WO2005048583A1 - 色補正装置および色補正方法 - Google Patents

色補正装置および色補正方法 Download PDF

Info

Publication number
WO2005048583A1
WO2005048583A1 PCT/JP2003/014529 JP0314529W WO2005048583A1 WO 2005048583 A1 WO2005048583 A1 WO 2005048583A1 JP 0314529 W JP0314529 W JP 0314529W WO 2005048583 A1 WO2005048583 A1 WO 2005048583A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
hue
chromaticity
data
conversion
Prior art date
Application number
PCT/JP2003/014529
Other languages
English (en)
French (fr)
Inventor
Mariko Takahashi
Narihiro Matoba
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2005510571A priority Critical patent/JPWO2005048583A1/ja
Priority to PCT/JP2003/014529 priority patent/WO2005048583A1/ja
Priority to US10/538,942 priority patent/US7599551B2/en
Publication of WO2005048583A1 publication Critical patent/WO2005048583A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6058Reduction of colour to a range of reproducible colours, e.g. to ink- reproducible colour gamut
    • G06T5/92
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image

Definitions

  • the present invention relates to a color correction device that performs a color gamut compression process based on color reproduction characteristics.
  • a color correction device that performs color correction based on color characteristics of a calibrated reference color imaging device and color characteristics of a reference color imaging device having different color characteristics from the reference color imaging device.
  • the target color is obtained by the color difference minimization method
  • the color correction parameter is calculated from the evening color and the input color to be input to the reference color image device
  • the color correction parameter is provided to the reference color image device. Things.
  • the control unit uses a look-up template (hereinafter, referred to as LUT) to print the output device. Is processed so that it can be expressed on paper within the color gamut of. That is, when the color gamut of the input system is different from the color gamut of the output system, the color gamut of the input system is converted to the convergence point within the color gamut of the output system.
  • LUT look-up template
  • This color gamut change Transformation performs three-dimensional compression of the color gamut, and applies a three-dimensional LUT when performing three-dimensional color gamut conversion of lightness, saturation, and hue.
  • using a three-dimensional LUT slows down the calculation speed, and there is no problem when applied to still images.
  • it has a serious adverse effect.
  • the conventional color correction device and color correction method are configured or processed as described above, so that any one of the hue, lightness, and saturation is unnecessarily changed by the color adjustment, and the color is adjusted by the color adjustment. Since chromaticity that is no longer included in the reproduction range is not taken into account, appropriate color adjustment cannot be performed, and fine adjustment of chromaticity with particularly high saturation cannot be performed. There was a problem in that the processing speed would be slower if a three-dimensional LUT was used for the color gamut compression used to correct the degree.
  • the present invention has been made to solve the above-described problem. It is an object of the present invention to reduce the occurrence of chromaticity not included in the color gamut by color adjustment. In addition, a color correction image with high color reproducibility can be obtained by processing, and a color correction device and color correction method that can increase the processing speed by not using a three-dimensional LUT for color gamut compression processing. The purpose is to get. Disclosure of the invention
  • a color correction apparatus includes: a color correction means for performing color correction of an input image signal; and a color correction unit which outputs color data of color-corrected image data output from a color correction unit based on data describing color reproduction characteristics.
  • Color gamut compression means for performing color gamut compression so that the chromaticity is included in the color gamut based on the color reproduction characteristics. Color correction can be performed according to the characteristics, and an output image signal with smooth color reproduction can be obtained. There is an effect that it can be.
  • the color correction method includes a step of converting the hue indicated by the image data by the hue conversion means, a step of converting the lightness indicated by the image data obtained from the hue conversion means by the lightness conversion means,
  • the saturation conversion means converts the saturation indicated by the converted image data based on the data describing the color reproduction characteristics, and the chromaticity of the image data obtained from the saturation conversion means is used to reproduce the color based on the color reproduction characteristics.
  • FIG. 1 is a block diagram showing a configuration of a color correction device according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing an example of setting a hue number and a hue value.
  • FIG. 3 shows a color reproduction characteristic data used in the color correction device according to the first embodiment.
  • FIG. 4 is an explanatory diagram showing a compression process of a color gamut compression unit according to the first embodiment.
  • FIG. 5 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • FIG. 6 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • FIG. 8 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 2 of the present invention. It is a lock figure.
  • FIG. 9 is an explanatory diagram showing the hue conversion characteristics of the hue LUT.
  • FIG. 10 is an explanatory diagram showing the structure of color reproduction characteristic data used in the color correction device according to the second embodiment.
  • FIG. 11 is a block diagram showing a configuration of a color correction device according to Embodiment 3 of the present invention.
  • FIG. 12 is an explanatory diagram showing the structure of color reproduction characteristic data used in the color correction device according to the third embodiment.
  • FIG. 13 is a block diagram showing a configuration of a color correction device according to Embodiment 3 of the present invention.
  • FIG. 14 is an explanatory diagram showing a compression process of a lightness gamut compression unit according to the fourth embodiment.
  • FIG. 15 is an explanatory diagram showing an example of the lightness hue LUT used by the lightness correction means according to the fourth embodiment.
  • FIG. 16 is an explanatory diagram showing an example of the lightness saturation L UT used by the lightness conversion means according to the fourth embodiment.
  • FIG. 17 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 5 of the present invention.
  • FIG. 18 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 6 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 1 of the present invention. 29
  • the illustrated color correction device is composed of color correction means 1 for inputting an input image signal 101 for performing color correction, and color gamut compression means 2 for performing color gamut compression of image data output from the color correction means 1. Is done.
  • the input image signal 101 is composed of visual color space data representing an arbitrary chromaticity and RGB data.
  • the color correction means 1 includes a color reproduction correction means 11 for correcting the chromaticity indicated by the input image signal 101 based on the color reproduction characteristic data 103.
  • the color reproduction correction means 11 constituting the color correction means 1 inputs the input image signal 101, performs a predetermined operation using the RGB data constituting the input image signal 101, and performs the input image signal The hue number and hue value of the chromaticity of 101 are obtained. Next, based on the visual color space data of the input image signal 101 and the color reproduction characteristics data 103 in which the color reproduction characteristics of the color image display device and the target color reproduction characteristics are described, The chromaticity indicated by the value is corrected, and the corrected visual color space data is output.
  • the color gamut compression means 2 calculates the color gamut of the color image display device and the color gamut of the target color space from the corrected visual color space data based on the color reproduction characteristic data 103. . Next, the color gamut of the target color space is compressed into the color gamut of the color image display device so that the corrected visual color space data can be reproduced with the chromaticity of the color gamut of the color image display device. Color gamut compression.
  • the color gamut compression means 2 performs color gamut compression on the corrected visual color space output from the color reproduction correction means 11 based on the color reproduction characteristic data 103 as described above, The image is output as the output image signal 102. Next, the detailed operation of the color reproduction correction means 11 will be described.
  • the color reproduction correction means 11 receives the input image signal 101, and uses the RGB data forming the input image signal 101 to determine the hue number of the input image signal 101. And the hue value are obtained by the processing described below.
  • the R, G, and B signals described in the RGB image of the input image signal 101 are compared, and the maximum value, intermediate value, and minimum value are determined by calculation.
  • the intermediate value when the maximum value is an R signal, the intermediate value is a G signal, and the minimum value is a B signal, it indicates a red to yellow color area, and the hue number of this color area is 0.
  • the maximum value is the G signal
  • the intermediate value is the R signal
  • the minimum value is the B signal
  • it indicates the yellow to green color gamut.
  • the maximum value is the G signal
  • the intermediate value is the B signal
  • the minimum value is the R signal
  • it indicates the color area from green to cyan.
  • the hue number of this color area is 2.
  • the maximum value is the B signal
  • the intermediate value is the G signal
  • the minimum value is the R signal, it indicates the cyan to blue color area, and the hue number of this color area is 3.
  • the intermediate value is the R signal
  • the minimum value is the G signal
  • the hue number of this color region is 4.
  • the maximum value is the R signal
  • the intermediate value is the B signal
  • the minimum value is the G signal, it indicates the magenta to red color area, and the hue number of this color area is 5.
  • the maximum value is an R signal
  • the intermediate value is a G signal
  • the minimum value is a B signal
  • the minimum value is subtracted from the maximum value (R signal minus B signal)
  • the minimum value is subtracted from the intermediate value Yes (G signal-B signal).
  • the upper limit value that can be represented by the number of bits constituting the RGB data of the input image signal 101 is referred to as the maximum bit value of the RGB data.
  • the upper limit value that can be represented by the number of bits constituting each data is referred to as a bit maximum value.
  • the quotient obtained in this manner relates to a predetermined color area based on the magnitude relationship between the R signal, the G signal, and the B signal. 14529
  • the hue numbers corresponding to the same color region as the quotient are added to the quotient, and this value is added to the input image signal 101.
  • the hue number is used.
  • the remainder when the quotient is obtained is set as the hue value of the input image signal 101.
  • each data indicating the chromaticity is identified by a hue number and a hue value used when identifying based on hue.
  • FIG. 2 is an explanatory diagram showing an example of setting a hue number and a hue value.
  • the shaded range in the figure indicates the chromaticity range on the CbCr plane among the chromaticity ranges that can exist in the YCbCr color space.
  • the chromaticity range is represented by a substantially hexagonal range as shown in the figure, and each hue constituting this chromaticity range is represented by being arranged in a ring as indicated by the arrow f in the figure. Is done. Therefore, each hue number from 0 to 5 is set at each vertex of the hexagon indicating the chromaticity range, and for example, each hue number is set so that a predetermined position between hue number 0 and hue number 1 can be specified.
  • the hue value indicating the position between them it is possible to indicate all the hues forming a hue circle by the hue number and the hue value.
  • the hue numbers described here are set so as to correspond to the vertices of a hexagon indicating the chromaticity range on the CbCr plane, but at least to the three primary colors used in the color image display device.
  • a hue number is set, and a hue number is set for a chromaticity that is complementary to the three primary colors together with the three primary colors or a chromaticity that is randomly extracted from the color reproduction range of the color image reproducing apparatus, and corresponds to the hue number. Then, the content of the color reproduction characteristic data 3 described later may be described.
  • the color reproduction correction means 11 processes the input image signal 101 as described above, obtains the hue number and hue value of the input image signal 101, and then sets the color preset by the user. Obtain the reproduction characteristic data 103. next, The visual color reproduction data describing the color reproduction characteristics of the color image display device described in the color reproduction characteristics data 103 and the visual color space data describing the target color reproduction characteristics are described below. The correction calculation of the chromaticity indicated by the input image signal 101 is performed.
  • the visual color space data describing the target color reproduction characteristics include, for example, data indicating characteristics of a standard color space in accordance with standards such as NTSC and sRGB, and color reproduction of a color image display device, particularly, a transparent image. This is data indicating the characteristics or the color reproduction characteristics of the print image.
  • FIG. 3 is an explanatory diagram illustrating a configuration of a color reproduction characteristic data used in the color correction device according to the first embodiment.
  • the color reproduction characteristic data 103 is made up of visual color space data representing the color reproduction characteristic of the color image display device and visual color space data representing the target color reproduction characteristic, corresponding to each hue number. One night is written. More specifically, it describes chromaticity representing a color reproduction characteristic of a color image display device and chromaticity representing a target color reproduction characteristic of a certain hue represented by each hue number. More specifically, the color reproduction characteristics and target color reproduction characteristics of a color image display device are described by values representing chromaticity in visual color space data, for example, in a YCbCr color space. .
  • the color reproduction correction means 11 uses the color reproduction characteristic data 103 illustrated in FIG. 3 as follows.
  • the color reproduction characteristic of the color image display device corresponding to the hue number obtained from the RGB data of the input image signal 101 is referred to.
  • the color reproduction characteristics of the color image display device referred to here are referred to as color characteristics a.
  • 1 is added to the hue number obtained from the RGB data of the input image signal 101, and the color reproduction characteristics of the color image display device corresponding to the hue number are referred to.
  • the color reproduction characteristics of the color image display device referred to here are referred to as color characteristics b.
  • the color reproduction characteristic data 103 expresses the chromaticity representing each color reproduction characteristic by each value of the visual color space data as described above, the color characteristics a, Each data value described as b also expresses a predetermined chromaticity.
  • the color reproduction correction means 11 performs the chromaticity and color reproduction characteristic data 10 0 indicated by the input image signal 101. The following process is performed to make the contents described in 3 correspond.
  • the ratio m relating to the color characteristic a which is the internal division ratio
  • the ratio n relating to the color characteristic b is represented by the value of the visual color space data of the input image signal 101, the value of the visual color space data of the color characteristic a, and the value of the visual color space data of the color property b.
  • the target color reproduction characteristic of the color reproduction characteristic data 103 corresponding to the hue number of the input image signal 101 is referred to.
  • the target color reproduction characteristic referred to here is a color characteristic c.
  • the target color reproduction characteristic referred to here is a color characteristic d.
  • the color reproduction characteristic data 103 represents the chromaticity representing each color reproduction characteristic by each value of the visual color space data as described above, each of the color reproduction characteristic data 103 described as the color characteristic c and the color characteristic d is described.
  • the data value also represents a predetermined chromaticity.
  • the color characteristic c is multiplied by the ratio m
  • the color characteristic d is multiplied by the ratio n
  • the products are added to generate corrected visual color space data based on the target color reproduction characteristic.
  • the color reproduction correction means 11 outputs the corrected visual color space data obtained in this way.
  • the color gamut compression means 2 includes conversion means (not shown) for converting visual color space data into RGB data, and inputs the corrected visual color space data input from the color correction means 1 to the conversion means.
  • the conversion means performs matrix operation or exponentiation operation on the corrected visual color space data depending on the color reproduction characteristics of the color image display device, converts the data into RGB data, and obtains R 1 G 1 B 1 data. .
  • This operation is different from the process of converting RGB data into visual color space data representing the color reproduction characteristics of a color image display device, and conversely, the visual color space data representing the color reproduction characteristics of a color image display device. This is related to the process of converting evening to RGB data.
  • R 1 G 1 B 1 data is deleted.
  • the resulting R1, G1, and B1 data are compressed by ratio calculation and adjusted so that all data does not exceed the maximum bit value of R1G1B1 data. Adjusted in this way; R 1 G 1 B 1 day R 1 day, G 1 day — Evening, B 1 data is converted to RGB of input image signal 101
  • the color gamut compression means 2 refers to the color reproduction characteristics of the color image display device of the color reproduction characteristics data 103 to determine the color reproduction characteristics of the color image display device corresponding to the hue number (A). Chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number (A + 1) obtained by adding 1 to the hue number (A) And ask.
  • the chromaticity of the hue number (A) is defined as a vector a
  • the chromaticity of the hue number (A + 1) is defined as a vector b
  • these are treated as chromaticity vectors, and the vector sum is calculated.
  • this vector sum is defined as vector ab
  • the hue value (A) internally divides vector ab. This means that the hue value (A) is a value indicating the distance from the vector a indicating the chromaticity of the hue number (A) to the vector b indicating the chromaticity of the hue number (A + 1). Because you do.
  • the hue value (A) determines the internal ratio of the internal division between the vector a and the vector b. For example, the ratio mA related to the vector a and the ratio nA related to the vector b are determined.
  • the chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number (A) obtained by referring to the color reproduction characteristics data 103 is multiplied by the ratio mA.
  • the chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number (A + 1) obtained by referring to 103 is multiplied by the ratio nA, and the product of these is added to add the hue number (
  • the chromaticity (A) representing the color reproduction characteristics of the color image display device corresponding to the hue indicated by A) and the hue value (A) is obtained.
  • This chromaticity (A) corresponds to vertex b described later.
  • the color gamut compression means 2 performs a matrix operation or an exponentiation operation depending on a target color reproduction characteristic on the corrected visual color space data using the conversion means, and converts the data into RGB data. Then ask for R 2 G 2 B 2 de overnight. In contrast to the process of converting RGB data into a visual color space image showing the target color reproduction characteristics, this operation conversely converts a visual color space image showing the target color reproduction characteristics into an RGB image data. It is related to the process of converting to.
  • the color gamut compression means 2 performs color reproduction even after the corrected visual color space data is converted into R1G1B1 data and R2G2B2 data by the conversion means.
  • the corrected visual color space data input from the current correction unit 11 is retained.
  • the gamut compression means 2 determines that the largest value among the data values of the R 2 G 2 B 2 data obtained in this way exceeds the maximum bit value of: R 2 G 2 B 2 data.
  • the R2 data, G2 data, and B2 data that make up the R2G2B2 data are compressed by a ratio operation, and all data is compressed as bits of the R2G2B2 data. Adjust so that the maximum value is not exceeded.
  • the R 2 data, G 2 data, and B 2 data of R 2 G 2 B 2 data adjusted in this manner are converted to the color reproduction correction means 11 of the input image signal 101; RGB.
  • the hue number and the hue value of the input image signal 101 are processed in the same manner as the processing using the data, and the hue number of the visual color space data after correction by the target color reproduction characteristic (B) And the hue value (B).
  • the color gamut compression means 2 refers to the target color reproduction characteristic of the color reproduction characteristic data 103, and calculates the chromaticity representing the target color reproduction characteristic corresponding to the hue number (B), The chromaticity representing the target color reproduction characteristic corresponding to the hue number (B + 1) obtained by adding 1 to the hue number (B) is obtained.
  • the chromaticity of the hue number (B) and the chromaticity of the hue number (B + 1) are treated as chromaticity vectors in the same manner as the chromaticity of the hue number (A) and the hue number (A + 1).
  • the internal ratio is calculated when the chromaticity vector of the hue number (B) and the chromaticity vector of the hue number (B + 1) are internally divided by the hue value (B). For example, the hue number ( The ratio mB related to the chromaticity vector of B) and the ratio nB related to the hue number (B + 1) are obtained.
  • the chromaticity representing the target color reproduction characteristic corresponding to the hue number (B) obtained by referring to the color reproduction characteristic data 103 is multiplied by the ratio mB.
  • the hue number (B + 1) obtained by referring to 03 The chromaticity that represents the target color reproduction characteristic is multiplied by the ratio nB, and the products are added.
  • the target color reproduction corresponding to the hue indicated by the hue number (B) and hue value (B) Find the chromaticity (B) representing the characteristic. This chromaticity (B) corresponds to a vertex a described later.
  • the gamut compression means 2 calculates the chromaticity (A) representing the color reproduction characteristics of the color image display device corresponding to the hue indicated by the hue number (A) and the hue value (A), and the hue. After obtaining the chromaticity (B) representing the target color reproduction characteristic corresponding to the hue indicated by the number (B) and the hue value (B), the chromaticity (A), that is, the color indicated by the vertex b Color gamut compression is performed using a color gamut based on the color reproduction characteristics of the image display device and a color gamut based on the chromaticity (B), ie, the target color reproduction characteristics indicated by the vertex a. The color gamut compression is performed such that the vertex a indicating the color gamut of the target color reproduction characteristic is included in the color gamut of the color reproduction characteristic of the color image display device.
  • FIG. 4 is an explanatory diagram showing a compression process of a color gamut compression unit according to the first embodiment.
  • the horizontal axis in FIG. 4 indicates the saturation, and the vertical axis indicates the lightness.
  • the vertical axis in Fig. 4 is the YCbCr color space.
  • the value corresponds to the lightness Y of the data, and is a value normalized based on the maximum bit value of the data in the YCbCr color space.
  • the horizontal axis represents the saturation expressed on the CbCr plane.
  • the saturation is calculated as the distance from the origin on the CbCr plane, and is the maximum possible value of the YCbCr color space data. Shows the value normalized based on saturation.
  • the color gamut compression means 2 obtains the lightness value and the saturation value of the chromaticities (A) and (B) expressed by the visual color space data by processing, for example, as described above.
  • the lightness value and chroma value of the chromaticity (A) thus obtained are represented as vertex b, and are shown in FIG.
  • the lightness value and chroma value of (B) are represented as vertex a, and are shown in FIG.
  • triangle a 4 shows a color reproduction range based on the color reproduction range.
  • triangle b is a color gamut based on the color reproduction characteristics of the color image display device. Is shown.
  • the color gamut compression means 2 performs processing as described below when the vertex b does not exist inside the triangle a, and is represented by the triangle a. Performs color gamut compression of the color gamut.
  • the gamut compression is not performed, and the corrected visual color space data input from the color reproduction correction means 11 is output to the output image signal 1. Output from the gamut compression means 2 as 0 2.
  • the point at which triangles a and b intersect between vertex a and vertex b is determined as vertex c, and this vertex c and a point on the lightness axis of equal lightness are determined as a convergent point. Then, the triangle a is compressed so that the vertex a points toward this convergence point, so that the color gamut based on the target color reproduction characteristics falls within the color gamut based on the color reproduction characteristics of the color image display device. It performs color gamut compression.
  • the corrected visual color space data is included in the color gamut of the target color space and can be reproduced on a color image display device. It shows the degree.
  • FIG. 5 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • the color gamut compression described with reference to Fig. 4 is performed such that vertex a is directed to a vertex c where triangle a including vertex a and triangle b including vertex b intersect and a convergent point on the brightness axis of equal brightness.
  • the compression direction was set, as shown in Fig.
  • a vertex c having a lightness higher than the lightness of is set, and a compression direction of a color gamut indicated by a triangle a is set such that the vertex a is directed to a convergence point on the lightness axis having the same lightness as the vertex c.
  • Gamut compression may be used to obtain visual color space data with high brightness.
  • FIG. 6 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • a vertex c having a higher brightness than the brightness at the point where the triangle a and the triangle b intersect is set on the straight line connecting the vertex b and the coordinates (0, 0).
  • the compression coefficient may be increased as the distance from the convergence point is increased and nonlinearly compressed to prevent a decrease in the saturation of the entire image represented by the compressed visual color space data.o
  • FIG. 7 is an explanatory diagram showing another compression process of the color gamut compression unit according to the first embodiment.
  • the color gamut compression described with reference to FIG. 4 is performed so that the vertex a faces the vertex c where the triangle a having the vertex a and the triangle b having the vertex b intersect with the convergent point on the lightness axis of equal lightness.
  • the compression direction of the color gamut indicated by the triangle a is set, if the visual color space data to be subjected to color gamut compression has low lightness, as shown in Fig. 7, the lightness is increased.
  • the compression direction of the color gamut is set so that vertex a goes to the coordinates (0, 1), and compression processing is performed to increase the brightness of the chromaticity indicated by the visual color space data after the correction processing.
  • the lightness of the vertex a is higher than the lightness of the vertex b, that is, when the visual color space data to be subjected to the color gamut compression has a high lightness, for example, the vertex a has the coordinates (0 , 0)
  • the color gamut may be compressed, and compression processing may be performed to reduce the brightness of the chromaticity indicated by the visual color space data after the correction processing.
  • the color reproduction correction unit 11 obtains the hue number and the hue value of the input image signal 101, and obtains the color reproduction characteristic data corresponding to the hue number and the hue value.
  • the corrected visual color space data in which the chromaticity of the input image signal 101 is corrected using 103 is generated, and the color gamut compression means 2 displays the color image based on the color reproduction characteristic data 103. Since color gamut compression is performed using a color gamut based on the color gamut of the device and a color gamut based on the target color gamut, the color gamut compression is applied to the corrected visual color space data. This has the effect that visual color space data can be obtained in line with the target color reproduction characteristics.
  • FIG. 8 is a block diagram showing a configuration of a color correction device according to Embodiment 2 of the present invention.
  • the illustrated color correction apparatus includes a color correction unit 1 for inputting an input image signal 101 and a color gamut compression unit 2 for performing color gamut compression of image data output from the color correction unit 1.
  • the input image signal 101 shown in FIG. 8 is composed of visual color space data indicating an arbitrary chromaticity and RGB data.
  • the color correction means 1 shown in FIG. 8 includes hue conversion means 12 for converting the hue indicated by the visual color space data of the input image signal 101. -Next, the operation will be described.
  • the color correction means 1 shown in FIG. 8 converts the input image signal 101 into chromaticity in, for example, an XYZ color space, an L * a * b * uniform color space, a YUV color space, a YCbCr color space, or the like. And the RGB data that represents the same chromaticity as this visual color space data by the R signal, G signal, and B signal values.
  • the hue conversion means 12 of the color correction means 1 inputs the visual color space data of the Zuka image signal 101 and the RGB image data, and uses the RGB data to generate the color described in the first embodiment. A predetermined operation similar to that of the reproduction correction means 11 1 is performed, and the hue number and hue value of the input image signal 101 are obtained. Next, based on the color adjustment data 104 input from the outside, the hue conversion of the visual color space data of the input image signal 101 is performed, and the hue number and the hue value after the hue conversion are obtained.
  • the hue conversion means 12 processes the hue number and hue value before hue conversion, the hue number and hue value after hue conversion, and the visual hue space data after hue conversion, Output to 2.
  • the color gamut compression means 2 performs color reproduction of a hue before conversion from a hue number and a hue value before hue conversion based on the color reproduction characteristic data 103 a.
  • the color gamut of the converted hue is obtained from the hue number and the hue value after the hue conversion.
  • the color gamut of the hue before the conversion is subjected to the color gamut compression toward the color gamut of the hue after the conversion, and the visual color space data after the hue conversion is subjected to the color gamut compression.
  • the color gamut compression means 2 performs color gamut compression based on the color reproduction characteristic data 103 a so that the chromaticity indicated by the visual color space data after the hue conversion is included in the color gamut.
  • the visual color space data subjected to the color gamut compression is output as an output image signal 102.
  • the hue conversion means 12 computes the R, G, and B signals forming the RGB data of the input image signal 101 in the same manner as the color reproduction correction means 11 described in the first embodiment. Then, the hue number and the hue value of the input image signal 101, that is, the hue number and the hue value before the hue conversion are obtained.
  • the color adjustment data 104 is obtained from the outside, and the hue conversion of the visual color space data of the input image signal 101 is performed.
  • the color adjustment data 104 is a data description of the hue to be adjusted and the amount of adjustment set according to the user's preference. For details, refer to Adjusting the hue value of the hue to be adjusted. It describes the amount and the amount of hue adjustment for the hue around it.
  • the hue conversion means 12 compares the hue indicated by the visual color space data of the input image signal 101 with the hue indicated by the color adjustment data 104, and when the same hue is indicated, the hue conversion means 12 obtains the hue.
  • the hue value after the hue conversion is obtained by adding the adjustment amount of the hue value described in the color adjustment data 104 to the hue value of the input image signal 101, that is, the hue value before the hue conversion.
  • the color adjustment data 104 indicates the hue to be arbitrarily adjusted, but the adjustment amount of the hue around the hue to be adjusted is also described.
  • the hue indicated by the visual color space data of the input image signal 101 is 14529
  • the color conversion relevant phase means 12 performs the same processing as the above-described calculation on the relevant hue described in the color adjustment data 104, Perform hue adjustment.
  • the hue number and the hue value after the hue conversion are performed in the following procedure. Ask for.
  • the value of the adjustment amount is added to the hue value before hue conversion, and the hue value (C) after adjustment is obtained.
  • the adjusted hue value (C) is larger than the maximum bit value of the input image signal 101, add 1 to the hue number before hue conversion, and use that value as the hue number after hue conversion.
  • the maximum bit value of the input image signal 101 is subtracted from the adjusted hue value (C), and this is used as the hue value after hue correction.
  • the hue value (C) after the adjustment is smaller than the maximum bit value of the input image signal 101, the hue number after the hue conversion is the same as the hue number before the hue conversion, and Is the hue value after the hue conversion.
  • the hue conversion means 12 includes the hue number before hue conversion and the visual color space data before hue conversion having the hue value obtained as described above, and the hue number and hue value after hue conversion having the hue value after hue conversion. Is output to the color gamut compression means 2.
  • the color adjustment data 104 input from the outside is input to the hue conversion means 12 via, for example, a user interface (not shown).
  • the user interface is provided, for example, in the color correction device, and is connected to an external input unit (not shown).
  • the color adjustment data 104 represents the hue and adjustment amount of the correction target set by the user operating the input unit by converting the operation amount of the input unit into a physical amount. It was a night.
  • the hue conversion means 1 and 2 are provided with a hue lookup table (hereinafter referred to as Ruth).
  • a backup table is referred to as an LUT), and hue conversion of the visual color space data of the input image signal 101 may be performed with reference to the hue LUT.
  • the hue LU ⁇ ⁇ used at this time is an adjustment amount given for all hues.
  • FIG. 9 is an explanatory diagram showing the hue conversion characteristics of the hue LUT.
  • the illustrated hue conversion characteristic is an example of a characteristic in which an adjustment amount is added so that when a desired hue is converted so that smooth color adjustment is performed, the hue around the hue is also appropriately converted.
  • the horizontal axis X in FIG. 9 indicates the hue before the hue conversion.
  • R (red), ⁇ (yellow), G (green), C (cyan),: (blue), ⁇ (magenta), R (red) Based on the arrangement of the rings, these hues and intermediate hues are represented by a hue value (D) obtained by a calculation described later.
  • the vertical axis ⁇ indicates the hue after the hue conversion.
  • the hues of R (red), ⁇ (yellow), G (green), C (cyan), ⁇ (blue), ⁇ (mazen evening), and R (red) set on the vertical axis ⁇ Based on the arrangement, these hues and intermediate hues are represented by a hue value ( ⁇ ) obtained by a calculation described later.
  • the hue value (D) and the hue value ( ⁇ ) are as described below. For example, when hue number 1 and hue number 2 are divided into 256 equal parts, and each position between the hue numbers is represented by hue values 0 to 255, the hue number 1 and hue number 2 The hue located can also be represented by hue number 1 * 256 + hue value (this hue value is one of the above hue values 0 to 255).
  • the hue value (D) and the hue value ( ⁇ ) are such that the hue number is omitted and all the hues are indicated only by the hue values.
  • each coordinate axis represents a value of 0 to 153,36.
  • the hue value is expressed in 8 bits (256 steps).
  • the number of bits representing the hue value may be other than 8 bits.
  • the range of each coordinate axis is determined based on the number of steps corresponding to the number of bits.
  • the adjustment amount is added as described below. For example, a predetermined adjustment amount is added to the Y coordinate value on the linear characteristic line corresponding to the hue before conversion shown on the X axis in FIG. 9, and a point is added to the Y coordinate value obtained by adding the adjustment amount.
  • Set P3 Note that the X coordinate value of the point P3 is the same as the X coordinate value of the hue before change shown in the figure.
  • Point P1 is set on the linear characteristic line so that (X2-XI) is equal to (adjustment amount * ⁇ ).
  • Point ⁇ 5 is set so that the slope of the straight line connecting point ⁇ 4 and point ⁇ 5 is “positive”, and ( ⁇ 5— ⁇ 4) is (adjustment amount * *).
  • X 1 is the X coordinate value of point ⁇ 1
  • ⁇ 5 is the X coordinate value of point ⁇ 5.
  • the characteristic curve passing through the points # 1 to # 5 set in this way indicates a hue conversion characteristic having an adjustment amount, and a hue LUT is provided so as to have the hue conversion characteristic. Note that the points 1, ⁇ T JP2003 / 014529
  • the hue conversion means 12 adds the bit maximum value of the visual color space data of the input image signal 101 to the hue number before hue conversion. Multiply, add the hue value before hue conversion to this value to obtain the hue value (D), and refer to the hue LUT with this hue value (D).
  • Hue The hue value (E) obtained by referring to the LUT is divided by the maximum bit value of the visual color space data of the input image signal 101, and the value obtained by this division is calculated after hue conversion. And the remainder is the hue value after hue conversion.
  • the hue conversion means 12 obtains the hue number and the hue value after the hue conversion with reference to the hue LUT as described above, and generates the visual color space data after the hue conversion. Note that the hue number and hue value of the visual color space data before hue conversion are calculated using the RGB data of the input image signal 101 in the same manner as described above even when hue conversion is performed using the hue LUT. Ask by.
  • the color gamut compression means 2 inputs the visual color space data before the hue conversion and the visual color space data after the hue conversion from the hue conversion means 12 and externally outputs the color reproduction characteristic data 10.3a. input.
  • FIG. 10 is an explanatory diagram showing the structure of color reproduction characteristic data used in the color correction device according to the second embodiment.
  • This figure shows the configuration of the color reproduction characteristic data 103a, in which visual color space data representing the color reproduction characteristics of the color image display device is described corresponding to each hue number. Specifically, it describes the chromaticity representing the color reproduction characteristics of a color image display device for a certain hue represented by each hue number. Specifically, the color reproduction characteristics of the color image display device are described by visual color space data, for example, values representing chromaticity in the YCbCr color space. TJP2003 / 014529
  • the hue before conversion is recognized based on the hue number and hue value before hue conversion, and the color gamut based on the color reproduction characteristics of the color image display device of the hue before conversion based on the color reproduction characteristic data 103a.
  • the hue number and hue value before hue conversion are referred to as hue number (F) and hue value (F), respectively.
  • the process of obtaining the color gamut based on the color reproduction characteristics of the color image display device of the hue before conversion is performed by first referring to the color reproduction characteristics data 103a and displaying the color image corresponding to the hue number (F).
  • the chromaticity representing the color reproduction characteristics of the device and the chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number (F + 1) obtained by adding 1 to the hue number (F) are obtained.
  • the chromaticity of the hue number (F) and the chromaticity of the hue number (F + 1) are treated as chromaticity vectors, respectively, and the hue number described in the description of the operation of the color gamut compression means 2 of the first embodiment is given.
  • the hue number (F) and the hue value (F) are obtained in the same manner as in the process of obtaining the chromaticity (A) representing the color reproduction characteristics of the color image display device corresponding to the hue indicated by (A) and the hue value (A).
  • the chromaticity (F) representing the color reproduction characteristics of the color image display device corresponding to the hue indicated by F) is obtained. This chromaticity (F) corresponds to the vertex a shown in FIG. 4 to FIG.
  • the color gamut compression means 2 recognizes the converted hue from the hue number and hue value after hue conversion, and based on the color reproduction characteristic data 103a, the color of the color image display device of the hue after conversion. A color gamut based on the reproduction characteristics is obtained.
  • the hue number and hue value after hue conversion are referred to as hue number (G) and hue value (G), respectively.
  • the process of obtaining the color gamut based on the color reproduction characteristics of the color image display device of the converted hue is performed by referring to the color reproduction characteristic data 103a and reproducing the color reproduction of the color image display device corresponding to the hue number (G).
  • the chromaticity representing the characteristic and the chromaticity representing the color reproduction characteristic of the color image display device corresponding to the hue number (G + 1) obtained by adding 1 to the hue number (G) are obtained.
  • the chromaticity of the hue number (G) and the chromaticity of the hue number (G + 1) The chromaticity (F), which represents the color reproduction characteristics of the color image display device corresponding to the hue indicated by the hue number (F) and the hue value (F) described above, is treated as The chromaticity (G) representing the color reproduction characteristics of the color image display device corresponding to the hue indicated by the hue number (G) and the hue value (G) is obtained.
  • This chromaticity (G) corresponds to vertex b shown in FIGS.
  • the chromaticity (F) representing the color reproduction characteristics of the color image display device of the hue before conversion and the chromaticity (G) representing the color reproduction characteristics of the color image display device of the hue after conversion are obtained.
  • these chromaticity (F) and chromaticity (G) are treated as a vertex a and a vertex b, respectively, and as in the color gamut compressing means 2 of the first embodiment, FIG. 4 to FIG.
  • the color gamut of triangle a is compressed into the color gamut of triangle b.
  • the color gamut compression means 2 of the second embodiment converts the color reproduction range based on the color reproduction characteristics of the color image display device of the hue before the conversion into the color reproduction characteristics based on the color reproduction characteristics of the color image display device of the hue after the conversion. Compress to the area ⁇
  • the visual color space data after the hue conversion indicates chromaticity that enables color reproduction in the color image display device.
  • the color correction means 1 is provided with a color space conversion means, and the RGB data can be converted to any one of the aforementioned colors. Convert to visual color space data represented by space.
  • This color space conversion is performed by applying a color space conversion process such as matrix operation or exponentiation operation to the RGB image data to convert it into visual color space data.
  • the thus obtained visual color space data and the RGB data input to the above-described color correction means 1 are input to the hue conversion means 12 and processed as described above.
  • the image signal input to the color correction means 1 is based on visual color space data and RG.
  • the color correction means 1 is provided with a color space conversion means, and the visual color space data input to the color correction means 1 is further visually checked for chromaticity by the color space conversion means. Processing may be performed so as to convert to visual color space data to be expressed. This processing is performed, for example, when the data expressed in the XYZ color space is input to the color correction means 1, the color space conversion means converts the XYZ color space data into YCbCr color space data. Is what you do.
  • the RGB data is input to the next processing means together with the output of the color space conversion means, in addition to the color space data subjected to the color space conversion processing.
  • This displayed value changes according to the amount of operation of the slider. Also, a function may be provided that automatically adjusts the display of the slider when the user directly inputs the adjustment amount of the hue value on the edit screen. Further, the peripheral color of the color selected by the user may be displayed below or above the slider.
  • desired color reproduction data is input using input means from a plurality of color reproduction characteristic data prepared in advance.
  • the color gamut compression means 2 may perform color gamut compression using the color reproduction characteristic data desired by the user.
  • a plurality of types of color reproduction characteristic data are stored in a predetermined storage means as, for example, a text data file or a binary data file, and are stored in a user interface.
  • the user operates the connected input means to select desired color reproduction characteristic data.
  • the gamut compression means 2 acquires the color reproduction characteristic data selected at this time from the storage means, and performs gamut compression as described above.
  • the hue conversion means 12 converts the hue of the visual color space data of the input image signal 101 based on the color adjustment data 104 input from the outside
  • the color gamut compression means 2 converts the color gamut of the hue before the conversion into the color gamut of the hue after the conversion based on the different color reproduction characteristic data 103a in which the color reproduction characteristics of the color image display device are described.
  • the color gamut is compressed so that the chromaticity indicated by the visual color space data whose hue has been converted by the hue conversion means 12 becomes the chromaticity included in the color gamut of the color image display device.
  • hue conversion according to the color reproduction characteristics of each color image display device can be performed, and smoothness can be obtained by performing color gamut compression based on the color reproduction characteristics of the color image display device.
  • the effect is that an output image signal 102 that can reproduce The
  • the gamut compression means 2 sets the chromaticity representing the color reproduction characteristics of the color image display device of the hue before the conversion as the vertex a, and the chromaticity representing the color reproduction characteristics of the color image display device of the hue after the conversion.
  • the vertex c is indicated by the vertex a toward the convergence point on the brightness axis of equal lightness. Since the color gamut to be reproduced is compressed, there is an effect that visual color space data after hue conversion showing a smooth image with little loss of brightness can be obtained.
  • FIG. 11 is a block diagram showing a configuration of a color correction device according to Embodiment 3 of the present invention.
  • the same or corresponding portions as those shown in FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the color gamut compression means 2 of the color correction device according to the third embodiment inputs the color reproduction characteristic data 103 c together with the color reproduction characteristic data 103 b, and uses these color reproduction characteristic data It performs color gamut compression.
  • the hue converter 12 of the color corrector 1 shown in FIG. 11 operates in the same manner as the color corrector 1 or the hue converter 12 according to the second embodiment described with reference to FIG. Here, the description of the same operation as that described in the second embodiment will be omitted.
  • the color gamut compression means 2 shown in FIG. 11 operates almost in the same manner as that shown in FIG. Here, the characteristic operation of the color gamut compression means 2 according to the third embodiment will be described.
  • the color gamut compression means 2 shown in FIG. 11 converts the hue number and the hue value before the hue conversion, the hue number and the hue value after the hue conversion from the hue conversion means 12 and the visual color space data after the hue conversion. Enter
  • FIG. 12 is an explanatory diagram showing the structure of color reproduction characteristic data used in the color correction device according to the third embodiment. This figure shows, in association with each hue number, visual color space data representing the color reproduction characteristics of a color image display device and visual color space data representing the color reproduction characteristics of an original image showing the color tone when viewed with the naked eye. Evening is described, and the visual color space data representing the color reproduction characteristics of the color image display device is the color reproduction characteristics data 103b shown in FIG.
  • the visual color space data representing the color reproduction characteristics of the original image in FIG. 12 is based on the color reproduction characteristic data shown in FIG. One night is 103 c.
  • These color reproduction data describe chromaticity representing each color reproduction characteristic in the same manner as those shown in FIG. 3 and FIG.
  • the color gamut compression means 2 shown in FIG. 11 is a chromaticity representing the color reproduction characteristics of the color image reproduction apparatus shown in FIG. 12 based on the hue number before the hue conversion input from the hue conversion means 12. That is, the color reproduction characteristic data 103b is obtained.
  • the chromaticity representing the color reproduction characteristics of the color image reproduction device of the hue indicated by the hue number and the hue value before the hue conversion is processed in the same manner as in the description of the operation of the color gamut compression means 2 of the first embodiment. And this is defined as vertex a. .
  • the chromaticity representing the color reproduction characteristic of the original image shown in FIG. 12, that is, the color reproduction characteristic data 103 c is obtained. get.
  • processing is performed in the same manner as in the description of the operation of the color gamut compression means 2 of the first embodiment, and the hue number and the chromaticity representing the color reproduction characteristics of the original image of the hue indicated by the hue value are calculated, Let this be vertex b.
  • the color gamut indicated by the vertex a is compressed toward the color gamut indicated by the vertex b, and the visual color space data after the hue conversion calculates the color tone of the original image.
  • Color gamut compression so as to have the chromaticity included in the color gamut of the color image display device.
  • the color gamut compression means 2 compares the color reproduction characteristics data 103 b indicating the color reproduction characteristics of the color image display device with the color port characteristics of the original image. Since the color gamut compression is performed using the color reproduction characteristic data 103c shown in the figure, the hue conversion can be performed according to the color reproduction characteristics of each color image display device and the color reproduction characteristics of the original image. In addition, by performing color gamut compression based on the color reproduction characteristics of the color image display device and the color reproduction characteristics of the original image, an output that allows smooth color reproduction in consideration of the color tone of the original image Image signal 102 can be obtained effective.
  • Embodiment 4 "
  • FIG. 13 is a block diagram showing a configuration of a color correction device according to Embodiment 3 of the present invention.
  • the same or corresponding parts as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the color correction apparatus according to the fourth embodiment includes a color correction unit 1 for inputting an input image signal 101 and performing color correction, and a color reproduction characteristic which is output from the corrected visual color space data output from the color correction unit 1.
  • a lightness gamut compression unit 2a that performs color gamut compression based on the data and outputs color converted data, that is, an output image signal 102.
  • the color correction means 1 shown in FIG. 13 comprises lightness conversion means 13 for converting the lightness of the input image signal 101 based on the color adjustment data 104a.
  • the color adjustment data 104 a is data describing the adjustment amount of the lightness of the hue to be adjusted set according to the user's preference, and is expressed in detail by the visual color space data. It describes the adjustment amount of the lightness value of the hue to be adjusted.
  • the brightness conversion means 13 shown in FIG. 13 inputs color adjustment data 104 a from the outside and converts the brightness of the input image signal 101 based on the color adjustment data 104 a. Do.
  • the hue number and the hue value of the input image signal 101 are first determined by using the RGB data forming the input image signal 101, and the color reproduction correction means 1 described in the first embodiment is used. It works in the same way as 1.
  • the brightness conversion of the input image signal 101 in the visual color space is performed.
  • the case where the visual color space data forming the input image signal 101 is, for example, the YCbCr color space data will be described.
  • the lightness conversion means 13 adds the color adjustment amount based on the color adjustment data 104a to the lightness value Y1 or subtracts it based on the sign of the data, and outputs the lightness value Y after the lightness conversion. Find 2
  • the brightness conversion means 13 may perform color adjustment, that is, brightness conversion, using a brightness LUT configured by associating a brightness value before conversion with a brightness value after conversion.
  • a brightness LUT configured by associating a brightness value before conversion with a brightness value after conversion.
  • chromaticity having a converted lightness value corresponding to the lightness value before conversion is described, for example, as visual color space data.
  • the lightness conversion means 13 refers to the contents of the lightness LUT corresponding to the lightness value Y1 of the visual color space data of the input image signal 101, and Find the chromaticity having the lightness value Y2.
  • the setting of the lightness LUT including the color adjustment amount is set by the user using, for example, the user interface described in the second embodiment.
  • the user interface used here includes an editing function for inputting the color adjustment amount, a function for selecting a file in which a brightness LUT is described, a function for freely creating a brightness LUT, and the like. , Or configured to have a plurality of the above functions.
  • the lightness conversion means 13 performs the lightness conversion of the input image signal 101 in the visual color space as described above, and represents the RGB data of the input image signal 101, that is, the chromaticity before the lightness conversion. RGB color data, lightness value Y1 of visual color space data of input image signal 101, hue number and hue value of input image signal 101, and lightness color gamut compression of lightness converted visual color space data Output to means 2a.
  • the brightness color gamut compression means 2a performs the division using the brightness value Y1 input from the brightness conversion means 13 as a division coefficient, and the brightness value Y2 of the visual color space data after the brightness conversion as a division coefficient, This value is used as a lightness coefficient.
  • the brightness coefficient is multiplied by each value of the RGB data of the input image signal 101, and the RGB data after the brightness conversion is multiplied. —Calculate the values of R 2, G 2, and B 2 for the evening.
  • the lightness gamut compression means 2a determines whether any of the data values of R2, G2, and B2 obtained as described above exceeds the maximum bit value of the input image signal 101. On the basis of the color reproduction characteristic data 103d, lightness gamut compression is performed as described below.
  • 103d is a color image display device corresponding to the hue number, which is the same as the color reproduction characteristic data 103a shown in Fig. 1 ⁇ .
  • the chromaticity, which represents the color reproduction characteristics of, is described by visual color space data.
  • the lightness color gamut compression means 2a performs the same procedure as the color gamut compression means 2 described in the second embodiment, and uses the input image input from the lightness conversion means 13 based on the color reproduction characteristic data 103d.
  • the chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number and hue value of the signal 101 is obtained.
  • FIG. 14 is an explanatory diagram showing a compression process of a lightness gamut compression unit according to the fourth embodiment.
  • the vertical axis in this figure represents lightness, and the horizontal axis represents saturation, and shows normalized values in the same manner as the explanatory diagrams shown in FIGS.
  • the brightness color gamut compressing means 2a performs the same operation as the color gamut compressing means 2 described in the second embodiment to obtain a color image display device corresponding to the hue number and the hue value of the input image signal 101 described above. Is obtained from the color reproduction characteristic data 103 d, and this chromaticity is defined as a vertex d shown in FIG. T JP2003 / 014529
  • vertex d the lightness value of vertex d is obtained, for example, vertex e indicating the chromaticity converted using lightness LUT is obtained.
  • vertex e indicating the chromaticity converted using lightness LUT is obtained.
  • a triangular color reproduction area formed by vertex e and the lightness axis, vertex d and lightness axis The intersection of the triangular color gamut formed by is obtained. Let this intersection be vertex f.
  • the vertex d shown in FIG. 14 corresponds to the vertex a shown in FIGS. 4 to 7, and the vertex e shown in FIG. 14 corresponds to the vertex e shown in FIGS. 4 to 7.
  • the vertex: f shown in FIG. 14 corresponds to the vertex c shown in FIGS.
  • the brightness color gamut compression means 2a applies the color gamut compression to the lightness-converted visual color space data, so that the compression direction is determined as described in the first embodiment.
  • the compression may be performed in any of the directions shown in FIGS. 4 to 7.
  • the lightness gamut compression means 13 determines that the data value of R2 exceeds the bit maximum value of the input image signal 101 and the data value of G2 and the data value of B2 are R2.
  • the color gamut is compressed with the hue kept constant, and the visual color space data after brightness conversion is used as the output image signal 102. Is also good.
  • the brightness color gamut compression means 13 calculates the difference between the bit maximum value of the input image signal 101 and one of the data values of R 2, G 2, and B 2 as a brightness conversion coefficient. Is multiplied by the converted brightness value. May be.
  • the brightness conversion coefficient may be set so that the value increases as the difference between the brightness value before the brightness conversion and the brightness value after the brightness conversion increases.
  • the lightness color gamut compression means 13 may obtain the data values of R, G, and B after the lightness conversion without using the lightness coefficient as described above, that is, R 2, G 2, and B 2. Next, a method of obtaining the data values of R 2, G 2, and B 2 without using the lightness coefficient will be described.
  • the brightness conversion means 13 converts the values of the visual color space data of the input image signal 101, for example, the values of Yl, Cbl, and Crl of the YCbCr color space data.
  • the brightness value Y2 after brightness conversion described in the brightness LUT corresponding to the brightness value Y1 is acquired.
  • the visual color space data has the data values of Y2, Cbl, and Cr1.
  • the brightness conversion means 13 outputs this visual color space data to the brightness gamut compression means 2a together with the hue number and hue value of the input signal 101.
  • the brightness color gamut compression means 2a uses a conversion means for converting the visual color space data provided in the light color gamut compression apparatus 2a into RGB data, and for example, the YC b C r color of the visual color space data acquired from the brightness conversion means 13
  • the spatial data is converted to RGB data, and the data values of R 2, G 2, and B 2 are obtained. Subsequent processing is the same as described above.
  • the brightness conversion means 13 may perform brightness conversion based on the selected color and the color adjustment amount set by the user.
  • the brightness conversion of the selected color selected by the user will be described.
  • the color adjustment amounts are set for the hue of the selected color and the hues around the selected color, respectively.
  • the conversion means 13 performs lightness conversion on the hue of the selected color and the hues around it. P2003 / 014529
  • the selection color and the amount of color adjustment are set by the user using, for example, a user interface.
  • This user interface has the same functions and configurations as those described in Embodiment 1 and the like. For example, an edit function for setting a selected color, and a color adjustment amount for the selected color are selected or edited. Also, it has a function to select or edit the amount of color adjustment for chromaticity other than the selected color so that the brightness can be changed only for a specific hue.
  • the brightness conversion means 13 compares the chromaticity indicated by the visual color space data of the input image signal 101 with the chromaticity of the selected color set by the user interface. Adds the color adjustment amount set by the user interface to the lightness value Y1 described in the visual color space data of the signal 101, or subtracts it based on the sign, and in some cases, multiplies it, and the lightness value after lightness conversion Find Y2.
  • the lightness conversion means 13 uses the input image from the lightness value Y2 described in the lightness LUT.
  • the color adjustment amount may be obtained by subtracting the lightness value Y 1 of the visual color space data of the signal 101.
  • the brightness conversion means 13 is provided with processing means for selecting a file in which the brightness LUT is described, processing means capable of freely creating the brightness LUT, or both of these processing means.
  • the brightness conversion means 13 may determine the brightness value Y 2 of the brightness value Y 1 after the brightness conversion by referring to the brightness L UT.
  • processing may be performed so that two or more selected colors are set.
  • a color chart may be displayed on the input means via the user interface, and the user may visually select the color chart.
  • the user interface used here operates as follows. It is. Let the user select a small number of chromaticities, such as one or two. The brightness conversion of each selected color is performed based on multiple types of brightness LUTs selected via the user interface. When the lightness conversion is performed on a plurality of selected colors in this way, processing means for setting a lightness LUT of other chromaticity that does not correspond to the selected color is provided in the user interface. The processing unit causes the brightness conversion unit 13 to perform brightness conversion based on the brightness LUT of other hues. When the brightness conversion is not performed on other colors, brightness conversion is performed using a brightness LUT having a preset linear conversion characteristic as the brightness LUT of the other colors. Alternatively, the brightness conversion may be performed by setting the user to a brightness LUT having a linear conversion characteristic.
  • the lightness conversion means 13 sets a hue range in which the lightness conversion is performed including the peripheral color of the selected color.
  • This hue range is set by automatic calculation and fluctuated according to the color adjustment amount. For example, when the color adjustment amount is large, the hue range is set wide, and when the color adjustment amount is small, the hue range is set narrow, so that smooth lightness conversion is performed.
  • the weighting factor is set so that the weighting factor multiplied by the adjustment amount decreases as the distance from the selected color increases, and the weighting factor is described in the brightness hue LUT, and smooth brightness conversion is performed. Do o
  • FIG. 15 is an explanatory diagram showing an example of the lightness hue LUT used by the lightness correction means according to the fourth embodiment. This figure shows, for example, when cyan is selected as the selected color, the normalized lightness value after the lightness conversion for the surrounding hue ranges from cyan to ⁇ ⁇ and from hue to cyan to blue. is there.
  • the brightness conversion means 13 converts the hue indicated by the input image signal 101 PT / JP2003 / 014529
  • the weight coefficient is obtained by referring to the 36-degree hue LUT, and the value after the brightness conversion described in the lightness LUT corresponding to the hue indicated by the hue number and hue value of the input image signal 101 is obtained in the lightness LUT. Is multiplied by the weight coefficient.
  • the hue of the input image signal 101 is included in the set hue range, that is, when only the selected color (A) and other colors (B) are set, the hue of the input image signal 101 is In order to internally divide the hue of the selected color (A) and the hue close to the selected color (A) on one side of the hue range where the other color (B) exists, the weight referred from the lightness hue LUT The coefficient is multiplied by the reference value of the lightness LUT (A) corresponding to the selected color (A) to obtain Y ', and the value obtained by subtracting the weighting coefficient from the normalization coefficient is the lightness corresponding to the other colors (B). Multiply the LUT (B) to obtain Y ".
  • the value obtained by adding Y and Y" is the converted brightness value.
  • the normalization coefficient is a bit maximum value of the input image signal 101.
  • processing means for setting a saturation weighting coefficient in the above-mentioned user interface may be provided so as to change the lightness weighting coefficient according to the saturation.
  • the saturation weight coefficient is set, for example, so as to be included in the lightness saturation LUT. These settings are made in the manner of selecting a file or creating a free graph.
  • FIG. 16 is an explanatory diagram showing an example of the lightness saturation L UT used by the lightness conversion means according to the fourth embodiment. In the lightness / saturation LUT, the weighting factor is changed according to the saturation, and a weighting factor according to the saturation is set so that only the vicinity of the saturation having the chromaticity to be subjected to the lightness conversion is converted.
  • the brightness conversion means 13 obtains saturation from the chromaticity of the selected color set via the above-mentioned user interface. For example, let the distance from the origin on the chromaticity C b 1, C r 1 plane be the saturation C 1. Next, select the hue number of the selected color and PT / JP2003 / 014529
  • the brightness conversion means 13 obtains the color reproduction characteristic data 103d, and uses the hue number and the hue value obtained as described above to generate a color image display device based on the color reproduction characteristic data 103d.
  • the chromaticity representing the color reproduction characteristics of is obtained. Let this chromaticity be vertex g. Find the intersection between the straight line of the selected color and the lightness and the triangle representing the color gamut formed by the vertex g and the lightness axis, and calculate the point that is the outermost shell of the selected color and the lightness from this intersection. Let this point be the saturation C 2. Next, the maximum bit value of the input image signal 101 is divided by the saturation C2 to obtain a saturation normalization coefficient. Multiply the saturation C 1 by the saturation normalization coefficient to obtain the saturation C 3.
  • the saturation coefficient is maximum at the saturation C3 obtained as described above, and the saturation coefficient is increased as the distance from the saturation C3 is increased by providing an arbitrary saturation range. Is set to be smaller. Further, the saturation exceeding the saturation range is set with the saturation weighting factor set to 0.
  • the brightness conversion means 13 calculates the brightness value Y 1 of the visual color space data of the input image signal 101 and the brightness LUT. The difference (Y 2-Y 1) from the calculated brightness value Y 2 after the brightness conversion is obtained, and the value obtained by multiplying this value by the saturation weighting coefficient and adding the brightness value Y 1 is obtained as Y 2 ′. 2 Let and be the brightness values after brightness conversion. By calculating the brightness value ⁇ 25 after conversion according to the saturation in this way, the brightness of the selected color can be adjusted without affecting the saturation of the chromaticity other than the surrounding colors of the selected color. The brightness conversion can be performed at the pinpoint.
  • the lightness saturation LU ⁇ may be set so that the converted lightness value around the lightness axis shown in FIG. 14 becomes smaller.
  • the brightness change around the brightness axis may change greatly for each hue. Therefore, the brightness change of adjacent hues around the brightness axis should not be large.
  • the saturation weight coefficient may be set to 1 or less in the low saturation color gamut, and the lightness saturation L UT may be set to 1 in places where the saturation is higher.
  • the brightness conversion means 13 performs brightness conversion of the input image signal 101 based on the color adjustment data 104 a
  • the brightness gamut compression means 2 a Performs color gamut compression based on the color reproduction characteristics of the color image display device described in the color reproduction characteristics data 103d, so the brightness conversion according to the color reproduction characteristics of each color image display device
  • the output image signal 102 that can perform smooth color reproduction by performing lightness gamut compression based on the color reproduction characteristics of the color image display device over the visual color space after the lightness conversion. Is obtained.
  • the brightness of the selected color can be converted, for example, only the brightness of the sky chromaticity can be reduced, and as a result, the saturation of the sky color can be increased, and the hue around the hue of the selected color can be increased. This has the effect that only the hue can be smoothly converted in brightness.
  • the brightness conversion means 13 performs the brightness conversion by setting the saturation weighting coefficient of the low saturation region to 1 or less, adjacent hues around the brightness axis when performing the brightness conversion of the selected color. In this case, the amount of change in lightness can be reduced, and image quality degradation due to moiré or the like occurring in a low chroma region can be prevented.
  • FIG. 17 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 5 of the present invention.
  • the same or corresponding portions as those shown in FIGS. 1 and 7 are denoted by the same reference numerals, and description thereof will be omitted.
  • the color correction device performs color conversion on the brightness conversion of the input image signal 101 with respect to the color correction unit 1 that performs the brightness conversion of the input image signal 101.
  • the brightness conversion means 13 and brightness gamut compression means 2a shown in FIG. 17 operate similarly to the brightness conversion means 13 and brightness gamut compression means 2a described in the fourth embodiment.
  • the description of the same operation as that of the color correction device according to the fourth embodiment is omitted, and the characteristic operation of the color correction device according to the fifth embodiment is described.
  • the chromaticity conversion means 14 outputs the RGB data of the input image signal 101 from the lightness conversion means 13, that is, the RGB data representing the chromaticity before the lightness conversion, and the visual color space data of the input image signal 101.
  • the brightness value Y 1, the hue number and hue value of the input image signal 101, and the visual color space data after brightness conversion are input to the brightness gamut compression means 2 a.
  • the chromaticity conversion means 14 includes a conversion means for converting the visual color space data into RGB data.
  • the chromaticity conversion means 14 converts the RGB data after the lightness conversion based on the lightness value Y2 of the visual color space data after the lightness conversion. That is, the data values of R 2, G 2, and B 2 are obtained, and these data values are output to the lightness gamut compression means 2 a shown in FIG.
  • the lightness gamut compression means 2a shown in FIG. 17 does not need to include a conversion means for converting the visual color space data into RGB data.
  • the chromaticity conversion means 14 obtains chromaticity characteristic data 105 from the outside, and the chromaticity characteristic data 105 and the lightness value Y 1 of the input image signal 101 input from the lightness conversion means 13 are obtained.
  • the lightness axis shown in FIG. 14 is converted based on. This conversion of the lightness axis is performed, for example, so that the lightness axis indicating the lightness Y intersecting the CbCr plane in the YCbCr color space is nonlinearly drawn. Or, it transforms as if it is inclined with respect to the CbCr plane.
  • the conversion of the brightness axis is performed as described below.
  • the chromaticity conversion means 14 includes a C b LUT for converting a C b value and a C r LUT for converting a C r value in a YC b C r color space.
  • the lightness axis is non-linearly converted, and the chromaticity of the visual color space data after the lightness conversion is converted so that the color tone of the original image is reproduced.
  • the Cb LUT and the Cr LUT are referred to based on the lightness value Y2 of the visual color space data after the lightness conversion input from the lightness conversion means 13 and the chromaticity value Cb2 and the chromaticity after the chromaticity conversion Find the value C r 2. If the Cb LUT and the Cr LUT describe the Cb value and the Cr value after the brightness conversion in association with the brightness value Y1 before the brightness conversion, the brightness conversion means 13 The Cb LUT and C r LUT are referred to based on the brightness value Y 1 of the input image signal 101 output from, and the chromaticity values C b 2 and C r 2 after the chromaticity conversion are obtained. You may.
  • the chromaticity conversion means 14 outputs the visual color space data subjected to the chromaticity conversion in this manner and the respective values of R 2, G 2, and B 2 to the lightness gamut compression means 2 a.
  • the lightness gamut compression means 2a shown in FIG. 17 inputs the data of R2, G2, and B2—evening values and the visual color space data after the chromaticity conversion, and is described in Embodiment 4. Except for the process of obtaining each data value of R2, G2, and B2 by the brightness color gamut compression means 2a, the color reproduction characteristic data is similar to that of the brightness color gamut compression means 2a of the fourth embodiment.
  • E103 Performs color gamut compression based on 103d.
  • the chromaticity conversion means 14 non-linearly converts the lightness axis based on the chromaticity characteristic data 105, so that the lightness axis conversion is performed together with the lightness conversion. Is performed, the visual color after brightness conversion 03 014529
  • the spatial data is, for example, visual color space data having chromaticity included in the color reproduction range of the color image display device, taking into account the color tone of the original image, and the output image signal 10 having the unique color tone of the original image. 2 is obtained.
  • FIG. 18 is a block diagram showing a configuration of a color correction apparatus according to Embodiment 6 of the present invention.
  • the same or corresponding parts as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the color correction apparatus according to the sixth embodiment includes a color correction unit 1 that performs color correction of an input image signal 101 and a saturation conversion unit 15 that converts the saturation of the input image signal 101. is there.
  • the color adjustment data 104 b is the same as the color adjustment data 104 input to the hue conversion means 12 etc. of the second embodiment, and is set according to the user's preference. This data describes the amount of saturation adjustment, and describes the hue for converting the saturation and the amount of saturation adjustment. ⁇
  • the color reproduction characteristic data 103 e is the same as the color reproduction characteristic data 103 a described in the second embodiment. For example, as shown in FIG. This is data describing the chromaticity representing the color reproduction characteristics of the image display device.
  • Saturation conversion means 15 inputs a visual color space image and an RGB image data representing an arbitrary chromaticity of the input image signal 101, and uses the RGB image data to implement the embodiment.
  • the hue number and hue value of the input image signal 101 are obtained by performing the same processing as in the color reproduction correction means 11 described in 1. .
  • the hue number of the input image signal 101 obtained as described above is defined as a hue number (H), and the hue value of the input image signal 101 is defined as a hue value (H).
  • Color reproduction characteristics With reference to 103 e, the chromaticity representing the color reproduction characteristics of the color image display device corresponding to the hue number (H) is obtained.
  • the color reproduction characteristic data 103 e corresponding to the hue number (H + 1) obtained by adding 1 to the hue number (H) of the input image signal 101 the corresponding hue number (H + Find the chromaticity of the color image display device corresponding to 1).
  • the chromaticity of the hue number (H) and the chromaticity of the hue number (H + 1) are respectively chromaticity vectors.
  • the chromaticity obtained in this way is represented as a vertex h in a visual color space represented by a lightness axis and a saturation axis which are orthogonal to each other as shown in FIG.
  • the color gamut of the color image display device of the hue indicated by (H) is represented by a triangle formed by coordinates (0, 0), coordinates (0, 1), and vertex h on the lightness axis.
  • the outermost shell point (H) of the triangular color gamut at which the lightness value becomes Y 1 of the visual color space data of the input image signal 101 is calculated.
  • the saturation of the input image signal 101 is obtained by calculation, and this saturation is defined as C1.
  • the saturation of the outermost point (H) in the color gamut is C 2.
  • Maximum bit value of input image signal 101 Is divided by the value of the saturation C 2 of the outermost point (H) to obtain a saturation normalization coefficient.
  • the value of saturation C3 is obtained by multiplying the value of saturation C1 by a saturation normalization coefficient.
  • the saturation conversion means 15 is provided with a saturation LUT including a saturation weight coefficient corresponding to the saturation, and obtains a saturation weight coefficient of the saturation C 3 by referring to this saturation LUT.
  • the saturation weighting factor is multiplied by the adjustment amount described in the color adjustment data 104b, and this value is added to the value of the saturation C1 to obtain the value of the saturation C4.
  • the chromaticity values Cb 2 and Cr 2 corresponding to the value of the saturation C 4 are obtained by calculation, and the visual color space data subjected to the saturation conversion in this way is output as the output image signal 102.
  • the saturation LUT provided in the above-described saturation conversion means 15 may be a description including the adjustment amount of saturation.
  • the saturation conversion means 15 performs the following processing.
  • the maximum bit value of the input image signal 101 is divided by the value of the saturation C2 of the outermost point (H) to obtain a saturation normalization coefficient.
  • the value of saturation C3 is obtained by multiplying the value of saturation C1 by the saturation normalization coefficient.
  • a saturation C4 value obtained by converting the saturation C3 value into a saturation is obtained.
  • the chromaticity values Cb 1 and Cr 1 of the visual color space data of the input image signal 101 are multiplied by the chromaticity values Cb 2, Find C r 2
  • the saturation conversion may be performed in this manner, and the visual color space data after the saturation conversion may be output as the output image signal 102.
  • the user interface described in the second embodiment is connected to the saturation conversion unit 15, and the saturation conversion unit 15 obtains the hue selected by the user via the user interface.
  • the saturation conversion may be performed using the saturation LUT set for the selected hue and the other hues.
  • the saturation conversion means 15 When operating in this manner, the saturation conversion means 15 includes a saturation hue LUT in which a weight coefficient by which the saturation LUT is multiplied is described, and the hue conversion unit 15 performs the saturation conversion.
  • Each processing operation such as setting, setting of the saturation LUT, and calculation of the saturation and hue LUT, is performed in the same manner as the brightness conversion described in the fourth embodiment, or a corresponding processing operation, and the saturation after the saturation conversion is performed.
  • the calculation for obtaining the value is the same as or similar to the calculation for obtaining the brightness value after brightness conversion.
  • the saturation conversion means 15 performs the saturation conversion based on the color reproduction characteristic data 103 e. This has the effect that saturation conversion can be performed according to the color reproduction characteristics.
  • the color correction device of the present invention may be configured by combining any two or more of the color correction devices described in the first to sixth embodiments.
  • hue conversion means 12, lightness conversion means 13, chromaticity conversion means 14, saturation conversion means 15, etc. and color reproduction characteristic data in the visual color space data converted by each conversion means
  • the hue, lightness, and saturation can be corrected two-dimensionally or three-dimensionally, and in particular, the hue, lightness, saturation, or the arbitrary chromaticity of any chromaticity and the corresponding chromaticity can be corrected. This is effective when converting the hue, brightness, and saturation of the surrounding chromaticity together.
  • the color correction device and the color correction method according to the present invention are suitable for performing color correction of an image signal according to color reproduction characteristics.

Abstract

 入力画像信号101の色補正を行う色補正手段1と、色再現特性を記述した色再現特性データ103に基づいて、色補正手段1から出力された色補正後の画像データの色度が色再現特性に基づく色再現域に含まれる色度となるように色域圧縮を施す色域圧縮手段2を備えた。

Description

色補正装置および色補正方法
技術分野
この発明は、 色再現特性に基づいて色域圧縮処理を行う色補正装置お 明
よび色補正方法に関するものである。
背景技術 書 従来の色補正装置として、 例えば特閧 2 0 0 2— 3 6 9 0 1 8号公報 に開示された発明がある。 この発明は、 色補正装置が、 較正された基準 力ラー画像機器の色特性と、 基準カラー画像機器とは色特性が異なる参 照カラ一画像機器の色特性に基づいて色補正後の夕一ゲッ ト色を色差最 小法により求め、 夕ーゲッ ト色と参照カラ一画像機器へ入力する入力色 から色補正パラメ一夕を算出し、 この色補正パラメ一夕を参照カラー画 像機器へ与えるものである。 ある色度を示す画像信号に色調整を行う と 、 カラー画像表示装置で再現可能な色再現域に含まれない色度になるこ とが通常であるが、 この発明では色調整によって生じた色再現域に含ま れない色度の処理が考慮されていない。
また、 従来の別の色補正装置として、 特開平 1 1 一 3 4 1 2 9 6号公 報に開示された発明がある。 この発明は、 入力系のデバイスであるモニ 夕等に表示された画像を紙に出力する場合に、 制御部がルックアップテ —プル (以下、 L U Tと記載する) に従って出力系デバイスのプリ ン夕 の色域内で紙に表現できるように処理するものである。 即ち、 入力系の 色再現域と出力系の色再現域が異なる場合に、 出力系の色再現域内の収 れん点に向けて入力系の色度の色域変換を行うものである。 この色域変 換は色域の三次元圧縮処理を行うもので、 明度、 彩度、 色相の三次元色 域変換を行う ときに三次元 L U Tを適用している。 このように三次元 L U Tを用いると演算速度が遅くなり、 静止画に適用する場合は問題ない が、 動画に適用する場合は大きな弊害となる。
従来の色補正装置および色補正方法は、 以上のように構成あるいは処 理されているので、 色調整により色相、 明度、 彩度のいずれかが不必要 に連動して変化し、 色調整により色再現域に含まれなくなった色度を考 慮していないことから、 適切な色調整を行うことができず、 特に彩度の 高い色度の微調整が行えず、 また、 色相, 明度及び彩度を補正するとき に用いられる色域圧縮処理に三次元 L U Tを利用すると処理速度が遅く なるという課題があつた。
この発明は、 上記のような課題を解決するためになされたもので、 色 調整により色再現域に含まれない色度が生じることを、 カラ一画像表示 装置の色再現特性に基づく色域圧縮処理によって防ぐことにより、 色再 現性の高い色補正画像が得られると共に、 色域圧縮処理に三次元 L U T を用いないことにより、 処理速度の高速化を図る色補正装置および色補 正方法を得ることを目的とする。 発明の開示
この発明に係る色補正装置は、 入力画像信号の色補正を行う色補正手 段と、 色再現特性を記述したデ一夕に基づいて色補正手段から出力され た色補正後の画像データの色度が色再現特性に基づく色再現域に含まれ る色度となるように色域圧縮を施す色域圧縮手段とを備えたものである このことによって、 個々のカラ一画像表示装置の色再現特性に応じた 色補正が可能となり、 また滑らかに色再現が成される出力画像信号が得 られるという効果がある。
この発明に係る色補正方法は、 画像データの示す色相を色相変換手段 が変換する過程と、 色相変換手段から取得した画像データの示す明度を 明度変換手段が変換する過程と、 明度変換手段から取得した画像データ の示す彩度を彩度変換手段が色再現特性を記述したデータに基づいて変 換する過程と、 彩度変換手段から取得した画像データの色度が色再現特 性に基づく色再現域に含まれる色度となるように色域圧縮手段が色域圧 縮を施す過程とを含むものである。
このことによって、 色空間において三次元的に自由度の高い色補正が 可能となるという効果がある。 図面の簡単な説明
第 1図は、 この発明の実施の形態 1による色補正装置の構成を示すブ ロック図である。
第 2図は、 色相番号と色相値の設定例を示す説明図である。
第 3図は、 実施の形態 1による色補正装置に用いられる色再現特性デ
—夕の構成を示す説明図である。
第 4図は、 実施の形態 1による色域圧縮手段の圧縮処理を示す説明図 である。
第 5図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。
第 6図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。
第 7図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。
第 8図は、 この発明の実施の形態 2による色補正装置の構成を示すブ ロック図である。
第 9図は、 色相 L U Tの色相変換特性を示す説明図である。
第 1 0図は、 実施の形態 2による色補正装置に用いられる色再現特性 データの構成を示す説明図である。
第 1 1図は、 この発明の実施の形態 3による色補正装置の構成を示す ブロック図である。
第 1 2図は、 実施の形態 3による色補正装置に用いられる色再現特性 データの構成を示す説明図である。
第 1 3図は、 この発明の実施の形態 3による色補正装置の構成を示す プロック図である。
第 1 4図は、 実施の形態 4による明度色域圧縮手段の圧縮処理を示す 説明図である。
第 1 5図は、 実施の形態 4による明度補正手段が用いる明度色相 L U Tの一例を示す説明図である。
第 1 6図は、 実施の形態 4による明度変換手段が用いる明度彩度 L U Tの一例を示す説明図である。
第 1 7図は、 この発明の実施の形態 5による色補正装置の構成を示す ブロック図である。
第 1 8図は、 この発明の実施の形態 6による色補正装置の構成を示す プロック図である。 発明を実施するための最良の形態
以下、 この発明をより詳細に説明するために、 この発明を実施するた めの最良の形態について、 添付の図面にしたがって説明する。
実施の形態 1 .
第 1図は、 この発明の実施の形態 1による色補正装置の構成を示すブ 29
5 ロック図である。 図示した色補正装置は、 色補正を行う入力画像信号 1 0 1を入力する色補正手段 1 と、 色補正手段 1から出力された画像デー 夕の色域圧縮を行う色域圧縮手段 2によって構成される。
入力画像信号 1 0 1は、 任意の色度を表す視覚色空間データ及び R G Bデ一夕から成るものである。
色補正手段 1は、 入力画像信号 1 0 1が示す色度を色再現特性データ 1 0 3に基づいて補正する色再現補正手段 1 1を備える。
次に、 動作について説明する。
色補正手段 1を構成する色再現補正手段 1 1は、 入力画像信号 1 0 1 を入力し、 当該入力画像信号 1 0 1を成す R G Bデ一夕を用いて所定の 演算を行い、 入力画像信号 1 0 1の色度の色相番号と色相値を求める。 次に、 入力画像信号 1 0 1の視覚色空間データと、 カラー画像表示装置 の色再現特性及び目標の色再現特性が記述された色再現特性データ 1 0 3に基づいて、 上記色相番号及び色相値によって示される色度の補正処 理を行い、 補正後の視覚色空間データを出力する。
色域圧縮手段 2は、 色再現特性デ一夕 1 0 3に基づいて、 補正後の視 覚色空間データからカラー画像表示装置の色再現域と目標とする色空間 の色再現域とを求める。 次に、 目標とする色空間の色再現域をカラー画 像表示装置の色再現域へ圧縮し、 補正後の視覚色空間データをカラー画 像表示装置の色再現域の色度で再現できるように色域圧縮を行う。
色域圧縮手段 2は、 このように色再現特性データ 1 0 3に基づいて色 再現補正手段 1 1から出力された補正後の視覚色空間デ一夕に色域圧縮 を施し、 この視覚色空間デ一夕を出力画像信号 1 0 2 として出力する。 次に、 色再現補正手段 1 1の詳細な動作を説明する。
色再現補正手段 1 1は、 入力画像信号 1 0 1を入力し、 この入力画像 信号 1 0 1を成す R G Bデータを用いて入力画像信号 1 0 1の色相番号 及び色相値を以下に説明する処理によって求める。
入力画像信号 1 0 1の R G Bデ一夕に記述された R信号、 G信号、 B 信号を比較し、 最大値、 中間値、 最小値を演算によって判定する。
例えば、 最大値が R信号、 中間値が G信号、 最小値が B信号のときは 赤色〜黄色の色領域を示し、 この色領域の色相番号を 0 とする。 最大値 が G信号、 中間値が R信号、 最小値が B信号のときは黄色〜緑色の色領 域を示し、 この色領域の色相番号を 1 とする。 最大値が G信号、 中間値 が B信号、 最小値が R信号のときは緑色〜シアンの色領域を示し、 この 色領域の色相番号を 2 とする。 最大値が B信号、 中間値が G信号、 最小 値が R信号のときはシアン〜青色の色領域を示し、 この色領域の色相番 号を 3 とする。 最大値が B信号、 中間値が R信号、 最小値が G信号のと きは青色〜マゼン夕の色領域を示し、 この色領域の色相番号を 4とする 。 最大値が R信号、 中間値が B信号、 最小値が G信号のときはマゼン夕 〜赤色の色領域を示し、 この色領域の色相番号を 5 とする。
次に、 例えば、 最大値が R信号、 中間値が G信号、 最小値が B信号の 場合には、 最大値から最小値を減算し (R信号一 B信号) 、 中間値から 最小値を減算する ( G信号— B信号) 。
ここでは、 入力画像信号 1 0 1の R G Bデータを構成するビッ ト数に より表現できる上限の値を、 R G Bデ一夕のビッ ト最大値と表す。 以下 、 各データを構成するビッ ト数によって表現できる上限値をビッ ト最大 値と記載する。
( R G Bデ一夕のビッ ト最大値/ ( R信号一 B信号) ) として求めた 値を係数として ( G信号一 ; B信号) の値に乗算し、 この乗算で求めた値 を入力画像信号 1 0 1の R G Bデ一夕のビッ ト最大値で除算する。
このようにして求めた商は、 R信号、 G信号、 B信号の大小関係に基 づいた所定の色領域に関するものである。 14529
7 次に、 前述の各色領域に対応させた各色相番号の中の、 当該商と同じ 色領域に対応させた色相番号と当該商とを加算し、 この値を入力画像信 号 1 0 1の色相番号とする。 また、 前述の商を求めたときの余りを入力 画像信号 1 0 1の色相値とする。
ここで、 この発明の色補正装置の処理において、 色度を示す各データ を、 色相に基づいて識別するときに用いる色相番号及び色相値について
、 Y C b C r色空間を一例に用いて説明する。
第 2図は、 色相番号と色相値の設定例を示す説明図である。 図中斜線 で示した範囲は、 Y C b C r色空間において存在し得る色度範囲の内、 C b C r平面上の色度範囲を示したものである。 C b C r平面上では色 度範囲が図示したように略六角形の範囲で表され、 この色度範囲を構成 する各色相は図中矢印: f で示したように環状に配置されて表現される。 そこで、 色度範囲を示す六角形の各頂点に 0〜 5の各色相番号を設定 し、 さらに例えば、 色相番号 0 と色相番号 1の間の所定の位置を特定で きるように、 各色相番号間の位置を表す色相値を設定すると、 色相番号 と色相値によって色相環を成す全ての色相を指し示すことができる。 なお、 ここで説明した色相番号は、 C b C r平面上の色度範囲を示す 六角形の各頂点に対応させて設定したものであるが、 少なく ともカラ一 画像表示装置において用いられる三原色に色相番号を設定し、 また当該 三原色と共に三原色の補色となる色度、 または当該カラ一画像再現装置 の色再現域内からランダムに抽出した色度に対して色相番号を設定し、 この色相番号に対応させて後述する色再現特性データ 3の内容を記述し てもよい。
色再現補正手段 1 1は、 ここまで説明したように入力画像信号 1 0 1 を処理し、 入力画像信号 1 0 1の色相番号および色相値を求めた後、 ュ 一ザにより予め設定された色再現特性データ 1 0 3を取得する。 次に、 当該色再現特性デ一夕 1 0 3に記述されているカラ一画像表示装置の色 再現特性を記述した視覚色再現データと目標とする色再現特性を記述し た視覚色空間デ一夕とを用いて、 入力画像信号 1 0 1が示す色度の補正 演算を行う。 上記目標とする色再現特性を記述した視覚色空間データは 、 例えば、 N T S Cや s R G Bなどの規格に沿った標準色空間の特性を 示すデータや、 カラー画像表示装置の、 特に透過画像の色再現特性また はプリン ト画像の色再現特性を示すデータである。
第 3図は、 実施の形態 1による色補正装置に用いられる色再現特性デ 一夕の構成を示す説明図である。
色再現特性データ 1 0 3は、 前述のように、 各色相番号に対応させて 、 カラー画像表示装置の色再現特性を表す視覚色空間データと目標とす る色再現特性を表す視覚色空間デ一夕が記述されたものである。 詳しく は、 各色相番号によって表されたある色相の、 カラー画像表示装置の色 再現特性を表す色度と目標とする色再現特性を表す色度とを記述したも のである。 具体的には、 カラ一画像表示装置の色再現特性及び目標とす る色再現特性を視覚色空間データにて、 例えば Y C b C r色空間にて色 度を表す値で記述したものである。
色再現補正手段 1 1は、 第 3図に例示した色再現特性データ 1 0 3を 次のように用いる。 例えば、 入力画像信号 1 0 1の R G Bデータから求 めた色相番号に対応する、 カラー画像表示装置の色再現特性を参照する 。 ここで参照したカラー画像表示装置の色再現特性を色特性 aとする。 次に、 入力画像信号 1 0 1の R G Bデータから求めた色相番号に 1を加 算し、 その色相番号に対応するカラ一画像表示装置の色再現特性を参照 する。 ここで参照したカラー画像表示装置の色再現特性を色特性 bとす る。 なお、 色再現特性データ 1 0 3は、 前述のように各色再現特性を表 す色度を、 視覚色空間データの各値で表現したものなので、 色特性 a, bとして記述された各データ値は、 所定の色度をも表現するものである 次に、 色再現補正手段 1 1は、 入力画像信号 1 0 1が示す色度と色再 現特性データ 1 0 3に記述された内容とを対応させるため、 次に説明す る処理を行う。 前述の説明からわかるように、 色特性 aと色特性 bは視 覚色空間デ一夕にて記述されていることから、 色特性 aと色特性 bとを 色度ベク トルとして取り扱うと、 色特性 aと同じ色相番号を有する入力 画像信号 1 0 1の視覚色空間データは、 視覚色空間において色特性 aの 色度べク トルと色特性 bの色度べク トルとの間を内分する位置に存在す ることになる。 このように、 入力画像信号 1 0 1の視覚色空間デ一夕は 、 色特性 aと色特性 bとの間を内分することから、 この内分比率である 色特性 aに係る比率 mと色特性 bに係る比率 nとを、 入力画像信号 1 0 1の視覚色空間データの値と、 色特性 aの視覚色空間データの値と、 色 ^性 bの視覚色空間デ一夕の値とを所定の連立方程式に代入して求める 次に、 入力画像信号 1 0 1の色相番号に対応する、 色再現特性データ 1 0 3の目標とする色再現特性を参照する。 ここで参照した目標とする 色再現特性を色特性 cとする。 次に、 入力画像信号 1 0 1の色相番号に 1を加算し、 その色相番号に対応する目標とする色再現特性を参照する 。 ここで参照した目標とする色再現特性を色特性 dとする。 なお、 色再 現特性データ 1 0 3は、 前述のように各色再現特性を表す色度を視覚色 空間データの各値で表現したものなので、 色特性 c、 色特性 dとして記 述された各データ値は、 所定の色度をも表現するものである。
次に、 色特性 cに比率 mを乗算し、 また色特性 dに比率 nを乗算し、 これらの積を加算して目標とする色再現特性による補正後の視覚色空間 データを生成する。 色再現補正手段 1 1は、 このようにして求めた補正後の視覚色空間デ —夕を出力する。
次に、 色域圧縮手段 2の詳細な動作を説明する。
色域圧縮手段 2は、 視覚色空間データを R G Bデ一夕へ変換する図示 を省略した変換手段を備え、 色補正手段 1から入力した補正後の視覚色 空間データを当該変換手段へ入力する。
変換手段は、 補正後の視覚色空間データに、 カラー画像表示装置の色 再現特性に依存するマト リクス演算またはべき乗演算を施して R G Bデ —夕へ変換し、 R 1 G 1 B 1データを求める。 この演算は、 R G Bデ一 夕をカラー画像表示装置の色再現特性を示す視覚色空間データへ変換す る処理に対して、 逆にカラー画像表示装置の色再現特性を示す視覚色空 間デ一夕を R G Bデータへ変換する処理に関するものである。
求めた R 1 G 1 B 1 デ一夕の各データ値の中で最も大きな値が、 R 1 G 1 B 1データのビッ ト最大値を超えた場合には、 R 1 G 1 B 1データ を成す R 1データ、 G 1データ、 及び B 1データを比率演算で圧縮し、 全てのデ一夕が R 1 G 1 B 1デ一夕のビッ ト最大値を超えないように調 整する。 このように調整した; R 1 G 1 B 1デ一夕の R 1デ一夕、 G 1デ —夕、 B 1データを、 前述の色再現補正手段 1 1が入力画像信号 1 0 1 の R G Bデータを用いて当該入力画像信号 1 0 1の色相番号及び色相値 を求めた処理動作と同様に処理して、 カラー画像表示装置の色再現特性 による補正後の視覚色空間データの色相番号 (A ) 及び色相値 (A ) を 求める。
次に、 色域圧縮手段 2は、 色再現特性データ 1 0 3のカラー画像表示 装置の色再現特性を参照して、 色相番号 (A ) に対応するカラ一画像表 示装置の色再現特性を表す色度と、 色相番号 (A ) に 1を加算した色相 番号 (A + 1 ) に対応するカラー画像表示装置の色再現特性を表す色度 とを求める。
色相番号 (A) の色度をべク トル a、 色相番号 (A + 1 ) の色度をべ ク トル bとし、 それそれ色度ベク トルとして取り扱い、 これらのべク ト ル和を求める。 このべク トル和をべク トル a bとしたとき、 色相値 (A ) はベク トル a bを内分する。 これは、 色相値 (A) は、 色相番号 (A ) の色度を示すべク トル aから色相番号 (A+ 1 ) の色度を示すべク ト ル bへ向った距離を示す値に該当するからである。
このようにべク トル a b上において色相値 (A) が指し示す位置を特 定することができることから、 色相値 (A) がベク トル aとベク トル b との間を内分する内分比率を求め、 例えばべク トル aに係る比率 mAと べク トル bに係る比率 nAとを求める。
この後、 色再現特性データ 1 0 3を参照して求めた、 色相番号 ( A) に対応するカラー画像表示装置の色再現特性を表す色度に、 比率 mAを 乗算し、 また色再現特性データ 1 0 3を参照して求めた、 色相番号 ( A + 1 ) に対応するカラー画像表示装置の色再現特性を表す色度に、 比率 nAを乗算し、 これらの積を加算して色相番号 (A) と色相値 (A) に よつて示される色相に対応するカラー画像表示装置の色再現特性を表す 色度 (A) を求める。 この色度 (A) が後述する頂点 bに相当する。 次に、 色域圧縮手段 2は、 変換手段を用いて補正後の視覚色空間デー 夕に、 目標とする色再現特性に依存するマ ト リ クス演算またはべき乗演 算を施して RGBデータへ変換し、 R 2 G 2 B 2デ一夕を求める。 この 演算は、 RGBデータを目標とする色再現特性を示す視覚色空間デ一夕 へ変換する処理に対して、 逆に目標とする色再現特性を示す視覚色空間 デ一夕を RGBデ一夕へ変換する処理に関するものである。
なお、 色域圧縮手段 2は、 補正後の視覚色空間データを変換手段によ つて R 1 G 1 B 1データ及び R 2 G 2 B 2データに変換した後も、 色再 現補正手段 1 1から入力した補正後の視覚色空間デ一夕を保持する。 次に、 色域圧縮手段 2は、 このようにして求めた R 2 G 2 B 2データ の各データ値の中で最も大きな値が、 : R 2 G 2 B 2データのビッ ト最大 値を超えた場合には、 R 2 G 2 B 2デ一夕を成す R 2データ、 G 2デ一 夕、 及び B 2データを比率演算で圧縮し、 全てのデータが R 2 G 2 B 2 データのビッ ト最大値を超えないように調整する。 このように調整した R 2 G 2 B 2デ一夕の R 2データ、 G 2デ一夕、 B 2デ一夕を、 前述の 色再現補正手段 1 1が入力画像信号 1 0 1の; RGBデータを用いて当該 入力画像信号 1 0 1の色相番号及び色相値を求めた処理動作と同様に処 理して、 目標とする色再現特性による補正後の視覚色空間データの色相 番号 (B) 及び色相値 (B) を求める。
次に、 色域圧縮手段 2は、 色再現特性データ 1 0 3の目標とする色再 現特性を参照して、 色相番号 (B) に対応する目標とする色再現特性を 表す色度と、 色相番号 (B) に 1を加算した色相番号 (B + 1 ) に対応 する目標とする色再現特性を表す色度とを求める。
色相番号 (B) の色度と色相番号 (B+ 1 ) の色度とを、 前述の色相 番号 ( A) と色相番号 ( A+ 1 ) の色度と同様に色度ベク トルとして取 り扱い、 色相番号 (A) の色度ベク トルと色相番号 (A + 1 ) の色度べ ク トルとの間を色相値 (A) によって内分したときの内分比率を求めた 処理と同様に、 色相番号 (B) の色度べク トルと色相番号 (B + 1 ) の 色度べク トルとの間を色相値 (B) によって内分したときの内分比率を 求め、 例えば色相番号 (B) の色度ベク トルに係る比率 mBと色相番号 ( B + 1 ) に係る比率 nBとを求める。
この後、 色再現特性データ 1 0 3を参照して求めた、 色相番号 (B) に対応する目標とする色再現特性を表す色度に、 比率 mBを乗算し、 ま た色再現特性データ 1 0 3を参照して求めた色相番号 (B + 1 ) に対応 する目標とする色再現特性を表す色度に、 比率 nBを乗算し、 これらの 積を加算して色相番号 (B) と色相値 (B) によって示される色相に対 応する目標とする色再現特性を表す色度 (B) を求める。 この色度 (B ) が後述する頂点 aに相当する。
色域圧縮手段 2は、 このようにして色相番号 (A) と色相値 (A) に よって示される色相に対応する、 カラー画像表示装置の色再現特性を表 す色度 (A) と、 色相番号 (B) と色相値 (B) によって示される色相 に対応する、 目標とする色再現特性を表す色度 (B) とを求めた後、 色 度 (A) 即ち頂点 bによって示される当該カラー画像表示装置の色再現 特性に基づく色再現域と、 色度 (B) 即ち頂点 aによって示される目標 とする色再現特性に基づく色再現域とを用いた色域圧縮を行う。 この色 域圧縮は、 目標とする色再現特性の色再現域を示す頂点 aが、 カラー画 像表示装置の色再現特性の色再現域内に含まれるように行われる。
第 4図は、 実施の形態 1による色域圧縮手段の圧縮処理を示す説明図 である。 第 4図の横軸は彩度を示し、 縦軸は明度を示すものである。 例 えば、 色度 (A) , (B) の表現に用いられた視覚色空間デ一夕が Y C b C r色空間データの場合には、 第 4図の縦軸は Y C b C r色空間デー 夕の明度 Yに該当し、 Y C b C r色空間デ一夕のビヅ ト最大値に基づい て正規化した値を示す。 横軸は Cb C r平面上に表される彩度を示し、 この彩度は C b C r平面における原点からの距離として求められたもの で、 Y C b C r色空間データが取り得る最大の彩度に基づいて正規化し た値を示す。
色域圧縮手段 2は、 視覚色空間データで表現された色度 (A) , (B ) の明度値及び彩度値を、 例えば上記説明のように処理して求める。 こ のように求めた色度 (A) の明度値と彩度値とを頂点 bとして表し、 第 4図に示す。 また、 色度 (A) の明度値及び彩度値と同様に求めた色度 ( B ) の明度値と彩度値とを頂点 aとして表し、 第 4図に示す。
第 4図に示した、 頂点 aと明度軸上の座標 ( 0 , 0 ) と座標 ( 0 , 1 ) によって囲まれる三角形を≡角形 aとしたとき、 三角形 aは目標とす る色再現特性に基づいた色再現域を示す。 また、 頂点 bと明度軸上の座 標 ( 0, 0 ) と座標 ( 0 , 1 ) によって囲まれる三角形を三角形 bとし たとき、 三角形 bはカラー画像表示装置の色再現特性に基づく色再現域 を示す。
このように各色再現域が表現されるとき、 色域圧縮手段 2は、 この三 角形 aの内側に頂点 bが存在しない場合に、 次の説明のように処理して 当該三角形 aで示された色再現域の色域圧縮を行う。
なお、 三角形 aで示された色再現域内に頂点 bが存在する場合は色域 圧縮を行わず、 色再現補正手段 1 1から入力した補正後の視覚色空間デ 一夕を、 出力画像信号 1 0 2 として色域圧縮手段 2から出力する。
第 4図に示した色域圧縮は、 頂点 aと頂点 bの間において三角形 aと 三角形 bが交差する点を頂点 cとして求め、 この頂点 cと等明度の明度 軸上の点を収れん点として設定し、 この収れん点に頂点 aが向かうよう に三角形 aを圧縮し、 目標とする色再現特性に基づく色再現域が、 カラ 一画像表示装置の色再現特性に基づく色再現域内に収まるように色域圧 縮を行うものである。
この第 4図に示した頂点 a, bは、 頂点 aの明度値を Y aとし、 また 頂点 bの明度値を Y bとしたとき、 前述の色域圧縮は明度値の関係が Y b > Y aとなる場合について説明したものである。 例えば、 頂点 aの明 度値が Y bで、 また頂点 bの明度値が Y aである場合、 即ち頂点 aの明 度が頂点 bの明度より高い場合も、 頂点 aが頂点 cと等明度の明度軸上 の収れん点に向かうように三角形 aによつて示される色再現域を圧縮す る。 9
15 第 4図に示したように圧縮することにより、 補正後の視覚色空間デー 夕は、 目標とする色空間の色再現域に含まれ、 カラー画像表示装置にお いて色再現が可能な色度を示すものになる。
第 5図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。 第 4図を用いて説明した色域圧縮は、 頂点 aを含む三角形 aと頂点 bを含む三角形 bが交差する頂点 c と等明度の明度軸上の収れ ん点へ頂点 aが向かうように圧縮方向を設定したが、 第 5図に示したよ うに、 頂点 aと明度軸上の座標 ( 0 , 0 ) と座檫 ( 0 , 1 ) によって形 成される三角形 aと頂点 bと明度軸上の座標 ( 0 , 0 ) と座標 ( 0, 1 ) によって形成される三角形 bが交差する点の明度よりも高い明度を有 する頂点 cを、 頂点 aを含む三角形 aと頂点 bを含む三角形 bが交差す る点と頂点 bとの間を結ぶ直線上に設定し、 頂点 c と等明度の明度軸上 の収れん点に頂点 aが向うように、 三角形 aにより示される色再現域の 圧縮方向を設定し、 色域圧縮により明度の高い視覚色空間データが得ら れるように処理してもよい。
また、 頂点 aの明度が頂点 bの明度より高い場合には、 頂点 aと座標 ( 0, 0 ) とを結ぶ直線上において、 頂点 aを含む三角形 aと頂点 bを 含む三角形 bが交差する点の明度より高い明度を有する頂点 cを設定し 、 この頂点 c と等明度の明度軸上の収れん点に頂点 aが向かうように三 角形 aにより示される色再現域の圧縮方向を設定し、 色域圧縮により明 度の高い視覚色空間データが得られるようにしてもよい。
第 6図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。 第 5図に示したように、 頂点 bと座標 ( 0 , 0 ) とを結ぶ 直線上において、 三角形 aと三角形 bが交差する点の明度よりも高い明 度を有する頂点 cを設定した場合には、 第 6図の頂点 aから収れん点へ 向けて図示した複数の黒点の間隔で表したように、 圧縮の度合いを示す 圧縮係数を収れん点から遠いほど大きく して非線形に圧縮し、 圧縮され た視覚色空間デ一夕が示す画像全体の彩度の低下を防く、ようにしてもよ い o
第 7図は、 実施の形態 1による色域圧縮手段の他の圧縮処理を示す説 明図である。 第 4図を用いて説明した色域圧縮は、 頂点 aを有する三角 形 aと頂点 bを有する三角形 bが交差する頂点 cと等明度の明度軸上の 収れん点に、 頂点 aが向うように三角形 aで示される色再現域の圧縮方 向を設定したが、 色域圧縮を行う視覚色空間デ一夕が低い明度を有する 場合は、 第 7図に示したように、 明度が高くなるように、 例えば頂点 a が座標 ( 0, 1 ) に向かうように色再現域の圧縮方向を設定し、 補正処 理後の視覚色空間データが示す色度の明度を高めるように圧縮処理をし てもよい。 また、 頂点 aの明度が、 頂点 bの明度より高い場合、 即ち、 色域圧縮を行う視覚色空間データが高い明度を有する場合は、 明度が低 くなるように、 例えば頂点 aが座標 ( 0 , 0 ) に向うように色再現域を 圧縮し、 補正処理後の視覚色空間データが示す色度の明度を下げるよう に圧縮処理をしてもよい。
以上のように、 実施の形態 1によれば、 色再現補正手段 1 1が、 入力 した画像信号 1 0 1の色相番号と色相値を求め、 当該色相番号と色相値 に対応する色再現特性データ 1 0 3を用いて入力画像信号 1 0 1の色度 を補正した補正後の視覚色空間データを生成し、 色域圧縮手段 2が、 色 再現特性データ 1 0 3に基づいて、 カラー画像表示装置の色再現特性に 基づく色再現域と目標とする色再現特性に基づく色再現域とを用いた色 域圧縮を行い、 当該色域圧縮を補正後の視覚色空間データに施すように したので、 目標とする色再現特性に沿った視覚色空間データを得ること ができるという効果がある。 実施の形態 2.
第 8図は、 この発明の実施の形態 2による色補正装置の構成を示すブ ロック図である。 図示した色補正装置は、 入力画像信号 1 0 1を入力す る色補正手段 1 と、 色補正手段 1から出力された画像データの色域圧縮 を行う色域圧縮手段 2によって構成される。
第 8図に示した入力画像信号 1 0 1は、 任意の色度を示す視覚色空間 データと R G Bデータから成る。 また、 第 8図に示した色補正手段 1は 、 入力画像信号 1 0 1の視覚色空間データが示す色相を変換する色相変 換手段 1 2を備える。 - 次に動作について説明する。
第 8図に示した色補正手段 1は、 入力画像信号 1 0 1 として、 例えば XY Z色空間、 L * a * b *均等色空間、 YUV色空間、 Y C b C r色 空間等において色度を示す視覚色空間データと、 この視覚色空間データ と同じ色度を R信号、 G信号、 B信号の各値で表す R G Bデータとを入 力する。
色補正手段 1の色相変換手段 1 2は、 ズカ画像信号 1 0 1の視覚色空 間データと R GBデ一夕とを入力し、 この R G Bデータを用いて、 実施 の形態 1で説明した色再現補正手段 1 1 と同様な所定の演算を行い、 入 力画像信号 1 0 1の色相番号と色相値を求める。 次に、 外部から入力し た色調整データ 1 0 4に基づいて入力画像信号 1 0 1の視覚色空間デー 夕の色相変換を行い、 色相変換後の色相番号及び色相値を求める。
色相変換手段 1 2は、 このように処理して色相変換前の色相番号及び 色相値と、 色相変換後の色相番号及び色相値と、 色相変換後の視覚色空 間データとを色域圧縮手段 2へ出力する。
実施の形態 2による色域圧縮手段 2は、 色再現特性データ 1 0 3 aに 基づいて、 色相変換前の色相番号及び色相値から変換前の色相の色再現 T JP2003/014529
18 域を求める。 次に、 色再現特性データ 1 0 3 aに基づいて、 色相変換後 の色相番号及び色相値から変換後の色相の色再現域を求める。 次に、 変 換前の色相の色再現域を変換後の色相の色再現域へ向って色域圧縮を行 い、 色相変換後の視覚色空間データに当該色域圧縮を施す。
色域圧縮手段 2は、 このように色再現特性データ 1 0 3 aに基づいて 、 色相変換後の視覚色空間デ一夕が示す色度が色再現域に含まれるよう に色域圧縮を行い、 この色域圧縮を施した視覚色空間デ一夕を出力画像 信号 1 0 2 として出力する。
次に、 色相変換手段 1 2の詳細な動作を説明する。
色相変換手段 1 2は、 入力した入力画像信号 1 0 1の R G Bデータを 成す R信号、 G信号、 B信号を、 実施の形態 1で説明した色再現補正手 段 1 1 と同様に演算処理を行って、 入力画像信号 1 0 1の色相番号及び 色相値、 即ち色相変換前の色相番号及び色相値を求める。
次に、 色調整デ一夕 1 0 4を外部から取得して、 入力画像信号 1 0 1 の視覚色空間データの色相変換を行う。 この色調整デ一夕 1 0 4は、 ュ 一ザの好みに応じて設定された調整対象の色相や調整量が記述されたデ 一夕で、 詳しくは、 調整対象の色相の色相値の調整量及びその周辺の色 相の色相値の調整量が記述されたものである。
色相変換手段 1 2は、 入力画像信号 1 0 1の視覚色空間デ一夕の示す 色相と色調整データ 1 0 4の示す色相の照合を行い、 同じ色相を示して いるとき、 先に求めた入力画像信号 1 0 1の色相値、 即ち色相変換前の 色相値に対し、 色調整データ 1 0 4に記述されている色相値の調整量を 加算して色相変換後の色相値を求める。 また、 前述の説明のように、 色 調整データ 1 0 4は任意の調整対象の色相を指し示すものであるが、 そ の調整対象の色相の周辺の色相の調整量も記述されていることから、 入 力画像信号 1 0 1の視覚色空間データの示す色相が、 調整対象の色相の 14529
19 周辺の色相である場合も、 色変換当該相手段 1 2は、 色調整デ一夕 1 0 4に記述された当該周辺の色相に対して上記説明の演算と同様に処理を 行い、 所定の色相調整を行う。
例えば、 色調整デ一夕 1 0 4が色相変換を行う色相を示すと共に、 そ の調整量を数値で記述したものである場合には、 以下の手順で色相変換 後の色相番号と色相値とを求める。 色相変換前の色相値に調整量の数値 を加算し、 調整後の色相値 ( C ) を求める。
調整後の色相値 ( C ) が、 入力画像信号 1 0 1のビッ ト最大値よりも 大きい場合は、 色相変換前の色相番号に 1を加算し、 その値を色相変換 後の色相番号とし、 調整後の色相値 ( C ) から入力画像信号 1 0 1のビ ッ ト最大値を減算し、 これを色相補正後の色相値とする。
また、 調整後の色相値 ( C ) が入力画像信号 1 0 1のビッ ト最大値よ りも小さい場合は、 色相変換後の色相番号を色相変換前の色相番号と同 じものとし、 調整後の色相値 ( C ) を色相変換後の色相値とする。
色相変換手段 1 2は、 上述のようにして求めた色相変換前の色相番号 及び色相値を有する色相変換前の視覚色空間データと、 色相変換後の色 相番号及び色相値を有する色相変換後の視覚色空間データとを色域圧縮 手段 2へ出力する。
外部から入力される色調整データ 1 0 4は、 例えば、 図示を省略した ュ一ザインタフエースを介して色相変換手段 1 2へ入力される。 このュ 一ザイン夕フエ一スは、 例えば当該色補正装置に備えられ、 図示を省略 した外部の入力手段に接続されるものである。 このように構成したとき 、 色調整データ 1 0 4は、 ユーザが入力手段を操作することによって設 定された補正対象の色相や調整量を、 当該入力手段の操作量を物理量に 変換して表現したデ一夕である。
また、 色相変換手段 1 2は、 色相ルックアップテーブル (以下、 ルツ クアップテーブルを L U Tと記載する) を備え、 この色相 L U Tを参照 して、 入力画像信号 1 0 1の視覚色空間データの色相変換を行うように してもよい。 このとき用いられる色相 L U Τは、 全ての色相にわたって 調整量が与えられているものである。
第 9図は、 色相 L U Tの色相変換特性を示す説明図である。 図示した 色相変換特性は、 滑らかな色調整が行われるように、 所望の色相を変換 するとき、 その周辺の色相も適度に変換されるように調整量を加味した 特性の一例である。
第 9図の横軸 Xは、 色相変換前の色相を示すものである。 横軸 X上に 設定した: R (赤) 、 Υ (黄) 、 G (緑) 、 C (シアン) 、 : Β (青) 、 Μ (マゼン夕) 、 R (赤) の各色相は、 色相環の配置に基づく もので、 こ れらの色相及び中間の色相は、 後述する演算により求められる色相値 ( D ) によって表される。 縦軸 Υは、 色相変換後の色相を示すものである 。 縦軸 Υ上に設定した R (赤) 、 Υ (黄) 、 G (緑) 、 C (シアン) 、 Β (青) 、 Μ (マゼン夕) 、 R (赤) の各色相は、 色相環の配置に基づ くもので、 これらの色相及び中間の色相は、 後述する演算により求めら れる色相値 ( Ε ) にて表される。
色相値 (D ) 及び色相値 (Ε ) は、 次に説明するようなものである。 例えば、 色相番号 1 と色相番号 2 との間を 2 5 6等分し、 色相値 0〜 2 5 5で当該色相番号間の各位置を表したとき、 色相番号 1 と色相番号 2 の間に位置する色相は、 色相番号 1 * 2 5 6 +色相値 (この色相値は、 上記色相値 0〜 2 5 5の中のいずれかの値である) で表すこともできる 。 色相番号を省いて、 色相値のみで全ての色相を指し示すようにしたも のが色相値 (D ) 及び色相値 (Ε ) である。 第 9図の横軸 Xと縦軸 Υを 数値表現した場合には、 各座標軸は 0〜 1 5 3 6の値を表すものとなる 。 なお、 ここで示した例は、 色相値を 8 ビヅ ト ( 2 5 6段階) で表した 場合であるが、 色相値を表すビッ ト数は 8ビッ ト以外でもよく、 その場 合は、 ビヅ ト数に応じた段階数に基づいて各座標軸の範囲が決まるこ と になる。
色相 L U Tが色相の調整量を有していない場合は、 第 9図において、 ポイ ン ト P 1とポイ ン ト P 5とを結ぶ破線と、 その延線で表される直線 状のリニア特性を有する L U Tとなる。
色相 L U Tが色相の調整量を有する場合は、 次に説明するように調整 量が加味される。 例えば、 第 9図の X軸上に示した変換前の色相に対応 する、 リニア特性線上の Y座標値に予め定めた調整量を加算し、 この調 整量を加算した Y座標値にポイ ン ト P 3を設定する。 なお、 ポイ ン ト P 3の X座標値は図示した変更前の色相の X座標値と同一である。
次に、 (調整量 * T)≤(X 3— X 2)≤ (調整量 * 2)、 かつ(調整量/ Τ) ≤( 4ー 3)≤(調整量* 2)の関係が成り立っと共に、 ポイ ン ト Ρ 2 とポイ ン ト Ρ 4の間がリニアに変化する位置に、 ボイ ン ト Ρ 2とボイ ン ト Ρ 4とを設定する。 ここで、 Τは 2以下の係数、 Χ 3はポイ ン ト Ρ 3 の X座標値、 X 2はポイ ン ト Ρ 2の X座標値、 4はポィ ン ト? 4の 座標値である。
ポイ ン ト P 1は、 (X 2— X I)が(調整量 * Τ)と等し くなるよう に、 リニア特性線上に設定する。 ポイ ン ト Ρ 5は、 ポイ ン ト Ρ 4とボイ ン ト Ρ 5との間を結ぶ直線の傾きが 「正」 となるよう に、 また(Χ 5— Χ 4) が(調整量 * Τ)と等しく なるように、 リニア特性線上に設定する。 ここ で、 X 1はポイ ン ト Ρ 1の X座標値、 Χ 5はポイ ン ト Ρ 5の X座標値で ある。
このようにして設定したボイ ン ト Ρ 1〜Ρ 5を通過する特性曲線は、 調整量を有する色相変換特性を示すもので、 この色相変換特性を有する ように色相 LUTを設ける。 なお、 第 9図に例示したポイ ン ト Ρ 1 , Ρ T JP2003/014529
22
2 , P 3 , P 4, P 5は、 前述の各式が成り立つと共に(X 3— X 2 ) = (X 4— X 3 )の関係が成り立つものである。
色相変換手段 1 2は、 第 9図に例示した色相 L U Tを色相変換に用い る場合には、 色相変換前の色相番号に入力画像信号 1 0 1の視覚色空間 データのビヅ ト最大値を乗算し、 この値に色相変換前の色相値を加算し て色相値 (D ) を求め、 この色相値 (D ) で色相 L U Tを参照する。 色 相 L U Tを参照して得た色相値 ( E ) を、 入力画像信号 1 0 1の視覚色 空間デ一夕のビッ ト最大値で除算し、 この除算により求められた値を色 相変換後の色相番号とし、 余りを色相変換後の色相値とする。
色相変換手段 1 2は、 例えば、 このように色相 L U Tを参照して色相 変換後の色相番号と色相値を求め、 色相変換後の視覚色空間デ一夕を生 成する。 なお、 色相変換前の視覚色空間データの色相番号及び色相値は 、 色相 L U Tを用いて色相変換を行う場合でも、 前述の説明と同様に入 力画像信号 1 0 1の R G Bデータを用いた演算によって求める。
次に、 実施の形態 2による色域圧縮手段 2の詳細な動作説明を行う。 色域圧縮手段 2は、 色相変換手段 1 2から色相変換前の視覚色空間デ 一夕、 及び色相変換後の視覚色空間データを入力し、 外部から色再現特 性データ 1 0. 3 aを入力する。
第 1 0図は、 実施の形態 2による色補正装置に用いられる色再現特性 データの構成を示す説明図である。 この図は、 色再現特性データ 1 0 3 aの構成を示したもので、 各色相番号に対応させてカラー画像表示装置 の色再現特性を表す視覚色空間データが記述されたものである。 詳しく は、 各色相番号によって表されたある色相の、 カラー画像表示装置の色 再現特性を表す色度を記述したものである。 具体的には、 カラー画像表 示装置の色再現特性を視覚色空間データにて、 例えば Y C b C r色空間 にて色度を表す値で記述したものである。 TJP2003/014529
23 次に、 色相変換前の色相番号及び色相値から変換前の色相 認識し、 色再現特性データ 1 03 aに基づいて変換前の色相のカラー画像表示装 置の色再現特性に基づく色再現域を求める。 色相変換前の色相番号及び 色相値をそれそれ色相番号 (F) 、 色相値 (F) とする。 変換前の色相 のカラー画像表示装置の色再現特性に基づく色再現域を求める処理は、 初めに色再現特性デ一夕 1 0 3 aを参照して色相番号 (F) に対応する カラー画像表示装置の色再現特性を表す色度と、 色相番号 (F) に 1を 加算した色相番号 (F + 1 ) に対応するカラ一画像表示装置の色再現特 性を表す色度とを求める。
色相番号 (F) の色度と色相番号 (F + 1 ) の色度とを、 それそれ色 度ベク トルとして取り扱い、 実施の形態 1の色域圧縮手段 2の動作説明 において述べた、 色相番号 (A) 及び色相値 (A) の示す色相に対応す るカラー画像表示装置の色再現特性を表す色度 (A) を求めた処理と同 様にして、 色相番号 (F) 及び色相値 (F) により示される色相に対応 するカラー画像表示装置の色再現特性を表す色度 (F) を求める。 この 色度 (F) は、 第 4図〜第 7図に示した頂点 aに相当する。
次に、 色域圧縮手段 2は、 色相変換後の色相番号及び色相値から変換 後の色相を認識し、 色再現特性データ 1 0 3 aに基づいて変換後の色相 のカラー画像表示装置の色再現特性に基づく色再現域を求める。 色相変 換後の色相番号及び色相値をそれぞれ色相番号 (G) 、 色相値 (G) と する。 変換後の色相のカラー画像表示装置の色再現特性に基づく色再現 域を求める処理は、 色再現特性データ 1 0 3 aを参照して色相番号 (G ) に対応するカラー画像表示装置の色再現特性を表す色度と、 色相番号 ( G) に 1を加算した色相番号 (G+ 1 ) に対応するカラー画像表示装 置の色再現特性を表す色度とを求める。
色相番号 (G) の色度と色相番号 (G+ 1 ) の色度とを、 それそれ色 度べク トルとして取り扱い、 前述の色相番号 ( F ) 及び色相値 ( F ) の 示す色相に対応するカラー画像表示装置の色再現特性を表す色度 ( F ) を求めた処理と同様にして、 色相番号 (G) 及び色相値 (G) により示 される色相に対応するカラー画像表示装置の色再現特性を表す色度 ( G ) を求める。 この色度 (G) は、 第 4図〜第 7図に示した頂点 bに相当 する。
このようにして変換前の色相のカラー画像表示装置の色再現特性を表 す色度 (F) と、 変換後の色相のカラー画像表示装置の色再現特性を表 す色度 (G) を求めた後、 これらの色度 (F) 、 色度 (G) をそれそれ 頂点 a、 頂点 bとして扱い、 実施の形態 1の色域圧縮手段 2と同様に、 第 4図〜第 7図を用いて説明したように三角形 aの色再現域を三角形 b の色再現域へ圧縮する。 即ち、 実施の形態 2の色域圧縮手段 2は、 変換 前の色相のカラー画像表示装置の色再現特性に基づく色再現域を変換後 の色相のカラー画像表示装置の色再現特性に基づく色再現域へ圧縮する ο
このように圧縮することにより、 色相変換後の視覚色空間データは、 カラー画像表示装置において色再現が可能な色度を示すものになる。 なお、 色補正手段 1へ入力される画像信号が R GBデ一夕のみである 場合は、 色補正手段 1に色空間変換手段を備え、 当該 R GBデ一夕を前 述のいずれかの色空間によって表された視覚色空間データに変換する。 この色空間変換は R GBデ一夕に対してマ ト リクス演算、 または、 べき 乗演算等の色空間変換処理を施して視覚色空間データに変換する。 この ようにして求めた視覚色空間デ一夕と前述の色補正手段 1へ入力された R G Bデータとを色相変換手段 1 2へ入力し、 これまで説明したように 処理する。
また、 色補正手段 1へ入力される画像信号が視覚色空間データと R G Bデータである場合であっても、 色空間変換手段を色補正手段 1 に備え 、 色補正手段 1へ入力された視覚色空間データを、 色空間変換手段によ つてさらに色度を視覚的に表現する視覚色空間データへ変換するように 処理してもよい。 この処理は、 例えば、 色補正手段 1へ X Y Z色空間に よって表現されたデ一夕が入力されたとき、 色空間変換手段が当該 X Y Z色空間デ一夕を Y C b C r色空間データへ変換するものである。
このように色空間変換手段を備えた場合には、 色空間変換処理が施さ れた色空間データの他に R G Bデ一夕が、 当該色空間変換手段の出力と 共に次の処理手段へ入力される。
なお、 前述の説明で、 ユーザインタフェースを用いて色相変換手段 1 2へ色調整データ 1 0 4を入力する場合を説明したが、 このとき使用さ れるュ一ザイ ン夕フェースは、 次に説明するようなものである。 例えば 、 前述のように表示手段と操作手段とを備えた入力手段に接続され、 入 力手段を介して補正したい色度を名称等でユーザに設定させるエディ ヅ ト表示機能、 または、 入力手段の表示手段にカラ一チャートなどの画像 を表示させて、 その画像の中から視覚的に補正したい色相をユーザに選 択させ、 この選択された色相について自動的に R G B信号の色相値を求 めて表示し、 また、 色相値の調整量を設定させるスライダに相当するソ フ トスィ ッチと、 当該スライダの周辺に色相値調整量の数値とを表示さ せるエディ ッ ト表示機能を有する。 この表示された数値は、 スライダの 操作量に合わせて変化する。 また、 ユーザがエディ ッ ト画面に色相値の 調整量を直接入力すると、 スライダの表示が自動調整される機能を備え るようにしてもよい。 また、 スライダの下方または上方に、 ユーザによ つて選択された色の周辺色を表示するようにしてもよい。
また、 ュ一ザイン夕フェースを用いる場合に、 予め用意された複数の 色再現特性データの中から、 入力手段を用いて所望の色再現データをュ 03 014529
26
一ザに選択させるようにし、 ユーザが所望する色再現特性デ一夕を用い て色域圧縮手段 2が色域圧縮を行うようにしてもよい。 このように処理 する場合は、 複数種の色再現特性デ一夕を、 例えばテキス トデ一夕また はバイナリデ一夕のファイルとして所定の記憶手段に記憶格納させてお き、 ュ一ザインタフエースに接続された入力手段をユーザに操作させて 所望の色再現特性データを選択させる。 色域圧縮手段 2は、 このとき選 択された色再現特性データを記憶手段から取得し、 前述の説明のように 色域圧縮を行う。
以上のように、 実施の形態 2によれば、 色相変換手段 1 2が外部から 入力された色調整データ 1 0 4に基づいて入力画像信号 1 0 1の視覚色 空間データの色相を変換し、 色域圧縮手段 2が、 カラ一画像表示装置の 色再現特性が記述された異色再現特性デ一夕 1 0 3 aに基づいて変換前 の色相の色再現域を変換後の色相の色再現域へ圧縮し、 色相変換手段 1 2によって色相が変換された視覚色空間デ一夕の示す色度が、 カラー画 像表示装置の色再現域に含まれる色度となるように色域圧縮を行うよう にしたので、 個々のカラ一画像表示装置の色再現特性に応じた色相変換 が行えるようになり、 また、 当該カラー画像表示装置の色再現特性に基 づいて色域圧縮を行うことにより滑らかな色再現が可能な出力画像信号 1 0 2が得られるという効果がある。
また、 色域圧縮手段 2が、 変換前の色相のカラ一画像表示装置の色再 現特性を表す色度を頂点 aとし、 変換後の色相のカラー画像表示装置の 色再現特性を表す色度を頂点 bとし、 頂点 aにより示される色再現領域 と頂点 bにより示される色再現域が交差する頂点 cを求め、 この頂点 c と等明度の明度軸上の収れん点に向って頂点 aにより示される色再現域 を圧縮するようにしたので、 明度の損失が少なく滑らかな画像を示す色 相変換後の視覚色空間データが得られるという効果がある。 実施の形態 3 .
第 1 1図は、 この発明の実施の形態 3による色補正装置の構成を示す ブロック図である。 第 8図に示したものと同一あるいは相当する部分に 同じ符号を使用し、 その説明を省略する。 実施の形態 3による色補正装 置の色域圧縮手段 2は、 色再現特性データ 1 0 3 bと共に、 色再現特性 データ 1 0 3 cを入力し、 これらの色再現特性デ一夕を用いて色域圧縮 を行うものである。
次に動作について説明する。
第 1 1図に示した色補正手段 1の色相変換手段 1 2は、 第 8図等を用 いて説明した実施の形態 2による色補正手段 1 もしくは色相変換手段 1 2 と同様に動作する。 ここでは実施の形態 2で説明したもの同様な動作 について説明を省略する。
第 1 1図に示した色域圧縮手段 2は、 第 8図に示したものと概ね同様 に動作する。 ここでは、 実施の形態 3による色域圧縮手段 2の特徴とな る動作について説明する。 第 1 1図の色域圧縮手段 2は、 色相変換手段 1 2から色相変換前の色相番号及び色相値と、 色相変換後の色相番号及 び色相値と、 色相変換後の視覚色空間データとを入力する。
第 1 2図は、 実施の形態 3による色補正装置に用いられる色再現特性 データの構成を示す説明図である。 この図は、 各色相番号に対応させて 、 カラー画像表示装置の色再現特性を表す視覚色空間データと、 肉眼で 見たときの色調を示すオリジナル画像の色再現特性を表す視覚色空間デ 一夕が記述されたもので、 カラ一画像表示装置の色再現特性を表す視覚 色空間デ一夕は、 第 1 1図に示した色再現特性デ一夕 1 0 3 bである。
ここでは、 プリ ン ト画像、 絵画、 透過型の印刷などを目視したときの 色調の画像をオリジナル画像と記載する。 第 1 2図のオリジナル画像の 色再現特性を表す視覚色空間データは、 第 1 1図に示した色再現特性デ 一夕 1 0 3 cである。 これらの色再現デ一夕は、 第 3図や第 1 0図に示 したものと同様に、 各色再現特性を表す色度が記述されたものである。 第 1 1図に示した色域圧縮手段 2は、 色相変換手段 1 2から入力した 色相変換前の色相番号に基づいて第 1 2図に示したカラー画像再現装置 の色再現特性を表す色度、 即ち色再現特性データ 1 0 3 bを取得する。 この後、 実施の形態 1の色域圧縮手段 2の動作説明と同様に処理して色 相変換前の色相番号及び色相値の示す色相のカラー画像再現装置の色再 現特性を表す色度を求め、 これを頂点 aとする。 。
また、 色相変換手段 1 2から入力した色相変換後の色相番号に基づい て第 1 2図に示したオリジナル画像の色再現特性を表す色度、 即ち色再 現特性デ一夕 1 0 3 cを取得する。 この後、 実施の形態 1の色域圧縮手 段 2の動作説明と同様に処理して色相変換後の色相番号及び色相値の示 す色相のォリジナル画像の色再現特性を表す色度を求め、 これを頂点 b とする。
この後は、 実施の形態 1で説明したように、 頂点 aの示す色再現域を 頂点 bの示す色再現域へ向って圧縮し、 色相変換後の視覚色空間データ が、 オリジナル画像の色調を有すると共にカラー画像表示装置の色再現 域に含まれる色度となるように色域圧縮を行う。
以上のように、 実施の形態 3によれば、 色域圧縮手段 2が、 カラ一画 像表示装置の色再現特性を示す色再現特性データ 1 0 3 bと、 オリジナ ル画像の色左舷特性を示す色再現特性データ 1 0 3 c とを用いて色域圧 縮を行うようにしたので、 個々のカラー画像表示装置の色再現特性及び ォリジナル画像の色再現特性に応じた色相変換が行えるようになり、 ま た、 当該カラー画像表示装置の色再現特性及ぴォリジナル画像の色再現 特性に基づいて色域圧縮を行うことにより、 オリジナル画像の色調が加 味された滑らかな色再現が可能な出力画像信号 1 0 2が得られるという 効果がある。 実施の形態 4 · "
第 1 3図は、 この発明の実施の形態 3による色補正装置の構成を示す ブロック図である。 第 1図に示したものと同一あるいは相当する部分に 同じ符号を使用し、 その説明を省略する。 実施の形態 4による色補正装 置は、 入力画像信号 1 0 1を入力して色補正を行う色補正手段 1 と、 色 補正手段 1から出力された補正後の視覚色空間データに色再現特性デー 夕に基づく色域圧縮を施し、 色変換後データ即ち出力画像信号 1 0 2を 出力する明度色域圧縮手段 2 aとを備える。
第 1 3図に示した色補正手段 1は、 入力画像信号 1 0 1の明度を色調 整データ 1 0 4 aに基づいて変換する明度変換手段 1 3から成る。
色調整デ一夕 1 0 4 aは、 ユーザの好みに応じて設定された調整対象 の色相の明度の調整量が記述されたデータで、 詳しくは、 視覚色空間デ 一夕によつて表された調整対象の色相の明度値の調整量を記述したもの である。
次に動作について説明する。
第 1 3図に示した明度変換手段 1 3は、 外部から色調整データ 1 0 4 aを入力し、 この色調整デ一夕 1 0 4 aに基づいて入力画像信号 1 0 1 の明度変換を行う。
この明度変換は、 初めに入力画像信号 1 0 1を成す R G Bデ一夕を用 いて、 当該入力画像信号 1 0 1の色相番号及び色相値を、 実施の形態 1 で説明した色再現補正手段 1 1 と同様に動作して求める。
次に、 入力画像信号 1 0 1の視覚色空間デ一夕の明度変換を行う。 入 力画像信号 1 0 1を成す視覚色空間データが、 例えば Y C b C r色空間 デ一夕の場合を例示して説明する。 入力画像信号 1 0 1の視覚色空間デ 03014529
30
—夕を成す各値を Y l , Cb l , C r lとする。 明度変換手段 1 3は、 色調整データ 1 04 aに基づく色調整量を明度値 Y 1に加算し、 あるい は当該デ一夕値の符号に基づいて減算し、 明度変換後の明度値 Y 2を求 める。
あるいは、 明度変換手段 1 3が、 変換前の明度値と変換後の明度値と を対応させて構成した明度 LUTを用いて色調整、 即ち明度変換を行う ようにしてもよい。 この明度 LUTには、 変換前の明度値と対応する、 変換後の明度値を有する色度が、 例えば視覚色空間データとして記述さ れている。 このように明度 LU Tを用いるとき、 明度変換手段 1 3は、 入力した画像信号 1 0 1の視覚色空間データの明度値 Y 1に対応する明 度 LUTの内容を参照し、 明度変換後の明度値 Y 2を有する色度を求め る。 なお、 色調整量を含む明度 LUTの設定は、 例えば実施の形態 2で 説明したユーザイン夕フェース等を用いてユーザが設定する。 また、 こ こで使用されるユーザイン夕フェースは、 前述のように色調整量を入力 するエディ ツ ト機能、 明度 LUTが記述されたファイルを選択する機能 、 明度 LUTを自由に作成できる機能等を備えるように構成されたもの で、 あるいは複数の上記機能を有するように構成されたものである。 明度変換手段.1 3は、 このように入力画像信号 1 0 1の視覚色空間デ 一夕の明度変換を行い、 入力画像信号 1 0 1の: RGBデータ、 即ち明度 変換前の色度を表す R G Bデータと、 入力画像信号 1 0 1の視覚色空間 データの明度値 Y 1と、 入力画像信号 1 0 1の色相番号及び色相値と、 明度変換後の視覚色空間データとを明度色域圧縮手段 2 aへ出力する。 明度色域圧縮手段 2 aは、 明度変換手段 1 3から入力した明度値 Y 1 を除算係数とし、 明度変換後の視覚色空間デ一夕の明度値 Y 2を被除算 係数として除算を行い、 この値を明度係数とする。 この明度係数を入力 画像信号 1 0 1の R G Bデータの各値に乗算し、 明度変換後の R G Bデ —夕として R 2, G 2 , B 2の各デ一夕値を求める。
この R 2 , G 2 , Β 2の各デ一夕値の中で、 入力画像信号 1 ◦ 1のビ ッ ト最大値を超えるものがある場合は、 後述するように色再現特性デ一 夕 1 0 3 dに基づいて明度変換後の視覚色空間デ一夕に明度色域圧縮を 施し、 出力画像信号 1 0 2 として出力する。 また、 明度変換後の R 2, G 2 5 B 2の全てのデータ値が入力画像信号 1 0 1のビッ ト最大値を超 えない場合は、 明度変換手段 1 3から入力した明度変換後の視覚色空間 デ一夕をそのまま出力画像信号 1 0 2 として出力する。
明度色域圧縮手段 2 aは、 前述のように求めた R 2 , G 2 , B 2の各 データ値の中で、 入力画像信号 1 0 1のビッ ト最大値を超えるものがあ る場合は、 色再現特性データ 1 0 3 dに基づいて次に説明するように明 度色域圧縮を行う。 なお、 色再現で一夕 1 0 3 dは、 第 1 ◦図に示した 色再現特性データ 1 0 3 aと同様に構成されたデ一夕で、 色相番号に対 応させたカラー画像表示装置の色再現特性を表す色度を、 視覚色空間デ —夕によって記述したものである。
明度色域圧縮手段 2 aは、 実施の形態 2で説明した色域圧縮手段 2 と 同様な手順で、 色再現特性デ一夕 1 0 3 dに基づいて明度変換手段 1 3 から入力した入力画像信号 1 0 1の色相番号及び色相値に対応するカラ 一画像表示装置の色再現特性を表す色度を求める。
第 1 4図は、 実施の形態 4による明度色域圧縮手段の圧縮処理を示す 説明図である。 この図の縦軸は明度を表し、 横軸は彩度を表すもので、 第 4図〜第 7図に示した説明図と同様に正規化した値を示す。
明度色域圧縮手段 2 aは、 実施の形態 2で説明した色域圧縮手段 2 と 同様な演算を行って、 前述の入力画像信号 1 0 1の色相番号及び色相値 に対応するカラー画像表示装置の色再現特性を示す色度を、 色再現特性 データ 1 0 3 dから求め、 この色度を第 1 4図に示す頂点 dとする。 T JP2003/014529
32 次に、 頂点 dの明度値を、 例えば明度 L U Tを用いて変換した色度を 示す頂点 eを求める、 頂点 eと明度軸で形成される三角形状の色再現域 と、 頂点 dと明度軸で形成される三角形状の色再現域の交点を求める。 この交点を頂点 f とする。
第 1 4図に示した頂点 dは、 第 4図〜第 7図に示した頂点 aに相当し 、 また、 第 1 4図に示した頂点 eは、 第 4図〜第 7図に示した頂点 bに 相当する。 また、 第 1 4図に示した頂点: f は、 第 4図〜第 7図に示した 頂点 cに相当するものである。 このように頂点 d , e , f を求めた後、 明度色域圧縮手段 2 aは、 実施の形態 1で第 4図〜第 7図を用いて説明 した色域圧縮手段 2 と同様に色域圧縮を行う。 なお、 実施の形態 4によ る明度色域圧縮手段 2 aは、 明度変換を行った視覚色空間データに色域 圧縮を施すことから、 実施の形態 1で説明したように圧縮する方向を定 めることが困難で、 第 4図〜第 7図に示した何れの方向に圧縮させても よい。
また、 明度色域圧縮手段 1 3は、 前述の R 2のデータ値が入力画像信 号 1 0 1のビッ ト最大値を超え、 G 2のデ一夕値と B 2のデータ値が R 2のデ一夕値以下の場合と、 G 2のデータ値が入力画像信号 1 0 1のビ ヅ ト最大値を超え、 R 2のデ一夕値と B 2のデ一夕値が G 2のデータ値 以下の場合と、 B 2のデータ値が入力画像信号 1 0 1のビツ ト最大値を 超え、 G 2のデータ値と R 2のデ一夕値が B 2のデータ値以下の場合の 、 3パターンに場合分けし、 明度変換手段 1 3による明度変換後の明度 値を変化させ、 色相を一定として色域圧縮を施し、 明度変換後の視覚色 空間データを出力画像信号 1 0 2 としてもよい。
また、 明度色域圧縮手段 1 3は、 入力画像信号 1 0 1のビッ ト最大値 と R 2 , G 2 , B 2のデータ値のいずれかとの差を明度変換係数として 求め、 この明度変換係数を明度変換後の明度値に乗算するように処理し てもよい。 この明度変換係数は、 明度変換前の明度値と明度変換後の明 度値の差異が大きくなるにつれてその値が大きくなるように設定しても よい。
また、 明度色域圧縮手段 1 3は、 前述のように明度係数を使用しない で明度変換後の: R G Bデ一夕、 即ち R 2 , G 2 , B 2のデータ値を求め てもよい。 次に、 明度係数を用いない R 2 , G 2 , B 2のデータ値の求 め方を説明する。
まず、 明度変換手段 1 3は、 入力画像信号 1 0 1の視覚色空間デ一夕 の、 例えば Y C b C r色空間デ一夕の Y l, C b l , C r lの各デ一夕 値の中の、 明度値 Y 1に対応する明度 L U Tに記述された明度変換後の 明度値 Y 2を取得する。 このとき視覚色空間デ一夕は、 Y 2, C b l , C r 1の各データ値を有するものとなる。 明度変換手段 1 3は、 この視 覚色空間データを入力信号 1 0 1の色相番号及び色相値と共に明度色域 圧縮手段 2 aへ出力する。
明度色域圧縮手段 2 aは、 自ら備えた視覚色空間データを R G Bデー 夕へ変換する変換手段を用いて、 明度変換手段 1 3から取得した視覚色 空間デ一夕の例えば Y C b C r色空間データを R G Bデ一夕に変換し、 R 2 , G 2 , B 2の各データ値を求める。 この後の処理は、 前述の説明 と同様である。
また、 明度変換手段 1 3は、 ユーザが設定する選択色と色調整量に基 づいて明度変換を行うようにしてもよい。
次に、 ユーザによって選択された選択色の明度変換について説明する 選択された色度について明度変換を行う場合は、 選択色の色相とその 周辺の色相について、 それそれ色調整量が設定され、 明度変換手段 1 3 は、 選択色の色相及びその周辺の色相について明度変換を行う。 P2003/014529
34 選択色と色調整量は、 例えばユーザイ ンタフェース等を用いてユーザ が設定する。 このユーザイ ンタフェースは、 実施の形態 1等で説明した ものと同様な機能 . 構成を有するもので、 例えば、 選択色を設定するェ ディ ッ ト機能、 選択色に対する色調整量を選択またはエディ ッ ト し、 ま た特定の色相のみ明度変化させることができるように、 選択色以外の色 度に対する色調整量を選択、 またはエディ ッ トする機能を備えたもので め 。
明度変換手段 1 3は、 入力画像信号 1 0 1の視覚色空間デ一夕が示す 色度とユーザイ ンタフェースによつて設定された選択色の色度とを照合 し、 合致した場合は、 入力画像信号 1 0 1の視覚色空間データに記述さ れた明度値 Y 1 にユーザイ ンタフェースによって設定された色調整量を 加算、 または符号に基づいて減算、 場合によっては乗算し、 明度変換後 の明度値 Y 2を求める。
また、 明度変換手段 1 3は、 ユーザによる色調整量の設定.が成されな い場合のように、 色調整量が不明な場合は、 明度 L U Tに記述された明 度値 Y 2から入力画像信号 1 0 1の視覚色空間データの明度値 Y 1 を減 算して色調整量を求めてもよい。 このように処理する場合には、 明度 L U Tが記述されたファイルを選択する処理手段、 あるいは、 明度 L U T を自由に作成できる処理手段、 または、 これらの両処理手段を明度変換 手段 1 3に備える。
また、 明度変換手段 1 3は、 明度 L U Tを参照して明度値 Y 1の明度 変換後の明度値 Y 2 を求めるようにしてもよい。
また、 選択色は二つ以上設定させるように処理してもよい。 選択色の 設定には、 カラーチャー トをユーザイ ン夕フェースを介して入力手段に 表示し、 視覚的にユーザに選択させてもよい。
ここで用いられるユーザィ ン夕フェースは、 以下の通り に動作するも のである。 ユーザに例えば一色、 二色など少数の色度を選択させる。 各 選択色の明度変換は、 ユーザインタフエースを介して選択された複数種 の明度 L U Tに基づいて明度変換を行う。 このように複数の選択色につ いて明度変換を行う場合は、 選択色に相当しない、 その他の色度の明度 L U Tを設定する処理手段がユーザイ ン夕フェースに備えられる。 当該 処理手段は、 その他の色相の明度 L U Tに基づいた明度変換を明度変換 手段 1 3に行わせる。 なお、 その他の色に対して明度変換を行わない場 合は、 その他の色の明度 L U Tとして、 予め設定されている リニアの変 換特性を有する明度 L U Tを用いて明度変換が行われる。 または、 ユー ザにリニアの変換特性を有する明度 L U Tを設定させて明度変換を行う ようにしてもよい。
明度変換手段 1 3は、 ユーザイ ンタフェースによつて選択色が設定さ れた場合には、 この選択色の周辺色を含めて明度変換を行う色相範囲を 設定する。 この色相範囲は、 自動計算により色調整量に応じて変動させ て設定する。 例えば、 色調整量が大きい場合は色相範囲を広く設定し、 色調整量が小さい場合は色相範囲を狭く設定し、 滑らかな明度変換が行 われるようにする。 この色相範囲内において、 選択色から遠くなるにつ れて調整量に乗算される重み係数が小さくなるように当該重み係数を設 定して明度色相 L U Tに記述し、 滑らかな明度変換が行われるようにす る o
第 1 5図は、 実施の形態 4による明度補正手段が用いる明度色相 L U Tの一例を示す説明図である。 この図は、 例えばシアンが選択色として 選択された場合、 その周辺の色相であるシアンから綠まで及びシアンか ら青までの色相範囲について、 正規化された明度変換後の明度値を示す ものである。
明度変換手段 1 3は、 入力した入力画像信号 1 0 1が示す色相から明 P T/JP2003/014529
36 度色相 L UTを参照して重み係数を求め、 明度 LUTに入力画像信号 1 0 1の色相番号及び色相値によって示される色相に相当する明度 L U T に記述された明度変換後の値に、 求めた重み係数を乗算する。 設定した 色相範囲内に入力画像信号 1 0 1の色相が含まれる場合、 即ち選択色 ( A) とその他の色 (B) のみが設定された場合には、 入力画像信号 1 0 1の色相は、 選択色 (A) の色相と、 その他の色 (B) が存在する色相 範囲の一方の側の選択色 (A) に近い色相との間を内分するため、 明度 色相 LUTから参照した重み係数を、 選択色 (A) に対応する明度 L U T ( A) の参照値に乗算して Y'を求め、 正規化係数から前記重み係数 を減算した値をその他の色 (B) に対応する明度 LUT ( B ) に乗算し て Y" を求める。 Y,と Y" を加算した値を変換後の明度値とする。 な お、 前記正規化係数は、 入力画像信号 1 0 1のビッ ト最大値である。 こ のように色相に応じて明度変換後の明度値を演算することにより、 選択 色の周辺以外の色相に対して影響を与えることなく、 選択色の色度をピ ンポイ ン ト として明度変換することができる。
また、 彩度に応じて明度の重み係数を変化させるように、 前述のユー ザインタフエースに彩度重み係数を設定する処理手段を備えてもよい。 彩度重み係数は、 例えば明度彩度 L U Tに含まれるように設定する。 こ れらの設定は、 フアイル選択または自由グラフ作成の要領で行われる。 第 1 6図は、 実施の形態 4による明度変換手段が用いる明度彩度 L U Tの一例を示す説明図である。 明度彩度 LUTには、 明度変換を行う色 度の有する彩度の周辺だけが変換されるように、 彩度に応じて重み係数 を変化させ、 彩度に応じた重み係数を設定する。
明度変換手段 1 3は、 前述のユーザインタフエースを介して設定され た選択色の色度から彩度を求める。 例えば、 色度 C b 1 , C r 1平面に おける原点からの距離を彩度 C 1とする。 次に、 選択色の色相番号及び P T/JP2003/014529
37 色相値を前述の説明と同様に演算を行って求める。
明度変換手段 1 3は、 色再現特性デ一夕 1 0 3 dを取得し、 前述のよ うに求めた色相番号及び色相値を用いて、 色再現特性データ 1 0 3 dに 基づくカラー画像表示装置の色再現特性を表す色度を求める。 この色度 を頂点 gとする。 選択色と等明度の直線と、 頂点 gと明度軸によって形 成される色再現域を表す三角形との交点を求め、 この交点から選択色と 等明度の最外殻となる点を演算によって求め、 この点を彩度 C 2 とする 。 次に、 入力画像信号 1 0 1のビッ ト最大値を彩度 C 2で除算し、 彩度 正規化係数を求める。 彩度 C 1に彩度正規化係数を乗算し、 彩度 C 3を 求める。
第 1 6図に例示した明度彩度 L U Tは、 前述のようにして求めた彩度 C 3において彩度係数が最大となり、 任意の彩度範囲を設けて彩度 C 3 から離れるにつれて彩度係数が小さくなるように設定されたものである 。 また、 彩度範囲を超えた彩度は、 彩度重み係数を 0 として設定される 明度変換手段 1 3は、 入力画像信号 1 0 1の視覚色空間データの明度 値 Y 1 と、 明度 L U Tから求めた明度変換後の明度値 Y 2 との差 (Y 2 - Y 1 ) を求め、 この値に彩度重み係数を乗じて明度値 Y 1を加算した ものを Y 2 'として求め、 この Y 2 , を明度変換後の明度値とする。 こ のように彩度に応じて変換後の明度値 Υ 2 5 を演算によって求めること により、 選択色の周辺色以外の色度の彩度に影響を与えることなく、 選 択色の明度に対してピンポイン トに明度変換を行うことができる。
また、 第 1 4図に示した明度軸周辺の変換後の明度値が小さくなるよ うに明度彩度 L U Τを設定してもよい。 選択色を選択して明度変換する 場合は、 明度軸周辺の明度変化が色相ごとに大きく変わる場合がある。 そのため、 明度軸周辺の隣り合う色相の明度変化が大きくならないよう 03 014529
38 に、 低彩度色域では彩度重み係数を 1 以下にし、 それより彩度の高い ところでは、 1 となるように当該明度彩度 L U Tを設定してもよい。 以上のように、 実施の形態 4によれば、 明度変換手段 1 3が色調整デ —夕 1 0 4 aに基づいて入力画像信号 1 0 1の明度変換を行い、 明度色 域圧縮手段 2 aが色再現特性データ 1 0 3 dに記述されたカラー画像表 示装置の色再現特性に基づく明度色域圧縮を行うようにしたので、 個々 のカラー画像表示装置の色再現特性に応じた明度変換を行うことができ 、 明度変換後の視覚色空間デ一夕にカラー画像表示装置の色再現特性に 基づく明度色域圧縮を施すことにより、 滑らかな色再現が可能な出力画 像信号 1 0 2を得ることができるという効果がある。
また、 選択色の明度変換を可能にしたので、 例えば、 空の色度の明度 のみを落とすことができ、 その結果、 空の色の彩度を上げることができ 、 選択色の色相の周辺の色相だけを滑らかに明度変換することができる という効果がある。
また、 明度変換手段 1 3が低彩度領域の彩度重み係数を 1以下に設定 して明度変換を行うようにしたので、 選択色の明度変換を行うときに明 度軸周辺の隣り合う色相において明度の変化量を小さくすることができ 、 低彩度領域において発生するモアレなどによる画質劣化を防く、ことが できるという効果がある。 実施の形態 5 .
第 1 7図は、 この発明の実施の形態 5による色補正装置の構成を示す ブロック図である。 第 1図及び第 7図に示したものと同一あるいは相当 する部分に同じ符号を使用し、 その説明を省略する。
実施の形態 5による色補正装置は、 入力画像信号 1 0 1の明度変換を 行う色補正手段 1 に対して、 入力画像信号 1 0 1の明度変換を色調整デ T JP2003/014529
39 一夕 1 0 4 aに基づいて行う明度変換手段 1 3 と、 明度変換手段 1 3か ら出力された明度変換後の視覚色空間データに対して色度特性デ一夕 1 0 5に基づいて色度変換を行い、 色度変換後の視覚色空間データを明度 色域圧縮手段 2 aへ出力する色度変換手段 1 4 とを備えたものである。
次に動作について説明する。.
第 1 7図に示した明度変換手段 1 3 と明度色域圧縮手段 2 aは、 実施 の形態 4において説明した明度変換手段 1 3 と明度色域圧縮手段 2 aと 同様に動作する。 ここでは実施の形態 4による色補正装置と同様な動作 について説明を省略し、 実施の形態 5による色補正装置の特徴となる動 作について説明する。
色度変換手段 1 4は、 明度変換手段 1 3から入力画像信号 1 0 1の R G Bデータ、 即ち明度変換前の色度を表す R G Bデータと、 入力画像信 号 1 0 1の視覚色空間データの明度値 Y 1 と、 入力画像信号 1 0 1の色 相番号及び色相値と、 明度変換後の視覚色空間データとを明度色域圧縮 手段 2 aとを入力する。
色度変換手段 1 4は、 視覚色空間データを R G Bデ一夕へ変換する変 換手段を備え、 明度変換後の視覚色空間データの明度値 Y 2に基づいて 明度変換後の R G Bデ一夕、 即ち R 2, G 2 , B 2の各デ一夕値を求め 、 これらのデ一夕値を第 1 7図に示した明度色域圧縮手段 2 aへ出力す. る。 なお、 第 1 7図に示した明度色域圧縮手段 2 aには、 視覚色空間デ 一夕を R G Bデータへ変換する変換手段を備えなくてよい。
色度変換手段 1 4は、 外部から色度特性データ 1 0 5を取得し、 この 色度特性データ 1 0 5 と、 明度変換手段 1 3から入力した入力画像信号 1 0 1の明度値 Y 1 に基づいて、 例えば第 1 4図に示した明度軸を変換 する。 この明度軸の変換は、 例えば Y C b C r色空間では C b C r平面 に対して交差する明度 Yを示す明度軸を、 非線形に描かれるように、 あ るいは C b C r平面に対して斜めに傾いたように変換するものである。 明度軸の変換は、 次の説明のように行われる。 例えば、 色度変換手段 1 4に、 Y C b C r色空間において、 C b値を変換する C b L U Tと、 C r値を変換する C r L U Tとを備え、 この Cb LUT, C r LUTに 記述されている色度を用いて、 例えば明度軸を非線形に変換し、 オリジ ナル画像の色調が再現されるように明度変換後の視覚色空間データの色 度を変換する。
明度変換手段 1 3から入力した明度変換後の視覚色空間データの明度 値 Y 2に基づいて C b LUTと C r LUTとを参照し、 色度変換後の色 度値 C b 2および色度値 C r 2を求める。 また、 Cb L UT及び C r L UTが、 明度変換前の明度値 Y 1に対応させて明度変換後の C b値及び C r値が記述されたものである場合は、 明度変換手段 1 3から出力され た入力画像信号 1 0 1の明度値 Y 1に基づいて当該 Cb LUTと C r L UTとを参照し、 色度変換後の色度値 C b 2 , C r 2を求めるようにし てもよい。
色度変換手段 1 4は、 このように色度変換を施した視覚色空間データ と、 R 2 , G 2 , B 2の各デ一夕値とを明度色域圧縮手段 2 aへ出力す る
第 1 7図に示した明度色域圧縮手段 2 aは、 R 2, G 2, B 2の各デ —夕値と色度変換後の視覚色空間データを入力し、 実施の形態 4で説明 した明度色域圧縮手段 2 aによる R 2, G 2 , B 2の各データ値を求め る処理を除いて、 当該実施の形態 4の明度色域圧縮手段 2 aと同様に色 再現特性デ一夕 1 03 dに基づく色域圧縮を行う。
以上のように、 実施の形態 5によれば、 色度変換手段 1 4が色度特性 データ 1 0 5に基づいて明度軸を非線形に変換するようにしたので、 明 度変換と共に明度軸の変換が行われることにより、 明度変換後の視覚色 03 014529
41 空間データは、 例えばオリジナル画像の色調が加味され、 カラー画像表 示装置の色再現域に含まれる色度を有する視覚色空間データとなり、 ォ リジナル画像の特有の色調を有する出力画像信号 1 0 2が得られるとい う効果がある。 実施の形態 6 .
第 1 8図は、 この発明の実施の形態 6による色補正装置の構成を示す ブロック図である。 第 1図に示したものと同一あるいは相当する部分に 同じ符合を使用し、 その説明を省略する。 実施の形態 6よる色補正装置 は、 入力画像信号 1 0 1の色補正を行う色補正手段 1 に、 入力画像信号 1 0 1の彩度を変換する彩度変換手段 1 5を備えたものである。
色調整デ一夕 1 0 4 bは、 実施の形態 2の色相変換手段 1 2等に入力 される色調整デ一夕 1 0 4等と同様なもので、 ュ一ザの好みにより設定 された彩度の調整量が記述されたデータで、 彩度を変換する色相と、 彩 度の調整量が記述されたものである。 ·
色再現特性データ 1 0 3 eは、 実施の形態 2で説明した色再現特性デ 一夕 1 0 3 aと同様なもので、 例えば第 1 0図に示したように色相番号 に対応させてカラー画像表示装置の色再現特性を表す色度が記述された データである。
次に動作について説明する。
彩度変換手段 1 5は、 入力画像信号 1 0 1を成す、 任意の色度を示す 視覚色空間デ一夕と R G Bデ一夕とを入力し、 この R G Bデ一夕を用い て実施の形態 1で説明した色再現補正手段 1 1 と同様に処理して当該'入 力画像信号 1 0 1の色相番号及び色相値を求める。 .
次に、 外部から取得した色再現特性データ 1 0 3 e及び色調整デ一夕 1 0 4 bに基づいて入力画像信号 1 0 1の視覚色空間データが示す彩度 P2003/014529
42 を変換する。 この彩度変換の処理動作を、 入力画像信号 1 0 1の視覚色 空間データが、 例えば Y C b C r色空間データの場合を例示して説明す る。 入力画像信号 1 0 ίの視覚色空間データの色度を示す各データ値を Υ 1, C b 1 , C r l とする。
前述のようにして求めた入力画像信号 1 0 1の色相番号を色相番号 ( H) 、 入力画像信号 1 0 1の色相値を色相値 (H) とする。 色再現特性 デ一夕 1 0 3 eを参照して、 色相番号 (H) に対応するカラ一画像表示 装置の色再現特性を表す色度を求める。 次に、 入力画像信号 1 0 1の色 相番号 (H) に 1を加算した色相番号 (H + 1 ) に対応する色再現特性 データ 1 0 3 eを参照して、 当該色相番号 (H + 1 ) に対応するカラー 画像表示装置の色度を求める。
この後、 実施の形態 1で説明した色域圧縮手段 2の動作処理と同様に 、 色相番号 (H) の色度と色相番号 (H + 1 ) の色度とを、 それそれ色 度べク トルとして取り扱い、 当該実施の形態 1で説明したように処理し て、 入力画像信号 1 0 1の色相番号 (H) 及び色相値 (H) によって示 される色相に対応する、 カラ一画像表示装置の色再現特性を表す色度を 求める。 このように求めた色度を、 例えば第 4図等のように直交する明 度軸と彩度軸によって表される視覚色空間に頂点 hとして示したとき、 . 色相番号 (H) 及び色相値 (H) によって示される色相の、 カラー画像 表示装置の色再現域が明度軸上の座標 ( 0, 0 ) と座標 ( 0 , 1 ) と頂 点 hによって形成される三角形状に表される。
次に、 明度値が入力画像信号 1 0 1の視覚色空間データの Y 1 となる 、 上記三角形状の色再現域の最外殻点 (H) を演算により求める。 入力 画像信号 1 0 1の視覚色空間デ一夕を用いて、 当該入力画像信号 1 0 1 の彩度を演算により求め、 この彩度を C 1 とする。 また、 色再現域の最 外殻点 (H) の彩度を C 2 とする。 入力画像信号 1 0 1のビッ ト最大値 を最外殻点 (H) の彩度 C 2の値で除算して彩度正規化係数を求める。 彩度 C 1の値に彩度正規化係数を乗算して彩度 C 3の値を求める。
彩度変換手段 1 5は、 彩度に応じた彩度重み係数を含む彩度 LU Tを 備え、 彩度 C 3の彩度重み係数を、 この彩度. LUTを参照して求め、 こ の彩度重み係数を色調整データ 1 04 bに記述された調整量に乗算し、 この値を彩度 C 1の値に加算して彩度 C 4の値を求める。 彩度 C 4の値 に対応する色度値 Cb 2 , C r 2を演算により求め、 このように彩度変 換を施した視覚色空間データを出力画像信号 1 0 2として出力する。
なお、 前述の彩度変換手段 1 5に備えられた彩度 LUTは、 彩度の調 整量が含めて記述したものでもよい。 このような彩度 LUTを用いると き、 彩度変換手段 1 5は、 次のように処理を行う。 入力画像信号 1 0 1 のビッ ト最大値を最外殻点 (H) の彩度 C 2の値で除算して彩度正規化 係数を求める。 彩度 C 1の値に彩度正規化係数を乗算して彩度 C 3の値 を求める。 彩度 LUTを参照して、 彩度 C 3の値を彩度変換した彩度 C 4の値を求める。 C 4/C 3の値を彩度係数として、 入力画像信号 1 0 1の視覚色空間データの色度値 C b 1 , C r 1に乗算して彩度変換後の 色度値 Cb 2, C r 2を求める。 このようにして彩度変換を行い、 当該 彩度変換後の視覚色空間デ一夕を出力画像信号 1 02として出力しても よい。
また、 実施の形態 2で説明したュ一ザイン夕フェースを彩度変換手段 1 5に接続し、 彩度変換手段 1 5は、 ユーザによって選択された色相を 当該ユーザイン夕フェースを介して知得し、 当該選択された色相とその 他の色相に各々設定された彩度 L U Tを用いて彩度変換を行うようにし てもよい。
このように動作するとき、 彩度変換手段 1 5は、 彩度 LUTに乗算す る重み係数が記述された彩度色相 L U Tを備え、 彩度変換を行う色相の 設定、 彩度 L U Tの設定、 彩度色相 L U Tの演算等の各処理動作を、 実 施の形態 4で説明した明度変換と同様に、 あるいは相当する処理動作を 行い、 彩度変換後の彩度値を求める演算は、 明度変換後の明度値を求め る演算と同様に、 あるいは相当する処理を行う。
以上のように、 実施の形態 6によれば、 彩度変換手段 1 5が色再現特 性データ 1 0 3 eに基づいて彩度変換を行うようにしたので、 個々の力 ラー画像表示装置の色再現特性に応じた彩度変換が行えるという効果が ある。
なお、 この発明の色補正装置は、 前述の実施の形態 1ないし実施の形 態 6で説明した各色補正装置のいずれか二つ以上を組み合わせて構成し てもよい。 例えば、 色相変換手段 1 2、 明度変換手段 1 3、 色度変換手 段 1 4、 彩度変換手段 1 5等と、 各変換手段によって変換された後の視 覚色空間データに色再現特性データに基づいて色域圧縮を施す色域圧縮 手段等とを備える。
このように構成することによって、 色相、 明度、 彩度を二次元的また は三次元的に補正することができ、 特に任意の色度の色相、 明度、 彩度 または当該任意の色度とその周辺の色度の色相、 明度、 彩度を合わせて 変換する場合に有効である。
また、 このように構成することにより、 色空間において三次元的に自 由に色補正を行うことが可能になるという効果がある。 また、 三次元 L U Tを用いることなく、 速い処理速度で三次元的に色相、 明度、 彩度を 変換することができるという効果がある。 産業上の利用可能性
以上のように、 この発明に係る色補正装置および色補正方法は、 色再 現特性に応じた画像信号の色補正を実施するのに適している。

Claims

請 求 の 範 囲
1 . 入力画像信号の色補正を行う色補正手段と、
色再現特性を記述したデータに基づいて、 前記色補正手段から出力さ れた色補正後の画像データの色度が前記色再現特性に基づく色再現域に 含まれる色度となるように色域圧縮を施す色域圧縮手段とを備えた色補 正装置。
2 . 色補正手段は、 色再現特性を記述したデ一夕に基づいて入力画像 信号の色度を変換する色再現補正手段を備えたことを特徴とする請求の 範囲第 1項記載の色補正装置。
3 . 色補正手段は、 変換する色相と調整量を記述したデ一夕に基づい て入力画像信号の色相を変換する色相変換手段を備えたことを特徴とす る請求の範囲第 1項記載の色補正装置。
4 . 色域圧縮手段は、 カラ一画像表示装置の色再現特性を記述したデ —夕に基づいて色域圧縮を施すことを特徴とする請求の範囲第 1項記載 の色補正装置。
5 . 色域圧縮手段は、 色補正手段による変換後の画像データの色相を 求め、 色再現特性を表す色度を記述したデータに基づいて入力画像信号 の色相に対応する前記色再現特性を表す色度と前記色補正手段による変 換後の画像データの色相に対応する前記色再現特性を表す色度とを求め 、 前記入力画像信号の色相に対応する前記色再現特性を表す色度によつ て示される色再現域と、 前記色補正手段による変換後の画像データの色 相に対応する前記色再現特性を表す色度によって示される色再現域とか ら収れん点を求め、 当該収れん点に向って色域圧縮を行うことを特徴と する請求の範囲第 1項記載の色補正装置。
6 . 色域圧縮手段は、 入力画像信号の色相に対応する色再現特性を表 す色度と色補正手段による変換後の画像データの色相に対応する色再現 特性を示す色度とを求め、 色空間に前記入力画像信号の色相に対応する 色再現特性を表す色度によって示される色再現域と前記変換後の画像デ 一夕の色相に対応する色再現特性を表す色度によって示される色再現域 とを表したとき、 前記入力画像信号の色相の色再現域と前記変換後の画 像データの色相の色再現域が、 明度及び彩度を表す平面で交差する点を 求め、 当該交差する点と等明度の前記色空間を表す明度軸上の収れん点 を求め、 当該収れん点に向って前記入力画像信号の色相の色再現域を圧 縮することを特徴とする請求の範囲第 5項記載の色補正装置。
7 . 色域圧縮手段は、 入力画像信号の色相に対応する色再現特性を表 す色度と色補正手段による変換後の画像データの色相に対応する色再現 特性を示す色度とを求め、 色空間に前記入力画像信号の色相に対応する 色再現特性を表す色度によって示される色再現域と前記変換後の画像デ 一夕の色相に対応する色再現特性を表す色度によつて示される色再現域 とを表したとき、 前記入力画像信号の色相の色再現域と前記変換後の画 像データが示す色相の色再現域が、 明度及び彩度を表す平面で交差する 点を求め、 当該交差する点と前記変換後の画像データが示す色相の色再 現特性を表す色度との間を結ぶ直線上に任意の点を設定し、 前記任意の 点と等明度の前記色空間を表す明度軸上の収れん点を求め、 当該収れん 点に向って前記入力画像信号の色相の色再現域を圧縮することを特徴と する請求の範囲第 5項記載の色補正装置。
8 . 色域圧縮手段は、 カラー画像表示装置の色再現特性を記述した第 一の色再現特性を示すデータに基づいて入力画像信号の色相の第一の色 再現特性を表す色度を求めると共に、 目視したときの画像の色調を表す ォリジナル画像の色再現特性を記述した第二の色再現特性を示すデ一夕 に基づいて色補正手段により変換された後の画像データが示す色相の第 二の色再現特性データを表す色度を求め、 前記入力画像信号の色相の第 一の色再現特性を表す色度が示す色再現域と、 前記補正後の画像データ が示す色相の第二の色再現特性データを表す色度が示す色再現域とから 収れん点を求め、 当該収れん点に向かって前記入力画像信号の色相の第 一の色再現特性を表す色度が示す色再現域を圧縮することを特徴とする 請求の範囲第 1項記載の色補正装置。
9 . 色補正手段は、 明度変換を行う色相と明度の調整量を記述した色 調整デ一夕を取得し、 入力画像信号が示す明度を前記色調整データに基 づいて変換する明度変換手段を備え、
色域圧縮手段は、 色再現特性を記述したデータに基づいて入力画像信 号の色相の色再現特性を表す色度を求めると共に、 前記明度変換手段に よる明度変換後の色相が記述されたルックアツプテ一ブルを参照して明 度変換後の色度を求め、 前記入力画像信号の色相の色再現特性を表す色 度が示す色再現域と前記明度変換後の色度が示す色再現域とから収れん 点を求め、 当該収れん点に向かって前記入力画像信号の色相の色再現特 性を表す色度が示す色再現域を圧縮することを特徴とする請求の範囲第 1項記載の色補正装置。
1 0 . 明度変換手段は、 ユーザによって選択された色相の明度と当該 選択された色相の周辺の色相の明度とを明度変換後の明度が記述された 明度ルックァップテーブルを用いて求めることを特徴とする請求の範囲 第 9項記載の色補正装置。 '
1 1 . 色補正手段は、 色空間を表す明度軸を変換する色度変換手段を 備え、
色域圧縮手段は、 前記色空間に表した入力画像信号の色相の色再現特 性を表す色度が示す色再現域と明度変換後の色度が示す色再現域とから 、 前記色度変換手段により変換された明度軸上の収れん点を求めること を特徴とする請求の範囲第 9項記載の色補正装置。
1 2 . 入力画像信号の彩度を、 彩度変換を行う色相と調整量が記載さ れた色調整データ及びカラー画像表示装置の色再現特性が記述された色 再現特性データに基づいて変換する彩度変換手段を備えた色補正装置。
1 3 . 画像データの示す色相を色相変換手段が変換する過程と、 前記色相変換手段から取得した画像データの示す明度を明度変換手段 が変換する過程と、
前記明度変換手段から取得した画像データの示す彩度を彩度変換手段 がカラー画像表示装置の色再現特性を記述した色再現特性データに基づ いて変換する過程と、
前記彩度変換手段から取得した画像データの色度が前記色再現特性に 基づく色再現域に含まれる色度となるように色域圧縮手段が色域圧縮を 施す'過程とを含む色補正方法。
PCT/JP2003/014529 2003-11-14 2003-11-14 色補正装置および色補正方法 WO2005048583A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005510571A JPWO2005048583A1 (ja) 2003-11-14 2003-11-14 色補正装置および色補正方法
PCT/JP2003/014529 WO2005048583A1 (ja) 2003-11-14 2003-11-14 色補正装置および色補正方法
US10/538,942 US7599551B2 (en) 2003-11-14 2003-11-14 Color correction device and color correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/014529 WO2005048583A1 (ja) 2003-11-14 2003-11-14 色補正装置および色補正方法

Publications (1)

Publication Number Publication Date
WO2005048583A1 true WO2005048583A1 (ja) 2005-05-26

Family

ID=34587062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014529 WO2005048583A1 (ja) 2003-11-14 2003-11-14 色補正装置および色補正方法

Country Status (3)

Country Link
US (1) US7599551B2 (ja)
JP (1) JPWO2005048583A1 (ja)
WO (1) WO2005048583A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770984A2 (en) 2005-09-28 2007-04-04 Sony Corporation Color adjusting apparatus, display apparatus, printing apparatus, image processing apparatus, color adjustment method, GUI display method, and program
JP2007189279A (ja) * 2006-01-11 2007-07-26 Fuji Xerox Co Ltd 画像処理装置、画像処理プログラムおよび画像処理方法
WO2011021241A1 (ja) * 2009-08-20 2011-02-24 株式会社 東芝 画像処理装置
US8913312B2 (en) 2012-11-06 2014-12-16 Ricoh Company, Ltd. Image processing method and apparatus using virtual color gamut information in association with color standards and processed statistically to offset a difference in color reproducibility of an output apparatus

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064740B2 (en) 2001-11-09 2006-06-20 Sharp Laboratories Of America, Inc. Backlit display with improved dynamic range
WO2005052673A2 (en) * 2003-11-21 2005-06-09 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive color
US7872631B2 (en) 2004-05-04 2011-01-18 Sharp Laboratories Of America, Inc. Liquid crystal display with temporal black point
US7602369B2 (en) 2004-05-04 2009-10-13 Sharp Laboratories Of America, Inc. Liquid crystal display with colored backlight
US7777714B2 (en) 2004-05-04 2010-08-17 Sharp Laboratories Of America, Inc. Liquid crystal display with adaptive width
US8395577B2 (en) 2004-05-04 2013-03-12 Sharp Laboratories Of America, Inc. Liquid crystal display with illumination control
KR100601867B1 (ko) * 2004-06-11 2006-07-19 삼성전자주식회사 벡터 스트레칭을 이용한 색역 매핑 장치 및 방법
US7898519B2 (en) 2005-02-17 2011-03-01 Sharp Laboratories Of America, Inc. Method for overdriving a backlit display
US8050512B2 (en) * 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US8050511B2 (en) 2004-11-16 2011-11-01 Sharp Laboratories Of America, Inc. High dynamic range images from low dynamic range images
US7305126B2 (en) * 2005-01-17 2007-12-04 Hi-Touch Imaging Technologies Co., Ltd. Photo dazzle color temperature correction
JP4684030B2 (ja) * 2005-07-06 2011-05-18 株式会社リコー 画像処理装置及び画像処理方法
US7408558B2 (en) * 2005-08-25 2008-08-05 Eastman Kodak Company Laser-based display having expanded image color
US9143657B2 (en) * 2006-01-24 2015-09-22 Sharp Laboratories Of America, Inc. Color enhancement technique using skin color detection
US8121401B2 (en) 2006-01-24 2012-02-21 Sharp Labortories of America, Inc. Method for reducing enhancement of artifacts and noise in image color enhancement
JP4652992B2 (ja) * 2006-02-23 2011-03-16 ルネサスエレクトロニクス株式会社 色補正装置、色補正方法及びプログラム
JP4803666B2 (ja) * 2006-06-30 2011-10-26 株式会社リコー 画像処理装置、画像処理方法、プログラムおよび記録媒体
TWI350111B (en) * 2006-09-21 2011-10-01 Etron Technology Inc Gamma correction method and device
US8941580B2 (en) 2006-11-30 2015-01-27 Sharp Laboratories Of America, Inc. Liquid crystal display with area adaptive backlight
TW200847795A (en) * 2007-05-17 2008-12-01 Sunplus Technology Co Ltd Preference color adjusting system
JP5262377B2 (ja) * 2007-08-09 2013-08-14 ペンタックスリコーイメージング株式会社 撮像装置
JP2009194721A (ja) * 2008-02-15 2009-08-27 Fujitsu Microelectronics Ltd 画像信号処理装置、画像信号処理方法、及び撮像装置
JP5177751B2 (ja) 2008-09-29 2013-04-10 ルネサスエレクトロニクス株式会社 表示駆動回路
US8611655B2 (en) * 2011-02-04 2013-12-17 Apple Inc. Hue-based color matching
TWI538473B (zh) 2011-03-15 2016-06-11 杜比實驗室特許公司 影像資料轉換的方法與設備
SI3595281T1 (sl) 2011-05-27 2022-05-31 Dolby Laboratories Licensing Corporation Skalarni sistemi za nadzor upravljanja barv, ki vsebujejo različne ravni metapodatkov
US9024961B2 (en) 2011-12-19 2015-05-05 Dolby Laboratories Licensing Corporation Color grading apparatus and methods
JP2013219452A (ja) * 2012-04-05 2013-10-24 Sony Corp 色信号処理回路、色信号処理方法、色再現評価方法、撮像装置、電子機器、及び、試験装置
CN104871532B (zh) * 2013-01-25 2017-03-15 富士胶片株式会社 拍摄装置及其动作控制方法
WO2017129713A1 (en) * 2016-01-28 2017-08-03 Tintometer Gmbh Displaying colours on an electronic visual display
JP6929373B2 (ja) 2017-03-03 2021-09-01 ドルビー ラボラトリーズ ライセンシング コーポレイション 不均等な色空間における彩度調整

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561952A (ja) * 1991-08-30 1993-03-12 Canon Inc 画像処理装置
JP2000022978A (ja) * 1998-07-01 2000-01-21 Ricoh Co Ltd 色補正装置
JP2001111859A (ja) * 1999-08-03 2001-04-20 Fuji Photo Film Co Ltd 色変換方法、色変換装置および色変換定義記憶媒体
JP2002118764A (ja) * 2000-10-10 2002-04-19 Mitsubishi Electric Corp 色再現域圧縮方法および色再現域圧縮装置
JP2002152536A (ja) * 2000-11-14 2002-05-24 Fuji Xerox Co Ltd 画像処理装置及び画像処理方法
JP2002252785A (ja) * 2000-12-11 2002-09-06 Ricoh Co Ltd 色変換装置、画像処理装置、色変換方法、及び記録媒体並びに画像処理システム
JP2003008913A (ja) * 2001-06-20 2003-01-10 Fuji Xerox Co Ltd 画像処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09258706A (ja) 1996-03-22 1997-10-03 Sanyo Electric Co Ltd ディジタル画像の色調整装置および方法
JPH11341296A (ja) 1998-05-28 1999-12-10 Sony Corp 色域変換方法及び色域変換装置
JP4164944B2 (ja) 1999-06-14 2008-10-15 三菱電機株式会社 色域圧縮装置及び色域圧縮方法
US7003151B2 (en) * 2000-07-19 2006-02-21 Canon Kabushiki Kaisha Image processing apparatus and control method therefor
US7199900B2 (en) * 2000-08-30 2007-04-03 Fuji Xerox Co., Ltd. Color conversion coefficient preparation apparatus, color conversion coefficient preparation method, storage medium, and color conversion system
JP3876650B2 (ja) 2001-06-06 2007-02-07 日本電気株式会社 色補正パラメータ算出装置、画像色補正装置及びそれに用いる色補正パラメータ算出方法並びにそのプログラム
US20030164968A1 (en) * 2002-02-19 2003-09-04 Canon Kabushiki Kaisha Color processing apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561952A (ja) * 1991-08-30 1993-03-12 Canon Inc 画像処理装置
JP2000022978A (ja) * 1998-07-01 2000-01-21 Ricoh Co Ltd 色補正装置
JP2001111859A (ja) * 1999-08-03 2001-04-20 Fuji Photo Film Co Ltd 色変換方法、色変換装置および色変換定義記憶媒体
JP2002118764A (ja) * 2000-10-10 2002-04-19 Mitsubishi Electric Corp 色再現域圧縮方法および色再現域圧縮装置
JP2002152536A (ja) * 2000-11-14 2002-05-24 Fuji Xerox Co Ltd 画像処理装置及び画像処理方法
JP2002252785A (ja) * 2000-12-11 2002-09-06 Ricoh Co Ltd 色変換装置、画像処理装置、色変換方法、及び記録媒体並びに画像処理システム
JP2003008913A (ja) * 2001-06-20 2003-01-10 Fuji Xerox Co Ltd 画像処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1770984A2 (en) 2005-09-28 2007-04-04 Sony Corporation Color adjusting apparatus, display apparatus, printing apparatus, image processing apparatus, color adjustment method, GUI display method, and program
EP1770984B1 (en) * 2005-09-28 2017-11-08 Sony Corporation Color adjusting apparatus, color adjustment method and program
JP2007189279A (ja) * 2006-01-11 2007-07-26 Fuji Xerox Co Ltd 画像処理装置、画像処理プログラムおよび画像処理方法
WO2011021241A1 (ja) * 2009-08-20 2011-02-24 株式会社 東芝 画像処理装置
US8913312B2 (en) 2012-11-06 2014-12-16 Ricoh Company, Ltd. Image processing method and apparatus using virtual color gamut information in association with color standards and processed statistically to offset a difference in color reproducibility of an output apparatus

Also Published As

Publication number Publication date
US7599551B2 (en) 2009-10-06
JPWO2005048583A1 (ja) 2007-06-14
US20060120598A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
WO2005048583A1 (ja) 色補正装置および色補正方法
JP5481021B2 (ja) 異機種間色域マッピング方法および装置
US9373305B2 (en) Semiconductor device, image processing system and program
JP6005857B2 (ja) データを変換する方法、ディスプレイデバイス、演算デバイス、およびそれに組み込まれたプログラム、並びに、係数を最適化する方法、最適化デバイス、およびそれに組み込まれたプログラム
KR100736939B1 (ko) 지능형 색역 관리 방법
KR101348369B1 (ko) 디스플레이 장치의 색 변환 방법 및 장치
US7173736B2 (en) Image processing apparatus and method
JP4779843B2 (ja) 色変換ルックアップテーブル作成装置、色変換ルックアップテーブル作成方法、及び色変換ルックアップテーブル作成プログラム
EP1768381B1 (en) Gamut compression method and device
WO2009113306A1 (ja) 色変換出力装置、色変換テーブル及びその作成方法
JP5043513B2 (ja) 色処理装置および方法
JPH11341296A (ja) 色域変換方法及び色域変換装置
JP4263131B2 (ja) 色変換方法および画像処理装置
JP4523667B2 (ja) 映像表示装置
JP4656006B2 (ja) 色変換装置及び色変換プログラム
JP5460805B1 (ja) 画像表示装置
JP5253274B2 (ja) 色変換出力装置
JP4910557B2 (ja) 色変換装置、色変換方法、色変換プログラム、色変換係数作成装置、色変換係数作成方法、及び色変換係数作成プログラム
JP2002152530A (ja) 色補正処理方法および装置
JP3354158B2 (ja) 色補正装置、色補正方法及び色補正応用装置
JP4090756B2 (ja) 画像表示装置および色変換方法
JP2007019970A (ja) 色補正装置および色補正方法
JP4853296B2 (ja) 色変換装置、色変換方法、色変換プログラム、色変換係数作成装置、色変換係数作成方法、及び色変換係数作成プログラム
JPH11146209A (ja) 色再現方法
JP4374969B2 (ja) 色圧縮装置および色圧縮方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2005510571

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006120598

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10538942

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase