WO2005026830A1 - Illuminator and liquid crystal display - Google Patents

Illuminator and liquid crystal display Download PDF

Info

Publication number
WO2005026830A1
WO2005026830A1 PCT/JP2004/013499 JP2004013499W WO2005026830A1 WO 2005026830 A1 WO2005026830 A1 WO 2005026830A1 JP 2004013499 W JP2004013499 W JP 2004013499W WO 2005026830 A1 WO2005026830 A1 WO 2005026830A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
layer
polarization separation
light source
Prior art date
Application number
PCT/JP2004/013499
Other languages
French (fr)
Japanese (ja)
Inventor
Kouya Kawabata
Shuhei Okude
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2005513961A priority Critical patent/JPWO2005026830A1/en
Publication of WO2005026830A1 publication Critical patent/WO2005026830A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to a lighting device and a liquid crystal display device. More specifically, the present invention relates to a lighting device particularly preferably used as a backlight unit of a liquid crystal display device, and a liquid crystal display device provided with the lighting device. Background art
  • the backlight unit generally includes a light source such as a cold-cathode tube, a light guide plate arranged so that an incident end face is located near the light source, and an optical sheet provided on an emission side surface (front surface side) of the light guide plate. And a light reflection sheet disposed on the opposite side (back side) of the light guide plate from the optical sheet. Then, a fine pattern of a predetermined shape is formed on the surface on the light reflection sheet side or the surface on the emission side of the light guide plate in order to obtain uniform diffused light.
  • the optical sheet provided on the surface side of the light guide plate include a light diffusion sheet and a prism sheet.
  • the utilization efficiency of light energy emitted from the backlight unit is low, and increasing the utilization efficiency of the light energy is an important technical problem.
  • the light emitted from the backlight unit is unpolarized light.
  • a polarizing plate is provided on the entrance and exit surfaces of the liquid crystal display device. The polarizing plate is linearly polarized and does not transmit power, and other light is absorbed in the polarizing plate. Therefore, the light transmitted as linearly polarized light is 50% or less of the light incident on the polarizing plate, which makes it difficult to increase the brightness and reduce the power consumption of the liquid crystal display device.
  • the efficiency of using the light energy emitted from the backlight unit as a whole can be improved. Can be.
  • a multilayer laminated film in which a low-refractive-index film and a high-refractive-index film are alternately laminated for example, see Patent Document 1
  • a circularly polarized light separating film using a cholesteric liquid crystal layer for example, Patent Documents 2 and 3 See also.
  • the multilayer laminated film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, and absorbing the transmitted light as it is by aligning the polarization axis with the polarization plate as it is to be absorbed by the polarization plate. , And can be efficiently transmitted.
  • the multilayer laminated film has an extremely large laminated structure in which about 800 layers of two kinds of films having different refractive indexes are alternately laminated, and the production thereof is complicated. This has the disadvantage that the cost is high.
  • the circularly polarized light separating film has a cholesteric liquid crystal layer having a structure in which a liquid crystal group of a rod-like liquid crystal molecule or a side chain type liquid crystalline polymer is twisted in a thickness direction with a helical axis parallel to a layer normal as a rotation axis. It uses the selective reflection characteristics to separate left-right rotating circularly polarized light into transmitted light and reflected light.
  • this selective reflection layer is formed using ordinary liquid crystal, the wavelength range of the selective reflection is about several tens of nm, and it cannot be applied as it is for the purpose of the luminance improving member. Therefore, it is necessary to widen the reflection band in the visible region in order to perform circularly polarized light separation over the entire visible light region.
  • a reflective polarizer in which a selective reflection band for normal incident light is extended to an infrared region is disclosed (for example, see Patent Document 4).
  • Patent Document 4 a reflective polarizer extended to the infrared region, it is necessary to increase the layer thickness and the number of layers, and there is a problem that the material cost is increased.
  • the liquid crystal display device has a problem in that the display contrast and the viewing angle characteristics of display colors are inferior to those of the CRT display device due to birefringence and optical rotation caused by the alignment of the liquid crystal. For this reason, it has been proposed to improve the viewing angle by incorporating, for example, a retardation plate (see, for example, Patent Document 4). Further, by controlling the orientation of the liquid crystal, it is possible to improve the birefringence of the liquid crystal. Attempts have been made to reduce the adverse effects. Compared to the display characteristics of CRT displays, they are not yet sufficient.
  • one of the causes of deterioration in display quality is that light incident on the liquid crystal layer is not parallel light but diffuse light having a spread.
  • Light incident on the liquid crystal layer at various angles other than the vertical direction causes a reduction in display quality due to coloring. Therefore, if light close to parallel light can be incident on the liquid crystal layer, a decrease in display characteristics due to birefringence of the liquid crystal can be suppressed, and display characteristics can be improved.
  • the present invention is suitably used particularly as a backlight unit of a liquid crystal display device, etc., and has a high light energy utilization efficiency, and can be viewed from an oblique direction even when viewed from the front.
  • a high-brightness liquid crystal display device in which color unevenness does not easily occur at a viewing angle, and furthermore, an illuminating device which is advantageous in terms of manufacturing cost, and the above-described excellent functions provided with the illuminating device.
  • the purpose of the present invention is to provide a liquid crystal display device having the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. Hei 9-191
  • Patent Document 2 Japanese Patent Application Laid-Open No. Hei 6-230590
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-271731
  • Patent Document 4 Japanese Translation of PCT International Publication No. 2000-51 59 94
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a polarization separation element that separates incident light into transmitted light and reflected light having different polarization states, particularly a selective reflection band for normal incident light.
  • An illumination device having at least a broadband polarization separation element having a long wavelength side critical value within a specific range, and a surface light source device having a diffusion angle of light emitted to the polarization separation element within a specific range, They have found that the object can be achieved, and have completed the present invention based on this finding.
  • a lighting device having at least a polarization separation element that separates incident light into transmitted light and reflected light having different polarization states, and a surface light source device that supplies light to the polarization separation element.
  • the light emission angle 0 of the surface light source device is expressed by the relational expression (a).
  • the surface light source device is a device comprising at least a light guide plate, a light source provided on an end surface side of the light guide plate, and a plurality of light sources provided on a lower surface side, wherein the light guide plate has a polarized light.
  • the surface on the separation element side is parallel to the light emission side surface of the polarization separation element, and the opposite back side has a plurality of angle regions that are not parallel to the light emission side surface of the polarization separation element, and has inside thereof.
  • the lighting device according to any one of claims 1 to 3, wherein the lighting device has regions having different compositions, and a light source is arranged in each of the plurality of angle regions.
  • n x, n y and n z are defined such that n x — n y is maximized.
  • the lighting device according to any one of Items 1 to 4, including a phase difference element in which the relationship of nz > nx , nz > ny , and nx ⁇ ny is satisfied .
  • the retardation element has substantially no in-plane retardation
  • the illumination device according to any one of (1) to (8), further including a prism sheet between the surface light source device and the polarization beam splitter, and
  • FIG. 1 is a schematic diagram of a liquid crystal layer showing a general cholesteric phase
  • FIG. 2 is a schematic diagram of selective reflection of a liquid crystal layer showing a general cholesteric phase
  • FIG. FIG. 4 is a graph for explaining the viewing angle dependence of selective reflection
  • FIG. 4 is a schematic view showing a cholesteric liquid crystal layer having a spiral helical axis
  • FIG. 5 is a method of tilting a helical axis.
  • FIG. 6 is an explanatory view showing the principle when cholesteric liquid crystal layers are arranged on both sides of the optical path conversion layer
  • FIG. 7 is used in the present invention.
  • FIG. 8 is a perspective view of a main part of an example of a surface light source device
  • FIG. 8 is a cross-sectional view showing a configuration of an example of a tandem-type surface light source device used in the present invention
  • FIG. FIG. 2 is a schematic diagram showing an example of the principle and configuration of the lighting device of FIG
  • reference numeral 1 denotes an alignment-treated surface of a substrate
  • 2 denotes liquid crystal molecules
  • 3 denotes a layer normal
  • 4 denotes a helical axis
  • 5 denotes a transmission spectrum for oblique incident light
  • 6 denotes a transmission spectrum for parallel incident light.
  • the illumination device of the present invention may include at least a polarization separation element and a surface light source device.
  • the polarization separation element may be any element that can separate incident light into transmitted light and reflected light having different polarization states, and is not particularly limited, and may be any of a linear polarization separation element and a circular polarization separation element.
  • a broadband polarization separation element is particularly preferable.
  • the broadband polarization separation element referred to here means linearly polarized light in any of the wavelength ranges from 410 to 470 nm, from 52 to 580 nm, and from 600 to 660 nm.
  • the linearly polarized light separating element for example, a multilayer laminated film described in Japanese Patent Application Laid-Open No.
  • This multilayer laminated film has a property of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, and the transmitted light is directly incident on the polarizing plate with the polarization axis aligned. It is possible to transmit light efficiently while suppressing absorption.
  • a multilayer laminated film for example, a multilayer laminated film [trade name “D_BEF]) manufactured by 3M Company may be mentioned.
  • the circularly polarized light separating element an element having at least a liquid crystal layer formed on a substrate can be used.
  • the substrate is not particularly limited as long as it is an optically transparent substrate, but is preferably in the form of a long film in order to efficiently produce the liquid crystal layer. Further, in order to avoid unnecessary change of the polarization state, it is more preferable that the film is an optically isotropic film. In addition, from the viewpoint of material cost and thinner and lighter weight, the thickness is 5 to 300 ⁇ m. m, more preferably 30 to 100 tm.
  • a transparent substrate is not particularly limited as long as it has a thickness of 1 mm and a total light transmittance of 80% or more, and examples thereof include a polymer having an alicyclic structure, polyethylene, and polypropylene.
  • a simple resin consisting of a synthetic resin such as linear olefin polymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyether sulfone, modified acrylic polymer, epoxy resin, etc.
  • a synthetic resin such as linear olefin polymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyether sulfone, modified acrylic polymer, epoxy resin, etc.
  • Examples include layered or laminated films and glass plates.
  • a polymer having an alicyclic structure or a chain olefin polymer is preferable, and a polymer having an alicyclic structure is preferred from the viewpoints of transparency, low moisture absorption, dimensional stability, light weight, and the like. Is particularly preferred.
  • a polymer having an alicyclic structure is a polymer having an alicyclic structure in the repeating unit of the polymer, and a polymer having an alicyclic structure in the main chain and a polymer having an alicyclic structure in the side chain. Any of the bodies can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferred from the viewpoint of thermal stability and the like.
  • the number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15.
  • the proportion of the repeating unit having an alicyclic structure in the polymer having an alicyclic structure is usually at least 50% by weight, preferably at least 70% by weight, more preferably at least 90% by weight. If the number of repeating units having an alicyclic structure is too small, heat resistance may be reduced.
  • Examples of the polymer having an alicyclic structure include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin-based polymer, (3) a cyclic conjugated gen-based polymer, and (4) a vinyl alicyclic hydrocarbon. Polymers, and hydrogenated products thereof, and the like. Among these, a norbornene-based polymer is more preferable from the viewpoint of transparency and moldability.
  • Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof, and norbornene-based polymers.
  • Examples include an addition polymer of a monomer, and an addition copolymer of a norbornene-based monomer with another monomer copolymerizable with the norbornene-based monomer.
  • norbornene-based monomers Most preferred are hydrogenated ring polymers and hydrogenated ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization.
  • the polymer having an alicyclic structure is selected from known polymers disclosed in, for example, JP-A-2002-321302.
  • the alignment film can be provided by means such as rubbing of a polymer film for an alignment film, oblique deposition of an inorganic compound, formation of microgroups, or formation of an organic film by the Langmuir's project method (LB film). . Further, it is also possible to use an alignment film that generates an alignment function by applying an electric or magnetic field or irradiating light. Further, in order to impart adhesion between the base material and the alignment film, it is preferable that the base material be subjected to surface treatment in advance. As means for this, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment And flame treatment. It is also effective to provide an adhesive layer (undercoat layer) between the substrate and the alignment film.
  • LB film Langmuir's project method
  • an alignment film formed by rubbing a polymer film for an alignment film is preferable from the viewpoint of enabling continuous processing.
  • the rubbing treatment is achieved by rubbing the surface of the polymer film in a certain direction with a cloth.
  • the type of the polymer for an alignment film used as such an alignment film is not particularly limited, but may be selected according to the type of the liquid crystal compound and the desired alignment.
  • these alignment films preferably have a polymerizable group for the purpose of imparting adhesion between the liquid crystal compound and the substrate. Examples of the polymerizable group include an acryloyl group, a metharyloyl group, and a butyl group.
  • the thickness of the alignment film is preferably from 0.01 to 5 / m, more preferably from 0.05 to 1 ⁇ m.
  • a broadband liquid crystal layer having a circularly polarized light separating function over the entire wavelength region of visible light is preferable, for example, a wavelength of 410 to 470 nm.
  • a cholesteric liquid crystal layer having a circularly polarized light separating function can be used for light in any of the wavelength ranges of 520 to 580 nm and 600 to 660 nm.
  • Such a cholesteric liquid crystal layer is composed of (a) a combination of cholesteric liquid crystal layers having different center wavelengths of selectively reflected light. (B) One cholesteric liquid crystal layer having a spiral shape in the thickness direction.
  • Pitch a liquid crystal layer provided on a substrate, wherein the liquid crystal layer is formed in a first alignment state and then formed first by changing the layer shape.
  • D a cholesteric liquid crystal layer disposed on both sides of an optical path conversion layer provided on a substrate having the above-mentioned alignment film; and the like. Is mentioned.
  • the phase state of the circularly polarized light reflected by each layer is aligned to prevent different polarization states in each wavelength region, and the polarized light in a usable state is prevented. From the viewpoint of increasing the amount, it is preferable to combine those that reflect circularly polarized light in the same direction. Further, in this case, it is more preferable that the cholesteric liquid crystal layers are stacked in the order of increasing or decreasing the center wavelength of the reflected light, from the viewpoint of suppressing wavelength shift when the viewing angle increases.
  • the center wavelength of the selectively reflected light is 470 nm, 550 nm, 640 nm, and 770 nm
  • a certain cholesteric liquid crystal layer is formed, these cholesteric liquid crystal layers are arbitrarily selected, and three to seven layers are laminated in the order of the central wavelength of the selectively reflected light.
  • a method of laminating a plurality of cholesteric liquid crystal layers having different central wavelengths of the selectively reflected light a method of laminating each cholesteric liquid crystal layer; a method of laminating each cholesteric liquid crystal layer via an adhesive or an adhesive; Can be
  • the cholesteric liquid crystal layer of the type (b) can be formed as follows. First, a liquid crystal layer containing a compound, a liquid crystal and an ultraviolet absorber which isomerizes by irradiation with ultraviolet light of a specific wavelength to become a chiralizing agent, is continuously irradiated in the depth direction from the surface (ultraviolet irradiation surface) side. The ultraviolet light having the specific wavelength is irradiated so that the light intensity is attenuated. As a result, a liquid crystal layer in which the amount of the chiralizing agent is continuously reduced from the surface side in the depth direction, that is, the helical pitch of the liquid crystal is continuously changed in the thickness direction of the liquid crystal layer is obtained.
  • the liquid crystal layer is irradiated with ultraviolet light having a wavelength different from the specific wavelength ultraviolet light to cure the liquid crystal layer as a whole, thereby fixing the state in which the helical pitch is inclined.
  • the cholesteric liquid crystal layer obtained in this manner has a helical pitch that changes continuously in the depth direction, and the cholesteric liquid crystal layer covers all wavelength bands in the visible light range. It has a circularly polarized light separating function in the region.
  • cholesteric liquid crystal layers of this type include, for example, SID'95, Asia Display, p. 735 (1995), Liquid Crystal, Vol. 2, No. 2, 32-39 (1998). Etc. are described.
  • a liquid crystal polymer As a material constituting the cholesteric liquid crystal, a liquid crystal polymer is preferable.
  • the liquid crystal polymer include a liquid crystal polymer having a conjugated linear atomic group (mesogen) imparting liquid crystal orientation introduced into a polymer main chain, and a liquid crystal polymer having a mesogen introduced into a side chain of the polymer. Various things such as can be used.
  • the thickness of the cholesteric liquid crystal layer (or the total thickness in the case of multiple layers) is usually determined from the viewpoints of preventing alignment disorder and transmittance reduction, and widening the wavelength range of selective reflection (reflection wavelength range). :! 5050 im, preferably 2 to 30 ⁇ , more preferably 2 to: I 0 m.
  • the total thickness including the base material is usually 20 to 200 / xm, preferably 25 to 150 / xm, and more preferably 30 to: ⁇ m.
  • a solvent solution of a liquid crystal polymer is coated on a substrate on which an alignment film is formed by spin coating, roll coating, flow coating, printing, dip coating.
  • a method of forming a coating film by a known coating method such as a casting method, a casting film forming method, a bar coating method, a gravure printing method, and the like, followed by a drying treatment.
  • the solvent for the liquid crystal polymer include dimethylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, and tetrahydrofuran.
  • a heated melt of a liquid crystal polymer preferably a heated melt having an isotropic phase
  • a substrate is coated on a substrate by a method according to the above-described coating method. It is possible to adopt a method of forming a thin layer and solidifying it while maintaining the melting temperature as needed.
  • the temperature of the heat treatment for forming the liquid crystal layer is in the temperature range from the glass transition temperature to the isotropic phase transition temperature of the liquid crystal polymer, that is, the temperature range in which the liquid crystal polymer exhibits liquid crystal.
  • the orientation state can be fixed by cooling below the glass transition temperature.
  • the cholesteric liquid crystal layer of the above-mentioned (C) type is formed by coating a coating liquid containing a liquid crystal compound, a solvent, a surfactant, a polymerization initiator, a chiralizing agent, an alignment controlling agent and the like on a substrate having the alignment film. It is preferable that the first alignment state is formed by applying to the first alignment state.
  • liquid crystal compound a rod-shaped liquid crystal compound, a discotic liquid crystal compound, a polymer liquid crystal, and the like are known, and can be appropriately selected depending on a desired alignment state.
  • a target alignment state it is preferable to fix in a target alignment state by heat or ultraviolet rays, and for this purpose, it is preferable that a polymerizable functional group is introduced into the molecule.
  • examples of the rod-shaped liquid crystal compound include compounds represented by the following formula (I).
  • R1 -L 1 -S 1 -L 3 -ML 4 -S 2 -L 2 -R2 (I) wherein R 1 and R 2 represent a polymerizable functional group, and L1, L2, L3 and L 4 represents a single bond or a divalent linking group, and at least one of L 3 and L 4 represents one O—CO—O—, and S 1 and S 2 are spacers having 2 to 20 carbon atoms. Represents one group, and M represents a mesogen group.
  • the mesogen group M includes azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic esters, hexa-hexacarboxylic acid phenyl esters, cyanophenyl hex-hexanes, cyano-substituted phenylpyrimidines , Alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitrile are preferably used.
  • Specific examples of R 1 and R 2 of the polymerizable functional group include
  • liquid crystal polymer those described in Liquid Crystal Handbook Editing Committee, Liquid Crystal Handbook, Chapter 3, Section 3.8 (2000) can be used, but are not limited thereto. From the viewpoint of alignment uniformity, a side chain type liquid crystalline polymer is preferably used.
  • a solvent used for preparing the coating solution an organic solvent is preferably used.
  • the organic solvent include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Particularly, ketones are preferable in consideration of the burden on the environment. Two or more organic solvents may be used in combination.
  • a surfactant for adjusting the surface tension of the coating liquid and the liquid crystal layer before polymerization a commercially available surfactant can be used. Particularly preferred is a nonionic surfactant, which has a molecular weight of about several thousand. It is preferred that it is an origin. Examples of such a surfactant include KH-40 manufactured by Seimi Chemical Co., Ltd.
  • Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator, but it is preferable to use a photopolymerization initiator because the photopolymerization reaction is rapid.
  • Examples of the photopolymerization initiator include polynuclear quinone compounds (described in U.S. Pat. Nos. 3,046,127 and 2,951,758), oxadiazole compounds (described in U.S. Pat. No. 4,212,970), a-- Carbonyl compounds (described in U.S. Pat. Nos. 2,736,661 and 2,736,670), acyloin ethers (described in U.S. Pat. No.
  • the amount of the photopolymerization initiator used is preferably from 0.01 to 20% by weight, more preferably from 0.5 to 5% by weight, based on the solid content of the coating solution. It is preferable to use ultraviolet light for light irradiation for polymerizing the liquid crystal compound.
  • the light irradiation energy is preferably l mj / ⁇ ⁇ 2 to 50 jZcn ⁇ . ⁇ 800mjZcm2 Is more preferred.
  • the alignment state of the liquid crystalline compound to which the alignment treatment according to the present invention can be applied includes a nematic phase, a cholesteric phase, and a smectic phase.
  • the nematic phase refers to a state in which the position of the center of gravity of the liquid crystal molecules is disordered and the long axes of the molecules are uniaxially oriented.
  • the cholesteric phase refers to a state in which the position of the center of gravity of liquid crystal molecules is disordered, and the long axis of the molecules is twisted in a certain direction between the molecules.
  • the smectic phase is characterized by having a layered structure with one-dimensional order at the center of gravity in addition to the order of the nematic phase. It is known that these alignment states develop depending on the temperature of the liquid crystalline compound, and these are called thermopic pick liquid crystals. Furthermore, the temperature at which each phase develops is called the phase transition temperature.
  • HTP Helical Twisting Power
  • P represents the helical pitch length of the cholesteric phase
  • c represents the concentration of the chiralizing agent.
  • the alignment controlling agent is for controlling the alignment state of the air-side surface of the liquid crystal layer formed on the substrate, and may also serve as the surfactant, but may be appropriately determined depending on the desired alignment state.
  • Resins are used. Examples of such a resin include, but are not limited to, polyvinyl alcohol, polyvinyl butyral, and modified products thereof.
  • the application of the coating solution can be performed by a known method, for example, an extrusion coating method, a direct dalvia coating method, a reverse gravure coating method, a die coating method, or the like.
  • the liquid crystal layer applied on the base material exhibits the above-mentioned liquid crystal phase according to the properties and temperature of the liquid crystal compound and other materials. Furthermore, it is known that various alignment states also exist in these phases depending on the properties of the contact interface (the alignment film side and the interface facing the same). Have been. In particular, as disclosed in JP-A-8-338913, JP-A-8-209127 and JP-A-2000-66192, the long axis of the rod-like liquid crystalline compound and the layer It is known that an orientation state (spray orientation) in which the angle formed with the normal line gradually changes from one layer interface to the other layer interface exhibits important characteristics for optical film applications.
  • orientation state spray orientation
  • FIG. 1 schematically shows a liquid crystal layer showing a general cholesteric phase.
  • the liquid crystal molecules 2 in contact with the alignment treatment surface 1 applied to the substrate surface are drawn so as to align the long axes of the liquid crystal molecules in a direction corresponding to the alignment treatment.
  • the liquid crystal molecules are twisted at a helical pitch P according to the HTP of the chiralizing agent between the interface on the alignment treatment surface and the surface facing the liquid crystal molecule.
  • FIG. 2 schematically shows selective reflection of a liquid crystal layer exhibiting a general cholesteric phase. It is known that when light is incident on a liquid crystal layer exhibiting a cholesteric phase, it exhibits a reflection characteristic (selective reflection) only with respect to any one of right and left circularly polarized lights in a specific wavelength region. This is illustrated in FIG. Here, 6 j is the incident angle when white incident light L 1 is incident, L 2 is the circularly polarized light selectively reflected, ⁇ 2 is the incident light when the incident light L 1 is refracted in the liquid crystal layer according to Snell's law. It represents the angle between the light traveling direction and the layer normal 3.
  • n (ne + no) / 2
  • n o Refractive index in the minor axis direction of the rod-like liquid crystalline compound
  • n e refractive index in the major axis direction of the rod-shaped liquid crystalline compound
  • FIG. 3 is a graph for explaining the viewing angle dependence of the selective reflection.
  • JP-A-6-235900 As a technique for widening the bandwidth, a technique disclosed in JP-A-6-235900 can be used. Disclosed here is a structure in which the helical pitch P gradually changes in the thickness direction of the layer of the type (b). In such a structure, since there are regions where the helical pitch P differs in the thickness direction, broadband reflection characteristics can be obtained as the sum of the wavelength regions ⁇ of the reflected light in each region. This can be said to be the result of controlling the spiral pitch ⁇ in equation (IV).
  • FIG. 4 is a schematic diagram showing a cholesteric liquid crystal layer in which the helical axis is inclined.
  • the angle theta 2 which the helical axis and L 1 is formed by a, b how changes c (a>b> c) is depicted.
  • the above-described splay alignment is realized by changing the alignment state of liquid crystal molecules at the interface of the liquid crystal layer on the alignment film side and the interface facing the splay alignment layer. For example, if one interface is the interface with the alignment film and the other interface is the air, select a material for the alignment film that adsorbs the liquid crystal compound molecules horizontally to the alignment film surface.
  • One method is to select an alignment modifier so that the liquid crystal compound molecules are aligned obliquely to the same interface, and then add it to the coating solution for forming the liquid crystal layer.
  • JP-A-8-338913 discloses an example in which a polyvinyl alcohol derivative is used as an alignment film and a cellulose acetate butyrate as an alignment regulator for a discotic liquid crystalline compound.
  • a liquid crystal layer having a first alignment state is formed on a base material, and then the layer shape is changed to change to a second alignment state.
  • the first alignment state refers to a state in which the helical axis of the cholesteric liquid crystal layer is parallel to the layer normal direction
  • the second alignment state refers to a state in which the helical axis is not parallel to the layer normal. It is.
  • the means for changing the layer shape include a method in which a substrate having concaves and convexes is brought into contact with a liquid crystal layer in a first alignment state.
  • a material that is optically transparent and has a phase difference due to birefringence as small as possible is preferable.
  • examples of such a material include those described above in the base material of the circularly polarized light separating element. Also, from the viewpoint of making chain! Possible, use a long film Preferably, there is.
  • the shape of the unevenness is not particularly limited as long as it is in a range where the inclination of the helical axis is generated. Examples include polygonal pyramids, hemispheres, and domes. In the case where the shape is changed so that an apparent phase difference is not generated, it is preferable that the rotationally symmetric axis is in the normal direction of the base material as the concavo-convex shape.
  • the height of the unevenness is preferably from 0.1 to 10 m, more preferably from 0.5 to 3 / z m, from the bottom to the apex of the projection. Further, the in-plane period of the irregularities is preferably from 0.5 to 1.0 m, more preferably from 0.5 to 3 m.
  • FIG. 5 is an explanatory view showing an example of a method of inclining the helical axis, and a cross section of a state where a quadrangular pyramid 7 is used as a concavo-convex shape and integrated with a liquid crystal layer having a second alignment state.
  • a curve 4 traversing the liquid crystal layer LC is a planar shape in which the helical axis was initially parallel to the normal of the liquid crystal layer, as shown in Fig. 5, which represents the helical axis of the cholesteric liquid crystal layer.
  • the first orientation state is deformed by a quadrangular pyramid-shaped concave and convex surface, and has a structure in which the helical axis in the second orientation state is curved.
  • Means for bringing the substrate having the unevenness into contact with the liquid crystal layer include a method in which the substrate having the uneven surface is opposed to the liquid crystal layer with a generally used press machine, and a method of heating between the jaws.
  • a lamination method in which pressure is applied can be applied.
  • a method of pressing an embossed hole or the like on the liquid crystal layer having the first alignment state formed thereon and transferring an uneven shape on the embossed hole may be applied.
  • the first alignment state is fixed to some extent.
  • the method of immobilization is to use a liquid crystal compound in which the types of polymerizable functional groups and the number per molecule are adjusted, or to use a mixture of a non-polymerizable liquid crystal and a polymerizable liquid crystal as a liquid crystal compound.
  • the liquid crystal compound In the cholesteric liquid crystal layer of the type (d) described above, the liquid crystal compound, a solvent, It is preferable to first form a coating solution containing a surfactant, a polymerization initiator, a chiralizing agent, an alignment controlling agent and the like as appropriate on the substrate having the alignment film.
  • the thickness of the cholesteric liquid crystal layer is preferably from 1 to 1 Om, and from the viewpoint of alignment uniformity, is preferably from 1 to 5 ⁇ .
  • liquid crystal compound examples include a rod-shaped liquid crystal compound, a discotic liquid crystal compound, and a liquid crystal polymer, and any of them can be appropriately selected depending on a desired alignment state. Further, in order to fix the alignment state, it is preferable to solidify by heat or ultraviolet rays in the target alignment state, and for this purpose, it is preferable that a polymerizable functional group is introduced into the molecule.
  • the rod-shaped liquid crystal compound, the discotic liquid crystal compound, and the liquid crystal polymer are each appropriately selected from cholesteric liquid crystal from the rod-shaped liquid crystal compound, the discotic liquid crystal compound, and the liquid crystal polymer described in the above (c) type. Can be used.
  • the solvent, surfactant, polymerization initiator, chiralizing agent, orientation adjusting agent, and the method of applying the coating solution used in the preparation of the coating solution are the same as those described in the above (c) type.
  • the polarization separation characteristics of the cholesteric liquid crystal layer are the same as those of the type (c) described above with reference to FIGS.
  • the optical path conversion layer used in the circularly polarized light separating element of the type (d) indicates one in which the incident angle of light on the incident surface and the exit angle on the incident surface are different.
  • the incident angle of light on the incident surface is the angle between the direction of the incident light and the normal to the incident surface
  • the exit angle on the same surface is the direction of the light exiting from the optical path conversion layer. It refers to the angle between and the normal to the plane of incidence. Therefore, the incident light is emitted with its traveling direction changed by the optical path conversion layer.
  • Such a function of the optical path conversion layer may be applied to the entire incident light or may be applied to only a part of the incident light.
  • Examples of such an optical path conversion layer include a film in which one surface of a base material is unevenly processed, and a diffusion sheet in which particles are dispersed in the base material.
  • Examples of the film in which one side surface of the base material is unevenly processed include a film having a matte surface by embossing or the like, a prism sheet, and the like.
  • As the diffusion sheet in which the particles are dispersed in the base material a commercially available diffusion sheet can be appropriately used, but a diffusion sheet having a large haze value and high transparency is preferable.
  • the haze value of the substrate is “Haze, transparent
  • the standard test method for the transmittance of plastics is preferably 3 to 65% as a haze value with respect to normal incident light measured by" Haze Card Plus “manufactured by Toyo Seiki Co., Ltd., according to AS TMD 1003, and 30 to 60%. % Is more preferable.
  • the transparency of the substrate is preferably 80% or more, and more preferably 90% or more, with respect to the vertically incident light, as measured with the same evaluator in the haze value test method.
  • a substrate obtained by applying a diffusion layer having the above-mentioned haze value and transparency on a substrate can also be used.
  • the above-mentioned (d) type circularly polarized light separating element is formed by laminating and integrating the above-mentioned cholesteric liquid crystal layer and the optical path conversion layer.
  • the lamination method include a method of bonding using a commercially available transparent pressure-sensitive adhesive, and a method of directly applying the above-mentioned diffusion layer on the cholesteric liquid crystal layer.
  • the stacking order it is preferable to stack the first cholesteric liquid crystal layer, the optical path conversion layer, and the second cholesteric liquid crystal layer in this order from the light source side of the liquid crystal display device.
  • an optical path conversion layer and a cholesteric liquid crystal layer may be further laminated on the second cholesteric liquid crystal layer.
  • FIG. 6 is an explanatory view showing the principle when cholesteric liquid crystal layers are arranged on both sides of the optical path conversion layer.
  • the cholesteric liquid crystal layers 8 and 9 have a reflection band in the red region for vertically incident light. It is depicted as having.
  • Equation (III) the lights L l, L2, and L 3 incident on the cholesteric liquid crystal layer 8 from the light source are selectively reflected lights LI (R) and L2 ( G) produces L3 (B).
  • the light that passes through the cholesteric liquid crystal layer 8 is circularly polarized light La in the rotation direction that is not selectively reflected by the cholesteric layer 8 and light L 1 (GB) having a wavelength other than the selective reflection band at each angle.
  • L 2 (RB) and L 3 (RG) L a and LI (GB), L 2 (RB), and L 3 (RG) enter the diffusion sheet 10, where the incident angle history is eliminated and ordinary diffused light L a # and L 1 (GB) #, L
  • the light enters the cholesteric liquid crystal layer 9 as 2 (RB) # and L3 (RG) # .
  • the diffused light L a # L1 (GB) # , L2 (RB) #, L3 (RG) # is La, LI (GB), L
  • the polarization state of 2 (RB) and L 3 (RG) can be maintained.
  • the cholesteric liquid crystal layer 9 reflects the reflected light L 1 (R) #, L with respect to the diffused light L a # and LI (GB) #, L 2 (RB) #, L 3 (RG) # as in the cholesteric liquid crystal layer 8. 2 (G) # and L 3 (B) # are generated.
  • the reflected light LI (R) #, L 2 (G) #, and L 3 (B) # pass through the diffusion sheet 10 again, and the incident angle history is eliminated.As a result, the reflected light enters the cholesteric layer 8 as diffused light. Some of the light is transmitted to the light source side as L 11 (R), L 21 (G), and L 31 (B). L 1 1 (R), L 2 1 (G), and L 3 1 (B) maintain the same polarization state as LI (R), L 2 (G), and L 3 (B) for the same reason as above. I have.
  • the first reflected L 1 (R), L 2 (G), and L 3 (B) plus L ll (R), L 2 1 (G), and L 3 1 (B) are the light source. Will be reflected to the side.
  • the light transmitted through the cholesteric layer 9 by further laminating the diffusion sheet and the cholesteric liquid crystal layer, it is possible to extract reflected light while maintaining the polarization state in the same manner as above. In this way, this type of circularly polarized light separating element (d) can separate incident light into circularly polarized light having different rotation directions as transmitted light and reflected light.
  • An illumination device is a device in which each of the above-described polarization splitting elements is combined with a surface light source device that supplies light to the polarization splitting element.
  • the band edge is A (nm)
  • the light emission angle ⁇ of the surface light source device is expressed by the relational expression (a).
  • the polarization separation element preferably has a red band edge with respect to normal incident light in a range of 630 nm or more and less than 759 nm, and in a range of 63 O nm or more and less than 690 nm. Something is better.
  • the red band edge for normal incident light indicates a critical value on the long wavelength side of the selective reflection band for normal incident light.
  • the wavelength of light from the backlight is usually about 400 to 630 nm. Therefore, if the relationship between the diffusion angle and the red band edge with respect to the normal incidence light of the polarization separation element satisfies the above equation (a), the red band edge is expanded to 759 nm or more. Even without stretching, the light from the backlight is separated into transmitted light and reflected light having sufficiently different polarization states by the polarization separation element. If the red band edge is less than 630 nm, light having a wavelength of 630 nm or more among the vertical lights from the knock light may be transmitted without being separated.
  • a surface light source device in which the emission angle 0 of the light emitted to the above-mentioned polarization splitting element is within the range satisfying the above relational expression (a) is used.
  • the emission angle ⁇ of the light emitted to the polarization separation element satisfies the relational expression (a), and the configuration is not particularly limited. It may be.
  • a backlight unit in which a viewing angle control member (louver) is provided on the emission side surface of a general-purpose light guide plate; (2) a wedge-shaped emission direction characteristic disclosed in Japanese Patent Application Laid-Open No. 7-270708.
  • a surface light source device using an adjusting element (3) a tandem surface light source device disclosed in Japanese Patent Application Laid-Open No. H11-288611, (4) in the tandem surface light source device, Surface light source devices using devices having regions with different compositions; and (5) devices in which a prism sheet is disposed on a general-purpose direct-type backlight unit.
  • the light-scattering light-guiding element having directivity including a volume region having a wedge-shaped cross section provided with uniform scattering power in the range of: and a small space between the light-extracting surface of the light-scattering light-guiding element.
  • a wedge-shaped emission direction characteristic adjusting element formed and arranged in a complementary positional relationship with the light-scattering light-guiding element; and an end face having a relatively large cross-sectional area of the wedge-shaped cross section of the light-scattering light-guiding element.
  • a wedge-shaped emission direction characteristic adjusting element wherein the effective scattering irradiation parameter is smaller than the light scattering light-guiding element.
  • FIG. 7 is a perspective view of a main part of an example of the surface light source device.
  • reference numeral 31 denotes a wedge-shaped light-scattering light-guiding element composed of a directional light-emitting light-scattering lightguide.
  • L is a fluorescent lamp, and the light directed rightward from the lamp L is made incident on the light scattering light guide element 31 ⁇ ⁇ from the incident surface 32.
  • Reference numeral 33 denotes a light extraction surface, from which light of the light scattering / guiding element 31 is extracted. On the back surface 3 4 opposite to the light extraction surface 33, a regular reflection 14 or a diffuse reflection reflection means 35 is closely attached.
  • the reflecting means 35 may be a reflecting member (for example, a silver foil sheet) separate from the light-scattering light-guiding element 31, or a reflecting film (for example, aluminum) formed on the back surface 34. (A vapor-deposited film).
  • Reference numeral 40 denotes a wedge-shaped emission direction characteristic adjustment element arranged in a complementary positional relationship with the light scattering light guiding element 31. Both end faces 41, 4 2 are light scattering light guiding elements, respectively.
  • a prism-shaped undulating array is formed that opposes the light-extraction surface 33 of the light-scattering light-guiding element 31 that is in alignment with the light-incident surface 3 2 and the terminal surface 36 of the air layer AR.
  • the light intake surface is 4 3.
  • the surface opposite to the light entrance surface 43 is the light exit surface 44, and the light (indicated by the arrow group) 4 4f or 4 ⁇ ⁇ emitted from the light exit surface 44 is Used as light emitted from the surface light source device.
  • the light-scattering light-guiding element 31 is made of a material obtained by uniformly dispersing a small amount (for example, about 0.07% by weight) of a silicone resin or the like in a transparent resin such as polymethyl methacrylate.
  • the wedge-shaped emission direction characteristic adjusting element 40 is composed of a light scattering light guide provided with a low scattering power, and is made of, for example, silicone resin in a transparent resin such as polymethylmetharylate.
  • a resin obtained by uniformly dispersing a small amount (for example, about 0.05% by weight) of a base resin or the like is used.
  • the tandem-type surface light source device of (3) and (4) is a device comprising at least a light guide plate, a light source provided on an end surface side, and a plurality of light sources provided on a lower surface side.
  • the polarization separation element side surface is parallel to the light emission side surface of the polarization separation element, and the opposite back side has a plurality of angles that are not parallel to the light emission side surface of the polarization separation element. Having an area, each of the plurality of angle areas having light A structure in which a source is arranged can be used.
  • a light guide plate having a region having a different composition inside is particularly preferable.
  • FIG. 8 is a cross-sectional view showing an example of the configuration of a tandem-type surface light source device, in which a light guide plate 51, a light source 52a provided on an end surface thereof, and a plurality of light guides provided on a lower surface thereof are provided. It comprises a light source 52b.
  • the surface 54 on the side of the polarization separation element (outgoing side) is parallel to the surface on the light emission side of the polarization separation element (not shown), and the opposite back side is the side of the polarization separation element.
  • It has a plurality of angle regions that are not parallel to the light emission side surface, and a light source 52b is arranged in each of the plurality of angle regions.
  • the shape of the angle region There is no particular limitation on the shape of the angle region.
  • the shape of the side end portion facing the incident surface of the side is preferably thinner than that of the incident surface.
  • Reference numeral 53 denotes a region having a different composition existing inside the light guide plate 51.
  • the regions having different compositions have a non-uniform structure on the order of microns, and specific examples thereof include the same ones as described in the light scattering light-guiding element.
  • the light guide plate used for the surface light source device in the lighting device of the present invention can be formed of a transparent material such as a norbornene-based polymer, polymethyl methacrylate, polycarbonate, or polystyrene.
  • the light source is not particularly limited, and includes a conventionally known one such as a cold cathode tube, an electroluminescence element (ELD), and a light emitting diode (LED).
  • a cold cathode tube is preferable, and a three-wavelength type is particularly preferable. Cold cathode tubes are preferred.
  • the principal refractive index n x, 1 ⁇ Pi 1 2 (where, n x, n y is 2 refractive index in the direction orthogonal to each other perpendicular to the thickness direction, n y is are those inner minimum orthogonal axial direction refractive index of the direction of the plane, n z is a refractive index in the thickness direction
  • the orthogonal axes of the n x, n y is, n x -.
  • n y is the maximum defined as. relations n z> n x of), n z> n y, it preferably has a retardation element is n ⁇ n y.
  • the main refractive index of the average value of the entire element should satisfy the above relationship.
  • This main refractive index can be measured by an automatic birefringence meter [for example, “KO BR II series” manufactured by Oji Scientific Instruments).
  • n x n y means that the difference in refractive index is usually within 0.0002, preferably 0.000 It is within 1 and more preferably within 0.0005.
  • the phase difference element is essentially no retardation Chillon plane, and R th two [[(n x + n y) Bruno 2] - eta zeta] ChO (although, D is the phase difference element It is preferable that the retardation in the thickness direction defined by) is in the range of 120 to 100 nm.
  • Plane retardation Chillon R e is defined by R e two (n x -n y) xD. Having substantially no in-plane retardation means that the in-plane retardation Re force is usually 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less. .
  • the retardation R th in the thickness direction is appropriately set according to the purpose of use, but in order to function as a phase difference compensating member, a range of 120 ⁇ — 100 nm is preferable. The range of 1550 nm is particularly preferred.
  • the retardation element having such optical characteristics include those including a layer obtained by stretching and orienting a material having at least a negative intrinsic birefringence value (hereinafter, sometimes simply referred to as a negative material). be able to.
  • a material having a negative intrinsic birefringence refers to a material having a property of exhibiting optically negative uniaxiality when molecules are oriented in a uniaxial order.
  • Examples of the material having the negative intrinsic birefringence value include discotic liquid crystal, discotic liquid crystal polymer, aromatic vinyl polymer, polyacrylitol polymer, polymethacrylate polymer, cellulose ester polymer, and the like. (Binary, ternary, etc.) copolymers. These can be used alone or in combination of two or more.
  • At least one selected from an aromatic butyl polymer, a polyacrylonitrile polymer and a polymethyl methacrylate polymer is preferable.
  • an aromatic vinyl polymer is more preferable.
  • the aromatic vinyl polymer is a polymer of an aromatic vinyl monomer or an aromatic vinyl monomer and a copolymer thereof. It means a copolymer with a polymerizable monomer.
  • aromatic vinyl monomers examples include styrene; styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, and ⁇ -methylstyrene; And the like. These may be used alone or in combination of two or more. May be used.
  • Monomers that can be copolymerized with aromatic vinyl monomers include propylene, butene; acrylonitrile; acrylic acid, methacrylic acid, maleic anhydride; acrylic esters, methacrylic esters; maleimide; And biel chloride;
  • aromatic vinyl polymers a copolymer of styrene and / or a styrene derivative and maleic anhydride is preferred from the viewpoint of high heat resistance.
  • the glass transition temperature of the aromatic vinyl polymer used in the present invention is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoint of obtaining excellent optical properties.
  • a film or sheet made of the material having the negative intrinsic birefringence value obtained by uniaxially stretching or unbalanced biaxially stretching the stretching direction is used.
  • At least one layer made of a material having a negative intrinsic birefringence value (hereinafter sometimes referred to as “A layer”) is made of a transparent resin material on at least one side (Hereinafter, sometimes referred to as “B layer”) is preferable.
  • the polymer having the alicyclic structure is as described in the base material of the above-mentioned circularly polarized light separating element.
  • the thickness of the layer (layer B) made of a transparent resin material is not particularly limited, but is usually 15 to 250 ⁇ , preferably 25 to 150 ⁇ .
  • the retardation element used in the present invention has a laminated structure of a layer ( ⁇ layer) made of a material having such a negative intrinsic birefringence value and a layer ( ⁇ layer) made of a transparent resin material.
  • the thickness of the layer is not particularly limited, but is usually 5 to 400 111, preferably 15 to 250 ⁇ m.
  • the retardation element used in the present invention includes a layered structure of a layer (A layer) made of a material having such a negative intrinsic birefringence value and a layer (B layer) made of a transparent material having a luster. If The glass transition temperature T g A of the material having a negative intrinsic birefringence value used for the layer A and the glass transition temperature T g B of the transparent resin material used for the layer B are T g A > T g B. And more preferably T g A — 20 ⁇ T g B.
  • T g B is equal to or greater than T g A , the refractive index anisotropy of the B layer caused by stretching, if the intrinsic birefringence value of the transparent resin material used for the B layer is positive, will be expressed in the A layer.
  • the refractive index anisotropy may be canceled out, and a desired relationship between the in-plane refractive index and the thickness direction refractive index may not be obtained.
  • the retardation element used in the present invention includes a laminated structure of a layer (A layer) made of a material having such a negative intrinsic birefringence value and a layer (B layer) made of a transparent resin material
  • a layer made of a transparent resin material (layer B) and a layer made of a material having a negative intrinsic birefringence (layer A) are provided on both sides.
  • the two layers B have substantially the same thickness.
  • the number of the B layers to be laminated is not limited, but is usually one layer.
  • the material having a negative intrinsic birefringence value and the Z or transparent resin material used in the present invention may include an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, and a dispersant, if necessary. , Chlorine scavenger, flame retardant, crystallization nucleating agent, anti-blocking agent, anti-fog agent, release agent, pigment, organic or inorganic filler, neutralizer, lubricant, decomposer, metal deactivator, contamination
  • Known additives such as inhibitors, antibacterial agents and other resins, and heat-countable elastomers can be added within a range that does not impair the effects of the present invention.
  • the retardation element used in the present invention comprises an adhesive layer (C layer) between a layer (A layer) made of a material having a negative intrinsic birefringence value and a layer (B layer) made of a transparent resin material. May be provided.
  • the adhesive layer (C layer) can be formed of a material having affinity for both the material having a negative intrinsic birefringence value used for the A layer and the transparent resin material used for the B layer.
  • ethylene-acrylate copolymers such as ethylene-methyl acrylate copolymer and ethylene-ethyl acrylate copolymer; ethylene such as ethylene-methyl methacrylate copolymer and ethylene-ethyl methacrylate copolymer Ethylene monomethacrylate copolymer; ethylene-based copolymer such as ethylene-vinyl acetate copolymer and ethylene-styrene copolymer; and other polyolefin copolymers.
  • the thickness of the adhesive layer (C layer) is preferably 1 to 50 / ri, more preferably 5 to 30 ⁇ m.
  • phase difference element for use in the present invention, the case comprising an adhesive layer (C layer), a glass transition temperature or softening point T g c of the adhesive used in layer C, with T g A> T g C Is more preferable, and it is more preferable that T g A— 20 ⁇ T g c .
  • the method for producing the retardation element used in the present invention is not particularly limited, but a preferable production method is that at least one side of a layer (A layer) made of a material having a negative intrinsic birefringence value is formed.
  • Examples of methods for obtaining an unstretched laminate include a coextrusion T-die method, a coextrusion inflation method, a coextrusion molding method such as a coextrusion lamination method, a film lamination method such as a dry lamination method, and a base resin film.
  • a well-known method such as a coating molding method in which a resin solution is coated can be appropriately used.
  • a molding method by co-extrusion is preferable from the viewpoint of production efficiency and the like.
  • the extrusion temperature at the time of co-extrusion may be appropriately selected depending on the material having a negative intrinsic birefringence value, the transparent resin material to be used and the adhesive used, if necessary.
  • the method of stretching the laminate is not particularly limited, and a conventionally known method can be applied.
  • a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, a method of uniaxially stretching in the lateral direction using a tenter, and the like.
  • a simultaneous biaxial stretching method in which the film is stretched in the horizontal direction according to the spread angle of the guide rail, or stretching in the longitudinal direction using the difference in peripheral speed between the rolls, then gripping both ends of the clips
  • Biaxial stretching such as sequential biaxial stretching in which the film is stretched in the transverse direction using a tenter.
  • a biaxial stretching method is preferable.
  • the stretching temperature of the unstretched laminate is not particularly limited.
  • the glass transition temperature T g A of a material having a negative intrinsic birefringence value is as follows: (TgA-10) (° C) to (Tg A +20) (° C), preferably (Tg A — 5)
  • the range of (° C) to (Tg A + 15) (° C) is more preferable.
  • the stretching temperature is usually 1.:! It is up to 30 times, preferably 1.3 to 10 times. If the stretching ratio is out of the above range, the orientation may be insufficient and the refractive index anisotropy, and hence the expression of the retardation may be insufficient, or the laminate may be broken.
  • the lighting device further includes a 1/4 wavelength plate.
  • a broadband 1Z 4 wavelength plate is particularly suitable.
  • the broadband 1/4 wavelength plate is a 1/4 wavelength plate having a phase difference (letter decision) of approximately 1Z4 wavelength over the entire visible light range including a wavelength of 410 to 660 nm.
  • the quarter-wave plate used in the present invention includes at least one layer (D layer) made of a material having a positive intrinsic birefringence value and a layer (E layer) made of a material having a negative intrinsic birefringence value. Having at least one layer having the same orientation of molecular chains in the D layer and the E layer; described in JP-A-5-100114, JP-A-11-231132, etc. A 1 1/24 wave plate and a 1 44 wave plate; broadband retardation film WRF [manufactured by Teijin Limited];
  • a material having a positive intrinsic birefringence value D layer
  • at least one layer made of a material having a negative intrinsic birefringence value E layer
  • a material having a positive intrinsic birefringence constituting the D layer hereinafter, simply referred to as a positive material
  • Materials having a positive intrinsic birefringence value include rod-like liquid crystals, rod-like liquid crystal polymers, polymers having an alicyclic structure, chain-like olefin polymers such as polyethylene-polypropylene, triacetyl cellulose, polyvinyl alcohol, and the like.
  • Examples include polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, polychlorinated biel, and multi-component (binary, ternary, etc.) copolymers thereof. These can be used alone or in combination of two or more.
  • a polymer having an alicyclic structure or a linear olefin-based polymer is preferable, and from the viewpoint of light transmittance characteristics, heat resistance, dimensional stability, photoelastic characteristics, etc. Polymers having an alicyclic structure are more preferred.
  • the polymer having the alicyclic structure is as described for the base material of the circularly polarized light separating element.
  • the glass transition temperature of the polymer having an alicyclic structure may be appropriately selected according to the purpose of use, but is preferably 80 ° C. or higher, more preferably, from the viewpoint of obtaining excellent optical properties.
  • the temperature is in the range of 100 to 250 ° C., and more preferably 120 to 200 ° C.
  • the phase difference This is as described in the element.
  • the method for manufacturing the 1/4 wavelength plate For example, (a) the D layer and the E layer are separately formed and laminated by dry lamination via the adhesive layer (F layer). And a method for obtaining a laminate by forming a film by a co-extrusion method. Among them, a film forming method by a co-extrusion method is preferable because a laminate having a large delamination strength can be obtained and the production efficiency is excellent.
  • the method of obtaining a laminate by coextrusion is as follows. Specifically, a plurality of extruders are used to extrude a material having a positive intrinsic birefringence value and a material having a negative intrinsic birefringence value from a multilayer die. In this way, a film is formed.
  • the thickness of the laminate obtained in this way can be appropriately determined according to the intended use of the obtained laminate.
  • the thickness of the film is preferably from 10 to 300 in, more preferably from 30 to 200 x m, from the viewpoint of obtaining a homogeneous stretched film by a stable stretching treatment.
  • thermoplastic resins or elastomers shall be added to materials having a positive intrinsic birefringence value and materials having a negative intrinsic birefringence value or a material having a negative intrinsic birefringence value within a range not to impair the object of the present invention.
  • the various additives include a plasticizer and a deterioration inhibitor.
  • the plasticizer is added to improve the mechanical properties of the film or to increase the drying speed.
  • the plasticizer used include a phosphoric acid ester and a carboxylic acid ester.
  • the amount of these additives is usually 0 to 20% by weight, preferably 0 to 10% by weight, based on the material having a positive intrinsic birefringence value and / or the material having a negative intrinsic birefringence value. Preferably it is 0 to 5% by weight.
  • the molecular chain of each layer It is sufficient to make the orientation directions of the two equal.
  • the 1Z4 wave plate is a laminate of layers (D layer and E layer) made of materials having different signs of intrinsic birefringence, if the extending directions of the D layer and the E layer match, The two slow axes can inevitably be orthogonal.
  • Such a 1Z4 wavelength plate can be manufactured by stretching the laminate.
  • the method for stretching the laminate is not particularly limited, and a conventionally known method can be employed.
  • the stretching method include a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, and a method of uniaxially stretching in the lateral direction using a tenter.
  • uniaxial stretching in the machine direction is preferred.
  • the stretching ratio of the uniaxial stretching is not particularly limited, but is preferably 1.1 to 3 times, and more preferably 1.2 to 2.2 times.
  • the temperature at which the laminate is stretched is preferably (Tg-30), where Tg is the glass transition temperature of the resin constituting the D layer and the E layer.
  • the temperature range is from (Tg + 60) ° C, more preferably (Tg-10) to (Tg + 50) ° C.
  • the stretching ratio is usually from 1.01 to 30 times, preferably from 1.01 to 10 times, and more preferably from 1.01 to 5 times.
  • the laminate is manufactured by the co-extrusion method described above, the cutting of a stretched film chip and the bonding of the cut chip, which are necessary when manufacturing a conventional 1/4 wavelength plate, are performed. This eliminates the need for such operations, and the so-called roll-to-roll method enables continuous production of long 1/4 wavelength plates.
  • the quarter-wave plate has at least one D layer and at least one E layer, and if the optical layered body has the same molecular chain orientation in the D layer and the E layer, the layer structure is particularly limited. Although not limited, it is preferable to have a layer structure of D layer, E layer / D layer, or E layer, ZD layer, and ZE layer. Further, an F layer (adhesive layer) is further provided between the D layer and the E layer. It can have a three-layer structure of F layer-E layer, or a five-layer structure of D layer-F layer-E layer-F layer-D layer or E layer-F layer-D layer-F layer-E layer.
  • the adhesive constituting the F layer is as described in the phase difference element.
  • the illumination device of the present invention it is preferable to further provide a prism sheet between the surface light source device and the polarization beam splitter.
  • This prism sheet has a function of making the light within a diffusion angle satisfying the relational expression (a) from the surface light source device closer to the parallel light and incident on the polarization separation element. ing.
  • the prism sheet is not particularly limited as long as it has the above function, and can be appropriately selected from prism sheets conventionally used for a surface light source device of a liquid crystal display device and the like.
  • FIG. 9 is a schematic view showing an example of the principle and configuration of the lighting device of the present invention.
  • the lighting device of the present invention is such that white light L 1 within an angle satisfying the relational expression (a) emitted from a surface light source device having a light source A and a reflector B is The light is incident on a prism sheet I 61 provided as desired and is made closer to parallel light, and then is incident on a circularly polarized light separating element 62.
  • the circularly polarized light separating element 62 In the light incident on the circularly polarized light separating element 62, one of the left and right circularly polarized lights is transmitted, and the other circularly polarized light is reflected, reflected by the reflection plate B, and again incident on the circularly polarized light separating element 62. It is separated again into transmitted light and reflected light. By repeating this, the light emitted from the light source A is effectively used, and the effect of improving the luminance can be obtained.
  • the circularly polarized light transmitted through the circularly polarized light separating element 62 is transmitted through a phase difference element 63 provided as required, the phase difference is compensated, and further converted into linearly polarized light by a 14-wave plate 64.
  • the light passes through the polarizing plate 66 through a prism sheet II 65 provided as required.
  • the polarizing plate 66 can be omitted.
  • the phase difference element 63 may be provided on the light transmitting side of the 1/4 wavelength plate 64.
  • the illumination device includes a polarization splitting element and a surface light source device in which an emission angle ⁇ of light emitted to the polarization splitting element satisfies the relational expression (a). Even if the red band edge for line incident light is not extended to 759 nm, when used in a backlight unit of a liquid crystal display device, the viewing angle characteristics are improved, color unevenness due to oblique viewing is suppressed, and power To provide a liquid crystal display device with high brightness You can. In addition, since the reflection band of the polarization separation element can be narrowed, the number of stacked layers can be reduced, and the cost of the polarization separation element can be reduced by generalizing liquid crystal materials, which is advantageous in terms of manufacturing cost. A liquid crystal display device can be provided.
  • the liquid crystal display device of the present invention has the lighting device of the present invention as a backlight unit, and the configuration is not particularly limited. Specifically, a liquid crystal display device having a configuration in which the lighting device is arranged on the back side of the liquid crystal cell via a polarizing plate, and a polarizing plate and a light diffusion sheet are sequentially provided on the front surface side of the liquid crystal cell. Examples can be given.
  • the liquid crystal mode used is not particularly limited.
  • the liquid crystal modes include, for example, TN (£ wistednematic) type, STN (Super Twisted Nematic) type, HAN (hybrid Alig nment nt Nematic) type, VA (Vertical Alig nment), MVA ( Mu 1 tipie Vertical Alignment (IPS) type, IPS (In Plane Switching) type, OCB (Optical Coupled Bend) type, and the like.
  • the polarizing plate is not particularly limited, and a conventionally known polarizing plate can be used. Since the liquid crystal display device of the present invention has the lighting device of the present invention as a backlight unit, the light energy utilization efficiency is improved. In addition, it has high brightness, is hard to cause color unevenness at a viewing angle when viewed from the front and obliquely, and has high brightness.
  • Example 1 a conventionally known polarizing plate can be used. Since the liquid crystal display device of the present invention has the lighting device of the present invention as a backlight unit, the light energy utilization efficiency is improved. In addition, it has high brightness, is hard to cause color unevenness at a viewing angle when viewed from the front and obliquely, and has high brightness. Example
  • the thickness of the laminate was measured using a scanning thickness gauge.
  • the three-dimensional refractive index distribution and the retardation of the retardation element were measured using an automatic birefringence meter [“KOBR A-21” manufactured by Oji Scientific Instruments].
  • An unstretched laminate having a three-layer structure of a polymer layer (thickness 200 / im) / a norbornene-based resin layer (thickness 50 ⁇ ) was obtained.
  • the unstretched laminate was sequentially fed to a zone-heated longitudinal uniaxial stretching apparatus and a tenter stretching (horizontal uniaxial stretching) apparatus and successively biaxially stretched to obtain a retardation element.
  • the stretching temperature was 140 ° C for both longitudinal stretching and transverse stretching, and the stretching ratio was 1.8 times for longitudinal stretching and 1.5 times for transverse stretching.
  • the average thickness of the laminate after stretching (phase difference element) is 120 m
  • n y 1.5731
  • the retardation in the thickness direction R th —300 nm.
  • the norbornene-based polymer and the styrene-maleic anhydride copolymer in a molten state were stored in respective extruders of an extrusion die in which two extruders were combined with an extrusion die.
  • the extrusion channel of the extruder containing the norbornene-based polymer is branched into two, and the norbornene-based polymer extruded from the branched channel is styrene-maleic anhydride extruded from another extruder.
  • the acid copolymer was sandwiched, and a three-layered laminated body was formed inside the extrusion die.
  • a filter is disposed at a communication port of the two extruders to an extrusion die, and the norbornene-based polymer and the styrene-maleic anhydride copolymer are extruded into the extrusion die after passing through the filter. I did it.
  • the extrusion temperature was 260 ° C.
  • the thickness unevenness of the three-layered laminate extruded from the extrusion die was measured using a scanning thickness gauge. The measurement was performed by continuously scanning in the longitudinal direction of the laminate. The obtained laminate had an average thickness of 120 ⁇ , and the thickness unevenness was 2.5% with respect to the average thickness.
  • the ratio of the retardation to the wavelength at wavelength ⁇ 450 ⁇ , 550 nm and 650 nm was 0.235, 0.250 and 0.232, respectively.
  • a 14-wave plate was obtained.
  • Circularly polarized light separating element I 13 layers
  • An optically isotropic norbornene-based polymer film having a thickness of 100 / xm, a width of 68 Omm, and a length of 500 m was used as a substrate.
  • an alignment film coating solution consisting of 10 parts by weight of polyvinyl alcohol and 371 parts by weight of water is continuously applied to one side of the substrate and dried to form an alignment film having a thickness of 1 ⁇ . Formed.
  • a rubbing treatment was continuously performed on the alignment film in a direction parallel to the longitudinal direction of the substrate.
  • a cholesteric liquid crystal layer coating solution 1 was prepared, which contained 0.1 part by weight, 7.04 parts by weight of a chiralizing agent 1 represented by the following formula (3), and 240.8 parts by weight of methylethyl ketone.
  • the coating liquid 2 to the coating liquid 1 were prepared in the same manner as the coating liquid 1 except that the amount of the chiralizing agent represented by the formula (3) was changed as shown in Table 1. 3 was prepared. Table 1
  • liquid crystal layers are sequentially laminated on the alignment film by using the coating liquids 1 to 13 shown in Table 1 by the following method. Then, a circularly polarized light separating element I (13 layers) consisting of 13 liquid crystal layers each having a thickness of 5.0 m was produced. The red band edge is 800 nm.
  • the liquid crystal layer coating solution 1 is first coated with a bar coater, dried and heated (alignment ripened) on the alignment film, and then irradiated with ultraviolet light to form a 5.0 ⁇ thick cholesteric liquid crystal layer. Was formed. Next, the same operation was sequentially performed using liquid crystal layer coating liquids 2 to 13 to form 13 liquid crystal layers.
  • a louver viewing angle control member
  • a general-purpose light guide plate in which a cold cathode tube is arranged on the incident end face side and a light reflection sheet is provided on the back side. : ⁇ 65 °
  • the circularly-polarized light separating element I 13 layers obtained in Production Example 3 and the broadband 1/4 wavelength plate obtained in Production Example 2 are sequentially arranged on the emission surface side of the light guide plate.
  • a polarizing plate, a viewing angle widening film [Fuji Photographic Film Co., Ltd., "WV film”], a transmissive TN liquid crystal display element, and a polarizing plate are sequentially disposed on the side of the 14-wavelength plate. Produced.
  • Example 1 a circularly polarized light separating element II (11 layers) was used as the circularly polarized light separating element instead of the circularly polarized light separating element I (11 layers), and the louver was adjusted to adjust the emission angle of the light emitted from the light guide plate.
  • a liquid crystal display device was manufactured in the same manner as in Example 1 except that the angle was set to ⁇ 55 °. When this liquid crystal display device was set to a white display mode and observed from the light emitting surface side, the brightness was 3, and the color field was The corners were good and there was no coloring over the entire display surface.
  • Example 2 a circularly polarized light separating element III (9 layers) was used instead of the circularly polarized light separating element II (11 layers) as a circularly polarized light separating element, and the louvers were adjusted to adjust the outgoing angle of the outgoing light of the light guide plate ⁇
  • a liquid crystal display device was manufactured in the same manner as in Example 2 except that the angle was set to 35 °. When this liquid crystal display device was observed from the light-emitting surface side in a white display mode, the brightness was 3, the color viewing angle was good, and there was no coloring over the entire display surface.
  • Example 4
  • Example 1 in place of the combination of the cold cathode tube, the general-purpose light guide plate, and the louver, the surface light source device shown in FIG. 7 disclosed in Japanese Patent Application Laid-Open No. 7-270708 (In the same manner as in Example 1 except that the emission angle of the emitted light: ⁇ 30 °) was used, and the circularly polarized light separating element III (9 layers) was used instead of the circularly polarized light separating element I (13 layers). Thus, a liquid crystal display device was manufactured.
  • Example 4 in the same manner as in Example 4, except that the retardation element obtained in Production Example 1 was arranged between the circularly polarized light separating element III (9 layers) and the broadband 1Z 4 wavelength plate, A liquid crystal display device was manufactured.
  • a liquid crystal display device was manufactured in the same manner as in Example 5 except that the prism sheet I was disposed between the surface light source device shown in FIG. 7 and the circularly polarized light separating element III (9 layers). did.
  • a liquid crystal display device was fabricated in the same manner as in Example 1 except that no louver was provided on the emission surface side of the general-purpose light guide plate (the emission angle of the emitted light: ⁇ 90 °). Made.
  • this liquid crystal display was set in a white display mode and observed from the light-emitting surface side, the brightness was 3 and the color viewing angle was colored red.
  • the lighting device of the present invention is advantageous in terms of cost, is particularly suitably used as a backlight unit of a liquid crystal display device, etc., has a high light energy use efficiency, and can be viewed obliquely even from the front. It is possible to provide a high-brightness liquid crystal display device in which color unevenness at a viewing angle hardly occurs even when viewed.

Abstract

An illuminator suitably employed as the back light of a liquid crystal display in which unevenness in color is retarded at any view angle even when the liquid crystal display is viewed from the front or from an oblique direction, and a high luminance liquid crystal display can be realized, and a liquid crystal display comprising the illuminator. The illuminator includes an illuminator having a polarizing/separating element for separating an incident light into a transmission light and a reflection light different in polarization state, and a planar light source for supplying light to the polarizing/separating element. Outgoing angle θ of light from the planar light source satisfies a relational expression (a); sinθ≤1.5×[1-(630/A)2]1/2 (a) where A (nm) is the red band edge for a normal incident light of the polarizing/separating element.

Description

明細書 照明装置及び液晶表示装置 技術分野  Description Lighting device and liquid crystal display device
本発明は、 照明装置及び液晶表示装置に関する。 さらに詳しくは、 本発明は、 特 に液晶表示装置のバックライ トュニットなどとして好適に用いられる照明装置、 及 び該照明装置を備えた液晶表示装置に関するものである。 背景技術  The present invention relates to a lighting device and a liquid crystal display device. More specifically, the present invention relates to a lighting device particularly preferably used as a backlight unit of a liquid crystal display device, and a liquid crystal display device provided with the lighting device. Background art
近年、 C R T表示装置に比べて、 小型でコンパク 卜な液晶表示装置を備えた様々 な機器が普及してきている。 例えばパーソナルコンピュータあるいはビデオ力メラ 等民生用機器を始めとして各種機器の小型化に対する市場ニーズは高く、 具体的に は、 ラップトップ型コンピュータあるいは液晶モニタ付カメラと呼ばれる小型化さ れた携帯可能な機器が広く普及してきた。 これらの機器において、 液晶表示装置を 具備することは必須となっており、 あわせてカラー表示化、 高輝度化など高機能高 性能化への要求は強い。  In recent years, various devices equipped with a compact and compact liquid crystal display device as compared to a CRT display device have become widespread. For example, there is a high market need for miniaturization of various types of equipment such as personal computers and video cameras, and specifically, miniaturized portable equipment called laptop computers or cameras with LCD monitors. Has become widespread. It is essential to equip these devices with a liquid crystal display, and at the same time, there is a strong demand for high performance and high performance such as color display and high brightness.
この液晶表示装置は、 液晶層を背面から照らして発光させるバックライ ト方式が 普及し、 液晶層の下面側にバックライトュニットが装備されている。 バックライト ユニットは、 一般に、 冷陰極管などの光源と、 入射端面が光源の近傍に位置するよ うに配置した導光板と、 導光板の出射側の面 (表面側) に配設された光学シートと 、 導光板の光学シートとは反対側 (裏面側) に配設した光反射シートとで構成され ている。 そして、 導光板の光反射シート側の面又は出射側の面には、 均一な拡散光 を得るために、 所定形状の微細パターンが形成されている。 導光板の表面側に配設 された光学シートとしては、 光拡散シートや、 プリズムシートなどを挙げることが できる。  In this liquid crystal display device, a backlight system in which a liquid crystal layer is illuminated from the back surface to emit light has become widespread, and a backlight unit is provided on a lower surface side of the liquid crystal layer. The backlight unit generally includes a light source such as a cold-cathode tube, a light guide plate arranged so that an incident end face is located near the light source, and an optical sheet provided on an emission side surface (front surface side) of the light guide plate. And a light reflection sheet disposed on the opposite side (back side) of the light guide plate from the optical sheet. Then, a fine pattern of a predetermined shape is formed on the surface on the light reflection sheet side or the surface on the emission side of the light guide plate in order to obtain uniform diffused light. Examples of the optical sheet provided on the surface side of the light guide plate include a light diffusion sheet and a prism sheet.
しかしながち、 このような従来の液晶表示装置においては、 バックライ トュニッ 卜から出射される光エネルギーの利用効率が低く、 該光エネルギーの利用効率を高 めることは、 重要な技術的課題となっていた。 バックライトユニットからの出射光は非偏光である。 一方、 液晶表示装置の入射 出射面には偏光板が設けられており、 この偏光板は直線偏光し力透過させず、 そ の他の光は、 該偏光板内に吸収されてしまう。 したがって、 直線偏光として透過す る光は、 該偏光板への入射光の 5 0 %以下であり、 このことが、 液晶表示装置の高 輝度化や低消費電力化を困難とする一因となっていた。 However, in such a conventional liquid crystal display device, the utilization efficiency of light energy emitted from the backlight unit is low, and increasing the utilization efficiency of the light energy is an important technical problem. I was The light emitted from the backlight unit is unpolarized light. On the other hand, a polarizing plate is provided on the entrance and exit surfaces of the liquid crystal display device. The polarizing plate is linearly polarized and does not transmit power, and other light is absorbed in the polarizing plate. Therefore, the light transmitted as linearly polarized light is 50% or less of the light incident on the polarizing plate, which makes it difficult to increase the brightness and reduce the power consumption of the liquid crystal display device. I was
したがって、 バックライ トュニッ卜からの出射光を直線偏光にするか、 あるいは 偏光板に吸収される光を再利用することができれば、 全体としてバックライ トュニ ットから出射される光エネルギーの利用効率を高めることができる。  Therefore, if the light emitted from the backlight unit can be converted to linearly polarized light, or if the light absorbed by the polarizing plate can be reused, the efficiency of using the light energy emitted from the backlight unit as a whole can be improved. Can be.
後者の方法として、 光エネルギーの利用効率を高めるために、 各種の輝度向上部 材が開発され、 実用化されている。 例えば低屈折率フィルムと高屈折率フィルムと を交互に積層した多層積層フィルム (例えば、 特許文献 1参照) や、 コレステリッ ク液晶層を用いた円偏光分離膜 (例えば、 特許文献 2、 特許文献 3参照) などが知 られている。  As the latter method, various kinds of brightness enhancement members have been developed and put to practical use in order to increase the efficiency of using light energy. For example, a multilayer laminated film in which a low-refractive-index film and a high-refractive-index film are alternately laminated (for example, see Patent Document 1), or a circularly polarized light separating film using a cholesteric liquid crystal layer (for example, Patent Documents 2 and 3) See also).
前記多層積層フィルムは、 所定偏光軸の直線偏光を透過して、 他の光は反射する 特性を有し、 その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより 、 偏光板による吸収を抑制しつつ、 効率よく透過させることができる。 しかしなが ら、 該多層積層フィルムは、 屈折率の異なる 2種のフィルムを交互に約 8 0 0層積 層させた積層数の極めて多い積層構造を有しており、 その製造が複雑であって、 コ スト高になるという欠点を有している。  The multilayer laminated film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, and absorbing the transmitted light as it is by aligning the polarization axis with the polarization plate as it is to be absorbed by the polarization plate. , And can be efficiently transmitted. However, the multilayer laminated film has an extremely large laminated structure in which about 800 layers of two kinds of films having different refractive indexes are alternately laminated, and the production thereof is complicated. This has the disadvantage that the cost is high.
前記円偏光分離膜は、 棒状液晶分子あるいは側鎖型液晶性高分子の液晶性基が層 法線と平行な螺旋軸を回転軸として厚み方向に捩れた構造のコレステリック液晶層 を有し、 その選択反射特性を利用して、 左右回転の円偏光を透過光と反射光に分離 するものである。 通常の液晶を用いてこの選択反射層を形成した場合、 選択反射の 波長域は数十 n m程度であり、 輝度向上部材の目的にはこのまま適用することはで きない。 したがって、 可視光全域に渡って円偏光分離を行うために反射帯域を可視 域において広帯域化する必要がある。  The circularly polarized light separating film has a cholesteric liquid crystal layer having a structure in which a liquid crystal group of a rod-like liquid crystal molecule or a side chain type liquid crystalline polymer is twisted in a thickness direction with a helical axis parallel to a layer normal as a rotation axis. It uses the selective reflection characteristics to separate left-right rotating circularly polarized light into transmitted light and reflected light. When this selective reflection layer is formed using ordinary liquid crystal, the wavelength range of the selective reflection is about several tens of nm, and it cannot be applied as it is for the purpose of the luminance improving member. Therefore, it is necessary to widen the reflection band in the visible region in order to perform circularly polarized light separation over the entire visible light region.
この広帯域化に対して、 異なる反射帯域を有する液晶層を複数設ける方法、 コレ ステリック液晶層の螺旋ピッチを厚み方向に徐々に変化させる方法などが知られて いる。 しかしながら、 いずれの方法も生産性' コストに関しては課題を残している また、 コレステリック液晶層を用いた円偏光分離素子の場合、 層法線に平行な方 向に入射した光に対しては何ら作用すること無く表示特性に影響を与える事はない 。 し力 し、 斜めに入射した光に対してはコレステリック液晶層自体の作用により、 位相差が発生するために表示特性が悪ィヒし、 特に斜め方向で着色するという問題が あった。 このような問題に対処するために、 例えば法線入射光に対する選択反射帯 域を赤外域まで拡張した反射性偏光子が開示されている (例えば、 特許文献 4参照 ) 。 しかしながら、 このような赤外域まで拡張した反射性偏光子では、 層の厚みや 積層数を増やす必要があり、 材料費が高くなるなどの問題がある。 To increase the bandwidth, a method of providing a plurality of liquid crystal layers having different reflection bands and a method of gradually changing the helical pitch of the cholesteric liquid crystal layer in the thickness direction are known. However, both methods still have challenges in terms of productivity 'cost In the case of a circularly polarized light separating element using a cholesteric liquid crystal layer, there is no effect on the light incident in a direction parallel to the layer normal without affecting the display characteristics. However, the cholesteric liquid crystal layer itself produces a phase difference with respect to the light obliquely incident, thereby deteriorating the display characteristics. In particular, there is a problem that the light is colored in an oblique direction. In order to cope with such a problem, for example, a reflective polarizer in which a selective reflection band for normal incident light is extended to an infrared region is disclosed (for example, see Patent Document 4). However, in such a reflective polarizer extended to the infrared region, it is necessary to increase the layer thickness and the number of layers, and there is a problem that the material cost is increased.
他には、 液晶表示装置においては、 液晶の配向に起因する複屈折性や旋光性など により、 その表示コントラスト及び表示色の視野角特性は、 C R T表示装置に比べ て劣る問題がある。 このため、 例えば位相差板を組み込むことによって視野角を改 善することが提案されており (例えば、 特許文献 4参照) 、 さらには、 液晶の配向 を制御することで、 液晶の複屈折性による悪影響を低減することが試みられている 力 C R T表示装置の表示特性に比べると、 まだ十分ではない。  In addition, the liquid crystal display device has a problem in that the display contrast and the viewing angle characteristics of display colors are inferior to those of the CRT display device due to birefringence and optical rotation caused by the alignment of the liquid crystal. For this reason, it has been proposed to improve the viewing angle by incorporating, for example, a retardation plate (see, for example, Patent Document 4). Further, by controlling the orientation of the liquid crystal, it is possible to improve the birefringence of the liquid crystal. Attempts have been made to reduce the adverse effects. Compared to the display characteristics of CRT displays, they are not yet sufficient.
また、 液晶表示装置において、 表示品質が低下する原因の一つとして、 液晶層に 入射する光が平行光でなく、 広がりをもった拡散光であることが挙げられる。 液晶 層に垂直方向以外の種々の角度で入射した光は、 着色による表示品質の低下をもた らす原因となる。 したがって、 液晶層に平行光に近い光を入射できれば、 液晶の複 屈折性に起因する表示特性の低下を抑制することができ、 表示特性を向上させるこ とができる。  Further, in the liquid crystal display device, one of the causes of deterioration in display quality is that light incident on the liquid crystal layer is not parallel light but diffuse light having a spread. Light incident on the liquid crystal layer at various angles other than the vertical direction causes a reduction in display quality due to coloring. Therefore, if light close to parallel light can be incident on the liquid crystal layer, a decrease in display characteristics due to birefringence of the liquid crystal can be suppressed, and display characteristics can be improved.
本発明は、 このような事情のもとで、 特に液晶表示装置のバックライトユニット などとして好適に用いられ、 光エネルギーの利用効率が高い上、 正面から見た場合 でも、 斜め方向から見た場合でも視野角での色むらが生じにくく、 かつ高輝度の液 晶表示装置を与えることができ、 しかも製造コス ト的に有利な照明装置、 及び該照 明装置を備えた上記の優れた機能を有する液晶表示装置を提供することを目的とし てなされたものである。  Under such circumstances, the present invention is suitably used particularly as a backlight unit of a liquid crystal display device, etc., and has a high light energy utilization efficiency, and can be viewed from an oblique direction even when viewed from the front. However, it is possible to provide a high-brightness liquid crystal display device in which color unevenness does not easily occur at a viewing angle, and furthermore, an illuminating device which is advantageous in terms of manufacturing cost, and the above-described excellent functions provided with the illuminating device. The purpose of the present invention is to provide a liquid crystal display device having the same.
[特許文献 1 ] 特表平 9一 5 0 6 8 3 7号公報  [Patent Document 1] Japanese Patent Application Laid-Open No. Hei 9-191
[特許文献 2 ] 特開平 6— 2 3 5 9 0 0号公報 [特許文献 3] 特開平 8— 27 1 73 1号公報 [Patent Document 2] Japanese Patent Application Laid-Open No. Hei 6-230590 [Patent Document 3] Japanese Patent Application Laid-Open No. 8-271731
[特許文献 4 ] 特表 2000— 5 1 5 9 94号公報  [Patent Document 4] Japanese Translation of PCT International Publication No. 2000-51 59 94
発明の開示 Disclosure of the invention
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 入射光を偏光 状態の異なる透過光と反射光に分離する偏光分離素子、 特に法線入射光に対する選 択反射帯域の長波長側臨界値が特定の範囲にある広帯域偏光分離素子と、 該偏光分 離素子に対して出射する光の拡散角度が特定の範囲内である面光源装置とを少なく とも有する照明装置により、 その目的を達成し得ることを見出し、 この知見に基づ いて本発明を完成するに至った。  The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a polarization separation element that separates incident light into transmitted light and reflected light having different polarization states, particularly a selective reflection band for normal incident light. An illumination device having at least a broadband polarization separation element having a long wavelength side critical value within a specific range, and a surface light source device having a diffusion angle of light emitted to the polarization separation element within a specific range, They have found that the object can be achieved, and have completed the present invention based on this finding.
すなわち、 本発明は、  That is, the present invention
(1) 少なくとも入射光を偏光状態の異なる透過光と反射光に分離する偏光分離素 子、 及び偏光分離素子に対して光を供給する面光源装置を有する照明装置であって (1) A lighting device having at least a polarization separation element that separates incident light into transmitted light and reflected light having different polarization states, and a surface light source device that supplies light to the polarization separation element.
、 前記偏光分離素子の法線入射光に対する赤色バンドエッジを A (nm) とした場 合に、 面光源装置の光の出射角度 0が、 関係式 (a) When the red band edge of the polarized light separating element with respect to the normal incident light is A (nm), the light emission angle 0 of the surface light source device is expressed by the relational expression (a).
s ι η θ≤ 1.5 Χ Cl-(630/A)2] 1/2 (a) s ι η θ≤ 1.5 Χ Cl- (630 / A) 2 ] 1/2 (a)
を満たす範囲内であることを特徴とする照明装置、 A lighting device characterized by being within a range satisfying
( 2 ) 偏光分離素子の赤色バンドエッジが、 法線入射光に対して 630 n m以上 7 5 9 n m未満である第 1項記載の照明装置、  (2) The illumination device according to (1), wherein the red band edge of the polarization separation element is at least 630 nm and less than 759 nm for normal incident light.
(3) 偏光分離素子が、 広帯域偏光分離素子である第 1項又は第 2項記載の照明装 置、  (3) The illumination device according to paragraph 1 or 2, wherein the polarization separation element is a broadband polarization separation element.
(4) 面光源装置が、 導光板と、 該導光板の端面側に設けられた光源及び下面側に 設けられた複数の光源から少なくとも構成された装置であって、 前記導光板におい て、 偏光分離素子側表面が、 偏光分離素子の光出射側表面と平行であり、 これと対 向する裏面側が、 該偏光分離素子の光出射側表面とは平行でない複数の角度領域を 有すると共に、 内部に組成の異なる領域を有し、 かつ前記複数の角度領域それぞれ に光源を配置してなる第 1項ないし第 3項のレ、ずれかに記載の照明装置、  (4) The surface light source device is a device comprising at least a light guide plate, a light source provided on an end surface side of the light guide plate, and a plurality of light sources provided on a lower surface side, wherein the light guide plate has a polarized light. The surface on the separation element side is parallel to the light emission side surface of the polarization separation element, and the opposite back side has a plurality of angle regions that are not parallel to the light emission side surface of the polarization separation element, and has inside thereof. The lighting device according to any one of claims 1 to 3, wherein the lighting device has regions having different compositions, and a light source is arranged in each of the plurality of angle regions.
(5) 主屈折率 nx、 ny及び nz (ただし、 nx、 nyは、 厚み方向に垂直なたがいに 直交する 2方向の屈折率であり、 nzは厚み方向の屈折率である。 なお、 nx、 ny の直交軸は、 nx— nyが最大となるように定められる。 ) の関係が nz>nx、 nz> ny、 nx^nyである位相差素子を有する第 1項ないし第 4項のいずれかに記載の照 明装置、 (5) main refractive indices n x, n y and n z (however, n x, n y is 2 refractive index in the direction orthogonal to each other perpendicular to the thickness direction, n z is a refractive index in a thickness direction Note that n x , n y Are defined such that n x — n y is maximized. The lighting device according to any one of Items 1 to 4, including a phase difference element in which the relationship of nz > nx , nz > ny , and nx ^ ny is satisfied .
(6) 位相差素子が、 面内のレターデーシヨンを実質的に有さず、 かつ  (6) the retardation element has substantially no in-plane retardation, and
R t h= 〔[(nx+ny)/2]— nj XD R th = [[(n x + n y) / 2] - nj XD
(ただし、 Dは位相差素子の厚みである。 )  (However, D is the thickness of the retardation element.)
で定義される厚み方向のレターデーションがー 20〜一 1000 nmの範囲のもの である第 5項記載の照明装置、 The illumination device according to claim 5, wherein the retardation in the thickness direction defined by the above is in the range of -20 to 1000 nm.
(7) 1/4波長板を有する第 1項ないし第 6項のいずれかに記載の照明装置、 (8) 1ノ4波長板が、 広帯域 1ノ 4波長板である第 7項記載の照明装置、 (7) The lighting device according to any one of (1) to (6), further comprising a quarter-wave plate, (8) the lighting according to paragraph 7, wherein the one-four-wave plate is a broadband one-four-wave plate. apparatus,
(9) 面光源装置と偏光分離素子との間に、 プリズムシートを有する第 1項ないし 第 8項のいずれかに記載の照明装置、 及び (9) The illumination device according to any one of (1) to (8), further including a prism sheet between the surface light source device and the polarization beam splitter, and
(10) 第 1項ないし第 9項のいずれかに記載の照明装置を用いたことを特徴とす る液晶表示装置、  (10) A liquid crystal display device characterized by using the lighting device according to any of paragraphs 1 to 9;
を提供するものである。 図面の簡単な説明 Is to provide. Brief Description of Drawings
F i g. 1は一般的なコレステリック相を示す液晶層の模式図であり、 F i g. 2は一般的なコレステリック相を示す液晶層の選択反射の模式図であり、 F i g. 3は選択反射の視野角依存性を説明するためのグラフであり、 F i g. 4は螺旋軸 が傾斜したコレステリック液晶層を示す模式図であり、 F i g. 5は螺旋軸を傾斜 させる方法の 1例を示す説明図であり、 F i g. 6は光路変換層の両側にコレステ リック液晶層を配置した場合の原理を示す説明図であり、 F i g . 7は本発明で用 いられる面光源装置の 1例の要部斜視図であり、 F i g. 8は本発明で用いられる タンデム型面光源装置の 1例の構成を示す断面図であり、 F i g. 9は本発明の照 明装置の原理、 構成の 1例を示す概略図である。  FIG. 1 is a schematic diagram of a liquid crystal layer showing a general cholesteric phase, FIG. 2 is a schematic diagram of selective reflection of a liquid crystal layer showing a general cholesteric phase, and FIG. FIG. 4 is a graph for explaining the viewing angle dependence of selective reflection, FIG. 4 is a schematic view showing a cholesteric liquid crystal layer having a spiral helical axis, and FIG. 5 is a method of tilting a helical axis. FIG. 6 is an explanatory view showing the principle when cholesteric liquid crystal layers are arranged on both sides of the optical path conversion layer, and FIG. 7 is used in the present invention. FIG. 8 is a perspective view of a main part of an example of a surface light source device, FIG. 8 is a cross-sectional view showing a configuration of an example of a tandem-type surface light source device used in the present invention, and FIG. FIG. 2 is a schematic diagram showing an example of the principle and configuration of the lighting device of FIG.
図中、 符号 1は基材の配向処理面、 2は液晶分子、 3は層法線、 4は螺旋軸、 5 は斜め入射光に対する透過スぺク トル、 6は平行入射光に対する透過スぺク トル、 7は四角錐状の凹凸が設けられた基材、 8、 9はコレステリック液晶層、 10は拡 散シート、 L aは円偏光、 L a #は拡散光、 3 1は光散乱導光素子、 3 2は入射面 、 3 3は光取出面、 3 4は裏面、 3 5は反射手段、 3 6は末端面、 4 0は楔形出射 方向特性調整素子、 4 1、 4 2は両端面、 4 3は光取入面、 4 4は光出射面、 5 1 は導光板、 5 2 a、 5 2 bは光源、 5 3は組成の異なる領域、 5 4は出射側表面、 6 1はプリズムシート I、 6 2は円偏光分離素子、 6 3は位相差素子、 6 4は 1 / 4波長板、 6 5はプリズムシ一ト II、 6 6は偏光板、 Aは光源、 Bは反射板、 A R は空気層である。 発明を実施するための最良の形態 In the figure, reference numeral 1 denotes an alignment-treated surface of a substrate, 2 denotes liquid crystal molecules, 3 denotes a layer normal, 4 denotes a helical axis, 5 denotes a transmission spectrum for oblique incident light, and 6 denotes a transmission spectrum for parallel incident light. Vector, base material with square pyramid irregularities, cholesteric liquid crystal layer 8, 9 Scattering sheet, La is circularly polarized light, La # is diffused light, 31 is a light-scattering light-guiding element, 32 is an incident surface, 33 is a light extraction surface, 34 is a back surface, 35 is a reflection means, 35 6 is a terminal surface, 40 is a wedge-shaped emission direction adjusting element, 41 and 42 are both end surfaces, 43 is a light intake surface, 44 is a light emission surface, 51 is a light guide plate, 52 a and 5 2 b is a light source, 5 3 is a region with different composition, 5 4 is an emission side surface, 6 1 is a prism sheet I, 6 2 is a circularly polarized light separating element, 6 3 is a phase difference element, and 6 4 is a 1/4 wavelength plate , 65 is a prism sheet II, 66 is a polarizing plate, A is a light source, B is a reflector, and AR is an air layer. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の照明装置は、 偏光分離素子と、 面光源装置とを少なくとも有するもので める。  The illumination device of the present invention may include at least a polarization separation element and a surface light source device.
前記偏光分離素子は、 入射光を偏光状態の異なる透過光と反射光に分離し得る素 子であればよく、 特に制限されず、 直線偏光分離素子、 円偏光分離素子のいずれで あってもよいが、 特に広帯域偏光分離素子が好ましい。 ここでいう広帯域偏光分離 素子とは、 波長 4 1 0〜4 7 0 n m、 波長 5 2 0〜5 8 0 n m、 波長 6 0 0〜6 6 0 n mのいずれの波長域の光についても直線偏光分離機能又は円偏光分離機能を有 する素子をいう。 ここで、 直線偏光分離素子としては、 例えば特表平 9— 5 0 6 8 3 7号公報、 特表平 1 0— 5 1 1 3 2 2号公報などに記載されている多層積層フィ ルムを用いることができる。 この多層積層フィルムは、 所定偏光軸の直線偏光を透 過して、 他の光は反射する特性を有し、 その透過光をそのまま偏光板に偏光軸を揃 えて入射させることにより、 偏光板による吸収を抑制しつつ、 効率よく透過させる ことができる。 このような多層積層フィルムとしては、 例えば 3 M社製の多層積層 フィルム [商品名 「D _ B E F ] ) が挙げられる。  The polarization separation element may be any element that can separate incident light into transmitted light and reflected light having different polarization states, and is not particularly limited, and may be any of a linear polarization separation element and a circular polarization separation element. However, a broadband polarization separation element is particularly preferable. The broadband polarization separation element referred to here means linearly polarized light in any of the wavelength ranges from 410 to 470 nm, from 52 to 580 nm, and from 600 to 660 nm. An element having a separation function or a circularly polarized light separation function. Here, as the linearly polarized light separating element, for example, a multilayer laminated film described in Japanese Patent Application Laid-Open No. 9-50683, Japanese Patent Application Laid-Open No. 10-511032, etc. may be used. Can be used. This multilayer laminated film has a property of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, and the transmitted light is directly incident on the polarizing plate with the polarization axis aligned. It is possible to transmit light efficiently while suppressing absorption. As such a multilayer laminated film, for example, a multilayer laminated film [trade name “D_BEF]) manufactured by 3M Company may be mentioned.
一方、 円偏光分離素子としては、 基材上に、 少なくとも液晶層を形成したものを 用いることができる。  On the other hand, as the circularly polarized light separating element, an element having at least a liquid crystal layer formed on a substrate can be used.
前記基材は、 光学的に透明な基材であれば特に限定する必要はないが、 前記の液 晶層を効率よく製造するためには長尺のフィルム状であることが好ましい。 また、 偏光状態の不要な変化を避けるために、 光学的に等方性のフィルムであることがよ り好ましい。 また、 材料コス トや薄型'軽量化の観点からは、 厚みが 5〜3 0 0 μ mであることが好ましく、 3 0〜 1 0 0 t mであることがより好ましい。 このよう な透明基材としては、 1 mm厚で全光線透過率が 8 0 %以上のものであればよく特 に制限されず、 例えば、 脂環式構造を有する重合体、 ポリエチレンやポリプロピレ ンなどの鎖状ォレフィン系重合体、 トリァセチルセルロース、 ポリビニルアルコー ル、 ポリイミ ド、 ポリアリレート、 ポリエステル、 ポリカーボネ一ト、 ポリスルホ ン、 ポリエーテルスルホン、 変性アクリル系ポリマー、 エポキシ系樹脂などの合成 樹脂からなる単層又は積層のフィルム、 ガラス板などが挙げられる。 これらの中で も、 脂環式構造を有する重合体又は鎖状ォレフィン系重合体が好ましく、 透明性、 低吸湿性、 寸法安定性、 軽量性などの観点から、 脂環式構造を有する重合体が特に 好ましい。 The substrate is not particularly limited as long as it is an optically transparent substrate, but is preferably in the form of a long film in order to efficiently produce the liquid crystal layer. Further, in order to avoid unnecessary change of the polarization state, it is more preferable that the film is an optically isotropic film. In addition, from the viewpoint of material cost and thinner and lighter weight, the thickness is 5 to 300 μm. m, more preferably 30 to 100 tm. Such a transparent substrate is not particularly limited as long as it has a thickness of 1 mm and a total light transmittance of 80% or more, and examples thereof include a polymer having an alicyclic structure, polyethylene, and polypropylene. A simple resin consisting of a synthetic resin such as linear olefin polymer, triacetyl cellulose, polyvinyl alcohol, polyimide, polyarylate, polyester, polycarbonate, polysulfone, polyether sulfone, modified acrylic polymer, epoxy resin, etc. Examples include layered or laminated films and glass plates. Among these, a polymer having an alicyclic structure or a chain olefin polymer is preferable, and a polymer having an alicyclic structure is preferred from the viewpoints of transparency, low moisture absorption, dimensional stability, light weight, and the like. Is particularly preferred.
脂環式構造を有する重合体は、 重合体の繰り返し単位中に脂環式構造を有するも のであり、 主鎖中に脂環式構造を有する重合体及び側鎖に脂環式構造を有する重合 体のいずれも用いることができる。 脂環式構造としては、 例えば、 シクロアルカン 構造、 シク口アルケン構造などが挙げられるが、 熱安定性などの観点からシク口ァ ルカン構造が好ましい。 脂環式構造を構成する炭素数に特に制限はないが、 通常 4 〜 3 0個、 好ましくは 5〜 2 0個、 より好ましくは 5〜 1 5個である。  A polymer having an alicyclic structure is a polymer having an alicyclic structure in the repeating unit of the polymer, and a polymer having an alicyclic structure in the main chain and a polymer having an alicyclic structure in the side chain. Any of the bodies can be used. Examples of the alicyclic structure include a cycloalkane structure and a cycloalkene structure, and a cycloalkane structure is preferred from the viewpoint of thermal stability and the like. The number of carbon atoms constituting the alicyclic structure is not particularly limited, but is usually 4 to 30, preferably 5 to 20, and more preferably 5 to 15.
脂環式構造を有する重合体中の脂環式構造を有する繰り返し単位の割合は、 通常 5 0重量%以上、 好ましくは 7 0重量%以上、 より好ましくは 9 0重量%以上であ る。 脂環式構造を有する繰り返し単位が過度に少ないと、 耐熱性が低下するおそれ がある。  The proportion of the repeating unit having an alicyclic structure in the polymer having an alicyclic structure is usually at least 50% by weight, preferably at least 70% by weight, more preferably at least 90% by weight. If the number of repeating units having an alicyclic structure is too small, heat resistance may be reduced.
脂環式構造を有する重合体としては、 (1 ) ノルボルネン系重合体、 (2 ) 単環 の環状ォレフィン系重合体、 (3 ) 環状共役ジェン系重合体、 (4 ) ビニル脂環式 炭化水素重合体、 及びこれらの水素添加物などが挙げられる。 これらの中でも、 透 明性や成形性の観点から、 ノルボルネン系重合体がより好ましい。  Examples of the polymer having an alicyclic structure include (1) a norbornene-based polymer, (2) a monocyclic cyclic olefin-based polymer, (3) a cyclic conjugated gen-based polymer, and (4) a vinyl alicyclic hydrocarbon. Polymers, and hydrogenated products thereof, and the like. Among these, a norbornene-based polymer is more preferable from the viewpoint of transparency and moldability.
ノルボルネン系重合体としては、 具体的にはノルボルネン系モノマーの開環重合 体、 ノルボルネン系モノマーと開環共重合可能なその他のモノマーとの開環共重合 体、 及びそれらの水素添加物、 ノルボルネン系モノマーの付加重合体、 ノルボルネ ン系モノマーと共重合可能なその他のモノマーとの付加型共重合体などが挙げられ る。 これらの中でも、 耐熱性及び透明性の観点から、 ノルボルネン系モノマーの開 環重合体の水素添加物やノルボルネン系モノマーと開環共重合可能なその他のモノ マーとの開環共重合体の水素添加物が最も好ましい。 Examples of the norbornene-based polymer include a ring-opening polymer of a norbornene-based monomer, a ring-opening copolymer of a norbornene-based monomer and another monomer capable of ring-opening copolymerization, and hydrogenated products thereof, and norbornene-based polymers. Examples include an addition polymer of a monomer, and an addition copolymer of a norbornene-based monomer with another monomer copolymerizable with the norbornene-based monomer. Among these, from the viewpoint of heat resistance and transparency, the development of norbornene-based monomers Most preferred are hydrogenated ring polymers and hydrogenated ring-opening copolymers of norbornene-based monomers and other monomers capable of ring-opening copolymerization.
脂環式構造を有する重合体は、 例えば特開 2002-321302号公報などに 開示されている公知の重合体から選ばれる。  The polymer having an alicyclic structure is selected from known polymers disclosed in, for example, JP-A-2002-321302.
基材には液晶化合物を配向させるための配向膜を設けることが好ましい。 配向膜 は、 配向膜用重合体膜のラビング処理、 無機化合物の斜方蒸着、 マイクログループ の形成、 あるいはラングミュア 'プロジェット法 (LB膜) による有機膜の形成の ような手段で設けることができる。 さらに電場や磁場の付与あるいは光照射により 配向機能が生じる配向膜を用いることも可能である。 さらに、 基材と配向膜との密 着性を付与するために、 あらかじめ基材を表面処理することが好ましく、 このため の手段としては、 グロ一放電処理、 コロナ放電処理、 紫外線 (UV) 処理、 火炎処 理等が挙げられる。 また、 基材と配向膜との間に、 接着層 (下塗り層) を設けるこ とも効果的である。  It is preferable to provide an alignment film for aligning the liquid crystal compound on the substrate. The alignment film can be provided by means such as rubbing of a polymer film for an alignment film, oblique deposition of an inorganic compound, formation of microgroups, or formation of an organic film by the Langmuir's projet method (LB film). . Further, it is also possible to use an alignment film that generates an alignment function by applying an electric or magnetic field or irradiating light. Further, in order to impart adhesion between the base material and the alignment film, it is preferable that the base material be subjected to surface treatment in advance. As means for this, glow discharge treatment, corona discharge treatment, ultraviolet (UV) treatment And flame treatment. It is also effective to provide an adhesive layer (undercoat layer) between the substrate and the alignment film.
前記配向膜としては、 連続処理を可能ならしめるという観点においては、 配向膜 用重合体膜のラビング処理により形成される配向膜が好ましい。 ラビング処理は前 記重合体膜の表面を布で一定方向に摩擦することにより達成される。 このような配 向膜として用いられる配向膜用重合体の種類は特に限定されるものではないが、 液 晶化合物の種類と目的の配向に応じたものを選択し得る。 また、 これらの配向膜は 、 液晶化合物と基材との密着性を付与する目的で、 重合性基を有することが好まし レ、。 前記重合性基としては、 ァクリロイル基、 メタアタリロイル基、 ビュル基が挙 げられる。 配向膜の厚さは 0.01〜5 / mであることが好ましく、 0.05〜1 μ mであることがさらに好ましい。  As the alignment film, an alignment film formed by rubbing a polymer film for an alignment film is preferable from the viewpoint of enabling continuous processing. The rubbing treatment is achieved by rubbing the surface of the polymer film in a certain direction with a cloth. The type of the polymer for an alignment film used as such an alignment film is not particularly limited, but may be selected according to the type of the liquid crystal compound and the desired alignment. Further, these alignment films preferably have a polymerizable group for the purpose of imparting adhesion between the liquid crystal compound and the substrate. Examples of the polymerizable group include an acryloyl group, a metharyloyl group, and a butyl group. The thickness of the alignment film is preferably from 0.01 to 5 / m, more preferably from 0.05 to 1 μm.
本発明における円偏光分離素子としては、 液晶層として、 可視光の全波長領域に わたって円偏光分離機能を有する広帯域のもの (広帯域円偏光分離素子) が好まし く、 例えば波長 410〜 470 n m、 波長 520〜580 nm、 波長 600〜 66 0 nmのいずれの波長域の光についても円偏光分離機能を有するコレステリック液 晶層を用いることができる。 このようなコレステリック液晶層としては、 (a) 選 択的に反射する光の中心波長が異なるコレステリック液晶層を組み合わせたもの丄 (b) 一つのコレステリック液晶層からなり、 厚み方向に対して螺旋のピッチが連 続的に変化するもの; (C ) 基材上に液晶層を設けたものであって、 該液晶層が、 第 1の配向状態に形成したのち、 層形状を変化させることにより、 初めに形成され た状態とは異なる第 2の配向状態で固定されたもの; (d ) 前記の配向膜を有する 基材上に設けられた光路変換層の両側にコレステリック液晶層を配置してなるもの ;などが挙げられる。 As the circularly polarized light separating element in the present invention, as the liquid crystal layer, a broadband liquid crystal layer having a circularly polarized light separating function over the entire wavelength region of visible light (broadband circularly polarized light separating element) is preferable, for example, a wavelength of 410 to 470 nm. A cholesteric liquid crystal layer having a circularly polarized light separating function can be used for light in any of the wavelength ranges of 520 to 580 nm and 600 to 660 nm. Such a cholesteric liquid crystal layer is composed of (a) a combination of cholesteric liquid crystal layers having different center wavelengths of selectively reflected light. (B) One cholesteric liquid crystal layer having a spiral shape in the thickness direction. Pitch (C) a liquid crystal layer provided on a substrate, wherein the liquid crystal layer is formed in a first alignment state and then formed first by changing the layer shape. (D) a cholesteric liquid crystal layer disposed on both sides of an optical path conversion layer provided on a substrate having the above-mentioned alignment film; and the like. Is mentioned.
上記 (a ) のタイプのコレステリック液晶層の場合には、 各層で反射される円偏 光の位相状態をそろえて各波長領域で異なる偏光状態となることを防止し、 利用で きる状態の偏光を増量する観点より、 同じ方向の円偏光を反射するもの同士を組み 合わせるのが好ましい。 またこの場合には、 反射光の中心波長が大きくなる順又は 小さくなる順に各コレステリック液晶層が積層されていることが、 視野角が大きく なった時の波長シフ トを抑制する観点からより好ましい。  In the case of the cholesteric liquid crystal layer of the type (a), the phase state of the circularly polarized light reflected by each layer is aligned to prevent different polarization states in each wavelength region, and the polarized light in a usable state is prevented. From the viewpoint of increasing the amount, it is preferable to combine those that reflect circularly polarized light in the same direction. Further, in this case, it is more preferable that the cholesteric liquid crystal layers are stacked in the order of increasing or decreasing the center wavelength of the reflected light, from the viewpoint of suppressing wavelength shift when the viewing angle increases.
反射光の中心波長に基づき波長順序でコレステリック液晶層を積層する方法とし ては、 例えば、 選択反射光の中心波長が 4 7 0 n m、 5 5 0 n m、 6 4 0 n m、 7 7 0 n mであるコレステリック液晶層をそれぞれ作製し、 これらのコレステリック 液晶層を任意に選択して、 選択反射光の中心波長の順序で 3〜 7層積層する方法が 挙げられる。  As a method of laminating the cholesteric liquid crystal layers in the wavelength order based on the center wavelength of the reflected light, for example, when the center wavelength of the selectively reflected light is 470 nm, 550 nm, 640 nm, and 770 nm, There is a method in which a certain cholesteric liquid crystal layer is formed, these cholesteric liquid crystal layers are arbitrarily selected, and three to seven layers are laminated in the order of the central wavelength of the selectively reflected light.
選択反射光の中心波長が異なる複数のコレステリック液晶層を積層する方法とし ては、 各コレステリック液晶層を重ね置く方法;各コレステリック液晶層を粘着剤 や接着剤などを介して積層する方法;が挙げられる。  As a method of laminating a plurality of cholesteric liquid crystal layers having different central wavelengths of the selectively reflected light, a method of laminating each cholesteric liquid crystal layer; a method of laminating each cholesteric liquid crystal layer via an adhesive or an adhesive; Can be
上記 (b ) タイプのコレステリック液晶層は、 次のようにして形成することがで きる。 先ず、 特定波長の紫外線照射により異性化してキラル化剤となる化合物、 液 晶および紫外線吸収剤とを含有してなる液晶層に、 表面 (紫外線照射面) 側から深 さ方向に連続的に照射光強度が減衰するように、 前記特定波長の紫外線を照射する 。 これにより、 キラル化剤の存在量が表面側から深さ方向に連続的に減少した状態 、 すなわち、 液晶の螺旋ピッチが液晶層の厚み方向に連続的に変化した状態の液晶 層が得られる。 次いで、 前記特定波長の紫外線とは異なる波長の紫外線を液晶層に 照射して、 液晶層全体を硬化させることにより、 この螺旋ピッチの傾斜的変化した 状態を固定化させる。 このようにして得られるコレステリック液晶層は、 深さ方向 に対して連続的に螺旋ピッチが変化しているものであり、 可視光域すベての波長帯 域で円偏光分離機能を有する。 The cholesteric liquid crystal layer of the type (b) can be formed as follows. First, a liquid crystal layer containing a compound, a liquid crystal and an ultraviolet absorber which isomerizes by irradiation with ultraviolet light of a specific wavelength to become a chiralizing agent, is continuously irradiated in the depth direction from the surface (ultraviolet irradiation surface) side. The ultraviolet light having the specific wavelength is irradiated so that the light intensity is attenuated. As a result, a liquid crystal layer in which the amount of the chiralizing agent is continuously reduced from the surface side in the depth direction, that is, the helical pitch of the liquid crystal is continuously changed in the thickness direction of the liquid crystal layer is obtained. Next, the liquid crystal layer is irradiated with ultraviolet light having a wavelength different from the specific wavelength ultraviolet light to cure the liquid crystal layer as a whole, thereby fixing the state in which the helical pitch is inclined. The cholesteric liquid crystal layer obtained in this manner has a helical pitch that changes continuously in the depth direction, and the cholesteric liquid crystal layer covers all wavelength bands in the visible light range. It has a circularly polarized light separating function in the region.
このようなタイプのコレステリック液晶層としては、 例えば、 S I D' 95, A s i a D i s p l a y., p 735 (1995年) 、 液晶、 第 2巻、 第 2号、 3 2— 39頁 (1998年) などに記載されたものがある。  Examples of cholesteric liquid crystal layers of this type include, for example, SID'95, Asia Display, p. 735 (1995), Liquid Crystal, Vol. 2, No. 2, 32-39 (1998). Etc. are described.
コレステリック液晶を構成する材料としては液晶ポリマーが好ましい。 この液晶 ポリマーとしては、 液晶配向性を付与する共役性の直線状原子団 (メソゲン) がポ リマーの主鎖に導入された液晶ポリマー、 該メソゲンがポリマーの側鎖に導入され たタイプの液晶ポリマーなど、 種々のものを使用することができる。  As a material constituting the cholesteric liquid crystal, a liquid crystal polymer is preferable. Examples of the liquid crystal polymer include a liquid crystal polymer having a conjugated linear atomic group (mesogen) imparting liquid crystal orientation introduced into a polymer main chain, and a liquid crystal polymer having a mesogen introduced into a side chain of the polymer. Various things such as can be used.
コレステリック液晶層の厚み (複数の層からなる場合には全体の厚み) は、 配向 の乱れや透過率低下の防止、 選択反射の波長範囲 (反射波長域) の広さなどの観点 から、 通常、 :!〜 50 im、 好ましくは 2〜30μηι、 より好ましくは 2〜: I 0 mである。 また、 基材を有する場合には、 その基材を含めた合計厚みが、 通常 20 〜200 /xm、 好ましくは 25〜150 /xm、 より好ましくは 30〜: Ι Ο Ο μ mで ある。  The thickness of the cholesteric liquid crystal layer (or the total thickness in the case of multiple layers) is usually determined from the viewpoints of preventing alignment disorder and transmittance reduction, and widening the wavelength range of selective reflection (reflection wavelength range). :! 5050 im, preferably 2 to 30 μηι, more preferably 2 to: I 0 m. When a base material is provided, the total thickness including the base material is usually 20 to 200 / xm, preferably 25 to 150 / xm, and more preferably 30 to: μm.
基材上に液晶層を形成する方法としては、 例えば、 配向膜が形成された基材上に 、 液晶ポリマーの溶媒溶液を、 スピンコート法、 ロールコート法、 フローコート法 、 プリント法、 ディップコート法、 流延成膜法、 バーコート法、 グラビア印刷法等 の公知の塗工方法で塗膜を形成し、 乾燥処理する方法等が挙げられる。 液晶ポリマ 一の溶媒としては、 例えば、 塩ィヒメチレン、 シクロへキサノン、 トリクロロェチレ ン、 テトラクロロェタン、 N—メチルピロリ ドン、 テトラヒ ドロフランなどが挙げ られる。  As a method of forming a liquid crystal layer on a substrate, for example, a solvent solution of a liquid crystal polymer is coated on a substrate on which an alignment film is formed by spin coating, roll coating, flow coating, printing, dip coating. And a method of forming a coating film by a known coating method such as a casting method, a casting film forming method, a bar coating method, a gravure printing method, and the like, followed by a drying treatment. Examples of the solvent for the liquid crystal polymer include dimethylene chloride, cyclohexanone, trichloroethylene, tetrachloroethane, N-methylpyrrolidone, and tetrahydrofuran.
また、 液晶層を形成する方法として、 液晶ポリマーの加熱溶融物、 好ましくは等 方相を呈する状態の加熱溶融物を、 基材上に、 上述した塗工方法に応じた方法によ り塗膜を形成し、 必要に応じて溶融温度を維持しつつ、 さらに薄層に展開して固化 させる方法を採用することができる。  In addition, as a method of forming a liquid crystal layer, a heated melt of a liquid crystal polymer, preferably a heated melt having an isotropic phase, is coated on a substrate by a method according to the above-described coating method. It is possible to adopt a method of forming a thin layer and solidifying it while maintaining the melting temperature as needed.
液晶層を形成するために行なう加熱処理の温度は、 液晶ポリマーのガラス転移温 度から等方相転移温度までの温度範囲、 すなわち液晶ポリマーが液晶を呈する温度 範囲である。 また、 配向状態は、 ガラス転移温度未満に冷却することで固定化する ことができる。 前述の (C ) タイプのコレステリック液晶層は、 液晶性化合物、 溶剤、 界面活性 剤、 重合開始剤、 キラル化剤、 配向調整剤等を適宜含む塗布液を前記配向膜を有す る基材上に塗布することによって第 1の配向状態に形成することが好ましレ、。 液晶性化合物としては棒状液晶性化合物、 円盤状液晶性化合物、 高分子液晶等が知 られているが、 目的の配向状態に応じて適宜選択され得る。 また、 配向状態を固定 化させるためには目的の配向状態において熱あるいは紫外線等によって固定化する ことが好ましく、 このために分子中に重合性を有する官能基が導入されたものが好 ましい。 The temperature of the heat treatment for forming the liquid crystal layer is in the temperature range from the glass transition temperature to the isotropic phase transition temperature of the liquid crystal polymer, that is, the temperature range in which the liquid crystal polymer exhibits liquid crystal. In addition, the orientation state can be fixed by cooling below the glass transition temperature. The cholesteric liquid crystal layer of the above-mentioned (C) type is formed by coating a coating liquid containing a liquid crystal compound, a solvent, a surfactant, a polymerization initiator, a chiralizing agent, an alignment controlling agent and the like on a substrate having the alignment film. It is preferable that the first alignment state is formed by applying to the first alignment state. As the liquid crystal compound, a rod-shaped liquid crystal compound, a discotic liquid crystal compound, a polymer liquid crystal, and the like are known, and can be appropriately selected depending on a desired alignment state. In addition, in order to fix the alignment state, it is preferable to fix in a target alignment state by heat or ultraviolet rays, and for this purpose, it is preferable that a polymerizable functional group is introduced into the molecule.
このような液晶化合物の内、 棒状液晶化合物としては、 下記式 (I) で表される 化合物を挙げることができる。  Among such liquid crystal compounds, examples of the rod-shaped liquid crystal compound include compounds represented by the following formula (I).
R1 -L 1-S 1-L 3 -M-L 4 - S 2-L 2-R2 (I) 式中、 R 1および R 2は重合性を有する官能基を表し、 L l、 L2、 L3および L 4はそれぞれ単結合または二価の連結基を表すが、 L 3または L 4の少なくとも 一方が一 O— CO— O—を表し、 S 1および S 2は炭素原子数 2から 20のスぺー サ一基を表し、 Mはメソゲン基を表す。 メソゲン基 Mとしてはァゾメチン類、 ァゾ キシ類、 シァノビフエニル類、 シァノフエニルエステル類、 安息香酸エステル類、 シク口へキサンカルボン酸フエ-ルエステル類、 シァノフエ二ルシク口へキサン類 、 シァノ置換フエニルピリ ミジン類、 アルコキシ置換フエニルピリ ミジン類、 フエ ニルジォキサン類、 トラン類およびアルケニルシク口へキシルベンゾニトリル類が 好ましく用いられる。 重合性を有する官能基の R 1、 R 2の具体例としては R1 -L 1 -S 1 -L 3 -ML 4 -S 2 -L 2 -R2 (I) wherein R 1 and R 2 represent a polymerizable functional group, and L1, L2, L3 and L 4 represents a single bond or a divalent linking group, and at least one of L 3 and L 4 represents one O—CO—O—, and S 1 and S 2 are spacers having 2 to 20 carbon atoms. Represents one group, and M represents a mesogen group. The mesogen group M includes azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic esters, hexa-hexacarboxylic acid phenyl esters, cyanophenyl hex-hexanes, cyano-substituted phenylpyrimidines , Alkoxy-substituted phenylpyrimidines, phenyldioxanes, tolanes and alkenylcyclohexylbenzonitrile are preferably used. Specific examples of R 1 and R 2 of the polymerizable functional group include
H2C-
Figure imgf000014_0001
H 2 C-
Figure imgf000014_0001
HC 、
Figure imgf000014_0002
HC,
Figure imgf000014_0002
HH
O N O N
H2C,」CH、 H2C-CHヽ  H2C, ”CH, H2C-CH ヽ
-SH -OH -NH2 -SH -OH -NH2
Figure imgf000014_0003
Figure imgf000014_0003
等が挙げられるが、 これに限定されるものではない。 And the like, but are not limited thereto.
円盤状液晶性化合物としては、 様々な文献 (C. Destrade et al. , Mol. Crysr. Liq. Cryst. , vol. 71, page 111 (1981) ; 日本化学会編、 季刊化学総説、 N o . 2 2、 液晶の化学、 第 5章、 第 1 0章第 2節(1994) ;液晶便覧編集委員会編、 液晶便 覧、 第 2章第 2.1.1節 (2000) に記載されているものに、 前述の棒状液晶性化合 物で挙げたものと同様の連結基、 スぺーサ一基、 重合性を有する官能基を導入した ものを用いることができる。 As discotic liquid crystalline compounds, various literatures (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); Chemical Society of Japan, quarterly chemistry review, No. 22 2, Liquid Crystal Chemistry, Chapter 5, Chapter 10, Section 2 (1994); Liquid Crystal Handbook Editing Committee, Liquid Crystal Flight Listed in Chapter 2, Section 2.1.1 (2000) include the same linking groups, spacers, and polymerizable functional groups as those listed for the rod-like liquid crystalline compound described above. Can be used.
液晶ポリマーとしては、 液晶便覧編集委員会編、 液晶便覧、 第 3章第 3.8節 ( 2000) に記載されているものを用いることができるが、 これらに限定されるもので はなレ、。 配向均一性の観点からは側鎖型液晶性高分子が好ましく用いられる。 塗布液の調製に使用する溶媒としては、 有機溶媒が好ましく用いられる。 有機溶 媒の例には、 ケトン類、 ルキルハラィ ド類、 アミ ド類、 スルホキシド類、 ヘテロ 環化合物、 炭化水素類、 ヱステル類、 エーテル類が含まれる。 特に環境への負荷を 考慮した場合にはケトン類が好ましい。 二種類以上の有機溶媒を併用してもよい。 塗布液および重合前の液晶層の表面張力を調整するための界面活性剤としては、 市販の界面活性剤を使用し得る力 特に好ましくはノニオン系の界面活性剤であり 、 分子量が数千程度のォリゴマ一であることが好ましい。 このような界面活性剤と しては、 セイミケミカル (株)製 KH— 40等が挙げられる。  As the liquid crystal polymer, those described in Liquid Crystal Handbook Editing Committee, Liquid Crystal Handbook, Chapter 3, Section 3.8 (2000) can be used, but are not limited thereto. From the viewpoint of alignment uniformity, a side chain type liquid crystalline polymer is preferably used. As a solvent used for preparing the coating solution, an organic solvent is preferably used. Examples of the organic solvent include ketones, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. Particularly, ketones are preferable in consideration of the burden on the environment. Two or more organic solvents may be used in combination. As a surfactant for adjusting the surface tension of the coating liquid and the liquid crystal layer before polymerization, a commercially available surfactant can be used. Particularly preferred is a nonionic surfactant, which has a molecular weight of about several thousand. It is preferred that it is an origin. Examples of such a surfactant include KH-40 manufactured by Seimi Chemical Co., Ltd.
重合開始剤としては、 熱重合開始剤や光重合開始剤が挙げられるが、 光重合反応 が迅速であることから、 光重合開始剤を用いることが好ましい。 光重合開始剤とし ては、 多核キノン化合物 (米国特許第 3046 1 2 7号、 同 295 1 758号の各 明細書記載) 、 ォキサジァゾール化合物 (米国特許第 42 1 2970号明細書記載 ) 、 a—カルボニル化合物 (米国特許第 236 76 6 1号、 同 236 76 70号の 各明細書記載) 、 ァシロインエーテル (米国特許第 24488 28号明細書記載) 、 c一炭化水素置換芳香族ァシロイン化合物 (米国特許第 27 225 1 2号明細書 記載) 、 トリァリ一ルイミダゾールダイマーと p—アミノフヱ二ルケトンとの組み 合わせ (米国特許第 3549 36 7号明細書記載) 、 アタリジンおよびフエナジン 化合物 (特開昭 60- 1 0566 7号公報、 米国特許第 4239850号明細書記 載) が挙げられる。  Examples of the polymerization initiator include a thermal polymerization initiator and a photopolymerization initiator, but it is preferable to use a photopolymerization initiator because the photopolymerization reaction is rapid. Examples of the photopolymerization initiator include polynuclear quinone compounds (described in U.S. Pat. Nos. 3,046,127 and 2,951,758), oxadiazole compounds (described in U.S. Pat. No. 4,212,970), a-- Carbonyl compounds (described in U.S. Pat. Nos. 2,736,661 and 2,736,670), acyloin ethers (described in U.S. Pat. No. 2,488,828), c-hydrocarbon-substituted aromatic acyloin compounds ( U.S. Pat. No. 2722512), a combination of triarylimidazole dimer and p-aminophenol ketone (described in U.S. Pat. No. 3,549,367), ataridine and phenazine compounds (Japanese Unexamined Patent Publication No. No. 105667, U.S. Pat. No. 4,239,850).
光重合開始剤の使用量は、 塗布液の固形分の 0.0 1〜 20重量%であることが 好ましく、 0.5〜5重量%であることがさらに好ましい。 液晶性化合物の重合の ための光照射には、 紫外線を用いることが好ましい。 光照射エネルギーは、 l mj /^πι2〜50 jZcn^であることが好ましく、 :!〜 800mjZcm2であること がさらに好ましい。 The amount of the photopolymerization initiator used is preferably from 0.01 to 20% by weight, more preferably from 0.5 to 5% by weight, based on the solid content of the coating solution. It is preferable to use ultraviolet light for light irradiation for polymerizing the liquid crystal compound. The light irradiation energy is preferably l mj / ^ πι2 to 50 jZcn ^. ~ 800mjZcm2 Is more preferred.
本発明に係る配向処理を適用し得る液晶性ィヒ合物の配向状態にはネマチック相、 コレステリック相、 スメクチック相が含まれる。 ネマチック相は液晶分子の重心の 位置が無秩序であり、 かつ分子の長軸が一軸配向している状態を指す。 また、 コレ ステリック相とは液晶分子の重心の位置が無秩序であり、 かつ分子の長軸が分子間 で一定方向に捩れた状態を指す。 スメクチック相はネマチック相の方向の秩序に加 え、 重心の位置に一次元的な秩序が存在する状態で、 層構造を有するのが特徴であ る。 これらの配向状態は液晶性ィヒ合物の温度に依存して発現するものが知られてお り、 これらはサーモト口ピック液晶と呼ばれる。 さらに、 各相の発現する温度は相 転移温度と呼ばれる。  The alignment state of the liquid crystalline compound to which the alignment treatment according to the present invention can be applied includes a nematic phase, a cholesteric phase, and a smectic phase. The nematic phase refers to a state in which the position of the center of gravity of the liquid crystal molecules is disordered and the long axes of the molecules are uniaxially oriented. The cholesteric phase refers to a state in which the position of the center of gravity of liquid crystal molecules is disordered, and the long axis of the molecules is twisted in a certain direction between the molecules. The smectic phase is characterized by having a layered structure with one-dimensional order at the center of gravity in addition to the order of the nematic phase. It is known that these alignment states develop depending on the temperature of the liquid crystalline compound, and these are called thermopic pick liquid crystals. Furthermore, the temperature at which each phase develops is called the phase transition temperature.
コレステリック相の場合、 分子中に光学活性な部位を含む液晶性ィ匕合物を用いる 方法と、 光学活性部位を有していない液晶性ィヒ合物に光学活性物質を添加する方法 が知られている。 光学活性物質はキラル化剤とも呼ばれる。 キラル化剤としては、 液晶性ィヒ合物を捩じる効率を表す指標である H T P (Helical Twisting Power) の 大きなものが経済性の観点から好ましい。 H T Pは式 (II) で表される。  In the case of the cholesteric phase, a method using a liquid crystalline compound having an optically active site in a molecule and a method of adding an optically active substance to a liquid crystalline compound having no optically active site are known. ing. Optically active substances are also called chiralizing agents. As the chiralizing agent, those having a large HTP (Helical Twisting Power), which is an index indicating the efficiency of twisting the liquid crystalline compound, are preferable from the viewpoint of economy. HTP is represented by formula (II).
H T P = 1 Z P · c (II)  H T P = 1 Z Pc (II)
ここで、 Pはコレステリック相の螺旋のピッチ長を表し、 cはキラル化剤の濃度 を表す。 また、 キラル化剤の添加による意図しない相転移温度の変化を避けるため に、 キラルイ匕剤自身が液晶性を示すものを用いることが好ましい。  Here, P represents the helical pitch length of the cholesteric phase, and c represents the concentration of the chiralizing agent. Further, in order to avoid an unintended change in the phase transition temperature due to the addition of the chiralizing agent, it is preferable to use a chiralizing agent which itself exhibits liquid crystallinity.
配向調整剤は、 基材上に形成された液晶層の空気側表面の配向状態を制御するた めのものであり、 前記界面活' 剤を兼ねる場合もあるが、 目的の配向状態によって は適宜樹脂類が用いられる。 このような樹脂としては、 ポリビュルアルコール、 ポ リビニルブチラール、 あるいはこれらの変性物が用いられるがこの限りではない。 塗布液の塗布は、 公知の方法、 例えば押し出しコーティング法、 ダイレクトダラ ビアコーティング法、 リバースグラビアコーティング法、 ダイコーティング法等に より実施できる。  The alignment controlling agent is for controlling the alignment state of the air-side surface of the liquid crystal layer formed on the substrate, and may also serve as the surfactant, but may be appropriately determined depending on the desired alignment state. Resins are used. Examples of such a resin include, but are not limited to, polyvinyl alcohol, polyvinyl butyral, and modified products thereof. The application of the coating solution can be performed by a known method, for example, an extrusion coating method, a direct dalvia coating method, a reverse gravure coating method, a die coating method, or the like.
基材上に塗布された液晶層は、 液晶性ィヒ合物およびその他素材の持つ特性、 温度 に応じて上述の液晶相を示す。 さらに、 これらの相においても接触界面 (配向膜側 およびこれに対向する界面) の性質に応じて、 様々な配向状態が存在することが知 られている。 特に特開平 8— 3 389 1 3号公報、 特開平 8— 209 1 2 7号公報 、 特開 2000— 66 1 92号公報に示されているように、 棒状液晶性化合物の長 軸と層の法線との成す角度が一方の層界面から他方の層界面に向かって、 徐々に変 化している配向状態 (スプレイ配向) は光学フィルム用途として重要な特性を示す ことが知られている。 以下、 コレステリック相を示す液晶層を例にとって該配向処 理により広レ、反射帯域が実現できる理由を説明する。 The liquid crystal layer applied on the base material exhibits the above-mentioned liquid crystal phase according to the properties and temperature of the liquid crystal compound and other materials. Furthermore, it is known that various alignment states also exist in these phases depending on the properties of the contact interface (the alignment film side and the interface facing the same). Have been. In particular, as disclosed in JP-A-8-338913, JP-A-8-209127 and JP-A-2000-66192, the long axis of the rod-like liquid crystalline compound and the layer It is known that an orientation state (spray orientation) in which the angle formed with the normal line gradually changes from one layer interface to the other layer interface exhibits important characteristics for optical film applications. Hereinafter, the reason why a wide area and a reflection band can be realized by the alignment processing will be described by taking a liquid crystal layer exhibiting a cholesteric phase as an example.
F i g. 1は一般的なコレステリック相を示す液晶層を模式的に表したものであ る。 F i g. 1において、 基材表面に施された配向処理面 1と接する液晶分子 2は 配向処理に応じた向きに液晶分子の長軸を揃えて配向するように描かれている。 さ らに液晶分子は、 配向処理面側界面とそれと対向する表面間でキラル化剤の HTP に応じた螺旋ピッチ Pで捩れた配向を形成している。  FIG. 1 schematically shows a liquid crystal layer showing a general cholesteric phase. In FIG. 1, the liquid crystal molecules 2 in contact with the alignment treatment surface 1 applied to the substrate surface are drawn so as to align the long axes of the liquid crystal molecules in a direction corresponding to the alignment treatment. In addition, the liquid crystal molecules are twisted at a helical pitch P according to the HTP of the chiralizing agent between the interface on the alignment treatment surface and the surface facing the liquid crystal molecule.
F i g. 2は一般的なコレステリック相を示す液晶層の選択反射を模式的に表し たものである。 コレステリック相を呈する液晶層に対して光を入射させた場合、 特 定波長領域の左右回りの何れかの円偏光に対してのみ反射特性 (選択反射) を示す ことが知られている。 この様子は F i g. 2に描かれている。 ここで、 6 jは白色 入射光 L 1を入射した場合の入射角度、 L 2は選択反射した円偏光、 θ 2は入射光 L 1がスネルの法則にしたがって液晶層内で屈折した場合の入射光の進行方向と層 法線 3とがなす角度を表している。 液晶性化合物が捩れる時の回転軸を表す螺旋軸 4が層に対して垂直である場合は、 層法線 3と螺旋軸 4は平行であるので、 この場 合、 02は液晶層内部での螺旋軸と入射光の成す角度であるとも言える。 選択反射 を受ける円偏光 L 2の中心波長えは下記の式 (III) により表され、 反射帯域は下 記の式 (IV) により表される。 FIG. 2 schematically shows selective reflection of a liquid crystal layer exhibiting a general cholesteric phase. It is known that when light is incident on a liquid crystal layer exhibiting a cholesteric phase, it exhibits a reflection characteristic (selective reflection) only with respect to any one of right and left circularly polarized lights in a specific wavelength region. This is illustrated in FIG. Here, 6 j is the incident angle when white incident light L 1 is incident, L 2 is the circularly polarized light selectively reflected, θ 2 is the incident light when the incident light L 1 is refracted in the liquid crystal layer according to Snell's law. It represents the angle between the light traveling direction and the layer normal 3. If helical axis 4 which represents the rotational axis when the liquid crystal compound is twisted is perpendicular to the layer, since the layer normal 3 and the spiral shaft 4 are parallel, this case, 0 2 inside the liquid crystal layer It can be said that this is the angle between the spiral axis and the incident light. The center wavelength of the circularly polarized light L2 subjected to selective reflection is expressed by the following equation (III), and the reflection band is expressed by the following equation (IV).
λ = η X Ρ X c o s θ 2 (III) n o X PX c o s 02 ≤ λ ≤ n e X P X c o s 62 (IV) n= (n e + n o) / 2 λ = η X Ρ X cos θ 2 (III) no X PX cos 0 2 ≤ λ ≤ ne XPX cos 6 2 (IV) n = (ne + no) / 2
n o :棒状液晶性化合物の短軸方向の屈折率  n o: Refractive index in the minor axis direction of the rod-like liquid crystalline compound
n e :棒状液晶性化合物の長軸方向の屈折率  n e: refractive index in the major axis direction of the rod-shaped liquid crystalline compound
P :捩れのピッチ長  P: pitch length of twist
F i g. 3は、 選択反射の視野角依存性を説明するためのグラフである。 式 (IV ) からも明らかなように、 螺旋軸に対して平行 (02=0) に入射する光に対して の反射光の波長に対して、 斜めから入射する光に対する反射光の波長は短波長側に シフトする。 その結果、 螺旋軸に対して斜めから入射する光に対する透過スぺクト ノレ 5は、 平行 (02=0) に入射する光に対する透過スペクトル 6に対してピーク の位置が短波長側にシフトする。 この様子は F i g. 3に示される。 今ここで、 選 択反射の波長域 Δえ (n e XPX c o s 02-n o XPX c o s 02) を可視波長全 域に広げる、 すなわち広帯域化することを考えると、 棒状液晶性化合物の n eと n oの差である Δη (複屈折) を大きくする必要がある。 FIG. 3 is a graph for explaining the viewing angle dependence of the selective reflection. Formula (IV ), The wavelength of the reflected light for light incident obliquely is shorter than the wavelength of the reflected light for light incident parallel (0 2 = 0) to the helical axis. Shift to As a result, in the transmission spectrum 5 for light incident obliquely with respect to the helical axis, the position of the peak shifts to the shorter wavelength side with respect to the transmission spectrum 6 for light incident parallel (0 2 = 0). . This is shown in FIG. Here, considering that the wavelength range of selective reflection Δe (ne XPX cos 0 2 -no XPX cos 0 2 ) is extended to the entire visible wavelength range, that is, to broaden the band, ne and no of the rod-like liquid crystal compound are considered. It is necessary to increase the difference Δη (birefringence).
広帯域化の手法としては、 特開平 6— 235900号公報に示される手法を挙げ ることができる。 ここで開示されるのは、 前記 (b) タイプの層の厚み方向に螺旋 ピッチ Pが徐々に変化するような構造である。 このような構造では、 厚み方向で螺 旋ピッチ Pが異なる領域が存在するために、 各領域における反射光の波長領域 λの 合計として広帯域の反射特性を得ることができる。 このことは、 式 (IV) の螺旋ピ ツチ Ρを制御した結果であるといえる。  As a technique for widening the bandwidth, a technique disclosed in JP-A-6-235900 can be used. Disclosed here is a structure in which the helical pitch P gradually changes in the thickness direction of the layer of the type (b). In such a structure, since there are regions where the helical pitch P differs in the thickness direction, broadband reflection characteristics can be obtained as the sum of the wavelength regions λ of the reflected light in each region. This can be said to be the result of controlling the spiral pitch 式 in equation (IV).
さらに別な手法としては、 式 (IV) において c o s θ 2を制御する方法を挙げる ことができる。 θ 2は液晶層内部での螺旋軸と入射光とのなす角度であるので、 層 内部での入射光の行路において徐々に 02が変化するように液晶層の螺旋軸を傾斜 させた構造の場合、 入射光は行路上の異なる 02領域において異なる反射帯域を持 つと考えられる。 選択反射光の波長の入射角依存性は式 (III) 、 式 (IV) 、 およ び F i g. 3で説明した通り、 入射角度、 すなわち θ 2が大きいほど、 短波長側に シフトするので、 液晶層の螺旋軸の傾斜角おょぴ螺旋ピッチ長を入射光の行路全体 で調整することにより広帯域化することが可能である。 この様子は F i g. 4に示 される。 F i g. 4は、 螺旋軸が傾斜したコレステリック液晶層を示す模式図であ る。 ここでは、 入射光 L 1が液晶層を進むにつれ、 螺旋軸と L 1がなす角度 θ 2が a、 b、 c (a >b〉 c) と変化する様子が描かれている。 θ 2が大きいほど選択 反射光の波長は短波側にシフトするので、 各反射光の波長は Θ 2 = aの方が 02 = c に比べて短い。 As still another method, there is a method of controlling cos θ 2 in the equation (IV). Since θ 2 is the angle between the helical axis inside the liquid crystal layer and the incident light, the structure in which the helical axis of the liquid crystal layer is inclined so that O 2 gradually changes in the path of the incident light inside the layer If the incident light is lifting is bracts considered different reflection bands in different 0 2 regions of the line path. Incidence angle dependence of the wavelength of the selective reflection light formula (III), Formula (IV), and F i g. 3 the same as described, the angle of incidence, that is, as theta 2 is large, shifts to the short wavelength side Therefore, it is possible to widen the bandwidth by adjusting the inclination angle of the spiral axis of the liquid crystal layer and the spiral pitch length over the entire path of the incident light. This is shown in Fig. 4. FIG. 4 is a schematic diagram showing a cholesteric liquid crystal layer in which the helical axis is inclined. Here, as the incident light L 1 travels through the liquid crystal layer, the angle theta 2 which the helical axis and L 1 is formed by a, b, how changes c (a>b> c) is depicted. The larger the value of θ 2 is, the more the wavelength of the reflected light shifts to the shorter wavelength side. Therefore, the wavelength of each reflected light is shorter when Θ 2 = a than when 0 2 = c.
前述のように、 螺旋軸を入射光に対して傾斜させる構造とすることは広帯域化の 手法として有効であることは明らかであるが、 さらに具体的な構造と、 それを得る ための手法について説明する。 As described above, it is clear that a structure in which the helical axis is tilted with respect to the incident light is effective as a technique for broadening the band, but a more specific structure and its obtainment A method for this will be described.
一般に、 前述のスプレイ配向は液晶層の配向膜側界面とそれに対向する界面での 液晶分子の配向状態を異ならせることによって実現される。 例えば、 一方の界面が 配向膜との界面、 他方の界面が空気との界面である場合、 配向膜には液晶性化合物 分子を配向膜表面に水平に吸着するような素材を選び、 空気側界面には液晶性化合 物分子が同界面に対して斜めに配向するように配向調整剤を選択し、 あら力 じめ液 晶層形成用の塗布溶液中に添カ卩しておく手法が挙げられる。 特開平 8— 3 3 8 9 1 3号公報では円盤状液晶性化合物に対して配向膜としてポリビニルアルコール誘導 体、 配向調整剤としてセルロースァセテ一トブチレートを用いた例が開示されてい る。  In general, the above-described splay alignment is realized by changing the alignment state of liquid crystal molecules at the interface of the liquid crystal layer on the alignment film side and the interface facing the splay alignment layer. For example, if one interface is the interface with the alignment film and the other interface is the air, select a material for the alignment film that adsorbs the liquid crystal compound molecules horizontally to the alignment film surface. One method is to select an alignment modifier so that the liquid crystal compound molecules are aligned obliquely to the same interface, and then add it to the coating solution for forming the liquid crystal layer. . JP-A-8-338913 discloses an example in which a polyvinyl alcohol derivative is used as an alignment film and a cellulose acetate butyrate as an alignment regulator for a discotic liquid crystalline compound.
一方、 コレステリック液晶層の螺旋軸を傾斜させ、 可視光に対して広帯域化を図 る場合に必要な傾斜角度範囲は、 螺旋ピッチ Pを 4 7 0 n m、 nを 1 . 5とした場 合には、 式 (III) i = n X P X c o s 0 2より Θ 2(700) (反射帯域の上限波長) 、 Θ 2(400) (反射帯域の下限波長) はそれぞれ θ 2(700) 0 ° 、 0 2(400) 5 6 ° となる。 し たがって、 層内部での入射光の進行方向に対する液晶層の螺旋軸の傾き 6 2は少な くとも 0 ° から 5 6 ° を含む分布であることが好ましい。 しかしながら、 上述の公 知の手法ではこのような大きな傾斜角度分布を作成することは困難である。 On the other hand, when the helical axis of the cholesteric liquid crystal layer is tilted to widen the band of visible light, the tilt angle range required is as follows, when the helical pitch P is 470 nm and n is 1.5. From the formula (III) i = n XPX cos 0 2 Θ 2 (700) (upper limit wavelength of reflection band), Θ 2 (400) (lower limit wavelength of reflection band) are θ 2 (700) 0 ° and 0 2 (400) 56 degrees. Therefore, it is preferable that the distribution comprising 5 6 ° from the slope 6 2 least 0 ° of helical axes of the liquid crystal layer with respect to the traveling direction of the incident light inside the layer. However, it is difficult to create such a large inclination angle distribution by the above-mentioned known method.
コレステリック液晶層の螺旋軸に大きな傾斜角度分布を作成する手段としては、 基材上に第 1の配向状態を有する液晶層を形成した後、 層形状を変化させ、 第 2の 配向状態に変化させる手法が考えられる。 ここで第 1の配向状態とは、 コレステリ ック液晶層の螺旋軸が層法線方向と平行である状態を指し、 第 2の配向状態とは螺 旋軸と層法線が非平行の状態である。 層形状を変化させる手段としては、 例えば凹 凸を有する基材を第 1の配向状態の液晶層に接触させる方法を挙げることができる 凹凸を有する基材の材質としては凹凸加工可能なものであれば特に限定する必要 はないが、 第 2の配向状態を有する液晶層と一体化された状態で用いる場合には光 学的に透明で、 複屈折による位相差ができるだけ小さい材質が好ましい。 このよう な材質の例としては、 前述の円偏光分離素子の基材において、 説明したものが挙げ られる。 また、 連鎖!]ェを可能ならしめるという観点からは、 長尺のフィルム状で あることが好ましい。 As a means for creating a large tilt angle distribution on the helical axis of the cholesteric liquid crystal layer, a liquid crystal layer having a first alignment state is formed on a base material, and then the layer shape is changed to change to a second alignment state. A method is conceivable. Here, the first alignment state refers to a state in which the helical axis of the cholesteric liquid crystal layer is parallel to the layer normal direction, and the second alignment state refers to a state in which the helical axis is not parallel to the layer normal. It is. Examples of the means for changing the layer shape include a method in which a substrate having concaves and convexes is brought into contact with a liquid crystal layer in a first alignment state. If it is used in a state integrated with the liquid crystal layer having the second alignment state, a material that is optically transparent and has a phase difference due to birefringence as small as possible is preferable. Examples of such a material include those described above in the base material of the circularly polarized light separating element. Also, from the viewpoint of making chain! Possible, use a long film Preferably, there is.
凹凸の形状としては、 螺旋軸の傾斜が発生する範囲のものであれば特に制限はな レ、が、 円柱状、 円錐状、 三角柱 .四角柱などの多角形柱状、 三角錐 ·四角錐などの 多角形錐状、 半球状、 ドーム状等の形状を挙げることができる。 形状を変化させ:^ も見かけ上の位相差を発生させないようにする場合には、 凹凸形状として回転対称 軸が基材法線方向にあるものが好ましい。 凹凸の高さは、 凸部の底面より頂点まで の高さが 0 . 1〜1 0 mであることが好ましく、 0 . 5〜3 /z mであることがより 好ましい。 また、 凹凸の面内周期は 0 .:!〜 1 O z mであることが好ましく、 0 . 5 〜 3 mであることがより好ましい。 F i g . 5は、 螺旋軸を傾斜させる方法の 1 例を示す説明図であって、 凹凸形状として四角錐 7を用いて、 第 2の配向状態を有 する液晶層と一体化した様子の断面が描かれている。 ここで、 液晶層 L Cを横断す る曲線 4はコレステリック液晶層の螺旋軸を表す F i g . 5に示したように、 始め に螺旋軸が液晶層の法線に平行であった平面状の第 1の配向状態は、 四角錐状の凹 凸面により変形され、 第 2の配向状態であるところの螺旋軸が湾曲した構造を呈し ている。  The shape of the unevenness is not particularly limited as long as it is in a range where the inclination of the helical axis is generated. Examples include polygonal pyramids, hemispheres, and domes. In the case where the shape is changed so that an apparent phase difference is not generated, it is preferable that the rotationally symmetric axis is in the normal direction of the base material as the concavo-convex shape. The height of the unevenness is preferably from 0.1 to 10 m, more preferably from 0.5 to 3 / z m, from the bottom to the apex of the projection. Further, the in-plane period of the irregularities is preferably from 0.5 to 1.0 m, more preferably from 0.5 to 3 m. FIG. 5 is an explanatory view showing an example of a method of inclining the helical axis, and a cross section of a state where a quadrangular pyramid 7 is used as a concavo-convex shape and integrated with a liquid crystal layer having a second alignment state. Is drawn. Here, a curve 4 traversing the liquid crystal layer LC is a planar shape in which the helical axis was initially parallel to the normal of the liquid crystal layer, as shown in Fig. 5, which represents the helical axis of the cholesteric liquid crystal layer. The first orientation state is deformed by a quadrangular pyramid-shaped concave and convex surface, and has a structure in which the helical axis in the second orientation state is curved.
凹凸を有する基材を液晶層に接触させる手段としては、 液晶層に凹凸面を有する 基材を対向させた状態で一般に用いられているプレス機で加圧する方法や、 口ール 間で加熱 '加圧するラミネート法を適用することができる。 また、 第 1の配向状態 を形成した液晶層にエンボス口ール等を圧着させ、 エンボス口ール上の凹凸形状を 転写する方法等も適用し得る。  Means for bringing the substrate having the unevenness into contact with the liquid crystal layer include a method in which the substrate having the uneven surface is opposed to the liquid crystal layer with a generally used press machine, and a method of heating between the jaws. A lamination method in which pressure is applied can be applied. Further, a method of pressing an embossed hole or the like on the liquid crystal layer having the first alignment state formed thereon and transferring an uneven shape on the embossed hole may be applied.
第 1の配向状態を形成したコレステリック液晶層は、 この後の層形状を変形させ る工程において、 コレステリック相自身の螺旋構造はできるだけ維持させることが 重要である。 この目的からは、 第 1の配向状態はある程度固定化させておくことが 好ましい。 この固定化の方法としては、 重合性を有する官能基の種類や一分子あた りの数を調整したものを液晶性化合物として用いる、 あるいは非重合性液晶と重合 性液晶との混合物を液晶化合物として用いて加熱あるいは光照射して固定ィヒする方 法;高分子液晶を用いて、 第 1の配向状態が得られた時点で急速に冷却することに より固定化する方法;が挙げられる。  In the cholesteric liquid crystal layer in which the first alignment state is formed, it is important that the helical structure of the cholesteric phase itself be maintained as much as possible in the subsequent step of deforming the layer shape. For this purpose, it is preferable that the first alignment state is fixed to some extent. The method of immobilization is to use a liquid crystal compound in which the types of polymerizable functional groups and the number per molecule are adjusted, or to use a mixture of a non-polymerizable liquid crystal and a polymerizable liquid crystal as a liquid crystal compound. A method of fixing by heating or irradiating light; and a method of fixing by rapidly cooling when a first alignment state is obtained using a polymer liquid crystal.
前述の (d ) タイプのコレステリック液晶層においては、 液晶十生ィ匕合物、 溶剤、 界面活性剤、 重合開始剤、 キラル化剤、 配向調整剤等を適宜含む塗布液をまず前記 の配向膜を有する基材上に塗布することによって形成することが好ましい。 コレス テリック液晶層の厚みは 1〜1 O mであることが好ましく、 配向均一性の観点か らは 1〜5 μ πιであることが好ましい。 In the cholesteric liquid crystal layer of the type (d) described above, the liquid crystal compound, a solvent, It is preferable to first form a coating solution containing a surfactant, a polymerization initiator, a chiralizing agent, an alignment controlling agent and the like as appropriate on the substrate having the alignment film. The thickness of the cholesteric liquid crystal layer is preferably from 1 to 1 Om, and from the viewpoint of alignment uniformity, is preferably from 1 to 5 μπι.
液晶性化合物としては棒状液晶性化合物、 円盤状液晶性化合物、 液晶ポリマーが 挙げられるが、 どれを用いるかは目的の配向状態に応じて適宜選択され得る。 また 、 配向状態を固定化させるためには目的の配向状態において熱あるいは紫外線等に よって固化することが好ましく、 このために分子中に重合性を有する官能基が導入 されたものが好ましい。  Examples of the liquid crystal compound include a rod-shaped liquid crystal compound, a discotic liquid crystal compound, and a liquid crystal polymer, and any of them can be appropriately selected depending on a desired alignment state. Further, in order to fix the alignment state, it is preferable to solidify by heat or ultraviolet rays in the target alignment state, and for this purpose, it is preferable that a polymerizable functional group is introduced into the molecule.
上記棒状液晶性化合物、 円盤状液晶性化合物、 液晶ポリマーは、 それぞれ前述の ( c ) タイプにおいて説明した棒状液晶性化合物、 円盤状液晶性化合物、 液晶ポリ マーの中からコレステリック液晶を適宜選択して用いることができる。  The rod-shaped liquid crystal compound, the discotic liquid crystal compound, and the liquid crystal polymer are each appropriately selected from cholesteric liquid crystal from the rod-shaped liquid crystal compound, the discotic liquid crystal compound, and the liquid crystal polymer described in the above (c) type. Can be used.
塗布液の調製に用いられる溶媒、 界面活性剤、 重合開始剤、 キラル化剤、 配向調 整剤、 さらには塗布液の塗布方法などについては、 前述の (c ) タイプで説明した とおりである。  The solvent, surfactant, polymerization initiator, chiralizing agent, orientation adjusting agent, and the method of applying the coating solution used in the preparation of the coating solution are the same as those described in the above (c) type.
また、 コレステリック液晶層の偏光分離特性については、 前述の (c ) タイプに ついて、 F i g . :!〜 F i g . 3を例に挙げて説明したとおりである。  The polarization separation characteristics of the cholesteric liquid crystal layer are the same as those of the type (c) described above with reference to FIGS.
この (d ) タイプの円偏光分離素子に用いられる光路変換層は、 入射面に対する 光の入射角と入射面に対する出射角が異なるものを指す。 ここで言う入射面に対す る光の入射角とは、 入射する光の方向と入射面に対する法線との成す角度であり、 同面に対する出射角とは光路変換層から出射する光の方向と入射面に対する法線と の成す角度を指す。 したがって、 入射光は光路変換層により進行方向を変えて出射 することになる。 光路変換層のこのような機能は入射光全体に渡っていてもよいし 、 入射光の一部に対してのみ作用するものでもよい。 このような光路変換層として は、 基材の片側表面を凹凸加工したフィルムや、 基材中に粒子を分散させた拡散シ ート等が挙げられる。 基材の片側表面を凹凸加工したフィルムとしては、 エンボス 処理等で表面をマット化したものや、 プリズムシート等が挙げられる。 基材中に粒 子を分散させた拡散シートとしては市販のものを適宜用いることができるが、 ヘイ ズ値が大きく、 透明度の高いものが好ましい。 基材のヘイズ値は、 「ヘイズ、 透明 プラスチックの透過率標準試験方法」 A S TMD 1003に準じた測定を東洋精機 (株)製 「ヘイズカードプラス」 により測定した垂直入射光に対するヘイズ値で 3〜 65%であることが好ましく、 30〜60%であることがさらに好ましい。 基材の 透明度は前記ヘイズ値の試験法で同じ評価機にて測定した値が、 垂直入射光に対し て 80%以上であることが好ましく、 90%以上であることがさらに好ましい。 ま た、 基材上に前述のヘイズ値と透明度を有する拡散層を塗布したものを用いること もできる。 The optical path conversion layer used in the circularly polarized light separating element of the type (d) indicates one in which the incident angle of light on the incident surface and the exit angle on the incident surface are different. Here, the incident angle of light on the incident surface is the angle between the direction of the incident light and the normal to the incident surface, and the exit angle on the same surface is the direction of the light exiting from the optical path conversion layer. It refers to the angle between and the normal to the plane of incidence. Therefore, the incident light is emitted with its traveling direction changed by the optical path conversion layer. Such a function of the optical path conversion layer may be applied to the entire incident light or may be applied to only a part of the incident light. Examples of such an optical path conversion layer include a film in which one surface of a base material is unevenly processed, and a diffusion sheet in which particles are dispersed in the base material. Examples of the film in which one side surface of the base material is unevenly processed include a film having a matte surface by embossing or the like, a prism sheet, and the like. As the diffusion sheet in which the particles are dispersed in the base material, a commercially available diffusion sheet can be appropriately used, but a diffusion sheet having a large haze value and high transparency is preferable. The haze value of the substrate is “Haze, transparent The standard test method for the transmittance of plastics "is preferably 3 to 65% as a haze value with respect to normal incident light measured by" Haze Card Plus "manufactured by Toyo Seiki Co., Ltd., according to AS TMD 1003, and 30 to 60%. % Is more preferable. The transparency of the substrate is preferably 80% or more, and more preferably 90% or more, with respect to the vertically incident light, as measured with the same evaluator in the haze value test method. Further, a substrate obtained by applying a diffusion layer having the above-mentioned haze value and transparency on a substrate can also be used.
前述の (d) タイプの円偏光分離素子は、 前述のコレステリック液晶層と光路変 換層を積層一体化して形成される。 積層方法については市販の透明粘着剤を用いて 貼り合せる方法や、 前述の拡散層をコレステリック液晶層上に直接塗布する方法等 が挙げられる。  The above-mentioned (d) type circularly polarized light separating element is formed by laminating and integrating the above-mentioned cholesteric liquid crystal layer and the optical path conversion layer. Examples of the lamination method include a method of bonding using a commercially available transparent pressure-sensitive adhesive, and a method of directly applying the above-mentioned diffusion layer on the cholesteric liquid crystal layer.
積層順については液晶表示装置の光源側から第一のコレステリック液晶層、 光路 変換層、 第二のコレステリック液晶層の順で積層することが好ましい。 反射帯域を 調整するために、 第二のコレステリック液晶層の上にさらに、 光路変換層およびコ レステリック液晶層を積層してもよい。  Regarding the stacking order, it is preferable to stack the first cholesteric liquid crystal layer, the optical path conversion layer, and the second cholesteric liquid crystal layer in this order from the light source side of the liquid crystal display device. In order to adjust the reflection band, an optical path conversion layer and a cholesteric liquid crystal layer may be further laminated on the second cholesteric liquid crystal layer.
コレステリック液晶層と光路変換層を積層した円偏光分離素子において反射帯域 の広帯域化が発生する理由を F i g. 6を用いて説明する。 F i g. 6は、 光路変 換層の両側にコレステリック液晶層を配置した場合の原理を示す説明図であって、 コレステリック液晶層 8および 9は垂直入射光に対して赤色領域に反射帯域を有す るものとして描かれている。 まず、 光源からコレステリック液晶層 8に入射した光 L l、 L2、 L 3は式 (III) に示したとおり、 その入射角に応じて異なる中心波 長の選択反射光 L I (R) 、 L2 (G) 、 L3 (B) を生ずる。 結果的にコレステ リック液晶層 8を通過する光は、 コレステリック層 8の選択反射を受けない回転方 向の円偏光 L aと、 各角度毎の選択反射帯域以外の波長の光 L 1 (GB) 、 L 2 ( RB) 、 L 3 (RG) である。 L aおよび L I (GB) 、 L 2 (RB) 、 L 3 (R G) は拡散シート 10に入射し、 ここで入射角履歴を解消され通常の拡散光 L a# および L 1 (GB) #、 L 2 (RB) #、 L3 (RG) #としてコレステリック液晶層 9に入射する。 ここで用いる拡散シートは偏光解消性が小さいので拡散光 L a#お ょぴ L 1 (GB) #、 L2 (RB) #、 L 3 (RG) #は L aおよび L I (GB) 、 L 2 (RB) 、 L 3 (RG) の偏光状態を維持し得る。 コレステリック液晶層 9は拡 散光 L a#および L I (GB) #、 L 2 (RB) #、 L 3 (RG) #に対してコレステ リック液晶層 8と同様に反射光 L 1 (R) #、 L 2 (G) #、 L 3 (B) #を発生させ る。 反射光 L I (R) #、 L 2 (G) #、 L 3 (B) #は再び拡散シート 1 0を通過す ることで入射角履歴が解消された結果、 コレステリック層 8に拡散光として入射し 、 一部の光は L 1 1 (R) 、 L 2 1 (G) 、 L 3 1 (B) として光源側に透過する 。 L 1 1 (R) 、 L 2 1 (G) 、 L 3 1 (B) も先と同じ理由で L I (R) 、 L 2 (G) 、 L 3 (B) と同じ偏光状態を維持している。 結果的に最初に反射した L 1 (R) 、 L 2 (G) 、 L 3 (B) に L l l (R) 、 L 2 1 (G) 、 L 3 1 (B) を 加算した光が光源側に反射されることになる。 コレステリック層 9を透過した光に ついても、 さらに拡散シートとコレステリック液晶層を積層することで上と同様に して偏光状態を維持したままの反射光を取り出し得る。 このようにして、 この (d ) タイプの円偏光分離素子は入射光を別々の回転方向の円偏光に透過光および反射 光として分離することが可能である。 The reason why the reflection band is widened in the circularly polarized light separating element in which the cholesteric liquid crystal layer and the optical path conversion layer are stacked will be described with reference to FIG. FIG. 6 is an explanatory view showing the principle when cholesteric liquid crystal layers are arranged on both sides of the optical path conversion layer. The cholesteric liquid crystal layers 8 and 9 have a reflection band in the red region for vertically incident light. It is depicted as having. First, as shown in Equation (III), the lights L l, L2, and L 3 incident on the cholesteric liquid crystal layer 8 from the light source are selectively reflected lights LI (R) and L2 ( G) produces L3 (B). As a result, the light that passes through the cholesteric liquid crystal layer 8 is circularly polarized light La in the rotation direction that is not selectively reflected by the cholesteric layer 8 and light L 1 (GB) having a wavelength other than the selective reflection band at each angle. , L 2 (RB) and L 3 (RG). L a and LI (GB), L 2 (RB), and L 3 (RG) enter the diffusion sheet 10, where the incident angle history is eliminated and ordinary diffused light L a # and L 1 (GB) #, L The light enters the cholesteric liquid crystal layer 9 as 2 (RB) # and L3 (RG) # . Since the diffusion sheet used here has low depolarization, the diffused light L a # L1 (GB) # , L2 (RB) #, L3 (RG) # is La, LI (GB), L The polarization state of 2 (RB) and L 3 (RG) can be maintained. The cholesteric liquid crystal layer 9 reflects the reflected light L 1 (R) #, L with respect to the diffused light L a # and LI (GB) #, L 2 (RB) #, L 3 (RG) # as in the cholesteric liquid crystal layer 8. 2 (G) # and L 3 (B) # are generated. The reflected light LI (R) #, L 2 (G) #, and L 3 (B) # pass through the diffusion sheet 10 again, and the incident angle history is eliminated.As a result, the reflected light enters the cholesteric layer 8 as diffused light. Some of the light is transmitted to the light source side as L 11 (R), L 21 (G), and L 31 (B). L 1 1 (R), L 2 1 (G), and L 3 1 (B) maintain the same polarization state as LI (R), L 2 (G), and L 3 (B) for the same reason as above. I have. As a result, the first reflected L 1 (R), L 2 (G), and L 3 (B) plus L ll (R), L 2 1 (G), and L 3 1 (B) are the light source. Will be reflected to the side. Regarding the light transmitted through the cholesteric layer 9, by further laminating the diffusion sheet and the cholesteric liquid crystal layer, it is possible to extract reflected light while maintaining the polarization state in the same manner as above. In this way, this type of circularly polarized light separating element (d) can separate incident light into circularly polarized light having different rotation directions as transmitted light and reflected light.
本発明の照明装置は、 前述の各偏光分離素子と、 該偏光分離素子に対して光を供 給する面光源装置を組み合わせた装置であって、 前記偏光分離素子の法線入射光に 対する赤色バンドエッジを A (nm) とした場合に、 面光源装置の光の出射角度 Θ は、 関係式 (a)  An illumination device according to the present invention is a device in which each of the above-described polarization splitting elements is combined with a surface light source device that supplies light to the polarization splitting element. When the band edge is A (nm), the light emission angle 面 of the surface light source device is expressed by the relational expression (a).
s i η Θ≤ 1.5 X 〔1一(630ZA)2〕 1/2 (a) si η Θ≤ 1.5 X [11 (630ZA) 2] 1/2 (a)
を満たす範囲内である。 ここでいう出射角度とは、 面光源装置の出射面に対する法 線と、 法線から徐々に傾けていった場合の輝度の減少率が法線方向の輝度に対し、 5%以内になる角度をいう。 本発明の照明装置においては、 前記偏光分離素子は、 法線入射光に対する赤色バンドエッジが 630 nm以上 759 nm未満の範囲にあ ることが好ましく、 6 3 O nm以上 6 90 nm未満の範囲にあることがより好まし い。 なお、 法線入射光に対する赤色バンドエッジとは、 法線入射光に対する選択反 射帯域の長波長側の臨界値を指す。 It is within the range satisfying. The emission angle here means the normal to the emission surface of the surface light source device, and the angle at which the rate of decrease in luminance when gradually inclined from the normal is within 5% of the luminance in the normal direction. Say. In the illumination device of the present invention, the polarization separation element preferably has a red band edge with respect to normal incident light in a range of 630 nm or more and less than 759 nm, and in a range of 63 O nm or more and less than 690 nm. Something is better. The red band edge for normal incident light indicates a critical value on the long wavelength side of the selective reflection band for normal incident light.
バックライトからの光の波長は、 通常 400〜6 30 nm程度である。 したがつ て、 その拡散角度と、 偏光分離素子の法線入射光に対する赤色バンドエッジとの関 係が、 上記式 (a) を満たしていれば、 該赤色バンドエッジを 759 nm以上に拡 張しなくても、 該偏光分離素子によって、 バックライ トからの光は十分に偏光状態 の異なる透過光と反射光に分離される。 また、 該赤色バンドエッジが 630 nm未 満であると、 ノくックライ トからの垂直光のうち 630 nm以上の波長の光が分離さ れずに透過してしまう場合が生じるおそれがある。 The wavelength of light from the backlight is usually about 400 to 630 nm. Therefore, if the relationship between the diffusion angle and the red band edge with respect to the normal incidence light of the polarization separation element satisfies the above equation (a), the red band edge is expanded to 759 nm or more. Even without stretching, the light from the backlight is separated into transmitted light and reflected light having sufficiently different polarization states by the polarization separation element. If the red band edge is less than 630 nm, light having a wavelength of 630 nm or more among the vertical lights from the knock light may be transmitted without being separated.
次に、 本発明の照明装置においては、 面光源装置として、 前述の偏光分離素子に 対して出射する光の出射角度 0が上記関係式 (a) を満たす範囲内であるものが用 いられる。  Next, in the illumination device of the present invention, a surface light source device in which the emission angle 0 of the light emitted to the above-mentioned polarization splitting element is within the range satisfying the above relational expression (a) is used.
このような面光源装置としては、 偏光分離素子に対して出射する光の出射角度 Θ が関係式 (a) を満足していればよく、 その構成については特に制限されず、 いか なる構成のものであってもよい。  As such a surface light source device, it is sufficient that the emission angle 光 of the light emitted to the polarization separation element satisfies the relational expression (a), and the configuration is not particularly limited. It may be.
例えば (1) バックライトユニットにおいて、 汎用の導光板の出射側面上に視野 角制御部材 (ルーバー) を配設したもの、 ( 2 ) 特開平 7— 270708号公報に 開示されている楔形出射方向特性調整素子を用いた面光源装置、 (3) 特開平 1 1 - 28861 1号公報に開示されているタンデム型面光源装置、 (4) 上記タンデ ム型面光源装置において、 導光板として、 内部に組成の異なる領域を有するものを 用いた面光源装置、 (5) 汎用の直下型バックライ トュニット上にプリズムシート を配置したものなどを挙げることができる。  For example, (1) a backlight unit in which a viewing angle control member (louver) is provided on the emission side surface of a general-purpose light guide plate; (2) a wedge-shaped emission direction characteristic disclosed in Japanese Patent Application Laid-Open No. 7-270708. A surface light source device using an adjusting element; (3) a tandem surface light source device disclosed in Japanese Patent Application Laid-Open No. H11-288611, (4) in the tandem surface light source device, Surface light source devices using devices having regions with different compositions; and (5) devices in which a prism sheet is disposed on a general-purpose direct-type backlight unit.
前記 ( 2 ) の面光源装置としては、 例えば有効散乱照射パラメータ E [c m-i] の値が 0.5 E≤ 50の範囲にあり、 光散乱能を生み出す屈折率不均一構造の相 関関数 γ (r) を τ/ (r) =e x p [- r/a] (但し、 rは光散乱導光体内の 2 点間距離) で近似した時の相関距離 a [/im] の値が 0.06 a≤35の範囲に ある一様な散乱能が与えられた楔形状断面を有する体積領域を含む指向出射性の光 散乱導光素子と、 前記光散乱導光素子の光取出面との間に小間隔を形成すると共に 前記光散乱導光素子と相補的な位置関係を以て配置された楔形出射方向特性調整素 子と、 前記光散乱導光素子の前記楔形状断面の断面積が相対的に大きな方の端面側 に配置された光入射手段を備え、 前記楔形出射方向特性調整素子が、 前記光散乱導 光素子よりも小さな有効散乱照射パラメータ Eを有する光散乱導光体で構成されて おり、 前記光散乱導光素子の光取入面に対向する前記楔形出射方向特性調整素子の 光取入面あるいは該光取入面と相反する側の光出射面の少なくとも一方には、 光出 射方向修正用のプリズム状起伏が形成されている楔形出射方向特性調整素子を用レ、 た面光源装置を挙げることができる。 As the surface light source device of the above (2), for example, the value of the effective scattering irradiation parameter E [c mi] is in the range of 0.5 E ≤ 50, and the correlation function γ (r ) Is approximated by τ / (r) = exp [-r / a] (where r is the distance between two points in the light scattering light guide) and the value of the correlation distance a [/ im] is 0.06 a≤35 The light-scattering light-guiding element having directivity including a volume region having a wedge-shaped cross section provided with uniform scattering power in the range of: and a small space between the light-extracting surface of the light-scattering light-guiding element. A wedge-shaped emission direction characteristic adjusting element formed and arranged in a complementary positional relationship with the light-scattering light-guiding element; and an end face having a relatively large cross-sectional area of the wedge-shaped cross section of the light-scattering light-guiding element. And a wedge-shaped emission direction characteristic adjusting element, wherein the effective scattering irradiation parameter is smaller than the light scattering light-guiding element. A light-scattering light guide having E, and a light-receiving surface of the wedge-shaped light-emitting direction characteristic adjusting element facing the light-receiving surface of the light-scattering light-guiding element or a side opposite to the light-receiving surface. At least one of the light exit surfaces of the A surface light source device using a wedge-shaped emission direction characteristic adjustment element having a prismatic undulation for correcting the emission direction can be used.
F i g . 7は、 前記面光源装置の 1例の要部斜視図である。 F i g . 7において 、 3 1は指向出射性の光散乱導光体からなる楔形状の光散乱導光素子である。 Lは 蛍光ランプで、 このランプ Lから右方に向かう光を入射面 3 2から光散乱導光素子 3 1內へ入射させる。 符号 3 3は光取出面であり、 この面から光散乱導光素子 3 1 の光が取り出される。 光取出面 3 3と相反する側の裏面 3 4には正反射 14あるいは 拡散反射性の反射手段 3 5が密着配置されている。  FIG. 7 is a perspective view of a main part of an example of the surface light source device. In FIG. 7, reference numeral 31 denotes a wedge-shaped light-scattering light-guiding element composed of a directional light-emitting light-scattering lightguide. L is a fluorescent lamp, and the light directed rightward from the lamp L is made incident on the light scattering light guide element 31 素 子 from the incident surface 32. Reference numeral 33 denotes a light extraction surface, from which light of the light scattering / guiding element 31 is extracted. On the back surface 3 4 opposite to the light extraction surface 33, a regular reflection 14 or a diffuse reflection reflection means 35 is closely attached.
この反射手段 3 5は、 光散乱導光素子 3 1とは別体の反射部材 (例えば、 銀箔シ ート) であってもよく、 また、 裏面 3 4上に形成された反射膜 (例えばアルミ蒸着 膜) であってもよい。 符号 4 0は、 光散乱導光素子 3 1と相補的な位置関係をもつ て配置された楔形出射方向特性調整素子を表わしており、 その両端面 4 1、 4 2は 各々光散乱導光素子 3 1の光入射面 3 2及び末端面 3 6と整列した位置関係にある 光散乱導光素子 3 1の光取出面 3 3と空気層 A Rを挟んで対向したプリズム状の 起伏列が形成された光取入面 4 3となっている。 この光取入面 4 3に相反する側の 面が光出射面 4 4となっており、 この光出射面 4 4から出射された光 (矢印群で表 示) 4 4 f や 4 4 Γが面光源装置からの出射光として使用される。  The reflecting means 35 may be a reflecting member (for example, a silver foil sheet) separate from the light-scattering light-guiding element 31, or a reflecting film (for example, aluminum) formed on the back surface 34. (A vapor-deposited film). Reference numeral 40 denotes a wedge-shaped emission direction characteristic adjustment element arranged in a complementary positional relationship with the light scattering light guiding element 31. Both end faces 41, 4 2 are light scattering light guiding elements, respectively. A prism-shaped undulating array is formed that opposes the light-extraction surface 33 of the light-scattering light-guiding element 31 that is in alignment with the light-incident surface 3 2 and the terminal surface 36 of the air layer AR. The light intake surface is 4 3. The surface opposite to the light entrance surface 43 is the light exit surface 44, and the light (indicated by the arrow group) 4 4f or 4 4 か ら emitted from the light exit surface 44 is Used as light emitted from the surface light source device.
前記光散乱導光素子 3 1は、 例えばポリメチルメタクリレー卜などの透明樹脂中 に、 シリコーン系樹脂などを少量 (例えば 0 . 0 7重量%程度) 均質に分散させて なる材料などが用いられる。 一方、 楔形出射方向特性調整素子 4 0は、 弱い散乱能 が付与された光散乱導光体から構成されており、 その材料としては、 例えばポリメ チルメタタリレートなどの透明榭脂中に、 シリコーン系樹脂などを少量 (例えば 0 . 0 5重量%程度) 均質に分散させてなるものなどが用いられる。  The light-scattering light-guiding element 31 is made of a material obtained by uniformly dispersing a small amount (for example, about 0.07% by weight) of a silicone resin or the like in a transparent resin such as polymethyl methacrylate. . On the other hand, the wedge-shaped emission direction characteristic adjusting element 40 is composed of a light scattering light guide provided with a low scattering power, and is made of, for example, silicone resin in a transparent resin such as polymethylmetharylate. A resin obtained by uniformly dispersing a small amount (for example, about 0.05% by weight) of a base resin or the like is used.
一方、 前記 (3 ) 及び (4 ) のタンデム型面光源装置としては、 導光板と、 その 端面側に設けられた光源及び下面側に設けられた複数の光源から少なくとも構成さ れた装置であって、 前記導光板において、 偏光分離素子側表面が、 偏光分離素子の 光出射側表面と平行であり、 これと対向する裏面側が、 該偏光分離素子の光出射側 表面とは平行でない複数の角度領域を有し、 力つ前記複数の角度領域それぞれに光 源を配置してなる構造のものを用いることができる。 このタンデム型面光源装置に おいては、 導光板として内部に組成の異なる領域を有するものを用いたものが特に 好適である。 On the other hand, the tandem-type surface light source device of (3) and (4) is a device comprising at least a light guide plate, a light source provided on an end surface side, and a plurality of light sources provided on a lower surface side. In the light guide plate, the polarization separation element side surface is parallel to the light emission side surface of the polarization separation element, and the opposite back side has a plurality of angles that are not parallel to the light emission side surface of the polarization separation element. Having an area, each of the plurality of angle areas having light A structure in which a source is arranged can be used. In this tandem type surface light source device, a light guide plate having a region having a different composition inside is particularly preferable.
F i g. 8は、 タンデム型面光源装置の 1例の構成を示す断面図であって、 導光 板 51と、 その端面側に設けられた光源 52 a及び下面側に設けられた複数の光源 52 bから構成されている。 導光板 51においては、 偏光分離素子側 (出射側) 表 面 54が、 偏光分離素子 (図示せず) の光出射側表面と平行であり、 これと対峙す る裏面側が、 該偏光分離素子の光出射側表面とは平行でない複数の角度領域を有し 、 上記複数の角度領域それぞれに光源 52 bが配置されている。 該角度領域の形状 については特に制限はない。 また、 その形状としては、 サイドの入射面に対向する 側端部の厚さが、 入射面のそれよりも薄い形状のものが好ましい。  FIG. 8 is a cross-sectional view showing an example of the configuration of a tandem-type surface light source device, in which a light guide plate 51, a light source 52a provided on an end surface thereof, and a plurality of light guides provided on a lower surface thereof are provided. It comprises a light source 52b. In the light guide plate 51, the surface 54 on the side of the polarization separation element (outgoing side) is parallel to the surface on the light emission side of the polarization separation element (not shown), and the opposite back side is the side of the polarization separation element. It has a plurality of angle regions that are not parallel to the light emission side surface, and a light source 52b is arranged in each of the plurality of angle regions. There is no particular limitation on the shape of the angle region. In addition, the shape of the side end portion facing the incident surface of the side is preferably thinner than that of the incident surface.
53は、 導光板 51の内部に存在する組成の異なる領域を示す。 この組成の異な る領域は、 ミクロンオーダーの不均一構造を有しており、 具体的には前記光散乱導 光素子で説明したものと同じものを挙げることができる。  Reference numeral 53 denotes a region having a different composition existing inside the light guide plate 51. The regions having different compositions have a non-uniform structure on the order of microns, and specific examples thereof include the same ones as described in the light scattering light-guiding element.
本発明の照明装置における面光源装置に用いられる導光板は、 ノルボルネン系重 合体、 ポリメチルメタタリレート、 ポリカーボネート、 ポリスチレンなどの透明性 を有する材料で形成することができる。 また、 光源としては、 特に制限はなく、 従 来公知のもの、 例えば冷陰極管、 エレク トロルミネッセンス素子 (ELD) 、 発光 ダイオード (LED) など挙げられるが、 冷陰極管が好ましく、 特に三波長型冷陰 極管が好適である。  The light guide plate used for the surface light source device in the lighting device of the present invention can be formed of a transparent material such as a norbornene-based polymer, polymethyl methacrylate, polycarbonate, or polystyrene. The light source is not particularly limited, and includes a conventionally known one such as a cold cathode tube, an electroluminescence element (ELD), and a light emitting diode (LED). A cold cathode tube is preferable, and a three-wavelength type is particularly preferable. Cold cathode tubes are preferred.
本発明の照明装置においては、 主屈折率 nx、 1^及ぴ 12 (ただし、 nx、 nyは、 厚み方向に垂直なたがいに直交する 2方向の屈折率であり、 nyは面内の直交軸方 向の屈折率の内最小のものであり、 nzは厚み方向の屈折率である。 なお、 nx、 n yの直交軸は、 nx— nyが最大となるように定められる。 ) の関係が nz>nx、 nz 〉ny、 n^nyである位相差素子を有することが好ましい。 この位相差素子が複数 の層から構成されている場合、 当該素子全体の平均値の主屈折率が、 前記の関係を 満たせばよい。 この主屈折率は、 自動複屈折計 [例えば、 王子計測器 (株)製 「KO BR Αシリーズ」 など] により測定することができる。 In the illumination device of the present invention, the principal refractive index n x, 1 ^及Pi 1 2 (where, n x, n y is 2 refractive index in the direction orthogonal to each other perpendicular to the thickness direction, n y is are those inner minimum orthogonal axial direction refractive index of the direction of the plane, n z is a refractive index in the thickness direction Here, the orthogonal axes of the n x, n y is, n x -. n y is the maximum defined as. relations n z> n x of), n z> n y, it preferably has a retardation element is n ^ n y. When the phase difference element is composed of a plurality of layers, the main refractive index of the average value of the entire element should satisfy the above relationship. This main refractive index can be measured by an automatic birefringence meter [for example, “KO BR II series” manufactured by Oji Scientific Instruments).
なお、 nx nyとは、 屈折率差が、 通常 0.0002以内、 好ましくは 0.000 1以内、 より好ましくは 0.00 0 0 5以内のことである。 Note that n x n y means that the difference in refractive index is usually within 0.0002, preferably 0.000 It is within 1 and more preferably within 0.0005.
当該位相差素子は、 面内のレターデーシヨンを実質的に有さず、 かつ R t h二 〔 [ (nx+ny) ノ 2] — ηζ〕 χΌ (ただし、 Dは位相差素子の厚みである。 ) で定 義される厚み方向のレターデーシヨンが一 20〜一 1 0 00 nmの範囲にあるもの が好ましい。 面内レターデーシヨン R eは、 R e二 (nx-ny) xDで定義される 。 面内のレターデーシヨンを実質的に有さずということは、 該面内レターデーショ ン R e力 通常 2 0 nm以下、 好ましくは 1 0 n m以下、 より好ましくは 5 nm以 下であることをいう。 また、 厚み方向のレターデーシヨン R t hは、 使用目的に応 じて適宜設定されるが、 位相差補償部材としての機能を果たす上では、 一 2 0^ ^— 1 00 0 n mの範囲が好ましく、 一 5 0 5 0 0 n mの範囲が特に好ましレ、。 このような光学特性を有する位相差素子としては、 少なくとも負の固有複屈折値 を有する材料 (以下、 単に負の材料ということがある。 ) を延伸配向させて得られ た層を含むものを挙げることができる。 ここで、 負の固有複屈折値を有する材料と は、 分子が一軸性の秩序をもって配向した際に、 光学的に負の一軸性を示す特性を 有するものをいう。 The phase difference element is essentially no retardation Chillon plane, and R th two [[(n x + n y) Bruno 2] - eta zeta] ChO (although, D is the phase difference element It is preferable that the retardation in the thickness direction defined by) is in the range of 120 to 100 nm. Plane retardation Chillon R e is defined by R e two (n x -n y) xD. Having substantially no in-plane retardation means that the in-plane retardation Re force is usually 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less. . Further, the retardation R th in the thickness direction is appropriately set according to the purpose of use, but in order to function as a phase difference compensating member, a range of 120 ^^ — 100 nm is preferable. The range of 1550 nm is particularly preferred. Examples of the retardation element having such optical characteristics include those including a layer obtained by stretching and orienting a material having at least a negative intrinsic birefringence value (hereinafter, sometimes simply referred to as a negative material). be able to. Here, a material having a negative intrinsic birefringence refers to a material having a property of exhibiting optically negative uniaxiality when molecules are oriented in a uniaxial order.
前記負の固有複屈折値を有する材料としては、 ディスコティック液晶、 ディスコ ティック液晶ポリマー、 芳香族ビニル系重合体、 ポリアクリロュトリル系重合体、 ポリメタクリレート系重合体、 セルロースエステル系重合体、 これらの多元 (二元 、 三元等) 共重合体などが挙げられる。 これらは 1種を単独で、 あるいは 2種以上 を組み合わせて用いることができる。  Examples of the material having the negative intrinsic birefringence value include discotic liquid crystal, discotic liquid crystal polymer, aromatic vinyl polymer, polyacrylitol polymer, polymethacrylate polymer, cellulose ester polymer, and the like. (Binary, ternary, etc.) copolymers. These can be used alone or in combination of two or more.
これらの中でも、 芳香族ビュル系重合体、 ポリアクリロニトリル系重合体及びポ リメチルメタタリレート系重合体の中から選択される少なくとも 1種が好ましい。 中でも複屈折発現性が高いという観点から、 芳香族ビニル系重合体がより好ましい 芳香族ビニル系重合体とは、 芳香族ビニル単量体の重合体、 又は芳香族ビニル単 量体とこれと共重合可能な単量体との共重合体のことをいう。 芳香族ビニル単量体 としては、 スチレン; 4—メチルスチレン、 4一クロロスチレン、 3—メチ スチ レン、 4—メ トキシスチレン、 4— t e r t—ブトキシスチレン、 α—メチ スチ レンなどのスチレン誘導体;などが挙げられる。 これらを単独若しくは 2種以上併 用して使用してもよい。 Among these, at least one selected from an aromatic butyl polymer, a polyacrylonitrile polymer and a polymethyl methacrylate polymer is preferable. Above all, from the viewpoint of high birefringence manifestation, an aromatic vinyl polymer is more preferable. The aromatic vinyl polymer is a polymer of an aromatic vinyl monomer or an aromatic vinyl monomer and a copolymer thereof. It means a copolymer with a polymerizable monomer. Examples of aromatic vinyl monomers include styrene; styrene derivatives such as 4-methylstyrene, 4-chlorostyrene, 3-methylstyrene, 4-methoxystyrene, 4-tert-butoxystyrene, and α-methylstyrene; And the like. These may be used alone or in combination of two or more. May be used.
芳香族ビュル単量体と共重合可能な単量体としては、 プロピレン、 ブテン;ァク リロ二トリル;アクリル酸、 メタクリル酸、 無水マレイン酸;アクリル酸エステル 、 メタクリル酸エステル;マレイミ ド;酢酸ビエル、 塩化ビエル;などが挙げられ る。  Monomers that can be copolymerized with aromatic vinyl monomers include propylene, butene; acrylonitrile; acrylic acid, methacrylic acid, maleic anhydride; acrylic esters, methacrylic esters; maleimide; And biel chloride;
芳香族ビニル系重合体の中でも、 耐熱性が高い観点から、 スチレン及び 又はス チレン誘導体と無水マレイン酸との共重合体が好ましレ、。  Among aromatic vinyl polymers, a copolymer of styrene and / or a styrene derivative and maleic anhydride is preferred from the viewpoint of high heat resistance.
本発明に用いる芳香族ビュル系重合体のガラス転移温度は、 優れた光学特性が得 られる観点から、 好ましくは 1 1 0 °C以上、 より好ましくは 1 2 0 °C以上である。 本発明に使用する位相差素子としては、 前記負の固有複屈折値を有する材料から なるフィルム又はシートを一軸延伸やアンバランス二軸延伸したものを、 延伸方向 The glass transition temperature of the aromatic vinyl polymer used in the present invention is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoint of obtaining excellent optical properties. As the retardation element used in the present invention, a film or sheet made of the material having the negative intrinsic birefringence value obtained by uniaxially stretching or unbalanced biaxially stretching the stretching direction is used.
(屈折率が最大又は最小になる方向) をたがいに直交させて 2枚積層したもの;負 の固有複屈折値を有する材料からなるフィルム又はシートをバランス二軸延伸した もの (面内の任意の方向で屈折率が実質的に等しくなるように延伸したもの) ;負 の固有複屈折値を有する材料からなる層の少なくとも片方の面に透明樹脂材料から なる層を設けたもの;が挙げられる。 し力 し、 機械的強度などの点から、 負の固有 複屈折値を有する材料からなる層 (以下、 「A層」 ということがある) の少なくと も片方の面に透明樹脂材料からなる層 (以下、 「B層」 ということがある) を設け たものが好適である。 (In the direction in which the refractive index becomes maximum or minimum), two layers are stacked perpendicularly to each other; a film or sheet made of a material having a negative intrinsic birefringence is biaxially stretched in a balanced manner (arbitrary in-plane And a layer formed of a material having a negative intrinsic birefringence value and a layer made of a transparent resin material provided on at least one surface of the layer made of a material having a negative intrinsic birefringence value. From the viewpoint of mechanical strength, etc., at least one layer made of a material having a negative intrinsic birefringence value (hereinafter sometimes referred to as “A layer”) is made of a transparent resin material on at least one side (Hereinafter, sometimes referred to as “B layer”) is preferable.
前記脂環式構造を有する重合体については、 前述の円偏光分離素子の基材におい て、 説明したとおりである。  The polymer having the alicyclic structure is as described in the base material of the above-mentioned circularly polarized light separating element.
本発明において、 透明樹脂材料からなる層 (B層) の厚みは、 特に限定されない 力 通常 1 5 ~ 2 5 0 μ πι、 好ましくは 2 5〜: 1 5 0 μ ιηである。  In the present invention, the thickness of the layer (layer B) made of a transparent resin material is not particularly limited, but is usually 15 to 250 μπι, preferably 25 to 150 μιη.
また、 本発明に使用する位相差素子が、 このような負の固有複屈折値を有する材 料からなる層 (Α層) と透明榭脂材料からなる層 (Β層) との積層構造の場合、 該 Α層の厚みは、 特に限定されないが、 通常5〜4 0 0 111、 好ましくは 1 5〜2 5 0 μ mである。  Further, the retardation element used in the present invention has a laminated structure of a layer (Α layer) made of a material having such a negative intrinsic birefringence value and a layer (Β layer) made of a transparent resin material. The thickness of the layer is not particularly limited, but is usually 5 to 400 111, preferably 15 to 250 μm.
さらに本発明に使用する位相差素子が、 このような負の固有複屈折値を有する材 料からなる層 (A層) と透明榭月旨材料からなる層 (B層) との積層構造を含む場合 、 A層に用いる負の固有複屈折値を有する材料のガラス転移温度 T g Aと B層に用 いる透明樹脂材料のガラス転移温度 T g Bとが、 T g A〉T g Bであることが好まし く、 T g A— 2 0≥T g Bであることがさらに好ましい。 T g Bが T g Aと同等以上で あると、 特に B層に用いる透明樹脂材料の固有複屈折値が正である場合、 延伸によ つて発現する B層の屈折率異方性が A層の屈折率異方性と相殺してしまい、 目的と する面方向の屈折率と厚さ方向の屈折率との関係が得られなくなる恐れがある。 さらに本発明に使用する位相差素子が、 このような負の固有複屈折値を有する材 料からなる層 (A層) と透明樹脂材料からなる層 (B層) との積層構造を含む場合 、 吸湿や温度変化、 または経時変化による反りなどを防止する観点からは、 負の固 有複屈折値を有する材料からなる層 (A層) の両面に、 透明樹脂材料からなる層 ( B層) を設けることが好ましく、 この場合 2層の B層の厚さは実質的に等しいこと が好ましい。 また、 片面のみに B層を積層する場合は、 重ねる B層の数に限りはな いが、 通常は 1層である。 Further, the retardation element used in the present invention includes a layered structure of a layer (A layer) made of a material having such a negative intrinsic birefringence value and a layer (B layer) made of a transparent material having a luster. If The glass transition temperature T g A of the material having a negative intrinsic birefringence value used for the layer A and the glass transition temperature T g B of the transparent resin material used for the layer B are T g A > T g B. And more preferably T g A — 20≥T g B. If T g B is equal to or greater than T g A , the refractive index anisotropy of the B layer caused by stretching, if the intrinsic birefringence value of the transparent resin material used for the B layer is positive, will be expressed in the A layer. The refractive index anisotropy may be canceled out, and a desired relationship between the in-plane refractive index and the thickness direction refractive index may not be obtained. Further, when the retardation element used in the present invention includes a laminated structure of a layer (A layer) made of a material having such a negative intrinsic birefringence value and a layer (B layer) made of a transparent resin material, From the viewpoint of preventing moisture absorption, temperature change, or warpage due to aging, a layer made of a transparent resin material (layer B) and a layer made of a material having a negative intrinsic birefringence (layer A) are provided on both sides. Preferably, the two layers B have substantially the same thickness. When the B layer is laminated on only one side, the number of the B layers to be laminated is not limited, but is usually one layer.
本発明に使用する負の固有複屈折値を有する材料及び Z又は透明樹脂材料には、 必要に応じて、 酸化防止剤、 熱安定剤、 光安定剤、 紫外線吸収剤、 帯電防止剤、 分 散剤、 塩素捕捉剤、 難燃剤、 結晶化核剤、 ブロッキング防止剤、 防曇剤、 離型剤、 顔料、 有機又は無機の充填材、 中和剤、 滑剤、 分解剤、 金属不活性化剤、 汚染防止 剤、 抗菌剤やその他の樹脂、 熱可数性エラストマ一などの公知の添加成分を、 本発 明の効果が損なわれない範囲で添加することができる。  The material having a negative intrinsic birefringence value and the Z or transparent resin material used in the present invention may include an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, an antistatic agent, and a dispersant, if necessary. , Chlorine scavenger, flame retardant, crystallization nucleating agent, anti-blocking agent, anti-fog agent, release agent, pigment, organic or inorganic filler, neutralizer, lubricant, decomposer, metal deactivator, contamination Known additives such as inhibitors, antibacterial agents and other resins, and heat-countable elastomers can be added within a range that does not impair the effects of the present invention.
本発明に使用する位相差素子は、 前記負の固有複屈折値を有する材料からなる層 (A層) と透明樹脂材料からなる層 (B層) との間に接着剤層 (C層) を設けても よい。  The retardation element used in the present invention comprises an adhesive layer (C layer) between a layer (A layer) made of a material having a negative intrinsic birefringence value and a layer (B layer) made of a transparent resin material. May be provided.
接着剤層 (C層) は、 A層に用いる負の固有複屈折値を有する材料と B層に用い る透明榭脂材料との双方と親和性があるものから形成することができる。 例えば、 エチレン一アクリル酸メチル共重合体、 エチレン一アクリル酸ェチル共重合体など のエチレン一ァクリル酸エステル共重合体;エチレンーメタクリル酸メチル共重合 体、 エチレンーメタクリル酸ェチル共重合体などのエチレン一メタクリル酸エステ ル共重合体;エチレン一酢酸ビニル共重合体、 エチレン一スチレン共重合体などの エチレン系共重合体;その他のポリオレフイン共重合体が挙げられる。 また、 これ らの共重合体を酸化、 ケン化、 塩素化、 クロルスルホン化などで変性した変性物を 用いることもできる。 本発明において、 エチレン系共重合体の変性を行うと、 積層 構造体成形時のハンドリング性や接着力の耐熱劣化性を向上させることができる。 前記接着剤層 (C層) の厚さは、 好ましくは 1〜5 0 / ri さらに好ましくは 5 〜 3 0 μ mでめる。 The adhesive layer (C layer) can be formed of a material having affinity for both the material having a negative intrinsic birefringence value used for the A layer and the transparent resin material used for the B layer. For example, ethylene-acrylate copolymers such as ethylene-methyl acrylate copolymer and ethylene-ethyl acrylate copolymer; ethylene such as ethylene-methyl methacrylate copolymer and ethylene-ethyl methacrylate copolymer Ethylene monomethacrylate copolymer; ethylene-based copolymer such as ethylene-vinyl acetate copolymer and ethylene-styrene copolymer; and other polyolefin copolymers. Also this Modified products obtained by modifying these copolymers by oxidation, saponification, chlorination, chlorosulfonation or the like can also be used. In the present invention, when the ethylene-based copolymer is modified, it is possible to improve the handleability at the time of forming the laminated structure and the heat resistance deterioration of the adhesive strength. The thickness of the adhesive layer (C layer) is preferably 1 to 50 / ri, more preferably 5 to 30 μm.
さらに本発明に使用する位相差素子が、 前記接着剤層 (C層) を含む場合は、 C 層に用いる接着剤のガラス転移温度又は軟化点 T g cは、 T g A〉T g Cであること が好ましく、 T g A— 2 0≥T g cであることがさらに好ましい。 Further the phase difference element for use in the present invention, the case comprising an adhesive layer (C layer), a glass transition temperature or softening point T g c of the adhesive used in layer C, with T g A> T g C Is more preferable, and it is more preferable that T g A— 20≥T g c .
本発明に使用する位相差素子を製造する方法としては、 特に制限されないが、 好 ましい製造方法としては、 負の固有複屈折値を有する材料からなる層 (A層) の少 なくとも片面に、 透明榭脂材料からなる層 (B層) を積層して未延伸積層体を得、 これを一軸又は二軸延伸する方法が挙げられる。  The method for producing the retardation element used in the present invention is not particularly limited, but a preferable production method is that at least one side of a layer (A layer) made of a material having a negative intrinsic birefringence value is formed. A method of laminating a layer (layer B) made of a transparent resin material to obtain an unstretched laminate and uniaxially or biaxially stretching it.
未延伸積層体を得る方法としては、 共押出 Tダイ法、 共押出インフレーション法 、 共押出ラミネーシヨン法等の共押出による成形方法、 ドライラミネーシヨン等の フィルムラミネーシヨン成形方法、 及び基材樹脂フィルムに対して樹脂溶液をコー ティングするようなコーティング成形方法などの公知の方法を適宜利用することが できる。 中でも、 製造効率などの観点から、 共押出による成形方法が好ましい。 共押出するときの押出し温度は、 使用する負の固有複屈折値を有する材料や透明 樹脂材料及ぴ必要に応じて用レ、られる接着剤の種類に応じて適宜選択すればょレ、。 積層体を延伸する方法は特に制限はなく、 従来公知の方法が適用され得る。 具体 的には、 ロール側の周速の差を利用して縦方向に一軸延伸する方法、 テンターを用 いて横方向に一軸延伸する方法等の一軸延伸法;固定するクリップの間隔を開いて の縦方向の延伸と同時に、 ガイドレールの広がり角度により横方向に延伸する同時 二軸延伸法や、 ロール間の周速の差を利用して縦方向に延伸した後、 その両端部を クリップ把持してテンターを用いて横方向に延伸する逐次二軸延伸法などのニ軸延 伸法;が挙げられる。 面方向の屈折率をバランスさせ、 面内レターデーシヨンを実 質的にゼロにする (ポジティブレターダー) には二軸延伸法が好ましい。  Examples of methods for obtaining an unstretched laminate include a coextrusion T-die method, a coextrusion inflation method, a coextrusion molding method such as a coextrusion lamination method, a film lamination method such as a dry lamination method, and a base resin film. A well-known method such as a coating molding method in which a resin solution is coated can be appropriately used. Among them, a molding method by co-extrusion is preferable from the viewpoint of production efficiency and the like. The extrusion temperature at the time of co-extrusion may be appropriately selected depending on the material having a negative intrinsic birefringence value, the transparent resin material to be used and the adhesive used, if necessary. The method of stretching the laminate is not particularly limited, and a conventionally known method can be applied. Specifically, a uniaxial stretching method such as a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, a method of uniaxially stretching in the lateral direction using a tenter, and the like. At the same time as stretching in the longitudinal direction, a simultaneous biaxial stretching method in which the film is stretched in the horizontal direction according to the spread angle of the guide rail, or stretching in the longitudinal direction using the difference in peripheral speed between the rolls, then gripping both ends of the clips Biaxial stretching such as sequential biaxial stretching in which the film is stretched in the transverse direction using a tenter. In order to balance the refractive index in the plane direction and make the in-plane retardation practically zero (positive retarder), a biaxial stretching method is preferable.
未延伸積層体の延伸温度は、 特に制限されないが、 位相差素子が前記積層構造を とる場合は、 負の固有複屈折値を有する材料のガラス転移温度 T g Aとすると、 ( TgA-10) (°C) 〜 (TgA+20) (°C) の範囲が好ましく、 (TgA— 5)The stretching temperature of the unstretched laminate is not particularly limited. When the retardation element has the laminate structure, the glass transition temperature T g A of a material having a negative intrinsic birefringence value is as follows: (TgA-10) (° C) to (Tg A +20) (° C), preferably (Tg A — 5)
(°C) 〜 (TgA+ 15) (°C) の範囲がさらに好ましい。 延伸温度を上記範囲と することにより、 延伸時に B層に屈折率異方性を発現しにくくすることができ、 目 的とする面内の直交軸方向と厚さ方向の屈折率の関係を容易に得ることができる。 ここで延伸倍率は、 通常 1.:! 〜 30倍、 好ましくは 1.3〜 10倍である。 延伸 倍率が、 上記範囲を外れると、 配向が不十分で屈折率異方性、 ひいてはレターデー シヨンの発現が不十分になったり、 積層体が破断したりするおそれがある。 The range of (° C) to (Tg A + 15) (° C) is more preferable. By setting the stretching temperature within the above range, it is possible to make it difficult for the layer B to exhibit refractive index anisotropy during stretching, and to easily make the relationship between the refractive index in the direction perpendicular to the target surface and the thickness direction. Can be obtained. Here, the draw ratio is usually 1.:! It is up to 30 times, preferably 1.3 to 10 times. If the stretching ratio is out of the above range, the orientation may be insufficient and the refractive index anisotropy, and hence the expression of the retardation may be insufficient, or the laminate may be broken.
本発明の照明装置においては、 さらに 1ノ 4波長板を有することが好ましい。 こ の 1/4波長板としては、 特に広帯域 1Z 4波長板が好適である。 ここで、 広帯域 1/4波長板とは、 波長 410〜 660 n mを含む可視光域全体で位相差 (レター デーシヨン) がほぼ 1Z4波長になる 1ノ4波長板のことである。  In the lighting device of the present invention, it is preferable that the lighting device further includes a 1/4 wavelength plate. As the 1/4 wavelength plate, a broadband 1Z 4 wavelength plate is particularly suitable. Here, the broadband 1/4 wavelength plate is a 1/4 wavelength plate having a phase difference (letter decision) of approximately 1Z4 wavelength over the entire visible light range including a wavelength of 410 to 660 nm.
本発明に用いる 1/4波長板としては、 正の固有複屈折値を有する材料からなる 層 (D層) の少なくとも 1層と、 負の固有複屈折値を有する材料からなる層 (E層 ) の少なくとも 1層とを有し、 前記 D層と E層における分子鎖の配向方向が等しい もの ;特開平 5— 1001 14号公報、 特開平 1 1— 231 1 32号公報などに記 載されている 1/2波長板と 1ノ 4波長板を積層したもの;広帯域位相差フィルム WRF [帝人社製] ;が挙げられる。  The quarter-wave plate used in the present invention includes at least one layer (D layer) made of a material having a positive intrinsic birefringence value and a layer (E layer) made of a material having a negative intrinsic birefringence value. Having at least one layer having the same orientation of molecular chains in the D layer and the E layer; described in JP-A-5-100114, JP-A-11-231132, etc. A 1 1/24 wave plate and a 1 44 wave plate; broadband retardation film WRF [manufactured by Teijin Limited];
1Z4波長板として、 正の固有複屈折値を有する材料からなる層 (D層) の少な くとも 1層と、 負の固有複屈折値を有する材料からなる層 (E層) の少なくとも 1 層とを有し、 前記 D層と E層における分子鎖の配向方向が等しいものを用いる場合 において、 前記 D層を構成する正の固有複屈折値を有する材料 (以下、 単に正の材 料ということがある。 ) は、 分子が一軸性の秩序をもって配向した際に、 光学的に 正の一軸性を示す特性を有するものをいう。 正の固有複屈折値を有する材料として は、 棒状液晶、 棒状液晶ポリマー、 脂環式構造を有する重合体、 ポリエチレンゃポ リプロピレンなどの鎖状ォレフィン系重合体、 トリァセチルセルロース、 ポリビニ ノレアルコール、 ポリアリ レート、 ポリエステル、 ポリ力一ボネート、 ポリスルホン 、 ポリエーテルスルホン、 ポリ塩化ビエル、 あるいはこれらの多元 (二元、 三元等 ) 共重合体などが挙げられる。 これらは 1種を単独で、 あるいは 2種以上を組み合 わせて用いることができる。 本発明においては、 これらの中でも、 脂環式構造を有する重合体又は鎖状ォレフ イン系重合体が好ましく、 光透過率特性、 耐熱性、 寸度安定性、 光弾性特性等の観 点から、 脂環式構造を有する重合体がより好ましい。 As a 1Z4 wave plate, at least one layer made of a material having a positive intrinsic birefringence value (D layer) and at least one layer made of a material having a negative intrinsic birefringence value (E layer) In the case where a material having the same orientation of molecular chains in the D layer and the E layer is used, a material having a positive intrinsic birefringence constituting the D layer (hereinafter, simply referred to as a positive material) ) Means that the molecules have the property of exhibiting optically positive uniaxiality when the molecules are oriented in a uniaxial order. Materials having a positive intrinsic birefringence value include rod-like liquid crystals, rod-like liquid crystal polymers, polymers having an alicyclic structure, chain-like olefin polymers such as polyethylene-polypropylene, triacetyl cellulose, polyvinyl alcohol, and the like. Examples include polyarylate, polyester, polycarbonate, polysulfone, polyethersulfone, polychlorinated biel, and multi-component (binary, ternary, etc.) copolymers thereof. These can be used alone or in combination of two or more. In the present invention, among these, a polymer having an alicyclic structure or a linear olefin-based polymer is preferable, and from the viewpoint of light transmittance characteristics, heat resistance, dimensional stability, photoelastic characteristics, etc. Polymers having an alicyclic structure are more preferred.
この脂環式構造を有する重合体については、 前記の円偏光分離素子の基材におい て説明したとおりである。  The polymer having the alicyclic structure is as described for the base material of the circularly polarized light separating element.
この脂環式構造を有する重合体のガラス転移温度は、 使用目的に応じて適宜選択 されればよいが、 優れた光学特性が得られる観点から、 好ましくは 8 0 °C以上、 よ り好ましくは 1 0 0〜2 5 0 °C、 さらに好ましくは 1 2 0〜2 0 0 °Cの範囲である 一方、 (E) 層を構成する負の固有複屈折値を有する材料については、 前記位相 差素子において説明したとおりである。  The glass transition temperature of the polymer having an alicyclic structure may be appropriately selected according to the purpose of use, but is preferably 80 ° C. or higher, more preferably, from the viewpoint of obtaining excellent optical properties. The temperature is in the range of 100 to 250 ° C., and more preferably 120 to 200 ° C. On the other hand, for the material having a negative intrinsic birefringence constituting the layer (E), the phase difference This is as described in the element.
この 1ノ 4波長板を製造する方法は特に制限はなく、 例えば、 (ィ) D層と E層 とを別々に成膜し、 接着剤層 (F層) を介してドライラミネーシヨンにより積層し て積層体とする方法、 (口) 共押出法により成膜して積層体を得る方法などが挙げ られる。 これらの中でも、 層間剥離強度が大きい積層体を得ることができ、 かつ、 生産効率に優れることから、 (口) の共押出法による成膜法が好ましい。 共押出法 により積層体を得る方法は、 具体的には、 複数基の押出機を用い、 正の固有複屈折 値を有する材料と負の固有複屈折値を有する材料とを多層ダイから押出すことによ り成膜するものである。  There is no particular limitation on the method for manufacturing the 1/4 wavelength plate. For example, (a) the D layer and the E layer are separately formed and laminated by dry lamination via the adhesive layer (F layer). And a method for obtaining a laminate by forming a film by a co-extrusion method. Among them, a film forming method by a co-extrusion method is preferable because a laminate having a large delamination strength can be obtained and the production efficiency is excellent. The method of obtaining a laminate by coextrusion is as follows. Specifically, a plurality of extruders are used to extrude a material having a positive intrinsic birefringence value and a material having a negative intrinsic birefringence value from a multilayer die. In this way, a film is formed.
このようにして得られる積層体の厚みは、 得られる積層体の使用目的などに応じ て適宜決定することができる。 フィルムの厚みは、 安定した延伸処理による均質な 延伸フィルムが得られる観点から、 好ましくは 1 0〜3 0 0 in より好ましくは 3 0〜2 0 0 x mである。  The thickness of the laminate obtained in this way can be appropriately determined according to the intended use of the obtained laminate. The thickness of the film is preferably from 10 to 300 in, more preferably from 30 to 200 x m, from the viewpoint of obtaining a homogeneous stretched film by a stable stretching treatment.
正の固有複屈折値を有する材料及びノ又は負の固有複屈折値を有する材料には本 発明の目的を阻害しない範囲内で、 各種添加剤及び他の熱可塑性樹脂やエラストマ 一を添加することができる。 各種添加剤としては、 例えば、 可塑剤や劣化防止剤な どが挙げられる。 可塑剤は、 フィルムの機械的物性を改良するため、 又は乾燥速度 を向上させるために添加する。 用いる可塑剤としては、 リン酸エステル又はカルボ ン酸エステルが挙げられる。 これらの添加剤の添加量は、 正の固有複屈折値を有する材料及び/又は負の固有 複屈折値を有する材料に対して、 通常 0〜20重量%、 好ましくは 0〜10重量% 、 より好ましくは 0〜 5重量%である。 Various additives and other thermoplastic resins or elastomers shall be added to materials having a positive intrinsic birefringence value and materials having a negative intrinsic birefringence value or a material having a negative intrinsic birefringence value within a range not to impair the object of the present invention. Can be. Examples of the various additives include a plasticizer and a deterioration inhibitor. The plasticizer is added to improve the mechanical properties of the film or to increase the drying speed. Examples of the plasticizer used include a phosphoric acid ester and a carboxylic acid ester. The amount of these additives is usually 0 to 20% by weight, preferably 0 to 10% by weight, based on the material having a positive intrinsic birefringence value and / or the material having a negative intrinsic birefringence value. Preferably it is 0 to 5% by weight.
正の固有複屈折値を有する材料からなる層 (D層) と負の固有複屈折値を有する 材料からなる層 (E層) を遅相軸を直交させて積層するには、 各層の分子鎖の配向 方向を等しくさせればよい。 すなわち、 当該 1Z4波長板は、 異符号の固有複屈折 値を有する材料からなる層 (D層と E層) の積層体であるため、 D層と E層との延 伸方向を一致させれば、 2相の遅相軸を必然的に直交させることができる。  To stack a layer made of a material having a positive intrinsic birefringence value (D layer) and a layer made of a material having a negative intrinsic birefringence value (E layer) with their slow axes orthogonal to each other, the molecular chain of each layer It is sufficient to make the orientation directions of the two equal. In other words, since the 1Z4 wave plate is a laminate of layers (D layer and E layer) made of materials having different signs of intrinsic birefringence, if the extending directions of the D layer and the E layer match, The two slow axes can inevitably be orthogonal.
このような 1Z4波長板は、 前記積層体を延伸処理することにより製造すること ができる。  Such a 1Z4 wavelength plate can be manufactured by stretching the laminate.
積層体を延伸する方法は特に制限はなく、 従来公知の方法を採用できる。 延伸す る方法としては、 例えば、 ロール側の周速の差を利用して縦方向に一軸延伸する方 法、 テンターを用いて横方向に一軸延伸する方法等が挙げられる。 これらの中で、 縦方向の一軸延伸が好適である。 一軸延伸の延伸倍率に特に制限はないが、 1.1 〜 3倍であることが好ましく、 1.2〜 2.2倍であることがより好ましい。  The method for stretching the laminate is not particularly limited, and a conventionally known method can be employed. Examples of the stretching method include a method of uniaxially stretching in the longitudinal direction using a difference in peripheral speed on the roll side, and a method of uniaxially stretching in the lateral direction using a tenter. Among these, uniaxial stretching in the machine direction is preferred. The stretching ratio of the uniaxial stretching is not particularly limited, but is preferably 1.1 to 3 times, and more preferably 1.2 to 2.2 times.
前記積層体を延伸する際の温度は、 前記 D層および E層を構成する樹脂のガラス 移転温度を Tgとすると、 好ましくは (Tg— 30) 。じから (Tg + 60) °Cの間 、 より好ましくは (Tg— 10) でから (Tg + 50) °Cの温度範囲である。 また 、 延伸倍率は、 通常、 1.01〜30倍、 好ましくは 1.01〜10倍、 より好まし くは 1.01〜 5倍である。  The temperature at which the laminate is stretched is preferably (Tg-30), where Tg is the glass transition temperature of the resin constituting the D layer and the E layer. The temperature range is from (Tg + 60) ° C, more preferably (Tg-10) to (Tg + 50) ° C. The stretching ratio is usually from 1.01 to 30 times, preferably from 1.01 to 10 times, and more preferably from 1.01 to 5 times.
また、 前記積層体を前述した共押出法により製造した場合には、 従来の 1ノ 4波 長板の製造時に必要であった、 延伸フィルムのチップの切り出しや、 切り出したチ ップの貼り合わせなどの作業が不要となり、 いわゆるロールトウロール (Ro l l t o Ro l l) 方式により、 連続的に長尺の 1ノ4波長板を生産することができ る。  Further, when the laminate is manufactured by the co-extrusion method described above, the cutting of a stretched film chip and the bonding of the cut chip, which are necessary when manufacturing a conventional 1/4 wavelength plate, are performed. This eliminates the need for such operations, and the so-called roll-to-roll method enables continuous production of long 1/4 wavelength plates.
1/4波長板は、 D層を少なくとも 1層と、 E層を少なくとも 1層有し、 前記 D 層と E層における分子鎖の配向が等しい光学積層体であれば、 その層構成に特に制 限されないが、 D層ノ E層/ D層、 又は E層 ZD層 ZE層の層構成を有するのが好 ましい。 また、 前記 D層と E層との層間に F層 (接着剤層) をさらに有し、 D層一 F層一 E層の 3層構造、 又は D層一 F層一 E層一 F層一 D層若しくは E層一 F層一 D層一F層一 E層の 5層構造とすることができる。 The quarter-wave plate has at least one D layer and at least one E layer, and if the optical layered body has the same molecular chain orientation in the D layer and the E layer, the layer structure is particularly limited. Although not limited, it is preferable to have a layer structure of D layer, E layer / D layer, or E layer, ZD layer, and ZE layer. Further, an F layer (adhesive layer) is further provided between the D layer and the E layer. It can have a three-layer structure of F layer-E layer, or a five-layer structure of D layer-F layer-E layer-F layer-D layer or E layer-F layer-D layer-F layer-E layer.
前記 F層を構成する接着剤については、 前記位相差素子において説明したとおり である。  The adhesive constituting the F layer is as described in the phase difference element.
本発明の照明装置においては、 さらに面光源装置と偏光分離素子との間に、 プリ ズムシートを設けることが好ましい。 このプリズムシートは、 面光源装置から、 偏 光分離素子に対して関係式 (a ) を満たす拡散角度以内の光を、 さらに平行光に近 づけて、 該偏光分離素子に入射する機能を有している。 このプリズムシートとして は、 上記機能を有するものであればよく、 特に制限されず、 従来液晶表示装置の面 光源装置などに慣用されているプリズムシートの中から適宜選択して用いることが できる。  In the illumination device of the present invention, it is preferable to further provide a prism sheet between the surface light source device and the polarization beam splitter. This prism sheet has a function of making the light within a diffusion angle satisfying the relational expression (a) from the surface light source device closer to the parallel light and incident on the polarization separation element. ing. The prism sheet is not particularly limited as long as it has the above function, and can be appropriately selected from prism sheets conventionally used for a surface light source device of a liquid crystal display device and the like.
F i g . 9は、 本発明の照明装置の原理、 構成の 1例を示す概略図である。 この F i g . 9で示されるように、 本発明の照明装置は、 光源 A及び反射板 Bを有する 面光源装置から出射される関係式 (a ) を満たす角度以内の白色光 L 1は、 まず所 望により設けられるプリズムシート I 6 1に入射して平行光に近づけられてから、 円偏光分離素子 6 2へ入射する。 円偏光分離素子 6 2に入射した光は、 左右いずれ か一方の円偏光が透過し、 他方の円偏光は反射して、 反射板 Bによって反射されて 再び円偏光分離素子 6 2に入射し、 透過光と反射光に再度分離される。 これが繰り 返されることにより、 光源 Aから出射した光の有効利用が図られ、 輝度向上の効果 を得ることができる。 円偏光分離素子 6 2を透過した円偏光は、 所望により設けら れる位相差素子 6 3を透過して、 位相差が補償され、 さらに 1 4波長板 6 4によ り直線偏光となって、 所望により設けられるプリズムシート II 6 5を介して、 偏光 板 6 6を透過する。 なお、 偏光板 6 6は省略することもできる。 また、 位相差素子 6 3は、 1ノ4波長板 6 4の光透過側に配設してもよい。  FIG. 9 is a schematic view showing an example of the principle and configuration of the lighting device of the present invention. As shown in FIG. 9, the lighting device of the present invention is such that white light L 1 within an angle satisfying the relational expression (a) emitted from a surface light source device having a light source A and a reflector B is The light is incident on a prism sheet I 61 provided as desired and is made closer to parallel light, and then is incident on a circularly polarized light separating element 62. In the light incident on the circularly polarized light separating element 62, one of the left and right circularly polarized lights is transmitted, and the other circularly polarized light is reflected, reflected by the reflection plate B, and again incident on the circularly polarized light separating element 62. It is separated again into transmitted light and reflected light. By repeating this, the light emitted from the light source A is effectively used, and the effect of improving the luminance can be obtained. The circularly polarized light transmitted through the circularly polarized light separating element 62 is transmitted through a phase difference element 63 provided as required, the phase difference is compensated, and further converted into linearly polarized light by a 14-wave plate 64. The light passes through the polarizing plate 66 through a prism sheet II 65 provided as required. Incidentally, the polarizing plate 66 can be omitted. Further, the phase difference element 63 may be provided on the light transmitting side of the 1/4 wavelength plate 64.
本発明の照明装置は、 偏光分離素子と、 該偏光分離素子に対して出射する光の出 射角度 Θが関係式 (a ) を満たす面光源装置とを組み合わせることにより、 該偏光 分離素子における法線入射光に対する赤色バンドエッジを 7 5 9 n mまで拡張しな くとも、 液晶表示装置のバックライトュニットなどに用いた場合に、 視野角特性が 向上し、 斜視による色むらが抑制され、 力つ輝度の高い液晶表示装置を提供するこ とができる。 また、 偏光分離素子の反射帯域を狭くすることができるので、 積層数 の削減、 液晶素材の汎用化による偏光分離素子の低コスト化を図ることができ、 ひ いては、 製造コスト的に有利な液晶表示装置を提供することができる。 The illumination device according to the present invention includes a polarization splitting element and a surface light source device in which an emission angle 光 of light emitted to the polarization splitting element satisfies the relational expression (a). Even if the red band edge for line incident light is not extended to 759 nm, when used in a backlight unit of a liquid crystal display device, the viewing angle characteristics are improved, color unevenness due to oblique viewing is suppressed, and power To provide a liquid crystal display device with high brightness You can. In addition, since the reflection band of the polarization separation element can be narrowed, the number of stacked layers can be reduced, and the cost of the polarization separation element can be reduced by generalizing liquid crystal materials, which is advantageous in terms of manufacturing cost. A liquid crystal display device can be provided.
本発明の液晶表示装置は、 前記本発明の照明装置をバックライトュニットとして 有するものであって、 その構成については特に制限はない。 具体的には、 液晶セル の背面側に偏光板を介して該照明装置が配置されると共に、 液晶セルの表面側に偏 光板及び光拡散シー卜が順に設けられてなる構成の液晶表示装置を例示することが できる。  The liquid crystal display device of the present invention has the lighting device of the present invention as a backlight unit, and the configuration is not particularly limited. Specifically, a liquid crystal display device having a configuration in which the lighting device is arranged on the back side of the liquid crystal cell via a polarizing plate, and a polarizing plate and a light diffusion sheet are sequentially provided on the front surface side of the liquid crystal cell. Examples can be given.
用いられる液晶モードは特に限定されない。 液晶モードとしては、 例えば、 TN { £w i s t e d n e m a t i c ) 型、 STN (S u p e r Tw i s t e d Nema t i c) 型、 HAN (h y b r i d A l i g nme n t N e m a t i c) 型、 VA (Ve r t i c a l A l i g nme n t) 型、 MVA (Mu 1 t i p i e Ve r t i c a l A l i g nme n t) 型、 I P S ( I n P l a n e Sw i t c h i n g) 型、 OCB (Op t i c a l C omp e n s a t e d B e n d) 型などが挙げられる。  The liquid crystal mode used is not particularly limited. The liquid crystal modes include, for example, TN (£ wistednematic) type, STN (Super Twisted Nematic) type, HAN (hybrid Alig nment nt Nematic) type, VA (Vertical Alig nment), MVA ( Mu 1 tipie Vertical Alignment (IPS) type, IPS (In Plane Switching) type, OCB (Optical Coupled Bend) type, and the like.
また、 偏光板としては特に制限されず、 従来公知のものを使用することができる 本発明の液晶表示装置は、 本発明の照明装置をバックライトュニットとして有し ているので、 光エネルギーの利用効率が高い上、 正面から見た場合でも、 斜め方向 から見た場合でも視野角での色むらが生じにくく、 かつ高輝度を有している。 実施例  The polarizing plate is not particularly limited, and a conventionally known polarizing plate can be used. Since the liquid crystal display device of the present invention has the lighting device of the present invention as a backlight unit, the light energy utilization efficiency is improved. In addition, it has high brightness, is hard to cause color unevenness at a viewing angle when viewed from the front and obliquely, and has high brightness. Example
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 これらの例 によってなんら限定されるものではない。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
なお、 積層体の厚みは、 走査式厚み計を用いて測定した。 また、 位相差素子の三 次元屈折率分布、 レターデーシヨンは、 自動複屈折計 [王子計測器社製 「KOBR A— 2 1」 ] を用いて測定した。  The thickness of the laminate was measured using a scanning thickness gauge. The three-dimensional refractive index distribution and the retardation of the retardation element were measured using an automatic birefringence meter [“KOBR A-21” manufactured by Oji Scientific Instruments].
また、 液晶表示装置における特性の評価において、 明るさは 1、 2、 3、 4、 5 の五段階で評価し、 5が最も明るく、 1が最も喑いことを示す。 製造例 1 位相差素子 (ポジティブレターダー) の製造 In the evaluation of the characteristics of the liquid crystal display device, the brightness was evaluated on a five-point scale of 1, 2, 3, 4, and 5, with 5 being the brightest and 1 being the worst. Production Example 1 Production of retardation element (positive letterer)
負の固有複屈折値を有する材料としてスチレン一無水マレイン酸共重合体 [ 「ダ イラーク D 332」 、 ノバケミカル社製、 T g = 131 °C] 、 透明樹脂層材料とし てノルボルネン系重合体 [ 「ZEONOR 1020」 、 日本ゼオン社製、 T g = 1 05°C] を用い、 共押出し法によって、 押出温度 260°Cでノルボルネン系重合体 層 (厚さ 50 πι) Ζスチレン一無水マレイン酸共重合体層 (厚さ 200/i m) / ノルボルネン系樹脂層 (厚さ 50 μπι) の 3層構造を有する未延伸積層体を得た。 次レ、でこの未延伸積層体をゾーン加熱の縦一軸延伸装置とテンター延伸 (横一軸 延伸) 装置に順次送り込んで逐次二軸延伸を行うことにより位相差素子を得た。 延 伸温度は縦延伸、 横延伸のいずれも 140°C、 延伸倍率は縦延伸が 1.8倍、 横延 伸は 1.5倍とした。  Styrene-maleic anhydride copolymer [“Dairark D 332”, manufactured by Nova Chemical Co., Tg = 131 ° C] as a material having a negative intrinsic birefringence value, norbornene-based polymer as a transparent resin layer material [ "ZEONOR 1020", manufactured by Nippon Zeon Co., Ltd., T g = 105 ° C], norbornene-based polymer layer (thickness 50 πι) at an extrusion temperature of 260 ° C by co-extrusion method. An unstretched laminate having a three-layer structure of a polymer layer (thickness 200 / im) / a norbornene-based resin layer (thickness 50 μπι) was obtained. Next, the unstretched laminate was sequentially fed to a zone-heated longitudinal uniaxial stretching apparatus and a tenter stretching (horizontal uniaxial stretching) apparatus and successively biaxially stretched to obtain a retardation element. The stretching temperature was 140 ° C for both longitudinal stretching and transverse stretching, and the stretching ratio was 1.8 times for longitudinal stretching and 1.5 times for transverse stretching.
延伸後の積層体 (位相差素子) の平均厚みは 120 m、 面方向の屈折率は nx = 1.5732、 ny= 1.5731 , 厚み方向の屈折率は n z = 1.5757であった 。 レターデーシヨンは面内 R e = 10 nm、 厚み方向のレターデーシヨン R t h = — 300 nmであった。 The average thickness of the laminate after stretching (phase difference element) is 120 m, the refractive index of the surface direction is n x = 1.5732, n y = 1.5731, the refractive index in the thickness direction was n z = 1.5757. The retardation was in-plane R e = 10 nm, and the retardation in the thickness direction R th = —300 nm.
製造例 2 広帯域 1 / 4波長板の製造 Manufacturing example 2 Manufacture of broadband 1/4 wavelength plate
正の固有複屈折値を有する材料として、 ノルボルネン系重合体 [ 「ZEON〇R 1420」 、 日本ゼオン社製、 T g = 136°C] 及び負の固有複屈折値を有する材 料として、 スチレン一無水マレイン酸共重合体 [ 「ダイラーク D 332」 、 ノバケ ミカノレ社製、 T g = 131 °C] を用いた。 まず、 2つの押出し機が押出しダイに一 体に組み合わされた押出しダイのそれぞれの押出し機に、 溶融状態の前記ノルボル ネン系重合体及び前記スチレン一無水マレイン酸共重合体をそれぞれ格納した。 前 記ノルボルネン系重合体を格納した押出し機の押出し流路は 2つに分岐していて、 分岐した流路から押出されたノルボルネン系重合体は、 他の押出し機から押出され たスチレン一無水マレイン酸共重合体を挟持して、 押出しダイ内部で 3層構成の積 層体を形成するように構成した。 また、 前記 2つの押出し機の押出しダイへの連通 口にはフィルタが配置されていて、 前記ノルボルネン系重合体及び前記スチレン一 無水マレイン酸共重合体をフィルタを通してから、 前記押出しダイ内部に押出すよ うにした。 なお、 押出温度は 260°Cとした。 前記押出しダイから押出された 3層構成の積層体の厚みむらを、 走査式厚み計を 用いて測定した。 測定は積層体の長手方向に連続的走査して行った。 得られた積層 体は平均厚み 120μπιであり、 厚みむらは前記平均厚みに対して 2.5%であつ た。 As a material having a positive intrinsic birefringence value, a norbornene-based polymer [“ZEON〇R 1420”, manufactured by Zeon Corporation, T g = 136 ° C], and a material having a negative intrinsic birefringence value, styrene A maleic anhydride copolymer [“Dylark D 332”, manufactured by Novake Mikanore Co., Ltd., Tg = 131 ° C.] was used. First, the norbornene-based polymer and the styrene-maleic anhydride copolymer in a molten state were stored in respective extruders of an extrusion die in which two extruders were combined with an extrusion die. The extrusion channel of the extruder containing the norbornene-based polymer is branched into two, and the norbornene-based polymer extruded from the branched channel is styrene-maleic anhydride extruded from another extruder. The acid copolymer was sandwiched, and a three-layered laminated body was formed inside the extrusion die. Further, a filter is disposed at a communication port of the two extruders to an extrusion die, and the norbornene-based polymer and the styrene-maleic anhydride copolymer are extruded into the extrusion die after passing through the filter. I did it. The extrusion temperature was 260 ° C. The thickness unevenness of the three-layered laminate extruded from the extrusion die was measured using a scanning thickness gauge. The measurement was performed by continuously scanning in the longitudinal direction of the laminate. The obtained laminate had an average thickness of 120 μπι, and the thickness unevenness was 2.5% with respect to the average thickness.
次に、 得られた積層体を 125°Cで 70%延伸したところ、 波長 λ = 450ηπι 、 550 nm及び 650 nmにおけるレターデーシヨンと波長との比が、 それぞれ 0.235、 0.250及び 0.232である、 広帯域 1 4波長板が得られた。  Next, when the obtained laminate was stretched 70% at 125 ° C, the ratio of the retardation to the wavelength at wavelength λ = 450ηπι, 550 nm and 650 nm was 0.235, 0.250 and 0.232, respectively. A 14-wave plate was obtained.
製造例 3 円偏光分離素子の製造 Production example 3 Manufacture of circularly polarized light separating element
(1) 円偏光分離素子 I (13層)  (1) Circularly polarized light separating element I (13 layers)
厚み 100 /xm、 幅 68 Omm、 長さ 500 mの光学的に等方性のノルボルネン 系重合体フィルムを基材として用いた。 この基材の両面をプラズマ放電処理した後 、 ポリビニルアルコール 10重量部及び水 371重量部からなる配向膜塗布液を基 材の片面に連続的に塗布、 乾燥し、 厚さ 1 μπιの配向膜を形成した。 次いで、 基材 の長手方向に対し平行方向に連続的に配向膜上にラビング処瑝を実施した。  An optically isotropic norbornene-based polymer film having a thickness of 100 / xm, a width of 68 Omm, and a length of 500 m was used as a substrate. After performing plasma discharge treatment on both sides of the substrate, an alignment film coating solution consisting of 10 parts by weight of polyvinyl alcohol and 371 parts by weight of water is continuously applied to one side of the substrate and dried to form an alignment film having a thickness of 1 μπι. Formed. Next, a rubbing treatment was continuously performed on the alignment film in a direction parallel to the longitudinal direction of the substrate.
一方、 下記の式 (1) で示される液晶性ィヒ合物 81.5重量部、 下記の式 (2) で示される光重合開始剤 3.1重量部、 界面活性剤 [セイミケミカル社製 「KH_ 40」 ] 0.1重量部、 下記の式 (3) で示されるキラル化剤 1 7.04重量部及び メチルェチルケトン 240.8重量部を含むコレステリック液晶層用塗布液 1を調 製した。 On the other hand, 81.5 parts by weight of a liquid crystalline compound represented by the following formula (1), 3.1 parts by weight of a photopolymerization initiator represented by the following formula (2), a surfactant [“KH_40” manufactured by Seimi Chemical Co., Ltd.] A cholesteric liquid crystal layer coating solution 1 was prepared, which contained 0.1 part by weight, 7.04 parts by weight of a chiralizing agent 1 represented by the following formula (3), and 240.8 parts by weight of methylethyl ketone.
—、 —,
Figure imgf000038_0001
Figure imgf000038_0001
また、 上記塗布液 1の調製において、 式 (3 ) で示されるキラル化剤の量を、 第 1表に示すように変えた以外は、 塗布液 1と同様にして塗布液 2〜塗布液 1 3を調 製した。 第 1表 Further, in the preparation of the coating liquid 1, the coating liquid 2 to the coating liquid 1 were prepared in the same manner as the coating liquid 1 except that the amount of the chiralizing agent represented by the formula (3) was changed as shown in Table 1. 3 was prepared. Table 1
Figure imgf000039_0001
Figure imgf000039_0001
(中心波長:液晶層の選択反射域の中心波長) 次に、 前記の配向膜上に、 第 1表に示す液晶層用塗布液 1〜13を用い、 下記の 方法で、 順次液晶層を積層形成し、 1層の厚みが 5.0 mの 13層液晶層からな る円偏光分離素子 I ( 13層) を作製した。 赤色バンドエッジは 800 n mである 配向膜上に、 まず液晶層塗布液 1をバーコ一ターを用いて塗布、 乾燥及び加熱 ( 配向熟成) し、 さらに紫外線照射して厚さ 5.0 μιηのコレステリック液晶層を形 成した。 次いで、 液晶層塗布液 2〜13を用いて、 同様の操作を順次施し、 13層 の液晶層を積層形成した。  (Center wavelength: center wavelength of selective reflection region of liquid crystal layer) Next, liquid crystal layers are sequentially laminated on the alignment film by using the coating liquids 1 to 13 shown in Table 1 by the following method. Then, a circularly polarized light separating element I (13 layers) consisting of 13 liquid crystal layers each having a thickness of 5.0 m was produced. The red band edge is 800 nm. The liquid crystal layer coating solution 1 is first coated with a bar coater, dried and heated (alignment ripened) on the alignment film, and then irradiated with ultraviolet light to form a 5.0 μιη thick cholesteric liquid crystal layer. Was formed. Next, the same operation was sequentially performed using liquid crystal layer coating liquids 2 to 13 to form 13 liquid crystal layers.
(2) 円偏光分離素子 II (1 1層)  (2) Circularly polarized light separating element II (1 layer)
第 1表に示す液晶層塗布液 3〜13を用い、 上記 (1) と同様にして、 1層の厚 みが 5.0ί πιの 1 1層液晶層からなる円偏光分離素子 II (1 1層) を作製した。 赤色バンドエッジは 759 nmである。 (3) 円偏光分離素子 III (9層) Using the liquid crystal layer coating liquids 3 to 13 shown in Table 1, in the same manner as in (1) above, the circularly polarized light separating element II (1 layer 1 layer) consisting of a 1 layer liquid crystal layer having a thickness of 5.0ίπι ) Was prepared. The red band edge is at 759 nm. (3) Circularly polarized light separating element III (9 layers)
第 1表に示す液晶層塗布液 5〜13を用い、 上記 (1) と同様にして、 1層の厚 みが 5.0 /zmの 9層液晶層からなる円偏光分離素子 III (9層) を作製した。 赤色 ノ ンドエッジは 680 nmである。  Using the liquid crystal layer coating liquids 5 to 13 shown in Table 1, a circularly polarized light separating element III (9 layers) consisting of a 9-layer liquid crystal layer having a thickness of 5.0 / zm was prepared in the same manner as (1) above. Produced. The red edge is 680 nm.
実施例 1  Example 1
入射端面側に冷陰極管が配置され、 かつ裏面側に光反射シ一トが設けられた汎用 の導光板の出射面側にルーバー (視野角制御部材) を配設し (出射光の出射角度: ±65° ) 、 さらに上記導光板の出射面側に、 製造例 3で得られた円偏光分離素子 I (13層) 、 及び製造例 2で得られた広帯域 1ノ 4波長板を順次配置して照明装 置を作製した。 さらに前記 1 4波長板側に、 偏光板、 視野角拡大フィルム [富士 -写真フィルム社製、 「WVフィルム」 ] 、 透過型の TN液晶表示素子、 及び偏光板 を順次配置し、 液晶表示装置を作製した。  A louver (viewing angle control member) is provided on the exit side of a general-purpose light guide plate in which a cold cathode tube is arranged on the incident end face side and a light reflection sheet is provided on the back side. : ± 65 °), and the circularly-polarized light separating element I (13 layers) obtained in Production Example 3 and the broadband 1/4 wavelength plate obtained in Production Example 2 are sequentially arranged on the emission surface side of the light guide plate. Thus, a lighting device was manufactured. Further, a polarizing plate, a viewing angle widening film [Fuji Photographic Film Co., Ltd., "WV film"], a transmissive TN liquid crystal display element, and a polarizing plate are sequentially disposed on the side of the 14-wavelength plate. Produced.
この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 3であり、 色視野角は良で、 表示面全面にわたって着色がなかった。 なお、 ここ でいう色視野角が良とは、 視野角を変えていったときの色の変化が少ないことを示 す。  When this liquid crystal display device was observed from the light-emitting surface side in a white display mode, the brightness was 3, the color viewing angle was good, and there was no coloring over the entire display surface. Here, a good color viewing angle means that there is little change in color when the viewing angle is changed.
実施例 2  Example 2
実施例 1において、 円偏光分離素子として円偏光分離素子 I (13層) の代わり に円偏光分離素子 II (1 1層) を用い、 ルーバーを調整して、 導光板の出射光の出 射角度を ±55° とした以外は、 実施例 1と同様にして、 液晶表示装置を作製した この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 3であり、 色視野角は良で、 表示面全面にわたって着色がなかった。  In Example 1, a circularly polarized light separating element II (11 layers) was used as the circularly polarized light separating element instead of the circularly polarized light separating element I (11 layers), and the louver was adjusted to adjust the emission angle of the light emitted from the light guide plate. A liquid crystal display device was manufactured in the same manner as in Example 1 except that the angle was set to ± 55 °. When this liquid crystal display device was set to a white display mode and observed from the light emitting surface side, the brightness was 3, and the color field was The corners were good and there was no coloring over the entire display surface.
実施例 3  Example 3
実施例 2において、 円偏光分離素子として円偏光分離素子 II (1 1層) の代わり に円偏光分離素子 III (9層) を用い、 ルーバーを調整して導光板の出射光の出射 角度を ±35° とした以外は、 実施例 2と同様にして、 液晶表示装置を作製した。 この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 3であり、 色視野角は良で、 表示面全面にわたって着色がなかった。 実施例 4 In Example 2, a circularly polarized light separating element III (9 layers) was used instead of the circularly polarized light separating element II (11 layers) as a circularly polarized light separating element, and the louvers were adjusted to adjust the outgoing angle of the outgoing light of the light guide plate ± A liquid crystal display device was manufactured in the same manner as in Example 2 except that the angle was set to 35 °. When this liquid crystal display device was observed from the light-emitting surface side in a white display mode, the brightness was 3, the color viewing angle was good, and there was no coloring over the entire display surface. Example 4
実施例 1において、 冷陰極管 +汎用の導光板 +ルーバーの組合わせの代わりに、 特開平 7— 2 7 0 7 0 8号公報に開示されている前記 F i g . 7で示す面光源装置 (出射光の出射角度: ± 3 0 ° ) を用い、 かつ円偏光分離素子 I ( 1 3層) の代わ りに円偏光分離素子 III ( 9層) を用いた以外は、 実施例 1と同様にして、 液晶表 示装置を作製した。  In Example 1, in place of the combination of the cold cathode tube, the general-purpose light guide plate, and the louver, the surface light source device shown in FIG. 7 disclosed in Japanese Patent Application Laid-Open No. 7-270708 ( In the same manner as in Example 1 except that the emission angle of the emitted light: ± 30 °) was used, and the circularly polarized light separating element III (9 layers) was used instead of the circularly polarized light separating element I (13 layers). Thus, a liquid crystal display device was manufactured.
この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 4であり、 色視野角については、 面内での位置により、 やや着色が認められた。 実施例 5  When this liquid crystal display device was observed in the white display mode from the light emitting surface side, the brightness was 4, and the color viewing angle was slightly colored depending on the position in the plane. Example 5
実施例 4において、 円偏光分離素子 III ( 9層) と広帯域 1 Z 4波長板との間に 、 製造例 1で得られた位相差素子を配置した以外は、 実施例 4と同様にして、 液晶 表示装置を作製した。  In Example 4, in the same manner as in Example 4, except that the retardation element obtained in Production Example 1 was arranged between the circularly polarized light separating element III (9 layers) and the broadband 1Z 4 wavelength plate, A liquid crystal display device was manufactured.
この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 5であり、 色視野角については、 面内での位置により、 やや着色が認められた。 実施例 6  When this liquid crystal display device was observed from the light-emitting surface side in a white display mode, the brightness was 5, and the color viewing angle was slightly colored depending on the position in the plane. Example 6
実施例 5において、 F i g . 7で示す面光源装置と円偏光分離素子 III ( 9層) と の間にプリズムシート Iを配置した以外は、 実施例 5と同様にして、 液晶表示装置 を作製した。  A liquid crystal display device was manufactured in the same manner as in Example 5 except that the prism sheet I was disposed between the surface light source device shown in FIG. 7 and the circularly polarized light separating element III (9 layers). did.
この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 5であり、 色視野角は良で、 表示面全面にわたって着色がなかった。  When this liquid crystal display device was observed in the white display mode from the light emitting surface side, the brightness was 5, the color viewing angle was good, and there was no coloring over the entire display surface.
比較例 1 Comparative Example 1
実施例 1において、 汎用の導光板の出射面側にルーバーを配設しなかったこと ( 出射光の出射角度: ± 9 0 ° ) 以外は、 実施例 1と同様にして、 液晶表示装置を作 製した。  A liquid crystal display device was fabricated in the same manner as in Example 1 except that no louver was provided on the emission surface side of the general-purpose light guide plate (the emission angle of the emitted light: ± 90 °). Made.
この液晶表示装置を白表示モードとして、 出光面側から観察したところ、 明るさ は 3であり、 色視野角については、 赤色の着色が認められた。  When this liquid crystal display was set in a white display mode and observed from the light-emitting surface side, the brightness was 3 and the color viewing angle was colored red.
以上の結果をまとめて第 2表に示す。 第 2表 Table 2 summarizes the above results. Table 2
実施例 比較 Examples Comparison
1 2 3 4 5 6 1 面光源装置 汎用 +ルーバー 汎用 +ル一バー 汎用 +ルーパー 図 7 図 7 図 7 汎用1 2 3 4 5 6 1-surface light source device General-purpose + louver General-purpose + louver General-purpose + looper Fig. 7 Fig. 7 Fig. 7 General-purpose
(出射光出射角度) (±65。 ) (±55。 ) (±35。 ) (±30° ) (±30。 ) (±30° ) (±90 プリズムシート I なし なし なし なし なし あり なし 液晶層 (Emission angle of emitted light) (± 65.) (± 55.) (± 35.) (± 30 °) (± 30.) (± 30 °) (± 90) Prism sheet I None None None None None None Liquid crystal Layer
O 13 11 9 9 9 9 13 円偏光 積層数  O 13 11 9 9 9 9 13 Circularly polarized light
分離素子 赤色パンド 800 nm 759 nm 680 nm 680 nm 680 nm 680 nm 800  Separation element Red band 800 nm 759 nm 680 nm 680 nm 680 nm 680 nm 800
エッジ  Edge
位相差素子 なし なし なし なし あり あり なし Phase difference element No No No No Yes Yes Yes No
1/4波長板 あり あり あり あり あり あり あり 明るさ 3 3 3 4 5 5 3 特性 面内での位置に 面内での位置に Quarter-wave plate Yes Yes Yes Yes Yes Yes Yes Brightness 3 3 3 4 5 5 3 Characteristics In-plane position In-plane position
色視野角 良 良 良  Color viewing angle Good Good Good
より、 やや着色 良  More, slightly colored good
より、 やや着色 赤 More, slightly colored red
産業上の利用可能性 Industrial applicability
本発明の照明装置は、 コスト的に有利であって、 特に液晶表示装置のバックライ トユニットなどとして好適に用いられ、 光エネルギーの利用効率が高い上、 正面か ら見た場合でも、 斜め方向から見た場合でも視野角での色むらが生じにくく、 かつ 高輝度の液晶表示装置を与えることができる。  INDUSTRIAL APPLICABILITY The lighting device of the present invention is advantageous in terms of cost, is particularly suitably used as a backlight unit of a liquid crystal display device, etc., has a high light energy use efficiency, and can be viewed obliquely even from the front. It is possible to provide a high-brightness liquid crystal display device in which color unevenness at a viewing angle hardly occurs even when viewed.

Claims

請求の範囲 The scope of the claims
1. 少なくとも入射光を偏光状態の異なる透過光と反射光に分離する偏光分離素子1. A polarization separation element that separates at least incident light into transmitted light and reflected light with different polarization states
、 及び偏光分離素子に対して光を供給する面光源装置を有する照明装置であって、 前記偏光分離素子の法線入射光に対する赤色バンドエッジを A (nm) とした場合 に、 面光源装置の光の出射角度 Θが、 関係式 (a) And an illumination device having a surface light source device for supplying light to the polarization separation element, wherein a red band edge of the polarization separation element with respect to normal incident light is A (nm). The light emission angle Θ is given by the relational expression (a)
s ϊ η θ≤ 1. 5 Χ [1-(630/Α)2] 1/2 (a) s ϊ η θ≤ 1.5 Χ [1- (630 / Α) 2 ] 1/2 (a)
を満たす範囲内であることを特徴とする照明装置。 A lighting device characterized by being within a range satisfying the following.
2. 偏光分離素子の赤色バンドエッジが、 法線入射光に対して 630 nm以上 75 9 n m未満である請求項 1記載の照明装置。  2. The illuminating device according to claim 1, wherein a red band edge of the polarization separation element is at least 630 nm and less than 759 nm for normal incident light.
3. 偏光分離素子が、 広帯域偏光分離素子である請求項 1又は 2記載の照明装置。 3. The illumination device according to claim 1, wherein the polarization separation element is a broadband polarization separation element.
4. 面光源装置が、 導光板と、 該導光板の端面側に設けられた光源及び下面側に設 けられた複数の光源から少なくとも構成された装置であって、 前記導光板において 、 偏光分離素子側表面が、 偏光分離素子の光出射側表面と平行であり、 これと対峙 する裏面側が、 該偏光分離素子の光出射側表面とは平行でない複数の角度領域を有 すると共に、 内部に組成の異なる領域を有し、 かつ前記複数の角度領域それぞれに 光源を配置してなる請求項 1ないし 3のいずれかに記載の照明装置。 4. The surface light source device is a device comprising at least a light guide plate, a light source provided on an end face side of the light guide plate, and a plurality of light sources provided on a lower surface side, wherein the light guide plate includes: The element side surface is parallel to the light exit side surface of the polarization separation element, and the opposite back side has a plurality of angle regions that are not parallel to the light exit side surface of the polarization separation element, and has a composition inside. 4. The illuminating device according to claim 1, further comprising a plurality of different regions, and a light source disposed in each of the plurality of angle regions.
5. 主屈折率 nx、 ny及び nz (ただし、 nx、 nyは、 厚み方向に垂直なたがいに直 交する 2方向の屈折率であり、 nzは厚み方向の屈折率である。 なお、 nx、 nyの 直交軸は、 nx— nyが最大となるように定められる。 ) の関係が nz>nx、 nz>n y、 nx nyである位相差素子を有する請求項 1ないし 4のいずれかに記載の照明装 置。 5. PRIMARY refractive indices n x, n y and n z (however, n x, n y is the refractive index perpendicular to each other straight intersects two directions in the thickness direction, n z is a refractive index in a thickness direction there should be noted that orthogonal axes n x, n y is, n x -. is n y is determined to be the maximum) the relationship of n z> n x, n z > n y, n x n y. 5. The lighting device according to claim 1, further comprising a phase difference element.
6. 位相差素子が、 面内のレターデーシヨンを実質的に有さず、 かつ  6. the retardation element has substantially no in-plane retardation; and
R t h= 〔[(nx+ ny)/2]— nz〕 XD R th = [[(n x + n y ) / 2] —n z ] XD
(ただし、 Dは位相差素子の厚みである。 )  (However, D is the thickness of the retardation element.)
で定義される厚み方向のレターデーションがー 20- 1000 nmの範囲のもの である請求項 5記載の照明装置。 6. The illumination device according to claim 5, wherein the retardation in the thickness direction defined by the following is in the range of −20 to 1000 nm.
7. 1ノ 4波長板を有する請求項 1ないし 6のいずれかに記載の照明装置。  7. The lighting device according to any one of claims 1 to 6, further comprising a 1/4 wavelength plate.
8. 1 4波長板が、 広帯域 1 4波長板である請求項 7記載の照明装置。 8. The lighting device according to claim 7, wherein the 14 wavelength plate is a broadband 14 wavelength plate.
9 . 面光源装置と偏光分離素子との間に、 プリズムシートを有する請求項 1ないし 8のいずれかに記載の照明装置。 9. The lighting device according to claim 1, further comprising a prism sheet between the surface light source device and the polarization splitting element.
1 0 . 請求項 1ないし 9のいずれかに記載の照明装置を用いたことを特徴とする液 晶表示装置。  10. A liquid crystal display device using the lighting device according to any one of claims 1 to 9.
PCT/JP2004/013499 2003-09-12 2004-09-09 Illuminator and liquid crystal display WO2005026830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513961A JPWO2005026830A1 (en) 2003-09-12 2004-09-09 Illumination device and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-321620 2003-09-12
JP2003321620 2003-09-12

Publications (1)

Publication Number Publication Date
WO2005026830A1 true WO2005026830A1 (en) 2005-03-24

Family

ID=34308642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013499 WO2005026830A1 (en) 2003-09-12 2004-09-09 Illuminator and liquid crystal display

Country Status (3)

Country Link
JP (1) JPWO2005026830A1 (en)
TW (1) TW200517688A (en)
WO (1) WO2005026830A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091825A (en) * 2003-09-18 2005-04-07 Nippon Zeon Co Ltd Polarization separating sheet and luminance raising film
JP2007024915A (en) * 2005-07-12 2007-02-01 Nec Lcd Technologies Ltd Light fixture and liquid crystal display provided with light fixture
JP2007065314A (en) * 2005-08-31 2007-03-15 Nippon Zeon Co Ltd Circularly polarized light separating sheet
JP2010085964A (en) * 2008-10-01 2010-04-15 Ind Technol Res Inst Optical sheet
JP2011191582A (en) * 2010-03-16 2011-09-29 Fujifilm Corp Method for manufacturing laminate film, laminate film, and heat insulating member
KR20120050397A (en) * 2010-11-10 2012-05-18 주식회사 엘지화학 Liquid crystal film
WO2015064581A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
JP2018173565A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Polarized light separation film
WO2019187951A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Optical film and optical film manufacturing method
CN110521282A (en) * 2017-03-30 2019-11-29 富士胶片株式会社 Organic EL image display device
JPWO2020196550A1 (en) * 2019-03-28 2020-10-01
CN114815399A (en) * 2021-01-28 2022-07-29 瀚宇彩晶股份有限公司 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270708A (en) * 1994-03-31 1995-10-20 Enplas Corp Surface light source device formed by using wedge type emit direction characteristic adjusting element
JPH08338913A (en) * 1995-04-11 1996-12-24 Fuji Photo Film Co Ltd Optical compensating sheet, its production, liquid crystal display device and color liquid crystal display device
JPH10293211A (en) * 1997-04-17 1998-11-04 Nitto Denko Corp Polarizing element, illuminator and liquid crystal display device
JPH1115013A (en) * 1997-06-27 1999-01-22 Nippon Oil Co Ltd Brightness enhancement system
JPH11288611A (en) * 1998-03-31 1999-10-19 Nitto Jushi Kogyo Kk Tandem type surface light source device
JP2001042328A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Illumination device and liquid crystal display device using the same
US6449092B1 (en) * 1996-07-31 2002-09-10 3M Innovative Propertiescompany Reflective polarizers having extended red band edge for reduced off axis color

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07270708A (en) * 1994-03-31 1995-10-20 Enplas Corp Surface light source device formed by using wedge type emit direction characteristic adjusting element
JPH08338913A (en) * 1995-04-11 1996-12-24 Fuji Photo Film Co Ltd Optical compensating sheet, its production, liquid crystal display device and color liquid crystal display device
US6449092B1 (en) * 1996-07-31 2002-09-10 3M Innovative Propertiescompany Reflective polarizers having extended red band edge for reduced off axis color
JPH10293211A (en) * 1997-04-17 1998-11-04 Nitto Denko Corp Polarizing element, illuminator and liquid crystal display device
JPH1115013A (en) * 1997-06-27 1999-01-22 Nippon Oil Co Ltd Brightness enhancement system
JPH11288611A (en) * 1998-03-31 1999-10-19 Nitto Jushi Kogyo Kk Tandem type surface light source device
JP2001042328A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Illumination device and liquid crystal display device using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091825A (en) * 2003-09-18 2005-04-07 Nippon Zeon Co Ltd Polarization separating sheet and luminance raising film
JP2007024915A (en) * 2005-07-12 2007-02-01 Nec Lcd Technologies Ltd Light fixture and liquid crystal display provided with light fixture
JP2007065314A (en) * 2005-08-31 2007-03-15 Nippon Zeon Co Ltd Circularly polarized light separating sheet
JP2010085964A (en) * 2008-10-01 2010-04-15 Ind Technol Res Inst Optical sheet
US9493707B2 (en) 2010-03-16 2016-11-15 Fujifilm Corporation Process of preparing lamination film, lamination film and heat shield
JP2011191582A (en) * 2010-03-16 2011-09-29 Fujifilm Corp Method for manufacturing laminate film, laminate film, and heat insulating member
KR20120050397A (en) * 2010-11-10 2012-05-18 주식회사 엘지화학 Liquid crystal film
JP2013545141A (en) * 2010-11-10 2013-12-19 エルジー・ケム・リミテッド LCD film
US9372295B2 (en) 2010-11-10 2016-06-21 Lg Chem, Ltd. Liquid crystal film
KR101698612B1 (en) * 2010-11-10 2017-02-02 주식회사 엘지화학 Liquid crystal film
JPWO2015064581A1 (en) * 2013-10-28 2017-03-09 日本ゼオン株式会社 Multilayer film, optically anisotropic laminate, circularly polarizing plate, organic electroluminescence display device, and production method
US10895783B2 (en) 2013-10-28 2021-01-19 Zeon Corporation Method for manufacturing a multilayer film comprising a step of directly applying a liquid crystal composition containing a polymerizable liquid crystal compound onto a surface of a fed-out first substrate
WO2015064581A1 (en) * 2013-10-28 2015-05-07 日本ゼオン株式会社 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
KR102355365B1 (en) * 2013-10-28 2022-01-24 니폰 제온 가부시키가이샤 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
KR20160078356A (en) * 2013-10-28 2016-07-04 니폰 제온 가부시키가이샤 Multilayer film, optically anisotropic laminate, circular polarizer, organic electroluminescent display, and manufacturing methods
CN110521282A (en) * 2017-03-30 2019-11-29 富士胶片株式会社 Organic EL image display device
JP2018173565A (en) * 2017-03-31 2018-11-08 大日本印刷株式会社 Polarized light separation film
JP6999798B2 (en) 2018-03-28 2022-01-19 富士フイルム株式会社 Optical film and manufacturing method of optical film
JPWO2019187951A1 (en) * 2018-03-28 2021-02-18 富士フイルム株式会社 Optical film and manufacturing method of optical film
WO2019187951A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Optical film and optical film manufacturing method
WO2020196550A1 (en) * 2019-03-28 2020-10-01 富士フイルム株式会社 Optical member, illumination device, and screen
JPWO2020196550A1 (en) * 2019-03-28 2020-10-01
JP7297870B2 (en) 2019-03-28 2023-06-26 富士フイルム株式会社 Optical member, illumination device, and screen
CN114815399A (en) * 2021-01-28 2022-07-29 瀚宇彩晶股份有限公司 Display device

Also Published As

Publication number Publication date
JPWO2005026830A1 (en) 2006-11-24
TW200517688A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
US9733512B2 (en) Liquid crystal display device
US10156754B2 (en) Liquid-crystal display device
US10281769B2 (en) Optical sheet member and image display device using same
US9946111B2 (en) Liquid crystal display device
WO2014196637A1 (en) Optical sheet member and image display device employing same
US10151864B2 (en) Optical film, illumination device, and image display device
WO2015122479A1 (en) Brightness improvement film, optical sheet member, and liquid crystal display device
WO2005024295A1 (en) Light source device and crystal display device
WO2003091766A1 (en) Polarizer, polarization light source and image displayunit using them
KR101665263B1 (en) Polarizing plate and liquid crystal display apparatus comprising the same
JP2005037657A (en) Optical laminate, its manufacturing method, and luminance improved film
WO2008050784A1 (en) Optical filter, polarizing plate, illumination device, and liquid crystal display device
JP2004309618A (en) Optical element, liquid crystal cell, illuminating device and liquid crystal display device
US20100007823A1 (en) Brightness enhancement film and liquid crystal display device
WO2005026830A1 (en) Illuminator and liquid crystal display
JP2006064758A (en) Optical laminated body, its manufacturing method and luminance improving film
JP2005091825A (en) Polarization separating sheet and luminance raising film
JP4853476B2 (en) Optical element, polarizing plate, retardation plate, illumination device, and liquid crystal display device
JP2006003883A (en) Method for manufacturing optical laminated body, optical element, polarizing light source device and liquid crystal display
KR20040102166A (en) Light converging system and transmission liquid crystal display
JP3811465B2 (en) Polarizing element, polarized light source, and image display apparatus using them
JP2004233666A (en) Method for manufacturing rolled web of optical laminate, optical laminate, backlight unit and liquid crystal display
JP2008242349A (en) Optical element, polarizer, retardation plate, illuminator, and liquid crystal display
JP2004133318A (en) Polarization light source device and liquid crystal display device using same
JP2008197223A (en) Optical element, polarizing plate, retardation plate, lighting system and liquid crystal display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513961

Country of ref document: JP

122 Ep: pct application non-entry in european phase