WO2005072356A2 - Wlan services over catv using csma/ca - Google Patents

Wlan services over catv using csma/ca Download PDF

Info

Publication number
WO2005072356A2
WO2005072356A2 PCT/US2005/002442 US2005002442W WO2005072356A2 WO 2005072356 A2 WO2005072356 A2 WO 2005072356A2 US 2005002442 W US2005002442 W US 2005002442W WO 2005072356 A2 WO2005072356 A2 WO 2005072356A2
Authority
WO
WIPO (PCT)
Prior art keywords
signals
wlan
uplink
catv
wifi
Prior art date
Application number
PCT/US2005/002442
Other languages
French (fr)
Other versions
WO2005072356A3 (en
Inventor
Mordechai Zussman
Harel Golombek
Dan Shklarsky
Original Assignee
Passover, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Passover, Inc. filed Critical Passover, Inc.
Priority to EP05712063A priority Critical patent/EP1709825A2/en
Publication of WO2005072356A2 publication Critical patent/WO2005072356A2/en
Publication of WO2005072356A3 publication Critical patent/WO2005072356A3/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6118Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving cable transmission, e.g. using a cable modem
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43637Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wireless protocol, e.g. Bluetooth, RF or wireless LAN [IEEE 802.11]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/10Adaptations for transmission by electrical cable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the invention relates to an apparatus, system, and method for implementing a new topology for Wireless Local Area Networks (WLAN) and the like, including WiFi systems. More particularly, the invention relates to an apparatus, system, and method that uses cable television (CATV) networks to support WiFi services in homes, businesses, and hotspots such as hotels, hospitals, airports with high capacity and high quality.
  • WLAN Wireless Local Area Networks
  • CATV cable television
  • a WLAN is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN.
  • a transmitter/receiver device called a wireless access point (AP) connects the user wireless device to the wired network fixed location using standard connections (e.g., Ethernet, cable modem, ADSL, TI, etc.).
  • the AP receives, buffers, and transmits data between the WLAN and the wired network infrastructure.
  • a single AP can support a small group of users and can function within ranges of up to several hundred feet. End users access the WLAN through a WLAN modem device.
  • a related art implementation of a WLAN system is based on a Carrier
  • CSMA/CA Sense Multiple Access Collision Avoidance
  • each end unit in the network listens to the network to determine whether the path is free for transmission. Only when the path is free for transmission is the end unit allowed to transmit data. If a collision is detected, the data must be transmitted again.
  • all the units participating in the network must be able to receive all the uplink/downlink data transmitted on the network all the time in the specified coverage area. This is the reason that it is necessary in related art WLAN systems to have an AP at any floor in the building and/or every 100 to 500 feet in range, (to provide full coverage and good receiving signal performance by each of the participants in order to avoid and solve collision problems).
  • CATV networks have a network architecture designed basically to transmit signals in a top-down or bottom-up manner. In this configuration, two adjacent downstream customers cannot listen to each other. Thus, a conventional implementation of WiFi CSMA/CA is not possible on a CATV network.
  • Illustrative, non-limiting embodiments of the present invention overcome the above disadvantages and other disadvantages not described above. Also, the present invention is not required to overcome the disadvantages described above, and an illustrative, non-limiting embodiment of the present invention may not overcome any of the problems described above.
  • a WLAN is integrated with a CATV network using Point Coordination Function (PCF).
  • PCF is a centralized, polling-based access mechanism which requires the presence of an Access Point (AP) that acts as Point Coordinator.
  • AP Access Point
  • An AP controller located at the center of the CATV network manages the system. In this mode, the discussion between an end unit and a AP is controlled and no end unit is allowed to transmit data without permission of the AP.
  • the merger of the WLAN with the CATV networks according to the invention provides improved data quality, better coverage, and better range, while enhancing network capacity to support WiFi services in homes, businesses, and/or hotspot areas such as hotels, airports, hospitals and the like, using a modified CSMA/CA configuration with switching capability for homes and/or hotspots.
  • the CATV network functions as an access element within the analog portion of the WLAN system, namely in its RF propagation-radiation section.
  • the capabilities of existing CATV networks are substantially preserved in the approach, and the WLAN end users terminals do not have to be substantially modified. That is, the signals sent according to the WLAN terminal communications protocol traverse the CATV network, without the necessity for modification.
  • a number of APs can be located at the CATV head-end and/or at the CATV optical node entrance, to be integrated into the CATV network, thus increasing the capacity of the WLAN-CATV network.
  • One protocol used in the various embodiments of the invention is
  • CSMA CA with modified system configuration to support CSMA CA protocol through the CAIN network.
  • the CATN network is modified to permit the communication of the WLA ⁇ RF signals without substantial modification, just frequency up and down-conversion to fit the CATN spectrum specifications, and to enable the CATV network to support CSMA/CA protocol.
  • a conventional CATV network is a two-way network having a tree topology and including cables, amplifiers, signal splitters/combiners and filters.
  • the cables and signal splitters/combiners of the CATV network are not modified, but the other elements are.
  • the invention includes new components for a CATV system that permit multi-band communication.
  • the modified components allow all types of signals (the CATV up and down signals and the WLA ⁇ up and down signals) to be carried by the network simultaneously in a totally uncoupled manner.
  • This component modification can be implemented within the component itself (e.g. a modified CATN amplifier that supports the additional signals as well as the traditional CATV signals) or as a separated component (e.g. an additional amplifier that supports all the signals other than the traditional CATV signals).
  • EID-WiFi Enhanced In Door WiFi Unit
  • the EID-WiFi is a component, which acts as a transmit and receive antenna for the WLAN signals, and as a cable input output unit for the CATV network.
  • the EID-WiFi may work in a switching mode where the Uplink and
  • the EID-WiFi may be a dual mode unit. That is to say, the EID-WiFi is capable of receiving and transmitting in modes 802.1 lb, 802.1 lg and 802.1 la at frequencies of 2.4 GHz and 5.3 GHz correspondingly.
  • the UDC acts as a frequency converter, converting the AP WiFi signals from: a. original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies to 1080 - 1155 MHz Uplink and to 960 - 1035 MHz downlink, (or any other set of uplink, downlink frequencies within the range of 960 to 1155 MHz) and injected into the CATV network; and b. the 1080 - 1155 MHz uplink and the 960 - 1035 MHz downlink to the original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies.
  • the UDC may also convert the AP WiFi signals from original RF 2.4 GHz for 802. lib, 802.1 lg and 5.3 GHz for 802.1 la frequencies to 20 MHz bandwidth in the range of 5 - 45/65 MHz uplink and to 20 MHz bandwidth in the range of 500 - 750/860 MHz downlink, and injected into the CATV network, and vice versa converting the 5 - 45/65 MHz uplink and to 500 - 750/860 MHz downlink to the original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies.
  • the UDC is equipped with an RF sensor to detect the uplink signals and retransmit them at the downlink path to be received by the other WiFi terminal units.
  • the other WiFi terminal units may sense these signals as part of the Carrier Sense mechanism.
  • FIG. 1 illustrates a multi story building with a WLAN over CATV system working within the CATV spectrum at frequencies 5 - 45/65 MHz Uplink and 500 -
  • FIG. 2 illustrates a multi-story building with a WLAN over CATV system working out of the CATV spectrum at frequencies 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink
  • FIG. 3 illustrates a multi-story building with a WLAN over CATV system working out of the CATV spectrum at frequencies 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink with multiple AP units;
  • FIG. 4 illustrates a Downlink switching configuration to support
  • FIG. 5 illustrates an Uplink switching configuration to support CSMA/CA over CATV
  • FIG. 6 schematically illustrates an EID-WiFi according to an exemplary embodiment of the invention
  • FIG. 7 schematically illustrates a simplified schematic view of a WLAN
  • FIG. 8 schematically illustrates a WLAN Entrance Module (WEM).
  • WEM WLAN Entrance Module
  • FIG. 9 shows a dual mode WEM UDC module, that integrates both
  • FIG. 10 illustrates a EID-WiFi switched module UDC
  • FIG. 11 illustrates a dual mode switched EID-WiFi module
  • FIGS. 12 and 13 show the original 802.1 lb, 802.1 lg and 802.11a frequencies, respectively;
  • FIG. 14 illustrates a bandwidth allocation plan for 802.1 lb/g non- overlapping channels shifted frequency within the CATV network spectrum;
  • FIG. 15 illustrates a bandwidth allocation plan for 802.11 b, and 802.11 g overlapping channels shifted frequency within the CATV network spectrum;
  • FIG. 16 illustrates a bandwidth allocation plan for 802.11 a channels shifted to a frequency band within the CATV network spectrum; [38] FIG.
  • FIG. 17 illustrates a bandwidth allocation plan for three 802.1 lb/g non- overlapping channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink;
  • FIG. 18 illustrates a bandwidth allocation plan for multiple 802.1 lb/g overlapping channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink;
  • FIG. 19 illustrates a bandwidth allocation plan for 802.11a channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink; and
  • FIG. 20 illustrates a bandwidth allocation plan for 802.1 lb/g and/or
  • FIG. 1 shows a multi story building with a WLAN over CATV system operating within the CATV spectrum 5 - 45/65 MHz Uplink and 500 - 750/860 MHz Downlink.
  • FIG. 1 includes the WLAN Entrance Module (WEM), which converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network.
  • the EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV spectrum back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises.
  • Signals from the AP entering at the WEM are converted and distributed through the CATV network.
  • the EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN unit (e.g., a laptop computer) at the customer premises.
  • FIG. 2 depicts a multi-story building with a WLAN over CATV system operating out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 — 1035 MHz Downlink.
  • the WLAN Entrance Module (WEM) shown in FIG. 2 converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network.
  • the WTM acts as a bypass module to enable transmission of the WLAN signals over the CATV networks without interference between both signals.
  • the WTM is a bypass unit that differentiates between the CATV signals and the WLAN down/ up- converted signals (1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink) at the input/output of each CATV amplifier in the network and combines the signals again at the output/input of each CATV amplifier to be carried on to the next amplifier stage.
  • the EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV network (out of the standard CATV spectrum) back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises.
  • Signals from the AP entering at the WEM are converted and distributed through the CATV network.
  • the WTM transports the WLAN signals through the CATV network.
  • the WTM may be installed at any active point of the CATV network, bypassing the trunk amplifiers, line extenders and distribution modules.
  • the EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN (end user) unit
  • FIG. 3 illustrates a multi-story building with a WLAN over CATV system operating out of the CATV spectrum at the frequency range of 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink with multiple AP units.
  • WEM Multiple WLAN Entrance Modules
  • Each WEM is connected to an AP which converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network.
  • WEM's can convert any AP original frequencies standard (802.1 lb, 802.1 lg or 802.1 la) to the assigned frequency spectrum.
  • the AP's WEM's can be from the same standard with the same original frequencies or different original frequencies to support high capacity throughput or from different standards to support all WLAN standards on the CATV network.
  • the WTM acts as a bypass module to enable transmission of simultaneously multiple WLAN signals over the CATV networks without interference between both signals.
  • the EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV network (out of the standard CATV spectrum) back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises. Signals from the AP entering at the WEM are converted and distributed through the CATV network.
  • the WTM transports the WLAN signals through the CATV network.
  • the WTM is installed at any active point of the CATV network, bypassing the trunk amplifiers, line extenders and distribution modules.
  • the EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN unit (e.g., a laptop computer) at the customer premises.
  • FIGs. 4 and 5 illustrate Downlink and Uplink switching configuration to support CSMA CA over CATV.
  • the WEM unit connected to the AP includes a single- pole, double-throw (SPDT) RF switch in the downlink path and a single-pole, single- throw (SPST) RF switch in the uplink path.
  • the EID-WiFi at the customer premises includes SPST switches in the up and downlink path.
  • downlink signals sent from the AP towards the customer premises are detected by the WEM, and the downlink SPDT closes the downlink path to enable transmission of the signal through the CATV network towards the subscriber premises.
  • the uplink switch is open to prevent oscillations.
  • the EID-WiFi's 1, 2, 3, 4, and 5 detect the downlink signal, close the downlink SPST, and open the uplink SPST to prevent oscillations.
  • End User Terminal No. 1 transmits uplink signals towards the
  • EID-WiFi No. 1 detects the uplink signals, closes the uplink switch, and opens the downlink. Uplink signals are distributed over the CATV network to the AP. At the same time, all the other EID-WiFi's switches are closed at the downlink path and open at the uplink path.
  • the uplink signal is detected and the uplink switch is closed, while changing the position of the downlink SPDT to loop the uplink signals back towards the CAIN network to distribute the looped back uplink signals to the other EID- WiFi's 2, 3, 4, and 5, which are connected to the downlink path.
  • This enables the carrier sense function in the End User WiFi terminals located at EID-WiFi's 2, 3, 4, and 5.
  • the WEM with its circuitry for looping the uplink signals back to the
  • CATN network may be thought of as a means for downstream of uplink signals for a carrier sensing function at the End User WiFi terminals.
  • FIG. 6 A more detailed view of an exemplary EID-WiFi is shown in Fig. 6.
  • FIG. 7 illustrates a WTM according to an exemplary embodiment of the invention.
  • the combined WLAN and CATV signals enter the WTM.
  • HP/LP high- pass / low-pass filter
  • the signals are combined again through the HP/LP to be carried through the network. That is, the combined WLAN and CATV signals enter at the entrance of the LP/HP diplexer.
  • the diplexers each differentiate between the CATV signals and the WLAN signals.
  • the CATV signals 5 - 750MHz (860MHz) are carried through the LP filter to the CATV amplifier.
  • the LP filter to be combined again with the WLA ⁇ signals.
  • the WLA ⁇ signals are carried to/from the HP output to the WLA ⁇ filter, and the WLA ⁇ filter differentiates between the up-link and down-link signals to be amplified by the amplifiers to balance the power budget along the pass.
  • FIG. 8 illustrates a WEM according to an exemplary embodiment of the invention.
  • the WEM is an interface between the WLAN Access Point (AP) and the CATV signals. Downlink WLAN signals from the AP are down-converted to the assigned CATV spectrum and Uplink WLAN signals are up-converted from the assigned CATV frequency spectrum to the original WLAN frequencies.
  • AP WLAN Access Point
  • the WEM down- converts, for example, the original 802.1 lb, or the 802.1 la signals received from the AP to intermediate WiFi frequencies to be carried on the CATV network and up-converts the intermediate WiFi frequencies carried on the CATV network to the original 802.1 lb or 802.1 la to be received by the AP.
  • the WEM depicted in FIG. 8 is a single band Up/Down Converter that converts the WLAN signals from their original signals i.e. 2.4 GHz (due to 802.1 lb) and or 5.3 GHz (due to 802.1 la) to any frequency bandwidth in the frequency band of 960 - 1035 MHz, 1080 - 1155 MHz and or 5 -45/65 MHz 500 - 750/860 MHz.
  • the WEM module converts TDD downlink signals to FDD downlink signals to be transmitted over the CATV network, and uplink FDD signals coming from the CATN network to uplink TDD signals to be transmitted to the AP.
  • FIG. 9 depicts a dual band WEM UDC according to an exemplary embodiment of the invention.
  • the dual band WEM enables the simultaneous carrying of both 802.1 lb and 802.1 la signals on the CATV network to, for example, the customer premises.
  • Each band is converted to a different portion of the spectrum in the CATV network.
  • 802.1 lb may be converted to a 20 MHz bandwidth uplink and a 20 MHz downlink within the frequency range of the CATV, (960 - 980 MHz, and 1080 - 1100 MHz).
  • 802.1 la may be converted to another 20 MHz bandwidth uplink and a 20 MHz downlink within the frequency range of the CATV, (1000 - 1020 MHz, and 1120 - 1140 MHz).
  • FIG. 10 illustrates a EID WiFi UDC according to an exemplary embodiment of the invention.
  • the EID WiFi down-converts the original 802.1 lb, or the 802.1 la signals received from the end user terminal to the assigned CATV network frequencies (960 - 1035 MHz for example), and up-converts the WiFi signals carried on the CATV network (1080 - 1155 MHz) to the original 802.1 lb or 802.1 la signals to be transmitted to the end user terminal.
  • the EID WiFi is working in switch mode, and the uplink and downlink switches are controlled by the local control logic, according to the sensing of uplink and downlink signals.
  • the EID-WiFi switched module UDC converts the FDD Downlink WLAN signals received from the CATV network in the frequency band of 960 - 1035 MHz and/or 500 - 750/860 MHz to TDD Downlink signals to be transmitted at the customer premises using the WiFi frequencies (2.4GHz and/or 5.3GHz) and converts back TDD uplink signals received from the customer premises in the WiFi frequency band (2.4GHz and/or 5.3GHz) to FDD uplink signals to be transmitted on the CATV network at the frequency band 1080 - 1155 MHz and/or 5 - 45/65 MHz towards the AP.
  • FIG. 11 shows a dual band EID-WiFi UDC.
  • the dual band EID WiFi unit enables the reception and transmission of both 802.1 lb and 802.1 la, simultaneously, on the CATV network and to the end user. This unit enables the use of both standards simultaneously on the network. For example, 802.1 lb may be converted to 20 MHz bandwidth uplink, and 20 MHz downlink within the frequency range of the CATV, (960
  • 802.1 la may be converted to another 20 MHz bandwidth uplink, and 20 MHz downlink within the frequency range of the CATV, (985
  • FIGs. 12 and 13 illustrate the original 802.11b, 802.11g and 802.11a frequencies. Note that 802.1 lb and 802.1 lg share the same frequency channels.
  • FIG. 14 illustrates a frequency chart of the original 802.1 lb, and 802.1 lg non- overlapping frequencies. These original, non-overlapping frequencies are shifted to downlink and uplink frequencies such that the WLAN WiFi signals can be carried on the
  • FIG. 15 illustrates a frequency chart of the original 802.1 lb, and 802.1 lg overlapping frequencies. These original overlapping frequencies are shifted as needed to downlink and uplink frequencies such that the WLAN WiFi signals can be carried on the
  • FIG. 16 illustrates a frequency chart of the original 802.1 la frequencies.
  • FIG. 17 illustrates one bandwidth allocation plan for 802.1 lb, and 802.1 lg non-overlapping channels (shifted frequency out of the CATV spectrum) at frequencies
  • FIG. 18 illustrates one bandwidth allocation plan for 802. lib
  • FIG. 19 illustrates one bandwidth allocation plan for 802.11 a channels
  • FIG. 20 illustrates one bandwidth allocation plan for 802. l ib
  • 802.1 lg and/or 802.11a channels working simultaneously (out of the CATV spectrum) at frequencies 1080 - 1155 MHz for Uplink and 960 - 1035 MHz for Downlink.

Abstract

A communication system that provides access within an analog portion of a WLAN system, namely in its RF propagation-radiation section. The network includes a wireless entrance module (WEM) and a wireless access point (AP) interfaced to the CATV network at a wireless entrance module (WEM). Further, an Enhanced In Door WiFi Unit (EID-WiFi) is connected to the CATV network. The WEM includes downstream carrier sensing of uplink signals and retransmitting the uplink signals back to the downstream path. As such, signals sent according to a WLAN terminal communications protocol traverse the CATV network, without modification, using CSMA/CA.

Description

WLAN SERVICES OVER CATV USING CSMA/CA
CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No.
60/538,508, filed January 26, 2004, which is incorporated by reference, herein, in its entirety. BACKGROUND OF THE INVENTION
1. Field of the Invention
[01] The invention relates to an apparatus, system, and method for implementing a new topology for Wireless Local Area Networks (WLAN) and the like, including WiFi systems. More particularly, the invention relates to an apparatus, system, and method that uses cable television (CATV) networks to support WiFi services in homes, businesses, and hotspots such as hotels, hospitals, airports with high capacity and high quality.
2. Description of the Related Art
[02] A WLAN is a flexible data communication system implemented as an extension to, or as an alternative for, a wired LAN.
[03] In a typical WLAN configuration, a transmitter/receiver device, called a wireless access point (AP), connects the user wireless device to the wired network fixed location using standard connections (e.g., Ethernet, cable modem, ADSL, TI, etc.). The AP receives, buffers, and transmits data between the WLAN and the wired network infrastructure.
[04] A single AP can support a small group of users and can function within ranges of up to several hundred feet. End users access the WLAN through a WLAN modem device.
[05] A related art implementation of a WLAN system is based on a Carrier
Sense Multiple Access Collision Avoidance (CSMA/CA) mode. In this mode, each end unit in the network listens to the network to determine whether the path is free for transmission. Only when the path is free for transmission is the end unit allowed to transmit data. If a collision is detected, the data must be transmitted again. [06] In this configuration, all the units participating in the network must be able to receive all the uplink/downlink data transmitted on the network all the time in the specified coverage area. This is the reason that it is necessary in related art WLAN systems to have an AP at any floor in the building and/or every 100 to 500 feet in range, (to provide full coverage and good receiving signal performance by each of the participants in order to avoid and solve collision problems). This limitation is related directly to the maximum range that can be achieved by the related art WLAN systems [07] CATV networks have a network architecture designed basically to transmit signals in a top-down or bottom-up manner. In this configuration, two adjacent downstream customers cannot listen to each other. Thus, a conventional implementation of WiFi CSMA/CA is not possible on a CATV network. SUMMARY OF THE INVENTION [08] Illustrative, non-limiting embodiments of the present invention overcome the above disadvantages and other disadvantages not described above. Also, the present invention is not required to overcome the disadvantages described above, and an illustrative, non-limiting embodiment of the present invention may not overcome any of the problems described above.
[09] According to an aspect of the present invention, a WLAN is integrated with a CATV network using Point Coordination Function (PCF). PCF is a centralized, polling-based access mechanism which requires the presence of an Access Point (AP) that acts as Point Coordinator. An AP controller located at the center of the CATV network manages the system. In this mode, the discussion between an end unit and a AP is controlled and no end unit is allowed to transmit data without permission of the AP. [10] The merger of the WLAN with the CATV networks according to the invention provides improved data quality, better coverage, and better range, while enhancing network capacity to support WiFi services in homes, businesses, and/or hotspot areas such as hotels, airports, hospitals and the like, using a modified CSMA/CA configuration with switching capability for homes and/or hotspots. [11] According to another aspect of the invention, the CATV network functions as an access element within the analog portion of the WLAN system, namely in its RF propagation-radiation section. The capabilities of existing CATV networks are substantially preserved in the approach, and the WLAN end users terminals do not have to be substantially modified. That is, the signals sent according to the WLAN terminal communications protocol traverse the CATV network, without the necessity for modification. [12] According to another aspect of the invention, a number of APs can be located at the CATV head-end and/or at the CATV optical node entrance, to be integrated into the CATV network, thus increasing the capacity of the WLAN-CATV network. [13] One protocol used in the various embodiments of the invention is
CSMA CA, with modified system configuration to support CSMA CA protocol through the CAIN network.
[14] According to another aspect of the invention, the CATN network is modified to permit the communication of the WLAΝ RF signals without substantial modification, just frequency up and down-conversion to fit the CATN spectrum specifications, and to enable the CATV network to support CSMA/CA protocol. [15] A conventional CATV network is a two-way network having a tree topology and including cables, amplifiers, signal splitters/combiners and filters. According to one aspect of the invention, the cables and signal splitters/combiners of the CATV network are not modified, but the other elements are. Thus, the invention includes new components for a CATV system that permit multi-band communication. The modified components allow all types of signals (the CATV up and down signals and the WLAΝ up and down signals) to be carried by the network simultaneously in a totally uncoupled manner. This component modification can be implemented within the component itself (e.g. a modified CATN amplifier that supports the additional signals as well as the traditional CATV signals) or as a separated component (e.g. an additional amplifier that supports all the signals other than the traditional CATV signals). [16] According to another aspect of the invention, there is provided an
Enhanced In Door WiFi Unit (EID-WiFi, also referred to in the FIGs. as PIΝDU™ for PASSOVER INDOOR UNIT). The EID-WiFi is a component, which acts as a transmit and receive antenna for the WLAN signals, and as a cable input output unit for the CATV network.
[17] The EID-WiFi may work in a switching mode where the Uplink and
Downlink paths are switched on and off based on activity control. The EID-WiFi may be a dual mode unit. That is to say, the EID-WiFi is capable of receiving and transmitting in modes 802.1 lb, 802.1 lg and 802.1 la at frequencies of 2.4 GHz and 5.3 GHz correspondingly.
[18] Most of the existing CATV video signals are already limited to frequencies under 750MHz (digital CATV goes up to 860 MHz) while WLAN systems operate above this limit. Moving the WLAN signals to the frequency range of 960 to 1155 MHz enables for the WLAN signals and the CATV signals to coexist. [19] According to another aspect of the invention, there is provided an Up-
Down Converter Unit (UDC). The UDC acts as a frequency converter, converting the AP WiFi signals from: a. original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies to 1080 - 1155 MHz Uplink and to 960 - 1035 MHz downlink, (or any other set of uplink, downlink frequencies within the range of 960 to 1155 MHz) and injected into the CATV network; and b. the 1080 - 1155 MHz uplink and the 960 - 1035 MHz downlink to the original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies. [20] The UDC may also convert the AP WiFi signals from original RF 2.4 GHz for 802. lib, 802.1 lg and 5.3 GHz for 802.1 la frequencies to 20 MHz bandwidth in the range of 5 - 45/65 MHz uplink and to 20 MHz bandwidth in the range of 500 - 750/860 MHz downlink, and injected into the CATV network, and vice versa converting the 5 - 45/65 MHz uplink and to 500 - 750/860 MHz downlink to the original RF 2.4 GHz for 802.1 lb, 802.1 lg and 5.3 GHz for 802.1 la frequencies.
[21] The UDC is equipped with an RF sensor to detect the uplink signals and retransmit them at the downlink path to be received by the other WiFi terminal units. The other WiFi terminal units may sense these signals as part of the Carrier Sense mechanism.
BRIEF DESCRIPTION OF THE DRAWINGS
[22] The above and other aspects of the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
[23] FIG. 1 illustrates a multi story building with a WLAN over CATV system working within the CATV spectrum at frequencies 5 - 45/65 MHz Uplink and 500 -
750/860 MHz Downlink;
[24] FIG. 2 illustrates a multi-story building with a WLAN over CATV system working out of the CATV spectrum at frequencies 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink; [25] FIG. 3 illustrates a multi-story building with a WLAN over CATV system working out of the CATV spectrum at frequencies 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink with multiple AP units;
[26] FIG. 4 illustrates a Downlink switching configuration to support
CSMA/CA over CATV;
[27] FIG. 5 illustrates an Uplink switching configuration to support CSMA/CA over CATV;
[28] FIG. 6 schematically illustrates an EID-WiFi according to an exemplary embodiment of the invention;
[29] FIG. 7 schematically illustrates a simplified schematic view of a WLAN
Transport Module (WTM);
[30] FIG. 8 schematically illustrates a WLAN Entrance Module (WEM);
[31] FIG. 9 shows a dual mode WEM UDC module, that integrates both
802.1 lb and 802.11a signals from the APs into the CATV network. [32] FIG. 10 illustrates a EID-WiFi switched module UDC;
[33] FIG. 11 illustrates a dual mode switched EID-WiFi module;
[34] FIGS. 12 and 13 show the original 802.1 lb, 802.1 lg and 802.11a frequencies, respectively; [35] FIG. 14 illustrates a bandwidth allocation plan for 802.1 lb/g non- overlapping channels shifted frequency within the CATV network spectrum; [36] FIG. 15 illustrates a bandwidth allocation plan for 802.11 b, and 802.11 g overlapping channels shifted frequency within the CATV network spectrum; [37] FIG. 16 illustrates a bandwidth allocation plan for 802.11 a channels shifted to a frequency band within the CATV network spectrum; [38] FIG. 17 illustrates a bandwidth allocation plan for three 802.1 lb/g non- overlapping channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink; [39] FIG. 18 illustrates a bandwidth allocation plan for multiple 802.1 lb/g overlapping channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink; [40] FIG. 19 illustrates a bandwidth allocation plan for 802.11a channels shifted to a frequency band out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink; and
[41] FIG. 20 illustrates a bandwidth allocation plan for 802.1 lb/g and/or
802.1 la channels working simultaneously out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink. DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE PRESENT INVENTION
[42] Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. [43] Aspects of the present invention, and methods for achieving them will be apparent to those skilled in the art from the detailed description of the exemplary embodiments together with the accompanying drawings. However, the scope of the present invention is not limited to the exemplary embodiments disclosed in the specification, and the present invention can be realized in various types. The described exemplary embodiments are presented only for completely disclosing the present invention and helping those skilled in the art to completely understand the scope of the present invention, and the present invention is defined only by the scope of the claims. [44] In a first exemplary embodiment of the invention, FIG. 1 shows a multi story building with a WLAN over CATV system operating within the CATV spectrum 5 - 45/65 MHz Uplink and 500 - 750/860 MHz Downlink. FIG. 1 includes the WLAN Entrance Module (WEM), which converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network. The EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV spectrum back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises. [45] Signals from the AP entering at the WEM are converted and distributed through the CATV network. The EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN unit (e.g., a laptop computer) at the customer premises. [46] FIG. 2 depicts a multi-story building with a WLAN over CATV system operating out of the CATV spectrum at frequencies: 1080 - 1155 MHz Uplink and 960 — 1035 MHz Downlink. The WLAN Entrance Module (WEM) shown in FIG. 2, converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network. The WTM acts as a bypass module to enable transmission of the WLAN signals over the CATV networks without interference between both signals. The WTM is a bypass unit that differentiates between the CATV signals and the WLAN down/ up- converted signals (1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink) at the input/output of each CATV amplifier in the network and combines the signals again at the output/input of each CATV amplifier to be carried on to the next amplifier stage. [47] The EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV network (out of the standard CATV spectrum) back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises.
[48] Signals from the AP entering at the WEM are converted and distributed through the CATV network. The WTM transports the WLAN signals through the CATV network. The WTM may be installed at any active point of the CATV network, bypassing the trunk amplifiers, line extenders and distribution modules. The EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN (end user) unit
(e.g., a laptop computer) at the customer premises.
[49] FIG. 3 illustrates a multi-story building with a WLAN over CATV system operating out of the CATV spectrum at the frequency range of 1080 - 1155 MHz Uplink and 960 - 1035 MHz Downlink with multiple AP units. As shown in FIG. 3, in this exemplary embodiment, Multiple WLAN Entrance Modules (WEM) are connected to multiple AP's.
[50] Each WEM is connected to an AP which converts the original WLAN RF signal to the assigned frequency spectrum to be carried on the CATV network. The
WEM's can convert any AP original frequencies standard (802.1 lb, 802.1 lg or 802.1 la) to the assigned frequency spectrum.
[51] The AP's WEM's can be from the same standard with the same original frequencies or different original frequencies to support high capacity throughput or from different standards to support all WLAN standards on the CATV network. The WTM, acts as a bypass module to enable transmission of simultaneously multiple WLAN signals over the CATV networks without interference between both signals. The EID-WiFi converts the WLAN signals from the assigned frequencies at the CATV network (out of the standard CATV spectrum) back to their original signals, and differentiates between the CATV signals to be carried to the TV or Set Top Box and the WLAN signals to be transmitted in the customer premises. Signals from the AP entering at the WEM are converted and distributed through the CATV network.
[52] The WTM transports the WLAN signals through the CATV network. The
WTM is installed at any active point of the CATV network, bypassing the trunk amplifiers, line extenders and distribution modules. The EID-WiFi is the interface between the upgraded WLAN CATV network and the WLAN unit (e.g., a laptop computer) at the customer premises.
[53] FIGs. 4 and 5 illustrate Downlink and Uplink switching configuration to support CSMA CA over CATV. The WEM unit connected to the AP includes a single- pole, double-throw (SPDT) RF switch in the downlink path and a single-pole, single- throw (SPST) RF switch in the uplink path. The EID-WiFi at the customer premises includes SPST switches in the up and downlink path.
[54] In this exemplary embodiment, downlink signals sent from the AP towards the customer premises are detected by the WEM, and the downlink SPDT closes the downlink path to enable transmission of the signal through the CATV network towards the subscriber premises. At the same time, the uplink switch is open to prevent oscillations. At the customer premises, the EID-WiFi's 1, 2, 3, 4, and 5 detect the downlink signal, close the downlink SPST, and open the uplink SPST to prevent oscillations. [55] Further, End User Terminal No. 1 transmits uplink signals towards the
AP. EID-WiFi No. 1 detects the uplink signals, closes the uplink switch, and opens the downlink. Uplink signals are distributed over the CATV network to the AP. At the same time, all the other EID-WiFi's switches are closed at the downlink path and open at the uplink path.
[56] At the WEM, the uplink signal is detected and the uplink switch is closed, while changing the position of the downlink SPDT to loop the uplink signals back towards the CAIN network to distribute the looped back uplink signals to the other EID- WiFi's 2, 3, 4, and 5, which are connected to the downlink path. This enables the carrier sense function in the End User WiFi terminals located at EID-WiFi's 2, 3, 4, and 5. [57] The WEM, with its circuitry for looping the uplink signals back to the
CATN network, may be thought of as a means for downstream of uplink signals for a carrier sensing function at the End User WiFi terminals.
[58] A more detailed view of an exemplary EID-WiFi is shown in Fig. 6.
[59] As shown in FIG. 6, the combined WLAΝ and CATV signals enter at the
CATV outlet. The WLAΝ and CATV signals are differentiated at a Network Coupling Diplexer (NCD). The WLAN signals are up-converted to the original WLAN signal from the CATV assigned spectrum and transmitted in the vicinity of the customer premises, or received from an End User WiFi terminal and down-converted from the original WLAN signals to the CATV assigned frequency spectrum. The TV signals are connected to the TV set (or any other suitable device) through the TV set outlet. [60] FIG. 7 illustrates a WTM according to an exemplary embodiment of the invention. The combined WLAN and CATV signals enter the WTM. Through the high- pass / low-pass filter (HP/LP), the signals are distributed into two different paths; one path carries the CATV signals and the other carries the WLAN signals. [61] At the end of the path, the signals are combined again through the HP/LP to be carried through the network. That is, the combined WLAN and CATV signals enter at the entrance of the LP/HP diplexer. The diplexers each differentiate between the CATV signals and the WLAN signals. The CATV signals 5 - 750MHz (860MHz) are carried through the LP filter to the CATV amplifier.
[62] The output signals from the CATN amplifier are carried to an additional
LP filter to be combined again with the WLAΝ signals. The WLAΝ signals are carried to/from the HP output to the WLAΝ filter, and the WLAΝ filter differentiates between the up-link and down-link signals to be amplified by the amplifiers to balance the power budget along the pass.
[63] The WLAΝ signals from the amplifiers are connected to the HP/LP filters via the fibers, to be combined with the CATV signals and carried on through the network. Note that in exemplary embodiments, the WTM can be used simultaneously for forwarding WLAN signals as well as other signals, such as cellular signals. [64] FIG. 8 illustrates a WEM according to an exemplary embodiment of the invention. [65] The WEM is an interface between the WLAN Access Point (AP) and the CATV signals. Downlink WLAN signals from the AP are down-converted to the assigned CATV spectrum and Uplink WLAN signals are up-converted from the assigned CATV frequency spectrum to the original WLAN frequencies. The WEM down- converts, for example, the original 802.1 lb, or the 802.1 la signals received from the AP to intermediate WiFi frequencies to be carried on the CATV network and up-converts the intermediate WiFi frequencies carried on the CATV network to the original 802.1 lb or 802.1 la to be received by the AP.
[66] The WEM depicted in FIG. 8 is a single band Up/Down Converter that converts the WLAN signals from their original signals i.e. 2.4 GHz (due to 802.1 lb) and or 5.3 GHz (due to 802.1 la) to any frequency bandwidth in the frequency band of 960 - 1035 MHz, 1080 - 1155 MHz and or 5 -45/65 MHz 500 - 750/860 MHz. The WEM module converts TDD downlink signals to FDD downlink signals to be transmitted over the CATV network, and uplink FDD signals coming from the CATN network to uplink TDD signals to be transmitted to the AP.
[67] FIG. 9 depicts a dual band WEM UDC according to an exemplary embodiment of the invention. The dual band WEM enables the simultaneous carrying of both 802.1 lb and 802.1 la signals on the CATV network to, for example, the customer premises. Each band is converted to a different portion of the spectrum in the CATV network. For example, 802.1 lb may be converted to a 20 MHz bandwidth uplink and a 20 MHz downlink within the frequency range of the CATV, (960 - 980 MHz, and 1080 - 1100 MHz). Also, 802.1 la may be converted to another 20 MHz bandwidth uplink and a 20 MHz downlink within the frequency range of the CATV, (1000 - 1020 MHz, and 1120 - 1140 MHz). In the embodiment of this Figure, for example, both paths may be 5.3Ghz.. [68] FIG. 10 illustrates a EID WiFi UDC according to an exemplary embodiment of the invention. The EID WiFi down-converts the original 802.1 lb, or the 802.1 la signals received from the end user terminal to the assigned CATV network frequencies (960 - 1035 MHz for example), and up-converts the WiFi signals carried on the CATV network (1080 - 1155 MHz) to the original 802.1 lb or 802.1 la signals to be transmitted to the end user terminal. The EID WiFi is working in switch mode, and the uplink and downlink switches are controlled by the local control logic, according to the sensing of uplink and downlink signals.
[69] In the embodiment of FIG. 10, for example, the EID-WiFi switched module UDC converts the FDD Downlink WLAN signals received from the CATV network in the frequency band of 960 - 1035 MHz and/or 500 - 750/860 MHz to TDD Downlink signals to be transmitted at the customer premises using the WiFi frequencies (2.4GHz and/or 5.3GHz) and converts back TDD uplink signals received from the customer premises in the WiFi frequency band (2.4GHz and/or 5.3GHz) to FDD uplink signals to be transmitted on the CATV network at the frequency band 1080 - 1155 MHz and/or 5 - 45/65 MHz towards the AP.
[70] FIG. 11 shows a dual band EID-WiFi UDC. The dual band EID WiFi unit enables the reception and transmission of both 802.1 lb and 802.1 la, simultaneously, on the CATV network and to the end user. This unit enables the use of both standards simultaneously on the network. For example, 802.1 lb may be converted to 20 MHz bandwidth uplink, and 20 MHz downlink within the frequency range of the CATV, (960
- 980 MHz, and 1080 - 1100 MHz). 802.1 la may be converted to another 20 MHz bandwidth uplink, and 20 MHz downlink within the frequency range of the CATV, (985
- 1005 MHz, and 1105 - 1125 MHz). [71] FIGs. 12 and 13 illustrate the original 802.11b, 802.11g and 802.11a frequencies. Note that 802.1 lb and 802.1 lg share the same frequency channels. [72] FIG. 14 illustrates a frequency chart of the original 802.1 lb, and 802.1 lg non- overlapping frequencies. These original, non-overlapping frequencies are shifted to downlink and uplink frequencies such that the WLAN WiFi signals can be carried on the
CATV network spectrum.
[73] FIG. 15 illustrates a frequency chart of the original 802.1 lb, and 802.1 lg overlapping frequencies. These original overlapping frequencies are shifted as needed to downlink and uplink frequencies such that the WLAN WiFi signals can be carried on the
CATV network spectrum.
[74] FIG. 16 illustrates a frequency chart of the original 802.1 la frequencies.
These original frequencies are shifted as needed to downlink and uplink frequencies such that the WLAN WiFi signals can be carried on the CATV network spectrum.
[75] FIG. 17 illustrates one bandwidth allocation plan for 802.1 lb, and 802.1 lg non-overlapping channels (shifted frequency out of the CATV spectrum) at frequencies
1080 - 1155 MHz for Uplink and 960 - 1035 MHz for Downlink.
[76] FIG. 18 illustrates one bandwidth allocation plan for 802. lib, and
802.1 lg of overlapping channels (shifted frequency out of the CATV spectrum) at frequencies 1080 - 1155 MHz for Uplink and 960 - 1035 MHz for Downlink.
[77] FIG. 19 illustrates one bandwidth allocation plan for 802.11 a channels
(shifted frequency working out of the CATV spectrum) at frequencies 1080 - 1155 MHz for Uplink and 960 - 1035 MHz for Downlink.
[78] FIG. 20 illustrates one bandwidth allocation plan for 802. l ib, and
802.1 lg and/or 802.11a channels working simultaneously (out of the CATV spectrum) at frequencies 1080 - 1155 MHz for Uplink and 960 - 1035 MHz for Downlink. [79] Although exemplary embodiments of the present invention have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims, including the full scope of equivalents thereof.

Claims

WHAT IS CLAIMED IS:
1. A communication system, comprising: a CATV network; a wireless entrance module (WEM) and an access point (AP) interfaced to the CATV network at the wireless entrance module (WEM); and an Enhanced In Door WiFi Unit (EID-WiFi) connected to the CATV network; wherein the WEM comprises means for downstream carrier sensing of uplink signals and retransmitting the uplink signals back to a downstream path.
2. The communication system as claimed in claim 1, further comprising a wireless transport module (WTM) at one or more active points of the CATV network, between the EID-WiFi and the WEM.
3. The communication system as claimed in claim 2, wherein the WTM forwards signals comprising WLAN signals and cellular signals, simultaneously.
4. The communication system as claimed in claim 1, wherein the AP communicates with end user devices according to one or more of the 802.1 la, 802.1 lb, and 802.1 lg wireless standards.
5. The communication system as claimed in claim 3, wherein the EID-WiFi and the WEM are adapted to simultaneously communicate multiple signals according to one or more of the 802.11a, 802.11b, and 802.1 lg standards.
6. The communication system as claimed in claim 1, wherein the system communicates WLAN signals according to CSMA/CA based protocols.
7. A wireless entrance module (WEM), comprising: means for communicating with a wireless access point (AP); means for communicating WLAN signals of the AP over a CATV network; means for converting signals between WLAN frequency bands and CATV network frequency bands; and means for downstream carrier sensing of uplink signals and retransmitting the uplink signals back to a downstream path.
8. The WEM as claimed in claim 7, further comprising a dual multiple band up and down converter (UDC) adapted to simultaneously communicate multiple signals according to one or more of the 802.11a, 802.11b, and 802.1 lg standards.
9. The WEM as claimed in claim 7, communicating the WLAN signals according to CSMA CA based protocols.
10. An Enhanced In Door WiFi Unit (EID-WiFi), comprising: means for communicating with a WiFi device; means for communicating WLAN signals over a CATV network; means for converting signals between WLAN frequency bands and CATV network frequency bands; means for sensing one or more of uplink and downlink signals; and means for controlling uplink and/or downlink paths of the signals.
11. The EID-WiFi as claimed in claim 10, further comprising a plurality of band up and down converters (UDC) adapted to simultaneously communicate multiple signals according to one or more of the 802.1 la, 802.1 lb, and 802.1 lg standards.
12. The EID-WiFi as claimed in claim 10, wherein the EID-WiFi communicates WLAN signals according to CSMA CA based protocols.
13. A method for providing WLAN communication through a CATV network, comprising: frequency shifting WLAN signals to a frequency spectrum operable for transmission over the CATV network; and transmitting the frequency shifted WLAN signals uncoupled from CATV signals over the CATV network.
14. The method according to claim 13, further comprising: receiving shifted downlink WLAN signals from the CATV network; converting the shifted downlink WLAN signals to original frequency downlink WLAN signals; outputting the original frequency WLAN signals to an antenna; receiving original frequency uplink WLAN signals from the antenna; converting the original frequency uplink WLAN signals to shifted uplink WLAN signals; and outputting the shifted uplink WLAN signals to the CATV network.
15. The method according to claim 13, wherein the WLAN signals are shifted to a band in a frequency range of 960 to 1155 MHz.
16. The method according to claim 13, wherein the WLAN signals are shifted to a band in a frequency range of 1080 to 1155 MHz Uplink and 960 to 1035 MHz Downlink.
17. The method according to claim 13, wherein the WLAN signals are communicated according to CSMA/CA based protocols.
PCT/US2005/002442 2004-01-26 2005-01-26 Wlan services over catv using csma/ca WO2005072356A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05712063A EP1709825A2 (en) 2004-01-26 2005-01-26 Wlan services over catv using csma/ca

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53850804P 2004-01-26 2004-01-26
US60/538,508 2004-01-26

Publications (2)

Publication Number Publication Date
WO2005072356A2 true WO2005072356A2 (en) 2005-08-11
WO2005072356A3 WO2005072356A3 (en) 2006-01-05

Family

ID=34825986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/002442 WO2005072356A2 (en) 2004-01-26 2005-01-26 Wlan services over catv using csma/ca

Country Status (2)

Country Link
EP (1) EP1709825A2 (en)
WO (1) WO2005072356A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060114A1 (en) * 2006-09-12 2009-05-20 Thomson Licensing Bidirectional signal transmission apparatus and method
WO2009149101A1 (en) 2008-06-05 2009-12-10 Qualcomm Incorporated Remote distributed antenna
CN102752179A (en) * 2012-07-06 2012-10-24 全军 Radio frequency signal and CATV (Community Antenna Television) signal hybrid distribution device, and method for device
CN113841414A (en) * 2019-03-19 2021-12-24 Ppc宽带股份有限公司 Communication system for communicating wireless signals via cable

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073930A (en) * 1989-10-19 1991-12-17 Green James A Method and system for receiving and distributing satellite transmitted television signals
WO2002091618A1 (en) * 2001-05-02 2002-11-14 Passover, Inc. Multi-band cellular service over catv network
US6895310B1 (en) * 2000-04-24 2005-05-17 Usa Technologies, Inc. Vehicle related wireless scientific instrumentation telematics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073930A (en) * 1989-10-19 1991-12-17 Green James A Method and system for receiving and distributing satellite transmitted television signals
US6895310B1 (en) * 2000-04-24 2005-05-17 Usa Technologies, Inc. Vehicle related wireless scientific instrumentation telematics
WO2002091618A1 (en) * 2001-05-02 2002-11-14 Passover, Inc. Multi-band cellular service over catv network

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2060114A1 (en) * 2006-09-12 2009-05-20 Thomson Licensing Bidirectional signal transmission apparatus and method
WO2009149101A1 (en) 2008-06-05 2009-12-10 Qualcomm Incorporated Remote distributed antenna
CN102752179A (en) * 2012-07-06 2012-10-24 全军 Radio frequency signal and CATV (Community Antenna Television) signal hybrid distribution device, and method for device
CN113841414A (en) * 2019-03-19 2021-12-24 Ppc宽带股份有限公司 Communication system for communicating wireless signals via cable
CN113841414B (en) * 2019-03-19 2024-03-29 Ppc宽带股份有限公司 Communication system for communicating wireless signals via a cable

Also Published As

Publication number Publication date
WO2005072356A3 (en) 2006-01-05
EP1709825A2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US9026036B2 (en) Method and system for integrating an RF module into a digital network access point
EP1384333B1 (en) Multi-band cellular service over catv network
US10097257B2 (en) Wireless communications network using frequency conversion of MIMO signals
US9131265B2 (en) Method and system for providing satellite television service to a premises
US7366150B2 (en) Indoor local area network system using ultra wide-band communication system
US8554137B2 (en) Method and system for short range and wireless LAN coexistence
US7174165B2 (en) Integrated wireless local loop (WLL) and wireless local area network (WLAN) transceiver apparatus
US20070019959A1 (en) Apparatus and method for transferring signals between a fiber network and a wireless network antenna
US20120201544A1 (en) Access system and method for transmitting ethernet signal and mobile communication signal
CN101304279B (en) Radio frequency extension apparatus and base station system
US20040077310A1 (en) Hybrid networking system
CN110958617B (en) Signal transmission system and signal transmission method
WO2005072356A2 (en) Wlan services over catv using csma/ca
WO2004015902A2 (en) Wlan services over catv
CN101461150B (en) A system for carrying out signal distribution using indoor television cable
EP1600015A2 (en) Multi-band wifi, cellular and catv upstream service over catv network
CN109391284B (en) Signal conversion, signal coupling equipment and wireless network coverage system
CN100499634C (en) Method and device for carrying out bidirectional communication by using cable TV network
EP1414241B1 (en) System for the transparent transfer of radio frequency signals onto a cabled network
WO2021244508A1 (en) Communication device and communication system
KR20020015456A (en) System and method of B-WLL channel repeater using ISM frequency band
WO2001093475A1 (en) Mobile radio service over catv network
KR20170097316A (en) METHOD AND APPARATUS FOR EXPANDING WiFi THROUGH CABLES AT HOME
AU2002307330A1 (en) Multi-band cellular service over catv network
CN101292529A (en) Method for transferring signals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005712063

Country of ref document: EP

NENP Non-entry into the national phase in:

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005712063

Country of ref document: EP