WO2005030280A1 - Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles - Google Patents

Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles Download PDF

Info

Publication number
WO2005030280A1
WO2005030280A1 PCT/US2004/031977 US2004031977W WO2005030280A1 WO 2005030280 A1 WO2005030280 A1 WO 2005030280A1 US 2004031977 W US2004031977 W US 2004031977W WO 2005030280 A1 WO2005030280 A1 WO 2005030280A1
Authority
WO
WIPO (PCT)
Prior art keywords
cationic polymers
absorbent
sap particles
polymer particles
superabsorbent polymer
Prior art date
Application number
PCT/US2004/031977
Other languages
French (fr)
Inventor
Holger Beruda
Yasue Nakagawa
Andrea Lieselotte Link
Mattias Schmidt
Original Assignee
The Procter & Gamble Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Procter & Gamble Company filed Critical The Procter & Gamble Company
Priority to MXPA06003348A priority Critical patent/MXPA06003348A/en
Priority to JP2006528321A priority patent/JP2007505725A/en
Publication of WO2005030280A1 publication Critical patent/WO2005030280A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents

Definitions

  • ABSORBENT ARTICLES COMPRISING FLUID ACQUISITION ZONES WITH COATED SUPERABSORBENT PARTICLES
  • the present invention relates to absorbent articles, which are intended to receive and retain bodily discharges such as urine.
  • Such articles include disposable hygiene articles such as baby diapers, training pants, adult incontinence articles, feminine care articles and the like.
  • disposable hygiene articles such as baby diapers, training pants, adult incontinence articles, feminine care articles and the like.
  • a second aspect is the ability to maintain the comfort and performance of such high super absorbent polymer concentration articles during the full usage cycle of the article, from dry to fully loaded, especially by improving the ability of the cores to withstand the forces experienced by such articles during use. This ability to remain intact is also often referred to as 'wet integrity' of the core.
  • the development and improvement of highly absorbent gel materials so far mainly focused on applications of these materials in the fluid storage zone of the absorbent core.
  • the highly absorbent gel materials of the present invention are especially suitable for use in the fluid acquisition zone of the absorbent core.
  • Absorbent articles for receiving and retaining bodily discharges such as urine or faeces
  • bodily discharges e.g., urine or faeces
  • Such improvements generally aim at addressing the primary function of such articles, namely retaining body fluids, but also at minimizing the negatives associated with wearing such articles by increasing the comfort of the wearer.
  • Many improvements are related to the "absorbent core" of the absorbent article. In the absorbent core the waste material is acquired by the article (picked up), then conducted away from the location of acquisition (distributed), and then stored (retained).
  • absorbent cores of particular thinness has beneficial aspects, which make such a development the subject of substantial commercial interest.
  • thinner diapers are not just less bulky to wear, conform better to the body and fit better under clothing, they are also more compact in the package, making the diapers easier for the consumer to carry and store.
  • Compactness in packaging also results in reduced distribution costs for the manufacturer and distributor, including less shelf space required in the store per diaper unit.
  • the ability to provide thinner absorbent articles such as diapers has been dependent on the ability to develop relatively thin absorbent cores that can acquire and store large quantities of discharged body fluids, in particular urine.
  • absorbent polymers often referred to as "hydrogels," “super absorbents” or "hydrocolloid" material has been particularly important.
  • SAPs are often made by initially polymerizing unsaturated carboxylic acids or derivatives thereof, such as acrylic acid, alkali metal (e.g., sodium and/or potassium) or ammonium salts of acrylic acid, alkyl acrylates, and the like. These polymers are rendered water-insoluble, yet water- swellable, by slightly and homogeneously cross-linking the carboxyl group-containing polymer chains with conventional di- or poly-functional monomer materials, such as N, N'-methylene- bisacryl-amide, trimethylol-propane-triacrylate or triallyl-amine. These slightly cross-linked absorbent polymers still comprise a multiplicity of anionic (charged) carboxyl groups attached to the polymer backbone.
  • unsaturated carboxylic acids or derivatives thereof such as acrylic acid, alkali metal (e.g., sodium and/or potassium) or ammonium salts of acrylic acid, alkyl acrylates, and the like.
  • These polymers are rendered water-insoluble, yet water-
  • European patent application EP 493 011 A2 refers to an absorbent matter comprising a water-absorbent resin particle having an acidic group on the surface, a cellulose fiber and a cationic high-molecular compound having a weight-average molecular weight of 2,000 or more.
  • WO 03/043670 discloses superabsorbent particles with a shell comprising cationic polymer cross-linked by the addition of cross-linker and adhered to the hydrogel-forming polymer by applying a coating solution containing both a cationic polymer and cross-linker.
  • the development and improvement of SAPs has so far mainly focused on use of the SAPs for final storage of liquid in the absorbent core.
  • SAPs which are especially suitable for fluid acquisition and distribution in the fluid acquisition zone of the absorbent core.
  • SAPs By replacing the fibers used in the fluid acquisition zone of prior art absorbent cores with SAPs, it would be possible to further reduce the bulk and thickness of the absorbent core.
  • a problem in developing SAPs for use in the fluid acquisition zone is that the demands on the physical and chemical properties of these SAPs differ considerably from the requirements for use in the fluid storage zone. For example, it is desirable that SAPs in the fluid acquisition zone are able to quickly acquire via capillary pressure and temporarily hold fluids in voids between the SAP particles, especially in "gush" situations.
  • SAP particles for use in absorbent cores especially in the fluid acquisition zones, which have a high Free Swelling Rate (FSR).
  • FSR Free Swelling Rate
  • SAP particles having a high surface area typically also have a high FSR, which means they are able to quickly absorb liquids.
  • the ability to quickly absorb liquids is especially important in the fluid acquisition zone of absorbent cores to create sufficient void volume. It is especially desirable to have SAP particles for use in the fluid acquisition zone, which are highly saturated already after the fist gush of liquid. Moreover, it would be desirable to be able to provide an absorbent core comprising an acquisition zone having a relatively high concentration of SAP particles with relatively high porosities, and high permeability, and in a matrix that provides sufficient wet integrity such that its capability for acquiring and transporting fluids is not substantially reduced or minimized, even when subjected to normal use forces.
  • the present invention relates to absorbent articles comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between the topsheet and the backsheet.
  • the topsheet and the backsheet are at least partially joined together.
  • the absorbent core comprises at least one fluid acquisition zone wherein the fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) the superabsorbent polymer particles further are surface coated with cationic polymers, wherein the cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, and wherein the cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) the superabsorbent polymer particles have a Cylinder Centrifuge Retention Capacity (CCRC) of less than 25 g/g.
  • CCRC Cylinder Centrifuge Retention Capacity
  • An alternative embodiment of the present invention relates to absorbent articles comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between the topsheet and the backsheet.
  • the topsheet and the backsheet are at least partially joined together.
  • the absorbent core comprises at least one fluid acquisition zone wherein the fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) the superabsorbent polymer particles further are surface coated with cationic polymers, wherein the cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, and wherein the cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) the fluid acquisition zone comprises the superabsorbent polymer particles in a concentration of at least 50% by weight of the fluid acquisition zone.
  • Figure 1 is a top plan view of a disposable diaper, with the upper layers partially cut away.
  • Figure 2 is a cross-sectional view of the disposable diaper shown in Figure 1
  • absorbent article refers to devices that absorb and contain liquid, and more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body.
  • Absorbent articles include but are not limited to diapers, adult incontinent briefs, diaper holders and liners, sanitary napkins and the like.
  • the absorbent articles of the present invention are disposable absorbent articles.
  • Preferred absorbent articles of the present invention are diapers.
  • diaper refers to an absorbent article generally worn by infants and incontinent persons about the lower torso.
  • Disposable is used herein to describe articles that are generally not intended to be laundered or otherwise restored or reused i.e., they are intended to be discarded after a single use and, preferably, to be recycled, composted or otherwise disposed of in an environmentally compatible manner. "Disposed” is used to mean that an element(s) is formed (joined and positioned) in a particular place or position as a unitary structure with other elements or as a separate element joined to another element.
  • the term “absorbent core” refers to a component of an absorbent article that is primarily responsible for fluid handling properties of the article, including acquiring, transporting, distributing and storing body fluids.
  • the absorbent core typically does not include the topsheet or backsheet of the absorbent article.
  • the absorbent core of the present invention comprises at least one fluid acquisition zone and at least one fluid storage zone.
  • the fluid acquisition zone and the fluid storage zone may be portions or sections of an absorbent core.
  • the absorbent core may comprise two or more layers, wherein the fluid acquisition zone may comprise at least one layer and the fluid storage zone may comprise at least one layer.
  • the fluid acquisition zone is directed towards the wearer and the fluid storage zone is directed towards the garment, while the absorbent article is in use.
  • the term "comprising" means that e.g., various components, zones, layers, steps and the like can be conjointly employed according to the present invention.
  • the present invention relates to absorbent cores useful in the provision of absorbent incontinence articles such as baby diapers or adult incontinence articles, which articles preferably comprise a topsheet, a backsheet and an absorbent core sandwiched between the topsheet and the backsheet.
  • the absorbent cores of the present invention are especially useful for collection of bodily liquids such as urine.
  • Such cores comprise super absorbent polymers (SAP), which are in the form of particles (SAP particles).
  • the SAP particles are present in the fluid acquisition zone of the absorbent core in a concentration of at least 50% by weight of the fluid acquisition zone, more preferably in a concentration of at least 60% by weight.
  • the SAP particles may be of numerous shapes.
  • the term "particles" refers to granules, fibers, flakes, spheres, powders, platelets and other shapes and forms known to persons skilled in the art of SAPs.
  • the particles can be in the form of granules or beads, having a particle size from about 10 ⁇ m to about 1000 ⁇ m, preferably from about 100 ⁇ m to about 1000 ⁇ m, even more preferably from about 150 ⁇ m to about 850 ⁇ m and most preferably from about 150 ⁇ m to about 500 ⁇ m.
  • the SAPs can be in the shape of fibers, i.e. elongated, acicular SAP particles.
  • the SAP fibers have a minor dimension (i.e. diameter of the fiber) of less than about 1mm, usually less than about 500 ⁇ m, and preferably less than 250 ⁇ m down to 50 ⁇ m.
  • the length of the fibers is preferably about 3 mm to about 100 mm.
  • the fibers can also be in the form of a long filament that can be woven.
  • Preferred SAPs of the present invention are spherical-like particles.
  • SAPs useful in the present invention include a variety of water-insoluble, but water- swellable polymers capable of absorbing large quantities of fluids. Such polymers materials are generally known in the art and include all those well-known polymers used or deemed useful in the context of disposable absorbent article technology.
  • SAPs disclosed in EP-A-752 892 or those disclosed in a textbook entitled "Modern Super Absorbent Technology" by F.L. Buchholz and A . Graham, published by Wiley VCH, New York, 1998 are useful in the context of the present invention.
  • Preferred polymer materials for use in making SAP particles are slightly network cross linked polymers of partially neutralized polyacrylic acids and starch derivatives thereof.
  • the SAP particles comprise from 25% to 95% by weight, more preferably from 50% to 80% by weight, neutralized, slightly network cross-linked, polyacrylic acid.
  • Network cross- linking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the hydrogel-forming absorbent polymers.
  • SAP network cross linking
  • typical network cross-linking agents are described in greater detail in U.S. Patent 4,076,663 or references cited supra.
  • the SAP is preferably of one type (i.e., homogeneous), mixtures of polymers can also be used in the present invention.
  • the SAPs can also comprise mixtures with low levels of one or more additives, such as for example powdered silica, surfactants, glue, binders, and the like.
  • the SAPs can comprise a gradient in particle size or can comprise a certain range of particle size. Many of the known SAPs exhibited gel blocking. "Gel blocking" occurs when particles of the SAP are wetted and the particles swell so as to inhibit fluid transmission to other zones or regions of the absorbent structure.
  • the main task of the SAP particles is not to store liquid -as is the case in most prior art uses of SAP particles in absorbent articles- but the main task is to ascertain that liquid can pass through the fluid acquisition zone sufficiently quickly and to temporarily store liquid, which cannot be absorbed quick enough by the fluid storage zone.
  • One commonly applied way to reduce gel blocking is to make the particles stiffer, which enables the SAP particles to retain their original shape thus creating or maintaining void spaces between the particles.
  • a well-known method to increase stiffness is to covalently cross-link the carboxyl groups exposed on the surface of the SAP particles. This method is commonly referred to as surface cross-linking.
  • surface describes the outer- facing boundaries of the particle. For porous SAP particles, exposed internal surfaces may also belong to the surface.
  • surface cross- linked SAP particle refers to an SAP particle having its molecular chains present in the vicinity of the particle surface cross-linked by a compound referred to as surface cross-linker.
  • the surface cross-linker is applied to the surface of the particle.
  • the level of cross-links in the vicinity of the surface of the SAP particle is generally higher than the level of cross-links in the interior of the SAP particle.
  • Surface cross-linkers known in the prior art are e.g., di- or polyfunctional agents that are capable of building additional cross-links between the polymer chains of the SAPs.
  • Surface cross- linkers include, e.g., di- or polyhydric alcohols, or derivatives thereof, capable of forming di- or polyhydric alcohols.
  • the cross-linking is based on a reaction between the functional groups comprised by the polymer, for example, an esterification reaction between a carboxyl group (comprised by the polymer) and a hydroxyl group (comprised by the surface cross-linker).
  • the SAP particles are surface coated with cationic polymers.
  • the cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated. Furthermore, the cationic polymers are not substantially covalently bonded to the superabsorbent particles.
  • the cationic polymers have 3 to 22 mol/kg of cationic groups, which can be protonated, more preferably 3-17 mol/kg of cationic groups, which can be protonated, even more preferably 4-14 mol/kg of cationic groups, which can be protonated and most preferably 4-12 mol/kg of cationic groups, which can be protonated.
  • the cationic polymers are nitrogen-containing polymers (N- polymers) having 1 to 25 mol/kg (based on the weight of the nitrogen containing polymer) nitrogen atoms, which can be protonated.
  • the nitrogen-containing cationic polymers have 3 to 22 mol/kg of nitrogen atoms, which can be protonated, still more preferably 3- 17 mol/kg of nitrogen atoms, which can be protonated, even more preferably 4-14 mol/kg of nitrogen atoms, which can be protonated and most preferably 4- 12 mol/kg of nitrogen atoms, which can be protonated.
  • the nitrogen-containing cationic polymer is polyethyleneimine (PEI).
  • the nitrogen-containing cationic polymer is a partially hydrolyzed polymer.
  • a partially hydrolyzed nitrogen-containing cationic polymer is used for the surface coating, this polymer is preferably hydrolyzed in the range of 30%-80%, more preferably in the range of 40%-70%, and most preferably in the range of 40%-60%.
  • the degree of hydrolyzation has a major impact on the overall charge of the cationic polymer, because only the hydrolyzed groups comprised by the coating polymer are positively charged.
  • a detailed description of partially hydrolyzed or at least hydrolysable polyvinyl-amides and how to make them is found in DE 31,28,478.
  • Particularly preferred are nitrogen-containing cationic polymers provided by a polymer made from a homo-polymerization of N-vinyl-form- amide (PVFA).
  • the PVFA is at least partially hydrolyzed to polyvinyl-amine (PVAm), preferably with a hydrolysation degree of from about 30mol% to about 80mol%.
  • PVAm polyvinyl-amine
  • Solutions of partially hydrolyzed polyvinyl-form-amides are available commercially, e.g., from BASF-AG, Ludwigshafen, Germany, under the trade names LupaminTM and LuredurTM.
  • the coating is a partially hydrolyzed polymer of N-vinyl- alkyl-amide or N-vinyl-alkyl-imide, more preferably a partially hydrolyzed polymer of N-vinyl- formamide.
  • nitrogen-containing cationic polymers with primary, secondary and tertiary amines are preferred.
  • the cationic polymers preferably are added on the SAP particles in an amount of less than 10% by weight of said SAP particles, more preferably between 0.05% and 5% and even more preferably between 0.1% and 1.0% by weight of the SAP particles without cationic polymers (uncoated SAP particles).
  • the cationic polymers adhere to the surface of the SAP particles via ionic bonds, Van-der-Waals forces and hydrogen bonds.
  • the cationic polymers of the present invention have a weight-average molecular weight in the range of about 10,000 to about 1,000,000, more preferably in the range of about 10,000 to about 800,000 and even more preferred in the range of about 50,000 to about 750,000.
  • Permeability Permeability (also called liquid flow conductivity) is an important property of the coated SAP particles of present invention. Permeability of the SAP particles is determined based on a modification of the method to determine SFC (Saline Flow Conductivity). SFC measures the ability of a material to transport saline fluids, e.g., the ability of a hydrogel layer formed from the swollen SAP to transport body fluids under usage pressures. The method to determine SFC is described in EP-B-0 752 892, paragraph 224 and following.
  • the starting sample amount of dry SAP particles need to be controlled based on the capacity (Cylinder Centrifuge Retention Capacity) of SAP particles to adjust the height of the swollen hydrogel-layer formed by SAP particles between 10 mm and 20 mm.
  • Confining pressure of 0.3 psi (2.1 kPa) is applied during the pre-swelling and the flow measurement.
  • Measure caliper of empty sample holder assembly to the accuracy of 0.01 mm: h 0 Weigh dry SAP particles according to the appropriate amount mentioned above to the accuracy of 0.001 g Transfer complete sample and evenly distribute the SAP particles on the whole are of the bottom of the sample holder.
  • Measure caliper of empty sample holder assembly and dry SAP particle to the accuracy of 0.01 mm: h Put the sample holder assembly onto a filter paper (e.g., Schleicher & Schuell, No. 596, 90mm diameter or equivalent), submerged in a large petri-dish with 0.9% saline solution where the liquid height is at least 3.0 cm and pre-swell for 60 minutes. After 60 minutes, remove sample holder assembly from petri-dish/Saline solution and get excess liquid to drip off. Measure caliper of sample holder assembly and swollen SAP particles to the accuracy of 0.01 mm: h 2 .
  • a filter paper e.g., Schleicher & Schuell, No. 596, 90mm diameter or equivalent
  • F g is the flow rate in [g/sec] determined from the calculation of the slope of the uptake-vs-time curve, i.e. liquid amount flowing through the swollen hydrogel-layer at each 10 sec time intervals, and
  • L f i na i is the average value of the initial thickness of the SAP-layer after 60 minutes of swelling, h 2 - ho and the gel layer thickness after flow and after dripping off the excess liquid, h 3 -h 0 in [cm].
  • Lfin i [(h 2 -ho) +(h 3 -h 0 )] / 2 x 10 wherein p is the density of the NaCl solution in [g/cm 3 ] (1.005 g/cm 3 for 0.9% saline solution at 20 °C), and
  • A is the area of the hydrogel layer 28.27 cm 2 .
  • ⁇ P is the hydrostatic pressure 4920 g-cm/s 2
  • the permeability, K is in units of [cm 3 s/g].
  • the SAP particles, which are surface coated with cationic polymers according to the present invention preferably have a measured permeability of at least 400 x 10 "7 cm 3 sec/g, more preferably more than 800 x 10 "7 cm 3 sec/g, even more preferably more than 1000 x 10 "7 cm 3 sec/g and most preferably more than 1200 x 10 "7 cm 3 sec/g. 2.
  • Wet Porosity An important characteristic of SAP particles, which is preferably achieved by the SAP particles according to the present invention, is the openness or porosity of the hydrogel zone or layer formed when the polymer is swollen in body fluids under a confining pressure. This is referred to as Wet Porosity.
  • the openness or porosity of the hydrogel layer is formed when the SAP particles swell in the presence of body fluids.
  • the Wet Porosity is important to determine the ability of the SAP particles to acquire and transport fluids, especially when the SAP particles are present at high concentrations in the absorbent structure. Porosity refers to the fractional volume that is not occupied by solid material.
  • porosity is the fractional volume of the layer that is not occupied by hydrogel.
  • porosity is the fractional volume (also referred to as void volume) that is not occupied by the hydrogel, or other solid components (e.g., fibers).
  • Wet porosity is the fractional volume of the layer that is not occupied by swollen SAP particles. See J.M. Coulson et al. Chemical Engineering Vol. 2, 3 rd Edition, Pergamon Press, 1978, PI 26. Wet porosity of the current invention is measured together with the permeability measurement using the same sample and the sample holder assembly (piston/cylinder apparatus) and additional measurements. In this way, the porosity data can be derived in addition to the closely related permeability values from the same experimental set-up.
  • Vvo r d (w ⁇ -w 0 ) - (w 2 -w 0 ) - 0.7 (weight correction as fluid clings to sample holder) / p
  • p is the density of the NaCl solution in g/cm 3 (1.005 g/cm 3 for 0.9% saline solution at 20 °C)
  • V to t is obtained by wet sample caliper and the area of the hydrogel layer A formed from the SAP particles
  • V lot (h 3 - h 0 / 10) x
  • the values for h 0 , h 3 and A are those values, which have been measured in permeability measurement. In general, the Wet Porosity takes a value between 0 and 1.
  • Preferred SAP particles useful in the present invention have Wet Porosity values of at least 0.20, more preferably at least 0.23, even more preferably at least 0.25. However the porosity remains an important aspect over the whole usage range of pressures experienced by absorbent cores, i.e. starting from no pressure to pressures such as 10 000 Pa. 3. Cylinder Centrifuge Retention Capacity (CCRC) This test serves to measure the saline-water-solution retention capacity of the SAP particles used herein, when the SAP particles are submitted to centrifuge forces (and it is an indication of the maintenance of the absorption capacity of the SAP particles in use, when also various forces are applied to the material).
  • CCRC Cylinder Centrifuge Retention Capacity
  • a saline-water solution is prepared as follows: 18.00 g of sodium chloride is weighed and added into a two liter volumetric flask, which is then filled to volume with 2 liter deionised water under stirring until all sodium chloride is dissolved. A pan with a minimum 5 cm depth, and large enough to hold four centrifuge cylinders is filled with part of the saline solution, such that up to a level of 40 mm ( ⁇ 3 mm). Each SAP particles sample is tested in a separate cylinder and each cylinder to be used is thus weighed before any sample is placed in it, with an accuracy of 0.01 g. The cylinders have a very fine mesh on the bottom, to allow fluid to leave the cylinder.
  • the centrifuge used may be any centrifuge equipped to fit the cylinder and cylinder stand into a centrifuge cup that catches the emerging liquid from the cylinder and capable of delivering a centrifugal acceleration of 250 g ( ⁇ 5 g) applied to a mass placed on the bottom of the cylinder stand (e.g., 1300 rpm for a internal diameter of 264 mm).
  • a suitable centrifuge is Heraeus Megafuge 1.0 VWR # 5211560.
  • the centrifuge is set to obtain a 250 g centrifugal acceleration.
  • the setting of the centrifuge is 1300 rpm.
  • the samples are centrifuged for 3 minutes (+ 10 s).
  • the cylinders are removed from the centrifuge and weighed to the nearest 0.01 g.
  • the cylinder centrifuge retention capacity W Weight expressed as grams of saline-water-solution absorbed per gram of SAP particles is calculated as follows: wherein: m C s: is the mass of the cylinder with sample after centrifugation [g] m c _: is the mass of the dry cylinder without sample [g] ms: is the mass of the sample without saline solution [g]
  • the CCRC of the SAP particles of the present invention is less than 25 g/g, more preferably less than 20 g/g, still more preferably less than 19.5 g/g and most preferably less than 17 g/g. Furthermore, the CCRC of the SAP particles of the present invention is more than 5 g/g, more preferably more than 6 g/g. 4. Free Swell Rate (FSR) This method serves to determine the swell rate of the SAP particles used herein in a 0.9% saline solution, without stirring or confining pressure.
  • FSR Free Swell Rate
  • the amount of time taken to absorb a certain amount of fluid is recorded and this is reported in gram of fluid (0.9% saline) absorbed per gram of SAP particles per second, e.g., g/g/sec.
  • the saline solution is prepared by adding 9.0 gram of NaCl into 1000 ml distilled, deionized water, and this is stirred until all NaCl is dissolved.
  • the sample amount calculated (see the below equation) is weighed (to an accuracy of 0.0001 g) and placed evenly over the bottom of a 25 ml beaker; then 20 g of the saline solution (also at 23°C) is added quickly to the beaker with the sample and the timer is started.
  • the time t s is recorded. The test is repeated twice, to obtain 3 values.
  • the Free Swell Rate is then calculated per sample and this can be averaged to obtain the Free Swell Rate, as referred herein.
  • the FSR of the SAP particles of the present invention is at least 0.1 g/g/sec, more preferably at least 0.3 g/g/sec, even more preferably at least 0.5 g/g/sec and most preferably at least 0.7 g/g/sec. 5.
  • Acquisition Test The fluid acquisition test provides a means for introducing fluid into an absorbent article that simulates in-use conditions. The article will be loaded with a 75 ml/gush of 0.9% Saline solution at a rate of 15ml s " ' using a pump (Model 7520-00 Cole Parmer Instruments Co., Chicago, USA). The time to absorb saline solution is recorded by a timer.
  • the gush is repeated every 5 minutes at precisely 5 minutes gush intervals until 4 gushes.
  • the test sample which comprises a core and includes a topsheet and a backsheet, is arranged to lie flat on a foam platform within a perspex box (see the detail assembly of test apparatus in European Patent EP 0 631 768 Bl or U.S. Patent No. 6,083,210).
  • the core has a ultimate storage capacity of about 300 ml to about 400 ml. If products with significant different capacities should be evaluated (such as can be envisaged for adult incontinence products), the settings in particular of the fluid volume per gush should be adjusted appropriately to about 20% of the total article design capacity, and the deviation from the standard test protocol should be recorded.
  • a Perspex plate having a 5 cm diameter opening substantially in its middle is placed on top of the sample.
  • the sample is oriented such that the topsheet is directly below the opening of the perspex plate.
  • Electrodes are about 1 mm to 2 mm above the surface of the absorbent structure and also connected to the timer. Loads are placed on top of the plate to simulate, for example a baby's weight.
  • a weight of 9 kg is placed on top of the plate with an area of 744.6 cm 2 (51 cm x 14.6 cm).
  • saline solution is introduced into the cylinder. It builds up on top of the absorbent structure thereby completing an electrical circuit between the electrodes. This starts the timer. The timer is stopped and recorded when the absorbent structure has absorbed the gush, and the electrical contact between the electrodes is broken.
  • Acquisition rate is defined as the gush volume absorbed (ml) per unit time (s). The acquisition rate is calculated for each gush introduced into the sample.
  • Preferred acquisition rates for the 4 th gush are at least 0.7 ml/s, more preferably at least 0.8 ml/s.
  • Staining of SAP particles with Toluidine Blue in 0.9% NaCl With the following method, it is possible to determine, if SAP particles coated with cationic polymers have been surface cross-linked prior to applying the cationic polymer coating on the SAP particles.
  • Staining solution (20 ppm Toluidine Blue O in 0.9% NaCl): 20 mg Toluidine Blue O [CAS: 540-23-8] are dissolved in 250 ml 0.9% (w/w) NaCl solution. The mixture is placed into an ultrasonic bath for 1 hour, filtered through a paper filter, and filled up to 1000 ml with 0.9% NaCl solution.
  • Staining procedure A sample of 30 - 50 mg of SAP particles coated with cationic polymers is placed into a 40 ml screw cap glass vial, and 30 ml of the above staining solution are added. The vial is closed, and the SAP particles are allowed to swell and equilibrate for 18 hours at 20-25 °C during gentle agitation (e.g., gentle swirling or slow rolling of the vial on a roller mill). For microscopy assessment, the swollen, stained samples of SAP particles are transferred into white porcelain dishes, and covered with the solution in which they were prepared (or placed into 1 cm glass or quartz cuvettes with a stopper in contact with this solution).
  • a stereomiscroscope e.g., Olympus Stereomicroscope SZH10 (7-70x), equipped with a circular illumination (e.g., Intralux UX 6000-1, Volpi AG, CH 8952 Schlieren, Switzland), and optionally a camera (e.g., Olympus ColorView 12), may be used for evaluation of the swollen, stained SAP particles.
  • a circular illumination e.g., Intralux UX 6000-1, Volpi AG, CH 8952 Schlieren, Switzland
  • a camera e.g., Olympus ColorView 12
  • surface cross-linked versus non surface cross-linked SAP particles Swollen and stained non surface cross-linked SAP particles coated with cationic polymers display a uniform, homogeneous staining throughout the individual gel particles and essentially plain surfaces. Swollen and stained surface cross-linked SAP particles coated with cationic polymers on the other hand show characteristic surface patterns such as flaky surfaces or broken shells. Such pattern cannot be seen in samples of non surface cross-linked SAP particles.
  • Methods for making SAP The basic SAP can be formed in any conventional manner known in the art as discussed above. Typical and preferred processes for producing these polymers are described in a long list of literature including many patent application documents and in particular the textbook "Modern Super Absorbent Technology" by F.L. Buchholz and AT. Graham, supra, U.S.
  • Preferred methods for forming the basic SAP particles are those involving aqueous solution polymerization methods.
  • the aqueous reaction mixture of monomers is subjected to polymerization conditions, which are sufficient to produce in the mixture, substantially water- insoluble, slightly network cross-linked polymer.
  • the mass of polymer formed can then be pulverized or chopped to form individual particles.
  • the SAP particles are coated (but not covalently bonded) with the cationic polymers according to the present invention.
  • the cationic polymer can be applied to the SAP particles by simple spraying of a solution comprising the cationic polymer onto the SAP particles in a mixer.
  • a solution containing the cationic polymer can be mixed with SAP particles.
  • the cationic polymer is provided in an aqueous solution.
  • the cationic polymer is provided in an organic solution.
  • Other compounds usual in the art, such as salts for pH buffering or neutralization and dust reducing compounds, or other reaction and process aids can be used in the conventional manner.
  • the temperature of the mixing step are critical characteristics to obtain a coating without bonding, which is sufficiently strong on one hand but effective enough to allow maintaining the wet integrity of absorbent cores made with this SAP.
  • the process step of coating the SAP particles with the cationic polymer is preferably carried out at temperatures below 120°C, more preferably at temperatures below 100°C.
  • a test method to determine, if the cationic polymers are covalently bound to the SAP particles or not is described in U.S. Patent No. 6,011,196, columns 17 and 18. This test method may be applied on the SAP particles of the present invention. It is even possible to introduce the cationic polymer into absorbent structures already comprising uncoated SAP particles.
  • the cationic polymers are preferably not substantially cross-linked to each other during or after they have been applied on the SAP particles. Therefore, the coating on the SAP particles preferably does not comprise cationic polymers, which are covalently bonded to each other but comprises individual cationic polymers.
  • the cationic polymers coating the SAP particles according to the present invention are preferably neither covalently bonded to the SAP particle nor are they covalently bonded to each other.
  • absorbent cores for disposable absorbent articles comprise the previously described SAP particles having a coating of cationic polymers, with or without other optional components such as fibers, thermoplastic material, foams, scrims etc.
  • the principle function of such cores is to absorb the discharged body fluid, and then retain such fluid, even when subjected to pressures and tensions and torsions normally encountered as a result of the wearer's movements of absorbent articles made therewith.
  • the absorbent cores according to the present invention contain one or more zones.
  • a high concentration of SAP particles, in accordance with the present invention is desirable to reduce the level of other components, in particular fibrous components in order to provide relatively thin absorbent articles.
  • the percent by weight of the SAP particles relative to the combined weight of SAP and any other components (e.g., fibers, thermoplastic material, etc.) that are present in the same zone containing the polymer is used.
  • the fluid storage zone of the absorbent core may comprise other SAP particles (alone or in addition to the coated SAP particles of the present invention), which do not satisfy the above physical criteria of the SAP particles of the present invention.
  • the absorbent core or parts thereof e.g., the fluid acquisition zone or the fluid storage zone or parts of these zones
  • the core wrap material comprises a top layer and a bottom layer, which layers may be sealed together along their edges, e.g., by adhesive.
  • the top layer and the bottom layer can be provided from a non-woven material.
  • the top layer and the bottom layer may be provided from two or more separate sheets of materials or they may be alternatively provided from a unitary sheet of material. Such a unitary sheet of material may be wrapped around the storage layer, e.g., in a C-fold.
  • Fluid acquisition zone A key component of diaper of the present invention is the fluid acquisition zone, which comprises the SAP particles of the present invention. This fluid acquisition zone serves to quickly collect and temporarily hold discharged body fluid.
  • a portion of discharged fluid may, depending upon the wearer's position, permeate the acquisition zone and be absorbed by the fluid storage zone in the area proximate to the discharge.
  • the fluid storage zone in such area may not absorb the fluid as quickly as it is discharged. Therefore, the fluid acquisition zone hereof also facilitates transport of the fluid from the point of initial fluid contact to other parts of the absorbent core.
  • the term "fluid” includes, but is not limited to, liquids, urine, menses, perspiration, and water based body fluids. The fluid handling function of the fluid acquisition zone is of particular importance.
  • the fluid acquisition zone must have sufficient temporary capacity to rapidly absorb a "gush" of a bodily fluid, and sufficient fluid retention to control the acquired fluid under the influence of gravity yet not exhibit excessive fluid retention so as to make it difficult for fluid storage zone to desorb the fluid acquisition zone.
  • the swollen SAP particles In order to acquire, temporarily hold and transport fluids, the swollen SAP particles have to be especially useful for providing interstices to enable the flow of liquid between the swollen SAP particles. This is in contrast to the common use of most prior art SAP particles which were mainly designed for use in the fluid storage zone and therefore mainly had to be able to absorb and store high amounts of liquid.
  • the fluid acquisition zone may be comprised of several different materials including but not limited to: a) nonwoven or woven assemblies of synthetic fibers including polyester, polypropylene, or polyethylene, natural fibers including cotton or cellulose, blends of such fibers, or any equivalent materials or combinations of materials and b) compressed regenerated cellulosic sponges.
  • Particularly preferred materials for the fluid acquisition zone are the SAP particles of the present invention.
  • a suitable absorbent core comprises an assembly having (a) at least one fluid acquisition zone comprising relatively high concentrations of SAP particles according to the present invention, preferably at least 50% by weight of the fluid acquisition zone.
  • the fluid acquisition zone comprises only one layer.
  • this layer preferably comprises SAP particles of the present invention in a concentration of at least 50% by weight of this layer, more preferably at least 60% by weight.
  • the fluid acquisition zone comprises at least two layers.
  • at least one of the layers comprises SAP particles of the present invention in a concentration of at least 70% by weight of this at least one layer, more preferably at least 80% by weight.
  • the fluid acquisition zone comprises an upper acquisition layer facing towards the wearer and a lower acquisition layer.
  • the upper acquisition layer comprises a nonwoven fabric whereas the lower acquisition layer preferably comprises the SAP particles of the present invention.
  • the acquisition layer preferably is in direct or indirect contact with the storage layer.
  • the lower layer comprises SAP particles of the present invention in a concentration of at least 70% by weight of this lower layer, more preferably at least 80% by weight and still more preferably at least 90% by weight.
  • Absorbent Articles Figure 1 is a plan view of a diaper 20 as a preferred embodiment of an absorbent article according to the present invention. The diaper is shown in its flat out, uncontracted state (i.e., without elastic induced contraction).
  • the chassis 22 of the diaper 20 in Figure 1 comprises the main body of the diaper 20.
  • the chassis 22 comprises an outer covering including a liquid pervious topsheet 24 and/or a liquid impervious backsheet 26.
  • the chassis 22 may also include most or all of the absorbent core 28 encased between the topsheet 24 and the backsheet 26.
  • the chassis 22 preferably further includes side panels 30, leg cuffs 32 with elastic members 33 and a waist feature 34.
  • the leg cuffs 32 and the waist feature 34 typically comprise elastic members.
  • One end portion of the diaper is configured as the front waist region 36 of the diaper 20.
  • the opposite end portion is configured as the rear waist region 38 of the diaper 20.
  • the intermediate portion of the diaper is configured as the crotch region 37, which extends longitudinally between the front and rear waist regions.
  • the crotch region 37 is that portion of the diaper 20 which, when the diaper is worn, is generally positioned between the wearer's legs.
  • the waist regions 36 and 38 may include a fastening system comprising fastening members 40 preferably attached to the rear waist region 38 and a landing zone 42 attached to the front waist region 36.
  • the diaper 20 has a longitudinal axis 100 and a transverse axis 110.
  • the periphery of the diaper 20 is defined by the outer edges of the diaper 20 in which the longitudinal edges 44 run generally parallel to the longitudinal axis 100 of the diaper 20 and the end edges 46 run generally parallel to the transverse axis 110 of the diaper 20.
  • the diaper may also include other features as are known in the art including front and rear ear panels, waist cap features, elastics and the like to provide better fit, containment and aesthetic characteristics.
  • the absorbent core 28 may comprise any absorbent material that is generally compressible, conformable, non-irritating to the wearer's skin, and capable of absorbing and retaining liquids such as urine and other certain body exudates.
  • the absorbent core 28 may comprise a wide variety of liquid-absorbent materials commonly used in disposable diapers and other absorbent articles such as comminuted wood pulp, which is generally referred to as air felt.
  • suitable absorbent materials include creped cellulose wadding; melt blown polymers, including co-form; chemically stiffened, modified or cross-linked cellulosic fibers; tissue, including tissue wraps and tissue laminates, absorbent foams, absorbent sponges, absorbent gelling materials, or any other known absorbent material or combinations of materials.
  • the absorbent core may further comprise minor amounts (typically less than 10%) of non-liquid absorbent materials, such as adhesives, waxes, oils and the like.
  • the SAP particles of the present invention can be applied as absorbent materials.
  • the absorbent cores of the present invention preferably comprise relatively high concentrations of SAP particles. Consequently, there will be little or even no fibrous matrix comprised by the absorbent core, which is able to trap the SAP particles within the fibrous matrix and thus keeping the SAP particles inside the absorbent core. Therefore, the topsheet and the backsheet are preferably joined together (e.g., by adhesive, sewing, needle punching, ultrasonic bonding, by the application of heat and/or pressure or any other method known in the art), at least in those regions, where the SAP particles are most likely to leak out of the absorbent assembly. The respective regions may vary depending on the chosen configuration of the absorbent article.
  • Figure 2 shows a cross-sectional view of Figure 1 taken in the transverse axis 1 10.
  • Figure 2 illustrates a preferred embodiment of the different zones comprised by the absorbent cores.
  • the fluid acquisition zone 50 comprises an upper acquisition layer 52 and a " lower acquisition layer 54
  • the fluid storage zone underneath the fluid acquisition zone comprises a storage layer 60, which is wrapped by an upper core wrap layer 56 and a lower core wrap layer 58.
  • a base superabsorbent polymer To 300 g of glacial acrylic acid (AA), 12.837 g of MethyleneBisAcrylAmide (MBAA) is added and allowed to dissolve at ambient temperature. A 2500 ml resin kettle (equipped with a four-necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles, and optionally a mechanical stirrer) is charged with this acrylic acid/crosslinker solution. A magnetic stirrer, capable of mixing the whole content, is added. 1166.8 g water are then added (the concentration of AA is 20 w/w-%). Most of the water is added to the resin kettle, and the mixture is stirred until the monomer and water are well mixed.
  • AA glacial acrylic acid
  • MBAA MethyleneBisAcrylAmide
  • the initiator (“V50" from Waco Chemicals) are dissolved in 20 ml of deionized water. Then, the initiator solution is added together with any remaining water. The resin kettle is closed, and a pressure relief is provided e.g., by puncturing two syringe needles through the septa. The solution is then sparged vigorously with argon via an 80 cm injection needle while stirring at approx. 300 RPM. Stirring is discontinued after approx. 8 minutes, while argon spurging is continued. The solution typically starts to gel after 12 - 20 minutes total. At this point, persistent bubbles form on the surface of the gel, and the argon injection needle is raised above the surface of the gel. Purging with argon is continued at a lowered flow rate.
  • V50 from Waco Chemicals
  • the temperature is monitored, typically it rises from 20°C to 60 - 70°C within an hour. Once the temperature drops below 60°C, the kettle is transferred into a circulation oven and kept at 60°C for 15 - 18 hours. After this time, the resin kettle is allowed to cool, and the resulting gel is removed into a flat glass dish. The gel is then broken or cut with scissors into small pieces (for example in pieces smaller than 2 mm max. dimension), and transferred into a 6 1 glass beaker. 83.26 g of 50% NaOH (the amount of NaOH needed to neutralize 75% of the acid groups of the polymer) is diluted with DI water to 2.5 1, and added quickly to the gel.
  • the gel is stirred until all the liquid is absorbed; then, it is covered and transferred into a 60°C oven and let equilibrate for 2 days. After this time, the gel is allowed to cool, then divided up into 2 flat glass dishes, and transferred into a vacuum oven, where it is dried at 100°C/ max. vacuum. Once the gel has reached a constant weight (usually 3 days), it is ground using a mechanical mill (e.g., IKA mill) and sieved to obtain SAP particles of the required particle size, e.g., 150 to 850 ⁇ m.
  • a mechanical mill e.g., IKA mill
  • the amount of MBAA may be adjusted, depending on what properties are required from the resulting polymers, e.g., when 1.0 mol% (per mol AA) MBAA is used, the resulting SAP particles have a CCRC of about 20 g/g; when 2.0 mol% (per mol AA) MBAA is used, the ,.4
  • resulting SAP particles have a CCRC of about 16g/g; when 5.0 mol% (per mol AA) MBAA is used, the resulting SAP particles have a CCRC of about 8 g/g. If not otherwise stated, all compounds were obtained from Aldrich Chemicals, Milwaukee, WI, USA.
  • the surface cross- linking agent e.g., 100 ⁇ l
  • the surface cross- linking agent e.g., 100 ⁇ l
  • Mixing is continued for a total of three minutes. While stirring is continued, 7500 ⁇ l of water are then added within 3 - 5 seconds, and stirring is continued at 300 - 500 RPM for another 3 minutes.
  • the beaker is covered with aluminum foil, and let equilibrate for 1 hour. Then the beaker is transferred to a 140°C oven, and kept at this temperature for 120 minutes. After this time, the material is allowed to cool down, the contents is removed, and the surface cross-linked SAP particles are obtained. Any agglomerates may be carefully broken by gentle mechanical action. The resulting surface cross-linked SAP particles may then be sieved to the desired particle size, e.g., 150 - 850 ⁇ m.
  • Non-covalently bonded surface coating with a cationic polymers Examples B to D. F to H and K A 1 1 plastic beaker is charged with 50 g of dry SAP particles. The partially hydrolyzed cationic polymer of the hydrolysation levels of 30% (for example B), 50% (for examples C, F, G, H and K) and >90% (for example D), respectively, are added (respectively, Lupamin 9030, Luredur 8097, Lupamin 9095 from BASF) at 0.5 w% (e.g., 2.5 g of coating solution with 10% cationic polymer content) over about 2 minutes while mixing by a conventional cooking mixer at ambient temperature.
  • 0.5 w% e.g., 2.5 g of coating solution with 10% cationic polymer content
  • the adding amount of the cationic polymer are adjusted accordingly to meet different add on levels of 0.1 w% (for example F), 1.0 w% (for example G) and 5.0 w% (for examples B, C, D, H and K), respectively, based on the cationic polymer content of the coating solution.
  • the resulting material is transferred into a glass petri-dish and sticked particles are disassembled.
  • the coated SAP particles are further dried in the oven at 60°C over night (about 16 hours). Any large agglomerates may be carefully broken.
  • the resulting coated SAP particles may then be sieved to the desired particle size, e.g., 150-850 ⁇ m.
  • Example E A 1 1 plastic beaker is charged with 40 g of dry SAP particles.
  • PEI polyethyleneimine, MW 750,000 from Aldrich Chemicals, Milwaukee, WI, USA
  • PEI polyethyleneimine, MW 750,000 from Aldrich Chemicals, Milwaukee, WI, USA
  • the resulting material is transferred into a glass petri-dish and sticked particles are disassembled.
  • the coated SAP particles are further dried in the oven at 60°C over night (about 16 hours). Any large agglomerates may be carefully broken.
  • the resulting coated SAP particles may then be sieved to the desired particle size, e.g., 150-850 ⁇ m.
  • TABLE 1 Samples SAP particle size of all samples: 150 ⁇ m -850 um
  • PEI Polyethyleneimine '
  • E Polyethyleneimine '
  • Mw 750.000 Preparation with 50% cationic polymer in solution
  • All comparative examples are examples of SAP particles, which are not coated with cationic polymers. These comparative examples are not within the scope of the present invention.

Abstract

The present invention relates to absorbent articles comprising superabsorbent polymer particles especially suitable for use in the fluid acquisition zone of the absorbent core. The superabsorbent polymer particles are coated with cationic polymers having 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated. The cationic polymers are not substantially covalently bound to the superabsorbent polymer particles.

Description

ABSORBENT ARTICLES COMPRISING FLUID ACQUISITION ZONES WITH COATED SUPERABSORBENT PARTICLES
FIELD OF THE INVENTION The present invention relates to absorbent articles, which are intended to receive and retain bodily discharges such as urine. Such articles include disposable hygiene articles such as baby diapers, training pants, adult incontinence articles, feminine care articles and the like. To provide absorbent articles with thinner and dryer absorbent cores only became possible with the development of new highly absorbent gel materials able to acquire and store liquids. A second aspect is the ability to maintain the comfort and performance of such high super absorbent polymer concentration articles during the full usage cycle of the article, from dry to fully loaded, especially by improving the ability of the cores to withstand the forces experienced by such articles during use. This ability to remain intact is also often referred to as 'wet integrity' of the core. The development and improvement of highly absorbent gel materials so far mainly focused on applications of these materials in the fluid storage zone of the absorbent core. In contrast thereto, the highly absorbent gel materials of the present invention are especially suitable for use in the fluid acquisition zone of the absorbent core.
BACKGROUND OF THE INVENTION Absorbent articles for receiving and retaining bodily discharges (e.g., urine or faeces) such as disposable diapers, training pants, and adult incontinence articles are well known in the art, and significant effort has been spent against improving their performance. Such improvements generally aim at addressing the primary function of such articles, namely retaining body fluids, but also at minimizing the negatives associated with wearing such articles by increasing the comfort of the wearer. Many improvements are related to the "absorbent core" of the absorbent article. In the absorbent core the waste material is acquired by the article (picked up), then conducted away from the location of acquisition (distributed), and then stored (retained). It is well established that reducing the thickness of the article by reducing the thickness of the absorbent core, helps to improve comfort. This, however, was always a question of balance between liquid handling performance and thickness. Also a substantial amount of cushioning was considered necessary for comfortable diapers. Finally the skilled person considered it impossible to reduce or even remove the fibrous material commonly applied in absorbent cores to a point where the modern particulate super absorbent materials would take over the biggest part or even all of the liquid acquisition and distribution functionalities previously provided by fibrous matrixes. Even if there were structures which could possibly provide all such beneficial aspects when dry, it was completely inconceivable that this could be built into an absorbent core such that the liquid handling and comfort performance would be maintained even after the first gushes of liquid had been absorbed. The development of absorbent cores of particular thinness has beneficial aspects, which make such a development the subject of substantial commercial interest. For example, thinner diapers are not just less bulky to wear, conform better to the body and fit better under clothing, they are also more compact in the package, making the diapers easier for the consumer to carry and store. Compactness in packaging also results in reduced distribution costs for the manufacturer and distributor, including less shelf space required in the store per diaper unit. As indicated, the ability to provide thinner absorbent articles such as diapers has been dependent on the ability to develop relatively thin absorbent cores that can acquire and store large quantities of discharged body fluids, in particular urine. In this regard, the use of absorbent polymers often referred to as "hydrogels," "super absorbents" or "hydrocolloid" material has been particularly important. See, for example, U.S. Patent 3,699,103 and U.S. Patent 3,770,731, that disclose the use of such absorbent polymers (hereafter referred to as any of the following: hydrogel forming absorbent polymers, super absorbents, super absorbent polymers or SAPs, absorbent gel materials or AGMs). Indeed, the development of thinner diapers has been the direct consequence of thinner absorbent cores that take advantage of the ability of these SAPs to absorb large quantities of discharged body fluids, typically when used in combination with a fibrous matrix. See, for example, U.S. Patent 4,673,402 and U.S. Patent 4,935,022, that disclose dual- layer core structures comprising a fibrous matrix and SAPs useful in fashioning thin, compact, non-bulky diapers. SAPs are often made by initially polymerizing unsaturated carboxylic acids or derivatives thereof, such as acrylic acid, alkali metal (e.g., sodium and/or potassium) or ammonium salts of acrylic acid, alkyl acrylates, and the like. These polymers are rendered water-insoluble, yet water- swellable, by slightly and homogeneously cross-linking the carboxyl group-containing polymer chains with conventional di- or poly-functional monomer materials, such as N, N'-methylene- bisacryl-amide, trimethylol-propane-triacrylate or triallyl-amine. These slightly cross-linked absorbent polymers still comprise a multiplicity of anionic (charged) carboxyl groups attached to the polymer backbone. It is these charged carboxyl groups that enable the polymer to absorb body fluids as the result of osmotic forces, thus forming hydrogels. It is often desirable to increase the stiffness of SAP particles. Typically, this is done by surface cross-linking, wherein the carboxyl-groups exposed on the surface of the SAP particles are additionally cross-linked to each other. Other methods to increase the stiffness comprise coating the SAP particles. Such coatings are known for example from WO 97/12575, which discloses absorbent materials comprising absorbent gelling particles and a polycationic polymer covalently bonded to the absorbent gelling particles. European patent application EP 493 011 A2 refers to an absorbent matter comprising a water-absorbent resin particle having an acidic group on the surface, a cellulose fiber and a cationic high-molecular compound having a weight-average molecular weight of 2,000 or more. Further, WO 03/043670 discloses superabsorbent particles with a shell comprising cationic polymer cross-linked by the addition of cross-linker and adhered to the hydrogel-forming polymer by applying a coating solution containing both a cationic polymer and cross-linker. However, the development and improvement of SAPs has so far mainly focused on use of the SAPs for final storage of liquid in the absorbent core. Consequently, it would be desirable to have SAPs, which are especially suitable for fluid acquisition and distribution in the fluid acquisition zone of the absorbent core. By replacing the fibers used in the fluid acquisition zone of prior art absorbent cores with SAPs, it would be possible to further reduce the bulk and thickness of the absorbent core. A problem in developing SAPs for use in the fluid acquisition zone is that the demands on the physical and chemical properties of these SAPs differ considerably from the requirements for use in the fluid storage zone. For example, it is desirable that SAPs in the fluid acquisition zone are able to quickly acquire via capillary pressure and temporarily hold fluids in voids between the SAP particles, especially in "gush" situations. The focus is not primarily on SAPs with high capacity, but it is important that a hydrogel-bed formed from SAPs has high porosity and permeability in order to be able to provide enough interstices between the swollen SAPs. It would also be desirable to have SAP particles for use in absorbent cores, especially in the fluid acquisition zones, which have a high Free Swelling Rate (FSR). The FSR is related to the surface area of the SAP particles, and thus to their particle size, particle shape and morphology of the particles (e.g., a porous SAP particle versus a non-porous SAP particle). SAP particles having a high surface area typically also have a high FSR, which means they are able to quickly absorb liquids. The ability to quickly absorb liquids is especially important in the fluid acquisition zone of absorbent cores to create sufficient void volume. It is especially desirable to have SAP particles for use in the fluid acquisition zone, which are highly saturated already after the fist gush of liquid. Moreover, it would be desirable to be able to provide an absorbent core comprising an acquisition zone having a relatively high concentration of SAP particles with relatively high porosities, and high permeability, and in a matrix that provides sufficient wet integrity such that its capability for acquiring and transporting fluids is not substantially reduced or minimized, even when subjected to normal use forces. It would also be highly desirable to be able to use SAPs in these absorbent cores, especially in the fluid acquisition zones, that, when swollen by body fluids, continue to have a good wet integrity and high porosity such that the void volume per unit weight of absorbent polymer relatively high and preferably is close to that of an air-laid fibrous web, such as have been used in fluid acquisition zones of prior art absorbent articles. Hence it is an object of the present invention to provide absorbent articles having an improved fit especially by reducing their thickness but also when being loaded, together with good fluid handling performance, especially by using materials having particularly suitable fluid distribution properties when dry and during progressive saturation with liquids. It is a further object of the invention to achieve this by using super absorbent polymers particles.
SUMMARY OF THE INVENTION In one embodiment, the present invention relates to absorbent articles comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between the topsheet and the backsheet. The topsheet and the backsheet are at least partially joined together. The absorbent core comprises at least one fluid acquisition zone wherein the fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) the superabsorbent polymer particles further are surface coated with cationic polymers, wherein the cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, and wherein the cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) the superabsorbent polymer particles have a Cylinder Centrifuge Retention Capacity (CCRC) of less than 25 g/g. An alternative embodiment of the present invention relates to absorbent articles comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between the topsheet and the backsheet. The topsheet and the backsheet are at least partially joined together. The absorbent core comprises at least one fluid acquisition zone wherein the fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) the superabsorbent polymer particles further are surface coated with cationic polymers, wherein the cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, and wherein the cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) the fluid acquisition zone comprises the superabsorbent polymer particles in a concentration of at least 50% by weight of the fluid acquisition zone.
BRIEF DESCRIPTION OF THE DRAWINGS While the specification concludes with claims pointing out and distinctly claiming the present invention, it is believed the same will be better understood by the following drawings taken in conjunction with the accompanying specification wherein like components are given the same reference number. Figure 1 is a top plan view of a disposable diaper, with the upper layers partially cut away. Figure 2 is a cross-sectional view of the disposable diaper shown in Figure 1
DETAILED DESCRIPTION OF THE INVENTION As used herein, absorbent article refers to devices that absorb and contain liquid, and more specifically, refers to devices that are placed against or in proximity to the body of the wearer to absorb and contain the various exudates discharged from the body. Absorbent articles include but are not limited to diapers, adult incontinent briefs, diaper holders and liners, sanitary napkins and the like. Preferably, the absorbent articles of the present invention are disposable absorbent articles. Preferred absorbent articles of the present invention are diapers. As used herein, "diaper" refers to an absorbent article generally worn by infants and incontinent persons about the lower torso. "Disposable" is used herein to describe articles that are generally not intended to be laundered or otherwise restored or reused i.e., they are intended to be discarded after a single use and, preferably, to be recycled, composted or otherwise disposed of in an environmentally compatible manner. "Disposed" is used to mean that an element(s) is formed (joined and positioned) in a particular place or position as a unitary structure with other elements or as a separate element joined to another element. As used herein, the term "absorbent core" refers to a component of an absorbent article that is primarily responsible for fluid handling properties of the article, including acquiring, transporting, distributing and storing body fluids. As such, the absorbent core typically does not include the topsheet or backsheet of the absorbent article. The absorbent core of the present invention comprises at least one fluid acquisition zone and at least one fluid storage zone. The fluid acquisition zone and the fluid storage zone may be portions or sections of an absorbent core. The absorbent core may comprise two or more layers, wherein the fluid acquisition zone may comprise at least one layer and the fluid storage zone may comprise at least one layer. The fluid acquisition zone is directed towards the wearer and the fluid storage zone is directed towards the garment, while the absorbent article is in use. As used herein, the term "comprising" means that e.g., various components, zones, layers, steps and the like can be conjointly employed according to the present invention. Accordingly, the term "comprising" encompasses the more restrictive terms "made of and "consisting of," these latter, more restrictive terms having their standard meaning as understood in the art. The present invention relates to absorbent cores useful in the provision of absorbent incontinence articles such as baby diapers or adult incontinence articles, which articles preferably comprise a topsheet, a backsheet and an absorbent core sandwiched between the topsheet and the backsheet. The absorbent cores of the present invention are especially useful for collection of bodily liquids such as urine. Such cores comprise super absorbent polymers (SAP), which are in the form of particles (SAP particles). Preferably, the SAP particles are present in the fluid acquisition zone of the absorbent core in a concentration of at least 50% by weight of the fluid acquisition zone, more preferably in a concentration of at least 60% by weight. The SAP particles may be of numerous shapes. The term "particles" refers to granules, fibers, flakes, spheres, powders, platelets and other shapes and forms known to persons skilled in the art of SAPs. For example, the particles can be in the form of granules or beads, having a particle size from about 10 μm to about 1000 μm, preferably from about 100 μm to about 1000 μm, even more preferably from about 150 μm to about 850 μm and most preferably from about 150 μm to about 500 μm. In another embodiment, the SAPs can be in the shape of fibers, i.e. elongated, acicular SAP particles. In those embodiments, the SAP fibers have a minor dimension (i.e. diameter of the fiber) of less than about 1mm, usually less than about 500 μm, and preferably less than 250 μm down to 50 μm. The length of the fibers is preferably about 3 mm to about 100 mm. The fibers can also be in the form of a long filament that can be woven. Preferred SAPs of the present invention are spherical-like particles. According to the present invention and in contrast to fibers, "spherical-like particles" have a longest and a smallest dimension with a paiticulate ratio of longest to smallest particle dimension in the range of 1-5, where a value of 1 would equate a perfectly spherical particle and 5 would allow for some deviation from such a spherical particle. The SAPs useful in the present invention include a variety of water-insoluble, but water- swellable polymers capable of absorbing large quantities of fluids. Such polymers materials are generally known in the art and include all those well-known polymers used or deemed useful in the context of disposable absorbent article technology. Particularly the SAPs disclosed in EP-A-752 892 or those disclosed in a textbook entitled "Modern Super Absorbent Technology" by F.L. Buchholz and A . Graham, published by Wiley VCH, New York, 1998 are useful in the context of the present invention. Preferred polymer materials for use in making SAP particles are slightly network cross linked polymers of partially neutralized polyacrylic acids and starch derivatives thereof. Preferably, the SAP particles comprise from 25% to 95% by weight, more preferably from 50% to 80% by weight, neutralized, slightly network cross-linked, polyacrylic acid. Network cross- linking renders the polymer substantially water-insoluble and, in part, determines the absorptive capacity and extractable polymer content characteristics of the hydrogel-forming absorbent polymers. Processes for network cross linking these polymers and typical network cross-linking agents are described in greater detail in U.S. Patent 4,076,663 or references cited supra. While the SAP is preferably of one type (i.e., homogeneous), mixtures of polymers can also be used in the present invention. The SAPs can also comprise mixtures with low levels of one or more additives, such as for example powdered silica, surfactants, glue, binders, and the like. Furthermore, the SAPs can comprise a gradient in particle size or can comprise a certain range of particle size. Many of the known SAPs exhibited gel blocking. "Gel blocking" occurs when particles of the SAP are wetted and the particles swell so as to inhibit fluid transmission to other zones or regions of the absorbent structure. Wetting of these other regions of the absorbent core therefore takes place via a very slow diffusion process. In practical terms, this means acquisition of fluids by the absorbent structure is much slower than the rate at which fluids are discharged, especially in gush situations. Leakage from the absorbent article can take place well before the particles of SAP in the absorbent core are even close to being fully saturated or before the fluid can diffuse or wick past the "blocking" particles into the rest of the absorbent core. Gel blocking can be a particularly acute problem if the particles of SAP do not have adequate gel strength and deform or spread under stress once the particles swell with absorbed fluid. See U.S. Patent 4,834,735. The problem of gel blocking is especially critical in the present invention, because the SAP particles are preferably applied in the fluid acquisition zone. In the fluid acquisition zone, the main task of the SAP particles is not to store liquid -as is the case in most prior art uses of SAP particles in absorbent articles- but the main task is to ascertain that liquid can pass through the fluid acquisition zone sufficiently quickly and to temporarily store liquid, which cannot be absorbed quick enough by the fluid storage zone. One commonly applied way to reduce gel blocking is to make the particles stiffer, which enables the SAP particles to retain their original shape thus creating or maintaining void spaces between the particles. A well-known method to increase stiffness is to covalently cross-link the carboxyl groups exposed on the surface of the SAP particles. This method is commonly referred to as surface cross-linking. The term "surface" describes the outer- facing boundaries of the particle. For porous SAP particles, exposed internal surfaces may also belong to the surface. The term "surface cross- linked SAP particle" refers to an SAP particle having its molecular chains present in the vicinity of the particle surface cross-linked by a compound referred to as surface cross-linker. The surface cross-linker is applied to the surface of the particle. In a surface cross-linked SAP particle the level of cross-links in the vicinity of the surface of the SAP particle is generally higher than the level of cross-links in the interior of the SAP particle. Surface cross-linkers known in the prior art are e.g., di- or polyfunctional agents that are capable of building additional cross-links between the polymer chains of the SAPs. Surface cross- linkers include, e.g., di- or polyhydric alcohols, or derivatives thereof, capable of forming di- or polyhydric alcohols. The cross-linking is based on a reaction between the functional groups comprised by the polymer, for example, an esterification reaction between a carboxyl group (comprised by the polymer) and a hydroxyl group (comprised by the surface cross-linker). According to the present invention the SAP particles are surface coated with cationic polymers. The cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated. Furthermore, the cationic polymers are not substantially covalently bonded to the superabsorbent particles. Preferably, the cationic polymers have 3 to 22 mol/kg of cationic groups, which can be protonated, more preferably 3-17 mol/kg of cationic groups, which can be protonated, even more preferably 4-14 mol/kg of cationic groups, which can be protonated and most preferably 4-12 mol/kg of cationic groups, which can be protonated. However, preferably the cationic polymers are nitrogen-containing polymers (N- polymers) having 1 to 25 mol/kg (based on the weight of the nitrogen containing polymer) nitrogen atoms, which can be protonated. More preferably, the nitrogen-containing cationic polymers have 3 to 22 mol/kg of nitrogen atoms, which can be protonated, still more preferably 3- 17 mol/kg of nitrogen atoms, which can be protonated, even more preferably 4-14 mol/kg of nitrogen atoms, which can be protonated and most preferably 4- 12 mol/kg of nitrogen atoms, which can be protonated. In a preferred embodiment of the present invention, the nitrogen-containing cationic polymer is polyethyleneimine (PEI). In another preferred embodiment of the present invention, the nitrogen-containing cationic polymer is a partially hydrolyzed polymer. If a partially hydrolyzed nitrogen-containing cationic polymer is used for the surface coating, this polymer is preferably hydrolyzed in the range of 30%-80%, more preferably in the range of 40%-70%, and most preferably in the range of 40%-60%. The degree of hydrolyzation has a major impact on the overall charge of the cationic polymer, because only the hydrolyzed groups comprised by the coating polymer are positively charged. A detailed description of partially hydrolyzed or at least hydrolysable polyvinyl-amides and how to make them is found in DE 31,28,478. Particularly preferred are nitrogen-containing cationic polymers provided by a polymer made from a homo-polymerization of N-vinyl-form- amide (PVFA). The PVFA is at least partially hydrolyzed to polyvinyl-amine (PVAm), preferably with a hydrolysation degree of from about 30mol% to about 80mol%. Solutions of partially hydrolyzed polyvinyl-form-amides are available commercially, e.g., from BASF-AG, Ludwigshafen, Germany, under the trade names Lupamin™ and Luredur™. In a particular embodiment of the present invention is the coating is a partially hydrolyzed polymer of N-vinyl- alkyl-amide or N-vinyl-alkyl-imide, more preferably a partially hydrolyzed polymer of N-vinyl- formamide. According to the present invention, nitrogen-containing cationic polymers with primary, secondary and tertiary amines are preferred. The cationic polymers preferably are added on the SAP particles in an amount of less than 10% by weight of said SAP particles, more preferably between 0.05% and 5% and even more preferably between 0.1% and 1.0% by weight of the SAP particles without cationic polymers (uncoated SAP particles). Without wishing to be bound by this theory, it is believed that the cationic polymers adhere to the surface of the SAP particles via ionic bonds, Van-der-Waals forces and hydrogen bonds. Preferably, the cationic polymers of the present invention have a weight-average molecular weight in the range of about 10,000 to about 1,000,000, more preferably in the range of about 10,000 to about 800,000 and even more preferred in the range of about 50,000 to about 750,000.
Physical Properties of the SAP particles 1. Permeability Permeability (also called liquid flow conductivity) is an important property of the coated SAP particles of present invention. Permeability of the SAP particles is determined based on a modification of the method to determine SFC (Saline Flow Conductivity). SFC measures the ability of a material to transport saline fluids, e.g., the ability of a hydrogel layer formed from the swollen SAP to transport body fluids under usage pressures. The method to determine SFC is described in EP-B-0 752 892, paragraph 224 and following. For the permeability measurement of hydrogel-layer formed by SAP particles of the current invention, 0.9% Saline solution (9.00 g NaCl in 1 liter deionised water) instead of synthetic urine (known as Jayco SyUrine or Jayco Synthetic Urine, available from Jayco Pharmaceuticals, Company Hill, Pennsylvania, USA) is used during the 60 minutes of pre- swelling the SAP particles and during the liquid flow measurement. In case of SAP that forms high permeability hydrogel-layer (i.e., fast liquid flow rate), as is the case for the SAP particles of the present invention, it is particularly necessary to increase the thickness of the hydrogel-layer formed by the SAP particles in order to maintain the fluid height of 5.0 cm above the screen attached to the bottom of the cylinder throughout the whole measurement. For this purpose, the starting sample amount of dry SAP particles need to be controlled based on the capacity (Cylinder Centrifuge Retention Capacity) of SAP particles to adjust the height of the swollen hydrogel-layer formed by SAP particles between 10 mm and 20 mm. Confining pressure of 0.3 psi (2.1 kPa) is applied during the pre-swelling and the flow measurement. Measure caliper of empty sample holder assembly to the accuracy of 0.01 mm: h0 Weigh dry SAP particles according to the appropriate amount mentioned above to the accuracy of 0.001 g Transfer complete sample and evenly distribute the SAP particles on the whole are of the bottom of the sample holder. Measure caliper of empty sample holder assembly and dry SAP particle to the accuracy of 0.01 mm: h, Put the sample holder assembly onto a filter paper (e.g., Schleicher & Schuell, No. 596, 90mm diameter or equivalent), submerged in a large petri-dish with 0.9% saline solution where the liquid height is at least 3.0 cm and pre-swell for 60 minutes. After 60 minutes, remove sample holder assembly from petri-dish/Saline solution and get excess liquid to drip off. Measure caliper of sample holder assembly and swollen SAP particles to the accuracy of 0.01 mm: h2. Transfer the sample holder assembly with samples onto the support screen and let 200ml of 0.9% saline solution flow through the sample while adjusting the 5.0 cm hydrostatic head above the screen attached to the bottom of the cylinder. Start permeability data acquiring for 5 minutes with a data recording intervals of 10 sec for the fast flow rate hydrogel-layer. Let drip-off excess fluid for 30 minutes by holding the outer wall of the sample holder and to avoid hydrogel-layer formed from the SAP particles contacting any surface to let the liquid easily drip off to the reservoir. Measure the caliper of sample holder assembly and hydrogel-layer to the accuracy of 0.01 mm: h3. Calculations of permeability values are based on the flow rate that is determined via the slope of the uptake-vs-time curve. The average of three determinations is reported. (Permeability) K = {Fg x Lfina|}/{p x A x ΔP} wherein
Fg is the flow rate in [g/sec] determined from the calculation of the slope of the uptake-vs-time curve, i.e. liquid amount flowing through the swollen hydrogel-layer at each 10 sec time intervals, and
Lfinai is the average value of the initial thickness of the SAP-layer after 60 minutes of swelling, h2- ho and the gel layer thickness after flow and after dripping off the excess liquid, h3-h0 in [cm]. Lfin i = [(h2 -ho) +(h3-h0)] / 2 x 10 wherein p is the density of the NaCl solution in [g/cm3] (1.005 g/cm3 for 0.9% saline solution at 20 °C), and
A is the area of the hydrogel layer 28.27 cm2, and
ΔP is the hydrostatic pressure 4920 g-cm/s2, and the permeability, K, is in units of [cm3 s/g]. The SAP particles, which are surface coated with cationic polymers according to the present invention, preferably have a measured permeability of at least 400 x 10"7cm3 sec/g, more preferably more than 800 x 10"7cm3 sec/g, even more preferably more than 1000 x 10"7cm3 sec/g and most preferably more than 1200 x 10"7cm3 sec/g. 2. Wet Porosity An important characteristic of SAP particles, which is preferably achieved by the SAP particles according to the present invention, is the openness or porosity of the hydrogel zone or layer formed when the polymer is swollen in body fluids under a confining pressure. This is referred to as Wet Porosity. The openness or porosity of the hydrogel layer is formed when the SAP particles swell in the presence of body fluids. The Wet Porosity is important to determine the ability of the SAP particles to acquire and transport fluids, especially when the SAP particles are present at high concentrations in the absorbent structure. Porosity refers to the fractional volume that is not occupied by solid material. For a hydrogel layer formed entirely from a SAP, porosity is the fractional volume of the layer that is not occupied by hydrogel. For an absorbent structure containing the hydrogel, as well as other components, porosity is the fractional volume (also referred to as void volume) that is not occupied by the hydrogel, or other solid components (e.g., fibers). This test determines the porosity of the hydrogel-layer formed by swollen SAP particles in 0.9% saline solution under a confining pressure of 0.3 psi (2.1 kPa). The objective of this test is to assess the ability of the hydrogel-layer formed from SAP particles to remain porous when the SAP particles are present in high concentration in an absorbent layer and exposed to usage mechanical pressure. Wet porosity is the fractional volume of the layer that is not occupied by swollen SAP particles. See J.M. Coulson et al. Chemical Engineering Vol. 2, 3rd Edition, Pergamon Press, 1978, PI 26. Wet porosity of the current invention is measured together with the permeability measurement using the same sample and the sample holder assembly (piston/cylinder apparatus) and additional measurements. In this way, the porosity data can be derived in addition to the closely related permeability values from the same experimental set-up. - Weigh empty sample holder assembly to the accuracy of 0.01 g after the measurement of caliper of empty sample holder (see permeability measurement): w0 - After the drip-off of excess fluid for 30 minutes (as in permeability), weigh sample holder assembly and swollen SAP with fluid in interstitials to the accuracy of 0.01 g: wi - Dry out the fluid in interstitials by placing the assembly of SAP particles and sample holder on paper hand towels (Metsa Tissue, Katrin®, C-fold2) 16 hours (+/- 1 or 2 hrs). - Measure caliper of sample holder assembly and SAP particles after interstitials are dried to the accuracy of 0.01 mm: ru. - Weigh sample holder assembly and SAP particles with dried interstitials to the accuracy of 0.01 g : w2 The final wet porosity of swollen SAP particles, n, can be obtained as follows: (Wet Porosity) n = VV0ld/Vt0t wherein VVOιd is obtained by the weight of liquid in interstitials of the hydrogel-layer obtained from the weight difference between before and after the dry out process with an addition to the weight correction of 0.7 g as below. Vvord = (wι-w0) - (w2-w0) - 0.7 (weight correction as fluid clings to sample holder) / p wherein p is the density of the NaCl solution in g/cm3 (1.005 g/cm3 for 0.9% saline solution at 20 °C), and Vtot is obtained by wet sample caliper and the area of the hydrogel layer A formed from the SAP particles Vlot= (h3 - h0/ 10) x A The values for h0, h3 and A, are those values, which have been measured in permeability measurement. In general, the Wet Porosity takes a value between 0 and 1. Preferred SAP particles useful in the present invention have Wet Porosity values of at least 0.20, more preferably at least 0.23, even more preferably at least 0.25. However the porosity remains an important aspect over the whole usage range of pressures experienced by absorbent cores, i.e. starting from no pressure to pressures such as 10 000 Pa. 3. Cylinder Centrifuge Retention Capacity (CCRC) This test serves to measure the saline-water-solution retention capacity of the SAP particles used herein, when the SAP particles are submitted to centrifuge forces (and it is an indication of the maintenance of the absorption capacity of the SAP particles in use, when also various forces are applied to the material). First, a saline-water solution is prepared as follows: 18.00 g of sodium chloride is weighed and added into a two liter volumetric flask, which is then filled to volume with 2 liter deionised water under stirring until all sodium chloride is dissolved. A pan with a minimum 5 cm depth, and large enough to hold four centrifuge cylinders is filled with part of the saline solution, such that up to a level of 40 mm (± 3 mm). Each SAP particles sample is tested in a separate cylinder and each cylinder to be used is thus weighed before any sample is placed in it, with an accuracy of 0.01 g. The cylinders have a very fine mesh on the bottom, to allow fluid to leave the cylinder. For each measurement, a duplicate test is done at the same time; so two samples are always prepared as follows: 1.00 g of the SAP particles, which are to be tested, is weighed, with an accuracy of 0.005 g (this is the 'sample'), and then the sample is transferred to an empty, weighed cylinder. (This is repeated for the replica.) Directly after transferring the sample to a cylinder, the filled cylinder is placed into the pan with the saline solution (Cylinders should not be placed against each other or against the wall of the pan.). After 15 min (± 30 s), the cylinder is removed from the pan, and the saline solution is allowed to drain off the cylinder; then, the cylinder is re-placed in the pan for another 45 min. After the total of 60 minutes immersion time, the cylinder is taken from the solution and excess water is allowed to run off the cylinder and then, the cylinder with the sample is placed in the cylinder stands inside a centrifuge, such that the two replicate samples are in opposite positions. The centrifuge used may be any centrifuge equipped to fit the cylinder and cylinder stand into a centrifuge cup that catches the emerging liquid from the cylinder and capable of delivering a centrifugal acceleration of 250 g (±5 g) applied to a mass placed on the bottom of the cylinder stand (e.g., 1300 rpm for a internal diameter of 264 mm). A suitable centrifuge is Heraeus Megafuge 1.0 VWR # 5211560. The centrifuge is set to obtain a 250 g centrifugal acceleration. For a Heraeus Megafuge 1.0, with a rotor diameter of 264 mm, the setting of the centrifuge is 1300 rpm. The samples are centrifuged for 3 minutes (+ 10 s). The cylinders are removed from the centrifuge and weighed to the nearest 0.01 g. For each sample (i), the cylinder centrifuge retention capacity W„ expressed as grams of saline-water-solution absorbed per gram of SAP particles is calculated as follows:
Figure imgf000018_0001
wherein: mCs: is the mass of the cylinder with sample after centrifugation [g] mc_: is the mass of the dry cylinder without sample [g] ms: is the mass of the sample without saline solution [g]
Then, the average of the two W, values for the sample and its replica is calculated (to the nearest
0.01 g/g) and this is the CCRC as referred to herein. Preferably the CCRC of the SAP particles of the present invention is less than 25 g/g, more preferably less than 20 g/g, still more preferably less than 19.5 g/g and most preferably less than 17 g/g. Furthermore, the CCRC of the SAP particles of the present invention is more than 5 g/g, more preferably more than 6 g/g. 4. Free Swell Rate (FSR) This method serves to determine the swell rate of the SAP particles used herein in a 0.9% saline solution, without stirring or confining pressure. The amount of time taken to absorb a certain amount of fluid is recorded and this is reported in gram of fluid (0.9% saline) absorbed per gram of SAP particles per second, e.g., g/g/sec. The saline solution is prepared by adding 9.0 gram of NaCl into 1000 ml distilled, deionized water, and this is stirred until all NaCl is dissolved. The sample amount calculated (see the below equation) is weighed (to an accuracy of 0.0001 g) and placed evenly over the bottom of a 25 ml beaker; then 20 g of the saline solution (also at 23°C) is added quickly to the beaker with the sample and the timer is started. Exact weight of saline solution added is determined to the accuracy of 0.01 g : wtιq wdry= dry weight [g] = 20 [g] / (0.75 x CCRC [g/g]) When the last part of the undisturbed fluid surface meets the swelling sample, e.g., judged by the light reflection from the fluid surface, the time ts is recorded. The test is repeated twice, to obtain 3 values. The Free Swell Rate is then calculated per sample and this can be averaged to obtain the Free Swell Rate, as referred herein. FSR = whq / (wdryx ts) Preferably, the FSR of the SAP particles of the present invention is at least 0.1 g/g/sec, more preferably at least 0.3 g/g/sec, even more preferably at least 0.5 g/g/sec and most preferably at least 0.7 g/g/sec. 5. Acquisition Test The fluid acquisition test provides a means for introducing fluid into an absorbent article that simulates in-use conditions. The article will be loaded with a 75 ml/gush of 0.9% Saline solution at a rate of 15ml s"' using a pump (Model 7520-00 Cole Parmer Instruments Co., Chicago, USA). The time to absorb saline solution is recorded by a timer. The gush is repeated every 5 minutes at precisely 5 minutes gush intervals until 4 gushes. The test sample, which comprises a core and includes a topsheet and a backsheet, is arranged to lie flat on a foam platform within a perspex box (see the detail assembly of test apparatus in European Patent EP 0 631 768 Bl or U.S. Patent No. 6,083,210). The core has a ultimate storage capacity of about 300 ml to about 400 ml. If products with significant different capacities should be evaluated (such as can be envisaged for adult incontinence products), the settings in particular of the fluid volume per gush should be adjusted appropriately to about 20% of the total article design capacity, and the deviation from the standard test protocol should be recorded. The outer surface of the backsheet is facing the foam platform. A Perspex plate having a 5 cm diameter opening substantially in its middle is placed on top of the sample. The sample is oriented such that the topsheet is directly below the opening of the perspex plate. The opening in the plate (=loading point for the saline solution) is placed about 10 cm from the front edge of the complete core and about in the halfway between the lateral sides of the core. Saline solution is introduced to the sample through the cylinder fitted and glued into the opening. Electrodes are about 1 mm to 2 mm above the surface of the absorbent structure and also connected to the timer. Loads are placed on top of the plate to simulate, for example a baby's weight. A weight of 9 kg is placed on top of the plate with an area of 744.6 cm2 (51 cm x 14.6 cm). As saline solution is introduced into the cylinder. It builds up on top of the absorbent structure thereby completing an electrical circuit between the electrodes. This starts the timer. The timer is stopped and recorded when the absorbent structure has absorbed the gush, and the electrical contact between the electrodes is broken. Acquisition rate is defined as the gush volume absorbed (ml) per unit time (s). The acquisition rate is calculated for each gush introduced into the sample. Preferred acquisition rates for the 4th gush are at least 0.7 ml/s, more preferably at least 0.8 ml/s.
6. Staining of SAP particles with Toluidine Blue in 0.9% NaCl With the following method, it is possible to determine, if SAP particles coated with cationic polymers have been surface cross-linked prior to applying the cationic polymer coating on the SAP particles. Staining solution (20 ppm Toluidine Blue O in 0.9% NaCl): 20 mg Toluidine Blue O [CAS: 540-23-8] are dissolved in 250 ml 0.9% (w/w) NaCl solution. The mixture is placed into an ultrasonic bath for 1 hour, filtered through a paper filter, and filled up to 1000 ml with 0.9% NaCl solution. Staining procedure: A sample of 30 - 50 mg of SAP particles coated with cationic polymers is placed into a 40 ml screw cap glass vial, and 30 ml of the above staining solution are added. The vial is closed, and the SAP particles are allowed to swell and equilibrate for 18 hours at 20-25 °C during gentle agitation (e.g., gentle swirling or slow rolling of the vial on a roller mill). For microscopy assessment, the swollen, stained samples of SAP particles are transferred into white porcelain dishes, and covered with the solution in which they were prepared (or placed into 1 cm glass or quartz cuvettes with a stopper in contact with this solution). A stereomiscroscope (e.g., Olympus Stereomicroscope SZH10 (7-70x), equipped with a circular illumination (e.g., Intralux UX 6000-1, Volpi AG, CH 8952 Schlieren, Switzland), and optionally a camera (e.g., Olympus ColorView 12), may be used for evaluation of the swollen, stained SAP particles. As comparative samples, non surface cross-linked SAP particles coated with cationic polymers as well surface cross-linked SAP particles coated with cationic polymers are submitted to the staining method. Assessment: surface cross-linked versus non surface cross-linked SAP particles: Swollen and stained non surface cross-linked SAP particles coated with cationic polymers display a uniform, homogeneous staining throughout the individual gel particles and essentially plain surfaces. Swollen and stained surface cross-linked SAP particles coated with cationic polymers on the other hand show characteristic surface patterns such as flaky surfaces or broken shells. Such pattern cannot be seen in samples of non surface cross-linked SAP particles. Methods for making SAP The basic SAP can be formed in any conventional manner known in the art as discussed above. Typical and preferred processes for producing these polymers are described in a long list of literature including many patent application documents and in particular the textbook "Modern Super Absorbent Technology" by F.L. Buchholz and AT. Graham, supra, U.S. Reissue Patent 32,649, U.S. Patent 4,666,983, U.S. Patent 4,625,001 U.S. Patent 4,340,706, U.S. Patent 4,506,052 U.S. Patent 4,735,987 U.S. Patent 4,541 ,871, PCT application WO92/16565, PCT application WO90/08789, PCT application WO93/05080; U.S. Patent 4,824,901 ; U.S. Patent 4,789,861, U.S. Patent 4,587,30, U.S. Patent 4,734,478; U.S. Patent 5,164,459; German patent application 4,020,780, and published European patent application 509,708. Preferred methods for forming the basic SAP particles are those involving aqueous solution polymerization methods. The aqueous reaction mixture of monomers is subjected to polymerization conditions, which are sufficient to produce in the mixture, substantially water- insoluble, slightly network cross-linked polymer. The mass of polymer formed can then be pulverized or chopped to form individual particles. Finally the SAP particles are coated (but not covalently bonded) with the cationic polymers according to the present invention. The cationic polymer can be applied to the SAP particles by simple spraying of a solution comprising the cationic polymer onto the SAP particles in a mixer. Alternatively, a solution containing the cationic polymer can be mixed with SAP particles. Preferably, the cationic polymer is provided in an aqueous solution. Alternatively, the cationic polymer is provided in an organic solution. Other compounds usual in the art, such as salts for pH buffering or neutralization and dust reducing compounds, or other reaction and process aids can be used in the conventional manner. When applying the cationic polymer (preferably the N-polymer) to the SAP particles it is important not to bind the coating material covalently to the surface of the SAP particles. It has surprisingly been found, that upon application of the preferred N-polymers according to the present invention, it is neither necessary nor advantageous to bind the cationic polymer to the superabsorbent particles. To ensure this, the temperature of the mixing step are critical characteristics to obtain a coating without bonding, which is sufficiently strong on one hand but effective enough to allow maintaining the wet integrity of absorbent cores made with this SAP. The process step of coating the SAP particles with the cationic polymer is preferably carried out at temperatures below 120°C, more preferably at temperatures below 100°C. A test method to determine, if the cationic polymers are covalently bound to the SAP particles or not is described in U.S. Patent No. 6,011,196, columns 17 and 18. This test method may be applied on the SAP particles of the present invention. It is even possible to introduce the cationic polymer into absorbent structures already comprising uncoated SAP particles. Furthermore, according to the present invention, the cationic polymers are preferably not substantially cross-linked to each other during or after they have been applied on the SAP particles. Therefore, the coating on the SAP particles preferably does not comprise cationic polymers, which are covalently bonded to each other but comprises individual cationic polymers.
Hence, the cationic polymers coating the SAP particles according to the present invention are preferably neither covalently bonded to the SAP particle nor are they covalently bonded to each other.
Absorbent Cores Containing SAP Particles According to the present invention absorbent cores for disposable absorbent articles comprise the previously described SAP particles having a coating of cationic polymers, with or without other optional components such as fibers, thermoplastic material, foams, scrims etc. The principle function of such cores is to absorb the discharged body fluid, and then retain such fluid, even when subjected to pressures and tensions and torsions normally encountered as a result of the wearer's movements of absorbent articles made therewith. In general, the absorbent cores according to the present invention contain one or more zones. Generally, a high concentration of SAP particles, in accordance with the present invention, is desirable to reduce the level of other components, in particular fibrous components in order to provide relatively thin absorbent articles. In measuring the concentration of SAP particles in a given zone of an absorbent core, the percent by weight of the SAP particles relative to the combined weight of SAP and any other components (e.g., fibers, thermoplastic material, etc.) that are present in the same zone containing the polymer is used. The fluid storage zone of the absorbent core may comprise other SAP particles (alone or in addition to the coated SAP particles of the present invention), which do not satisfy the above physical criteria of the SAP particles of the present invention. The absorbent core or parts thereof (e.g., the fluid acquisition zone or the fluid storage zone or parts of these zones) may in addition be fully or partially wrapped in a tissue, nonwoven or any other suitable substrate in order to unitize the assembly. In one preferred embodiment the core wrap material comprises a top layer and a bottom layer, which layers may be sealed together along their edges, e.g., by adhesive. The top layer and the bottom layer can be provided from a non-woven material. The top layer and the bottom layer may be provided from two or more separate sheets of materials or they may be alternatively provided from a unitary sheet of material. Such a unitary sheet of material may be wrapped around the storage layer, e.g., in a C-fold. Fluid acquisition zone A key component of diaper of the present invention is the fluid acquisition zone, which comprises the SAP particles of the present invention. This fluid acquisition zone serves to quickly collect and temporarily hold discharged body fluid. A portion of discharged fluid may, depending upon the wearer's position, permeate the acquisition zone and be absorbed by the fluid storage zone in the area proximate to the discharge. However, since fluid is frequently discharged in gushes, the fluid storage zone in such area may not absorb the fluid as quickly as it is discharged. Therefore, the fluid acquisition zone hereof also facilitates transport of the fluid from the point of initial fluid contact to other parts of the absorbent core. In the context of the present invention, it should be noted that the term "fluid" includes, but is not limited to, liquids, urine, menses, perspiration, and water based body fluids. The fluid handling function of the fluid acquisition zone is of particular importance. The fluid acquisition zone must have sufficient temporary capacity to rapidly absorb a "gush" of a bodily fluid, and sufficient fluid retention to control the acquired fluid under the influence of gravity yet not exhibit excessive fluid retention so as to make it difficult for fluid storage zone to desorb the fluid acquisition zone. In order to acquire, temporarily hold and transport fluids, the swollen SAP particles have to be especially useful for providing interstices to enable the flow of liquid between the swollen SAP particles. This is in contrast to the common use of most prior art SAP particles which were mainly designed for use in the fluid storage zone and therefore mainly had to be able to absorb and store high amounts of liquid. The fluid acquisition zone may be comprised of several different materials including but not limited to: a) nonwoven or woven assemblies of synthetic fibers including polyester, polypropylene, or polyethylene, natural fibers including cotton or cellulose, blends of such fibers, or any equivalent materials or combinations of materials and b) compressed regenerated cellulosic sponges. Particularly preferred materials for the fluid acquisition zone are the SAP particles of the present invention. By applying the SAP particles of the present invention, the fluid acquisition remains desirably thin until it is exposed to an aqueous liquid at which time it rapidly expands so as to absorb the liquid. The fluid acquisition zone is preferably positioned such that it is in fluid communication with topsheet, and serves to quickly acquire and partition body exudates from the wearer's body. Bonding of the fluid acquisition zone the topsheet may enhance the fluid communication by providing interfacial bonding and preventing topsheet separation form impeding fluid flow. A suitable absorbent core comprises an assembly having (a) at least one fluid acquisition zone comprising relatively high concentrations of SAP particles according to the present invention, preferably at least 50% by weight of the fluid acquisition zone. In one embodiment, the fluid acquisition zone comprises only one layer. In this embodiment, this layer preferably comprises SAP particles of the present invention in a concentration of at least 50% by weight of this layer, more preferably at least 60% by weight. In another embodiment, the fluid acquisition zone comprises at least two layers. In this embodiment, at least one of the layers comprises SAP particles of the present invention in a concentration of at least 70% by weight of this at least one layer, more preferably at least 80% by weight. In a preferred embodiment of the present invention, the fluid acquisition zone comprises an upper acquisition layer facing towards the wearer and a lower acquisition layer. In one preferred embodiment the upper acquisition layer comprises a nonwoven fabric whereas the lower acquisition layer preferably comprises the SAP particles of the present invention. The acquisition layer preferably is in direct or indirect contact with the storage layer. Preferably, the lower layer comprises SAP particles of the present invention in a concentration of at least 70% by weight of this lower layer, more preferably at least 80% by weight and still more preferably at least 90% by weight. Absorbent Articles Figure 1 is a plan view of a diaper 20 as a preferred embodiment of an absorbent article according to the present invention. The diaper is shown in its flat out, uncontracted state (i.e., without elastic induced contraction). Portions of the structure are cut away to more clearly show the underlying structure of the diaper 20. The portion of the diaper 20 that contacts a wearer is facing the viewer. The chassis 22 of the diaper 20 in Figure 1 comprises the main body of the diaper 20. The chassis 22 comprises an outer covering including a liquid pervious topsheet 24 and/or a liquid impervious backsheet 26. The chassis 22 may also include most or all of the absorbent core 28 encased between the topsheet 24 and the backsheet 26. The chassis 22 preferably further includes side panels 30, leg cuffs 32 with elastic members 33 and a waist feature 34. The leg cuffs 32 and the waist feature 34 typically comprise elastic members. One end portion of the diaper is configured as the front waist region 36 of the diaper 20. The opposite end portion is configured as the rear waist region 38 of the diaper 20. The intermediate portion of the diaper is configured as the crotch region 37, which extends longitudinally between the front and rear waist regions. The crotch region 37 is that portion of the diaper 20 which, when the diaper is worn, is generally positioned between the wearer's legs. The waist regions 36 and 38 may include a fastening system comprising fastening members 40 preferably attached to the rear waist region 38 and a landing zone 42 attached to the front waist region 36. The diaper 20 has a longitudinal axis 100 and a transverse axis 110. The periphery of the diaper 20 is defined by the outer edges of the diaper 20 in which the longitudinal edges 44 run generally parallel to the longitudinal axis 100 of the diaper 20 and the end edges 46 run generally parallel to the transverse axis 110 of the diaper 20. The diaper may also include other features as are known in the art including front and rear ear panels, waist cap features, elastics and the like to provide better fit, containment and aesthetic characteristics. The absorbent core 28 may comprise any absorbent material that is generally compressible, conformable, non-irritating to the wearer's skin, and capable of absorbing and retaining liquids such as urine and other certain body exudates. The absorbent core 28 may comprise a wide variety of liquid-absorbent materials commonly used in disposable diapers and other absorbent articles such as comminuted wood pulp, which is generally referred to as air felt. Examples of other suitable absorbent materials include creped cellulose wadding; melt blown polymers, including co-form; chemically stiffened, modified or cross-linked cellulosic fibers; tissue, including tissue wraps and tissue laminates, absorbent foams, absorbent sponges, absorbent gelling materials, or any other known absorbent material or combinations of materials. The absorbent core may further comprise minor amounts (typically less than 10%) of non-liquid absorbent materials, such as adhesives, waxes, oils and the like. Furthermore, the SAP particles of the present invention can be applied as absorbent materials. The absorbent cores of the present invention preferably comprise relatively high concentrations of SAP particles. Consequently, there will be little or even no fibrous matrix comprised by the absorbent core, which is able to trap the SAP particles within the fibrous matrix and thus keeping the SAP particles inside the absorbent core. Therefore, the topsheet and the backsheet are preferably joined together (e.g., by adhesive, sewing, needle punching, ultrasonic bonding, by the application of heat and/or pressure or any other method known in the art), at least in those regions, where the SAP particles are most likely to leak out of the absorbent assembly. The respective regions may vary depending on the chosen configuration of the absorbent article. Figure 2 shows a cross-sectional view of Figure 1 taken in the transverse axis 1 10. In Figure 2 illustrates a preferred embodiment of the different zones comprised by the absorbent cores. In Figure 2, the fluid acquisition zone 50 comprises an upper acquisition layer 52 and a " lower acquisition layer 54, while the fluid storage zone underneath the fluid acquisition zone comprises a storage layer 60, which is wrapped by an upper core wrap layer 56 and a lower core wrap layer 58. 15
Examples
Examples of SAP according to the present invention
1. Preparation of a base superabsorbent polymer To 300 g of glacial acrylic acid (AA), 12.837 g of MethyleneBisAcrylAmide (MBAA) is added and allowed to dissolve at ambient temperature. A 2500 ml resin kettle (equipped with a four-necked glass cover closed with septa, suited for the introduction of a thermometer, syringe needles, and optionally a mechanical stirrer) is charged with this acrylic acid/crosslinker solution. A magnetic stirrer, capable of mixing the whole content, is added. 1166.8 g water are then added (the concentration of AA is 20 w/w-%). Most of the water is added to the resin kettle, and the mixture is stirred until the monomer and water are well mixed. 300 mg of the initiator ("V50" from Waco Chemicals) are dissolved in 20 ml of deionized water. Then, the initiator solution is added together with any remaining water. The resin kettle is closed, and a pressure relief is provided e.g., by puncturing two syringe needles through the septa. The solution is then sparged vigorously with argon via an 80 cm injection needle while stirring at approx. 300 RPM. Stirring is discontinued after approx. 8 minutes, while argon spurging is continued. The solution typically starts to gel after 12 - 20 minutes total. At this point, persistent bubbles form on the surface of the gel, and the argon injection needle is raised above the surface of the gel. Purging with argon is continued at a lowered flow rate. The temperature is monitored, typically it rises from 20°C to 60 - 70°C within an hour. Once the temperature drops below 60°C, the kettle is transferred into a circulation oven and kept at 60°C for 15 - 18 hours. After this time, the resin kettle is allowed to cool, and the resulting gel is removed into a flat glass dish. The gel is then broken or cut with scissors into small pieces (for example in pieces smaller than 2 mm max. dimension), and transferred into a 6 1 glass beaker. 83.26 g of 50% NaOH (the amount of NaOH needed to neutralize 75% of the acid groups of the polymer) is diluted with DI water to 2.5 1, and added quickly to the gel. The gel is stirred until all the liquid is absorbed; then, it is covered and transferred into a 60°C oven and let equilibrate for 2 days. After this time, the gel is allowed to cool, then divided up into 2 flat glass dishes, and transferred into a vacuum oven, where it is dried at 100°C/ max. vacuum. Once the gel has reached a constant weight (usually 3 days), it is ground using a mechanical mill (e.g., IKA mill) and sieved to obtain SAP particles of the required particle size, e.g., 150 to 850 μm. The amount of MBAA may be adjusted, depending on what properties are required from the resulting polymers, e.g., when 1.0 mol% (per mol AA) MBAA is used, the resulting SAP particles have a CCRC of about 20 g/g; when 2.0 mol% (per mol AA) MBAA is used, the ,.4
resulting SAP particles have a CCRC of about 16g/g; when 5.0 mol% (per mol AA) MBAA is used, the resulting SAP particles have a CCRC of about 8 g/g. If not otherwise stated, all compounds were obtained from Aldrich Chemicals, Milwaukee, WI, USA.
2. Surface Cross-linking process step: (Examples I and L only) Surface cross-linking of SAP particles is carried out prior to coating. A 150 ml glass beaker is equipped with a mechanical stirrer with a plastic blade, and charged with 100 g of dry SAP particles. The mechanical stirrer is selected in such a way that a good fluidization of the polymers can be obtained at 300 - 500 RPM. A syringe is charged with a 4% solution (w/w) of EthyleneGlycolDiGlycidylEther (EGDGE) in 1,2-propanediol; another 300 μl syringe is charged with deionised water. The SAP particles are fluidized in the beaker at approx. 300RPM, and the surface cross- linking agent (e.g., 100 μl) is added within 30 seconds. Mixing is continued for a total of three minutes. While stirring is continued, 7500 μl of water are then added within 3 - 5 seconds, and stirring is continued at 300 - 500 RPM for another 3 minutes. After this time, the beaker is covered with aluminum foil, and let equilibrate for 1 hour. Then the beaker is transferred to a 140°C oven, and kept at this temperature for 120 minutes. After this time, the material is allowed to cool down, the contents is removed, and the surface cross-linked SAP particles are obtained. Any agglomerates may be carefully broken by gentle mechanical action. The resulting surface cross-linked SAP particles may then be sieved to the desired particle size, e.g., 150 - 850 μm.
3. Non-covalently bonded surface coating with a cationic polymers Examples B to D. F to H and K A 1 1 plastic beaker is charged with 50 g of dry SAP particles. The partially hydrolyzed cationic polymer of the hydrolysation levels of 30% (for example B), 50% (for examples C, F, G, H and K) and >90% (for example D), respectively, are added (respectively, Lupamin 9030, Luredur 8097, Lupamin 9095 from BASF) at 0.5 w% (e.g., 2.5 g of coating solution with 10% cationic polymer content) over about 2 minutes while mixing by a conventional cooking mixer at ambient temperature. The adding amount of the cationic polymer are adjusted accordingly to meet different add on levels of 0.1 w% (for example F), 1.0 w% (for example G) and 5.0 w% (for examples B, C, D, H and K), respectively, based on the cationic polymer content of the coating solution. The resulting material is transferred into a glass petri-dish and sticked particles are disassembled. The coated SAP particles are further dried in the oven at 60°C over night (about 16 hours). Any large agglomerates may be carefully broken. The resulting coated SAP particles may then be sieved to the desired particle size, e.g., 150-850 μm. Example E A 1 1 plastic beaker is charged with 40 g of dry SAP particles. PEI (polyethyleneimine, MW 750,000 from Aldrich Chemicals, Milwaukee, WI, USA) is added at 0.4 w% (e.g., 0.78 g of coating solution with 50% cationic polymer content) over about 2 minutes while mixing by a conventional cooking mixer at ambient temperature. The resulting material is transferred into a glass petri-dish and sticked particles are disassembled. The coated SAP particles are further dried in the oven at 60°C over night (about 16 hours). Any large agglomerates may be carefully broken. The resulting coated SAP particles may then be sieved to the desired particle size, e.g., 150-850 μm. TABLE 1: Samples SAP particle size of all samples: 150 μm -850 um
Figure imgf000028_0001
Figure imgf000029_0001
PVFA (=N-vinyl-formamide VPVAm (=polyvinyl-amine): Commercial Name: Lupamin and Luredur, respectively, from BASF Lupamin 9030 was used for the sample with 30% hydrolysation level (Sample B) Lupamin 9095 was used for the sample with >90% hydrolysation level (Sample D) Luredur 8097 was used for the samples with 50% hydrolysation level (Samples C, F to H and K) - Mw 400.000 Preparation with 10% cationic polymer in solution
PEI (Polyethyleneimine'): Used for sample E) - Mw 750.000 Preparation with 50% cationic polymer in solution All comparative examples are examples of SAP particles, which are not coated with cationic polymers. These comparative examples are not within the scope of the present invention.
TABLE 2: Effects of Coating on Permeability
Figure imgf000030_0001
TABLE 3: Effects of add-on level on permeability
Figure imgf000030_0002
TABLE 4: Effects of Coating on Wet Porosity
Figure imgf000031_0001
TABLE 5: Effects of surface cross-linking versus cationic polymer coating on permeability
Figure imgf000031_0002
All documents cited in the Detailed Description of the Invention are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention. While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

What is claimed is:
1. An absorbent article comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between said topsheet and said backsheet, wherein said topsheet and said backsheet are at least partially joined together, and wherein said absorbent core comprises at least one fluid acquisition zone wherein said fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) said superabsorbent polymer particles further are surface coated with cationic polymers, wherein said cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, wherein said cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) said superabsorbent polymer particles have a Cylinder Centrifuge Retention Capacity (CCRC) of less than 25 g/g.
2. An absorbent article comprising a substantially liquid pervious topsheet, a substantially liquid impervious backsheet and an absorbent core between said topsheet and said backsheet, wherein said topsheet and said backsheet are at least partially joined together, and wherein said absorbent core comprises at least one fluid acquisition zone wherein said fluid acquisition zone comprises superabsorbent polymer particles, characterized in that: a) said superabsorbent polymer particles further are surface coated with cationic polymers, wherein said cationic polymers have 1 to 25 mol/kg, referring to the total weight of the cationic polymers, of cationic groups, which can be protonated, wherein said cationic polymers are not substantially covalently bound to said superabsorbent polymer particles, and b) said fluid acquisition zone comprises said superabsorbent polymer particles in a concentration of at least 50% by weight of said fluid acquisition zone.
3. Absorbent article according to claim 1, wherein said fluid acquisition zone comprises said superabsorbent polymer particles in a concentration of at least 50% by weight of said fluid acquisition zone.
4. Absorbent article according to Claim 2, wherein said superabsorbent polymer particles have a Cylinder Centrifuge Retention Capacity (CCRC) of less than 25 g g, preferably less than 20 g/g.
5. Absorbent article according to Claim 1 , wherein said fluid acquisition zone comprises at least one layer and wherein said superabsorbent particles are comprised by said at least one layer in a concentration of at least 70% by weight of said acquisition layer.
6. Absorbent article according to Claim 1, wherein said cationic polymers are substantially non-covalently cross-linked to each other.
7. Absorbent article according to Claim 1, wherein said cationic polymers are nitrogen- containing cationic polymers.
8. Absorbent article according to Claim 7, wherein said nitrogen-containing cationic polymers are partially hydrolyzed.
9. Absorbent article according to Claim 8, wherein said nitrogen-containing cationic polymers are hydrolyzed in the range of 30% to 80%.
10. Absorbent article according to Claim 1 , wherein said cationic polymers are primary amines, secondary amines or tertiary amines.
11. Absorbent article according to Claim 1 , wherein said superabsorbent polymer particles have a permeability of at least 400 x 10"7cm3sec/g.
12. Absorbent article according to Claim 1, wherein said superabsorbent polymer particles have a Wet Porosity of at least 0.20.
13. Absorbent article according to Claim 1, wherein said superabsorbent polymer particles are substantially free of covalent surface cross-links.
PCT/US2004/031977 2003-09-25 2004-09-25 Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles WO2005030280A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MXPA06003348A MXPA06003348A (en) 2003-09-25 2004-09-25 Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles.
JP2006528321A JP2007505725A (en) 2003-09-25 2004-09-25 Absorbent articles comprising fluid acquisition regions having coated superabsorbent polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP03021716.0A EP1518567B1 (en) 2003-09-25 2003-09-25 Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
EP03021716.0 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005030280A1 true WO2005030280A1 (en) 2005-04-07

Family

ID=34178497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/031977 WO2005030280A1 (en) 2003-09-25 2004-09-25 Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles

Country Status (6)

Country Link
US (1) US7847144B2 (en)
EP (1) EP1518567B1 (en)
JP (1) JP2007505725A (en)
CN (1) CN100423789C (en)
MX (1) MXPA06003348A (en)
WO (1) WO2005030280A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502260A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP2009502339A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP2009502340A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE523180T1 (en) 2003-02-12 2011-09-15 Procter & Gamble ABSORBENT CORE FOR AN ABSORBENT ARTICLE
ES2428693T3 (en) 2003-02-12 2013-11-08 The Procter & Gamble Company Absorbent core for an absorbent article
EP1518567B1 (en) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
ATE391518T1 (en) * 2003-09-25 2008-04-15 Procter & Gamble ABSORBENT ARTICLES CONTAINING SUPERABSORBENT POLYMER PARTICLES, WITH A NON-COVALENTLY BONDED COATING
DE602005016905D1 (en) * 2004-03-31 2009-11-12 Procter & Gamble WINDEL WITH IMPROVED BODY FIT
US7772456B2 (en) * 2004-06-30 2010-08-10 Kimberly-Clark Worldwide, Inc. Stretchable absorbent composite with low superaborbent shake-out
US7956235B2 (en) * 2004-12-29 2011-06-07 Kimberly-Clark Worldwide, Inc. Absorbent article featuring a temperature change member
US20060142716A1 (en) * 2004-12-29 2006-06-29 Kimberly-Clark Worldwide, Inc. Absorbent article featuring a non-abrasive temperature change member
US20060293632A1 (en) * 2004-12-29 2006-12-28 Kimberly-Clark Worldwide, Inc. Absorbent article featuring a non-abrasive temperature change member
US8129582B2 (en) * 2004-12-29 2012-03-06 Kimberly-Clark Worldwide, Inc. Absorbent article featuring a temperature change member
US7834234B2 (en) * 2005-04-07 2010-11-16 The Procter & Gamble Company Absorbent article having a wetness event counter
DE102005018922A1 (en) * 2005-04-22 2006-10-26 Stockhausen Gmbh Polycation-surface-treated water-absorbing polymer structure
US7699825B2 (en) * 2006-07-24 2010-04-20 The Procter & Gamble Company Flexible absorbent article with improved body fit
WO2007037453A1 (en) 2005-09-30 2007-04-05 Nippon Shokubai Co., Ltd. Aqueous-liquid-absorbing agent and its production process
EP1776967B2 (en) * 2005-10-21 2013-03-13 The Procter & Gamble Company Absorbent articles having increased absorption and retention capacity for proteinaceous or serous body fluids
ATE464072T1 (en) * 2005-10-21 2010-04-15 Procter & Gamble ABSORBENT ARTICLE WITH INCREASED CAPABILITY TO ABSORB AND RETENT PROTEIN CONTAINING OR SEROUS BODY FLUID
EP1776966A1 (en) * 2005-10-21 2007-04-25 The Procter and Gamble Company Absorbent article having improved absorption and retention capacity for proteinaceous or serous body fluids
EP1787663B1 (en) * 2005-11-21 2013-03-13 The Procter & Gamble Company Fluid acquisition layer for absorbent articles
EP1829563B1 (en) * 2006-03-03 2013-05-01 The Procter and Gamble Company Thermoplastic absorbent material having increased absorption and retention capacity for proteinaceous or serous body fluid
CN101652120A (en) 2007-03-09 2010-02-17 宝洁公司 Absorbent article having a potty training readiness indicator
CA2782533C (en) 2007-06-18 2014-11-25 The Procter & Gamble Company Disposable absorbent article with substantially continuously distributed absorbent particulate polymer material and method
US20080312622A1 (en) * 2007-06-18 2008-12-18 Harald Hermann Hundorf Disposable Absorbent Article With Improved Acquisition System
EP2157956B1 (en) 2007-06-18 2013-07-17 The Procter and Gamble Company Disposable absorbent article with sealed absorbent core with substantially continuously distributed absorbent particulate polymer material
JP2011518648A (en) 2008-04-29 2011-06-30 ザ プロクター アンド ギャンブル カンパニー Fabrication process of absorbent core with strain-resistant core cover
EP2329803B1 (en) 2009-12-02 2019-06-19 The Procter & Gamble Company Apparatus and method for transferring particulate material
EP2532329B1 (en) 2011-06-10 2018-09-19 The Procter and Gamble Company Method and apparatus for making absorbent structures with absorbent material
US9974699B2 (en) 2011-06-10 2018-05-22 The Procter & Gamble Company Absorbent core for disposable absorbent articles
JP2014515983A (en) 2011-06-10 2014-07-07 ザ プロクター アンド ギャンブル カンパニー Disposable diapers
EP2532332B2 (en) 2011-06-10 2017-10-04 The Procter and Gamble Company Disposable diaper having reduced attachment between absorbent core and backsheet
MX341682B (en) 2011-06-10 2016-08-30 Procter & Gamble Absorbent structure for absorbent articles.
CN103607989B (en) 2011-06-10 2017-05-24 宝洁公司 Absorbent structure for absorbent articles
PL2532328T3 (en) 2011-06-10 2014-07-31 Procter & Gamble Method and apparatus for making absorbent structures with absorbent material
EP2535027B1 (en) * 2011-06-17 2022-08-17 The Procter & Gamble Company Absorbent article having improved absorption properties
JP6184669B2 (en) * 2012-08-31 2017-08-23 株式会社リブドゥコーポレーション Absorber and absorbent article using the same
CN104780885A (en) 2012-11-13 2015-07-15 宝洁公司 Absorbent articles with channels and signals
PL2740452T3 (en) 2012-12-10 2022-01-31 The Procter & Gamble Company Absorbent article with high absorbent material content
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
EP2740449B1 (en) 2012-12-10 2019-01-23 The Procter & Gamble Company Absorbent article with high absorbent material content
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
EP2740450A1 (en) 2012-12-10 2014-06-11 The Procter & Gamble Company Absorbent core with high superabsorbent material content
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
ES2655690T3 (en) 2013-06-14 2018-02-21 The Procter & Gamble Company Absorbent article and absorbent core formation channels when wet
US9789011B2 (en) 2013-08-27 2017-10-17 The Procter & Gamble Company Absorbent articles with channels
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
FR3010631A1 (en) 2013-09-16 2015-03-20 Procter & Gamble ABSORBENT ARTICLES WITH CHANNELS AND SIGNALS
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP2851048B1 (en) 2013-09-19 2018-09-05 The Procter and Gamble Company Absorbent cores having material free areas
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
EP2905001B1 (en) 2014-02-11 2017-01-04 The Procter and Gamble Company Method and apparatus for making an absorbent structure comprising channels
EP2944376B1 (en) * 2014-05-13 2019-11-13 The Procter and Gamble Company Agglomerated superabsorbent polymer particles
PL2949299T3 (en) 2014-05-27 2018-01-31 Procter & Gamble Absorbent core with absorbent material pattern
EP2949300B1 (en) 2014-05-27 2017-08-02 The Procter and Gamble Company Absorbent core with absorbent material pattern
DE112016001234T5 (en) 2015-03-16 2017-12-14 The Procter & Gamble Company ABSORPTIONS WITH IMPROVED CORE
WO2016149252A1 (en) 2015-03-16 2016-09-22 The Procter & Gamble Company Absorbent articles with improved strength
MX2017014428A (en) 2015-05-12 2018-04-10 Procter & Gamble Absorbent article with improved core-to-backsheet adhesive.
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
EP3167859B1 (en) 2015-11-16 2020-05-06 The Procter and Gamble Company Absorbent cores having material free areas
EP3178458A1 (en) * 2015-12-08 2017-06-14 The Procter and Gamble Company Absorbent articles with distribution system
EP3178457A1 (en) * 2015-12-08 2017-06-14 The Procter and Gamble Company Absorbent articles with distribution system
EP3238678B1 (en) 2016-04-29 2019-02-27 The Procter and Gamble Company Absorbent core with transversal folding lines
EP3238676B1 (en) 2016-04-29 2019-01-02 The Procter and Gamble Company Absorbent core with profiled distribution of absorbent material
IL247302B (en) 2016-08-16 2019-03-31 Technion Res & Dev Foundation Polyhipe-based substance-releasing systems
JP2024505659A (en) * 2021-11-24 2024-02-07 エルジー・ケム・リミテッド Manufacturing method of super absorbent resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300565A (en) * 1990-04-02 1994-04-05 The Procter & Gamble Company Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates
EP0695763A1 (en) * 1994-07-06 1996-02-07 Amcol International Corporation Method of increasing the size and/or absorption under load of superabsorbent polymers by surface cross-linking and subsequent agglomeration of undersized particles
US5858535A (en) * 1994-02-17 1999-01-12 The Procter & Gamble Company Absorbent articles comprising absorbent members comprising absorbent materials having improved absorbent property
WO2003043670A1 (en) * 2001-11-21 2003-05-30 Basf Aktiengesellschaft Crosslinked polyamine coating on superabsorbent hydrogels
WO2003051417A1 (en) * 2001-12-14 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent materials having improved fluid handling properties
WO2003053298A2 (en) * 2001-12-21 2003-07-03 Basf Aktiengesellschaft Hydrophilic open-celled resilient latex foams
WO2003057964A1 (en) * 2001-12-21 2003-07-17 Kimberly-Clark Worldwide, Inc. Nonwoven web with coated superabsorbent

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1495745C3 (en) 1963-09-19 1978-06-01 Bayer Ag, 5090 Leverkusen Process for the production of aqueous, emulsifier-free polyurethane latices
CH1840069A4 (en) 1969-12-10 1972-06-15
US3661875A (en) * 1970-01-27 1972-05-09 Du Pont 1-(1-alkenyl)bicyclo(1.1.0)butanes and their polymers
US3699103A (en) 1970-10-07 1972-10-17 Hoffmann La Roche Process for the manufacture of 5-desoxy-l-arabinose and novel intermediates
US3898143A (en) * 1971-06-11 1975-08-05 Union Carbide Corp Process for cocrosslinking water soluble polymers and products thereof
NL7111340A (en) 1971-08-17 1973-02-20
DE2314512C3 (en) 1973-03-23 1980-10-09 Bayer Ag, 5090 Leverkusen Thermoplastic, nonionic, water dispersible substantially linear polyurethane elastomers
DE2437090A1 (en) 1974-08-01 1976-02-19 Hoechst Ag CLEANING SUPPLIES
JPS51125468A (en) * 1975-03-27 1976-11-01 Sanyo Chem Ind Ltd Method of preparing resins of high water absorbency
DE2551094A1 (en) * 1975-11-14 1977-05-26 Bayer Ag PROCESS FOR THE MANUFACTURING OF WATER DISPERSIBLE POLYURETHANES
DE2555534C3 (en) * 1975-12-10 1981-01-08 Bayer Ag, 5090 Leverkusen Polyurethanes dispersible in water
JPS5346389A (en) * 1976-10-07 1978-04-25 Kao Corp Preparation of self-crosslinking polymer of acrylic alkali metal salt
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
DE2730514A1 (en) 1977-07-06 1979-01-18 Bayer Ag PROCESS FOR THE PRODUCTION OF WATER-SOLUBLE POLYURETHANES
US4156664A (en) * 1978-01-31 1979-05-29 Henkel Corporation Film forming SGP
US4392908A (en) * 1980-01-25 1983-07-12 Lever Brothers Company Process for making absorbent articles
JPS6025045B2 (en) * 1980-03-19 1985-06-15 製鉄化学工業株式会社 Method for producing acrylic acid polymer with excellent salt water absorption ability
JPS56159232A (en) * 1980-05-12 1981-12-08 Kuraray Co Ltd Powdery high water-absorption resin for surface coating
DE3128478A1 (en) 1981-07-18 1983-02-03 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING LINEAR, BASIC POLYMERISATS
JPS5819361A (en) * 1981-07-27 1983-02-04 Kanegafuchi Chem Ind Co Ltd One-pack type room temperature curing composition
US4755562A (en) 1986-06-10 1988-07-05 American Colloid Company Surface treated absorbent polymers
JPS6018690B2 (en) 1981-12-30 1985-05-11 住友精化株式会社 Method for improving water absorbency of water absorbent resin
JPS58180233A (en) * 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd Absorbing agent
JPS60163956A (en) * 1984-02-04 1985-08-26 Arakawa Chem Ind Co Ltd Production of water-absorptive resin
US4734478A (en) * 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
CN1010658B (en) * 1984-07-20 1990-12-05 个人用品公司 Trough of belt sanitary towel with dry cover
US4625001A (en) 1984-09-25 1986-11-25 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for continuous production of cross-linked polymer
PH23956A (en) * 1985-05-15 1990-01-23 Procter & Gamble Absorbent articles with dual layered cores
US4654039A (en) * 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
USRE32649E (en) 1985-06-18 1988-04-19 The Procter & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
US4735987A (en) * 1986-03-25 1988-04-05 Osaka Yuki Kagaku Kogyo Kabushiki Kaisha Method for manufacture of high-expansion type absorbent polymer
US4834735A (en) 1986-07-18 1989-05-30 The Proctor & Gamble Company High density absorbent members having lower density and lower basis weight acquisition zones
US4835211A (en) * 1986-12-18 1989-05-30 The Procter & Gamble Company Cationic latex compositions capable of producing elastomers with hydrophilic surfaces
US4785030A (en) 1986-12-18 1988-11-15 The Procter & Gamble Company Cationic latex compositions capable of producing elastomers with hydrophilic surfaces
US4734445A (en) * 1986-12-18 1988-03-29 The Procter & Gamble Company Latex compositions capable of producing elastomers with hydrophilic surfaces
US4789861A (en) 1987-02-09 1988-12-06 Hughes Aircraft Company Method and apparatus for detecting an out of beam condition in a monopulse radar receiver
NL8701716A (en) 1987-07-21 1989-02-16 Philips Nv SCANNING OPTICAL MICROSCOPE.
US4935022A (en) 1988-02-11 1990-06-19 The Procter & Gamble Company Thin absorbent articles containing gelling agent
US6040251A (en) * 1988-03-14 2000-03-21 Nextec Applications Inc. Garments of barrier webs
US5147343B1 (en) 1988-04-21 1998-03-17 Kimberly Clark Co Absorbent products containing hydrogels with ability to swell against pressure
DE3817425A1 (en) 1988-05-21 1989-11-23 Cassella Ag ALKENYL PHOSPHONE AND PHOSPHINE ACID ESTERS, METHOD FOR THE PRODUCTION THEREOF AND HYDROGELS PRODUCED THEREOF AND THEIR USE
ATE125276T1 (en) 1989-01-24 1995-08-15 Dow Chemical Co AGGREGATES OR CLUSTERS OF WATER-SOULCULABLE POLYMERS WITH INCREASED HYDRATION RATE COMPARED TO NON-ASSOCIATED WATER-SOULCULABLE POLYMERS.
US5002986A (en) * 1989-02-28 1991-03-26 Hoechst Celanese Corporation Fluid absorbent compositions and process for their preparation
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
US5453323A (en) 1989-09-28 1995-09-26 Hoechst Celanese Corporation Superabsorbent polymer having improved absorbency properties
US5140076A (en) 1990-04-02 1992-08-18 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method of treating the surface of an absorbent resin
US5164459A (en) 1990-04-02 1992-11-17 Nippon Shokubai Kagaku Kogyo Co., Ltd. Method for treating the surface of an absorbent resin
DE4020780C1 (en) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE69133620D1 (en) * 1990-12-21 2009-09-10 Nippon Catalytic Chem Ind Water-absorbing material and process for its preparation and water-absorbent articles and process for its preparation
US5300054A (en) * 1991-01-03 1994-04-05 The Procter & Gamble Company Absorbent article having rapid acquiring, wrapped multiple layer absorbent body
US5061424A (en) 1991-01-22 1991-10-29 Becton, Dickinson And Company Method for applying a lubricious coating to an article
EP0516925B1 (en) 1991-03-19 1998-05-06 The Dow Chemical Company Wrinkled absorbent particles of high effective surface area having fast absorption rate
US5247068A (en) 1991-03-29 1993-09-21 University Of South Alabama Polyamino acid superabsorbents
GB9107952D0 (en) 1991-04-15 1991-05-29 Dow Rheinmuenster Surface crosslinked and surfactant coated absorbent resin particles and method of preparation
CA2116035A1 (en) 1991-09-09 1993-03-18 Fredric L. Buchholz Superabsorbent polymers and process for producing
DE4131045C1 (en) 1991-09-18 1992-11-19 Cassella Ag, 6000 Frankfurt, De
US5211985A (en) * 1991-10-09 1993-05-18 Ici Canada, Inc. Multi-stage process for continuous coating of fertilizer particles
DE4138408A1 (en) * 1991-11-22 1993-05-27 Cassella Ag HYDROPHILES, HIGHLY SOURCE HYDROGELS
JP3045422B2 (en) * 1991-12-18 2000-05-29 株式会社日本触媒 Method for producing water absorbent resin
CA2072918A1 (en) 1992-02-14 1993-08-15 Jian Qin Modified polysaccharides having improved absorbent properties and process for the preparation thereof
EP0559476B1 (en) * 1992-03-05 1997-07-16 Nippon Shokubai Co., Ltd. Method for the production of absorbent resin
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
EP1219744B1 (en) * 1992-08-17 2004-10-20 Weyerhaeuser Company Particle binders
US5415643A (en) * 1992-12-07 1995-05-16 Kimberly-Clark Corporation Flushable absorbent composites
TW320647B (en) 1993-02-24 1997-11-21
JP2654739B2 (en) 1993-03-31 1997-09-17 三洋化成工業株式会社 Method for producing surface-crosslinked water-absorbent resin
EP0632068B1 (en) 1993-06-18 1998-08-19 Nippon Shokubai Co., Ltd. Process for preparing absorbent resin
EP0631768B1 (en) 1993-06-30 1998-04-01 The Procter & Gamble Company Absorbent core having improved fluid handling properties
EP0640330B1 (en) 1993-06-30 2000-05-24 The Procter & Gamble Company Hygienic absorbent articles
US5700867A (en) 1993-10-01 1997-12-23 Toyo Ink Manufacturing Co., Ltd. Aqueous dispersion of an aqueous hydrazine-terminated polyurethane
US5525407A (en) * 1994-01-03 1996-06-11 Mcneil-Ppc, Inc. Integrated absorbent structures with density and liquid affinity gradients
EP0744966B1 (en) 1994-02-17 2002-08-07 The Procter & Gamble Company Porous absorbent materials having modified surface characteristics and methods for making the same
EP0744965A1 (en) * 1994-02-17 1996-12-04 The Procter & Gamble Company Absorbent materials having modified surface characteristics and methods for making the same
US5849405A (en) 1994-08-31 1998-12-15 The Procter & Gamble Company Absorbent materials having improved absorbent property and methods for making the same
CZ286184B6 (en) * 1994-03-18 2000-02-16 The Procter & Gamble Company Fluid absorbing and distributing element and process for preparing thereof
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US5624967A (en) 1994-06-08 1997-04-29 Nippon Shokubai Co., Ltd. Water-absorbing resin and process for producing same
US5458592A (en) 1994-06-30 1995-10-17 Kimberly-Clark Corporation Thermoplastic fibrous nonwoven webs for use as core wraps in absorbent articles
CA2136810A1 (en) 1994-06-30 1995-12-31 Franklin M. C. Chen Absorbent structure including an adhesive
ES2139687T5 (en) 1994-07-05 2004-07-16 THE PROCTER & GAMBLE COMPANY ABSORBENT GELING MATERIAL THAT INCLUDES A DRY MIX OF AT LEAST TWO TYPES OF HYDROGEL FORMAT PARTICLES AND METHOD FOR MANUFACTURING SUCH MATERIAL.
US5714156A (en) * 1994-07-05 1998-02-03 The Procter & Gamble Company Absorbent gelling material comprising a dry mixture of at least two types of hydrogel-forming particles and method for making the same
DE4426008A1 (en) * 1994-07-22 1996-01-25 Cassella Ag Hydrophilic, highly-swellable hydrogel coated with non-reactive, water-insol. polymer film
US5849816A (en) 1994-08-01 1998-12-15 Leonard Pearlstein Method of making high performance superabsorbent material
US5830202A (en) * 1994-08-01 1998-11-03 The Procter & Gamble Company Absorbent comprising upper and lower gel layers
US5668078A (en) 1994-10-05 1997-09-16 Sanyo Chemical Industries, Ltd. Water-absorbent resin particles and the production thereof
AUPM931094A0 (en) 1994-11-09 1994-12-01 Procter & Gamble Company, The Treating interparticle bonded aggregates with latex to increase flexibility of porous, absorbent macrostructures
DE69516165T2 (en) * 1994-11-18 2000-11-16 Procter & Gamble LIPASE AND PROTEASE CONTAINING DETERGENT COMPOSITIONS
JPH10511130A (en) 1994-12-20 1998-10-27 ザ、プロクター、エンド、ギャンブル、カンパニー Anionic latex composition having surface hydrophilicity
DE19524724A1 (en) 1995-07-07 1997-01-09 Hoechst Ag Hydrophilic, highly swellable hydrogels
US5576282A (en) 1995-09-11 1996-11-19 The Procter & Gamble Company Color-safe bleach boosters, compositions and laundry methods employing same
US6011196A (en) 1995-10-03 2000-01-04 The Procter & Gamble Company Absorbent material having improved absorbent permeability and methods for making the same
AUPN573195A0 (en) * 1995-10-03 1995-10-26 Procter & Gamble Company, The Absorbent material having improved absorbent permeability and methods for making the same
DE19646484C2 (en) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Liquid absorbing polymers, processes for their production and their use
DE19543368C2 (en) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Water-absorbing polymers with improved properties, processes for their production and their use
CN1213957A (en) * 1996-01-11 1999-04-14 普罗克特和甘保尔公司 Absorbent structure having zones surrounded by continuous region of hydrogel-forming absorbent polymer
US6150469A (en) 1996-02-02 2000-11-21 Nippon Shokubai Co., Ltd. Method of producing a hydrophilic resin
US5728742A (en) * 1996-04-04 1998-03-17 The Dow Chemical Company Absorbent polymers having a reduced caking tendency
US6730387B2 (en) * 1996-04-24 2004-05-04 The Procter & Gamble Company Absorbent materials having improved structural stability in dry and wet states and making methods therefor
US6677258B2 (en) * 1996-05-29 2004-01-13 E. I. Du Pont De Nemours And Company Breathable composite sheet structure and absorbent articles utilizing same
US5624971A (en) * 1996-07-01 1997-04-29 Woodbridge Foam Corporation Foamed polymer and process for production thereof
EP0964894A1 (en) * 1997-02-19 1999-12-22 The Procter & Gamble Company Mixed-bed ion-exchange hydrogel-forming polymer compositions and absorbent members comprising relatively high concentrations of these compositions
US6083210A (en) 1997-03-27 2000-07-04 The Procter & Gamble Company Absorbent articles providing improved fit when wet
US5865824A (en) * 1997-04-21 1999-02-02 Chen; Fung-Jou Self-texturing absorbent structures and absorbent articles made therefrom
US5840329A (en) 1997-05-15 1998-11-24 Bioadvances Llc Pulsatile drug delivery system
US6277104B1 (en) 1997-08-25 2001-08-21 Mcneil-Ppc, Inc. Air permeable, liquid impermeable barrier structures and products made therefrom
US6383960B1 (en) * 1997-10-08 2002-05-07 Kimberly-Clark Worldwide, Inc. Layered absorbent structure
US6222091B1 (en) * 1997-11-19 2001-04-24 Basf Aktiengesellschaft Multicomponent superabsorbent gel particles
US5981689A (en) * 1997-11-19 1999-11-09 Amcol International Corporation Poly(vinylamine)-based superabsorbent gels and method of manufacturing the same
DE19807502B4 (en) 1998-02-21 2004-04-08 Basf Ag Process for post-crosslinking hydrogels with 2-oxazolidinones, hydrogels made therefrom and their use
US6265488B1 (en) * 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) * 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
TW460528B (en) * 1998-04-28 2001-10-21 Nippon Catalytic Chem Ind Method for production of shaped hydrogel of absorbent resin
US6534572B1 (en) * 1998-05-07 2003-03-18 H. B. Fuller Licensing & Financing, Inc. Compositions comprising a thermoplastic component and superabsorbent polymer
JP2000198858A (en) 1998-11-05 2000-07-18 Mitsui Chemicals Inc Crosslinked polyamino acid-containing particle
DE19854574A1 (en) * 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with N-acyl-2-oxazolidinones
DE19854573A1 (en) 1998-11-26 2000-05-31 Basf Ag Process for post-crosslinking hydrogels with 2-oxo-tetrahydro-1,3-oxazines
AU768305B2 (en) 1998-12-21 2003-12-04 Mcneil-Ppc, Inc. Absorbent hot melt adhesive
US6562743B1 (en) * 1998-12-24 2003-05-13 Bki Holding Corporation Absorbent structures of chemically treated cellulose fibers
US6245051B1 (en) * 1999-02-03 2001-06-12 Kimberly-Clark Worldwide, Inc. Absorbent article with a liquid distribution, belt component
US6376011B1 (en) * 1999-04-16 2002-04-23 Kimberly-Clark Worldwide, Inc. Process for preparing superabsorbent-containing composites
US6387495B1 (en) * 1999-04-16 2002-05-14 Kimberly-Clark Worldwide, Inc. Superabsorbent-containing composites
US6423883B1 (en) * 1999-07-13 2002-07-23 Kimberly-Clark Worldwide, Inc. Liquid reception medium with liquid activated mechanical mass transport means
DE19941423A1 (en) * 1999-08-30 2001-03-01 Stockhausen Chem Fab Gmbh Polymer composition and a process for its production
US6376618B1 (en) * 1999-09-07 2002-04-23 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6239230B1 (en) * 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
US6391451B1 (en) * 1999-09-07 2002-05-21 Basf Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (en) * 1999-11-20 2001-05-23 Basf Ag Continuous production of crosslinked gel polymer for use e.g. as an absorber involves polymerisation of monomers in a multi-screw machine with heat removal by evaporation of water and product take-off
KR20020064953A (en) 1999-12-23 2002-08-10 더 다우 케미칼 캄파니 High permeability, low absorption capacity polymers
CA2397938C (en) 2000-01-31 2010-08-17 Bki Holding Corporation Absorbent products with improved vertical wicking and rewet capability
US6720073B2 (en) * 2000-04-07 2004-04-13 Kimberly-Clark Worldwide, Inc. Material enhancement to maintain high absorbent capacity under high loads following rigorous process conditions
US6359129B1 (en) * 2000-08-15 2002-03-19 University Of Kansas Amino acid-derived, 7-membered cyclic sulfamides and methods of synthesizing the same
US6482344B1 (en) 2000-08-23 2002-11-19 Stockhausen Gmbh & Co. Kg Superabsorbent polymer fibers having improved absorption characteristics
US6720389B2 (en) * 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
AU2002230831A1 (en) 2000-10-20 2002-04-29 Millennium Pharmaceuticals, Inc. Compositions of human proteins and method of use thereof
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
BR0116621A (en) 2000-12-29 2003-12-23 Basf Ag Water insoluble, water swellable hydrogels, water absorbing composition, process for producing them, use of water absorbing compositions, toiletries, methods for perfecting the performance profile of water absorbing compositions, and for determining water absorbing compositions. water, and, use of water insoluble hydrogels, swellable in water.
EP1347790A1 (en) * 2000-12-29 2003-10-01 Basf Aktiengesellschaft Absorbent compositions
EP1364992B1 (en) * 2001-01-26 2020-03-25 Nippon Shokubai Co., Ltd. Water absorbing agent and method for production thereof, and water absorbing article
US20040158212A1 (en) 2003-02-10 2004-08-12 The Procter & Gamble Company Disposable absorbent article comprising a durable hydrophilic core wrap
US20040158213A1 (en) 2003-02-10 2004-08-12 The Procter & Gamble Company Disposable absorbent article comprising a durable hydrophilic acquisition layer
US20040158214A1 (en) 2003-02-10 2004-08-12 The Procter & Gamble Company Disposable absorbent article comprising a durable hydrophilic topsheet
JP2002242858A (en) 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Scroll compressor
JP2004537321A (en) 2001-08-06 2004-12-16 エクセリクシス・インコーポレイテッド HPRP4s as a Modifier of the p53 Pathway and Methods of Use
US6906131B2 (en) * 2001-09-17 2005-06-14 Stockhausen Gmbh & Co. Kg Cellulose material with improved absorbency
KR20040040487A (en) * 2001-10-05 2004-05-12 바스프 악티엔게젤샤프트 Method for Crosslinking Hydrogels wtih Morpholine-2,3-diones
DE60236752D1 (en) * 2001-11-21 2010-07-29 Basf Se NETWORKED POLYAMINE COATING ON SUPERABSORBING HYDROGEL
US20030105442A1 (en) * 2001-11-30 2003-06-05 Johnston Lee W. Convection of absorbent cores providing enhanced thermal transmittance
DE10161156A1 (en) * 2001-12-12 2003-06-18 Basf Ag Aqueous polyurethane dispersions, available with the help of cesium salts
US20030135177A1 (en) * 2002-01-16 2003-07-17 Andrew Baker Absorbent articles containing multi-component core composite and methods of making same
US20030148684A1 (en) 2002-01-30 2003-08-07 The Procter & Gamble Company Method for hydrophilizing materials using charged particles
US20050008839A1 (en) 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
DE10204937A1 (en) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Process for post-crosslinking of a water absorbing polymer surface with a cyclic urea useful in foams, fibers, films, cables, especially sealing materials and liquid absorbing hygiene articles
US7358295B2 (en) 2002-04-05 2008-04-15 Lubrizol Advanced Materials, Inc. Hybrid polymer composition, and article therefrom
US6897281B2 (en) 2002-04-05 2005-05-24 Noveon Ip Holdings Corp. Breathable polyurethanes, blends, and articles
DE60209209T2 (en) * 2002-05-28 2006-11-16 Ford Global Technologies, Inc., Dearborn Method for controlling an internal combustion engine
WO2003104302A1 (en) * 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
DE10225943A1 (en) 2002-06-11 2004-01-08 Basf Ag Process for the preparation of esters of polyalcohols
ATE325150T1 (en) * 2002-06-11 2006-06-15 Basf Ag (METH)ACRYL ESTER OF POLYALKOXYLATED GLYCERIN
CA2488226A1 (en) * 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
US6822135B2 (en) * 2002-07-26 2004-11-23 Kimberly-Clark Worldwide, Inc. Fluid storage material including particles secured with a crosslinkable binder composition and method of making same
US6808801B2 (en) 2002-07-26 2004-10-26 Kimberly-Clark Worldwide, Inc. Absorbent article with self-forming absorbent binder layer
DE10239074A1 (en) 2002-08-26 2004-03-11 Basf Ag Water-absorbing product, e.g. useful for making hygiene articles, comprises water-absorbing polymer particles and a nitrogen-containing polymer
EP1393757B1 (en) * 2002-08-26 2004-10-13 The Procter & Gamble Company Absorbent cores for absorbent diapers having reduced thickness and improved liquid handling and retention performance and comprising a super absorbent polymer
CA2495919A1 (en) * 2002-08-26 2004-03-04 Tyco Healthcare Retail Services Ag Core for absorbent articles and method of making the same
EP1402905A1 (en) 2002-09-24 2004-03-31 The Procter & Gamble Company Liquid absorbent thermoplastic composition comprising superabsorbent material particles of substantially anglelacking shape
ATE328150T1 (en) * 2002-09-30 2006-06-15 Procter & Gamble ABSORBENT ARTICLES CONTAINING HYDROPHILE FLEECES
US20040122390A1 (en) * 2002-12-23 2004-06-24 Kimberly-Clark Worldwide, Inc. Low evaporative superabsorbent products and composites and methods for utilizing the same
EP1433450A1 (en) 2002-12-23 2004-06-30 The Procter & Gamble Company Polymeric compositions for moisture vapour permeable structures with improved structural stability and structures comprising said compositions
ES2428693T3 (en) 2003-02-12 2013-11-08 The Procter & Gamble Company Absorbent core for an absorbent article
US7235708B2 (en) * 2003-03-26 2007-06-26 Sca Hygiene Products Ab Absorbent article comprising an absorbent structure
JP2006524275A (en) 2003-04-03 2006-10-26 ビーエーエスエフ アクチェンゲゼルシャフト (Meth) acrylic ester mixture of polyalkoxylated trimethylolpropane
DE10358372A1 (en) 2003-04-03 2004-10-14 Basf Ag Trimethylolpropane esters are useful for the production of cross-linked hydrogels, useful for the production of hygiene articles, packaging materials and non-wovens
US20040214499A1 (en) * 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
KR20060024401A (en) 2003-06-06 2006-03-16 바스프 악티엔게젤샤프트 (meth)acrylic ester for alkylenylene glycol and the use thereof
US7311968B2 (en) 2004-06-30 2007-12-25 The Procter & Gamble Company Absorbent structures comprising coated super-absorbent polymer particles
DE10331456A1 (en) 2003-07-10 2005-02-24 Basf Ag (Meth) acrylic esters of alkoxylated unsaturated polyol ethers and their preparation
DE10331450A1 (en) 2003-07-10 2005-01-27 Basf Ag (Meth) acrylic esters of monoalkoxylated polyols and their preparation
DE10334584A1 (en) 2003-07-28 2005-02-24 Basf Ag Post crosslinking of water absorbing polymers, useful for hygiene articles and packaging, comprises treatment with a bicyclic amideacetal crosslinking agent with simultaneous or subsequent heating
CN100441237C (en) * 2003-08-06 2008-12-10 宝洁公司 Process for making surface treated absorbent gelling material
ATE506082T1 (en) * 2003-08-06 2011-05-15 Procter & Gamble METHOD FOR PRODUCING A WATER-SUFFLABLE MATERIAL WITH COATED WATER-SULLABILIZABLE POLYMERS
US7270881B2 (en) 2003-08-06 2007-09-18 The Procter & Gamble Company Coated water-swellable material
US7445812B2 (en) * 2003-08-06 2008-11-04 The Procter & Gamble Company Process for making water-swellable material comprising coated water-swellable polymers
WO2005014065A1 (en) * 2003-08-06 2005-02-17 The Procter & Gamble Company Absorbant structures comprising coated water-swellable material
US7780626B2 (en) * 2003-08-08 2010-08-24 Boston Scientific Scimed, Inc. Catheter shaft for regulation of inflation and deflation
EP1518567B1 (en) 2003-09-25 2017-06-28 The Procter & Gamble Company Absorbent articles comprising fluid acquisition zones with coated superabsorbent particles
ATE391518T1 (en) * 2003-09-25 2008-04-15 Procter & Gamble ABSORBENT ARTICLES CONTAINING SUPERABSORBENT POLYMER PARTICLES, WITH A NON-COVALENTLY BONDED COATING
US7173086B2 (en) * 2003-10-31 2007-02-06 Stockhausen, Inc. Superabsorbent polymer with high permeability
DE10355401A1 (en) 2003-11-25 2005-06-30 Basf Ag (Meth) acrylic esters of unsaturated amino alcohols and their preparation
US7772456B2 (en) * 2004-06-30 2010-08-10 Kimberly-Clark Worldwide, Inc. Stretchable absorbent composite with low superaborbent shake-out
US20060069367A1 (en) * 2004-09-29 2006-03-30 Andrew Waksmundzki Absorbent core having two or more types of superabsorbent
US7837662B2 (en) * 2005-07-26 2010-11-23 The Procter & Gamble Company Flexible absorbent article with improved body fit
JP2009031203A (en) 2007-07-30 2009-02-12 Hitachi High-Technologies Corp Automatic analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5300565A (en) * 1990-04-02 1994-04-05 The Procter & Gamble Company Particulate, absorbent, polymeric compositions containing interparticle crosslinked aggregates
US5858535A (en) * 1994-02-17 1999-01-12 The Procter & Gamble Company Absorbent articles comprising absorbent members comprising absorbent materials having improved absorbent property
EP0695763A1 (en) * 1994-07-06 1996-02-07 Amcol International Corporation Method of increasing the size and/or absorption under load of superabsorbent polymers by surface cross-linking and subsequent agglomeration of undersized particles
WO2003043670A1 (en) * 2001-11-21 2003-05-30 Basf Aktiengesellschaft Crosslinked polyamine coating on superabsorbent hydrogels
WO2003051417A1 (en) * 2001-12-14 2003-06-26 Kimberly-Clark Worldwide, Inc. Absorbent materials having improved fluid handling properties
WO2003053298A2 (en) * 2001-12-21 2003-07-03 Basf Aktiengesellschaft Hydrophilic open-celled resilient latex foams
WO2003057964A1 (en) * 2001-12-21 2003-07-17 Kimberly-Clark Worldwide, Inc. Nonwoven web with coated superabsorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502260A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP2009502339A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP2009502340A (en) * 2005-07-26 2009-01-29 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP4647692B2 (en) * 2005-07-26 2011-03-09 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP4658197B2 (en) * 2005-07-26 2011-03-23 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit
JP4739415B2 (en) * 2005-07-26 2011-08-03 ザ プロクター アンド ギャンブル カンパニー A flexible absorbent article with further improved body fit

Also Published As

Publication number Publication date
CN100423789C (en) 2008-10-08
EP1518567A1 (en) 2005-03-30
US7847144B2 (en) 2010-12-07
CN1859931A (en) 2006-11-08
US20050070867A1 (en) 2005-03-31
EP1518567B1 (en) 2017-06-28
MXPA06003348A (en) 2006-06-08
JP2007505725A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US7847144B2 (en) Absorbent articles comprising fluid acquisition zones with superabsorbent polymers
US7405341B2 (en) Absorbent articles comprising super absorbent polymer having a substantially non-convalently bonded surface coating
AU760265B2 (en) Superabsorbent-containing composites
US6376011B1 (en) Process for preparing superabsorbent-containing composites
US20030139715A1 (en) Absorbent materials having high stiffness and fast absorbency rates
US20050054784A1 (en) Damage-resistant superabsorbent materials
WO2005094749A2 (en) Absorbent member for absorbent articles comprising swellable polymers of high permeability which are capable of forming hydrogels
KR20060054406A (en) Absorbent materials and articles
EP1740232A1 (en) Absorbent composition having multiple surface treatments
JP2000501979A (en) Absorbent material with improved absorption permeability and method for making the same
US7351302B2 (en) Method for binding particulate, water-absorbing, acid group-containing polymers to a base material
US20020045869A1 (en) Absorbent composites comprising superabsorbent materials
AU2005202616A1 (en) Biodegradable absorbent material
CA2293864A1 (en) Absorbent composites comprising superabsorbent materials
EP2450061B1 (en) Absorbent core comprising a not cross-linked polycarboxylic acid based polymer
US8569204B2 (en) Absorbent core
ZA200106122B (en) Superabsorbent-containing composites.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028007.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528321

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/003348

Country of ref document: MX

122 Ep: pct application non-entry in european phase