WO2005086229A1 - 光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法 - Google Patents

光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法 Download PDF

Info

Publication number
WO2005086229A1
WO2005086229A1 PCT/JP2005/003457 JP2005003457W WO2005086229A1 WO 2005086229 A1 WO2005086229 A1 WO 2005086229A1 JP 2005003457 W JP2005003457 W JP 2005003457W WO 2005086229 A1 WO2005086229 A1 WO 2005086229A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
glass member
light
opening
transmitting window
Prior art date
Application number
PCT/JP2005/003457
Other languages
English (en)
French (fr)
Inventor
Junichi Nakaoka
Kenji Ikeuchi
Makoto Takahashi
Original Assignee
Neomax Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co., Ltd. filed Critical Neomax Materials Co., Ltd.
Priority to JP2006519383A priority Critical patent/JPWO2005086229A1/ja
Priority to US10/548,224 priority patent/US20060131600A1/en
Publication of WO2005086229A1 publication Critical patent/WO2005086229A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers

Definitions

  • Light transmitting window member semiconductor package having light transmitting window member, and method of manufacturing light transmitting window member
  • the present invention relates to a light transmitting window member, a semiconductor package having the light transmitting window member, and a method of manufacturing the light transmitting window member, and more particularly, to a light transmitting window including a glass member capable of transmitting light.
  • the present invention relates to a member, a semiconductor package provided with a light transmitting window member, and a method of manufacturing the light transmitting window member.
  • various light-transmitting window members including a glass member capable of transmitting light used for a semiconductor package have been known.
  • a light transmitting window member is disclosed, for example, in Japanese Patent Application Laid-Open No. Hei 9-148469.
  • an opening (opening area) for defining a light passage area is formed in a glass member (glass window) using a metal plating or the like.
  • a light transmitting window member having a structure in which a gold-plated portion of a glass member provided with is bonded to a metal frame provided with an opening for transmitting light via a solder layer.
  • FIG. 15 to FIG. 18 are views showing the overall configuration of a conventional light transmitting window member having such a structure.
  • FIG. 19 and FIG. 20 are perspective views for explaining a manufacturing process of the conventional light transmitting window member shown in FIG.
  • FIG. 21 is a perspective view showing an overall configuration of a semiconductor package including the light transmitting window member shown in FIG.
  • FIG. 22 is a perspective view for explaining a manufacturing process of the semiconductor package provided with the light transmitting window member shown in FIG.
  • a conventional light transmitting window member 40 is made of glass capable of transmitting light.
  • a member 21, a metal frame 22, a gold plating layer 23, and a chromium deposition layer 24 are provided.
  • the glass member 21 is fitted into the opening 22a of the frame 22. In this state, the outer surface of the glass member 21 and the inner surface of the opening 22a of the frame 22 are joined by glass welding.
  • the frame 22 includes an outer peripheral portion having a small thickness (about 0.2 mm) and an inner side portion located inside the outer peripheral portion and having a thickness larger than the outer peripheral portion (about 3 mm). I have.
  • the thickness of the inner portion of the frame 22 allows the joining length (joining allowance) of the joining region with the glass member 21 to be increased to some extent, and the glass member after joining the glass member 21 and the frame 22.
  • the thickness of the glass member 21 is set to be slightly smaller than the thickness of the glass member 21 so that the surface of the glass member 21 can be easily polished by slightly projecting the surface of the frame 22 from the surface of the frame 22.
  • the gold plating layer 23 is formed so as to cover the outer surface of the frame 22.
  • the chromium deposition layer 24 is formed so as to extend over a part of the gold plating layer 23 on the lower surface of the frame 22 and a part of the lower surface of the glass member 21.
  • a conventional light transmitting window member 40 is made of, for example, a metal member in which a DMD element (Digital Micromirror Device) (not shown) as a display element used in a projector is housed. It is joined to the housing 50.
  • the light transmitting window member 40 and the housing 50 constitute a conventional semiconductor package 60.
  • a method of manufacturing the conventional light transmitting window member 40 will be described.
  • a metal frame 22 having an outer peripheral portion having a small thickness and including an inner portion having a large thickness having an opening 22a is formed. That is, the outer peripheral portion of the frame 22 having a small thickness is formed by cutting, and the opening 22a of the frame 22 is formed by pressing. Then, the glass member 21 is inserted into the opening 22a of the frame 22. Thereafter, the entirety of the glass member 21 and the frame 22 is heated to a temperature equal to or higher than the softening point of the glass member 21 (about 800 ° C.), so that the outer surface of the glass member 21 is formed inside the opening 22a of the frame 22.
  • a gold plating layer 23 is formed using an electrolytic plating method so as to cover the entire outer surface of the frame 22.
  • the glass member 21 is softened, the flatness and parallelism of the glass member 21 are reduced.
  • the upper and lower surfaces of the glass member 21 are polished to improve the flatness and parallelism of the surface of the glass member 21. After polishing the upper and lower surfaces of the glass member 21 in this way, as shown in FIG.
  • the chromium vapor-deposited layer 24 is formed so as to form an opening region 24a for defining a light incident region.
  • the conventional light transmitting window member 40 shown in FIG. 15 is formed.
  • the light transmitting window member 40 formed as described above has the lower surface of the thin outer peripheral portion of the frame 22 attached to the upper surface 50a of the outer peripheral portion of the housing 50 and the housing 50. Are bonded so as to be sealed. Thus, a semiconductor package 60 including the conventional light transmission window member 40 is formed.
  • the outer surface of the glass member 21 and the inner surface of the opening 22a of the frame 22 are welded while pressing.
  • the thickness of the inner portion of the frame 22 should be made as large as the thickness of the glass member 21. There is a need. For this reason, as compared with the case where the thickness of the frame 22 is small, the material cost of the frame 22 is increased, and it is difficult to simplify the structure of the light transmission window member 40 due to the large thickness of the frame 22. There is a problem that becomes.
  • the conventional light transmitting window member 40 it is necessary to provide an opening 22a in the frame 22 and to provide an opening area 24a on the lower surface of the glass member 21 for defining a light transmitting area. Therefore, it was difficult to simplify the structure and the manufacturing process.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to simplify the structure and to simplify the manufacturing process.
  • Light-transmitting window member, semiconductor package having light-transmitting window member, and light transmission It is an object of the present invention to provide a method for manufacturing a window member.
  • a light transmission window member is a light transmission window member used for a semiconductor package, which defines a light passage area.
  • a metal flat plate frame having an opening, and a glass member capable of transmitting light which is bonded to the upper surface of the flat plate frame having the opening without an adhesive material so as to cover the opening.
  • the opening is formed on the upper surface of the metal plate-shaped frame having the opening for defining the light passage area.
  • a light-shielding film such as chrome, which is necessary for providing an opening area in the glass member, is deposited. The step of performing is unnecessary. As a result, the manufacturing process of the light transmitting window member can be simplified.
  • the metal plate-shaped frame having an opening that defines a light transmission region and the glass member are in contact with each other via the A1 layer.
  • A1 ⁇ -alumina
  • the glass member is anodically bonded to an upper surface of a flat frame having an opening that defines a light transmitting region.
  • the bonding temperature between the upper surface of the flat frame and the glass member can be made lower than the softening point of the glass member.
  • the softening of the surface of the glass member is suppressed by the temperature at the time of joining with the glass member.
  • the flatness and parallelism of the glass member can be prevented from lowering, so that it is not necessary to polish the surface of the glass member after joining the upper surface of the flat frame and the glass member.
  • the polishing can be performed in a single state of the glass member before joining the glass member and the frame, which is compared with the case where the glass member joined to the frame is polished after the joining between the glass member and the frame.
  • polishing of the glass member becomes easier. Thereby, the polishing process of the glass member can be simplified.
  • the glass member is a flat frame having an opening that defines a light transmitting region at a temperature equal to or lower than the softening point of the glass member. It is joined to the upper surface.
  • the surface of the glass member is easily prevented from being softened by the temperature at the time of joining the flat frame and the glass member.
  • the polishing can be performed in a single state of the glass member before the joining of the glass member and the frame, which is compared with a case where the glass member joined to the frame is polished after the joining of the glass member and the frame.
  • the polishing of the glass member becomes easier. Thereby, the polishing process of the glass member can be simplified.
  • the upper surface of the flat plate-shaped frame having an opening that defines the light transmitting region, on the side to which the glass member is joined is mirror-finished.
  • the housing of the semiconductor package the housing can be held in a sealed state by the light transmitting window member.
  • the metal frame having an opening that defines a light transmitting region has a thermal expansion coefficient close to a thermal expansion coefficient of the glass member.
  • the frame having an opening that defines a light-transmitting region
  • Iron 'nickel' cobalt alloy power also becomes.
  • the thermal expansion coefficient of the frame can be easily determined by the thermal expansion coefficient of the glass member. It can be close to the coefficient.
  • the glass member contains an alkali ion.
  • the lower surface of the metal frame is joined to the metal housing of the semiconductor package so as to hermetically close the housing.
  • the housing can be easily formed by the light transmitting window member formed by joining the metal frame having the opening for defining the light passage area and the glass member. Can be sealed.
  • the lower surface of the metal frame is joined to the metal housing of the semiconductor package by resistance welding.
  • the lower surface of the metal frame and the housing can be joined by heating only the joining portion.
  • the temperature of the glass member at the time of joining the metal frame and the housing can be made lower than the softening point of the glass member. Accordingly, softening of the surface of the glass member is suppressed.
  • the flatness and parallelism of the glass member can be suppressed from being reduced, it is possible to suppress the light transmission characteristics of the glass member from being reduced.
  • the temperature of the semiconductor element housed in the housing at the time of joining the metal frame and the housing can be suppressed from rising, the temperature at the time of joining the metal frame and the housing can be suppressed.
  • Semiconductor element housed in housing is destroyed due to Can be prevented.
  • the semiconductor package according to the second aspect of the present invention includes a metal flat plate frame having an opening for defining a light passage area, and an opening formed on an upper surface of the flat frame having the opening.
  • a light-transmitting window member including a glass member capable of transmitting light, which is bonded without interposing an adhesive, so as to cover the portion.
  • the opening is covered on the upper surface of the metal plate-shaped frame having the opening for defining the light passage area.
  • the glass member is joined to the inner surface of the opening of the frame by joining the glass member capable of transmitting light without using an adhesive, it is not necessary to increase the thickness of the frame, and It is not necessary to provide an opening area for defining a light incident area on the glass member side, in addition to the above-mentioned opening. Thereby, the thickness of the frame can be reduced, and the structure of the light transmitting window member can be simplified.
  • a light-shielding film such as chrome, which is necessary for providing an opening area in the glass member, is deposited. The step of performing is unnecessary. As a result, the manufacturing process of the light transmitting window member can be simplified.
  • the metal plate-shaped frame having an opening for defining a light transmission region and the glass member are joined via an A1 layer.
  • A1 layer a portion of A1 ( ⁇ -alumina) is extended in a comb shape inside the interface of the glass member. Therefore, the bonding strength between the A1 layer and the glass member can be increased. Thereby, the joining strength between the metal frame and the glass member can be increased.
  • the glass member is anodically bonded to the upper surface of the flat frame.
  • the bonding temperature between the upper surface of the flat frame and the glass member can be set lower than the softening point of the glass member, so that the bonding time between the flat frame and the glass member can be reduced. Due to the temperature, softening of the surface of the glass member is suppressed. As a result, the flatness and parallelism of the glass member are reduced. Since the lowering can be suppressed, there is no need to polish the surface of the glass member after joining the upper surface of the flat frame and the glass member.
  • the glass member can be polished in a single state before the glass member and the frame are joined, compared to the case where the glass member joined to the frame is polished after the glass member is joined to the frame. Polishing of the glass member becomes easier. Thereby, the polishing process of the glass member can be simplified.
  • the glass member is bonded to an upper surface of a flat frame having an opening that defines a light transmission region at a temperature equal to or lower than the softening point of the glass member.
  • the surface of the glass member is easily prevented from being softened by the temperature at the time of joining the flat frame and the glass member.
  • the polishing can be performed in a single state of the glass member before the joining of the glass member and the frame, which is compared with a case where the glass member joined to the frame is polished after the joining of the glass member and the frame.
  • the polishing of the glass member becomes easier. Thereby, the polishing process of the glass member can be simplified.
  • the semiconductor package according to the second aspect preferably further includes a housing that is joined to the lower surface of the metal frame so as to be hermetically sealed by the lower surface of the metal frame, and that houses the semiconductor element.
  • the housing can be easily formed by the light transmitting window member formed by joining the glass member and the metal frame having the opening for defining the light passage area. Can be sealed.
  • the metal frame and the housing have the same material strength.
  • the coefficient of thermal expansion of the metal frame and the coefficient of thermal expansion of the housing can be made the same, so that if the temperature of the metal frame and the nozzle is lowered to room temperature after joining.
  • the metal frame and the housing are made of an iron-nickel-cobalt alloy.
  • the thermal expansion coefficient of the frame and the housing is determined by the glass member.
  • the thermal expansion coefficient of the metal frame and the difference between the thermal expansion coefficient of the housing and the thermal expansion coefficient of the glass member are reduced. It is possible to suppress occurrence of warpage or distortion in the member.
  • the lower surface of the metal frame is joined to the metal housing of the semiconductor package by resistance welding.
  • the lower surface of the metal frame and the nozzle can be joined by heating only the joining portion.
  • the temperature of the glass member at the time of joining the metal frame and the housing can be made lower than the softening point of the glass member. Softening of the surface of the member is suppressed.
  • the flatness and the parallelism of the glass member can be prevented from decreasing, so that the light transmission characteristics of the glass member can be suppressed from decreasing.
  • the temperature of the semiconductor element housed in the housing at the time of joining the metal frame and the housing can be suppressed from rising, the temperature rise at the time of joining the metal frame and the housing can be suppressed.
  • the semiconductor element housed in the housing can be prevented from being broken.
  • a method for manufacturing a light transmitting window member according to a third aspect of the present invention is a method for manufacturing a light transmitting window member used for a semiconductor package, wherein an opening for defining a light passage area is provided.
  • the bonding temperature between the upper surface of the flat frame and the glass member can be lower than the softening point of the glass member.
  • the softening of the surface of the glass member is suppressed by the temperature at the time of joining the glass member and the glass member.
  • the flatness and parallelism of the glass member can be prevented from lowering, so that it is not necessary to polish the surface of the glass member after joining the upper surface of the flat frame to the glass member.
  • the glass member can be polished in a single state before the glass member and the frame are joined, so that the glass member joined to the frame is polished after the glass member is joined to the frame.
  • the polishing of the glass member becomes easier.
  • the polishing process of the glass member can be simplified.
  • a glass member capable of transmitting light is joined to the upper surface of a metal plate-shaped frame having an opening for defining a light passage area without using an adhesive material, thereby opening the frame. Unlike the case where a glass member is joined to the inner surface of the part, it is not necessary to increase the thickness of the frame, and an opening area for defining the light incident area is provided on the glass member side separately from the opening of the frame No need.
  • the thickness of the frame can be reduced, and the structure of the light transmitting window member can be simplified.
  • a light-shielding film such as chrome, which is necessary for providing an opening area in the glass member, is deposited. The step of performing is unnecessary. As a result, the manufacturing process of the light transmitting window member can be simplified.
  • the step of anodic bonding includes: a metal flat plate-shaped frame having an opening that defines a light transmission region; A step of anodic bonding with a glass member via an A1 layer is included.
  • a step of anodic bonding with a glass member via an A1 layer is included.
  • the anodic bonding step includes a step of anodic bonding the frame and the glass member via the A1 layer.
  • the anodic bonding step is performed before the anodic bonding step.
  • the method further comprises the step of standing and forming an A1 layer on a bonding surface of the frame to the glass member. With this configuration, the frame and the glass member can be easily anodically bonded via the A1 layer.
  • the method for manufacturing a light transmitting window member according to the third aspect further includes a step of polishing a bonding surface of the glass member to the frame prior to the step of anode bonding.
  • the glass member can be easily polished in a single state.
  • FIG. 1 is a perspective view showing an overall configuration of a light transmitting window member according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the overall configuration of the light transmitting window member according to the first embodiment shown in FIG. 1.
  • FIG. 3 is a sectional view taken along the line 100-100 in FIG. 2.
  • FIG. 4 is a bottom view showing the entire configuration of the light transmitting window member according to the first embodiment shown in FIG. 1.
  • FIG. 5 is a perspective view for explaining a manufacturing process of the light transmitting window member according to the first embodiment shown in FIG. 1.
  • FIG. 6 is a perspective view showing the overall configuration of the semiconductor package according to the first embodiment of the present invention.
  • FIG. 7 is a perspective view for explaining a manufacturing process of the semiconductor package according to the first embodiment shown in FIG. 6.
  • FIG. 8 is a perspective view showing an overall configuration of a light transmitting window member according to a second embodiment of the present invention.
  • FIG. 9 is a plan view showing the overall configuration of the light transmitting window member according to the second embodiment shown in FIG. 8.
  • FIG. 10 is a sectional view taken along the line 200—200 in FIG.
  • FIG. 11 is a bottom view showing the entire configuration of the light transmitting window member according to the second embodiment shown in FIG. 8.
  • FIG. 12 is a perspective view for explaining a manufacturing process of the light transmitting window member according to the second embodiment shown in FIG. 8.
  • FIG. 13 is a perspective view showing an overall configuration of a semiconductor package according to a second embodiment of the present invention.
  • FIG. 14 is a perspective view for explaining a light transmission window member according to a modification of the second embodiment of the present invention.
  • FIG. 15 is a perspective view showing the overall configuration of a conventional light transmitting window member.
  • FIG. 16 is a plan view showing the entire configuration of the conventional light transmitting window member shown in FIG.
  • FIG. 17 is a sectional view taken along the line 300—300 in FIG.
  • FIG. 18 is a bottom view showing the entire configuration of the conventional light transmitting window member shown in FIG.
  • FIG. 19 is a perspective view for explaining a manufacturing process of the conventional light transmitting window member shown in FIG.
  • FIG. 20 is a perspective view from the lower surface direction for explaining a manufacturing process of the conventional light transmitting window member shown in FIG. 15.
  • FIG. 21 is a perspective view showing the entire configuration of a conventional semiconductor package.
  • FIG. 22 is a perspective view for explaining a manufacturing process of the conventional semiconductor package shown in FIG. 21.
  • FIG. 1 to FIG. 4 are views showing the entire configuration of the light transmitting window member according to the first embodiment of the present invention.
  • FIG. 5 is a perspective view for explaining a manufacturing process of the light transmitting window member according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view showing an overall configuration of a semiconductor package having the light transmitting window member shown in FIG. 1
  • FIG. 7 is a view for explaining a manufacturing process of the semiconductor package shown in FIG. It is a perspective view.
  • the light transmission window member 10 transmits light as shown in FIGS. It includes a permeable glass member 1, a frame 2 made of Kovar (iron 'nickel' cobalt alloy (for example, 29Ni—16Co-Fe)), and a gold plating layer 3!
  • the glass member 1 has an outer peripheral portion smaller than the outer peripheral portion of the frame 2 and has a thickness of about 3 mm or more. Further, the glass member 1 contains alkali ions such as Na. The glass member 1 has a thermal expansion coefficient of about 5. 15 X 10- 6 ZK- about 5. 45 ⁇ 10- 6 ⁇ . The glass member 1 has a flatness of about 2 m or less and a parallelism of about 10 m or less, and the lower surface (joining surface) of the glass member 1 has a surface roughness (about 0.1 ⁇ m or less). R max). The lower surface of the glass member 1 is anodically bonded to the upper surface of the flat frame 2 in the bonding region 4 without using an adhesive.
  • the frame 2 is formed in a flat plate shape having a small thickness of about 0.2 mm, and has an opening 2a at the center for defining a light passage area. Further, Kovar (29Ni- 16Co- Fe) made of frame 2 has a thermal expansion coefficient of about 4. 6 X 10- 6 ZK- about 5. 2 X 10- 6 ⁇ . In other words, frame over arm 2 has a thermal expansion coefficient near the thermal expansion coefficient of the glass member 1 (about 5. 15 X 10- 6 ⁇ - about 5. 45 X 10- 6 ⁇ ) (approximately 4. 6 X 10- 6 Zetakappa- having about 5. 2 X 10- 6 ⁇ ).
  • the upper surface (joining surface) of Frame 2 is mirror-finished.
  • the gold plating layer 3 is formed so as to cover all regions of the frame 2 except for the bonding region 4.
  • the gold plating layer 3 is provided to prevent corrosion of the surface of the frame 2.
  • the light transmission window member 10 is, for example, a Kovar (for example, 29 ⁇ -16 Co.) housing a DMD element (not shown) as a display element used in a projector. It is connected to a housing 20 made of Fe) by resistance welding so as to seal the housing 20.
  • the light transmitting window member 10 and the housing 20 constitute a semiconductor package 30 for the DMD element.
  • the method for manufacturing the light transmitting window member 10 and the method for manufacturing the semiconductor package 30 including the light transmitting window member 10 according to the first embodiment will be described. explain about.
  • the upper surface and the lower surface (joining surface) of the glass member 1 capable of transmitting light are polished to form a bonding surface (lower surface) having a surface roughness (Rmax) of about 0.1 ⁇ m or less.
  • a glass member 1 having a flatness of about 2 ⁇ m or less and a parallelism of about 10 ⁇ m or less is formed.
  • the upper surface (joining surface) of the frame 2 is mirror-finished.
  • the lower surface of the glass member 1 is anodically bonded to the upper surface of the frame 2 so as to cover the opening 2a of the frame 2 below the softening point of the glass member 1.
  • the anodic bonding conditions in this case are as follows: temperature: about 400 ° C to about 500 ° C, and applied voltage: about 500 V or more. Since the glass member 1 contains alkali ions such as Na, it is possible to easily anodically bond the glass member 1 and the frame 2 made of Kovar.
  • a gold plating layer 3 is formed using an electrolytic plating method so as to cover the entire outer surface of the frame 2.
  • the light transmission window member 10 according to the first embodiment shown in FIG. 1 is formed.
  • the lower surface of the frame 2 of the light transmitting window member 10 formed as described above is resistance-welded to the upper surface 20a of the outer periphery of the nosing 20 in which a DMD element (not shown) is stored. No, join the housing 20 so as to seal it.
  • the welding conditions for resistance welding are as follows: current: about 100 OA, conduction time: about 5 msec or less, and pressure: about lkg or more.
  • a semiconductor package 30 for the DMD element is formed, as shown in FIG.
  • the glass member 1 capable of transmitting light is provided on the upper surface of the flat plate frame 2 made of Kovar having the opening 2a for defining the light passage area.
  • the glass member 21 is bonded to the inner surface of the opening 22a of the frame 22 shown in FIG. 17 by performing anodic bonding without using an adhesive, it is necessary to increase the thickness of the frame 2.
  • the glass member 1 is anodically bonded to the upper surface of the flat frame 2 to lower the bonding temperature between the upper surface of the flat frame 2 and the glass member 1.
  • the flatness and parallelism of the glass member 1 can be prevented from lowering, so that the surface of the glass member 1 is polished after the upper surface of the flat frame 2 is joined to the glass member 1. There is no need to do this.
  • the glass member 1 can be polished in a single state before the glass member 1 and the frame 2 are joined, the glass member joined to the frame 2 after the glass member 1 and the frame 2 are joined.
  • the polishing of the glass member 1 is easier than in the case of polishing 1. Thereby, the polishing process of the glass member 1 can be simplified.
  • the lower surface (joining surface) of the glass member 1 is formed to have a surface roughness (Rmax) of about 0.1 ⁇ m or less, and the upper surface of the flat frame 2 is formed. Since the (joining surface) is mirror-finished, it is possible to suppress the occurrence of a gap in the joining surface between the upper surface of the flat frame 2 and the lower surface of the glass member 1. It is possible to suppress air from passing through the joint surface between the glass member 1 and the lower surface.
  • the housing 20 is sealed by the light transmitting window member 10. Can be kept in a state.
  • the Kovar frame 2 is configured to have a thermal expansion coefficient near the thermal expansion coefficient of the glass member 1, so that the Kovar frame 2 and the Kovar frame 2 are joined after joining.
  • the temperature of the glass member 1 drops to room temperature, it is necessary to suppress the occurrence of warpage or distortion in the glass member due to the difference between the thermal expansion coefficient of the Kovar frame 2 and the thermal expansion coefficient of the glass member 1. Can be.
  • the lower surface of the Kovar frame 2 is joined to the upper surface 20a of the outer peripheral portion of the Kovar housing 20 in which a DMD element (not shown) is accommodated by resistance welding. Therefore, in resistance welding, a current is instantaneously applied to the welded part and welding is performed by the resistance heating. it can. As a result, the temperature of the glass member 1 at the time of joining the Kovar frame 2 and the housing 20 can be lower than the softening point of the glass member 1, so that the joining of the Kovar frame 2 and the housing 20 can be performed. Depending on the temperature at the time In addition, softening of the surface of the glass member 1 is suppressed.
  • the flatness and the parallelism of the glass member 1 can be suppressed from being reduced, so that the light transmission characteristics of the glass member 1 can be prevented from being reduced. Further, since the temperature of a DMD element (not shown) stored in the housing 20 at the time of joining the Kovar frame 2 and the housing 20 can be suppressed, the Kovar frame 2 and the housing 20 are connected to each other. It is possible to prevent a DMD element (not shown) housed in the housing 20 from being destroyed due to a rise in temperature at the time of joining.
  • FIGS. 8 to 11 are views showing the entire configuration of a light transmitting window member according to a second embodiment of the present invention.
  • FIG. 12 is a perspective view for explaining a manufacturing process of the light transmitting window member according to the second embodiment of the present invention.
  • FIG. 13 is a perspective view showing an overall configuration of a semiconductor knockout provided with the light transmitting window member shown in FIG.
  • the glass member 1 and the frame 2 made of Kovar are anodic-bonded via the A1 layer 5.
  • the lower surface of the glass member 1 is flat in the bonding region 4 (see FIGS. 10 and 11).
  • the A1 layer 5 has a thickness of about 0.05 / zm to about 100 / zm. If the thickness of the A1 layer 5 is smaller than about 0.05 / zm, A1 may diffuse into the frame 2 where the Kovar force is also high, and the A1 layer 5 may disappear.
  • the thickness of the A1 layer 5 is larger than about 100 m, the tensile stress remains in the glass member 1 due to the difference in the thermal expansion coefficient between the A1 layer 5 and the glass member 1, and the glass portion Material 1 may be damaged.
  • the thickness of the A1 layer 5 is preferably set to about 0.05 ⁇ m to about 100 ⁇ m. Further, the A1 layer 5 is formed only in the joint region 4 of the frame 2. As shown in FIG. 13, the light transmitting window member 10a and the housing 20 constitute a semiconductor package 30a for a DMD element.
  • the other structure of the second embodiment is the same as that of the first embodiment.
  • a method for manufacturing the light transmitting window member 10a according to the second embodiment will be described with reference to FIGS. 8 and 12.
  • the upper surface and the lower surface (joining surface) of the glass member 1 capable of transmitting light are polished to form a joining surface (Rmax) having a surface roughness of about 0.1 ⁇ m or less.
  • Rmax joining surface
  • a glass member 1 having a lower surface) and a flatness of about 2 ⁇ m or less and a parallelism of about 10 ⁇ m or less is formed.
  • an opening 2a for defining a light passage area is formed in the flat frame 2 by press working, and the upper surface (joining surface) of the frame 2 is mirror-finished. Then, the upper surface of the frame 2 is cleaned using pure water or alcohol. Thereafter, A1 is vapor-deposited only on the joint region 4 of the frame 2 using a mask, thereby forming an A1 layer 5 having a thickness of about 0.05 m to about 100 m. Since the upper surface of the frame 2 is mirror-finished, the upper surface of the A1 layer 5 deposited on the upper surface of the frame 2 is also mirror-finished. Then, the frame 2 and the A1 layer 5 are subjected to diffusion annealing at a temperature of about 400 ° C. to about 500 ° C.
  • the lower surface of the glass member 1 is anodically bonded to the upper surface of the A1 layer 5 so as to cover the opening 2a of the frame 2 below the softening point of the glass member 1.
  • the anodic bonding conditions in this case are as follows: temperature: about 400 ° C to about 500 ° C, and applied voltage: about 500V or more.
  • a part ( ⁇ -alumina) of the A1 layer 5 is formed to extend in a comb shape inside the interface of the glass member 1. Since the glass member 1 contains alkali ions such as Na, it is possible to easily anodically join the glass member 1 and the frame 2 made of Kovar.
  • a gold plating layer 3 is formed using an electrolytic plating method so as to cover the entire outer surface of the frame 2.
  • the light transmitting window member 10a according to the second embodiment shown in FIG. 8 is formed.
  • the method for manufacturing the semiconductor package 30a (see FIG. 13) according to the second embodiment is the same as the method for manufacturing the semiconductor package 30 according to the first embodiment.
  • the flat plate frame 2 made of Kovar and the glass member 1 are anodically bonded via the A1 layer 5 so that a part of the A1 layer 5 ( ⁇ (Alumina) can be formed in the interface of the glass member 1 so as to extend in a comb shape, so that the bonding strength between the A1 layer 5 and the glass member 1 can be increased.
  • the joining strength between the Kovar frame 2 and the glass member 1 can be increased.
  • the force described for the light transmitting window member used in the semiconductor package for the DMD element is not limited thereto, and the present invention is not limited to this. It can also be applied to a light transmission window member used in a semiconductor package for semiconductors.
  • the present invention is not limited to this, and the glass member and the frame may be bonded to each other with an adhesive.
  • a bonding method other than the anodic bonding may be used as long as the bonding can be performed without any intervening steps.
  • As a bonding method other than the anodic bonding in this case it is preferable to use a bonding method capable of bonding the glass member and the frame at a temperature equal to or lower than the softening point of the glass without using an adhesive.
  • the frame is formed of Kovar (iron 'nickel' cobalt alloy), but the present invention is not limited to this, and the frame is formed of another metal. May be formed.
  • the frame is preferably formed of a metal having a coefficient of thermal expansion near the coefficient of thermal expansion of the glass member. Such metals, for example, about 4. 5 X 10- 6 ZK- about 5. Iron, such 42Ni- Fe having a thermal expansion coefficient of 3 X 10- 6 ⁇ • nickel alloys are contemplated.
  • the force showing the example of anodic bonding the frame and the glass member via the A1 layer is not limited to this, and the present invention is not limited to this.
  • Anodic bonding may be performed via a metal layer.
  • the frame and the glass member are connected via the A1 layer.
  • the frame and the glass member may be anodically bonded via the A1 layer without diffusion annealing the frame and the glass member.
  • the frame and the glass member can be subjected to diffusion annealing while performing anodic bonding.
  • A1 is vapor-deposited on the joining region of the frame and the frame and the glass member are anodically joined via the A1 layer.
  • the present invention is not limited to this.
  • A1 may be vapor-deposited on the lower surface of the glass member 1, and the frame 2 and the glass member 1 may be anodically bonded via the A1 layer 5a. .
  • A1 is vapor-deposited only on the joint region of the frame using a mask.
  • the present invention is not limited to this, and A1 is vapor-deposited on the entire surface of the frame without using a mask. May be.
  • the A1 layer may be formed by a method other than a vapor deposition method such as a plating clad. That is, the cladding material in which the A1 layer is joined to the frame made of the Kovar layer may be formed by pressure-welding the Kovar layer serving as the frame and the A1 layer.

Abstract

 構造を簡略化することができるとともに、製造工程を簡略化することが可能な光透過用窓部材が得られる。この光透過用窓部材(10、10a)は、半導体パッケージ(30、30a)に用いられる光透過用窓部材であって、光の通過領域を規定するための開口部(2a)を有する金属製の平板状のフレーム(2)と、開口部を有する平板状のフレームの上面に、開口部を覆うように、接着材を介することなく接合された光を透過可能なガラス部材(1)とを備えている。

Description

明 細 書
光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光 透過用窓部材の製造方法
技術分野
[0001] この発明は、光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび 光透過用窓部材の製造方法に関し、特に、光を透過可能なガラス部材を含む光透 過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の 製造方法に関する。
背景技術
[0002] 従来、半導体パッケージに用いられる光を透過可能なガラス部材を含む光透過用 窓部材が種々知られている。このような光透過用窓部材は、たとえば、特開平 9 14 8469号公報に開示されて 、る。
[0003] 上記特開平 9 148469号公報には、ガラス部材 (ガラス窓)に金属メツキなどを用 いて光の通過領域を規定するための開口部(開口領域)を形成するとともに、その開 口部が設けられたガラス部材の金メッキ部分を、光を透過させるための開口部が設け られた金属フレームに半田層を介して接合した構造を有する光透過用窓部材が開示 されている。
[0004] また、従来では、金属製のフレームの開口部にガラス部材を嵌め込んだ状態で、ガ ラス部材の外側面とフレームの内側面とを溶着した構造を有する光透過用窓部材も 知られている。図 15—図 18は、このような構造を有する従来の光透過用窓部材の全 体構成を示した図である。図 19および図 20は、図 15に示した従来の光透過用窓部 材の製造工程を説明するための斜視図である。図 21は、図 15に示した光透過用窓 部材を備えた半導体パッケージの全体構成を示した斜視図である。図 22は、図 15 に示した光透過用窓部材を備えた半導体パッケージの製造工程を説明するための 斜視図である。まず、図 15—図 18および図 21を参照して、従来の光透過用窓部材 および光透過用窓部材を備えた半導体パッケージの構造について説明する。
[0005] 従来の光透過用窓部材 40は、図 15—図 18に示すように、光を透過可能なガラス 部材 21と、金属製のフレーム 22と、金メッキ層 23と、クロム蒸着層 24とを備えている 。また、ガラス部材 21は、フレーム 22の開口部 22aに嵌め込まれている。この状態で 、ガラス部材 21の外側面とフレーム 22の開口部 22aの内側面とがガラス溶着により 接合されている。また、フレーム 22は、小さい厚み (約 0. 2mm)を有する外周部と、 外周部よりも内側に位置するとともに、外周部よりも大き 、厚み (約 3mm)を有する内 側部とを含んでいる。また、フレーム 22の内側部の厚みは、ガラス部材 21との接合 領域の接合長さ (接合代)をある程度大きくとることができ、かつ、ガラス部材 21とフレ ーム 22との接合後にガラス部材 21の表面をフレーム 22の表面よりも若干突出させて 研磨を容易に行うことができるように、ガラス部材 21の厚みよりも若干小さ 、厚みに設 定されている。金メッキ層 23は、フレーム 22の外面を覆うように形成されている。クロ ム蒸着層 24は、フレーム 22の下面の金メッキ層 23の一部およびガラス部材 21の下 面の一部に跨るように形成されている。また、クロム蒸着層 24には、光の入射領域を 規定するための開口領域 24aが形成されている。また、従来の光透過用窓部材 40は 、図 21に示すように、たとえば、プロジェクタに使用される表示素子としての DMD素 子(Digital Micromirror Device) (図示せず)が収納された金属製のハウジング 50に接合されている。この光透過用窓部材 40とハウジング 50とによって、従来の半 導体パッケージ 60が構成されて 、る。
次に、図 15、図 19および図 20を参照して、従来の光透過用窓部材 40の製造方法 について説明する。まず、図 19に示すように、厚みの小さい外周部を有するとともに 、開口部 22aを有する厚みの大きい内側部を含む金属製のフレーム 22を形成する。 すなわち、フレーム 22の厚みの小さい外周部を、切削加工によって形成するとともに 、フレーム 22の開口部 22aを、プレス加工によって形成する。そして、フレーム 22の 開口部 22aに、ガラス部材 21を挿入する。この後、ガラス部材 21とフレーム 22との全 体をガラス部材 21の軟化点以上 (約 800°C)の温度に加熱することによって、ガラス 部材 21の外側面をフレーム 22の開口部 22aの内側面に溶着する。この後、電解メッ キ法を用いて、フレーム 22の外面全体を覆うように、金メッキ層 23を形成する。なお、 上記した溶着の際に、ガラス部材 21は軟ィ匕するので、ガラス部材 21の平面度や平 行度が低下する。このため、従来では、ガラス部材 21をフレーム 22に溶着した後、金 メツキ層 23の形成後に、ガラス部材 21の上面および下面を研磨することによりガラス 部材 21の表面の平面度や平行度を向上させている。このように、ガラス部材 21の上 面および下面を研磨した後に、図 20に示すように、蒸着法を用いて、フレーム 22の 金メッキ層 23の一部およびガラス部材 21の下面の一部を覆うとともに、光の入射領 域を規定するための開口領域 24aが形成されるように、クロム蒸着層 24を形成する。 このようにして、図 15に示した従来の光透過用窓部材 40が形成される。
[0007] また、図 22に示すように、上記のように形成された光透過用窓部材 40のフレーム 2 2の厚みの小さい外周部の下面をハウジング 50の外周部の上面 50aに、ハウジング 50を密閉するように接合する。これにより、従来の光透過用窓部材 40を備えた半導 体パッケージ 60が形成される。
[0008] し力しながら、図 15—図 18に示した従来の光透過用窓部材 40では、ガラス部材 2 1の外側面とフレーム 22の開口部 22aの内側面とを溶着しているので、ガラス部材 2 1とフレーム 22との接合長さ (接合代)をある程度大きくして接合強度を保持するため には、フレーム 22の内側部の厚みをガラス部材 21の厚みと同程度に大きくする必要 がある。このため、フレーム 22の厚みが小さい場合に比べて、フレーム 22の材料費 が高くなるとともに、フレーム 22の厚みが大きい分、光透過用窓部材 40の構造を簡 略ィ匕するのが困難になるという問題点がある。また、従来の光透過用窓部材 40では 、フレーム 22に開口部 22aを設けることにカ卩えて、ガラス部材 21の下面にも、光の通 過領域を規定するための開口領域 24aを設ける必要があるため、構造および製造ェ 程を簡略ィ匕するのが困難であった。
[0009] また、上記特開平 9— 148469号公報に開示された構造では、フレームに開口部を 設けることに加えて、ガラス部材にも光の通過領域を規定するための開口領域(開口 部)を設けているため、図 15—図 18に示した従来の光透過用窓部材 40と同様、構 造および製造工程を簡略ィ匕するのが困難であるという問題点がある。
発明の開示
[0010] この発明は、上記のような課題を解決するためになされたものであり、この発明の 1 つの目的は、構造を簡略ィ匕することができるとともに、製造工程を簡略ィ匕することが 可能な光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過 用窓部材の製造方法を提供することである。
[0011] 上記目的を達成するために、この発明の第 1の局面による光透過用窓部材は、半 導体パッケージに用いられる光透過用窓部材であって、光の通過領域を規定するた めの開口部を有する金属製の平板状のフレームと、開口部を有する平板状のフレー ムの上面に、開口部を覆うように、接着材を介することなく接合された光を透過可能 なガラス部材とを備えて 、る。
[0012] この発明の第 1の局面による光透過用窓部材では、上記のように、光の通過領域を 規定するための開口部を有する金属製の平板状のフレームの上面に、開口部を覆う ように、光を透過可能なガラス部材を接着材を介することなく接合することによって、 フレームの開口部の内側面にガラス部材を接合する場合と異なり、フレームの厚みを 大きくする必要がないとともに、フレームの開口部とは別にガラス部材側に光の入射 領域を規定するための開口領域を設ける必要がない。これにより、フレームの厚みを 小さくすることができるとともに、光透過用窓部材の構造を簡略ィ匕することができる。ま た、フレームの開口部とは別にガラス部材側に光の入射領域を規定するための開口 領域を設ける必要がないので、ガラス部材に開口領域を設ける場合に必要なクロム などの遮光膜を蒸着する工程が不要になる。その結果、光透過用窓部材の製造ェ 程を簡略ィ匕することができる。
[0013] 上記第 1の局面による光透過用窓部材において、好ましくは、光の透過領域を規定 する開口部を有する金属製の平板状のフレームと、ガラス部材とは、 A1層を介して接 合されている。このように構成すれば、たとえば、陽極接合によりフレームとガラス部 材とを A1層を介して接合する場合に、 A1の一部( γ—アルミナ)をガラス部材の界面 内部に櫛状に延びるように形成することができるので、 A1層とガラス部材との接合強 度を大きくすることができる。これにより、金属製のフレームとガラス部材との接合強度 を大きくすることができる。
[0014] 上記第 1の局面による光透過用窓部材において、好ましくは、ガラス部材は、光の 透過領域を規定する開口部を有する平板状のフレームの上面に陽極接合されて ヽ る。このように陽極接合を用いれば、平板状のフレームの上面とガラス部材との接合 温度をガラス部材の軟ィ匕点よりも低くすることができるので、平板状のフレームとガラ ス部材との接合時の温度によって、ガラス部材の表面が軟ィ匕するのが抑制される。こ れにより、ガラス部材の平面度や平行度が低下するのを抑制することができるので、 平板状のフレームの上面とガラス部材との接合後に、ガラス部材の表面を研磨する 必要がない。その結果、ガラス部材とフレームとの接合前のガラス部材の単体の状態 で研磨を行うことができるので、ガラス部材とフレームとの接合後にフレームと接合さ れたガラス部材を研磨する場合に比べて、ガラス部材の研磨がより容易になる。これ により、ガラス部材の研磨工程を簡略ィ匕することができる。
[0015] 上記第 1の局面による光透過用窓部材において、好ましくは、ガラス部材は、ガラス 部材の軟化点以下の温度で、光の透過領域を規定する開口部を有する平板状のフ レームの上面に接合されている。このように構成すれば、平板状のフレームとガラス 部材との接合時の温度によって、ガラス部材の表面が軟ィ匕するのが容易に抑制され る。これにより、容易に、ガラス部材の平面度や平行度が低下するのを抑制すること ができるので、平板状のフレームの上面とガラス部材との接合後に、ガラス部材の表 面を研磨する必要がない。その結果、ガラス部材とフレームとの接合前のガラス部材 の単体の状態で研磨を行うことができるので、ガラス部材とフレームとの接合後にフレ ームと接合されたガラス部材を研磨する場合に比べて、ガラス部材の研磨がより容易 になる。これにより、ガラス部材の研磨工程を簡略ィ匕することができる。
[0016] 上記第 1の局面による光透過用窓部材において、好ましくは、光の透過領域を規定 する開口部を有する平板状のフレームのガラス部材が接合される側の上面は、鏡面 加工されている。このように構成すれば、平板状のフレームの上面とガラス部材との 接合面に隙間が発生するのが抑制されるので、平板状のフレームの上面とガラス部 材との接合面を空気が通過するのを抑制することができる。これにより、フレームとガ ラス部材とが接合された光透過用窓部材を、半導体パッケージのハウジングに接合 した場合に、ハウジングを光透過用窓部材により密閉状態に保持することができる。
[0017] 上記第 1の局面による光透過用窓部材において、好ましくは、光の透過領域を規定 する開口部を有する金属製のフレームは、ガラス部材の熱膨張係数の近傍の熱膨張 係数を有している。このように構成すれば、接合後に金属製のフレームおよびガラス 部材の温度が常温まで下がった場合に、金属製のフレームの熱膨張係数とガラス部 材の熱膨張係数との差によってガラス部材に反りやひずみが発生するのを抑制する ことができる。
[0018] 上記金属製のフレームがガラス部材の熱膨張係数の近傍の熱膨張係数を有してい る光透過用窓部材において、好ましくは、光の透過領域を規定する開口部を有する フレームは、鉄 'ニッケル 'コバルト合金力もなる。このように構成すれば、たとえば、コ バール(鉄 ·ニッケル ·コバルト合金(たとえば、 29Ni— 16Co— Fe) )製のフレームなど を用いて、容易に、フレームの熱膨張係数をガラス部材の熱膨張係数に近づけること ができる。
[0019] 上記第 1の局面による光透過用窓部材において、好ましくは、ガラス部材は、アル カリイオンを含有する。このように構成すれば、たとえば、陽極接合によりフレームとガ ラス部材とを接合する場合に、容易に、フレームとガラス部材とを陽極接合することが できる。
[0020] 上記第 1の局面による光透過用窓部材において、好ましくは、金属製のフレームの 下面は、半導体パッケージの金属製のハウジングに、ハウジングを密閉するように接 合される。このように構成すれば、光の通過領域を規定するための開口部を有する金 属製のフレームとガラス部材とを接合することにより形成された光透過用窓部材によ つて、容易に、ハウジングを密閉することができる。
[0021] 上記第 1の局面による光透過用窓部材において、好ましくは、金属製のフレームの 下面は、半導体パッケージの金属製のハウジングに抵抗溶接により接合されて 、る。 このように構成すれば、金属製のフレームの下面とハウジングとを、接合部分のみを 加熱することによって接合することができる。これにより、金属製のフレームとハウジン グとの接合時のガラス部材の温度をガラス部材の軟ィ匕点よりも低くすることができるの で、金属製のフレームとハウジングとの接合時の温度によって、ガラス部材の表面が 軟化するのが抑制される。これにより、ガラス部材の平面度や平行度が低下するのを 抑制することができるので、ガラス部材の光透過特性が低下するのを抑制することが できる。また、金属製のフレームとハウジングとの接合時のハウジングに収納された半 導体素子の温度が上昇するのを抑制することができるので、金属製のフレームとハウ ジングとの接合時の温度上昇に起因してハウジングに収納された半導体素子が破壊 されるのを防止することができる。
[0022] この発明の第 2の局面による半導体パッケージは、光の通過領域を規定するための 開口部を有する金属製の平板状のフレームと、開口部を有する平板状のフレームの 上面に、開口部を覆うように、接着材を介することなく接合された光を透過可能なガラ ス部材とを含む光透過用窓部材を備えて 、る。
[0023] この発明の第 2の局面による半導体パッケージでは、上記のように、光の通過領域 を規定するための開口部を有する金属製の平板状のフレームの上面に、開口部を覆 うように、光を透過可能なガラス部材を接着材を介することなく接合することによって、 フレームの開口部の内側面にガラス部材を接合する場合と異なり、フレームの厚みを 大きくする必要がないとともに、フレームの開口部とは別にガラス部材側に光の入射 領域を規定するための開口領域を設ける必要がない。これにより、フレームの厚みを 小さくすることができるとともに、光透過用窓部材の構造を簡略ィ匕することができる。ま た、フレームの開口部とは別にガラス部材側に光の入射領域を規定するための開口 領域を設ける必要がないので、ガラス部材に開口領域を設ける場合に必要なクロム などの遮光膜を蒸着する工程が不要になる。その結果、光透過用窓部材の製造ェ 程を簡略ィ匕することができる。
[0024] 上記第 2の局面による半導体パッケージにおいて、好ましくは、光の透過領域を規 定する開口部を有する金属製の平板状のフレームと、ガラス部材とは、 A1層を介して 接合されている。このように構成すれば、たとえば、陽極接合によりフレームとガラス 部材とを A1層を介して接合する場合に、 A1の一部( γ—アルミナ)をガラス部材の界 面内部に櫛状に延びるように形成することができるので、 A1層とガラス部材との接合 強度を大きくすることができる。これにより、金属製のフレームとガラス部材との接合強 度を大きくすることができる。
[0025] 上記第 2の局面による半導体パッケージにおいて、好ましくは、ガラス部材は、平板 状のフレームの上面に陽極接合されている。このように陽極接合を用いれば、平板状 のフレームの上面とガラス部材との接合温度をガラス部材の軟ィ匕点よりも低くすること ができるので、平板状のフレームとガラス部材との接合時の温度によって、ガラス部 材の表面が軟ィ匕するのが抑制される。これにより、ガラス部材の平面度や平行度が 低下するのを抑制することができるので、平板状のフレームの上面とガラス部材との 接合後に、ガラス部材の表面を研磨する必要がない。その結果、ガラス部材とフレー ムとの接合前のガラス部材の単体の状態で研磨を行うことができるので、ガラス部材 とフレームとの接合後にフレームと接合されたガラス部材を研磨する場合に比べて、 ガラス部材の研磨がより容易になる。これにより、ガラス部材の研磨工程を簡略ィ匕す ることがでさる。
[0026] 上記第 2の局面による半導体パッケージにおいて、好ましくは、ガラス部材は、ガラ ス部材の軟化点以下の温度で、光の透過領域を規定する開口部を有する平板状の フレームの上面に接合されている。このように構成すれば、平板状のフレームとガラス 部材との接合時の温度によって、ガラス部材の表面が軟ィ匕するのが容易に抑制され る。これにより、容易に、ガラス部材の平面度や平行度が低下するのを抑制すること ができるので、平板状のフレームの上面とガラス部材との接合後に、ガラス部材の表 面を研磨する必要がない。その結果、ガラス部材とフレームとの接合前のガラス部材 の単体の状態で研磨を行うことができるので、ガラス部材とフレームとの接合後にフレ ームと接合されたガラス部材を研磨する場合に比べて、ガラス部材の研磨がより容易 になる。これにより、ガラス部材の研磨工程を簡略ィ匕することができる。
[0027] 上記第 2の局面による半導体パッケージにおいて、好ましくは、金属製のフレーム の下面により密閉されるように金属製のフレームの下面と接合され、半導体素子が収 納されたハウジングをさらに備える。このように構成すれば、光の通過領域を規定す るための開口部を有する金属製のフレームとガラス部材とを接合することにより形成さ れた光透過用窓部材によって、容易に、ハウジングを密閉することができる。
[0028] 上記半導体素子が収納されたハウジングを備える半導体パッケージにおいて、好 ましくは、金属製のフレームとハウジングとは、同一の材料力もなる。このように構成す れば、金属製のフレームの熱膨張係数とハウジングの熱膨張係数とを同一にすること ができるので、接合後に金属製のフレームおよびノヽウジングの温度が常温まで下が つた場合に、金属製のフレームの熱膨張係数とハウジングの熱膨張係数との差によ つてフレームに反りやひずみが発生するのを抑制することができる。これにより、フレ ームの上面に接合されたガラス部材に反りやひずみが発生するのを抑制することが できる。
[0029] 上記金属製のフレームとハウジングとが同一の材料力 なる半導体パッケージにお いて、好ましくは、金属製のフレームとハウジングとは、鉄 'ニッケル 'コバルト合金から なる。このように構成すれば、たとえば、コバール (鉄 'ニッケル 'コバルト合金(たとえ ば、 29Ni— 16Co— Fe) )製のフレームおよびハウジングなどを用いて、フレームおよ びハウジングの熱膨張係数をガラス部材の熱膨張係数に近づけることができる。これ により、接合後に金属製のフレーム、ハウジングおよびガラス部材の温度が常温まで 下がった場合に、金属製のフレームの熱膨張係数およびハウジングの熱膨張係数と ガラス部材の熱膨張係数との差によってガラス部材に反りやひずみが発生するのを 抑帘 Uすることができる。
[0030] 上記半導体素子が収納されたハウジングを備える半導体パッケージにおいて、好 ましくは、金属製のフレームの下面は、半導体パッケージの金属製のハウジングに抵 抗溶接により接合されている。このように構成すれば、金属製のフレームの下面とノヽ ウジングとを、接合部分のみを加熱することによって接合することができる。これにより 、金属製のフレームとハウジングとの接合時のガラス部材の温度をガラス部材の軟ィ匕 点よりも低くすることができるので、金属製のフレームとハウジングとの接合時の温度 によって、ガラス部材の表面が軟ィ匕するのが抑制される。これにより、ガラス部材の平 面度や平行度が低下するのを抑制することができるので、ガラス部材の光透過特性 が低下するのを抑制することができる。また、金属製のフレームとハウジングとの接合 時のハウジングに収納された半導体素子の温度が上昇するのを抑制することができ るので、金属製のフレームとハウジングとの接合時の温度上昇に起因してハウジング に収納された半導体素子が破壊されるのを防止することができる。
[0031] この発明の第 3の局面による光透過用窓部材の製造方法は、半導体パッケージに 用いられる光透過用窓部材の製造方法であって、光の通過領域を規定するための 開口部を有する金属製の平板状のフレームを準備する工程と、光を透過可能なガラ ス部材を開口部を有する平板状のフレームの上面に、開口部を覆うように、陽極接合 する工程とを備えている。
[0032] この発明の第 3の局面による光透過用窓部材の製造方法では、上記のように、ガラ ス部材を平板状のフレームの上面に陽極接合することによって、平板状のフレームの 上面とガラス部材との接合温度をガラス部材の軟ィ匕点よりも低くすることができるので 、平板状のフレームとガラス部材との接合時の温度によって、ガラス部材の表面が軟 化するのが抑制される。これにより、ガラス部材の平面度や平行度が低下するのを抑 制することができるので、平板状のフレームの上面とガラス部材との接合後に、ガラス 部材の表面を研磨する必要がない。その結果、ガラス部材とフレームとの接合前のガ ラス部材の単体の状態で研磨を行うことができるので、ガラス部材とフレームとの接合 後にフレームと接合されたガラス部材を研磨する場合に比べて、ガラス部材の研磨が より容易になる。これにより、ガラス部材の研磨工程を簡略ィ匕することができる。また、 光の通過領域を規定するための開口部を有する金属製の平板状のフレームの上面 に、光を透過可能なガラス部材を接着材を介することなく接合することによって、フレ ームの開口部の内側面にガラス部材を接合する場合と異なり、フレームの厚みを大き くする必要がないとともに、フレームの開口部とは別にガラス部材側に光の入射領域 を規定するための開口領域を設ける必要がない。これにより、フレームの厚みを小さ くすることができるとともに、光透過用窓部材の構造を簡略ィ匕することができる。また、 フレームの開口部とは別にガラス部材側に光の入射領域を規定するための開口領 域を設ける必要がないので、ガラス部材に開口領域を設ける場合に必要なクロムなど の遮光膜を蒸着する工程が不要になる。その結果、光透過用窓部材の製造工程を 簡略ィ匕することができる。
[0033] 上記第 3の局面による光透過用窓部材の製造方法において、好ましくは、陽極接 合する工程は、光の透過領域を規定する開口部を有する金属製の平板状のフレー ムと、ガラス部材とを A1層を介して陽極接合する工程を含む。このように構成すれば、 陽極接合によりフレームとガラス部材とを A1層を介して接合する場合に、 A1の一部( Ύ アルミナ)をガラス部材の界面内部に櫛状に延びるように形成することができるの で、 A1層とガラス部材との接合強度を大きくすることができる。これにより、金属製のフ レームとガラス部材との接合強度を大きくすることができる。
[0034] 上記陽極接合する工程がフレームとガラス部材とを A1層を介して陽極接合するェ 程を含む光透過用窓部材の製造方法において、好ましくは、陽極接合する工程に先 立って、フレームのガラス部材に対する接合面に A1層を形成する工程をさらに備える 。このように構成すれば、フレームとガラス部材とを A1層を介して、容易に、陽極接合 することができる。
[0035] 上記第 3の局面による光透過用窓部材の製造方法において、好ましくは、陽極接 合する工程に先立って、ガラス部材のフレームに対する接合面を研磨する工程をさら に備える。このように構成すれば、容易に、ガラス部材を単体の状態で研磨すること ができる。
図面の簡単な説明
[0036] [図 1]本発明の第 1実施形態による光透過用窓部材の全体構成を示した斜視図であ る。
[図 2]図 1に示した第 1実施形態による光透過用窓部材の全体構成を示した平面図 である。
[図 3]図 2の 100-100線に沿った断面図である。
[図 4]図 1に示した第 1実施形態による光透過用窓部材の全体構成を示した底面図 である。
[図 5]図 1に示した第 1実施形態による光透過用窓部材の製造工程を説明するため の斜視図である。
[図 6]本発明の第 1実施形態による半導体パッケージの全体構成を示した斜視図で ある。
[図 7]図 6に示した第 1実施形態による半導体パッケージの製造工程を説明するため の斜視図である。
[図 8]本発明の第 2実施形態による光透過用窓部材の全体構成を示した斜視図であ る。
[図 9]図 8に示した第 2実施形態による光透過用窓部材の全体構成を示した平面図 である。
[図 10]図 9の 200— 200線に沿った断面図である。
[図 11]図 8に示した第 2実施形態による光透過用窓部材の全体構成を示した底面図 である。 [図 12]図 8に示した第 2実施形態による光透過用窓部材の製造工程を説明するため の斜視図である。
[図 13]本発明の第 2実施形態による半導体パッケージの全体構成を示した斜視図で ある。
[図 14]本発明の第 2実施形態の変形例による光透過用窓部材を説明するための斜 視図である。
[図 15]従来の光透過用窓部材の全体構成を示した斜視図である。
[図 16]図 15に示した従来の光透過用窓部材の全体構成を示した平面図である。
[図 17]図 16の 300— 300線に沿った断面図である。
[図 18]図 15に示した従来の光透過用窓部材の全体構成を示した底面図である。
[図 19]図 15に示した従来の光透過用窓部材の製造工程を説明するための斜視図で ある。
[図 20]図 15に示した従来の光透過用窓部材の製造工程を説明するための下面方向 からの斜視図である。
[図 21]従来の半導体パッケージの全体構成を示した斜視図である。
[図 22]図 21に示した従来の半導体パッケージの製造工程を説明するための斜視図 である。
発明を実施するための最良の形態
[0037] 以下、本発明の実施形態を図面に基づいて説明する。
[0038] (第 1実施形態)
図 1一図 4は、本発明の第 1実施形態による光透過用窓部材の全体構成を示した 図である。図 5は、本発明の第 1実施形態による光透過用窓部材の製造工程を説明 するための斜視図である。図 6は、図 1に示した光透過用窓部材を備えた半導体パッ ケージの全体構成を示した斜視図であり、図 7は、図 6に示した半導体パッケージの 製造工程を説明するための斜視図である。まず、図 1一図 4および図 6を参照して、 本発明の第 1実施形態による光透過用窓部材 10および光透過用窓部材 10を備え た半導体パッケージ 30の構造について説明する。
[0039] 本発明の第 1実施形態による光透過用窓部材 10は、図 1一図 4に示すように、光を 透過可能なガラス部材 1と、コバール (鉄 'ニッケル 'コバルト合金(たとえば、 29Ni— 1 6Co-Fe) )製のフレーム 2と、金メッキ層 3とを備えて!/、る。
[0040] ガラス部材 1は、フレーム 2の外周部よりも小さい外周部を有するとともに、約 3mm 以上の厚みを有する。また、ガラス部材 1には、 Naなどのアルカリイオンが含有されて いる。また、ガラス部材 1は、約 5. 15 X 10— 6ZK—約 5. 45 Χ 10— 6ΖΚの熱膨張係 数を有する。また、ガラス部材 1は、約 2 m以下の平面度と約 10 m以下の平行度 とを有するとともに、ガラス部材 1の下面 (接合面)は、約 0. 1 μ m以下の表面粗さ (R max)を有する。このガラス部材 1の下面は、接合領域 4において、平板状のフレーム 2の上面に接着材を介することなぐ陽極接合されている。フレーム 2は、約 0. 2mm の小さい厚みを有する平板状に形成されているとともに、中央部に光の通過領域を 規定するための開口部 2aを有する。また、コバール(29Ni— 16Co— Fe)製のフレー ム 2は、約 4. 6 X 10— 6ZK—約 5. 2 X 10— 6ΖΚの熱膨張係数を有する。つまり、フレ ーム 2は、ガラス部材 1の熱膨張係数(約 5. 15 X 10— 6ΖΚ—約 5. 45 X 10— 6ΖΚ)の 近傍の熱膨張係数 (約 4. 6 X 10— 6ΖΚ—約 5. 2 X 10— 6ΖΚ)を有する。また、フレー ム 2の上面 (接合面)は、鏡面加工されている。金メッキ層 3は、接合領域 4を除くフレ ーム 2のすベての領域を覆うように形成されている。この金メッキ層 3は、フレーム 2の 表面の腐食を防止するために設けられて 、る。
[0041] また、光透過用窓部材 10は、図 6に示すように、たとえば、プロジェクタに使用され る表示素子としての DMD素子(図示せず)が収納されたコバール(たとえば、 29ΝΪ- 16Co— Fe)製のハウジング 20に、ハウジング 20を密閉するように、抵抗溶接により接 合されている。光透過用窓部材 10とハウジング 20とによって、 DMD素子用の半導 体パッケージ 30が構成されて!、る。
[0042] 次に、図 1および図 5—図 7を参照して、第 1実施形態による光透過用窓部材 10の 製造方法および光透過用窓部材 10を備えた半導体パッケージ 30の製造方法につ いて説明する。まず、図 5に示すように、光を透過可能なガラス部材 1の上面および 下面 (接合面)を研磨することによって、約 0. 1 μ m以下の表面粗さ (Rmax)の接合 面(下面)を有するとともに、約 2 μ m以下の平面度と約 10 μ m以下の平行度とを有 するガラス部材 1を形成する。また、プレス力卩ェを用いて、平板状のフレーム 2に、光 の通過領域を規定するための開口部 2aを形成するとともに、フレーム 2の上面 (接合 面)を鏡面カ卩ェする。次に、ガラス部材 1の下面を、フレーム 2の開口部 2aを覆うよう に、フレーム 2の上面にガラス部材 1の軟ィ匕点以下で陽極接合する。この場合の陽極 接合の条件は、温度:約 400°C—約 500°C、印加電圧:約 500V以上である。なお、 ガラス部材 1には、 Naなどのアルカリイオンが含有されているので、容易に、ガラス部 材 1とコバール製のフレーム 2とを陽極接合することが可能である。ガラス部材 1とフレ ーム 2とを陽極接合した後、電解メツキ法を用いて、フレーム 2の外面全体を覆うよう に、金メッキ層 3を形成する。このようにして、図 1に示した第 1実施形態による光透過 用窓部材 10が形成される。
[0043] また、上記のように形成された光透過用窓部材 10のフレーム 2の下面を、 DMD素 子(図示せず)が収納されたノヽウジング 20の外周部の上面 20aに抵抗溶接によって ノ、ウジング 20を密閉するように接合する。抵抗溶接による接合条件は、電流:約 100 OA、通電時間:約 5msec以下、圧力:約 lkg以上である。これにより、図 6に示したよ うな、光透過用窓部材 10とハウジング 20と力もなる DMD素子用の半導体パッケ一 ジ 30が形成される。
[0044] 第 1実施形態では、上記のように、光の通過領域を規定するための開口部 2aを有 するコバール製の平板状のフレーム 2の上面に、光を透過可能なガラス部材 1を接着 材を介することなく陽極接合することによって、図 17に示した従来のフレーム 22の開 口部 22aの内側面にガラス部材 21を接合する場合と異なり、フレーム 2の厚みを大き くする必要がないとともに、フレーム 2の開口部 2aとは別にガラス部材 1に光の入射領 域を規定するための開口領域を設ける必要がない。これにより、フレーム 2の厚みを 小さくすることができるとともに、光透過用窓部材 10の構造を簡略ィ匕することができる 。また、フレーム 2の開口部 2aとは別にガラス部材 1側に光の入射領域を規定するた めの開口領域を設ける必要がないので、ガラス部材 1に開口領域を設ける場合に必 要なクロムなどの遮光膜を蒸着する工程が不要になる。その結果、光透過用窓部材 1の製造工程を簡略ィ匕することができる。
[0045] また、第 1実施形態では、ガラス部材 1を、平板状のフレーム 2の上面に陽極接合す ることによって、平板状のフレーム 2の上面とガラス部材 1との接合温度をガラス部材 1 の軟ィ匕点よりも低くすることができるので、平板状のフレーム 2とガラス部材 1との接合 時の温度によって、ガラス部材 1の表面が軟ィ匕するのが抑制される。これにより、ガラ ス部材 1の平面度や平行度が低下するのを抑制することができるので、平板状のフレ ーム 2の上面とガラス部材 1との接合後に、ガラス部材 1の表面を研磨する必要がな い。その結果、ガラス部材 1とフレーム 2との接合前のガラス部材 1の単体の状態で研 磨を行うことができるので、ガラス部材 1とフレーム 2との接合後にフレーム 2と接合さ れたガラス部材 1を研磨する場合に比べて、ガラス部材 1の研磨がより容易になる。こ れにより、ガラス部材 1の研磨工程を簡略ィ匕することができる。
[0046] また、第 1実施形態では、ガラス部材 1の下面 (接合面)を約 0. 1 μ m以下の表面粗 さ (Rmax)を有するように形成するとともに、平板状のフレーム 2の上面 (接合面)を鏡 面カ卩ェすることによって、平板状のフレーム 2の上面とガラス部材 1の下面との接合面 に隙間が発生するのが抑制されるので、平板状のフレーム 2の上面とガラス部材 1の 下面との接合面を空気が通過するのを抑制することができる。これにより、フレーム 2 とガラス部材 1とが陽極接合された光透過用窓部材 10を、半導体パッケージ 30のハ ウジング 20に抵抗溶接により接合した場合に、ハウジング 20を光透過用窓部材 10 により密閉状態に保持することができる。
[0047] また、第 1実施形態では、コバール製のフレーム 2を、ガラス部材 1の熱膨張係数の 近傍の熱膨張係数を有するように構成することによって、接合後にコバール製のフレ ーム 2およびガラス部材 1の温度が常温まで下がった場合に、コバール製のフレーム 2の熱膨張係数とガラス部材 1の熱膨張係数との差によってガラス部材に反りやひず みが発生するのを抑制することができる。
[0048] また、第 1実施形態では、コバール製のフレーム 2の下面を、 DMD素子(図示せず )が収納されたコバール製のハウジング 20の外周部の上面 20aに抵抗溶接により接 合すること〖こよって、抵抗溶接は、溶接部分に瞬間的に電流を流し、その抵抗発熱 によって溶接するので、コバール製のフレーム 2の下面とハウジング 20との接合は、 局所的な加熱によって接合することができる。これにより、コバール製のフレーム 2と ハウジング 20との接合時のガラス部材 1の温度をガラス部材 1の軟ィ匕点よりも低くする ことができるので、コバール製のフレーム 2とハウジング 20との接合時の温度によって 、ガラス部材 1の表面が軟ィ匕するのが抑制される。これにより、ガラス部材 1の平面度 や平行度が低下するのを抑制することができるので、ガラス部材 1の光透過特性が低 下するのを抑制することができる。また、コバール製のフレーム 2とハウジング 20との 接合時にハウジング 20に収納された DMD素子(図示せず)の温度が上昇するのを 抑制することができるので、コバール製のフレーム 2とハウジング 20との接合時の温 度上昇に起因してハウジング 20に収納された DMD素子(図示せず)が破壊されるの を防止することができる。
[0049] (第 2実施形態)
図 8—図 11は、本発明の第 2実施形態による光透過用窓部材の全体構成を示した 図である。図 12は、本発明の第 2実施形態による光透過用窓部材の製造工程を説 明するための斜視図である。図 13は、図 8に示した光透過用窓部材を備えた半導体 ノ ッケージの全体構成を示した斜視図である。この第 2実施形態では、上記第 1実施 形態と異なり、ガラス部材 1とコバール製のフレーム 2とは、 A1層 5を介して陽極接合さ れている。まず、図 8—図 11および図 13を参照して、本発明の第 2実施形態による 光透過用窓部材 10aおよび光透過用窓部材 10aを備えた半導体パッケージ 30aの 構造について説明する。
[0050] 本発明の第 2実施形態による光透過用窓部材 10aでは、図 8—図 11に示すように、 ガラス部材 1の下面は、接合領域 4 (図 10および図 11参照)において、平板状のフレ ーム 2の上面に A1層 5を介して、陽極接合されている。この A1層 5は、約 0. 05 /z m— 約 100 /z mの厚みを有している。なお、 A1層 5の厚みが約 0. 05 /z mよりも小さい場 合には、 A1がコバール力もなるフレーム 2内に拡散して A1層 5が無くなる場合がある。 また、 A1層 5の厚みが約 100 mよりも大きい場合には、 A1層 5とガラス部材 1との熱 膨張係数の差に起因してガラス部材 1に引張り応力が残留することにより、ガラス部 材 1が破損する場合がある。このため、 A1層 5の厚みは、約 0. 05 μ m—約 100 μ m に設定するのが好ましい。また、 A1層 5は、フレーム 2の接合領域 4のみに形成されて いる。また、図 13に示すように、光透過用窓部材 10aとハウジング 20とによって、 DM D素子用の半導体パッケージ 30aが構成されている。
[0051] なお、第 2実施形態のその他の構造は、上記第 1実施形態と同様である。 [0052] 次に、図 8および図 12を参照して、第 2実施形態による光透過用窓部材 10aの製 造方法について説明する。まず、図 12に示すように、光を透過可能なガラス部材 1の 上面および下面 (接合面)を研磨することによって、約 0. 1 μ m以下の表面粗さ (Rm ax)の接合面(下面)を有するとともに、約 2 μ m以下の平面度と約 10 μ m以下の平 行度とを有するガラス部材 1を形成する。また、プレス加工を用いて、平板状のフレー ム 2に、光の通過領域を規定するための開口部 2aを形成するとともに、フレーム 2の 上面 (接合面)を鏡面カ卩ェする。そして、フレーム 2の上面を純水またはアルコールな どを用いて洗浄する。その後、マスクを用いてフレーム 2の接合領域 4のみに A1を蒸 着することにより、約 0. 05 m—約 100 mの厚みを有する A1層 5を形成する。なお 、フレーム 2の上面は鏡面加工されているので、フレーム 2の上面に蒸着された A1層 5の上面も鏡面に形成される。そして、フレーム 2および A1層 5を、約 400°C—約 500 °Cの温度で約 1分間拡散焼鈍を行う。次に、ガラス部材 1の下面を、フレーム 2の開 口部 2aを覆うように、 A1層 5の上面にガラス部材 1の軟ィ匕点以下で陽極接合する。こ の場合の陽極接合の条件は、温度:約 400°C—約 500°C、印加電圧:約 500V以上 である。このとき、 A1層 5の一部( γ—アルミナ)は、ガラス部材 1の界面内部に櫛状に 延びるように形成される。なお、ガラス部材 1には、 Naなどのアルカリイオンが含有さ れているので、容易に、ガラス部材 1とコバール製のフレーム 2とを陽極接合すること が可能である。ガラス部材 1とフレーム 2とを A1層 5を介して陽極接合した後、電解メッ キ法を用いて、フレーム 2の外面全体を覆うように、金メッキ層 3を形成する。このよう にして、図 8に示した第 2実施形態による光透過用窓部材 10aが形成される。
[0053] なお、第 2実施形態による半導体パッケージ 30a (図 13参照)の製造方法は、上記 第 1実施形態による半導体パッケージ 30の製造方法と同様である。
[0054] 第 2実施形態では、上記のように、コバール製の平板状のフレーム 2とガラス部材 1 とを、 A1層 5を介して陽極接合することによって、 A1層 5の一部( γ—アルミナ)をガラ ス部材 1の界面内部に櫛状に延びるように形成することができるので、 A1層 5とガラス 部材 1との接合強度を大きくすることができる。これにより、コバール製のフレーム 2と ガラス部材 1との接合強度を大きくすることができる。
[0055] なお、第 2実施形態のその他の効果は、上記第 1実施形態と同様である。 [0056] なお、今回開示された実施形態は、すべての点で例示であって制限的なものでは ないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特 許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内で のすベての変更が含まれる。
[0057] たとえば、上記第 1および第 2実施形態では、 DMD素子用の半導体パッケージに 用いられる光透過用窓部材について説明した力 本発明はこれに限らず、 DMD素 子以外の他の半導体素子用の半導体パッケージに用いられる光透過用窓部材にも 適用可能である。
[0058] また、上記第 1および第 2実施形態では、ガラス部材をフレームに陽極接合によつ て接合する例を示したが、本発明はこれに限らず、ガラス部材とフレームとを接着材 を介さな 、で接合することが可能な方法であれば、陽極接合以外の接合方法を用い てもよい。この場合の陽極接合以外の接合法としては、ガラスの軟化点以下の温度 で接着材を介さずにガラス部材とフレームとを接合することが可能な接合法を用いる のが好ましい。
[0059] また、上記第 1および第 2実施形態では、フレームをコバール (鉄 'ニッケル'コバル ト合金)により形成した例を示したが、本発明はこれに限らず、他の金属によりフレー ムを形成してもよい。この場合、フレームは、ガラス部材の熱膨張係数の近傍の熱膨 張係数を有する金属により形成するのが好ましい。このような金属としては、たとえば 、約 4. 5 X 10— 6ZK—約 5. 3 X 10— 6ΖΚの熱膨張係数を有する 42Ni— Feなどの鉄 •ニッケル合金などが考えられる。
[0060] また、上記第 2実施形態では、フレームとガラス部材とを A1層を介して陽極接合す る例を示した力 本発明はこれに限らず、フレームとガラス部材とを A1層以外の金属 層を介して陽極接合してもよい。
[0061] また、上記第 2実施形態では、フレームおよびガラス部材を約 400°C—約 500°Cの 温度で約 1分間拡散焼鈍を行った後に、フレームとガラス部材とを A1層を介して陽極 接合する例を示したが、本発明はこれに限らず、フレームおよびガラス部材を拡散焼 鈍することなくフレームとガラス部材とを A1層を介して陽極接合してもよい。この場合、 陽極接合しながら、フレームおよびガラス部材を拡散焼鈍することができる。 [0062] また、上記第 2実施形態では、フレームの接合領域に A1を蒸着するとともに、フレー ムとガラス部材とを A1層を介して陽極接合する例を示したが、本発明はこれに限らず 、図 14に示した第 2実施形態の変形例のように、ガラス部材 1の下面に A1を蒸着する とともに、フレーム 2とガラス部材 1とを A1層 5aを介して陽極接合してもよい。
[0063] また、上記第 2実施形態では、マスクを用いてフレームの接合領域のみに A1を蒸着 する例を示した力 本発明はこれに限らず、マスクを用いることなぐフレーム全面に A1を蒸着してもよい。
[0064] また、上記第 2実施形態では、フレームに A1層を形成するために蒸着法を用いた 例を示したが、本発明はこれに限らず、フレームに A1層を形成するために、たとえば 、メツキゃクラッドなどの蒸着法以外の方法により A1層を形成してもよい。すなわち、 フレームとなるコバール層と A1層とを圧接接合することにより、コバール層カゝらなるフ レームに A1層が接合されたクラッド材を形成するようにしてもよい。

Claims

請求の範囲
[1] 半導体パッケージ(30、 30a)に用いられる光透過用窓部材(10、 10a)であって、 光の通過領域を規定するための開口部(2a)を有する金属製の平板状のフレーム( 2)と、
前記開口部を有する平板状のフレームの上面に、前記開口部を覆うように、接着材 を介することなく接合された光を透過可能なガラス部材(1)とを備えた、光透過用窓 部材。
[2] 前記光の透過領域を規定する開口部を有する金属製の平板状のフレームと、前記 ガラス部材とは、 A1層(5、 5a)を介して接合されている、請求項 1に記載の光透過用 窓部材。
[3] 前記ガラス部材は、前記光の透過領域を規定する開口部を有する平板状のフレー ムの上面に陽極接合されている、請求項 1または 2に記載の光透過用窓部材。
[4] 前記ガラス部材は、前記ガラス部材の軟ィ匕点以下の温度で、前記光の透過領域を 規定する開口部を有する平板状のフレームの上面に接合されている、請求項 1一 3 のいずれか 1項に記載の光透過用窓部材。
[5] 前記光の透過領域を規定する開口部を有する平板状のフレームの前記ガラス部材 が接合される側の上面は、鏡面カ卩ェされている、請求項 1一 4のいずれ力 1項に記載 の光透過用窓部材。
[6] 前記光の透過領域を規定する開口部を有する金属製のフレームは、前記ガラス部 材の熱膨張係数の近傍の熱膨張係数を有している、請求項 1一 5のいずれか 1項に 記載の光透過用窓部材。
[7] 前記光の透過領域を規定する開口部を有するフレームは、鉄 ·-ッケル 'コバルト合 金力もなる、請求項 6に記載の光透過用窓部材。
[8] 前記ガラス部材は、アルカリイオンを含有する、請求項 1一 7のいずれか 1項に記載 の光透過用窓部材。
[9] 前記金属製のフレームの下面は、前記半導体パッケージの金属製のハウジング(2 0)に、前記ハウジングを密閉するように接合される、請求項 1一 8のいずれ力 1項に 記載の光透過用窓部材。
[10] 前記金属製のフレームの下面は、前記半導体パッケージの金属製のハウジングに 抵抗溶接により接合されている、請求項 9に記載の光透過用窓部材。
[11] 光の通過領域を規定するための開口部(2a)を有する金属製の平板状のフレーム( 2)と、
前記開口部を有する平板状のフレームの上面に、前記開口部を覆うように、接着材 を介することなく接合された光を透過可能なガラス部材(1)とを含む光透過用窓部材 (10、 10a)を備えた、半導体パッケージ(30、 30a)。
[12] 前記光の透過領域を規定する開口部を有する金属製の平板状のフレームと、前記 ガラス部材とは、 A1層(5、 5a)を介して接合されている、請求項 11に記載の半導体 ノ ッケ^ ~"シ。
[13] 前記ガラス部材は、前記平板状のフレームの上面に陽極接合されている、請求項 1
1または 12に記載の半導体パッケージ。
[14] 前記ガラス部材は、前記ガラス部材の軟化点以下の温度で、前記光の透過領域を 規定する開口部を有する平板状のフレームの上面に接合されている、請求項 11一 1
3の!、ずれ力 1項に記載の半導体パッケージ。
[15] 前記金属製のフレームの下面により密閉されるように前記金属製のフレームの下面 と接合され、半導体素子が収納されたハウジング (20)をさらに備える、請求項 11一 1
4の!、ずれ力 1項に記載の半導体パッケージ。
[16] 前記金属製のフレームと前記ハウジングとは、同一の材料からなる、請求項 15に記 載の半導体パッケージ。
[17] 前記金属製のフレームと前記ハウジングとは、鉄'ニッケル'コバルト合金力 なる、 請求項 16に記載の半導体パッケージ。
[18] 前記金属製のフレームの下面は、前記半導体パッケージの金属製のハウジングに 抵抗溶接により接合されている、請求項 15— 17のいずれか 1項に記載の半導体パ ッケーン。
[19] 半導体パッケージ(30、 30a)に用いられる光透過用窓部材(10、 10a)の製造方法 であって、
光の通過領域を規定するための開口部(2a)を有する金属製の平板状のフレーム( 2)を準備する工程と、
光を透過可能なガラス部材(1)を前記開口部を有する平板状のフレームの上面に 、前記開口部を覆うように、陽極接合する工程とを備えた、光透過用窓部材の製造方 法。
[20] 前記陽極接合する工程は、前記光の透過領域を規定する開口部を有する金属製 の平板状のフレームと、前記ガラス部材とを A1層(5、 5a)を介して陽極接合する工程 を含む、請求項 19に記載の光透過用窓部材の製造方法。
[21] 前記陽極接合する工程に先立って、
前記フレームの前記ガラス部材に対する接合面に前記 A1層を形成する工程をさら に備える、請求項 20に記載の光透過用窓部材の製造方法。
[22] 前記陽極接合する工程に先立って、
前記ガラス部材の前記フレームに対する接合面を研磨する工程をさらに備える、請 求項 19一 21のいずれか 1項に記載の光透過用窓部材の製造方法。
PCT/JP2005/003457 2004-03-05 2005-03-02 光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法 WO2005086229A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519383A JPWO2005086229A1 (ja) 2004-03-05 2005-03-02 光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法
US10/548,224 US20060131600A1 (en) 2004-03-05 2005-03-02 Light transmitting window member, semiconductor package provided with light transmitting window member and method for manufacturing light transmitting window member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004061567 2004-03-05
JP2004-061567 2004-03-06

Publications (1)

Publication Number Publication Date
WO2005086229A1 true WO2005086229A1 (ja) 2005-09-15

Family

ID=34918074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003457 WO2005086229A1 (ja) 2004-03-05 2005-03-02 光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法

Country Status (3)

Country Link
US (1) US20060131600A1 (ja)
JP (1) JPWO2005086229A1 (ja)
WO (1) WO2005086229A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201164A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd 電子部品用ガラスキャップ成形工法
JP2010517064A (ja) * 2007-01-18 2010-05-20 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ モバイル使用事例において使用されるマイクロマシニング型のかつ光マイクロマシニング型の構成素子に用いられるパッケージ
JP2013072981A (ja) * 2011-09-27 2013-04-22 Seiko Epson Corp 光学フィルターデバイス、光学モジュール、及び電子機器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843060B2 (en) * 2007-06-11 2010-11-30 Cree, Inc. Droop-free high output light emitting devices and methods of fabricating and operating same
JP5646981B2 (ja) 2010-12-21 2014-12-24 新光電気工業株式会社 枠付反射防止ガラス及びその製造方法
USD731987S1 (en) * 2012-12-28 2015-06-16 Nichia Corporation Light emitting diode
US9691949B2 (en) 2014-05-30 2017-06-27 Cree, Inc. Submount based light emitter components and methods
USD777122S1 (en) * 2015-02-27 2017-01-24 Cree, Inc. LED package
JP6520299B2 (ja) * 2015-03-27 2019-05-29 セイコーエプソン株式会社 電気光学装置、電気光学装置の製造方法、および電子機器
USD761214S1 (en) * 2015-04-02 2016-07-12 Genesis Photonics Inc. Light emitting diode package
USD772181S1 (en) * 2015-04-02 2016-11-22 Genesis Photonics Inc. Light emitting diode package substrate
USD761213S1 (en) * 2015-04-02 2016-07-12 Genesis Photonics Inc. Light emitting diode module
USD783547S1 (en) * 2015-06-04 2017-04-11 Cree, Inc. LED package
JP1566953S (ja) * 2016-04-28 2017-01-16
USD794582S1 (en) * 2016-07-29 2017-08-15 Enraytek Optoelectronics Co., Ltd. LED chip
USD795822S1 (en) * 2016-07-29 2017-08-29 Enraytek Optoelectronics Co., Ltd. LED chip
TWD188042S (zh) 2016-09-29 2018-01-21 新世紀光電股份有限公司 發光二極體封裝體之部分
TWD186014S (zh) 2016-09-29 2017-10-11 新世紀光電股份有限公司 發光二極體模組之部分
US10957736B2 (en) 2018-03-12 2021-03-23 Cree, Inc. Light emitting diode (LED) components and methods
DE102018110193A1 (de) * 2018-04-27 2019-10-31 Schott Ag Beschichtetes optisches Element, Bauelement mit einem beschichteten optischen Element und Verfahren zu dessen Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565448A (en) * 1978-11-13 1980-05-16 Hitachi Ltd Ceramic package for semiconductor device
JPH09148469A (ja) * 1995-11-17 1997-06-06 Texas Instr Inc <Ti> 光学的窓を備えたハーメチックパッケージおよびその方法
JP2003156507A (ja) * 2001-11-22 2003-05-30 Matsushita Electric Works Ltd 半導体加速度センサの封止方法
JP2003229503A (ja) * 2002-01-31 2003-08-15 Nec Schott Components Corp 気密端子及びその製造方法
JP2004006525A (ja) * 2002-05-31 2004-01-08 Suncall Corp Smdガラスパッケージ及びこれを用いる電子素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627814B1 (en) * 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
US20040232535A1 (en) * 2003-05-22 2004-11-25 Terry Tarn Microelectromechanical device packages with integral heaters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565448A (en) * 1978-11-13 1980-05-16 Hitachi Ltd Ceramic package for semiconductor device
JPH09148469A (ja) * 1995-11-17 1997-06-06 Texas Instr Inc <Ti> 光学的窓を備えたハーメチックパッケージおよびその方法
JP2003156507A (ja) * 2001-11-22 2003-05-30 Matsushita Electric Works Ltd 半導体加速度センサの封止方法
JP2003229503A (ja) * 2002-01-31 2003-08-15 Nec Schott Components Corp 気密端子及びその製造方法
JP2004006525A (ja) * 2002-05-31 2004-01-08 Suncall Corp Smdガラスパッケージ及びこれを用いる電子素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007201164A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd 電子部品用ガラスキャップ成形工法
JP2010517064A (ja) * 2007-01-18 2010-05-20 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ モバイル使用事例において使用されるマイクロマシニング型のかつ光マイクロマシニング型の構成素子に用いられるパッケージ
JP2013072981A (ja) * 2011-09-27 2013-04-22 Seiko Epson Corp 光学フィルターデバイス、光学モジュール、及び電子機器

Also Published As

Publication number Publication date
JPWO2005086229A1 (ja) 2008-01-24
US20060131600A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2005086229A1 (ja) 光透過用窓部材、光透過用窓部材を備えた半導体パッケージおよび光透過用窓部材の製造方法
JP4588753B2 (ja) 電子素子パッケージの製造方法および電子素子パッケージ
JP2007281062A (ja) 電子部品接合体、それを用いた電子回路モジュールおよびその製造方法
JP2007206336A (ja) 光モジュールおよびその製造方法
US20060102923A1 (en) Optical element housing package
JP4830071B2 (ja) 圧電振動装置及び圧電振動装置の製造方法
JPH05121989A (ja) 圧電素子の収納容器
JP2019046826A (ja) シリカ部材及びその製造方法
JP6429266B2 (ja) 電子部品装置
JPH07221324A (ja) 陽極接合法により製造した半導体センサおよびその製造方法
JPS60193389A (ja) ガラスセラミツク材体上の金属物体のストービング処理可能の流体シーリングの製造法
JPH0847089A (ja) ラウドスピーカ
JP4077108B2 (ja) 半導体装置
JP6267549B2 (ja) 光センサ
JP2012015779A (ja) 圧電振動子の製造方法及び圧電振動子
JP2019043836A (ja) シリカガラス部材、その製造方法及びセラミックスとシリカガラスの接合方法
JP2004015563A (ja) 圧電振動子およびその製造方法
JP3976018B2 (ja) 光学用気密パッケージ
JP3374395B2 (ja) 電子部品用パッケージ
JPH1041431A (ja) 気密封着用パッケージ
WO2021014925A1 (ja) 発光装置のリッド材およびリッド材の製造方法
KR20140099507A (ko) 캡슐화장치를 제조하는 방법
JP4663450B2 (ja) 光電集積回路装置の製造方法
JP3329225B2 (ja) 半導体圧力センサの製造方法
JP6333591B2 (ja) 光センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006519383

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006131600

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10548224

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10548224

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase