WO2005099345A2 - System and method for ecg-triggered retrospective color flow ultrasound imaging - Google Patents

System and method for ecg-triggered retrospective color flow ultrasound imaging Download PDF

Info

Publication number
WO2005099345A2
WO2005099345A2 PCT/IB2005/002437 IB2005002437W WO2005099345A2 WO 2005099345 A2 WO2005099345 A2 WO 2005099345A2 IB 2005002437 W IB2005002437 W IB 2005002437W WO 2005099345 A2 WO2005099345 A2 WO 2005099345A2
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasound
subject
location
ecg
color flow
Prior art date
Application number
PCT/IB2005/002437
Other languages
French (fr)
Other versions
WO2005099345A3 (en
Inventor
Ross Williams
Andrew Needles
Emmanuel Cherin
F. Stuart Foster
Original Assignee
Sunnybrook And Women's College Health Sciences Centre
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunnybrook And Women's College Health Sciences Centre filed Critical Sunnybrook And Women's College Health Sciences Centre
Priority to EP05768233A priority Critical patent/EP1728098A2/en
Priority to CN2005800065541A priority patent/CN101002107B/en
Priority to CA002558584A priority patent/CA2558584A1/en
Priority to JP2007501383A priority patent/JP2007525299A/en
Publication of WO2005099345A2 publication Critical patent/WO2005099345A2/en
Publication of WO2005099345A3 publication Critical patent/WO2005099345A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5284Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/895Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum
    • G01S15/8956Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques characterised by the transmitted frequency spectrum using frequencies at or above 20 MHz
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8988Colour Doppler imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52034Data rate converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/52087Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques
    • G01S7/52088Details related to the ultrasound signal acquisition, e.g. scan sequences using synchronization techniques involving retrospective scan line rearrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems

Definitions

  • Small animal or laboratory animal research is a cornerstone of modern biomedical advancement. Research using small animals enables researchers to understand complex biological mechanisms, to understand human and animal disease progression, and to develop new drugs to cure or alleviate many human and animal maladies. Small animal research is important in many areas of biomedical research including neurobiology, developmental biology, cardiovascular research and cancer biology.
  • Color flow imaging systems estimate blood velocity by measuring the time, or frequency phase shift between backscattered signals.
  • Color flow imaging of blood velocity in small animals such as mice and in humans has been accomplished by sweeping the transducer over a region of interest.
  • This technique has limitations including tissue clutter artifacts that are induced by the sweep velocity, which limits the ability to detect low flow rates.
  • Other limitations include spatio- temporal decorrelation artifacts that occur when visualizing pulsatile flow, particularly if the pulse frequency is large relative to the sweep frequency of the probe.
  • an additional limitation includes limited accuracy of flow velocity estimation because of the number of radio frequency (RF) data lines acquired per location.
  • a method for producing an ECG-triggered retrospective color-flow ultrasound image comprises generating ultrasound, transmitting the ultrasound into a subject at a first location, wherein a first reference point of an ECG signal taken from the subject triggers the ultrasound transmission, receiving ultrasound reflected from the subj ect at the first location, transmitting the ultrasound into the subject at a second location, wherein a second reference point of an ECG signal taken from the subject triggers the ultrasound transmission receiving ultrasound reflected from the subject at the second location, processing the received ultrasound to form ultrasound color traces, and reconstructing the ultrasound color traces to form the ultrasound image.
  • Figure 1 is a block diagram illustrating an exemplary imaging system.
  • Figure 2 is a flowchart illustrating the operation of ultrasound data acquisition by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image.
  • Figure 3 shows an exemplary ECG signal from an exemplary subject.
  • Figure 4 is a schematic diagram illustrating the acquisition of ultrasound data using an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image.
  • Figure 5 is a flowchart illustrating the operation of color flow processing by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image.
  • Figure 6 is a flowchart illustrating the operation of color flow reconstruction by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image.
  • Figure 7 is a schematic diagram illustrating retrospective color flow reconstruction.
  • Figure 8 is a block diagram illustrating an exemplary retrospective color flow imaging system.
  • Figure 9 shows selected reconstructed frames of a mouse carotid artery using the ECG triggered retrospective color flow ultrasound imaging technique.
  • Figure 10 is a block diagram illustrating an exemplary retrospective B-mode imaging system.
  • the singular forms "a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a trace,” “a frame,” or “a pulse” can include two or more such traces, frames or pulses unless the context indicates otherwise.
  • a "subject” is meant an individual. The term subject includes small or laboratory animals as well as primates, including humans.
  • a laboratory animal includes, but is not limited to, a rodent such as a mouse or a rat.
  • the term laboratory animal is also used interchangeably with animal, small animal, small laboratory animal, or subject, which includes mice, rats, cats, dogs, fish, rabbits, guinea pigs, rodents, etc.
  • the term laboratory animal does not denote a particular age or sex. Thus, adult and newborn animals, as well as fetuses (including embryos), whether male or female, are included.
  • Figure 1 is a block diagram illustrating an imaging system 10O.
  • the system 100 operates on a subject 102.
  • An ultrasound probe 112 is placed in proximity to the subject 102 to obtain ultrasound image information.
  • the ultrasound probe 112 can comprise a mechanically swept transducer 109 that can be used for the collection of ultrasound data 110.
  • the transducer 109 is typically a single element mechanically scanned transducer.
  • the ultrasound probe 112 comprises a mechanism to reposition (and record the spatial location of) the ultrasound beam.
  • the positioning mechanism comprises an optical position encoder connected to a high resolution stepping motor as described in U.S. Patent Application No. 10/683,890, entitled "High Frequency, High Frame-Rate Ultrasound Imaging System," which is incorporated herein by reference.
  • the transducer comprises an array of piezoelectric elements (not shown) which can be electronically steered using variable pulsing and delay mechanisms.
  • the transducer 109 or, if used, the array can generate ultrasound energy at high frequencies, such as, but not limited to, greater than 20 MHz and including 25 MHz, 30 MHz, 35 MHz, 40 MHz, 45 MHz, 50 MHz, 55 MHz, 60 MHz 65 MHz, 70 MHz, 75 MHz, 80 MHz, 85 MHz, 90 MHz, 95 MHz, 100 MHz and higher. Further, operating frequencies significantly greater than those mentioned above are also contemplated.
  • the transducer 109 or, if used, the array can also generate ultrasound energy at clinical frequencies, such as, but not limited to, 1 MHz , 2 MHz, 3 MHz, 4 MHz, 5 MHz, 10 MHz or 15 MHz. These disclosed high and clinical frequencies refer to exemplary nominal center frequencies at which the transducer 109 or array can generate and transmit ultrasound energy. As would be clear to one skilled in the art, such, frequencies can vary.
  • the subject 102 is connected to electrocardiogram (ECG) electrodes 104 to obtain a cardiac rhythm or signal ( Figure 3) from the subject 102.
  • ECG electrocardiogram
  • the cardiac signal from the electrodes 104 is transmitted to an ECG amplifier 106 to condition the signal for provision to an ultrasound system 131.
  • a signal processor or other such device can be used instead of an ECG amplifier to condition the signal.
  • the cardiac signal from the electrodes 104 is suitable as obtained, then use of an amplifier 106 or signal processor could be avoided entirely.
  • the ultrasound system 131 includes a control subsystem 127, an image construction subsystem 129, sometimes referred to as a "scan converter," a transmit subsystem/beamformer 118, a receive subsystem/beamformer 120, a motor control- subsystem 119 and a user input device 136. Beamformers are used if the transducer comprises an electronically steerable array.
  • the processor 134 is coupled to the control subsystem 127 and the display 116.
  • a memory 121 is coupled to the processor 134.
  • the memory 121 can be any type of computer memory, and is typically referred to as random access memory "RAM,” in which the system software 123, velocity estimation software 124 and retrospective reconstruction software 125 of the invention resides.
  • the system software 123, velocity estimation software 124, and retrospective reconstruction software 125 control the acquisition, processing and display of the ultrasound data 110 allowing the ultrasound system 131 to display a retrospective color flow image.
  • the system software 123, velocity estimation software 124, and retrospective reconstruction software 125 comprise one or more modules to acquire, process, and display data from the ultrasound system 131.
  • the software comprises various modules of machine code which coordinate the ultrasound subsystems.
  • Data is acquired from the ultrasound system, processed to form images, and then displayed on a display 116.
  • the system software 123, velocity estimation software 124, and retrospective reconstruction software 125 allow the management of multiple acquisition sessions and the saving and loading of data associated with these sessions. Post processing of the ultrasound data to obtain an image is also enabled through the system software 123, velocity estimation software 124, and retrospective reconstruction software 125.
  • the system for ECG-triggered retrospective color flow imaging can be implemented using a combination of hardware and software.
  • the hardware implementation of the system can include any or a combination of the following technologies, which are all well known in the art: discrete electronic components, a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit having appropriate logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
  • the software for the system comprises an ordered listing of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
  • a "computer-readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
  • the computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium.
  • the computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
  • the memory 121 can include trie ultrasound data 110 obtained by the imaging system 100.
  • a computer readable storage medium 138 is coupled to the processor for providing instructions to the processor to instruct and/or configure processor to perform steps or algorithms related to the operation of the ultrasound system 131.
  • the computer readable medium can include hardware and/or software such as, by way of example only, magnetic disks, magnetic tape, optically readable media such as CD ROM's, and semiconductor memory such as PCMCIA cards.
  • the media may take the form of a portable item such as a small disk, floppy diskette, cassette, or it may take the form of a relatively large or immobile item such as hard disk drive, solid state memory card, or RAM provided in the support system. It should be noted that the above listed example mediums can be used either alone or in combination.
  • the ultrasound system 131 can include a control subsystem 127 to direct operation of various components of the ultrasound system 131.
  • the control subsystem 127 and related components may be provided as software for instructing a general purpose processor or as specialized electronics in a hardware implementation.
  • the control subsystem 127 can include a master oscillator 804 ( Figure 8) which can generate a continuous wave (CW) signal for provision to the transmit subsystem 118.
  • CW continuous wave
  • the control subsystem 127 is connected to a transmit subsystem/beamformer 118 to provide an ultrasound transmit signal to the ultrasound probe 112.
  • the transmit subsystem 118 can be internal to the ultrasound system 131 as shown in Figure 1. In one embodiment, portions of the transmit subsystem 118 can be external to the ultrasound system 131. For example, in one embodiment, an arbitrary waveform generator (AWG) 812 ( Figure 8) and an RF amplifier 814 ( Figure 8) can be used to provide the transmit signal to the ultrasound probe 112.
  • AMG arbitrary waveform generator
  • RF amplifier 814 Figure 8
  • pulse train Multiple pulses can be transmitted and are referred to through out as a "pulse train.”
  • a “pulse train” or “train” can comprise about, for example, 500, 1000, 2000, 3000, 4000, 5000, 10,000 or more pulses per second.
  • the number of pulses in a pulse train or train can vary, however, as would be clear to one skilled in the art.
  • the ultrasound probe 112 provides an ultrasound receive signal to a receive subsystem/beamformer 120.
  • the receive subsystem 120 also provides signals representative of the received signals to the image construction subsystem 129.
  • the receive subsystem 120 can include a demodulator 806 ( Figure 8) and an analog-to-digital (A/D) converter 808 ( Figure 8), which can condition the received ultrasound signal for provision to the control subsystem 127 and the image construction system 129.
  • the demodulator 806 is an element that uses the envelope of an RF data signal received from the transducer 109 and converts it into an in- phase (I) and quadrature-phase (Q) format.
  • the I and Q data from the demodulator 806 can be converted into digital data by the analog to digital converter 808 for provision to the control subsystem 127 and the image construction subsystem 129.
  • the RF signal can be sampled directly by methods known in the art.
  • the ultrasound system 131 includes an image construction subsystem 129 for converting the electrical signals generated by the received ultrasound echoes to data that can be manipulated by the processor 134 and that can be rendered into an image on the display 116.
  • the image construction subsystem 129 is directed by the control subsystem 127 to operate on the received data to render an image for display using the ultrasound data 110.
  • the control subsystem 127 is also coupled to a motor control subsystem 119 to provide a motor control signal to the motor 111 to control the movement of the ultrasound probe 112 to a location K ( Figure 2) on the subject 112, as described below.
  • the image construction subsystem 129 is directed by the control subsystem 127.
  • the ultrasound system 131 can include an ECG signal processor 108 configured to receive signals from the ECG amplifier 106.
  • the ECG signal processor 108 provides various signals to the control subsystem 127.
  • the ECG signal can be used to trigger transmission by the transducer 109 of a number of pulses of ultrasonic energy, or pulse train.
  • the signals provided to trie control subsystem 127 from the ECG signal processor 108 can trigger the acquisition of ultrasound data 110 across a region of anatomy of a subject 102.
  • the receive subsystem 120 can also receive an ECG time stamp from the ECG signal processor 108 as described in U.S. Patent Application No. 10/736,232 entitled "System of Producing an Ultrasound Image using Line-Based Image Reconstruction," which is incorporated herein by reference.
  • the ECG signal is not used to trigger the transmission of pulses, but instead the ECG is recorded continuously and simultaneously with the ultrasound data 110. From the recorded ECG signal, a series of time stamps are selected and used to determine which of the RF data collected at each location will be used to reconstitute the first frame of a cineloop, and from there, the subsequent frames.
  • a cineloop is a movie comprising a series of images displayed at a relatively high frame-rate.
  • the ultrasound system 131 transmits and receives ultrasound data through the ultrasound probe 112, provides an interface to a user to control the operational parameters of the imaging system 100, and processes data appropriate to formulate an ECG-triggered retrospective color flow image.
  • an ECG-triggered retrospective color flow image is an image comprising an image of flow (i.e. bloodflow) over a region of interest at a specific time relative to the cardiac cycle of a subject 102, reconstructed from a set of data acquired upon the detection of a trigger signal detected from the subject's EGC trace. Images are presented through the display 116. A series of images can be presented on the display 116 as a cineloop.
  • the human-machine interface 136 takes input from the user, and translates such input to control the operation of the ultrasound probe 112.
  • the human-machine interface 136 also presents processed images and data to the user through the display 116.
  • the system software 123, the velocity estimation software 124 and the retrospective reconstruction software 125, in cooperation with the image construction subsystem 129 operate on the electrical signals developed by the receive subsystem 120 to develop an ECG-triggered retrospective color flow image of anatomy of the subject 102.
  • the system software 123 can, in cooperation with the processor 134, direct the acquisition of the ultrasound data 110, as described below.
  • the velocity estimation software 124 in cooperation with the processor 134 and t ie acquired ultrasound data 110, can process the acquired data to provide a velocity estimate, or color flow traces, as will be described below.
  • the velocity estimation software 124 can process the ultrasound data using, for example, the Kasai autocorrelation color flow technique as described, for example, by Loupas et al. LEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 42(4): 672-687 (1995).
  • the velocity estimation software 124 can also process the ultrasound data 110 using a cross-correlation method, a Fourier method, or by using other methods known in the art.
  • the retrospective reconstruction software 125 in cooperation with the processor 134, the velocity estimates produced by the velocity estimation software 124, and the image construction subsystem 129 can produce a color flow retrospective reconstruction image of the acquired and processed data to be displayed on the display 116, as described below.
  • a reconstructed image can be displayed on the display 116 and a series of images can be played as a movie or cineloo .
  • a method of using the imaging system 100 described above to produce an ECG- triggered retrospective color flow ultrasound image can comprise data acquisition, color flow processing, and color flow reconstruction.
  • FIG. 2 is a flowchart 200 illustrating the operation of an embodiment of the ultrasound data 110 acquisition by the imaging system 100 for producing an ECG- triggered retrospective color flow ultrasound image.
  • the blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently.
  • the imaging system 100 begins the process of data acquisition.
  • Each value of K can correspond to a lateral location along a subject 102, separated by a given distance.
  • each location K may be separated by approximately 1 micrometer ( ⁇ m), 5 ⁇ m, 10 ⁇ m, 15, ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 35 ⁇ m, 40 ⁇ m, 45 ⁇ m, 50 ⁇ m, 100 ⁇ m, 500 ⁇ m or more.
  • the ultrasound probe 112 can be positioned at each location K, and moved between each location K, based on the user's input at the human machine interface 136 and through use of the motor 111, which is under control of the motor control subsystem 119 and the system software 123.
  • the distance between each location K may be chosen by a. user and input by the user at the human machine interface 136.
  • the distance between each location K is typically referred to as "step size.”
  • Choices regarding step siz e can be made by one skilled in the art, and generally relate to factors including the "width of the emitted ultrasound beam, the size of the region or portion of a subject' s anatomy to be imaged and/or the blood or fluid flow characteristics through the region or portion of the subject's anatomy to be imaged. For example, one of skill in the art may choose a step size such that a sufficient number of locations K are defined across a region of a subject's anatomy.
  • a small step size may be used so that ultrasound can be transmitted at a sufficient number of locations K along the region.
  • One skilled in the art may also choose a step size based on the differences in blood flow velocity within the region or portion of the subject's anatomy being imaged. For example, if velocity changes rapidly within the region, a smaller step size may be chosen than if velocity is relatively uniform throughout the region.
  • the ultrasound system 131 detects an ECG trigger from the ECG signal processing module 108.
  • the ECG trigger is based on a subject's 102 ECG signal, which is provided to the ECG signal processing module 108 though use of ECG electrodes 104 and the ECG amplifier 106.
  • An exemplary ECG signal is shown in Figure 3 by the numeral 300.
  • the ECG signal is represented by the trace 302.
  • the ECG processing module 108 of the ultrasound system 131 automatically detects, using peak detection of the R-wave pulse 304, a fixed and repeatable point on the ECG signal trace 302 from which the transmission of an ultrasound transmit signal or pulse can be triggered.
  • a peak of the R-wave pulse 304 is determined.
  • Other waves, or pealcs thereof, of the subject's ECG signal trace 302 can also be used to trigger an ultrasound transmit signal or pulse.
  • the P-wave, Q-wave, S-wave, and T-wave or peaks thereof can be used to trigger the acquisition.
  • Each wave referred to above can represent a reference point which can trigger the transmission of ultrasound energy.
  • An ECG signal trace 302 can comprise multiple peaks of each wave and each peak can trigger the transmission of ultrasound energy.
  • an ECG trace can comprise a first and a second, or more of the above described wave peaks. Each peak can provide a reference point of the ECG signal for triggering transmission of ultrasound energy.
  • the transmit subsystem 118 causes the transmission of N pulses of ultrasound energy from the transducer 109 into the subject 102 in block 208.
  • the transmission of N pulses (pulse-train) is triggered by an ECG signal acquired from the subject being imaged.
  • the transmit pulse-train comprises a number of transmission pulses (1 to N), with a maximum pulse repetition frequency (PRF) determined by the distance from, the transducer to the flow being imaged and the properties of the portion of the anatomy (i.e. speed of sound and maximum flow velocity) of the subject 102 being imaged.
  • PRF maximum pulse repetition frequency
  • a PRF of 10 kHz 10,000 pulses per second are h'ansmitted at each transducer 109 location.
  • the PRF may be lowered from the maximum possible value in accordance with the flow velocities to be imaged. For example, using a 40 MHz pulse witr-t a 10 kHz PRF, aliasing of flow occurs when detecting axial velocities of greater than 100 millimeters per second (mm/s). A region of slower flow allows for a lower PRF to be used, depending on the desired velocity resolution. A higher PRF can be used to produce a higher frame-rate in the resulting retrospective color flow cineloop. The maximum possible frame-rate is equal to the PRF.
  • the received pulses (1 to N), in the form of RF data are converted to I and Q data by the receive subsystem 120 and are stored in demodulated I and Q form in the memory 121 as ultrasound data 110.
  • Ultrasound data 110 can also be stored in R-F form. When storing ultrasound data 110 in RF form a higher frame acquisition sampling frequency can be used.
  • the ultrasound system 131 waits for the ECG trigger in block 210.
  • an echo of RF ultrasound energy is received by the transducer 109 and provided to the ultrasound system 131 using the receive subsystem 120. This received ultrasound energy is collected and stored as N traces of demodulated ultrasound data 110.
  • Figure 4 is a schematic diagram illustrating the acquisition of ultrasound data 1 10 using the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image.
  • the train of N pulses 402 are transmitted based on an ECG trigger signal 404 derived from an ECG trace 302 from a subject 102.
  • FIG. 5 is a flowchart 500 illustrating the operation of color flow processing by the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image.
  • the blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently.
  • the ultrasound system 131 begins color flow processing.
  • the ultrasound data 110 acquired at each location K is processed from N traces of demodulated I and Q data to N' color flow traces.
  • the number of color flow traces is typically less than or equal to N minus 1, depending on the size of the ensemble used in the color flow processing.
  • An ensemble is a group of successive RF lines used to generate one color flow trace.
  • Color flow processing is performed by velocity estimation software 124 in conjunction with the processor 134 and the acquired and collected ultrasound data 110.
  • ultrasound data 110 for a location K is input into the velocity estimation software 124 as N demodulated traces.
  • the velocity estimation software 124 takes the input of N demodulated traces, and outputs N' color flow traces, where N' is less than or equal to N minus 1.
  • Velocity estimation software 124 perfonns a correlation of velocity estimate on the input N traces collected at each location K.
  • the velocity estimation software 124 can use, for example, the Kasai autocorrelation color flow technique as described in Loupas et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 42(4): 672-687 (1995), which is incorporated herein by reference.
  • Other methods of velocity estimation can be used, however. For example, a cross correlation method, or a Fourier method, which is known in the art, can be used.
  • FIG. 6 is a flowchart 600 illustrating the operation of color flow reconstruction by the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image.
  • the blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently.
  • the ultrasound system 131 begins color flow reconstruction.
  • the number of frames N' in the reconstructed color flow reconstruction is deten ined by the number of color flow processed traces, N', which is the output of block 506.
  • the number of lines 702 that comprise each frame F is determined by the number of transducer locations, M, over which data was acquired.
  • the retrospective reconstruction software 125 proceeds by inserting color flow trace number, F (1 to N'), processed from an ensemble of RF traces acquired at transducer location, K, into line (1 to M) of frame F (1 to N').
  • FIG. 7 is a schematic diagram illustrating retrospective color flow reconstruction.
  • F color flow trace number
  • a plurality of frames can be assembled from the frames and displayed in series as a cineloop. For example, a cineloop can be assembled beginning with frame 1 and ending with frame N', showing blood flow in the subject.
  • the transmitted ultrasound of the disclosed system may vary in frequency.
  • the desired frequency is based on the imaging technique to which the system and method is applied, and can be determined by one having ordinary skill in the art. For example, depending on the anatomy, size, and depth of an object or blood flow to be imaged in a subject, a certain frequency may be chosen for imaging at that desired size and depth. Choosing a particular ultrasound frequency for imaging at a desired size or depth in a subject could be determined readily by one having ordinary skill in the art.
  • the PRF may be chosen in accordance with the distance of the flow from the transducer 109, and the flow velocities to be imaged. A higher PRF is used with higher flow velocities to prevent aliasing in the color flow velocity estimation.
  • the traces are implicitly aligned with one another due to correlation of the ECG trigger signal 404 ( Figure 4) with pulsatile flow of blood through the vasculature of the subject 102.
  • the frequency of pulsatile flow of blood is naturally correlated to the frequency of a contracting and expanding object, such as a beating heart.
  • contrast agents including microbubble contrast agents and targeted microbubble contrast agents as described in U.S. Patent Application No. 11/040,999 entitled “High Frequency Ultrasound Imaging Using Contrast Agents,” which is incorporated herein by reference.
  • An ECG-triggered retrospective color flow image produced as described above can be overlaid on a retrospective B-scan image using overlaying methods known in the art.
  • an ECG triggered retrospective color flow image can be overlaid on image produced using line based reconstruction as described in U.S. Patent Application No. 10/736,232, entitled "System for Obtaining an Ultrasound Image Using Line-Based Image Reconstruction," which is incorporated herein by reference.
  • a first image of a portion of anatomy of a subject 102 can be produced using the incorporated line based reconstruction method.
  • ECG-triggered retrospective color flow data or images can be overlaid onto the first image.
  • the overlaid color flow images correspond to a region of interest within the portion of anatomy depicted in the first image produced by the line based reconstruction method.
  • ECG-triggered retrospective color flow image indicating velocity of flow can be laid over the image of the underlying portion of anatomy produced by the line based reconstruction technique.
  • ECG-triggered color flow image reconstruction images of blood flow in a vessel can be laid over the line based reconstruction image of the vessel anatomy.
  • the ECG-triggered retrospective color flow image can also be laid over retrospective B-scan images produced using a method as described below in example 1.
  • a Vevo660 ultrasound biomicroscope (UBM) system 802 ( Figure 8)(Visualsonics, Toronto, ON, Canada) was used to transmit and receive ultrasound data.
  • the system was set to generate seven cycle pulses by internally gating and amplifying the CW signal produced by a master oscillator 804.
  • 40 MHz pulses were transmitted by an ultrasound probe 112 with a transducer 109.
  • an RMV604 probe equipped with a 40 MHz transducer (6 mm focal length) at a PRF of 10 kHz was used.
  • received signals were demodulated using a demodulating element 806 by the Vevo660 802 using the CW signal from its master oscillator 804 to produce in-phase (I) and quadrature-phase (Q) signals that were digitized by an analog to digital converter (AID) 808.
  • Transmitted pulses were generated using the CW signal provided by the master oscillator 804 of the Vevo660 802, which was externally gated and amplified by an RF power amplifier 814 (M3206, AMT, Anaheim, CA).
  • the gating signal provided by the AWG 812 was also used to trigger data acquisition by the A/D board 802, at a sampling clock provided by the AWG 812.
  • the transducer was kept fixed at successive positions relative to the subject's (mouse) tissue. At each position, a 10,000 pulse train was transmitted and data were collected before moving the transducer to the next position. The transmission of the pulse train was triggered by the ECG signals from the mouse heart rate by a monitoring system.
  • the monitoring system can comprise ECG electrodes 104, an ECG amplifier 106, and an ECG signal processor 108 as described above. Assuming a periodic trigger from the ECG signal from the mouse, data collected after transmission of the pulse number n (1 ⁇ n ⁇ l 0,000) at each location were acquired at the same period of the subject's 102 heart cycle.
  • An expander and limiter element 816 can also be used.
  • the expander can be used to prevent low amplitude transmitted electronic noise from interfering with the received ultrasound signal.
  • the limiter can be used to prevent the transmitted high- voltage electrical excitation from damaging the receive electronics.
  • the limiter and expander can be combined in an expander and limiter element 816, and can also be separate components of the disclosed system. Color flow cross sections of a carotid artery of the mouse were produced at a frame rate of 10,000 frames per second (fbs).
  • mice were anesthetized with isoflurane (2% in oxygen) and positioned on a mouse imaging stage that provided temperature feedback and heart rate monitoring (THM100, Indus Instruments, Houston, TX).
  • Depilatory cream (NairTM, Carter- Horner, Mississauga, ON, Canada) was used to remove fur from the region of interest.
  • the region of interest included the thoracic cage or throat respectively.
  • Ultrasound gel (AquasonicTM 100, Parker Laboratories, Fairfield, NJ) was used as coupling fluid between the RMV probe and the skin.
  • the probe was positioned to provide either a longitudinal section or cross sections of the mouse carotid artery, with the regions of interest located in the focal region of the transducer.
  • FIG. 10 is a block diagram illustrating an ultrasound system used to produce retrospective B-scan images.
  • data acquisition for retrospective b-scan imaging was performed using a Vevo660 UBM system 1002 (Visualsonics, Toronto, ON, Canada)
  • Vevo660 UBM system 1002 Vehiclesonics, Toronto, ON, Canada
  • 40 MHz pulse were transmitted by an ultrasound probe 112 comprising an ultrasound transducer 109.
  • a RMV604 probe equipped with a 40 MHz transducer (6 mm focal length) at a PRF of 10 KHz was used.
  • the envelope of the received signals were detected by an envelope detection element 1008 and digitized by an analog to digital converter 1014 by the Vevo660 UBM system.
  • One cycle 30 MHz or 40 MHz pulses were transmitted using a high frequency single cycle pulse generator 1004 (AVB2-C, Avtech Electrosystem, Ogdensburg, NY) triggered by an arbitrary wave form generator 1014 (AWG 2021, Tektronix, Beaverton, OR).
  • the trigger signal comprised a train of 10,000 rectangular pulses separated by 100 ⁇ s (PRF 0 kHz).
  • the trigger signal provided by the AWG 1014 was also used to trigger data acquisition by the A/D board 1010, at a sampling clock provided by the AWG 1014.
  • the transducer was kept fixed at successive positions relative to the mouse tissue. At each position, a 10,000 pulse train was transmitted and data were collected before moving the transducer to the next position.
  • An expander and limiter element 1006 can also be used.
  • the expander can be used to prevent low amplitude transmitted electronic noise from interfering with the received ultrasound signal.
  • the limiter can be used to prevent the transmitted high- voltage electrical excitation from damaging the receive electronics.
  • the limiter and expander can be combined in an expander and limiter element 1006, and can also be separate components of the disclosed system.
  • FIG. 9 shows selected reconstructed frames of the mouse carotid artery using the ECG triggered retrospective color flow ultrasound imaging technique.
  • ECG- triggered retrospective color flow images 902 were overlaid over B-scan images 904 acquired using a retrospective B-mode imaging technique.
  • the detected velocities varied between 10-260 mm/s and were in good agreement with pulsed- wave doppler measurements.
  • the highest detected velocity in the carotid artery was beyond the upper limited of velocity that can be estimated with a PRF of 10 kHz. Clutter filtering was applied to the doppler spectrum.

Abstract

A method and a device for producing an ECG-triggered retrospective color-flow ultrasound image comprises generating ultrasound, transmitting the ultrasound into a subject at a first location, wherein a first reference point of an ECG signal taken from the subject triggers the ultrasound transmission, receiving ultrasound reflected from the subject at the first location, transmitting the ultrasound into the subject at a second location, wherein a second reference point of an ECG signal taken from the subject triggers the ultrasound transmission receiving ultrasound reflected from the subject at the second location, processing the received ultrasound to form ultrasound color traces, and reconstructing the ultrasound color traces to form the ultrasound image.

Description

SYSTEM AND METHOD FOR ECG-TRIGGERED RETROSPECTIVE COLOR FLOW ULTRASOUND IMAGING
Inventors: Ross Williams Andrew Needles Emmanuel Cherin F. Stuart Foster
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application No. 60/549,041, filed on March 1, 2004. The aforementioned application is herein incorporated by reference in its entirety. BACKGROUND OF INVENTION
[0002] Small animal or laboratory animal research is a cornerstone of modern biomedical advancement. Research using small animals enables researchers to understand complex biological mechanisms, to understand human and animal disease progression, and to develop new drugs to cure or alleviate many human and animal maladies. Small animal research is important in many areas of biomedical research including neurobiology, developmental biology, cardiovascular research and cancer biology.
[0003] In many areas of biomedical research, accurately determining blood flow characteristics through a given organ or structure is important. For example, in the field of oncology, determination of blood flow within a tumor can enhance understanding of cancer biology and, since a tumor needs blood to grow and metastasize, help identify and develop anti-cancer therapeutics.
[0004] Color flow imaging systems estimate blood velocity by measuring the time, or frequency phase shift between backscattered signals. Color flow imaging of blood velocity in small animals such as mice and in humans has been accomplished by sweeping the transducer over a region of interest. This technique, however, has limitations including tissue clutter artifacts that are induced by the sweep velocity, which limits the ability to detect low flow rates. Other limitations include spatio- temporal decorrelation artifacts that occur when visualizing pulsatile flow, particularly if the pulse frequency is large relative to the sweep frequency of the probe. Moreover, an additional limitation includes limited accuracy of flow velocity estimation because of the number of radio frequency (RF) data lines acquired per location. SUMMARY OF THE INVENTION
[0005] According to one embodiment a method for producing an ECG-triggered retrospective color-flow ultrasound image comprises generating ultrasound, transmitting the ultrasound into a subject at a first location, wherein a first reference point of an ECG signal taken from the subject triggers the ultrasound transmission, receiving ultrasound reflected from the subj ect at the first location, transmitting the ultrasound into the subject at a second location, wherein a second reference point of an ECG signal taken from the subject triggers the ultrasound transmission receiving ultrasound reflected from the subject at the second location, processing the received ultrasound to form ultrasound color traces, and reconstructing the ultrasound color traces to form the ultrasound image.
[0006] Other apparatus, methods, and aspects and advantages of the invention will be discussed with reference to the figures and to the detailed description of the preferred embodiments. BRIEF DESCRIPTION OF THE FIGURES
[0007] The invention will be described by way of example, in the description of exemplary embodiments, with particular reference to the accompanying figures in which:
[0008] Figure 1 is a block diagram illustrating an exemplary imaging system.
[0009] Figure 2 is a flowchart illustrating the operation of ultrasound data acquisition by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image.
[00010] Figure 3 shows an exemplary ECG signal from an exemplary subject. [0001 1] Figure 4 is a schematic diagram illustrating the acquisition of ultrasound data using an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image. [00012] Figure 5 is a flowchart illustrating the operation of color flow processing by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image. [00013] Figure 6 is a flowchart illustrating the operation of color flow reconstruction by an exemplary imaging system for producing an ECG-triggered retrospective color flow ultrasound image. [0001 ] Figure 7 is a schematic diagram illustrating retrospective color flow reconstruction. [00015] Figure 8 is a block diagram illustrating an exemplary retrospective color flow imaging system. [0001 ] Figure 9 shows selected reconstructed frames of a mouse carotid artery using the ECG triggered retrospective color flow ultrasound imaging technique. [00017] Figure 10 is a block diagram illustrating an exemplary retrospective B-mode imaging system. DETAILED DESCRIPTION [00018] As used throughout, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a trace," "a frame," or "a pulse" can include two or more such traces, frames or pulses unless the context indicates otherwise. [00019] By a "subject" is meant an individual. The term subject includes small or laboratory animals as well as primates, including humans. A laboratory animal includes, but is not limited to, a rodent such as a mouse or a rat. The term laboratory animal is also used interchangeably with animal, small animal, small laboratory animal, or subject, which includes mice, rats, cats, dogs, fish, rabbits, guinea pigs, rodents, etc. The term laboratory animal does not denote a particular age or sex. Thus, adult and newborn animals, as well as fetuses (including embryos), whether male or female, are included. [00020] Figure 1 is a block diagram illustrating an imaging system 10O. The system 100 operates on a subject 102. An ultrasound probe 112 is placed in proximity to the subject 102 to obtain ultrasound image information. The ultrasound probe 112 can comprise a mechanically swept transducer 109 that can be used for the collection of ultrasound data 110. The transducer 109 is typically a single element mechanically scanned transducer. The ultrasound probe 112 comprises a mechanism to reposition (and record the spatial location of) the ultrasound beam. In one embodiment, the positioning mechanism comprises an optical position encoder connected to a high resolution stepping motor as described in U.S. Patent Application No. 10/683,890, entitled "High Frequency, High Frame-Rate Ultrasound Imaging System," which is incorporated herein by reference. In another embodiment, the transducer comprises an array of piezoelectric elements (not shown) which can be electronically steered using variable pulsing and delay mechanisms.
[00021] The transducer 109 or, if used, the array can generate ultrasound energy at high frequencies, such as, but not limited to, greater than 20 MHz and including 25 MHz, 30 MHz, 35 MHz, 40 MHz, 45 MHz, 50 MHz, 55 MHz, 60 MHz 65 MHz, 70 MHz, 75 MHz, 80 MHz, 85 MHz, 90 MHz, 95 MHz, 100 MHz and higher. Further, operating frequencies significantly greater than those mentioned above are also contemplated. The transducer 109 or, if used, the array can also generate ultrasound energy at clinical frequencies, such as, but not limited to, 1 MHz , 2 MHz, 3 MHz, 4 MHz, 5 MHz, 10 MHz or 15 MHz. These disclosed high and clinical frequencies refer to exemplary nominal center frequencies at which the transducer 109 or array can generate and transmit ultrasound energy. As would be clear to one skilled in the art, such, frequencies can vary.
[00022] The subject 102 is connected to electrocardiogram (ECG) electrodes 104 to obtain a cardiac rhythm or signal (Figure 3) from the subject 102. The cardiac signal from the electrodes 104 is transmitted to an ECG amplifier 106 to condition the signal for provision to an ultrasound system 131. It is recognized that a signal processor or other such device can be used instead of an ECG amplifier to condition the signal. [00023] If the cardiac signal from the electrodes 104 is suitable as obtained, then use of an amplifier 106 or signal processor could be avoided entirely.
[00024] The ultrasound system 131 includes a control subsystem 127, an image construction subsystem 129, sometimes referred to as a "scan converter," a transmit subsystem/beamformer 118, a receive subsystem/beamformer 120, a motor control- subsystem 119 and a user input device 136. Beamformers are used if the transducer comprises an electronically steerable array. The processor 134 is coupled to the control subsystem 127 and the display 116.
[00025] A memory 121 is coupled to the processor 134. The memory 121 can be any type of computer memory, and is typically referred to as random access memory "RAM," in which the system software 123, velocity estimation software 124 and retrospective reconstruction software 125 of the invention resides. The system software 123, velocity estimation software 124, and retrospective reconstruction software 125, control the acquisition, processing and display of the ultrasound data 110 allowing the ultrasound system 131 to display a retrospective color flow image. The system software 123, velocity estimation software 124, and retrospective reconstruction software 125, comprise one or more modules to acquire, process, and display data from the ultrasound system 131. The software comprises various modules of machine code which coordinate the ultrasound subsystems.
[00026] Data is acquired from the ultrasound system, processed to form images, and then displayed on a display 116. The system software 123, velocity estimation software 124, and retrospective reconstruction software 125, allow the management of multiple acquisition sessions and the saving and loading of data associated with these sessions. Post processing of the ultrasound data to obtain an image is also enabled through the system software 123, velocity estimation software 124, and retrospective reconstruction software 125.
[00027] The system for ECG-triggered retrospective color flow imaging can be implemented using a combination of hardware and software. The hardware implementation of the system can include any or a combination of the following technologies, which are all well known in the art: discrete electronic components, a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit having appropriate logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
[00028] The software for the system comprises an ordered listing of executable instructions for implementing logical functions, and can be embodied in any computer-readable medium for use by or in connection with an instruction execution system, apparatus, or device, such as a computer-based system, processor-containing system, or other system that can fetch the instructions from the instruction execution system, apparatus, or device and execute the instructions.
[00029] In the context of this document, a "computer-readable medium" can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer-readable medium would include the following: an electrical connection (electronic) having one or more wires, a portable computer diskette (magnetic), a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory) (magnetic), an optical fiber (optical), and a portable compact disc read-only memory (CDROM) (optical). Note that the computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via for instance optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner if necessary, and then stored in a computer memory.
[00030] The memory 121 can include trie ultrasound data 110 obtained by the imaging system 100. A computer readable storage medium 138 is coupled to the processor for providing instructions to the processor to instruct and/or configure processor to perform steps or algorithms related to the operation of the ultrasound system 131. The computer readable medium can include hardware and/or software such as, by way of example only, magnetic disks, magnetic tape, optically readable media such as CD ROM's, and semiconductor memory such as PCMCIA cards. In each case, the media may take the form of a portable item such as a small disk, floppy diskette, cassette, or it may take the form of a relatively large or immobile item such as hard disk drive, solid state memory card, or RAM provided in the support system. It should be noted that the above listed example mediums can be used either alone or in combination.
[00031] The ultrasound system 131 can include a control subsystem 127 to direct operation of various components of the ultrasound system 131. The control subsystem 127 and related components may be provided as software for instructing a general purpose processor or as specialized electronics in a hardware implementation. In one embodiment, the control subsystem 127 can include a master oscillator 804 (Figure 8) which can generate a continuous wave (CW) signal for provision to the transmit subsystem 118.
[00032] The control subsystem 127 is connected to a transmit subsystem/beamformer 118 to provide an ultrasound transmit signal to the ultrasound probe 112. The transmit subsystem 118 can be internal to the ultrasound system 131 as shown in Figure 1. In one embodiment, portions of the transmit subsystem 118 can be external to the ultrasound system 131. For example, in one embodiment, an arbitrary waveform generator (AWG) 812 (Figure 8) and an RF amplifier 814 (Figure 8) can be used to provide the transmit signal to the ultrasound probe 112. The transmit subsystem 118 causes the transducer 109 to transmit a number of ultrasound pulses 402 (Figure 4) into the subject 102. Multiple pulses can be transmitted and are referred to through out as a "pulse train." A "pulse train" or "train" can comprise about, for example, 500, 1000, 2000, 3000, 4000, 5000, 10,000 or more pulses per second. The number of pulses in a pulse train or train can vary, however, as would be clear to one skilled in the art.
[00033] The ultrasound probe 112 provides an ultrasound receive signal to a receive subsystem/beamformer 120. The receive subsystem 120 also provides signals representative of the received signals to the image construction subsystem 129. In one embodiment, the receive subsystem 120 can include a demodulator 806 (Figure 8) and an analog-to-digital (A/D) converter 808 (Figure 8), which can condition the received ultrasound signal for provision to the control subsystem 127 and the image construction system 129. The demodulator 806 is an element that uses the envelope of an RF data signal received from the transducer 109 and converts it into an in- phase (I) and quadrature-phase (Q) format. The I and Q data from the demodulator 806 can be converted into digital data by the analog to digital converter 808 for provision to the control subsystem 127 and the image construction subsystem 129. In other embodiments, rather than the envelope being sampled to produce I and Q data, the RF signal can be sampled directly by methods known in the art.
[00034] The ultrasound system 131 includes an image construction subsystem 129 for converting the electrical signals generated by the received ultrasound echoes to data that can be manipulated by the processor 134 and that can be rendered into an image on the display 116. The image construction subsystem 129 is directed by the control subsystem 127 to operate on the received data to render an image for display using the ultrasound data 110. The control subsystem 127 is also coupled to a motor control subsystem 119 to provide a motor control signal to the motor 111 to control the movement of the ultrasound probe 112 to a location K (Figure 2) on the subject 112, as described below. The image construction subsystem 129 is directed by the control subsystem 127.
[00035] The ultrasound system 131 can include an ECG signal processor 108 configured to receive signals from the ECG amplifier 106. The ECG signal processor 108 provides various signals to the control subsystem 127. The ECG signal can be used to trigger transmission by the transducer 109 of a number of pulses of ultrasonic energy, or pulse train. The signals provided to trie control subsystem 127 from the ECG signal processor 108 can trigger the acquisition of ultrasound data 110 across a region of anatomy of a subject 102.
[00036] In another embodiment, rather than triggering the transmission of ultrasonic energy, the receive subsystem 120 can also receive an ECG time stamp from the ECG signal processor 108 as described in U.S. Patent Application No. 10/736,232 entitled "System of Producing an Ultrasound Image using Line-Based Image Reconstruction," which is incorporated herein by reference. In this incorporated embodiment, the ECG signal is not used to trigger the transmission of pulses, but instead the ECG is recorded continuously and simultaneously with the ultrasound data 110. From the recorded ECG signal, a series of time stamps are selected and used to determine which of the RF data collected at each location will be used to reconstitute the first frame of a cineloop, and from there, the subsequent frames. As used throughout this document, a cineloop is a movie comprising a series of images displayed at a relatively high frame-rate.
[00037] The ultrasound system 131 transmits and receives ultrasound data through the ultrasound probe 112, provides an interface to a user to control the operational parameters of the imaging system 100, and processes data appropriate to formulate an ECG-triggered retrospective color flow image. As used throughout this document, an ECG-triggered retrospective color flow image is an image comprising an image of flow (i.e. bloodflow) over a region of interest at a specific time relative to the cardiac cycle of a subject 102, reconstructed from a set of data acquired upon the detection of a trigger signal detected from the subject's EGC trace. Images are presented through the display 116. A series of images can be presented on the display 116 as a cineloop.
[00038] The human-machine interface 136 takes input from the user, and translates such input to control the operation of the ultrasound probe 112. The human-machine interface 136 also presents processed images and data to the user through the display 116.
[00039] The system software 123, the velocity estimation software 124 and the retrospective reconstruction software 125, in cooperation with the image construction subsystem 129 operate on the electrical signals developed by the receive subsystem 120 to develop an ECG-triggered retrospective color flow image of anatomy of the subject 102.
[00040] The system software 123 can, in cooperation with the processor 134, direct the acquisition of the ultrasound data 110, as described below. The velocity estimation software 124 in cooperation with the processor 134 and t ie acquired ultrasound data 110, can process the acquired data to provide a velocity estimate, or color flow traces, as will be described below. The velocity estimation software 124 can process the ultrasound data using, for example, the Kasai autocorrelation color flow technique as described, for example, by Loupas et al. LEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 42(4): 672-687 (1995). The velocity estimation software 124 can also process the ultrasound data 110 using a cross-correlation method, a Fourier method, or by using other methods known in the art. The retrospective reconstruction software 125, in cooperation with the processor 134, the velocity estimates produced by the velocity estimation software 124, and the image construction subsystem 129 can produce a color flow retrospective reconstruction image of the acquired and processed data to be displayed on the display 116, as described below. A reconstructed image can be displayed on the display 116 and a series of images can be played as a movie or cineloo .
[00041] A method of using the imaging system 100 described above to produce an ECG- triggered retrospective color flow ultrasound image can comprise data acquisition, color flow processing, and color flow reconstruction.
[00042] Figure 2 is a flowchart 200 illustrating the operation of an embodiment of the ultrasound data 110 acquisition by the imaging system 100 for producing an ECG- triggered retrospective color flow ultrasound image. The blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently. In block 202, the imaging system 100 begins the process of data acquisition. In block 204, the ultrasound probe 112 including the transducer 109 is positioned relative to a subject 102 at a location K where K=l,2,...M. At each location K, RF data is acquired using a pulse-echo technique.
[00043] The ultrasound probe 112 can be initially positioned at location K=l, manually or by using the motor 111, which is under the control of the motor control subsystem 119, the control subsystem 127, and the system software 123. The location K=l corresponds to a portion of a subject's 102 anatomy where a first ultrasound signal is transmitted and received. Each subsequent value of Kl, K=2,3,...M, corresponds to a subsequent location corresponding to portions of the subject's 102 anatomy where subsequent ultrasound signals are transmitted and received, as described below.
[00044] Each value of K can correspond to a lateral location along a subject 102, separated by a given distance. For example, each location K may be separated by approximately 1 micrometer (μm), 5 μm, 10 μm, 15, μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm, 50 μm, 100 μm, 500 μm or more. The ultrasound probe 112 can be positioned at each location K, and moved between each location K, based on the user's input at the human machine interface 136 and through use of the motor 111, which is under control of the motor control subsystem 119 and the system software 123.
[00045] The distance between each location K may be chosen by a. user and input by the user at the human machine interface 136. The distance between each location K is typically referred to as "step size." Choices regarding step siz e can be made by one skilled in the art, and generally relate to factors including the "width of the emitted ultrasound beam, the size of the region or portion of a subject' s anatomy to be imaged and/or the blood or fluid flow characteristics through the region or portion of the subject's anatomy to be imaged. For example, one of skill in the art may choose a step size such that a sufficient number of locations K are defined across a region of a subject's anatomy. Thus, if a small region of a subject's anatomy is imaged, a small step size may be used so that ultrasound can be transmitted at a sufficient number of locations K along the region. One skilled in the art may also choose a step size based on the differences in blood flow velocity within the region or portion of the subject's anatomy being imaged. For example, if velocity changes rapidly within the region, a smaller step size may be chosen than if velocity is relatively uniform throughout the region.
[00046] In block 206, the ultrasound system 131 detects an ECG trigger from the ECG signal processing module 108. The ECG trigger is based on a subject's 102 ECG signal, which is provided to the ECG signal processing module 108 though use of ECG electrodes 104 and the ECG amplifier 106. An exemplary ECG signal is shown in Figure 3 by the numeral 300. The ECG signal is represented by the trace 302. The ECG processing module 108 of the ultrasound system 131 automatically detects, using peak detection of the R-wave pulse 304, a fixed and repeatable point on the ECG signal trace 302 from which the transmission of an ultrasound transmit signal or pulse can be triggered. Thus, in block 206, whether a peak of the R-wave pulse 304 has occurred (representing the ECG trigger) is determined. Other waves, or pealcs thereof, of the subject's ECG signal trace 302 can also be used to trigger an ultrasound transmit signal or pulse. For example, the P-wave, Q-wave, S-wave, and T-wave or peaks thereof can be used to trigger the acquisition. Each wave referred to above can represent a reference point which can trigger the transmission of ultrasound energy. An ECG signal trace 302 can comprise multiple peaks of each wave and each peak can trigger the transmission of ultrasound energy. Thus an ECG trace can comprise a first and a second, or more of the above described wave peaks. Each peak can provide a reference point of the ECG signal for triggering transmission of ultrasound energy. When a peak of a given wave type is selected to trigger the transmission of ultrasound energy, subsequent peaks of the same wave type can be used to trigger subsequent transmissions of ultrasound energy. If an ECG trigger is detected in block 206, then the transmit subsystem 118 causes the transmission of N pulses of ultrasound energy from the transducer 109 into the subject 102 in block 208. The transmission of N pulses (pulse-train) is triggered by an ECG signal acquired from the subject being imaged. The transmit pulse-train comprises a number of transmission pulses (1 to N), with a maximum pulse repetition frequency (PRF) determined by the distance from, the transducer to the flow being imaged and the properties of the portion of the anatomy (i.e. speed of sound and maximum flow velocity) of the subject 102 being imaged. At a PRF of 10 kHz, 10,000 pulses per second are h'ansmitted at each transducer 109 location. The PRF may be lowered from the maximum possible value in accordance with the flow velocities to be imaged. For example, using a 40 MHz pulse witr-t a 10 kHz PRF, aliasing of flow occurs when detecting axial velocities of greater than 100 millimeters per second (mm/s). A region of slower flow allows for a lower PRF to be used, depending on the desired velocity resolution. A higher PRF can be used to produce a higher frame-rate in the resulting retrospective color flow cineloop. The maximum possible frame-rate is equal to the PRF. For each location, the received pulses (1 to N), in the form of RF data are converted to I and Q data by the receive subsystem 120 and are stored in demodulated I and Q form in the memory 121 as ultrasound data 110. Ultrasound data 110 can also be stored in R-F form. When storing ultrasound data 110 in RF form a higher frame acquisition sampling frequency can be used. [00048] If an ECG trigger is not detected in block 206, then the ultrasound system 131 waits for the ECG trigger in block 210. In block 212, for each pulse of ultrasound energy N transmitted by the transducer an echo of RF ultrasound energy is received by the transducer 109 and provided to the ultrasound system 131 using the receive subsystem 120. This received ultrasound energy is collected and stored as N traces of demodulated ultrasound data 110.
[00049] In block 214, the ultrasound probe 112, including the transducer 109, is repositioned to a new location K along the subject 102 where K=K+1. If, in block 214, K is greater than M, then data acquisition is complete in block 216. If, in bloe-k 214, K is less than or equal to M then data acquisition is not complete, and the ultrasound system 131 waits for a subsequent ECG trigger at block 210.
[00050] Figure 4 is a schematic diagram illustrating the acquisition of ultrasound data 1 10 using the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image. Figure 4 shows locations K (K= 1,2,...M) for the ultrasound transducer as described above and as detailed in flow chart 200. At each location -£=1,2,...M, the transducer 109 transmits a train of N ultrasound pulses (1 to N) 402, which are separated by a time T=1/PRF, into a subject 102 and receives RF echoes 403 after transmission of each pulse 402. The train of N pulses 402 are transmitted based on an ECG trigger signal 404 derived from an ECG trace 302 from a subject 102.
[00051] Figure 5 is a flowchart 500 illustrating the operation of color flow processing by the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image. The blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently. In block 502, the ultrasound system 131 begins color flow processing. The ultrasound data 110 acquired at each location K is processed from N traces of demodulated I and Q data to N' color flow traces. The number of color flow traces is typically less than or equal to N minus 1, depending on the size of the ensemble used in the color flow processing. An ensemble is a group of successive RF lines used to generate one color flow trace.
[00052] Color flow processing is performed by velocity estimation software 124 in conjunction with the processor 134 and the acquired and collected ultrasound data 110. In block 504, ultrasound data 110 is retrieved for a location K where K=l,2,...M. In block 506, ultrasound data 110 for a location K is input into the velocity estimation software 124 as N demodulated traces. The velocity estimation software 124 takes the input of N demodulated traces, and outputs N' color flow traces, where N' is less than or equal to N minus 1.
[00053] Velocity estimation software 124 perfonns a correlation of velocity estimate on the input N traces collected at each location K. To perform the correlation velocity estimate, the velocity estimation software 124 can use, for example, the Kasai autocorrelation color flow technique as described in Loupas et al. IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 42(4): 672-687 (1995), which is incorporated herein by reference. Other methods of velocity estimation can be used, however. For example, a cross correlation method, or a Fourier method, which is known in the art, can be used. In block 508, ultrasound data 110 is retrieved for the location K=K+1. If, in block 508, the new value of K is greater than M, color flow processing is compete at block 510. If, in block 508, the new value of K is less than or equal to M then processing as described in block 504 and 506 for the location K=K+1 is performed.
[00054] Figure 6 is a flowchart 600 illustrating the operation of color flow reconstruction by the imaging system 100 for producing an ECG-triggered retrospective color flow ultrasound image. The blocks in the flow chart may be executed in the order shown, out of the order shown, or concurrently. Color flow image reconstruction is directed by retrospective reconstruction software 125 that maps the color flow processed traces N' produced by the velocity estimation software 124 that correspond to the N traces of RF data acquired at each transducer location (K=l,2,...M) into a representation of the flow over the region or portion of a subject's anatomy.
[00055] In block 602, the ultrasound system 131 begins color flow reconstruction. In block 604, retrospective reconstruction software 125 reconstructs a frame F where F=l,2,...N'. The number of frames N' in the reconstructed color flow reconstruction is deten ined by the number of color flow processed traces, N', which is the output of block 506. [00056] In block 606, retrospective reconstruction software 125 retrieves color flow trace number F (1 to N') corresponding to an RF data ensemble taken from the transducer location K where K=l,2,...M. hi block 608, each trace number F from each location K is mapped by the retrospective reconstruction software 125 to frame number F as line 702 number K (K=1,2,..,M) (Figure 7). The number of lines 702 that comprise each frame F is determined by the number of transducer locations, M, over which data was acquired.
[00057] In block 610, the retrospective reconstruction software 125 proceeds to the next location K=K+1 and determines if K is greater than M or if K is less than or equal to M. If K is greater than M, then in block 612 the retrospective reconstruction software 125 proceeds to reconstruct the next frame F=F+1. If, in block 610, K is less than or equal to M then a subsequent trace number N' is retrieved as described in block 606. In block 612, the retrospective reconstruction software 125 determines if the frame number F reconstructed is greater than the number of color flow traces N' in block 604 where F=l,2,...N'. If F is grater than N', then the reconstruction is complete at block 614. If F is less than or equal to N', then a subsequent frame is constructed in block 604. Thus, the retrospective reconstruction software 125 proceeds by inserting color flow trace number, F (1 to N'), processed from an ensemble of RF traces acquired at transducer location, K, into line (1 to M) of frame F (1 to N').
[00058] Figure 7 is a schematic diagram illustrating retrospective color flow reconstruction. After data acquisition at all locations K (K=l,2,...M) , and data processing to produce N' color flow traces per location K, color flow frame number F (F=l,2,...N') is reconstructed by placing the color flow trace number F (F=l,2, ...N') produced at each location K (K=l,2, ...M) into line number K of frame number F. After reconstruction of the frames F (1 to N'), a plurality of frames can be assembled from the frames and displayed in series as a cineloop. For example, a cineloop can be assembled beginning with frame 1 and ending with frame N', showing blood flow in the subject.
[00059] As described above, the transmitted ultrasound of the disclosed system may vary in frequency. The desired frequency is based on the imaging technique to which the system and method is applied, and can be determined by one having ordinary skill in the art. For example, depending on the anatomy, size, and depth of an object or blood flow to be imaged in a subject, a certain frequency may be chosen for imaging at that desired size and depth. Choosing a particular ultrasound frequency for imaging at a desired size or depth in a subject could be determined readily by one having ordinary skill in the art. Similarly, the PRF may be chosen in accordance with the distance of the flow from the transducer 109, and the flow velocities to be imaged. A higher PRF is used with higher flow velocities to prevent aliasing in the color flow velocity estimation.
[00060] The traces are implicitly aligned with one another due to correlation of the ECG trigger signal 404 (Figure 4) with pulsatile flow of blood through the vasculature of the subject 102. The frequency of pulsatile flow of blood is naturally correlated to the frequency of a contracting and expanding object, such as a beating heart. By triggering the ultrasound transmission and RF data acquisition using the ECG signal trigger, color flow can be estimated at each location K of a subject 102 at the same time point relative to the pulsatile flow cycle, over a range of time points.
[00061] The system and method described herein may also be used in conjunction with contrast agents, including microbubble contrast agents and targeted microbubble contrast agents as described in U.S. Patent Application No. 11/040,999 entitled "High Frequency Ultrasound Imaging Using Contrast Agents," which is incorporated herein by reference.
[00062] An ECG-triggered retrospective color flow image produced as described above can be overlaid on a retrospective B-scan image using overlaying methods known in the art. For example, an ECG triggered retrospective color flow image can be overlaid on image produced using line based reconstruction as described in U.S. Patent Application No. 10/736,232, entitled "System for Obtaining an Ultrasound Image Using Line-Based Image Reconstruction," which is incorporated herein by reference. For example, a first image of a portion of anatomy of a subject 102 can be produced using the incorporated line based reconstruction method. ECG-triggered retrospective color flow data or images can be overlaid onto the first image. The overlaid color flow images correspond to a region of interest within the portion of anatomy depicted in the first image produced by the line based reconstruction method. Thus, ECG-triggered retrospective color flow image indicating velocity of flow can be laid over the image of the underlying portion of anatomy produced by the line based reconstruction technique. For example, ECG-triggered color flow image reconstruction images of blood flow in a vessel can be laid over the line based reconstruction image of the vessel anatomy. The ECG-triggered retrospective color flow image can also be laid over retrospective B-scan images produced using a method as described below in example 1.
EXAMPLES
[00063] The following examples are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention.
[00064] Example 1:
[00065] In Vivo Carotid Imaging Using ECG-triggered Retrospective Color Flow Imaging
[00066] For swept-scan data acquisition, a Vevo660 ultrasound biomicroscope (UBM) system 802 (Figure 8)(Visualsonics, Toronto, ON, Canada) was used to transmit and receive ultrasound data. The system was set to generate seven cycle pulses by internally gating and amplifying the CW signal produced by a master oscillator 804.
[00067] For in vivo carotid imaging, 40 MHz pulses were transmitted by an ultrasound probe 112 with a transducer 109. For example, an RMV604 probe equipped with a 40 MHz transducer (6 mm focal length) at a PRF of 10 kHz was used. For color flow imaging, received signals were demodulated using a demodulating element 806 by the Vevo660 802 using the CW signal from its master oscillator 804 to produce in-phase (I) and quadrature-phase (Q) signals that were digitized by an analog to digital converter (AID) 808.
[00068] Transmitted pulses were generated using the CW signal provided by the master oscillator 804 of the Vevo660 802, which was externally gated and amplified by an RF power amplifier 814 (M3206, AMT, Anaheim, CA). The gating signal, comprising a train of 10,000 rectangular pulses equally time spaced by 100 μm (PRF=10 kHz), was provided by the arbitrary waveform generation AWG 812 (AWG 2021, Tektronix, Beaverton OR). Received signals were demodulated internally by the Vevo660 802. The gating signal provided by the AWG 812 was also used to trigger data acquisition by the A/D board 802, at a sampling clock provided by the AWG 812.
[00069] For data acquisition, the transducer was kept fixed at successive positions relative to the subject's (mouse) tissue. At each position, a 10,000 pulse train was transmitted and data were collected before moving the transducer to the next position. The transmission of the pulse train was triggered by the ECG signals from the mouse heart rate by a monitoring system. The monitoring system can comprise ECG electrodes 104, an ECG amplifier 106, and an ECG signal processor 108 as described above. Assuming a periodic trigger from the ECG signal from the mouse, data collected after transmission of the pulse number n (1 ≤n ≤l 0,000) at each location were acquired at the same period of the subject's 102 heart cycle. An expander and limiter element 816 can also be used. The expander can be used to prevent low amplitude transmitted electronic noise from interfering with the received ultrasound signal. The limiter can be used to prevent the transmitted high- voltage electrical excitation from damaging the receive electronics. The limiter and expander can be combined in an expander and limiter element 816, and can also be separate components of the disclosed system. Color flow cross sections of a carotid artery of the mouse were produced at a frame rate of 10,000 frames per second (fbs).
[00070] Mice were anesthetized with isoflurane (2% in oxygen) and positioned on a mouse imaging stage that provided temperature feedback and heart rate monitoring (THM100, Indus Instruments, Houston, TX). Depilatory cream (Nair™, Carter- Horner, Mississauga, ON, Canada) was used to remove fur from the region of interest. In the case of imaging the mouse heart or carotid artery, the region of interest included the thoracic cage or throat respectively. Ultrasound gel (Aquasonic™ 100, Parker Laboratories, Fairfield, NJ) was used as coupling fluid between the RMV probe and the skin. Using B-mode imaging on the Vevo660 system, the probe was positioned to provide either a longitudinal section or cross sections of the mouse carotid artery, with the regions of interest located in the focal region of the transducer. [00071 ] Collected ultrasound data were processed using the Kasai autocorrelation color flow technique as described above. Ensembles of 64 successive demodulated traces from the 10,000 pulses collected at each location were used to produce a series of color flow traces. To maximize the resolution in time, each ensemble was shifted from the previous ensemble by one demodulated trace, leading to an overlay of two successive ensembles of 98.5%. A total of N=9937 ensembles were generated, producing 9937 color flow traces at each transducer location, with a time resolution of 100 μs. To produce a color flow cineloop, color flow traces were then reassembled such that the frame 'number n' (1 ≤n ≤N) of the cineloop was composed of the "number n" color flow traces collected at every location. The frame rate of the final cineloop is equal to the PRF (i.e. 10 kHz).
[00072] Figure 10 is a block diagram illustrating an ultrasound system used to produce retrospective B-scan images. As with the ECG-triggered retrospective color flow system, data acquisition for retrospective b-scan imaging was performed using a Vevo660 UBM system 1002 (Visualsonics, Toronto, ON, Canada) For carotid imaging 40 MHz pulse were transmitted by an ultrasound probe 112 comprising an ultrasound transducer 109. For example, a RMV604 probe equipped with a 40 MHz transducer (6 mm focal length) at a PRF of 10 KHz was used. The envelope of the received signals were detected by an envelope detection element 1008 and digitized by an analog to digital converter 1014 by the Vevo660 UBM system. One cycle 30 MHz or 40 MHz pulses were transmitted using a high frequency single cycle pulse generator 1004 (AVB2-C, Avtech Electrosystem, Ogdensburg, NY) triggered by an arbitrary wave form generator 1014 (AWG 2021, Tektronix, Beaverton, OR). The trigger signal comprised a train of 10,000 rectangular pulses separated by 100 μs (PRF 0 kHz). The trigger signal provided by the AWG 1014 was also used to trigger data acquisition by the A/D board 1010, at a sampling clock provided by the AWG 1014. The transducer was kept fixed at successive positions relative to the mouse tissue. At each position, a 10,000 pulse train was transmitted and data were collected before moving the transducer to the next position. Data were acquired at a PRF of 10 KHz, with a step size of 30 μm, over 1.5 mm in a plane perpendicular to the artery, and over 4 mm in a plane parallel to the artery. An expander and limiter element 1006 can also be used. The expander can be used to prevent low amplitude transmitted electronic noise from interfering with the received ultrasound signal. The limiter can be used to prevent the transmitted high- voltage electrical excitation from damaging the receive electronics. The limiter and expander can be combined in an expander and limiter element 1006, and can also be separate components of the disclosed system.
[00073] Figure 9 shows selected reconstructed frames of the mouse carotid artery using the ECG triggered retrospective color flow ultrasound imaging technique. ECG- triggered retrospective color flow images 902 were overlaid over B-scan images 904 acquired using a retrospective B-mode imaging technique. The detected velocities varied between 10-260 mm/s and were in good agreement with pulsed- wave doppler measurements. The highest detected velocity in the carotid artery was beyond the upper limited of velocity that can be estimated with a PRF of 10 kHz. Clutter filtering was applied to the doppler spectrum.
[00074] Assuming that the blood only circulates in one direction in the carotid, negative components of the doppler spectrum in the frequency range from -PRF/2 to 0 were unwrapped (i.e. transferred to the frequency range from PRF/2 to PRF). After zeroing the spectral components from -PRF to 0, the spectrum was transformed back to the time domain and color flow processed using the methods described above.
[00075] Only minimal tissue clutter artifacts were observed. These artifacts were only induced by real motion of the tissue, as the transducer was stationary during each acquisition. Spatio-temporal artifacts did not occur because of the inherent properties of the ECG-triggered data acquisition method. An effective frame rate of 10,000 frames/second was achieved, with an estimated optimal acquisition time of 20-30 seconds, corresponding to approximately 100 to 150 heart beats.
[00076] Example 2:
[00077] In vitro EGC retrospective color flow imaging using a phantom
[00078] Both swept-scan color flow imaging and ECG-triggered retrospective color flow imaging were compared using a phantom with a 5-Hz sinusoidally varying velocity profile. The phantom comprises an off-center rotating disk, with an optical sensor which generates an ECG-like pulses on each rotation of the disk. [00079] With a swept-scan technique, good estimation of velocities between 4 mm/s and 35 mm/s were achieved, while with the retrospective technique as described above, good estimation of velocities between 2 mm/s and 35 mm/s were achieved. Spatio- temporal decorrelation artifacts were also examined for each technique. Multiple frames of the swept-scan color flow mapping showed that the locations of velocity components were incoherently positioned between frames, with a frame-rate dependent on the sweep frequency. Multiple frames of the ECG-triggered retrospective color flow mapping, however, showed a gradual velocity change in agreement with the velocity profile of the phantom. Effective frame-rates of 10,000 fps were achieved, compared to 4 fjps for the swept-scan method.
[00080] The foregoing detailed description has been given for understanding exemplary implementations of the invention only and no unnecessary limitations should be understood there from as modifications will be obvious to those skilled in the art without departing from the scope of the appended claims and their equivalents.
[00081 ] Various publications are referenced in this document. These publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which the disclosed system and method pertains. The references disclosed are also individually and specifically incorporated by reference herein for the material contained in them that is discussed in the sentence in which the reference is relied upon.

Claims

[00082] What is claimed is: 1. A method of producing an ultrasound image, comprising: generating ultrasound; transmitting the ultrasound into a subject at a first location, wherein a first reference point of an ECG signal taken from the subject triggers the ultrasound transmission; receiving ultrasound reflected from the subject at the first location; transmitting the ultrasound into the subject at a second location, wherein a second reference point of an ECG signal taken from the subject triggers the ultrasound transmission; receiving ultrasound reflected from the subject at the second location; processing the received ultrasound to form ultrasound color traces; reconstructing the ultrasound color traces to form the ultrasound image.
2. The method of claim 1 , further comprising generating ultrasound in a frequency of about 20MHz to 60MHz.
3. The method of claim 1, further comprising using the ultrasound on a small animal to image blood flow.
4. The method of claim 3, wherein the small animal is a mouse.
5. The method of claim 1, further comprising using the ultrasound on a small animal to produce a blood velocity estimate.
6. The method of claim 5, wherein the small animal is a mouse.
7. The method of claim 1, further comprising overlaying the ultrasound image on a retrospective B-scan ultrasound image.
8. The method of claim 1 , wherein the ultrasound is generated by a single element mechanically scanned transducer.
9. The method of claim 1 , wherein the ultrasound is generated by an electronically steerable array transducer.
10. The method of claim 1, further comprising generating a plurality of color flow traces, each color flow trace generated from ultrasound data acquired at a specific location and triggered by a reference point of an ECG signal.
11. The method of claim 10, further comprising assembling the plurality of color flow traces to form a frame.
12. The method of claim 11, further comprising displaying a plurality of frames in series to form a cineloop.
13. A system for developing an ultrasound image, comprising: an ultrasound probe having a transducer capable of transmitting and receiving ultrasound energy; and a processor for generating an ECG-triggered retrospective color flow ultrasound image.
14. The system of claim 13, wherein the ultrasound occurs at a frequency range of about 20MHz to 60MHz.
15. The system of claim 14, wherein the ultrasound is performed on a small animal to image blood flow.
16. The system of claim 15, wherein the small animal is a mouse.
17. The system of claim 13, further comprising: a transmit subsystem configured to transmit a plurality of ultrasound pulses at a location on a subject's anatomy, the plurality of ultrasound pulses transmitted at the location when triggered by a reference point of an ECG signal.
18. The system of claim 17 wherein the plurality of ultrasound pulses are transmitted at a first location on a subject's anatomy when triggered by a reference point on the ECG signal and wherein a second plurality of ultrasound pulses are transmitted at a second location on a subject's anatomy when triggered by a reference point on the ECG signal.
19. The system of claim 13, further comprising: software, wherein ultrasound data are input into the software from the locations on a subject's anatomy and corresponding color flow traces are output by the software.
20. The system of claim 19, further comprising: a second software, wherein the color flow traces are processed by the second software forming a representation of blood flow over a region or portion of a subject's anatomy.
PCT/IB2005/002437 2004-03-01 2005-02-28 System and method for ecg-triggered retrospective color flow ultrasound imaging WO2005099345A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05768233A EP1728098A2 (en) 2004-03-01 2005-02-28 System and method for ecg-triggered retrospective color flow ultrasound imaging
CN2005800065541A CN101002107B (en) 2004-03-01 2005-02-28 System and method for ECG-triggered retrospective color flow ultrasound imaging
CA002558584A CA2558584A1 (en) 2004-03-01 2005-02-28 System and method for ecg-triggered retrospective color flow ultrasound imaging
JP2007501383A JP2007525299A (en) 2004-03-01 2005-02-28 System and method for ECG-triggered retrospective color flow ultrasound imaging

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US54904104P 2004-03-01 2004-03-01
US60/549,041 2004-03-01

Publications (2)

Publication Number Publication Date
WO2005099345A2 true WO2005099345A2 (en) 2005-10-27
WO2005099345A3 WO2005099345A3 (en) 2006-03-30

Family

ID=35150393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2005/002437 WO2005099345A2 (en) 2004-03-01 2005-02-28 System and method for ecg-triggered retrospective color flow ultrasound imaging

Country Status (6)

Country Link
US (1) US7674228B2 (en)
EP (1) EP1728098A2 (en)
JP (1) JP2007525299A (en)
CN (1) CN101002107B (en)
CA (1) CA2558584A1 (en)
WO (1) WO2005099345A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523284A (en) * 2007-04-10 2010-07-15 シー・アール・バード・インコーポレーテッド Low power ultrasound system

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052460B2 (en) * 2003-05-09 2006-05-30 Visualsonics Inc. System for producing an ultrasound image using line-based image reconstruction
DE102005014445A1 (en) * 2005-03-30 2006-10-05 Siemens Ag Operation method for image-forming medical-technical equipment involves storing sequence of images generated from start time to stop time based on trigger pulses
EP2088932B1 (en) 2006-10-25 2020-04-08 Maui Imaging, Inc. Method and apparatus to produce ultrasonic images using multiple apertures
US9020575B2 (en) * 2006-11-10 2015-04-28 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP4892732B2 (en) * 2007-03-28 2012-03-07 国立大学法人岐阜大学 Blood vessel imaging method, blood vessel imaging system, and blood vessel imaging program
US9282945B2 (en) 2009-04-14 2016-03-15 Maui Imaging, Inc. Calibration of ultrasound probes
JP5209351B2 (en) * 2008-03-21 2013-06-12 株式会社東芝 Ultrasonic diagnostic apparatus and control method thereof
JP5666446B2 (en) * 2008-08-08 2015-02-12 マウイ イマギング,インコーポレーテッド Image forming method using multi-aperture medical ultrasonic technology and synchronization method of add-on system
US8858443B2 (en) * 2009-02-17 2014-10-14 Siemens Medical Solutions Usa, Inc. System for cardiac ultrasound image acquisition
JP2012523920A (en) * 2009-04-14 2012-10-11 マウイ イマギング,インコーポレーテッド Universal multi-aperture medical ultrasound probe
JP5485373B2 (en) 2009-04-14 2014-05-07 マウイ イマギング,インコーポレーテッド Multiple aperture ultrasonic array alignment system
JP5702780B2 (en) * 2009-07-21 2015-04-15 ユニバーシティ オブ バージニア パテント ファウンデーション Catheter system
JP6274724B2 (en) 2010-02-18 2018-02-07 マウイ イマギング,インコーポレーテッド Point source transmission and sound velocity correction using multi-aperture ultrasound imaging
US8684933B2 (en) 2010-08-17 2014-04-01 Imsonic Medical, Inc. Handheld ultrasound color flow imaging system with mechanically scanned, mechanically focused multi-element transducers
EP3563768A3 (en) 2010-10-13 2020-02-12 Maui Imaging, Inc. Concave ultrasound transducers and 3d arrays
WO2012051305A2 (en) 2010-10-13 2012-04-19 Mau Imaging, Inc. Multiple aperture probe internal apparatus and cable assemblies
US20120116218A1 (en) * 2010-11-10 2012-05-10 Jennifer Martin Method and system for displaying ultrasound data
JP5588928B2 (en) * 2011-06-03 2014-09-10 富士フイルム株式会社 Ultrasonic diagnostic equipment
WO2013082455A1 (en) 2011-12-01 2013-06-06 Maui Imaging, Inc. Motion detection using ping-based and multiple aperture doppler ultrasound
CN104080407B (en) 2011-12-29 2017-03-01 毛伊图像公司 The M-mode ultra sonic imaging of free routing
JP6438769B2 (en) 2012-02-21 2018-12-19 マウイ イマギング,インコーポレーテッド Determination of material hardness using multiple aperture ultrasound.
CN104203108B (en) 2012-03-23 2017-05-03 皇家飞利浦有限公司 Imaging system for imaging a periodically moving object
IN2014DN07243A (en) 2012-03-26 2015-04-24 Maui Imaging Inc
CN104412123B (en) * 2012-06-25 2017-05-17 皇家飞利浦有限公司 System and method for 3d ultrasound volume measurements
JP6270843B2 (en) 2012-08-10 2018-01-31 マウイ イマギング,インコーポレーテッド Calibration of multiple aperture ultrasonic probes
WO2014031642A1 (en) 2012-08-21 2014-02-27 Maui Imaging, Inc. Ultrasound imaging system memory architecture
US20140128738A1 (en) * 2012-11-05 2014-05-08 Fujifilm Visualsonics, Inc. System and methods for forming ultrasound images
US9510806B2 (en) 2013-03-13 2016-12-06 Maui Imaging, Inc. Alignment of ultrasound transducer arrays and multiple aperture probe assembly
US9883848B2 (en) 2013-09-13 2018-02-06 Maui Imaging, Inc. Ultrasound imaging using apparent point-source transmit transducer
JP6722656B2 (en) 2014-08-18 2020-07-15 マウイ イマギング,インコーポレーテッド Network-based ultrasound imaging system
CN108778530B (en) 2016-01-27 2021-07-27 毛伊图像公司 Ultrasound imaging with sparse array probe
US10912536B2 (en) * 2016-08-23 2021-02-09 Carestream Health, Inc. Ultrasound system and method
CN112912762A (en) * 2018-10-23 2021-06-04 皇家飞利浦有限公司 Adaptive ultrasound flow imaging
CN111248896A (en) * 2018-11-30 2020-06-09 无锡祥生医疗科技股份有限公司 Electrocardiosignal acquisition system and method
CA3119330A1 (en) 2018-12-04 2020-06-11 Fujifilm Sonosite, Inc. Photoacoustic electrocardiogram-gated kilohertz visualization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790321A (en) * 1985-11-14 1988-12-13 Fujitsu Limited Method of displaying stream lines of an inhomogeneous flowing medium and a device therefor
US6425868B1 (en) * 1999-07-26 2002-07-30 Aloka Co., Ltd. Ultrasonic imaging system
US6447450B1 (en) * 1999-11-02 2002-09-10 Ge Medical Systems Global Technology Company, Llc ECG gated ultrasonic image compounding
WO2004099814A1 (en) * 2003-05-09 2004-11-18 Visualsonics, Inc. System for producing an ultrasound image using line-based image reconstruction

Family Cites Families (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974826A (en) * 1974-09-16 1976-08-17 Indianapolis Center For Advanced Research, Inc. Non-Profit Display circuitry for ultrasonic imaging
US4034744A (en) * 1975-11-13 1977-07-12 Smith Kline Instruments, Inc. Ultrasonic scanning system with video recorder
US4141347A (en) * 1976-09-21 1979-02-27 Sri International Real-time ultrasonic B-scan imaging and Doppler profile display system and method
JPS5675686A (en) * 1979-11-26 1981-06-22 Kureha Chem Ind Co Ltd Ultrasonic video device
US4431007A (en) * 1981-02-04 1984-02-14 General Electric Company Referenced real-time ultrasonic image display
NL8102104A (en) 1981-04-29 1982-11-16 Philips Nv DEVICE FOR EXAMINATION USING ULTRA-SOUND WAVES.
US4546771A (en) * 1982-03-04 1985-10-15 Indianapolis Center For Advanced Research, Inc. (Icfar) Acoustic microscope
US4489729A (en) 1982-09-03 1984-12-25 Medtronic, Inc. Ultrasound imaging system
US4612937A (en) * 1983-11-10 1986-09-23 Siemens Medical Laboratories, Inc. Ultrasound diagnostic apparatus
US4722346A (en) * 1983-12-16 1988-02-02 Hewlett-Packard Company Stand-off device with special fluid
JPS6111025A (en) * 1984-06-26 1986-01-18 株式会社東芝 Ultrasonic tissue diagnostic apparatus
JPS61288846A (en) * 1985-06-17 1986-12-19 株式会社島津製作所 Blood stream state display method in ultrasonic diagnostic apparatus
US5000185A (en) * 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4867169A (en) * 1986-07-29 1989-09-19 Kaoru Machida Attachment attached to ultrasound probe for clinical application
US4796632A (en) * 1986-08-11 1989-01-10 General Electric Company Standoff adapter for ultrasound probe
JP2557410B2 (en) * 1987-09-22 1996-11-27 株式会社東芝 Ultrasonic Doppler blood flow imaging device
US4888694A (en) 1987-10-28 1989-12-19 Quantum Medical Systems, Inc. Ultrasound imaging system for relatively low-velocity blood flow at relatively high frame rates
JPH0689Y2 (en) * 1988-02-29 1994-01-05 株式会社島津製作所 Ultrasonic Doppler device
JPH0223961A (en) * 1988-07-13 1990-01-26 Showa Rubber Kk Laminated rubber plug for medicine, method and mold for preparing the same
US5165413A (en) * 1988-09-13 1992-11-24 Acuson Corporation Steered linear color doppler imaging
IL91664A (en) * 1988-09-28 1993-05-13 Yissum Res Dev Co Ammonium transmembrane gradient system for efficient loading of liposomes with amphipathic drugs and their controlled release
US5099847A (en) * 1989-11-13 1992-03-31 Advanced Technology Laboratories, Inc. High frame rate ultrasound system
US5699798A (en) * 1990-08-10 1997-12-23 University Of Washington Method for optically imaging solid tumor tissue
US5105814A (en) * 1990-08-15 1992-04-21 Hewlett-Packard Company Method of transforming a multi-beam ultrasonic image
EP0480086A1 (en) * 1990-10-05 1992-04-15 Acoustic Imaging Technologies Corporation Programmable beam former
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5278757A (en) * 1991-11-15 1994-01-11 The Trustees Of The University Of Pennsylvania Synthetic aperture ultrasonic imaging system using a minimum or reduced redundancy phased array
US5313950A (en) * 1992-02-25 1994-05-24 Fujitsu Limited Ultrasonic probe
JPH06269453A (en) * 1993-03-23 1994-09-27 Aloka Co Ltd Ultrasonic diagnostic device
US5798461A (en) * 1993-06-02 1998-08-25 Hewlett-Packard Company Methods and apparatus for ultrasound imaging using combined scan patterns
US5379642A (en) * 1993-07-19 1995-01-10 Diasonics Ultrasound, Inc. Method and apparatus for performing imaging
US5792058A (en) * 1993-09-07 1998-08-11 Acuson Corporation Broadband phased array transducer with wide bandwidth, high sensitivity and reduced cross-talk and method for manufacture thereof
AU1294995A (en) * 1993-11-29 1995-06-19 Perception, Inc. Pc based ultrasound device with virtual control user interface
US5390674A (en) * 1993-12-30 1995-02-21 Advanced Technology Laboratories, Inc. Ultrasonic imaging system with interpolated scan lines
US5474074A (en) 1994-03-08 1995-12-12 Cardiovascular Imaging Systems, Incorporated Low profile transducer for intravascular ultrasound imaging and method for mounting
EP0674185A1 (en) 1994-03-25 1995-09-27 Laboratoires D'electronique Philips S.A.S. Method and system for detecting and characterising a segment of a blood vessel by ultrasonic echography
JP3833282B2 (en) * 1994-06-24 2006-10-11 株式会社東芝 Ultrasonic diagnostic equipment
US5615680A (en) * 1994-07-22 1997-04-01 Kabushiki Kaisha Toshiba Method of imaging in ultrasound diagnosis and diagnostic ultrasound system
US5488954A (en) * 1994-09-09 1996-02-06 Georgia Tech Research Corp. Ultrasonic transducer and method for using same
US5606975A (en) * 1994-09-19 1997-03-04 The Board Of Trustees Of The Leland Stanford Junior University Forward viewing ultrasonic imaging catheter
JP2848586B2 (en) 1994-10-03 1999-01-20 オリンパス光学工業株式会社 Ultrasound diagnostic equipment
JP3782107B2 (en) * 1994-11-30 2006-06-07 ボストン サイエンティフィック リミテッド Acoustic imaging, Doppler catheters and guidewires
JP3114553B2 (en) 1995-02-17 2000-12-04 富士写真光機株式会社 Ultrasound diagnostic equipment
EP0734742B1 (en) * 1995-03-31 2005-05-11 Kabushiki Kaisha Toshiba Ultrasound therapeutic apparatus
DE19514308A1 (en) * 1995-04-18 1996-10-24 Siemens Ag Ultrasonic transducer head with integrated controllable amplifier devices
US5485845A (en) * 1995-05-04 1996-01-23 Hewlett Packard Company Rotary encoder for intravascular ultrasound catheter
US5596990A (en) * 1995-06-06 1997-01-28 Yock; Paul Rotational correlation of intravascular ultrasound image with guide catheter position
US5839442A (en) 1995-06-29 1998-11-24 Teratech Corporation Portable ultrasound imaging system
US6248073B1 (en) * 1995-06-29 2001-06-19 Teratech Corporation Ultrasound scan conversion with spatial dithering
US5524623A (en) * 1995-06-30 1996-06-11 Siemens Medical Systems, Inc. Adaptive artifact suppression for ultrasound imaging
US5588435A (en) 1995-11-22 1996-12-31 Siemens Medical Systems, Inc. System and method for automatic measurement of body structures
AU1983397A (en) * 1996-02-29 1997-09-16 Acuson Corporation Multiple ultrasound image registration system, method and transducer
JPH1033535A (en) * 1996-07-30 1998-02-10 Toshiba Corp Doppler ultrasonograph and its method
US5709210A (en) * 1996-07-30 1998-01-20 Acuson Corporation Ultrasound system for imaging
US5844140A (en) 1996-08-27 1998-12-01 Seale; Joseph B. Ultrasound beam alignment servo
US5865650A (en) * 1996-10-22 1999-02-02 Acuson Corporation Ultrasound adapter
US6086539A (en) * 1996-12-04 2000-07-11 Acuson Corporation Methods and apparatus for ultrasound image quantification
US6530887B1 (en) * 1996-12-24 2003-03-11 Teratech Corporation Ultrasound probe with integrated electronics
US5797846A (en) * 1996-12-30 1998-08-25 General Electric Company Method to control frame rate in ultrasound imaging
US5940123A (en) * 1997-02-13 1999-08-17 Atl Ultrasound High resolution ultrasonic imaging through interpolation of received scanline data
US5921931A (en) * 1997-04-08 1999-07-13 Endosonics Corporation Method and apparatus for creating a color blood flow image based upon ultrasonic echo signals received by an intravascular ultrasound imaging probe
US5776068A (en) * 1997-06-19 1998-07-07 Cornell Research Foundation Ultrasonic scanning of the eye using a stationary transducer
JP3723663B2 (en) * 1997-07-15 2005-12-07 フクダ電子株式会社 Ultrasonic diagnostic equipment
FR2772590B1 (en) * 1997-12-18 2000-04-14 Michel Puech USE OF AN ULTRASONIC TRANSDUCER FOR ECHOGRAPHIC EXPLORATION OF THE POSTERIOR SEGMENT OF THE EYEBALL
WO1999056626A1 (en) * 1998-05-05 1999-11-11 Cornell Research Foundation, Inc. Method for assessing blood flow and apparatus thereof
US6200267B1 (en) * 1998-05-13 2001-03-13 Thomas Burke High-speed ultrasound image improvement using an optical correlator
US6511426B1 (en) * 1998-06-02 2003-01-28 Acuson Corporation Medical diagnostic ultrasound system and method for versatile processing
US6056691A (en) * 1998-06-24 2000-05-02 Ecton, Inc. System for collecting ultrasound imaging data at an adjustable collection image frame rate
US6036647A (en) * 1998-07-31 2000-03-14 Scimed Life Systems, Inc. PZT off-aperture bonding technique
US6261231B1 (en) * 1998-09-22 2001-07-17 Dupont Pharmaceuticals Company Hands-free ultrasound probe holder
US6245017B1 (en) * 1998-10-30 2001-06-12 Kabushiki Kaisha Toshiba 3D ultrasonic diagnostic apparatus
US6066099A (en) * 1998-11-23 2000-05-23 General Electric Company Method and apparatus for high-frame-rate high-resolution ultrasonic image data acquisition
US6042545A (en) * 1998-11-25 2000-03-28 Acuson Corporation Medical diagnostic ultrasound system and method for transform ultrasound processing
US6574499B1 (en) * 1998-11-25 2003-06-03 Xdata Corporation Mammography method and apparatus
US6123670A (en) * 1998-12-15 2000-09-26 General Electric Company Ultrasound imaging with optimal image quality in region of interest
US6152877A (en) 1998-12-16 2000-11-28 Scimed Life Systems, Inc. Multimode video controller for ultrasound and X-ray video exchange system
US6139502A (en) * 1998-12-30 2000-10-31 G.E. Vingmed Ultrasound A/S Ultrasonic transducer probe and handle housing and stand-off pad
US6099473A (en) * 1999-02-05 2000-08-08 Animal Ultrasound Services, Inc. Method and apparatus for analyzing an ultrasonic image of a carcass
US6193662B1 (en) * 1999-02-17 2001-02-27 Atl Ultrasound High frame rate pulse inversion harmonic ultrasonic diagnostic imaging system
US6139500A (en) * 1999-02-24 2000-10-31 Agilent Technologies Inc. Methods and apparatus for 3D cardiac ultrasound imaging
US6398736B1 (en) * 1999-03-31 2002-06-04 Mayo Foundation For Medical Education And Research Parametric imaging ultrasound catheter
JP4346147B2 (en) * 1999-04-05 2009-10-21 株式会社東芝 Ultrasonic diagnostic apparatus and method for operating ultrasonic diagnostic apparatus
US6238345B1 (en) * 1999-06-30 2001-05-29 Atl Ultrasound Image memory for extended field of view ultrasonic diagnostic imaging
US6315732B1 (en) 1999-07-20 2001-11-13 Scimed Life Systems, Inc. Imaging catheter and methods of use for ultrasound-guided ablation
US6251073B1 (en) * 1999-08-20 2001-06-26 Novasonics, Inc. Miniaturized ultrasound apparatus and method
US6325759B1 (en) * 1999-09-23 2001-12-04 Ultrasonix Medical Corporation Ultrasound imaging system
JP3300313B2 (en) * 1999-11-01 2002-07-08 松下電器産業株式会社 Ultrasound diagnostic equipment
US6350238B1 (en) * 1999-11-02 2002-02-26 Ge Medical Systems Global Technology Company, Llc Real-time display of ultrasound in slow motion
US6312382B1 (en) 1999-11-15 2001-11-06 Ronald Mucci Method and apparatus for extracting cardiac information from acoustic information acquired with an ultrasound device
WO2001043640A2 (en) * 1999-12-15 2001-06-21 Koninklijke Philips Electronics N.V. Diagnostic imaging system with ultrasound probe
EP1241994A4 (en) 1999-12-23 2005-12-14 Therus Corp Ultrasound transducers for imaging and therapy
CA2295431A1 (en) 2000-01-06 2001-07-06 Scott Howard Phillips Ophthalmic apparatus
US6494835B1 (en) 2000-02-16 2002-12-17 Jomed Inc. Method and apparatus for intravascular brachytherapy treatment planning
US6346079B1 (en) * 2000-05-25 2002-02-12 General Electric Company Method and apparatus for adaptive frame-rate adjustment in ultrasound imaging system
US6468216B1 (en) * 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US6679845B2 (en) * 2000-08-30 2004-01-20 The Penn State Research Foundation High frequency synthetic ultrasound array incorporating an actuator
US6544175B1 (en) * 2000-09-15 2003-04-08 Koninklijke Philips Electronics N.V. Ultrasound apparatus and methods for display of a volume using interlaced data
US6589174B1 (en) * 2000-10-20 2003-07-08 Sunnybrook & Women's College Health Sciences Centre Technique and apparatus for ultrasound therapy
US6404428B1 (en) * 2000-11-21 2002-06-11 Ati International Srl Method and apparatus for selectively providing drawing commands to a graphics processor to improve processing efficiency of a video graphics system
US6508768B1 (en) * 2000-11-22 2003-01-21 University Of Kansas Medical Center Ultrasonic elasticity imaging
US6540681B1 (en) * 2000-11-24 2003-04-01 U-Systems, Inc. Extended view ultrasound imaging system
JP2002248101A (en) 2001-02-26 2002-09-03 Fuji Photo Film Co Ltd Ultrasonic photographic method and ultrasonic photographic apparatus
US6685644B2 (en) 2001-04-24 2004-02-03 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus
US6524247B2 (en) 2001-05-15 2003-02-25 U-Systems, Inc. Method and system for ultrasound imaging of a biopsy needle
US6638226B2 (en) * 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
US6755785B2 (en) * 2001-11-20 2004-06-29 Matsushita Electric Industrial Co., Ltd. Ultrasonic image generating apparatus and ultrasonic image generating method
US6572549B1 (en) * 2001-12-18 2003-06-03 Koninklijke Philips Electronics Nv High frame rate extended field of view ultrasound imaging system and method
US6692438B2 (en) * 2001-12-18 2004-02-17 Koninklijke Philips Electronics Nv Ultrasonic imaging system and method for displaying tissue perfusion and other parameters varying with time
JP4060615B2 (en) * 2002-03-05 2008-03-12 株式会社東芝 Image processing apparatus and ultrasonic diagnostic apparatus
FR2839543B1 (en) * 2002-05-07 2004-08-27 Quantel Medical SCANNING SYSTEM BASED ON AN ARCIFORM PATH WITH VARIABLE CURVE RADIUS
US6695778B2 (en) * 2002-07-03 2004-02-24 Aitech, Inc. Methods and systems for construction of ultrasound images
EP1524938A2 (en) 2002-07-12 2005-04-27 Iscience Surgical Corporation Ultrasound interfacing device for tissue imaging
US7255678B2 (en) * 2002-10-10 2007-08-14 Visualsonics Inc. High frequency, high frame-rate ultrasound imaging system
US6629929B1 (en) 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array
US7331234B2 (en) * 2002-11-13 2008-02-19 Fujifilm Corporation Ultrasonic imaging method and ultrasonic imaging apparatus
US7297118B2 (en) * 2003-06-12 2007-11-20 Ge Medical Systems Global Technology Company Ultrasound method and apparatus for multi-line acquisition
US6951543B2 (en) 2003-06-24 2005-10-04 Koninklijke Philips Electronics N.V. Automatic setup system and method for ultrasound imaging systems
US20050049498A1 (en) * 2003-08-13 2005-03-03 Ctrl Systems, Inc. Method of ultrasound non-contact early detection of respiratory diseases in fowls and mammals
DE102005008490B8 (en) * 2004-02-25 2009-06-18 Fujinon Corporation Ultrasonic diagnostic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4790321A (en) * 1985-11-14 1988-12-13 Fujitsu Limited Method of displaying stream lines of an inhomogeneous flowing medium and a device therefor
US6425868B1 (en) * 1999-07-26 2002-07-30 Aloka Co., Ltd. Ultrasonic imaging system
US6447450B1 (en) * 1999-11-02 2002-09-10 Ge Medical Systems Global Technology Company, Llc ECG gated ultrasonic image compounding
WO2004099814A1 (en) * 2003-05-09 2004-11-18 Visualsonics, Inc. System for producing an ultrasound image using line-based image reconstruction

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FOSTER F S ET AL: "A new ultrasound instrument for in vivo microimaging of mice" ULTRASOUND IN MEDICINE AND BIOLOGY, NEW YORK, NY, US, vol. 28, no. 9, September 2002 (2002-09), pages 1165-1172, XP004389175 ISSN: 0301-5629 *
FOSTER F S ET AL: "High frequency ultrasound imaging: from man to mouse" ULTRASONICS SYMPOSIUM, 2000 IEEE OCT 22-25, 2000, PISCATAWAY, NJ, USA,IEEE, vol. 2, 22 October 2000 (2000-10-22), pages 1633-1638, XP010540928 ISBN: 0-7803-6365-5 *
GOERTZ D E ET AL: "High-frequency 3-D color-flow imaging of the microcirculation" ULTRASOUND IN MEDICINE AND BIOLOGY, NEW YORK, NY, US, vol. 29, no. 1, January 2003 (2003-01), pages 39-51, XP004412051 ISSN: 0301-5629 *
LOUPAS T ET AL: "An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the Doppler equation by means of a two-dimensional autocorrelation approach" IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL USA, vol. 42, no. 4, July 1995 (1995-07), pages 672-688, XP002362112 ISSN: 0885-3010 cited in the application *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523284A (en) * 2007-04-10 2010-07-15 シー・アール・バード・インコーポレーテッド Low power ultrasound system
US8500645B2 (en) 2007-04-10 2013-08-06 C. R. Bard, Inc. Low power ultrasound system
US9826960B2 (en) 2007-04-10 2017-11-28 C. R. Bard, Inc. Low power ultrasound system

Also Published As

Publication number Publication date
JP2007525299A (en) 2007-09-06
US20050197572A1 (en) 2005-09-08
CN101002107A (en) 2007-07-18
WO2005099345A3 (en) 2006-03-30
CA2558584A1 (en) 2005-10-27
CN101002107B (en) 2010-06-23
EP1728098A2 (en) 2006-12-06
US7674228B2 (en) 2010-03-09

Similar Documents

Publication Publication Date Title
US7674228B2 (en) System and method for ECG-triggered retrospective color flow ultrasound imaging
JP4805140B2 (en) System for generating ultrasound images using line-based image reconstruction
US9993224B2 (en) Ultrasound systems and methods for automated fetal heartbeat identification
US7871379B2 (en) Ultrasonic diagnostic apparatus and method of ultrasonic measurement
EP2448495B1 (en) Three dimensional fetal heart imaging by non-ecg physiological gated acquisition
US20140108053A1 (en) Medical image processing apparatus, a medical image processing method, and ultrasonic diagnosis apparatus
JP2006507883A (en) A segmentation tool to identify flow areas within an imaging system
JPH11327A (en) Ultrasonograph
US20060079783A1 (en) Method and system for deriving a fetal heart rate without the use of an electrocardiogram in non-3D imaging applications
JP2021522011A (en) Systems and methods for ultrasound screening
JP2001046372A (en) Ultrasonic image display device
JP2008104641A (en) Ultrasonic diagnostic apparatus, heartbeat synchronizing signal generator and heartbeat synchronizing signal generation method
JP4795672B2 (en) Ultrasonic diagnostic equipment
JP2010119587A (en) Ultrasonograph
JP4691185B2 (en) Ultrasonic image display device
JP2008167975A (en) Ultrasonic diagnostic equipment, heart rate synchronization signal generator and heart rate synchronization signal generation method
CN111093519B (en) Ultrasound image processing
EP1845391A1 (en) System for producing an ultrasound image using line-based image reconstruction
Dickie et al. A flexible research interface for collecting clinical ultrasound images

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2007501383

Country of ref document: JP

Ref document number: 200580006554.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2558584

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005768233

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2005768233

Country of ref document: EP