社 エアリア・グリッド・アレイ・パッケージの製造方法
DE19629656A1 (de) * 1996-07-23 1998-01-29 Boehringer Mannheim Gmbh Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe
US5693956A (en) * 1996-07-29 1997-12-02 Motorola Inverted oleds on hard plastic substrate
US6344662B1 (en) * 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
US5946551A (en) * 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
KR100248392B1 (ko) * 1997-05-15 2000-09-01 정선종 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법
JP4509228B2 (ja) * 1997-08-22 2010-07-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 有機材料から成る電界効果トランジスタ及びその製造方法
WO1999013441A2 (en) * 1997-09-11 1999-03-18 Precision Dynamics Corporation Radio frequency identification tag on flexible substrate
US6251513B1 (en) * 1997-11-08 2001-06-26 Littlefuse, Inc. Polymer composites for overvoltage protection
JPH11142810A (ja) 1997-11-12 1999-05-28 Nintendo Co Ltd 携帯型情報処理装置
WO1999030432A1 (en) * 1997-12-05 1999-06-17 Koninklijke Philips Electronics N.V. Identification transponder
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US5998805A (en) * 1997-12-11 1999-12-07 Motorola, Inc. Active matrix OED array with improved OED cathode
US6083104A (en) * 1998-01-16 2000-07-04 Silverlit Toys (U.S.A.), Inc. Programmable toy with an independent game cartridge
AU739848B2 (en) * 1998-01-28 2001-10-18 Thin Film Electronics Asa A method for generation of electrical conducting or semiconducting structures in three dimensions and methods for erasure of the same structures
US6087196A (en) * 1998-01-30 2000-07-11 The Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
US6045977A (en) * 1998-02-19 2000-04-04 Lucent Technologies Inc. Process for patterning conductive polyaniline films
DE19816860A1 (de) 1998-03-06 1999-11-18 Deutsche Telekom Ag Chipkarte, insbesondere Guthabenkarte
US6033202A (en) * 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
JP4664501B2 (ja) * 1998-04-10 2011-04-06 イー インク コーポレイション 有機系電界効果トランジスタを用いる電子ディスプレイ
GB9808061D0 (en) * 1998-04-16 1998-06-17 Cambridge Display Tech Ltd Polymer devices
GB9808806D0 (en) 1998-04-24 1998-06-24 Cambridge Display Tech Ltd Selective deposition of polymer films
TW410478B (en) 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
US5967048A (en) * 1998-06-12 1999-10-19 Howard A. Fromson Method and apparatus for the multiple imaging of a continuous web
KR100282393B1 (ko) 1998-06-17 2001-02-15 구자홍 유기이엘(el)디스플레이소자제조방법
DE19836174C2 (de) 1998-08-10 2000-10-12 Illig Maschinenbau Adolf Heizung zum Erwärmen von thermoplastischen Kunststoffplatten und Verfahren zum Einstellen der Temperatur dieser Heizung
US6215130B1 (en) 1998-08-20 2001-04-10 Lucent Technologies Inc. Thin film transistors
US6330464B1 (en) 1998-08-26 2001-12-11 Sensors For Medicine & Science Optical-based sensing devices
JP4493741B2 (ja) 1998-09-04 2010-06-30 株式会社半導体エネルギー研究所 半導体装置の作製方法
DE19851703A1 (de) 1998-10-30 2000-05-04 Inst Halbleiterphysik Gmbh Verfahren zur Herstellung von elektronischen Strukturen
US6384804B1 (en) * 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
US6506438B2 (en) * 1998-12-15 2003-01-14 E Ink Corporation Method for printing of transistor arrays on plastic substrates
US6321571B1 (en) * 1998-12-21 2001-11-27 Corning Incorporated Method of making glass structures for flat panel displays
US6114088A (en) * 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US6517955B1 (en) * 1999-02-22 2003-02-11 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
AU5646800A (en) * 1999-03-02 2000-09-21 Helix Biopharma Corporation Card-based biosensor device
US6180956B1 (en) 1999-03-03 2001-01-30 International Business Machine Corp. Thin film transistors with organic-inorganic hybrid materials as semiconducting channels
US6207472B1 (en) * 1999-03-09 2001-03-27 International Business Machines Corporation Low temperature thin film transistor fabrication
TW508975B (en) 1999-03-29 2002-11-01 Seiko Epson Corp Composition, film manufacturing method, as well as functional device and manufacturing method therefor
EP1113502B1 (de) 1999-03-30 2007-09-19 Seiko Epson Corporation Verfahren zur hestellung eines dünnschichtfeldeffekttransistors
US6498114B1 (en) 1999-04-09 2002-12-24 E Ink Corporation Method for forming a patterned semiconductor film
US6072716A (en) * 1999-04-14 2000-06-06 Massachusetts Institute Of Technology Memory structures and methods of making same
FR2793089B3 (fr) 1999-04-28 2001-06-08 Rene Liger Transpondeur a antenne integree
DE19919448A1 (de) 1999-04-29 2000-11-02 Miele & Cie Kühlgerät und Verfahren zur Verkeimungsindikation
DE19921024C2 (de) 1999-05-06 2001-03-08 Wolfgang Eichelmann Videospielanlage
US6383664B2 (en) * 1999-05-11 2002-05-07 The Dow Chemical Company Electroluminescent or photocell device having protective packaging
EP1052594A1 (de) 1999-05-14 2000-11-15 Sokymat S.A. Transponder und Spritzgussteil sowie Verfahren zu ihrer Herstellung
TW556357B (en) 1999-06-28 2003-10-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
JP2001085272A (ja) 1999-07-14 2001-03-30 Matsushita Electric Ind Co Ltd 可変容量コンデンサ
DE19933757A1 (de) 1999-07-19 2001-01-25 Giesecke & Devrient Gmbh Chipkarte mit integrierter Batterie
DE19935527A1 (de) 1999-07-28 2001-02-08 Giesecke & Devrient Gmbh Aktive Folie für Chipkarten mit Display
DE19937262A1 (de) 1999-08-06 2001-03-01 Siemens Ag Anordnung mit Transistor-Funktion
US6593690B1 (en) * 1999-09-03 2003-07-15 3M Innovative Properties Company Large area organic electronic devices having conducting polymer buffer layers and methods of making same
EP1085320A1 (de) * 1999-09-13 2001-03-21 Interuniversitair Micro-Elektronica Centrum Vzw Vorrichtung auf Basis von organischem Material zur Erfassung eines Probenanalyts
US6517995B1 (en) * 1999-09-14 2003-02-11 Massachusetts Institute Of Technology Fabrication of finely featured devices by liquid embossing
US6888096B1 (en) 1999-09-28 2005-05-03 Sumitomo Heavy Industries, Ltd. Laser drilling method and laser drilling device
US6340822B1 (en) * 1999-10-05 2002-01-22 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
WO2001027998A1 (en) * 1999-10-11 2001-04-19 Koninklijke Philips Electronics N.V. Integrated circuit
US6335539B1 (en) * 1999-11-05 2002-01-01 International Business Machines Corporation Method for improving performance of organic semiconductors in bottom electrode structure
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors
EP1103916A1 (de) 1999-11-24 2001-05-30 Infineon Technologies AG Chipkarte
US6621098B1 (en) * 1999-11-29 2003-09-16 The Penn State Research Foundation Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material
US6136702A (en) 1999-11-29 2000-10-24 Lucent Technologies Inc. Thin film transistors
US6197663B1 (en) * 1999-12-07 2001-03-06 Lucent Technologies Inc. Process for fabricating integrated circuit devices having thin film transistors
AU2015901A (en) * 1999-12-21 2001-07-03 Plastic Logic Limited Inkjet-fabricated integrated circuits
BR0016661B1 (pt) 1999-12-21 2013-11-26 Métodos para formação de um dispositivo eletrônico, dispositivo eletrônico e dispositivo de exibição
US6706159B2 (en) * 2000-03-02 2004-03-16 Diabetes Diagnostics Combined lancet and electrochemical analyte-testing apparatus
TW497120B (en) * 2000-03-06 2002-08-01 Toshiba Corp Transistor, semiconductor device and manufacturing method of semiconductor device
DE10012204A1 (de) 2000-03-13 2001-09-20 Siemens Ag Einrichtung zum Kennzeichnen von Stückgut
EP1134694A1 (de) 2000-03-16 2001-09-19 Infineon Technologies AG Dokument mit integrierter elektronischer Schaltung
KR100767204B1 (ko) 2000-03-28 2007-10-17 다이어베티스 다이어그노스틱스, 인크. 일회용 전기화학적 센서의 연속 제조 방법
US6329226B1 (en) 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
DE10033112C2 (de) * 2000-07-07 2002-11-14 Siemens Ag Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung
US7875975B2 (en) * 2000-08-18 2011-01-25 Polyic Gmbh & Co. Kg Organic integrated circuit completely encapsulated by multi-layered barrier and included in RFID tag
DE10120687A1 (de) 2001-04-27 2002-10-31 Siemens Ag Verkapseltes organisch-elektronisches Bauteil, Verfahren zu seiner Herstellung und seine Verwendung
JP2002068324A (ja) 2000-08-30 2002-03-08 Nippon Sanso Corp 断熱容器
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10045192A1 (de) * 2000-09-13 2002-04-04 Siemens Ag Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers
DE10047171A1 (de) 2000-09-22 2002-04-18 Siemens Ag Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu
KR20020036916A (ko) * 2000-11-11 2002-05-17 주승기 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자
DE10058559A1 (de) 2000-11-24 2002-05-29 Interactiva Biotechnologie Gmb System zur Abwicklung eines Warentransfers und Warenvorrats-Behälter
KR100390522B1 (ko) * 2000-12-01 2003-07-07 피티플러스(주) 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법
DE10061297C2 (de) 2000-12-08 2003-05-28 Siemens Ag Verfahren zur Sturkturierung eines OFETs
DE10105914C1 (de) 2001-02-09 2002-10-10 Siemens Ag Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum und ein Verfahren zu dessen Erzeugung
US6767807B2 (en) 2001-03-02 2004-07-27 Fuji Photo Film Co., Ltd. Method for producing organic thin film device and transfer material used therein
DE10117663B4 (de) 2001-04-09 2004-09-02 Samsung SDI Co., Ltd., Suwon Verfahren zur Herstellung von Matrixanordnungen auf Basis verschiedenartiger organischer leitfähiger Materialien
DE10120686A1 (de) * 2001-04-27 2002-11-07 Siemens Ag Verfahren zur Erzeugung dünner homogener Schichten mit Hilfe der Siebdrucktechnik, Vorrichtung zur Durchführung des Verfahren und ihre Verwendung
US20020170897A1 (en) * 2001-05-21 2002-11-21 Hall Frank L. Methods for preparing ball grid array substrates via use of a laser
US7244669B2 (en) 2001-05-23 2007-07-17 Plastic Logic Limited Patterning of devices
US6870180B2 (en) 2001-06-08 2005-03-22 Lucent Technologies Inc. Organic polarizable gate transistor apparatus and method
JP2003089259A (ja) * 2001-09-18 2003-03-25 Hitachi Ltd パターン形成方法およびパターン形成装置
US7351660B2 (en) 2001-09-28 2008-04-01 Hrl Laboratories, Llc Process for producing high performance interconnects
US6621294B2 (en) * 2002-01-03 2003-09-16 Ibm Corporation Pad system for an integrated circuit or device
GB0207134D0 (en) * 2002-03-27 2002-05-08 Cambridge Display Tech Ltd Method of preparation of organic optoelectronic and electronic devices and devices thereby obtained
DE10219905B4 (de) 2002-05-03 2011-06-22 OSRAM Opto Semiconductors GmbH, 93055 Optoelektronisches Bauelement mit organischen funktionellen Schichten und zwei Trägern sowie Verfahren zur Herstellung eines solchen optoelektronischen Bauelements
US6812509B2 (en) * 2002-06-28 2004-11-02 Palo Alto Research Center Inc. Organic ferroelectric memory cells
US6870183B2 (en) * 2002-11-04 2005-03-22 Advanced Micro Devices, Inc. Stacked organic memory devices and methods of operating and fabricating
EP1559148A2 (de) 2002-11-05 2005-08-03 Siemens Aktiengesellschaft ORGANISCHES ELEKTRONISCHES BAUTEIL MIT HOCHAUFGELöSTER STRUKTURIERUNG UND HERSTELLUNGSVERFAHREN DAZU
US7442954B2 (en) 2002-11-19 2008-10-28 Polyic Gmbh & Co. Kg Organic electronic component comprising a patterned, semi-conducting functional layer and a method for producing said component
US7351606B2 (en) * 2004-06-24 2008-04-01 Palo Alto Research Center Incorporated Method for forming a bottom gate thin film transistor using a blend solution to form a semiconducting layer and an insulating layer

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C.J.BRABEC, F.PADINGER, N.S.SARICIFTCI, J.C.HUMMELEN: "Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix" JOURNAL OF APPLIED PHYSICS, Bd. 85, Nr. 9, 1999, Seiten 6866-6872, XP002321778 *
C.J.BRABEC, H.JOHANNSON, F.PADINGER, H.NEUGEBAUER, J.C.HUMMELEN, N.S.SARICIFTCI: "Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix." SOLAR ENERGY MATERIALS AND SOLAR CELLS, Bd. 61, 2000, Seiten 19-33, XP002321779 *
HSING LIN WANG, LEVENT TOPARE, JACK E. FERNANDEZ: "Conducting polymer blends: polythiophene and polypyrrole blends with polystyrene and poly(bisphenol A carbonate)" MACROMOLECULES, Bd. 23, 1990, Seiten 1053-1059, XP002321776 *
S.E.SHAHEEN, D.VANGENEUGDEN, R.KIEBOOMS, D.VANDERZANDE, T.FROMHERZ, F.PADINGER, C.J.BRABEC, N.S.SARICIFTCI: "low band gap polymeric photovoltaic devices" SYNTHETIC METALS, Bd. 121, 2001, Seiten 1583-1584, XP002321780 *
YADING WANG, M.F.RUBNER: "Electrically conductive semiinterpenetrating polymer networks of poly(3-octylthiophene)" MACROMOLECULES, Bd. 25, 1992, Seiten 3284-3290, XP002321777 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1737027A1 (de) * 2004-08-20 2006-12-27 Matsushita Electric Industrial Co., Ltd. Beschichtungsflüssigkeit zum formen von organischen mehrschichtfolien, verfahren zur herstellung eines feldeffekttransistors und feldeffekttransistor
EP1737027A4 (de) * 2004-08-20 2010-12-08 Panasonic Corp Beschichtungsflüssigkeit zum formen von organischen mehrschichtfolien, verfahren zur herstellung eines feldeffekttransistors und feldeffekttransistor
WO2007093282A1 (de) * 2006-02-13 2007-08-23 Merck Patent Gmbh Elektronisches bauteil, verfahren zu dessen herstellung und dessen verwendung
WO2008001123A1 (en) * 2006-06-29 2008-01-03 Cambridge Enterprise Limited Blended polymer fets
JP2009543323A (ja) * 2006-06-29 2009-12-03 ケンブリッジ エンタープライズ リミティド 配合ポリマー電界効果トランジスタ
US8518738B2 (en) 2006-06-29 2013-08-27 Cambridge Enterprise Limited Blended polymer FETs
US9614158B2 (en) 2006-06-29 2017-04-04 Cambridge Enterprise Limited Blended polymer FETs

Also Published As

Publication number Publication date
US20070017401A1 (en) 2007-01-25
WO2005024895A3 (de) 2005-06-09
US7678857B2 (en) 2010-03-16
DE10340643A1 (de) 2005-04-07
DE10340643B4 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
EP1346422A1 (de) Organischer feld-effekt-transistor, verfahren zur stukturierung eines ofets und integrierte schaltung
DE2451236C2 (de) Verfahren zum Herstellen keramischer Substrate
DE10340643B4 (de) Druckverfahren zur Herstellung einer Doppelschicht für Polymerelektronik-Schaltungen, sowie dadurch hergestelltes elektronisches Bauelement mit Doppelschicht
EP1656683B1 (de) Organischer kondensator mit spannungsgesteuerter kapazität
DE102004036793A1 (de) Nanoporöse Fullerenschichten und deren Verwendung in der organischen Photovoltaik
WO2005004252A2 (de) Verfahren zur herstellung von organischen solarzellen oder photodetektoren
DE2543455A1 (de) Elastisches, unter druck elektrisch leitendes material
DE19609221C1 (de) Verfahren zur Herstellung von keramischen Mehrschichtsubstraten
WO2011009550A1 (de) Verfahren zum einbringen von kohlenstoffteilchen in eine polycarbonat-oberflächenschicht
DE102014224276B4 (de) Verfahren zum hochpräzisen Drucken von Strukturen auf Oberflächen sowie Substrat mit einer eine gedruckte Struktur aufweisenden Oberfläche
WO2007009639A1 (de) Verfahren zur herstellung einer dreidimensionalen schaltung
DE2804139A1 (de) Bahnmaterial fuer allgemeine ueberzuege und verfahren zu dessen herstellung
EP1741322B1 (de) Verfahren zur herstellung von leiterplatten und/oder entsprechenden konstrukten
EP1911089A1 (de) Elektronisches bauelement
WO2006074711A1 (de) Tastatur und verfahren zur herstellung einer tastatur
DE102013225904B4 (de) Beschichtungsmittel zum Herstellen einer elektrisch leitfähigen Schicht und Verfahren zu dessen Herstellung
DE10349027B4 (de) Organische Schaltung mit kleinen Strukturen und Verfahren zu deren Herstellung
EP1922774B1 (de) Organisches bauelement und ein solches umfassende elektrische schaltung
WO2004017439A2 (de) Elektronisches bauteil mit vorwiegend organischen funktionsmaterialien und herstellungsverfahren dazu
DE2262765C2 (de) Stoffzusammensetzungen, die ferromagnetische Teilchen und nicht-ferromagnetische Aluminiumteilchen in einem elastischen Material enthalten
WO2006058622A2 (de) Verfahren und vorrichtung zur erzeugung von strukturen aus funktionsmaterialien
DE102022100440A1 (de) Flüssigmetall-Präkursorlösung, Verfahren zum Herstellen eines Metallfilms unter Verwendung derselben, und elektronische Vorrichtung umfassend denselben
WO2021013424A1 (de) Verfahren zum herstellen einer bipolarplatte für eine brennstoffzelle
DE102013007204A1 (de) Verfahren zur Herstellung einer Membranelektrodenanordnung
EP2092570B1 (de) Schichtaufbau

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007017401

Country of ref document: US

Ref document number: 10569233

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10569233

Country of ref document: US