WO2005108288A1 - Procede de preparation par voie hydrothermique d'un nanotube de silicium autoassemble - Google Patents

Procede de preparation par voie hydrothermique d'un nanotube de silicium autoassemble Download PDF

Info

Publication number
WO2005108288A1
WO2005108288A1 PCT/CN2005/000630 CN2005000630W WO2005108288A1 WO 2005108288 A1 WO2005108288 A1 WO 2005108288A1 CN 2005000630 W CN2005000630 W CN 2005000630W WO 2005108288 A1 WO2005108288 A1 WO 2005108288A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
nanotubes
self
preparing self
temperature
Prior art date
Application number
PCT/CN2005/000630
Other languages
English (en)
French (fr)
Inventor
Y.H. Tang
L.Z. Pei
Y.W. Chen
C. Guo
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to US10/578,450 priority Critical patent/US7544626B2/en
Publication of WO2005108288A1 publication Critical patent/WO2005108288A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/023Preparation by reduction of silica or free silica-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure

Definitions

  • the invention discloses a method for preparing self-grown silicon nanotubes by a hydrothermal method, and particularly refers to an inorganic solution growth method (hydrothermal method) for preparing self-grown silicon nanotubes.
  • silicon bonds of elemental silicon are sp 3 hybrids, and it is difficult for substances with such hybrid bonds to form a tubular structure, although a large number of theoretical studies have been conducted on silicon nanotubes, theoretically it is believed that silicon nanotubes can be formed, but at present The preparation of silicon nanotubes, especially self-organized silicon nanotubes, is still a very challenging global problem, and no substantial breakthrough has occurred. Due to the unique properties of carbon nanotubes, a research boom has been caused in the world. Many research groups have tried to develop self-organized silicon nanotubes. Recently, Jeong et al. From Sungkyunkwan University and Sha et al.
  • NCA nano-alumina channel
  • the purpose of the present invention is to provide a silicon nano tube prepared by self-organized growth using a silicon source material.
  • the method is a method for forming silicon nanotubes by self-assembly of a hydrothermal solution without adding a metal catalyst, without a growth template, simple process, easy operation control, low cost, no pollution, small diameter, and uniformly distributed hydrothermal solution.
  • the present invention is implemented by using the following scheme: using water as a solvent, adding silicon oxide accounting for 0.01-10% of the weight of the solvent, mixing and placing it in a sealed reaction kettle at a temperature of 200-500 ° C and a pressure of 3-40 MPa Incubate for 1-5 hours and stir evenly.
  • Stirrer uses magnetic stirrer.
  • the silicon oxide according to the present invention may account for 0.05-8% by weight of the solvent.
  • the silicon oxide according to the present invention may account for 0.1-6% by weight of the solvent.
  • the invention can be prepared at a temperature of 250-500 ° C and a pressure of 8-35 MPa for 1-4 hours with uniform stirring.
  • the preferred preparation conditions of the present invention are that the temperature is kept at 300-450 ° C and the pressure is maintained at 10-30MPa for 1-3 hours and uniformly stirred.
  • Another preferred preparation condition of the present invention is that the temperature is 300 to 400 ° C, and the temperature is maintained for 3 to 4 hours under a pressure of 6 to 10 MPa and uniformly stirred.
  • the present invention adopts the above-mentioned process method, no metal catalyst needs to be added, and no growth template is required. After characterization and identification, it can be confirmed that the prepared is a self-organized growth silicon nanotube. Since the self-assembled silicon nanotubes are prepared in an aqueous solution, there are no problems such as agglomeration and entanglement, which overcomes the difficult problems such as easy agglomeration and difficult dispersion of the current nanomaterials. At the same time, the prepared self-grown silicon nanotubes are difficult to solve. Nanotubes have a large length / diameter ratio, which provides a new way to strengthen and toughen composite materials.
  • the method has the advantages of simple process method, easy operation, simple equipment, low cost, and provides conditions for practical application of self-organized growth of silicon nanotubes.
  • the invention uses non-toxic raw materials. The raw materials and the preparation process are non-polluting to the environment and fully meet the development direction of the modern industry, which can realize the industrialized preparation of self-organized silicon nanotubes.
  • FIG. 1 is a schematic diagram of the growth process of self-grown silicon nanotubes.
  • a temperature field in the reactor that is, a temperature gradient from the edge of the kettle body to the center of the kettle from high to low, during the growth process of silicon nanotubes.
  • the connection of silicon and silicon atom bonds formed a tubular structure in the low temperature region ( Figure 1 (a)).
  • the Si-Si bond at the growing end of this tubular structure is at the minimum value of metastable energy, preventing the closing of the growing end of silicon nanotubes.
  • silicon nanotubes are stirring Under the agitation of the mixer, it continuously moves between the low temperature region and the high temperature region, and the probability of collision of different atoms increases.
  • One Si position in the Si atom may change part of the crystalline silicon in the wall of the silicon nanotube into amorphous silicon, so that the silicon wall forms a silicon layer similar to a graphite layered structure.
  • Figure 1 is a schematic diagram of the growth process of silicon nanotubes grown in groups.
  • FIG. 2 is a transmission electron microscope (TEM) image of a self-grown silicon nanotube prepared by the present invention.
  • FIG. 3 is a selected area electron diffraction (SAED) image of a self-grown silicon nanotube prepared by the present invention.
  • SAED selected area electron diffraction
  • Fig. 4 is an energy dispersive spectrum (EDS) analysis of the self-grown silicon nanotubes prepared by the present invention.
  • FIG. 5 is a high-resolution transmission electron microscopy (HRTEM) image of the self-grown silicon nanotube body prepared by the present invention.
  • FIG. 6 is a high-resolution transmission electron microscope (HRTEM) image of the growth tip of the self-grown silicon nanotube tube prepared by the present invention.
  • HRTEM transmission electron microscope
  • the selective electron diffraction pattern of the silicon nanotubes grown from the group shows that the silicon nanotubes have a polycrystalline structure, and the crystal planes corresponding to the diffraction rings from the inside to the outside are (111), (220), and (311) faces.
  • the outer diameter of the tube body ( Figure 5) is about 14nm, the inner hole is about 1.5nm, the silicon wall thickness is about 5nm and the thickness of the amorphous outer layer is less than 2nm.
  • the diameter of the growing end of the obtained self-grown silicon nanotube (Fig. 6) is about 18 nm, the inner hole is larger than the tube body, about 3 nm, the silicon wall thickness is about 5 nm, and the thickness of the amorphous outer layer is less than 2 nm.
  • the outer layer of the oxide layer on the top of the grown silicon nanotubes is not uniformly distributed and has some defects.
  • the sample contains two elements of silicon and oxygen, and at the same time, silicon dioxide is the most stable compound of silicon compounds, so it can be determined that the amorphous outer layer is amorphous silicon dioxide.
  • Self-organized silicon The symmetrical silicon wall layer and amorphous silicon dioxide layer at both ends of the meter tube indicate that the synthesized silicon nanotubes are a seamless tubular silicon structure. Therefore, the structure of self-grown silicon nanotubes consists of three parts: a hollow structure with a few nanometers inside, and a tube wall structure composed of crystalline silicon in the middle. The wall thickness is generally lower than
  • the outermost layer is the outer layer of amorphous silica with a diameter less than 2nm.

Description

水热法制备自组生长的硅纳米管的方法
技术领域
本发明公开了一种水热法制备自组生长的硅纳米管的方法,特指系一种 无机溶液生长法 (水热法) 制备自组生长的硅纳米管的方法。
背景技术
由于元素硅的硅键为 sp3杂化, 而具有这种杂化键的物质难于形成管状 结构, 所以虽然对硅纳米管进行了大量的理论研究, 理论上认为可以形成硅 纳米管, 但是目前在硅纳米管, 尤其是自组生长的硅纳米管的制备方面仍是 一个极具挑战性的世界性难题, 未出现实质性的突破。 由于碳纳米管独特性 质, 在世界引起了研究热潮, 众多研究小组都试图研制出自组生长的硅纳米 管。 最近 Sungkyunkwan University的 Jeong等禾口 Zhejiang University的 Sha 等分别以模板生长方法制得了硅纳米管并发表在了材料国际核心杂志《先进 材料》 (八(^.
Figure imgf000003_0001
5 10 ()11011"的真空分子束外延生长(]\^£) 室中于 400°C在氧化铝模板上溅射硅原子或硅团簇, 溅射时间为 lOmin, 并 进一步在 600 °C或 750°C氧化处理后制备了直径低于 lOOnm的硅纳米管; Sha 等以纳米氧化铝沟道 (NCA) 为衬底模板, 以硅烷为硅源、 金属 Au为催化 剂,于 620°C、 1450Pa时通过化学气相沉积催化生长了直径低于 lOOnm的硅 纳米管。 虽然目前该方法可以制得硅纳米管, 但是实质上硅纳米管并不是依 靠元素硅的自组生长而形成的, 而是依靠模板内壁堆积生长的, 因而不是真 正意义上的硅纳米管。 ' 发明内容
本发明的目的在于提供一种采用硅源材料制备自组生长的硅纳米管的 方法, 是一种无需添加金属催化剂、 无需生长模板, 工艺过程简单、 易于操 作控制、 成本低、 无污染、 合成的直径小、 分布均匀的水热溶液自组生长的 硅纳米管的方法。
本发明是采用下述方案实现的:以水为溶剂,加入占溶剂重量 0.01— 10% 的硅氧化物, 混合后置入密封反应釜中, 于 200-500 °C温度、 3-40MPa压力 下保温 1-5小时并均匀搅拌。
搅拌采用磁力搅拌器。
本发明所述硅氧化物可占溶剂重量 0.05-8%。
本发明所述硅氧化物可占溶剂重量 0.1-6%。
本发明可在 250-500°C温度、 8-35MPa压力下保温 1-4小时并均匀搅拌 下制备。
本发明较佳的制备条件为 300-450°C温度、 10-30MPa压力下保温 1-3小 时并均匀搅拌。
本发明另一较佳的制备条件为所述温度为 300〜400°C、 6〜10MPa压力下 保温 3〜4小时并均匀搅拌。
本发明由于采用上述工艺方法, 无需添加金属催化剂、 无需生长模板, 经表征鉴定可以确认制备出来的是一种自组生长的硅纳米管。 由于是在水溶 液中制得自组生长的硅纳米管, 不存在团聚、 缠绕等问题, 克服了目前纳米 材料存在易团聚、 难分散等难以解决的问题, 同时, 所制备的自组生长的硅 纳米管具有较大的长 /径比, 为复合材料的增强、 增韧提供了一种新的途径。 大量研究表明硅纳米线具有典型的量子限制效应及良好的物理性能而具有 极大的实际及潜在应用价值,而有理论研究表明硅纳米管比硅纳米线更容易 出现量子限制效应且性能更稳定,可以预计硅纳米管在将来的纳米器件应用 方面具有很好的应用前景, 极有可能成为纳米领域的一种极有应用潜力的新 材料, 为实现纳米器件的高集成、 超小型化开辟了一条新思路。 本发明工艺 方法简单, 操作容易、 设备简易, 成本低, 为自组生长的硅纳米管的实际应 用提供了条件。本发明采用的是无毒原材料, 原材料及制备过程均对环境无 污染, 完全符合环保要求的现代工业的发展方向, 可实现自组生长的硅纳米 管的工业化制备。
本发明工艺方法中制备出自组生长的硅纳米管的机理简述于下: 根据
Charlier等提出的纳米管的" lip-lip"生长模型, 初步提出了硅纳米管的自组生 长机理。 在纳米管的生长阶段, 管生长端的化学键处于亚稳态能量最小值, 阻止了管生长端的闭合, 构成纳米管的原子不断的成键连接, 使得纳米管持 续生长, 随着条件的改变, 如温度的降低, 管末端的化学键渐渐趋于稳定状 态, 由于闭合态比非闭合态更稳定, 导致了纳米管生长端闭合并停止生长。 图 1为自组生长的硅纳米管的生长过程示意图。在水热溶液高温高压条件下, 原子间的化学键均处于亚稳状态, 且会有大量 K1"生成, 硅及硅氧化物呈气 态且同时相互之间会发生反应, 有 Si原子及原子 o2_生成, 由于制备过程中 反应釜内的气态物质一直在磁力搅拌器的均匀搅拌下,所以气态物质开始较 均勾的核化, 随后釜内的温度快速升高, 这表明核化吸热后, 会出现一个放 热过程, 即硅纳米管的自组生长过程。 反应釜内存在温度场, 即从釜体边缘 至釜中心从高到低的温度梯度, 在硅纳米管的生长过程中, 硅与硅原子键相 连接在低温区初步形成了管状结构(图 1(a)),此管状结构生长端的 Si-Si键, 处于亚稳态能量最小值, 阻止了硅纳米管生长端的闭合, 同时硅纳米管在搅 拌器的搅拌下不断在低温区与高温区之间运动, 不同原子的碰撞机率增大, 在高温区大量 Si原子进入硅纳米管管壁中,与管壁中的 Si原子结合于一起, 从而导致了硅纳米管在温度场方向的一维生长,'管界面的 Si原子与气氛中 的原子氧(Ο2·)反应形成了较稳定的 Si02层, 阻止了硅纳米管在非一维方 向的生长(图 i(b))。 由于水热状态下存在大量 ΗΤ, Η1"取代了晶体硅中四个
Si原子中的一个 Si位置, 有可能使硅纳米管壁中的部分晶体硅变为了非晶 硅, 从而硅壁形成了类似石墨层状结构的硅层。 当停止对釜体加热后, 釜内 温度、 压力逐渐降低, 硅纳米管末端的 Si-Si键也渐渐从亚稳状态逐渐趋于 稳定状态, 同时釜内温度梯度也逐渐消失, 导致了硅纳米管生长端逐渐闭合 并停止生长 (图 l (c)、 (d))。
附图说明
附图 1为自组生长的硅纳米管的生长过程示意图。
附图 2为本发明制备的自组生长的硅纳米管的透射电子显微镜 (TEM) 图像。
附图 3为本发明制备的自组生长的硅纳米管的选区电子衍射 (SAED) 图像。
附图 4为本发明制备的自组生长的硅纳米管的能量色散光谱(EDS)分 析。
附图 5为本发明制备的自组生长的硅纳米管管身的高分辨透射电子显微 镜 (HRTEM) 图像。
附图 6为本发明制备的自组生长的硅纳米管管生长顶端的高分辨透射电 子显微镜 (HRTEM) 图像。 见附图 2, 从图中可观察到大量纳米管状结构, 大多数纳米管呈直线状 且表面较光滑干净, 其外部直径一般小于 20nm, 约 8〜20nm, 长度达上百纳 米, 甚至可达微米级。 内孔直径通常小于 5nm, 有一定的直径分布, 但范围 较窄。 自组生长的硅纳米管的头部都呈近似半圆的闭合结构, 表明没有催化 剂粒子存在, 而且在管头部也未观察到开口结构。
见附图 3, 从自组生长的硅纳米管的选区电子衍射花样可知, 硅纳米管 为多晶结构, 从内到外的衍射环所对应的晶面分别为 (111 )、 (220)、 (311 ) 面。
见附图 4, EDS分析表明样品中含有硅与氧两种元素, 且硅与氧的谱峰 高基本相同, 说明样品中硅氧原子比接近 1, 与原料中硅氧原子比较一致。
见附图 5、附图 6,通过 HRTEM测量及装置在 TEM上的软件(software of Digital Micrograph) 计算分析硅纳米管的晶面间距、 外径、 内孔径、 无定 形外层及硅壁层厚度。从 HRTEM图像中可明显观察到自组生长的硅纳米管 具有中空的内孔, 晶格条纹清晰的硅壁层及具有一定厚度的无定形氧化物外 层, 晶格条纹平行于硅纳米管的轴向方向生长, 经测量计算可知管壁层的晶 面间距为 0.31nm, 正好与硅 {111}面相吻合。 管身 (图 5) 的外径约 14nm, 内孔约 1.5nm, 硅壁厚约 5nm及无定形外层厚度小于 2nm。所得到的自组生 长的硅纳米管的生长端 (图 6) 的外径约 18nm, 内孔比管身的大一些, 约 3nm, 硅壁厚约 5nm及无定形外层厚度小于 2nm。 自组生长的硅纳米管生长 顶端的氧化层外层分布并不均匀, 且存在一些缺陷。 由于反应釜内的环境为 氧化环境, 样品中含有硅与氧两种元素, 同时二氧化硅是硅的化合物中最稳 定的化合物, 因此可以确定无定形外层为无定形二氧化硅。 自组生长的硅纳 米管两端较为对称的硅壁层及无定形二氧化硅层表明所合成的硅纳米管为 一种无缝的管状硅结构。 因此, 自组生长的硅纳米管的结构由三部分组成: 内部为数纳米的中空结构, 中部为晶体硅所组成的管壁结构, 壁厚一般低于
5nm, 最外层为直径低于 2nm的无定形二氧化硅外层。
具体实施方式
1: 将占水重量 0.01%的硅氧化物混合后置于密封反应釜中, 在磁力搅 拌器的均匀搅拌下, 于 200°C温度、 3MPa压力下保温 1小时, 合成了平均 内孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
2: 将占水重量 0.1%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌 器的均匀搅拌下, 于 380°C温度、 8MPa压力下保温 1小时, 合成了平均内 孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
3: 将占水重量 0.5%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌 器的均匀搅拌下, 于 500°C温度、 8MPa压力下保温 1小时, 合成了平均内 孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
4、将占水重量 1%的硅氧化物混合后置于密封反应釜中,在磁力搅拌器 的均匀搅拌下, 于 300°C温度、 lOMPa压力下保温 3小时, 合成了平均内孔 径低于 5nm、 平均外部直径约 15nm的自.组生长的硅纳米管。
5:将占水重量 4%的硅氧化物混合后置于密封反应釜中,在磁力搅拌器 的均匀搅拌下, 于 380°C温度、 15MPa压力下保温 1小时, 合成了平均内孔 径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
6:将占水重量 6%的硅氧化物混合后置于密封反应釜中,在磁力搅拌器 的均勾搅拌下, 于 500°C温度、 20MPa压力下保温 1小时, 合成了平均内孔 径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
7、将占水重量 6%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌器 的均匀搅拌下, 于 380 C、 8MPa压力下保温 3小时并均匀搅拌, 合成了平 均内孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
8: 将占水重量 8%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌器 的均匀搅拌下, 于 500°C温度、 30MPa压力下保温 2小时, 合成了平均内孔 径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
9: 将占水重量 10%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌 器的均匀搅拌下, 于 500Ό温度、 30MPa压力下保温 4小时, 合成了平均内 孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。
10: 将占水重量 8%的硅氧化物混合后置于密封反应釜中, 在磁力搅拌 器的均匀搅拌下, 于 450°C温度、 30MPa压力下保温 3小时, 合成了平均内 孔径低于 5nm、 平均外部直径约 15nm的自组生长的硅纳米管。

Claims

权 利 要 求
1、 水热法制备自组生长的硅纳米管的方法, 其特征在于: 以水为溶剂, 加入占溶剂重量 0.01— 10%的硅氧化物, 混合后置入密封反应釜中, 于 200-500°C温度、 3-40MPa压力下保温 1-5小时并均匀搅拌。
2、 根据权利要求 1所述一种水热法制备自组生长的硅纳米管的方法, 其特征在于: 搅拌采用磁力搅拌器。
3、 根据权利要求 1所述一种水热法制备自组生长的硅纳米管的方法, 其特征在于: 硅氧化物占溶剂重量 0.05-8%。
4、 根据权利要求 1所述一种水热法制备自组生长的硅纳米管的方法, 其特征在于: 硅氧化物占溶剂重量 0.1-6%。
5、 根据权利要求 1或 2或 3或 4所述一种水热法制备自组生长的硅纳 米管的方法, 其特征在于: 在 250-500°C温度、 8-35MPa压力下保温 1-4小 时并均匀搅拌。
6、 根据权利要求 1或 2或 3或 4所述一种水热法制备自组生长的硅纳 米管的方法, 其特征在于: 300-450°C温度、 10-30MPa压力下保温 1-3小时 并均匀搅拌。
7、 根据权利要求 1或 2或 3或 4所述一种水热法制备自组生长的硅纳 米管的方法, 其特征在于: 所述温度为 300-400°C、 6-10MPa压力下保温 2-4 小时并均匀搅拌。
PCT/CN2005/000630 2004-05-11 2005-05-08 Procede de preparation par voie hydrothermique d'un nanotube de silicium autoassemble WO2005108288A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/578,450 US7544626B2 (en) 2004-05-11 2005-05-08 Preparation of self-assembled silicon nanotubes by hydrothermal method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200410023180 2004-05-11
CN200410023180.1 2004-05-11
CNB2004100630337A CN1268543C (zh) 2004-05-11 2004-07-06 水热法制备自组生长的硅纳米管及硅纳米线的方法
CN200410063033.7 2004-07-06

Publications (1)

Publication Number Publication Date
WO2005108288A1 true WO2005108288A1 (fr) 2005-11-17

Family

ID=34523738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2005/000630 WO2005108288A1 (fr) 2004-05-11 2005-05-08 Procede de preparation par voie hydrothermique d'un nanotube de silicium autoassemble

Country Status (3)

Country Link
US (1) US7544626B2 (zh)
CN (1) CN1268543C (zh)
WO (1) WO2005108288A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100392159C (zh) * 2005-04-12 2008-06-04 中国科学技术大学 一种α-Si3N4单晶纳米线的溶剂热反应制备方法
CN1332881C (zh) * 2005-06-23 2007-08-22 复旦大学 一种单晶氧化硅纳米线的合成方法
CN101058421B (zh) * 2007-04-13 2010-05-19 安徽工业大学 一种低温制备无金属催化剂的纳米硅线的方法
CN101284667B (zh) * 2008-05-29 2010-12-15 复旦大学 一种硅纳米管的制备方法
US20090321355A1 (en) * 2008-06-30 2009-12-31 NANOASIS TECHNOLOGIES, INC., a corporation of the state of Delaware Membranes with embedded nanotubes for selective permeability
US7993524B2 (en) * 2008-06-30 2011-08-09 Nanoasis Technologies, Inc. Membranes with embedded nanotubes for selective permeability
KR100999173B1 (ko) 2008-07-17 2010-12-07 (주) 더몰론코리아 폴리아닐린 표면처리를 이용한 전도성 실리카 나노튜브복합재의 제조방법
US8196756B2 (en) * 2010-04-02 2012-06-12 NanOasis Asymmetric nanotube containing membranes
US9095821B1 (en) 2010-10-26 2015-08-04 Nagare Membranes, Llc Non-reactive process for fixing nanotubes in a membrane in through-passage orientation
CN104445203B (zh) * 2014-12-10 2016-01-20 湖南科技大学 一种硅量子点的制备方法
ES2593656B1 (es) * 2015-06-08 2017-07-11 Fundació Institut De Recerca En Energia De Catalunya Nanoestructura de láminas concéntricas
US9570299B1 (en) 2015-09-08 2017-02-14 International Business Machines Corporation Formation of SiGe nanotubes
US10680063B2 (en) 2018-09-07 2020-06-09 International Business Machines Corporation Method of manufacturing stacked SiGe nanotubes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349321A (ja) * 1998-06-05 1999-12-21 Osaka Gas Co Ltd 機能性珪素材料の製法
CN1454841A (zh) * 2003-05-19 2003-11-12 清华大学 大面积p-n结纳米硅线阵列及其制备方法
CN1474434A (zh) * 2003-07-25 2004-02-11 中国科学院上海微系统与信息技术研究 一种硅纳米线的制作方法
CN1482207A (zh) * 2003-07-28 2004-03-17 中国科学技术大学 磷化物纳米线的水热合成制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554388B (en) * 2001-03-30 2003-09-21 Univ California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6656573B2 (en) * 2001-06-26 2003-12-02 Hewlett-Packard Development Company, L.P. Method to grow self-assembled epitaxial nanowires
US6713519B2 (en) * 2001-12-21 2004-03-30 Battelle Memorial Institute Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts
US7132126B2 (en) * 2002-10-17 2006-11-07 City University Of Hong Kong Room temperature synthesis of multiwalled carbon nanostructures
US7211143B2 (en) * 2002-12-09 2007-05-01 The Regents Of The University Of California Sacrificial template method of fabricating a nanotube
US7147834B2 (en) * 2003-08-11 2006-12-12 The Research Foundation Of State University Of New York Hydrothermal synthesis of perovskite nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349321A (ja) * 1998-06-05 1999-12-21 Osaka Gas Co Ltd 機能性珪素材料の製法
CN1454841A (zh) * 2003-05-19 2003-11-12 清华大学 大面积p-n结纳米硅线阵列及其制备方法
CN1474434A (zh) * 2003-07-25 2004-02-11 中国科学院上海微系统与信息技术研究 一种硅纳米线的制作方法
CN1482207A (zh) * 2003-07-28 2004-03-17 中国科学技术大学 磷化物纳米线的水热合成制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIAN S ET AL: "Silicon nanotubes.", ADVANCED MATERIALS., vol. 14, no. 17, 2002, pages 1219 - 1221 *
LI MENGKE ET AL: "Preparation of well-aligne carbon nanotubes/silicon nanowires composite structure arrays.", SCIENCE IN CHINA (SERIES B), vol. 32, no. 3, 2002, pages 204 - 209 *
ZHOU G ET AL: "Synthesis and micro-structural study of one-dimensional nano-materials.", SCIENCE IN CHINA (SERIES A), vol. 29, no. 1, 1999, pages 85 - 91 *

Also Published As

Publication number Publication date
US7544626B2 (en) 2009-06-09
CN1268543C (zh) 2006-08-09
US20070077680A1 (en) 2007-04-05
CN1569628A (zh) 2005-01-26

Similar Documents

Publication Publication Date Title
WO2005108288A1 (fr) Procede de preparation par voie hydrothermique d'un nanotube de silicium autoassemble
Li et al. Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructures
Gao et al. Carbon nanotubes filled with metallic nanowires
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
Zhang et al. Carbon nanotube assisted synthesis of CeO2 nanotubes
Wu et al. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions
Liu et al. Surfactant-assisted growth of uniform nanorods of crystalline tellurium
US6190634B1 (en) Carbide nanomaterials
Gong et al. Synthesis of copper/cross-linked poly (vinyl alcohol)(PVA) nanocables via a simple hydrothermal route
Liu et al. A simple method for coating carbon nanotubes with Co–B amorphous alloy
JP7008373B2 (ja) 複数の小サイズ触媒からなる複合触媒に基づいて高純度カーボンナノコイルを合成する方法
Wang et al. Morphology, structure and magnetic properties of single-crystal Mn3O4 nanorods
CN100355649C (zh) 一种原位共生铁纳米线填充在薄壁碳纳米管的方法
Kim et al. Epitaxy-driven vertical growth of single-crystalline cobalt nanowire arrays by chemical vapor deposition
Zhao et al. Graphene oxide-supported cobalt tungstate as catalyst precursor for selective growth of single-walled carbon nanotubes
CN109678138B (zh) 一种单手性单壁碳纳米管的制备方法
KR100583610B1 (ko) 전이금속산화물/탄소나노튜브 합성물 제작방법
Herlin-Boime et al. Flame temperature effect on the structure of SiC nanoparticles grown by laser pyrolysis
Ramdani et al. Synthesis, characterization and kinetic computations of fullerene (C60)–CuO on the mechanism decomposition of ammonium perchlorate
Pokropivny Non-Carbon Nanotubes (Review). Part 1. Synthesis Methods
Jiang et al. Catalytic synthesis and photoluminescence of silicon oxide nanowires and nanotubes
CN114655945A (zh) 一种碳纳米管表面包覆非晶态或晶态氧化铬纳米功能涂层及其制备方法与应用
Wang et al. Facile synthesis and characterization of hierarchical CuO nanoarchitectures by a simple solution route
KR100561701B1 (ko) 탄화규소 나노로드 및 나노와이어의 제조 방법
Xiong et al. Preparation of semiconductor/polymer coaxial nanocables by a facile solution process

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007077680

Country of ref document: US

Ref document number: 10578450

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 10578450

Country of ref document: US

122 Ep: pct application non-entry in european phase