WO2005090822A1 - Shock-absorbing device comprising a plastically-deformable member, which is intended, for example, for transport vehicles - Google Patents

Shock-absorbing device comprising a plastically-deformable member, which is intended, for example, for transport vehicles Download PDF

Info

Publication number
WO2005090822A1
WO2005090822A1 PCT/FR2005/000391 FR2005000391W WO2005090822A1 WO 2005090822 A1 WO2005090822 A1 WO 2005090822A1 FR 2005000391 W FR2005000391 W FR 2005000391W WO 2005090822 A1 WO2005090822 A1 WO 2005090822A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping device
deformable member
crushing
deformable
torsion
Prior art date
Application number
PCT/FR2005/000391
Other languages
French (fr)
Inventor
Akrum Abdul-Latif
Rachid Baleh
Original Assignee
Iut De Tremblay En France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iut De Tremblay En France filed Critical Iut De Tremblay En France
Publication of WO2005090822A1 publication Critical patent/WO2005090822A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/125Units with a telescopic-like action as one member moves into, or out of a second member

Definitions

  • the present invention relates to the field of shock absorbing devices with a plastically deformable member.
  • shock absorbers are used in particular for transport vehicles.
  • kinetic energy absorption systems, or shock absorbers which comprise at least one member adapted to absorb energy by plastic deformation in the event of impact, are known.
  • a shock absorber constituted by a deformable member plastically interposed between the cross member, bumper side, and the corresponding spar of the vehicle.
  • the absorption member is generally a solid body, relatively short, and more particularly a thin-walled cylinder. This cylinder is shaped so as to be crushed axially in the event of a vehicle collision.
  • the object of the present invention is to provide a kinetic energy absorption system which makes it possible in particular to solve the above problems.
  • the invention relates to a damping device of the type comprising a deformable member absorbing by plastic deformation of kinetic energy during a stress on said device, characterized in that said deformable member is associated with a transmission member adapted so that, when of said biasing of said device, said deformable member is biased both in axial compression and in torsion.
  • said transmission member comprises means for crushing said deformable member adapted to receive an axial compression load, said crushing means being associated with a helical guide means so as to urge said deformable member to both in axial compression and in torsion.
  • the crushing means is in slide-helical connection with the guide means.
  • the slope angle of the helical guide means determines the speed of torsional deformation for a given crushing stroke.
  • said transmission member comprises a cylindrical body on the walls of which are formed helical grooves forming guide means, said crushing means comprising a spider whose ends are engaged with said helical grooves.
  • one end of said deformable means is fixed to said crushing means by a first fixing means and the other end of said deformable means is held stationary by a second fixing means.
  • said first and second attachment means are adhesion attachment means.
  • said blocking results from a clamping force caused, for example by pliers acting on conical half-shells which press the members to be fixed against each other.
  • a clamping force caused, for example by pliers acting on conical half-shells which press the members to be fixed against each other.
  • said deformable member is a thin-walled cylinder. Due to the design of the guide means, these cylinders can have all kinds of sections, shapes and initial lengths. All types of metallic materials, composites and polymers can be used apart from fragile materials.
  • the stress exerted on the damping device is, of course, generally a stress of an instantaneous nature such as a shock, but it can also be a stress of a progressive nature.
  • a kinetic energy absorbing system according to the invention has a relatively low cost, a relatively small footprint and it is easy to adapt to a given use. It can find application for all types of transport vehicles like cars, boats, planes, etc. It is particularly interesting in the field of train transport where the shocks suffered are almost always frontal shocks.
  • the incorporation of absorption members according to the invention can be done easily, for example at the level of the coupling systems.
  • High speed trains (TGV) for which the kinetic energy to be absorbed is particularly high are particularly concerned by the present invention.
  • Another field of application is that of suspended means of transport, such as elevators, cable cars or the like, in which the invention can serve as a shock absorber in the event of an accidental fall.
  • the damping device can be installed in a lower part of the suspended means of transport, between a base and a passenger compartment in which there are people to be protected. It can be used in any device requiring absorption of kinetic energy, including in the field of research, in particular as regards the study of the plastic behavior of different materials.
  • the system described makes it possible to apply compression and torsion simultaneously. Alternatively, the torsion may only be applied after a certain crushing stroke.
  • the damping device 1 represents a schematic elevation view of a damping device according to the invention
  • - Figure 2 is a histogram showing the energy absorbed as a function of the crushing stroke for a device according to the invention and a device according to the prior art
  • - Figures 3 and 4 are curves representing the applied load and the energy absorbed as a function of the crushing stroke for two devices according to the invention and a device according to the prior art.
  • the damping device 1 according to the embodiment described generally comprises a deformable member constituted by a tube to be crushed 14 and a transmission member.
  • the tube to be crushed 14 is a thin-walled cylinder of any cross-section, shape and length. It can be made of all types of metallic materials, composites and polymers, apart from fragile materials.
  • the transmission member comprises a hollow cylindrical body 10 of hardened steel on which are machined four diametrically opposite helical grooves 25. These grooves are characterized by a determined helix angle.
  • a crushing means 12 comprising a cross associated with a disc 16.
  • the ends of the cross 12 are engaged with said helical grooves so that the crushing means is in slide-helical connection with the body 10.
  • On the spider 12 can be applied, via a receiving disc 21, a crushing load.
  • An intermediate cylinder 20 intervenes between the receiving disc 21 and the spider 12. Due to the slide-helical connection of the cross with the cylindrical body 10, a uniaxial stress is transformed into bi-axial torsional compression stress.
  • the ends of the brace are equipped with bronze rollers 13 adapted to roll in the grooves.
  • the crusher tube 14 is installed in the hollow cylindrical body, between a fixed disc 17 pinned on a base disc 15 installed at the end of the cylindrical body 10 opposite the load and the disc 16 screwed on the spider 12.
  • Systems fixing 30 and 31 of the tube 14 to the discs 17 and 16 respectively consist of clamps 18 associated with conical half-shells 19.
  • a screw allows the clamping of the clamps against the half-shells with the inclined surfaces of which they are in contact, so that the tube is locked against the disc.
  • the assembly and disassembly of the tubes to be crushed 14 is simple.
  • the method of fixing chosen does not influence the behavior of the tubes during crushing.
  • the tubes to be crushed do not have to undergo any heat treatment or special machining, apart from a simple dressing which makes it possible to adjust their initial lengths to the desired dimensions.
  • the system does not require regular lubrication or special maintenance.
  • the discs can be interchangeable to allow the use of different tube sections.
  • the system described makes it possible to apply compression and torsion simultaneously. Alternatively, the torsion may only be applied after a certain crushing stroke.
  • the last two arrangements described are particularly interesting for an experimental device intended to study the behavior of tubular structures subjected to compression-torsion crushing such as that which will now be described.
  • the behavior of tubular structures subjected to compression-torsion crushing is studied with a view to optimizing the energy dissipating capacities of a system according to the invention.
  • the device 1 according to the invention is associated with a charging means.
  • the system makes it possible to work in quasi-static mode (stress provided by a press) or dynamic (stress provided by the fall of a body).
  • the influence of the speed of deformation is also taken into account.
  • a first series of experimental tests made it possible to validate the capacity of a device according to the invention to optimize the dissipation of energy by plastic deformation of tubular copper structures.
  • the tubes used are of circular section, with a parameter ⁇ of 15 and a parameter ⁇ of 0.075, corresponding to a diameter of 30 mm, a thickness of 1 mm and an initial length of 200 mm.
  • the energies absorbed are 1.59 kJ for the device according to the invention (with grooves inclined at 30 °) and 1.29 kJ for the corresponding device of the prior art.
  • the histogram of FIG. 2 represents the energy absorbed by the device according to the invention (out of phase with an angle of inclination of the grooves of 30 °) compared to the prior art device for three crushing strokes (20, 50 and 80 mm) for a stressing speed of 1 mm / min.
  • the energy gain absorbed is a direct function of the torsion occurring in parallel with the compression.
  • the energy savings absorbed are 2%, 18% and 25% respectively.

Abstract

The invention relates to a shock-absorbing device (1) comprising a crushable tube (14) which is installed in a cylindrical body (10) having helical grooves (25) on the walls thereof. According to the invention, the means for crushing the tube comprises a crosspiece (12) and the ends thereof are engaged with the aforementioned helical grooves, such that the tube is subjected to both axial compression and torsion. The inventive device can be used for any application requiring the absorption of kinetic energy in the event of an impact, such as in road or railway transport vehicles or suspended transport vehicles.

Description

DISPOSITIF AMORTISSEUR À ORGANE DEFORMABLE PLASTIQUEMENT, NOTAMMENT POUR VÉHICULES DE TRANSPORT SHOCK ABSORBER WITH PLASTICALLY DEFORMABLE MEMBER, ESPECIALLY FOR TRANSPORT VEHICLES
La présente invention concerne le domaine des dispositifs amortisseurs à organe déformable plastiguement. De tels dispositifs amortisseurs sont notamment utilisés pour les véhicules de transport. On connaît dans l'état de la technique des systèmes d'absorption d'énergie cinétique, ou absorbeurs de choc, qui comprennent au moins un organe adapté à absorber de l'énergie par déformation plastique en cas de choc. Par exemple, pour la protection des occupants d'un véhicule automobile, on connaît un absorbeur de choc constitué par un organe déformable plastiquement intercalé entre la traverse, côté pare-chocs, et le longeron correspondant du véhicule. L'organe d'absorption est généralement un corps solide, relativement court, et plus particulièrement un cylindre à paroi mince. Ce cylindre est conformé de manière à être écrasé axialement en cas de collision du véhicule. Du fait de la stabilité de la charge moyenne d'écrasement ainsi que de l'importance de la course d'écrasement par unité de masse, de tels cylindres sont des organes d'absorption très intéressants. En revanche, leur comportement durant le processus d'écrasement est difficilement prévisible. La déformation plastique de la paroi du tube peut se faire selon un mode axisymétrique connu sous le nom de mode « concertina » ou selon un mode non axisymétrique connu sous le nom de mode « diamant » . On ne connaît pas à l'heure actuelle tous les paramètres permettant de déterminer le mode de déformation particulier qui va se produire pour une forme de tube et un matériau donnés. Le rapport entre le diamètre moyen du tube et l'épaisseur de sa paroi, connu sous le nom de paramètre η, donne une indication sur ce mode de déformation : lorsque η<15, le mode de déformation concertina devient prédominant pour la majorité des matériaux métalliques utilisés dans l'industrie ; pour des valeurs plus grandes de ce rapport, le mode diamant tend à se produire. Du fait des incertitudes sur le comportement en écrasement des absorbeurs de choc connus, il est très difficile de modéliser le comportement du véhicule en cas de choc en fonction de la vitesse. Par ailleurs, .pour des applications demandant l'absorption d'une grande quantité d'énergie cinétique, par exemple dans le cas de trains et plus spécifiquement de trains à grande vitesse, l'encombrement de l'organe d'absorption devient trop important. Le but de la présente invention est de proposer un système d'absorption d'énergie cinétique permettant notamment de résoudre les problèmes précédents . L'invention concerne un dispositif amortisseur du type comprenant un organe déformable absorbant par déformation plastique de l'énergie cinétique lors d'une sollicitation dudit dispositif, caractérisé en ce que ledit organe déformable est associé à un organe de transmission adapté à ce que, lors de ladite sollicitation dudit dispositif, ledit organe déformable soit sollicité à la fois en compression axiale et en torsion. Pour une course d'écrasement donnée, l'imposition d'une torsion associée à la compression confère une meilleure capacité d'absorption d'énergie. Selon un mode de réalisation préféré, ledit organe de transmission comprend un moyen d'écrasement dudit organe déformable adapté à recevoir une charge de compression axiale, ledit moyen d'écrasement étant associé à un moyen de guidage hélicoïdal de manière à solliciter ledit organe déformable à la fois en compression axiale et en torsion. Le moyen d'écrasement est en liaison glissière- hélicoïdale avec le moyen de guidage. L'angle de pente du moyen de guidage hélicoïdal détermine la vitesse de déformation en torsion pour une course d'écrasement donnée. De préférence, ledit organe de transmission comprend un corps cylindrique sur les parois duquel sont ménagées des rainures hélicoïdales formant moyen de guidage, ledit moyen d'écrasement comprenant un croisillon dont les extrémités sont en prise avec lesdites rainures hélicoïdales. Selon un mode de réalisation préféré, une extrémité dudit moyen déformable- est fixée audit moyen d'écrasement par un premier moyen de fixation et l'autre extrémité dudit moyen déformable est maintenue immobile par un second moyen de fixation. Selon une variante avantageuse, lesdits premier et second moyens de fixation sont des moyens de fixation par adhérence . Le blocage résulte d'un effort de serrage provoqué, par exemple par des pinces agissant sur des demi-coquilles coniques qui plaquent l'un contre l'autre les organes à fixer. Un tel système permet une fixation solide de l'organe déformable quelle que soit sa section et sans influence sur son comportement lors de l'écrasement. Avantageusement, ledit organe déformable est un cylindre à paroi mince. Du fait de la conception du moyen de guidage, ces cylindres peuvent présenter toutes sortes de sections, de formes et de longueurs initiales. Tous types de matériaux métalliques, composites et polymères peuvent être utilisés en dehors des matériaux fragiles. La sollicitation s 'exerçant sur le dispositif amortisseur est, bien entendu, généralement une sollicitation de nature instantanée comme un choc, mais il peut également s'agir d'une sollicitation de nature progressive. Un système absorbeur d'énergie cinétique selon l'invention présente un coût relativement faible, un encombrement relativement faible et il est facile à adapter à un usage donné. Il peut trouver application pour tout type de véhicules de transport comme voitures, bateaux, avions, etc. Il est particulièrement intéressant dans le domaine du transport par train où les chocs subis sont quasi- systématiquement des chocs frontaux. L'incorporation d'organes d'absorption selon l'invention peut se faire facilement, par exemple au niveau des systèmes d'attelage. Les trains à grande vitesse (T.G.V) pour lesquels l'énergie cinétique à absorber est particulièrement importante sont particulièrement concernés par la présente invention. Un autre domaine d'application est celui des moyens de transport suspendus, tels qu'ascenseurs, téléphériques ou autres, dans lesquels l'invention peut servir d'amortisseur de choc en cas de chute accidentelle. Le dispositif amortisseur pourra être installé dans une partie inférieure du moyen de transport suspendu, entre un socle et un habitacle dans lequel se trouvent des personnes à protéger. Il peut être utilisé dans tout dispositif nécessitant une absorption d'énergie cinétique, y compris dans le domaine de la recherche, notamment en ce qui concerne l'étude du comportement plastique des différents matériaux. Le système décrit permet d'appliquer simultanément la compression et la torsion. Alternativement, la torsion peut n'être appliquée qu'après une certaine course d'écrasement.The present invention relates to the field of shock absorbing devices with a plastically deformable member. Such shock absorbers are used in particular for transport vehicles. In the state of the art, kinetic energy absorption systems, or shock absorbers, which comprise at least one member adapted to absorb energy by plastic deformation in the event of impact, are known. For example, for the protection of the occupants of a motor vehicle, there is known a shock absorber constituted by a deformable member plastically interposed between the cross member, bumper side, and the corresponding spar of the vehicle. The absorption member is generally a solid body, relatively short, and more particularly a thin-walled cylinder. This cylinder is shaped so as to be crushed axially in the event of a vehicle collision. Due to the stability of the average crushing load as well as the importance of the crushing stroke per unit of mass, such cylinders are very attractive absorption members. However, their behavior during the crushing process is difficult to predict. The plastic deformation of the wall of the tube can be done according to an axisymmetric mode known under the name of "concertina" mode or according to a non-axisymmetric mode known under the name of "diamond" mode. At the present time, all the parameters making it possible to determine the particular mode of deformation which will occur for a given shape of tube and material are not known. The ratio between the mean diameter of the tube and the thickness of its wall, known as the parameter η, gives an indication of this deformation mode: when η <15, the concertina deformation mode becomes predominant for the majority of metallic materials used in industry; for larger values of this ratio, diamond mode tends to occur. Due to the uncertainties about the crushing behavior of known shock absorbers, it is very difficult to model the behavior of the vehicle in the event of an impact as a function of speed. Furthermore, for applications requiring the absorption of a large amount of kinetic energy, for example in the case of trains and more specifically of high-speed trains, the size of the absorption member becomes too large. . The object of the present invention is to provide a kinetic energy absorption system which makes it possible in particular to solve the above problems. The invention relates to a damping device of the type comprising a deformable member absorbing by plastic deformation of kinetic energy during a stress on said device, characterized in that said deformable member is associated with a transmission member adapted so that, when of said biasing of said device, said deformable member is biased both in axial compression and in torsion. For a given crushing stroke, the imposition of a torsion associated with compression gives a better energy absorption capacity. According to a preferred embodiment, said transmission member comprises means for crushing said deformable member adapted to receive an axial compression load, said crushing means being associated with a helical guide means so as to urge said deformable member to both in axial compression and in torsion. The crushing means is in slide-helical connection with the guide means. The slope angle of the helical guide means determines the speed of torsional deformation for a given crushing stroke. Preferably, said transmission member comprises a cylindrical body on the walls of which are formed helical grooves forming guide means, said crushing means comprising a spider whose ends are engaged with said helical grooves. According to a preferred embodiment, one end of said deformable means is fixed to said crushing means by a first fixing means and the other end of said deformable means is held stationary by a second fixing means. According to an advantageous variant, said first and second attachment means are adhesion attachment means. The blocking results from a clamping force caused, for example by pliers acting on conical half-shells which press the members to be fixed against each other. Such a system allows a solid fixation of the deformable member whatever its section and without influence on its behavior during the crushing. Advantageously, said deformable member is a thin-walled cylinder. Due to the design of the guide means, these cylinders can have all kinds of sections, shapes and initial lengths. All types of metallic materials, composites and polymers can be used apart from fragile materials. The stress exerted on the damping device is, of course, generally a stress of an instantaneous nature such as a shock, but it can also be a stress of a progressive nature. A kinetic energy absorbing system according to the invention has a relatively low cost, a relatively small footprint and it is easy to adapt to a given use. It can find application for all types of transport vehicles like cars, boats, planes, etc. It is particularly interesting in the field of train transport where the shocks suffered are almost always frontal shocks. The incorporation of absorption members according to the invention can be done easily, for example at the level of the coupling systems. High speed trains (TGV) for which the kinetic energy to be absorbed is particularly high are particularly concerned by the present invention. Another field of application is that of suspended means of transport, such as elevators, cable cars or the like, in which the invention can serve as a shock absorber in the event of an accidental fall. The damping device can be installed in a lower part of the suspended means of transport, between a base and a passenger compartment in which there are people to be protected. It can be used in any device requiring absorption of kinetic energy, including in the field of research, in particular as regards the study of the plastic behavior of different materials. The system described makes it possible to apply compression and torsion simultaneously. Alternatively, the torsion may only be applied after a certain crushing stroke.
L'on peut prévoir pour cela des rainures qui sont rectilignes et parallèles à l'axe du corps cylindrique dans une première portion du système. Cette disposition est notamment intéressante pour un dispositif expérimental destiné à étudier le comportement des structures tubulaires soumises à un écrasement en compression-torsion. L'invention sera mieux comprise à la lecture des dessins annexés, correspondant à un mode de réalisation non limitatif , où : la figure 1 représente une vue schématique en élévation d'un dispositif amortisseur selon l'invention ; - la figure 2 est un histogramme montrant l'énergie absorbée en fonction de la course d'écrasement pour un dispositif selon l'invention et un dispositif selon l'état de la technique ; et - les figures 3 et 4 sont des courbes représentant la charge appliquée et l'énergie absorbée en fonction de la course d'écrasement pour deux dispositifs selon l'invention et un dispositif selon l'état de la technique. Le dispositif amortisseur 1 selon l'exemple de réalisation décrit comprend globalement un organe déformable constitué par un tube à écraser 14 et un organe de transmission. Le tube à écraser 14 est un cylindre à paroi mince de section, de forme et de longueur initiale quelconques. Il peut être fait en tous types de matériaux métalliques, composites et polymères, en dehors des matériaux fragiles. L'organe de transmission comprend un corps cylindrique creux 10 en acier trempé sur lequel sont usinées quatre rainures hélicoïdales 25 diamétralement opposées. Ces rainures sont caractérisées par un angle d'hélice déterminé. Dans ce corps cylindrique creux peut se mouvoir un moyen d'écrasement 12 comprenant un croisillon associé à un disque 16. Les extrémités du croisillon 12 sont en prise avec lesdites rainures hélicoïdales de sorte que le moyen d'écrasement est en liaison glissière-hélicoïdale avec le corps 10. Sur le croisillon 12 peut être appliquée, par l'intermédiaire d'un disque récepteur 21, une charge d'écrasement. Un cylindre intermédiaire 20 intervient entre le disque récepteur 21 et le croisillon 12. Du fait de la liaison glissière-hélicoïdale du croisillon avec le corps cylindrique 10, une sollicitation uniaxiale est transformée en sollicitation bi-axiale de compression torsion. Afin de réduire le frottement entre le croisillon 12 et les parois des rainures 25, les extrémités du croisillon sont équipées de galets en bronze 13 adaptés à rouler dans les rainures. Le tube à écraser 14 est installé dans le corps cylindrique creux, entre un disque fixe 17 goupillé sur un disque de base 15 installé à l'extrémité du corps cylindrique 10 opposée à la charge et le disque 16 vissé sur le croisillon 12. Des systèmes de fixation 30 et 31 du tube 14 aux disques respectivement 17 et 16 sont constitués de pinces 18 associées à des demi-coquilles 19 coniques. Une vis permet le serrage des pinces contre les demi-coquilles avec les surfaces inclinées desquelles elle sont en contact, de sorte que le tube est bloqué contre le disque. Le montage et le démontage des tubes à écraser 14 est simple. Il permet néanmoins une fixation solide sans risque de glissement du tube à écraser. Le mode de fixation choisi n'influe pas le comportement des tubes lors de l'écrasement. Les tubes à écraser n'ont à subir ni traitement thermique, ni usinage particulier, mis à part un simple dressage qui permet d'ajuster leurs longueurs initiales aux dimensions voulues. Le système ne nécessite ni graissage régulier ni entretien particulier. Les disques peuvent être interchangeables afin de permettre l'utilisation de différentes sections de tubes. Le système décrit permet d'appliquer simultanément la compression et la torsion. Alternativement, la torsion peut n'être appliquée qu'après une certaine course d'écrasement.One can provide for this grooves which are rectilinear and parallel to the axis of the cylindrical body in a first portion of the system. This arrangement is particularly advantageous for an experimental device intended to study the behavior of tubular structures subjected to compression-torsion crushing. The invention will be better understood on reading the appended drawings, corresponding to a nonlimiting embodiment, where: FIG. 1 represents a schematic elevation view of a damping device according to the invention; - Figure 2 is a histogram showing the energy absorbed as a function of the crushing stroke for a device according to the invention and a device according to the prior art; and - Figures 3 and 4 are curves representing the applied load and the energy absorbed as a function of the crushing stroke for two devices according to the invention and a device according to the prior art. The damping device 1 according to the embodiment described generally comprises a deformable member constituted by a tube to be crushed 14 and a transmission member. The tube to be crushed 14 is a thin-walled cylinder of any cross-section, shape and length. It can be made of all types of metallic materials, composites and polymers, apart from fragile materials. The transmission member comprises a hollow cylindrical body 10 of hardened steel on which are machined four diametrically opposite helical grooves 25. These grooves are characterized by a determined helix angle. In this hollow cylindrical body can move a crushing means 12 comprising a cross associated with a disc 16. The ends of the cross 12 are engaged with said helical grooves so that the crushing means is in slide-helical connection with the body 10. On the spider 12 can be applied, via a receiving disc 21, a crushing load. An intermediate cylinder 20 intervenes between the receiving disc 21 and the spider 12. Due to the slide-helical connection of the cross with the cylindrical body 10, a uniaxial stress is transformed into bi-axial torsional compression stress. In order to reduce the friction between the brace 12 and the walls of the grooves 25, the ends of the brace are equipped with bronze rollers 13 adapted to roll in the grooves. The crusher tube 14 is installed in the hollow cylindrical body, between a fixed disc 17 pinned on a base disc 15 installed at the end of the cylindrical body 10 opposite the load and the disc 16 screwed on the spider 12. Systems fixing 30 and 31 of the tube 14 to the discs 17 and 16 respectively consist of clamps 18 associated with conical half-shells 19. A screw allows the clamping of the clamps against the half-shells with the inclined surfaces of which they are in contact, so that the tube is locked against the disc. The assembly and disassembly of the tubes to be crushed 14 is simple. It nevertheless allows a solid fixing without risk of sliding of the tube to be crushed. The method of fixing chosen does not influence the behavior of the tubes during crushing. The tubes to be crushed do not have to undergo any heat treatment or special machining, apart from a simple dressing which makes it possible to adjust their initial lengths to the desired dimensions. The system does not require regular lubrication or special maintenance. The discs can be interchangeable to allow the use of different tube sections. The system described makes it possible to apply compression and torsion simultaneously. Alternatively, the torsion may only be applied after a certain crushing stroke.
L'on peut prévoir pour cela des rainures qui sont rectilignes dans une première portion du système. Les deux dernières dispositions décrites (interchangeabilité des disques et application différée de la torsion) sont notamment intéressantes pour un dispositif expérimental destiné à étudier le comportement des structures tubulaires soumises à un écrasement en compression-torsion tel que celui qui va maintenant être décrit. Le comportement des structures tubulaires soumises à un écrasement en compression-torsion est étudié en vue d'optimiser les capacités dissipatrices d'énergie d'un système selon l'invention. Le dispositif 1 selon l'invention est associé à un moyen de charge. Le système permet de travailler en régime quasi-statique (sollicitation fournie par une presse) ou dynamique (sollicitation fournie par la chute d'un corps). On prend en compte, pour les tubes à écraser 14, l'effet des paramètres radial (η, rapport entre le diamètre moyen du cylindre et l'épaisseur de la paroi) et longitudinal (λ, rapport entre le diamètre moyen du cylindre et sa longueur initiale). On prend également en compte l'influence de la vitesse de déformation. Pour cela, on a étudié trois corps cylindriques 1 dont les rainures ont des angles d'hélices respectifs de 30, 37,5 et 45 degrés, de manière à travailler avec trois vitesses de torsion différentes. Une première série de tests expérimentaux a permis de valider la capacité d'un dispositif selon l'invention à optimiser la dissipation d'énergie par déformation plastique de structures tubulaires en cuivre. Les tubes utilisés sont de section circulaire, avec un paramètre η de 15 et un paramètre λ de 0,075, correspondant à un diamètre de 30 mm, une épaisseur de 1 mm et une longueur initiale de 200 mm. Les essais sont réalisés en sollicitation biaxiale hors-phase, c'est-à-dire que l'application de la torsion est différée au-delà de la zone d'entrée en plasticité du matériau. Autrement dit, dans un premier temps, la compression agit seule sur une certaine distance axiale. Les figures 3 et 4 représentent la charge appliquée en fonction du déplacement axial, la figure 3 pour une vitesse de sollicitation de Imm/min et un angle d'inclinaison d'hélice de 30° et la figure 4 pour une vitesse de sollicitation de 500 mm/min et un angle d'inclinaison d'hélice de 45°. Chacune de ces figures montre aussi la courbe charge appliquée-déplacement axial pour un tube identique, mais qui est simplement comprimé comme dans l'état de la technique. Si on considère par exemple la figure 2, on remarque en premier lieu un accroissement pour le dispositif selon 1 ' invention de plus de 2kN de la charge moyenne alors que la charge maximale reste inchangée. En outre, l'amplitude des oscillations au-delà du premier pic d'élasticité est largement supérieure pour la présente invention, ce qui prouve que le matériau est davantage sollicité. Le mode de déformation est pratiquement axisymétrique (mode concertina), alors que pour le dispositif de l'art antérieur, il est mixte (partiellement concertina et partiellement diamant. Sur la figure a été également représentée la quantité d'énergie absorbée en fonction de la longueur écrasée pour le dispositif selon l'invention et pour le dispositif de l'art antérieur. L'absorption est identique pour les 20 premiers millimètres. Au-delà de ce point, la courbe correspondant au dispositif selon la présente invention s'éloigne vers le haut dès l'entrée en action de la torsion. A titre d'exemple, pour un écrasement de 80 mm, les énergies absorbées sont de 1,59 kJ pour le dispositif selon l'invention (avec des rainures inclinées à 30°) et de 1,29 kJ pour le dispositif correspondant de l'art antérieur. Le même constat peut être fait pour l'essai représenté sur la figure 3. L'histogramme de la figure 2 représente l'énergie absorbée par le dispositif selon l'invention (hors phase avec un angle d'inclinaison des rainures de 30°) en comparaison du dispositif de l'état de la technique pour trois courses d'écrasement (20, 50 et 80 mm) pour une vitesse de sollicitation de 1 mm/min. Le gain en énergie absorbé est directement fonction de la torsion intervenant en parallèle avec la compression. Pour des écrasements de 20, 50 et 80 mm, les gains d'énergie absorbée sont respectivement de 2%, 18% et 25%. One can provide for this grooves which are rectilinear in a first portion of the system. The last two arrangements described (interchangeability of the discs and deferred application of torsion) are particularly interesting for an experimental device intended to study the behavior of tubular structures subjected to compression-torsion crushing such as that which will now be described. The behavior of tubular structures subjected to compression-torsion crushing is studied with a view to optimizing the energy dissipating capacities of a system according to the invention. The device 1 according to the invention is associated with a charging means. The system makes it possible to work in quasi-static mode (stress provided by a press) or dynamic (stress provided by the fall of a body). The effect of the radial (η, ratio between the mean cylinder diameter and wall thickness) and longitudinal (λ, ratio between the mean cylinder diameter and its initial length). The influence of the speed of deformation is also taken into account. For this, we have studied three cylindrical bodies 1 whose grooves have respective helix angles of 30, 37.5 and 45 degrees, so as to work with three different torsional speeds. A first series of experimental tests made it possible to validate the capacity of a device according to the invention to optimize the dissipation of energy by plastic deformation of tubular copper structures. The tubes used are of circular section, with a parameter η of 15 and a parameter λ of 0.075, corresponding to a diameter of 30 mm, a thickness of 1 mm and an initial length of 200 mm. The tests are carried out in biaxial stress out of phase, that is to say that the application of the torsion is deferred beyond the zone of entry into plasticity of the material. In other words, initially, the compression acts alone over a certain axial distance. Figures 3 and 4 show the applied load as a function of the axial displacement, Figure 3 for a loading speed of Imm / min and a propeller tilt angle of 30 ° and Figure 4 for a loading speed of 500 mm / min and a helix tilt angle of 45 °. Each of these figures also shows the applied load-axial displacement curve for an identical tube, but which is simply compressed as in the prior art. If we consider for example Figure 2, we first notice an increase for the device according to the invention of more than 2kN of the average load while the maximum load remains unchanged. In addition, the amplitude of the oscillations beyond the first elasticity peak is much higher for the present invention, which proves that the material is more stressed. The deformation mode is practically axisymmetric (concertina mode), while for the device of the prior art, it is mixed (partially concertina and partially diamond. The figure also shows the amount of energy absorbed as a function of the crushed length for the device according to the invention and for the device of the prior art. The absorption is identical for the first 20 millimeters. Beyond this point, the curve corresponding to the device according to the present invention moves away towards the top as soon as the torsion takes effect. For example, for a crushing of 80 mm, the energies absorbed are 1.59 kJ for the device according to the invention (with grooves inclined at 30 °) and 1.29 kJ for the corresponding device of the prior art. The same observation can be made for the test represented in FIG. 3. The histogram of FIG. 2 represents the energy absorbed by the device according to the invention (out of phase with an angle of inclination of the grooves of 30 °) compared to the prior art device for three crushing strokes (20, 50 and 80 mm) for a stressing speed of 1 mm / min. The energy gain absorbed is a direct function of the torsion occurring in parallel with the compression. For crushings of 20, 50 and 80 mm, the energy savings absorbed are 2%, 18% and 25% respectively.

Claims

REVENDICATIONS
1 - Dispositif amortisseur (1) du type comprenant un organe déformable (14) absorbant par déformation plastique de l'énergie cinétique lors d'une sollicitation dudit dispositif, caractérisé en ce que ledit organe déformable est associé à un organe de transmission (10, 12) adapté à ce que, lors de ladite sollicitation dudit dispositif, ledit organe déformable soit sollicité à la fois en compression axiale et en torsion.1 - Damping device (1) of the type comprising a deformable member (14) absorbing kinetic energy by plastic deformation when said device is stressed, characterized in that said deformable member is associated with a transmission member (10, 12) adapted so that, during said stress on said device, said deformable member is stressed both in axial compression and in torsion.
2 - Dispositif amortisseur selon la revendication 1, caractérisé en ce que ledit organe de transmission (10, 12) comprend un moyen d'écrasement (12) dudit organe déformable adapté à recevoir une charge de compression axiale, ledit moyen d'écrasement étant associé à un moyen de guidage hélicoïdal (25) de manière à solliciter ledit organe déformable à la fois en compression axiale et en torsion. 3 — Dispositif amortisseur selon la revendication 2, caractérisé en ce que ledit moyen de guidage hélicoïdal (25) a un angle de pente déterminé par une vitesse de torsion choisie. 4 — Dispositif amortisseur selon la revendication 2 ou 3, caractérisé en ce que ledit organe de transmission (10, 12) comprend un corps cylindrique (10) sur les parois duquel sont ménagées des rainures hélicoïdales (25) formant moyen de guidage, ledit moyen d'écrasement comprenant un croisillon ( 12 ) dont les extrémités sont en prise avec lesdites rainures hélicoïdales.2 - Damping device according to claim 1, characterized in that said transmission member (10, 12) comprises a crushing means (12) of said deformable member adapted to receive an axial compression load, said crushing means being associated to a helical guide means (25) so as to urge said deformable member both in axial compression and in torsion. 3 - Damping device according to claim 2, characterized in that said helical guide means (25) has a slope angle determined by a chosen twist speed. 4 - Damping device according to claim 2 or 3, characterized in that said transmission member (10, 12) comprises a cylindrical body (10) on the walls of which are formed helical grooves (25) forming guide means, said means crush comprising a spider (12) whose ends are engaged with said helical grooves.
5 - Dispositif amortisseur selon la revendication 4, caractérisé en ce que les extrémités dudit croisillon ( 12 ) sont équipées de galets (13) adaptés à rouler dans lesdites rainures (25) .5 - Damping device according to claim 4, characterized in that the ends of said spider (12) are equipped with rollers (13) adapted to roll in said grooves (25).
6 — Dispositif amortisseur selon l'une quelconque des revendications 2 à 5, caractérisé en ce que ledit moyen de guidage hélicoïdal est précédé d'un moyen de guidage en translation axiale.6 - Damping device according to any one of claims 2 to 5, characterized in that said helical guide means is preceded by a guide means in axial translation.
7 — Dispositif amortisseur selon l'une quelconque des revendications 2 à 6, caractérisé en ce qu'une extrémité dudit moyen déformable (14) est fixée audit moyen d'écrasement (12) par un premier moyen de fixation (31) et l'autre extrémité dudit moyen déformable est maintenue immobile par un second moyen de fixation (30).7 - Damping device according to any one of claims 2 to 6, characterized in that one end of said deformable means (14) is fixed to said crushing means (12) by a first fixing means (31) and the another end of said deformable means is held stationary by a second fixing means (30).
8 — Dispositif amortisseur selon la revendication 7, caractérisé en ce que lesdits premier (31) et second (30) moyens de fixation sont des moyens de fixation par adhérence.8 - Damping device according to claim 7, characterized in that said first (31) and second (30) fixing means are fixing means by adhesion.
9 — Dispositif amortisseur selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit organe déformable (14) est un cylindre à paroi mince. 10 — Dispositif amortisseur selon la revendication 9, caractérisé en ce que la section dudit cylindre est circulaire, carrée, triangulaire ou hexagonale.9 - Damping device according to any one of the preceding claims, characterized in that said deformable member (14) is a thin-walled cylinder. 10 - Damping device according to claim 9, characterized in that the section of said cylinder is circular, square, triangular or hexagonal.
11 — Véhicule de transport routier, caractérisé en ce qu'un dispositif amortisseur selon l'une quelconque des revendications précédentes est intercalé entre une traverse, côté pare-chocs, et un longeron correspondant dudit véhicule. 12 — Véhicule de transport ferroviaire, caractérisé en ce qu'un dispositif amortisseur selon l'une quelconque des revendications 1 à 10 est installé au niveau de systèmes d'attelage.11 - Road transport vehicle, characterized in that a damping device according to any one of the preceding claims is interposed between a cross member, bumper side, and a corresponding spar of said vehicle. 12 - Railway transport vehicle, characterized in that a damping device according to any one of claims 1 to 10 is installed at the level of coupling systems.
13 — Véhicule de transport suspendu, caractérisé en ce qu'un dispositif amortisseur selon l'une quelconque des revendications 1 à 10 est installé au niveau d'une partie inférieure dudit véhicule.13 - Suspended transport vehicle, characterized in that a damping device according to any one of claims 1 to 10 is installed at a lower part of said vehicle.
14 — Dispositif d'étude du comportement plastique de différents matériaux, caractérisé en ce qu'il comprend un dispositif amortisseur selon l'une quelconque des revendications 1 à 10. 14 - Device for studying the plastic behavior of different materials, characterized in that it comprises a damping device according to any one of claims 1 to 10.
PCT/FR2005/000391 2004-02-18 2005-02-18 Shock-absorbing device comprising a plastically-deformable member, which is intended, for example, for transport vehicles WO2005090822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0401617A FR2866399A1 (en) 2004-02-18 2004-02-18 Damping device for e.g. car, has crosspiece whose ends are connected to grooves, such that crosspiece is in helical-sliding connection with cylindrical body to transform uni-axial stress of tube into biaxial torsion compression stress
FR0401617 2004-02-18

Publications (1)

Publication Number Publication Date
WO2005090822A1 true WO2005090822A1 (en) 2005-09-29

Family

ID=34803446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000391 WO2005090822A1 (en) 2004-02-18 2005-02-18 Shock-absorbing device comprising a plastically-deformable member, which is intended, for example, for transport vehicles

Country Status (2)

Country Link
FR (1) FR2866399A1 (en)
WO (1) WO2005090822A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360081A (en) * 1966-09-23 1967-12-26 Ara Inc Energy absorbing device
US4281487A (en) * 1979-08-06 1981-08-04 Koller Karl S Energy absorbing load carrying strut and method of providing such a strut capable of withstanding cyclical loads exceeding its yield strength
SU1216478A1 (en) * 1984-09-03 1986-03-07 Ростовское высшее военное командно-инженерное училище ракетных войск им.главного маршала артиллерии М.И.Неделина Block shock-absorber
DE19807158A1 (en) * 1998-02-20 1999-08-26 Opel Adam Ag Motor vehicle impact absorber tube between bumper and vehicle member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360081A (en) * 1966-09-23 1967-12-26 Ara Inc Energy absorbing device
US4281487A (en) * 1979-08-06 1981-08-04 Koller Karl S Energy absorbing load carrying strut and method of providing such a strut capable of withstanding cyclical loads exceeding its yield strength
SU1216478A1 (en) * 1984-09-03 1986-03-07 Ростовское высшее военное командно-инженерное училище ракетных войск им.главного маршала артиллерии М.И.Неделина Block shock-absorber
DE19807158A1 (en) * 1998-02-20 1999-08-26 Opel Adam Ag Motor vehicle impact absorber tube between bumper and vehicle member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section PQ Week 198644, Derwent World Patents Index; Class Q63, AN 1986-290195, XP002298830 *

Also Published As

Publication number Publication date
FR2866399A1 (en) 2005-08-19

Similar Documents

Publication Publication Date Title
EP2163782B1 (en) Vehicle structural element serving to absorb certain shocks by plastic deformation
FR2643864A1 (en) BUMPER FOR VEHICLE
US8820493B2 (en) Shock energy absorber
EP1123468B1 (en) Shock absorbing device
FR2999998A1 (en) SHOCK ABSORPTION DEVICE FOR FRONT STRUCTURE OF A VEHICLE
FR2585659A1 (en) DIRECTION WITH ABSORPTION OF ENERGY
EP1045165A1 (en) Shock absorbing device and manufacturing process therefor
BE1010760A3 (en) Anti-shock.
FR2912370A1 (en) FRONT STRUCTURE OF MOTOR VEHICLE
FR2992701A1 (en) ROD INTEGRATING ENERGY ABSORBER
WO2005090822A1 (en) Shock-absorbing device comprising a plastically-deformable member, which is intended, for example, for transport vehicles
EP2246221B1 (en) Go-kart with elastic shock absorbing means, corresponding device
WO1979000124A1 (en) New high absorption bumper device for vehicles
FR3019606B1 (en) PLASTICALLY DEFORMABLE METALLIC COMPOSITE ORGAN ENERGY ABSORPTION SYSTEM
BE1018231A5 (en) COMPRESSION SPRING, SHOCK ABSORBER FOR AUTOMATIC COUPLING DEVICE OF VEHICLES AND VEHICLE EQUIPPED WITH SUCH SHOCK ABSORBER.
EP0024078B1 (en) Energy absorbtion procedure and apparatus for moving bodies
FR2629162A1 (en) SHOCK ABSORBING DEVICE
EP0807195A1 (en) Roadside crash barrier with a shock-absorbing device
EP2999617B1 (en) Interface for attaching a vehicle floor and an engine cradle to each other in order to attenuating the law of deceleration during a frontal impact
FR3044064A1 (en) &#34;MECHANICAL LOCKING DEVICE FOR A TRANSMISSION SHAFT OF A MOTOR VEHICLE&#34;
FR3022603A1 (en) ENERGY ABSORBER DEVICE AND CORRESPONDING VEHICLE
FR3010474A1 (en) DEFORMATION ELEMENT, DEFORMATION DEVICE, AND COMPUTER PROGRAM
FR3126368A1 (en) Energy absorbing device for a shock absorbing system for a motor vehicle
FR2699630A1 (en) Shock absorber and vibration damper for general suspension
FR2791626A1 (en) Shock absorbing chassis beam for motor vehicle has interior boxes containing pressurised gas to control deformation of chassis structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase