WO2005108635A2 - Single crystal shape memory alloy devices and methods - Google Patents

Single crystal shape memory alloy devices and methods Download PDF

Info

Publication number
WO2005108635A2
WO2005108635A2 PCT/US2005/015703 US2005015703W WO2005108635A2 WO 2005108635 A2 WO2005108635 A2 WO 2005108635A2 US 2005015703 W US2005015703 W US 2005015703W WO 2005108635 A2 WO2005108635 A2 WO 2005108635A2
Authority
WO
WIPO (PCT)
Prior art keywords
hyperelastic
responsive
force
guidewire
sma
Prior art date
Application number
PCT/US2005/015703
Other languages
French (fr)
Other versions
WO2005108635A3 (en
Original Assignee
Tini Alloy Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tini Alloy Company filed Critical Tini Alloy Company
Priority to US10/588,413 priority Critical patent/US7544257B2/en
Priority to EP05744403A priority patent/EP1747299A4/en
Publication of WO2005108635A2 publication Critical patent/WO2005108635A2/en
Publication of WO2005108635A3 publication Critical patent/WO2005108635A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/20Arrangements for moving or orienting solar heat collector modules for linear movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0241Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the tubes being flexible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/323Thermally-sensitive members making use of shape memory materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M2025/09133Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque
    • A61M2025/09141Guide wires having specific material compositions or coatings; Materials with specific mechanical behaviours, e.g. stiffness, strength to transmit torque made of shape memory alloys which take a particular shape at a certain temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S2030/10Special components
    • F24S2030/11Driving means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • This invention relates to mechanical devices that have a component in which large recoverable distortions are advantageous.
  • Shape memory alloy materials are well known.
  • SMA Shape memory alloy materials
  • TiNi also known as nitinol
  • nitinol an alloy of nearly equal atomic, content of the elements Ti and Ni.
  • Such an SMA material will undergo a crystalline phase transformation from martensite to austenite when heated through the material s phase change temperature. When below that temperature the material can be plastically deformed from a "memory shape" responsive to stress. When heated through the transformation temperature, it reverts to the memory shape while exerting considerable force.
  • Superelasticity results from stress-induced conversion from austenite to martensite as stress is increased beyond a critical level, and reversion from martensite to austenite as stress is reduced below a second (lower) critical level. These phenomena produce a pair of plateaus of constant stress in the plot of stress versus strain at a particular temperature. Single crystal superelasticity is characterized by an abrupt change in slope of the stress strain plot at a combination of stress, strain, and temperature characteristic of that particular alloy.
  • Shape memory copper-aluminum based alloys grown as single crystals have been experimentally made in laboratories, typically in combination with about 5 percent Ni, Fe, Co, or Mn.
  • the most common such CuAl-based alloy is CuAlNi, which is used throughout this description as the primary example: others are CuAlFe, CuAICo, and CuAlMn.
  • Single crystal SMA materials when stressed have the property of enabling a shape memory strain recovery much greater than polycrystalline SMA, and superelastic shape recovery as great as 24 percent.
  • Figs. 1A and IB is a graph show the stress-strain curves for the typical superelastic properties of a polycrystalline SMA compared with the hyperelastic properties of single crystal SMA in accordance with the invention.
  • Figs. 2A, 2B and 2C are perspective views of a snap-through hinge in accordance with another embodiment of the invention showing the hinge in different operating configurations.
  • Fig. 3 is a perspective view of an extendible boom in accordance with another embodiment incorporating the hinges of Figs. 2A, 2B and 2C and in its stowed mode.
  • Fig. 4 is a perspective view of the extendible boom of Fig. 3 shown in its deployed mode.
  • Fig. 5 is a perspective view of a guidewire in accordance with another embodiment.
  • Fig. 6 is a perspective view of a group of probe tips in accordance with another embodiment.
  • Fig. 7 is a side view taken along the line 7-7 of Fig. 6.
  • Fig. 8 is an axial section view of a spring in accordance with another embodiment.
  • Fig. 9 is a load-deflection chart for the spring of Fig. 8.
  • Figs. 10A and 10B are perspective views of a device useful as a probe or pin in accordance with another embodiment showing different operating positions.
  • Figs. 11A and 11B are perspective views of a spring actuator in accordance with another embodiment showing different operating positions.
  • Fig. 12A is a perspective view of a heat pipe and deployable in accordance with another embodiment shown in one operating position.
  • Fig. 12B is a perspective view of the heat pipe and deployable of Fig. 12A shown in another operating position.
  • Fig. 13A is a perspective view of a switch flexure in accordance with another embodiment shown in one operating position.
  • Fig. 13B is a perspective view of the flexure of Fig. 13A shown in another operating position
  • Figs. 14A and 14B are perspective views of a leaf spring in accordance with another embodiment shown in different operating positions.
  • Fig. 15A is an axial section view of an actuator in accordance with another embodiment shown in one operating position.
  • Fig. 15B is an axial section view of the actuator of Fig. 15A shown in another operating position.
  • Fig. 16A, 16B and 16C are perspective views of a collapsible tube in accordance with another embodiment shown in different operating positions.
  • Fig. 17A is a perspective view of a hinge for a deployable in accordance with another embodiment shown in one set of operating positions.
  • Fig. 17B is a perspective view of the hinge and deployable of Fig. 17A shown in another set of operating positions.
  • a general object of this invention is to provide new and improved devices and apparatus having a component or components in which large recoverable distortions can be advantageous.
  • the invention in summary provides devices and apparatus having at least one component made of a single crystal shape memory alloy, defined herein as hyperelastic SMA, having properties enabling the component to undergo large recoverable distortions.
  • Such distortions can be at least an order of magnitude greater than that which could be obtained if the component were made of non-SMA metals and alloys, and nearly an order of magnitude greater than can be obtained with polycrystalline SMA materials.
  • devices and apparatus having components comprised of hyperelastic SMA can serve as: actuators for the active deployment of structures such as booms, antennae and solar panels; actuators for releasing door locks, moving mirrors and fuel injectors; flexures; constant force springs; connectors; dampeners; valves; microchip substrates; support members; non-explosive separation devices; catheter guide wires; laproscopic instruments; medical implants such as stents; micro-connectors; switches; circuit breakers; electronic test equipment; flexible electric cables; heat conductors; consumer products such as safety valves, eyeglass frames and cellular telephone antennae; and many other devices and apparatus in which large recoverable distortions of a component or components can be advantageous.
  • the present invention provides devices and apparatus having a component made of a single crystal SMA material which has the property of enabling a repeatable strain recovery of as much as 24 percent.
  • hyperelastic repeatable strain recovery property of single crystal SMA.
  • materials exhibiting hyperelastic properties are referred to herein as hyperelastic materials.
  • large recoverable distortion means the magnitude of repeatable strain recovery described above for a hyperelastic material.
  • SMA materials have become popular for use as actuators due to their ability to generate substantial stress during shape recovery of large strains during temperature-induced phase transformation.
  • the energy density of such actuators is high compared to other alternatives, suchuasi-electronaagnetio; «le ⁇ jtr,ofi atic, bimetals, piezoelectric, and linear and volume thermal expansion effects of ordinary materials.
  • the operating cycle of an SMA actuator includes deformation during or after cooling, and subsequent heating which results in a temperature-induced phase transformation and recovery of the deformation. SMA actuation is favored where relatively large force and small displacements are required in a device that is small in size and low in mass.
  • Shape memory is the ability of certain alloys to recover plastic deformation, which is based on a diffusionless solid-solid lattice distortive structural phase transformation.
  • the performance of shape memory alloy based actuators strongly depends on the amount of recoverable deformation.
  • recoverable deformation itself is a function of the lattice distortions which take place during martensitic phase transformation in the particular SMA.
  • the amount of possible recoverable strain after uniaxial loading depends on the particular crystallographic orientation of the deformation tensor relative to the crystallographic axes of the high temperature (austenite) phase and the sign of applied load (tension or compression).
  • the recoverable strain is strongly orientation dependent, and for the various crystallographic directions it differs by approximately a factor of two.
  • resultant recovery is the vector sum of particular grain deformations over the whole range of grain orientations, and is significantly smaller than the maximum value for an individual single crystalline grain.
  • the strength of the grain for CuAINi SMA can be as high as 800 MPa with the potential limit for recoverable deformation up to 9 percent and even higher for special deformation modes.
  • An additional advantage of a single crystal SMA is that not only the thermally induced phase transformation may contribute to the recoverable deformation, as in the case for polycrystals, but also the stress-induced martensite-to-martensite phase transitions. Depending on the material, this additional contribution may be up to 15 percanfe ifte total t'heoii 'al recovery can be as high as 24 percent.
  • the graphs of Fig. 1A and IB show the stress-strain curves for a CuAINi single crystal SMA of the invention as well for a prior art polycrystal TiNi SMA.
  • Solid line curve 20 shows the single crystal SMA in its austenitic phase while curve 22 shows the martensitic phase.
  • Solid line curve 24 shows the polycrystal SMA in its austenitic phase while curve 26 shows the martensitic phase.
  • the graphs show the comparisons between the two SMAs as explained in the following.
  • the advantages of single crystal SMA over polycrystal SMA for mechanical devices include: 1. Greater than 9 percent strain recovery.
  • the region 28 of curve 22 for the austenitic phase of the single hyperelastic SMA shows the magnitude of its strain recovery in comparison to the comparable region 30 of curve 26 for an austenitic polycrystal SMA.
  • the greater than 9 percent recovery can either be used in the high temperature state (when in austenite phase) as a hyperelastic spring, for example, or deformed 9 percent (when in martensite phase) and then heated to recovery as an actuator. 2. True constant force deflection.
  • hyperelastic SMA materials Unlike polycrystalline materials which reach their strain/stress plateau strength in a gradual fashion and maintain an upward slope when deformed further, hyperelastic SMA materials have a very sharp and clear plateau strain /stress that provides a truly flat spring rate when deformed up to 9 percent. This is shown in Fig. IB by the region 32 of curve 20. The stress level at which the plateau occurs depends on the temperature difference between the transformation temperature and the loading temperature. Additio ally, 'sVi'gle cr ⁇ sta 'SMAs exhibiting hyperelasticity benefit from a second stress plateau which can increase the total recoverable strain to 22 percent. 3. Very narrow loading-unloading hysteresis.
  • Hyperelastic SMA materials made from CuAINi can be manufactured with transition temperatures close to absolute zero (-270 Celsius). This compares to SMA materials made from TiNi which have a practical transition temperature limit of -100 Celsius.
  • the advantage from hyperelastic SMA is its use in various cryogenic applications such as those aboard spacecraft which require cooling of certain instruments and sensors to very cold temperatures. In this case a hyperelastic SMA actuator can be used as a valve to control flow of the cooling medium. 7. Intrinsic hyperelastic property.
  • TiNi SMA can be conditioned, through a combination of alloying, heat treatment and cold working, to have superelastic properties.
  • Single crystal CuAINi SMA has intrinsic hyperelastic properties: a crystal of CuAINi is hyperelastic immediately after being formed (pulled and quenched) with no further processing required.
  • Single crystal SMA is made in a special crystal-pulling apparatus.
  • a seed of the desired alloy is lowered into a crucible containing a melted ingot of the alloy composition, and gradually drawn up. Surface tension pulls the melted metal along with the seed.
  • the rising column cools as it leaves the surface of the melt.
  • the rate of drawing is controlled to correspond with the rate of cooling so that a solid crystal is formed at a region that beco&fdfe. al crystallization iftfonC
  • the top surface of the melt can contain a die (of the desired cross-sectional shape) that forms the shape of the crystal as it grows. This procedure generally is known as the Stepanov method of making single crystals.
  • hyperelastic single crystal SMA are constrained by the intrinsic properties of the material, and by its behavior during forming and machining and other secondary manufacturing processes. For example, it has been shown that exposure to high temperature and/or stress can lead to recrystallization and the formation of unwanted crystals.
  • the known forming and machining processes which are successful include lathe machining, electro-discharge machining (EDM), grinding, laser cutting, electro-polishing, and the like. These processes can be used to manufacture many basic shapes of the hyperelastic SMA, including rods, ribbons, flexures, coil springs, leaf springs, serrated tubes, tubes, pins and bi-stable elements.
  • Single crystal shape memory materials have significantly smaller thermal and mechanical hysteresis than polycrystalline materials. This is advantageous since less energy is absorbed in the material on each cycle, less heating occurs and more of the energy is recovered during the shape recovery.
  • Single crystal SMA hyperelastic components of mechanical devices generally provide a significant advantage over other device components currently available because they enable large displacement at constant force.
  • aerospace applications include actuators which may be used as motors to gently deploy spacecraft components such as booms, antennae and solar panels.
  • Other aerospace applications include usage as constant force springs, flexures or connectors that need to accommodate very severe deformation but which spring back once the constraint is removed.
  • hyperelastic SMA components are similarly of wide scope. They may be employed as a significantly improved replacement actuator or flexure over prior art SMA actuator applications. These applications include thermostatic valves, tools and instruments used in medicine, and other applications such as eyeglass frames and cellular telephone antennae.
  • the invention contemplates the following device applications having hyperelastic SMA components:
  • Aerospace and Military As an actuator for active deployment of a host of devices including booms, antennae and solar panels. • As a flexure or constant force spring used for passive movement of cover doors or hinges. • As a connector where it is necessary to accommodate significant motion of adjacent parts. For example, heat pipes aboard spacecraft require such connectors to carry heating/cooling capability across a hinge to a dejjplqyafole-: • As a damper used to absorb or mitigate energy coming from nearby pyrotechnic release devices. • As a valve for a broad range of temperatures including cryogenic. Such valves have applications aboard missiles and satellites that carry sophisticated instruments such as sensors or cameras that need to be cryogenically cooled.
  • Automotive As an actuator for releasing door locks, moving mirrors and for driving fuel injector valves.
  • Embodiments Providing Equipment With Hyperelastic Components The present embodiment provides the use of hyperelastic SMA in applications such as equipment for sports and other activities.
  • CuAINi single crystal material stores an enormous amount of mechanical energy when it is deformed, and then releases the energy when the deforming force is removed. Unlike normally elastic material however the energy is stored and released at nearly constant force. These characteristics make this material desirable for use in equipment for use in a variety of sports and other activities including: • Bicycle wheel spokes equipped with a hyperelastic part to eliminate transmission to the hands of shocks due to small bumps in the road. • Running shoes and basketball shoes can contain a hyperelastic cushion that will reduce fatigue and enable the player to jump higher.
  • Skis that have a degree of hyperelastic behavior can reduce the shock of bumpy or irregular snow conditions and thereby improve control and provide a more comfortable, stable platform.
  • a warfighter may wear a form of 'exoskeleton' that enables a human to jump higher or survive descending from a higher distance than normal.
  • the capacity for storage of mechanical energy is as much as 3 Joules gram of CuAINi, and the majority of the energy is stored or released at a constant force resulting in constant acceleration.
  • a parachutist for example, wearing special boots containing a few hundred grams of CuAINi would be protected from injury resulting from hitting the ground at a higher than usual speed.
  • Snap-Through Hinge /Flexure Embodiments provide devices such as hinges or flexures made of hyperelastic SMA that allow constrained relative motion without sliding or rotating components. These are used in space vehicles to provide lightweight structures such as booms that must be folded for launch into space. Similar flexures can also be used to replace prior art eyewear hinges.
  • the hinges /flexures must bend through an arc of 180 degrees to be useful in folding structures such as booms that are stored during launch in a minimal volume. Minimum size of the folded structure is achieved when the flexures bend through a minimal radius.
  • flexures were made of thin steel curved tape. Steel in thin tape form does not provide optimum rigidity and strength for a functioning boom. This invention uses hyperelastic SMA in flexures capable of repeated recoverable large deformations to minimize size, maximize strength, and provide good vibration damping characteristics.
  • a tape hinge or flexure is formed by making a portion of a thin-walled cylinder and fixing it to rigid members or struts at the ends.
  • a principal feature of the invention is a "snap-through" action that resists bending because of its cylindrical symmetry which is very rigid for its mass, but when an applied force causes the flexure to buckle, it bends through a large angle with a smaller force. After buckling there is little restoring force because of its shape, that is, bending through a severe bending angle at a small radius of bend is possible because of the hyperelastic quality of the flexure.
  • the flexure returns to its straight cylindrical rigid shape with a snap action because rigidity increases rapidly as the flexure assumes its cylindrical shell shape.
  • Performance of these devices, and their applicability, can be enhanced by increasing the recoverable strain, enlarging the stress tolerance, and extending the hyperelastic temperature range of the SMA materials.
  • the method of deformation in tape-hinges results in non-uniform strain.
  • the edge of the tape element is under tension, resulting in strain. After buckling occurs, this strain remains, and a bending moment is applied such that the inner surface is under compression and the outer surface is under tensile stress, with a neutral axis near the center of the cross-section.
  • hinges that have no rotating or sliding parts. These devices can be used in spacecraft.
  • One known form of hinge is a . carpen r . .,. . ,, en ing an elongate element having a thickness much smaller than the width and having a curved cross-section. Such an element has a 'snap-action'.
  • These hinges when made of steel or materials with ordinary elasticity are restricted to a small thickness in order to control the degree of strain within the elastic limit of the material. Limiting the strain to elastic deformation limits the rigidity that can be achieved with BeCu and steel tape-spring hinges. Thus such prior art hinges are limited to relatively light loads, and Structures incorporating such hinges are not as rigid as is desired.
  • a material having greatly increased elasticity will enable the fabrication of 'carpenter's tape' hinges with increased load-carrying capacity.
  • One such material is hyperelastic single-crystal copper aluminum nickel in accordance with the present invention. This embodiment provides a significant improvement in the performance of tape hinges by exploiting the properties of hyperelastic shape memory phase change material.
  • a material having greatly increased elasticity will enable the fabrication of 'carpenter's tape' hinges with increased load-carrying capacity.
  • Figs. 2A, 2B and 2C illustrate different operational positions of a snap-through hinge or flexure 40 in accordance with one embodiment of the invention shown in Fig. 3.
  • the flexure is comprised of a hollow tube of hyperelastic SMA. Between first and second flexure ends 44 and 46, the tube on one side is partially cut away to provide a weakened portion 42 that is in the shape of a circular segment in cross section.
  • weakened portion 42 causes the flexure to undergo a snap-action or buckling action when its two ends are pivoted to a certain relative position (such as shown in Fig. 2B) between the stowed position with the shape of Fig. 2A and the deployed position with the shape of Fig. 2C
  • the Fig. 2B position is at the buckling point.
  • the pivoting is initiated by a certain applied force until the buckling point is reached.
  • mechanical energy stored in the flexure is released to continue the bending until the fully deployed position is reached.
  • the full range of movement between the two positions is through an angle of 180 degrees or more.
  • Flexure 40 is adapted for use in coupling together components of the extendible boom segment 48 of Figs. 3 and 4.
  • Boom segment 48 has applications for use in spacecraft, such as for deploying payloads, positioning solar panels and the like.
  • the boom segment comprises a pair of rigid frames 50, 52, each of which is comprised of four rigid side struts 54, 56 connected together at their ends to form a rectangular or square frame configuration.
  • the four respective corners of the two frames are interconnected by four sets of paired longitudinal rigid struts 58, 60.
  • the longitudinal struts lay in planes that are parallel to the planes in which the frames lie.
  • each pair of longitudinal struts are coaxial and extend orthogonal with the planes of the frames.
  • brace wires 62, 62 can be fitted diagonally between opposite corners of the squares or rectangles formed between the two frames.
  • a plurality (shown as eight for the two frames) of flexures 40a couple together the outer ends of each pair of struts to respective corners of the two frames. One end of each such flexure is secured to the frame corner while the other end of that flexure is secured to the respective end of a strut.
  • a plurality (shown as four for the two frames) of flexures 40d couple together the inner ends of the strut pairs.
  • the flexures are operated toward their deployed positions by suitable actuators, not shown.
  • the actuators could be operated to move. e p H tr ⁇ 3 S,. ,. a is ance sutticient to pivotally move the opposite ends of each flexure through arcs that cause the flexure to buckle and snap-through to the full 180 degrees arc of travel, which then becomes a stable position.
  • a plurality of the boom segments could be mounted together in stacked relationship to form a boom structure that can deploy out to a longer overall length, as desired.
  • the snap-through hinge or flexure 40 offers additional stiffness when in the deployed position.
  • hinge/flexure devices have been manufactured from materials such as Stainless Steel or Beryllium Copper.
  • such devices aboard space applications have been limited to smaller deployables primarily because they lack the stiffness necessary to support larger structures. This is due to the very limited strain ( ⁇ 0.3 percent elastic) which these materials can endure. Therefore to achieve the necessary 180 degree fold for compact stowage, they must be made ultra thin reducing their axial stiffness.
  • the much greater strain recovery capability of hyperelastic SMA components allows flexures as in the present invention to be made on the order of 30 times thicker, providing an order of magnitude increase in axial rigidity.
  • hyperelastic tape hinge flexure/boom device embodiments of the invention include: • There are fewer moving parts. The flexure has only one part: it deploys by unfolding without sliding or rotating parts. • The boom can be scaled from a few cm to many meters in length. It has a potentially high packing Factor ; a large boom can be stowed in a small volume. Its deployed length to stowed length ratio may be 50 to one or higher. • Light weight. Since all elements are in pure tension or pure compression, it will be possible to optimize the elements for a particular design to minimize weight. ⁇ The boom contains no sliding or rotating parts.
  • Each boom segment is readily re-stowable on the ground to permit testing.
  • the segment could be made remotely re-stowable.
  • Guidewires are used to enable insertion of catheters into blood vessels and many other medical procedures. A guidewire is inserted ahead of the tip of the catheter, and then the catheter is advanced thought the blood vessel guided by the wire.
  • the principal characteristics of guidewires are flexibility to permit following the contour of tortuous lumens, and resistance to kinking.
  • TiNi superelastic wires made of polycrystalline SMA, principally TiNi.
  • the superelastic property of TiNi limits the forces exerted by the wire against the blood vessel tissue while the wire bends as it follows curvatures of the lumen.
  • TiNi superelastic guidewires are less susceptible to kinking than stainless steel wires, and they have good "torque-ability 7 ', that is they can be turned (twisted) along their long axis without objectionable flexing.
  • Single-crystal wires of CuAINi SMA exhibit hyperelasticity compared to prior art shape memory wires, and the shape recovery is total rather than partial, as shown in Fig. 1. These properties are exploited to produce guidewires that can access blood vessels that are so tortuous as to be inaccessible rmearfy inaccessible' t prior art guidewires.
  • Method of forming hyperelastic SMA wires Rods of CuAINi are formed by pulling them from a melted ingot by the Stepanov method.
  • the composition of the ingot from which the wire is drawn can be adjusted, thereby lowering its transformation temperature, and making the wire stiffer.
  • the composition of the ingot is made such that at human body temperature of 37 Celsius, the CuAINi material is hyperelastic
  • the rod is subsequently re-heated and quenched by rapid cooling to retain the nickel and aluminum dissolved in the copper matrix.
  • the rod is heated in an air furnace and dropped into a salt-water bath. Salt water is used for the quenching bath because fewer bubbles are formed and the resulting temperature drop is more rapid.
  • CuAINi single crystal material cannot be plastically deformed to reduced diameter, so after quenching the rod is centerless ground and otherwise processed by abrasive machining to achieve the desired size and shape.
  • the rod may be processed by conventional machining so long as the surface stresses are not so great as to cause multiple large crystals to form at the surface.
  • Micro- or nano-crystals may be removed by abrasion and polishing, including electro-polishing.
  • the rod may also be processed by EDM. After EDM, the surface should be abraded to remove the re-deposited material and micro- or nano-crystals that may have formed. Otherwise these may act as a source for crack initiation. Single crystal CuAINi is notch and crack sensitive, making it appear brittle if the surface is not smooth.
  • Wires of single crystal CuAINi SMA can be deformed more than TiNi wires an gtiii. ecovQ ⁇ -aJi i, or e e w arfion wit out amage w en t e restraining force is removed. Increased flexibility enables a CuAINi wire to bend through a smaller radius without becoming permanently deformed. Hence CuAINi SMA guidewires are superior to those made of polycrystalline SMAs such as Nitinol.
  • stiffness is not isotropic.
  • a wire can be elongated in the ⁇ 100> direction much more easily and to a larger strain than in the ⁇ 110> direction. This is used to advantage for making guidewires that are very flexible but have good 'torque-ability'.
  • Stiffness can be tuned from wire to wire. Two wires of the same diameter may be designed to have different stiffness through minor adjustments in the composition.
  • Stiffness can also be tuned along the length of a wire by two methods.
  • differing composition can be accomplished, as an ingot of a given composition can be used as a seed for pulling a second ingot as a continuous single crystal of slightly different composition having increased or diminished stiffness.
  • Second, the fraction of aluminum that remains in solution depends on the temperature to which the material is heated before quenching. In that case, a heater is provided to heat one end of the wire to a slightly higher temperature than the other so that when the wire is quenched by rapid submersion in salt water the cooler end has less dissolved aluminum and nickel.
  • Fig. 5 illustrates an embodiment of the invention, which comprises a hyperelastic guidewire 64 of single crystal SMA.
  • the guidewire is shown with its distal end protruding from the forward end of a catheter 66, although the invention contemplates use of a hyperelastic guidewire in other procedures within the human body.
  • the guidewire is formed with a thickness in the range 0.012 to 0.039 inches, and preferably 0.018 and 0.038 inches.
  • the guidewire can have different lengths depending on the application. The preferred length is in the range of 42 and 100 inches.
  • the hyperelastic SMA guidewire can be fabricated with a non-elastic segment, such as the tip. This is accomplished by making the segment of single crystal SMA having a transition temperature above body temperature of 37°C. The material in this segment is then martensitic, is easily deformed, and remains deformed after being deformed. Deformation can be removed by heating to above the transformation temperature while the object is at zero external stress so that the wire can be inserted into a lumen. At the desired position within the lumen, the segment is then heated by suitable means above the transition temperature so that the tip reverts to its memory shape with the specific curve or turn and in which the tip segment remains non-elastic as long as it is above the transition temperature.
  • CuAINi can also be combined with other materials to make composite materials with specific properties.
  • CuAINi single crystal can be pulled from melt as a cylinder or tube. Adding lubricants can increase tube lubricity.
  • the single crystal CuAINi wires can be coated with polymers or with metals. Such coatings can be used for providing increased biocompatibility.
  • the advantages of the guidewires of the invention include their suitability for use in minimally invasive surgery, especially intravascular procedures.
  • the guidewires have increased flexibility compared with conventional materials used in such procedures.
  • the guidewires enable surgeons of ordinary skill to perform certain specific procedures that currently require n ighl uskil ei -spedji listSfiiThe guidewires of these embodiments can save time in the operating room.
  • the guidewires have the ability to be more versatile than ordinary prior art guidewires, in particular enabling the surgeon to use the same guidewire both for entering a tortuous lumen and for deployment of a balloon or other appliance.
  • Microelectronics circuits fabricated on silicon dies, are becoming smaller, more complex, and faster. Each of these characteristics raises problems with manufacture.
  • microelectronics industry faces two principal problems: extreme miniaturization and high data transfer rates, which manifests itself as High frequencies. The time may be approaching when microelectronics circuits on chips can be manufactured but cannot be adequately tested during manufacture.
  • Microprocessors now operate at multiple gigahertz rates. At such high frequencies, radiation from exposed conductors as short as a few millimeters is significant, leading to cross talk between connectors and loss of signal strength. A shielding leads, analogous to coaxial cable, would ameliorate this source of testin ⁇ g failure.
  • Contact should have 'wipe' to remove oxide and make low-ohmic contact.
  • Compliance is needed to compensate for tolerances in pad height and misalignment of dies in fixturing.
  • Variation in height of 'bumps' is of the order of 0.0001 to 0.001 inches. 2.5 to 25 micrometers
  • a method of contact that is reversible that is, a temporary contact in the sense that it can be un-made would solve many problems.
  • Soldered contacts are not easily reversed, and damage is likely.
  • Differential thermal expansion of silicon dies and ball grid arrays means that re-flowed solder is deformed repeatedly throughout the lifetime as the chip is heated and cooled. Solder hardens and crystallizes with time, and becomes brittle. When it fractures, malfunctions (especially intermittent problems) occur.
  • the present embodiment provides means of establishing temporary low-resistance ''electrical connections 1 with greatly increased compliance and uniform contacting force.
  • an alloy with high electrical conductivity and hyperelasticity is used: single crystal ' copper-aluminum-nickel SMA.
  • Such an alloy constitutes an enabling technology for surmounting the problems of electrical connectors in microelectronics manufacture and testing.
  • Single crystal CuAINi may be deformed (strained) more than 9 percent, and recovery is complete. After a linear elastic region, the typical stress-strain isothermal curve for hyperelastic CuAINi is a plateau.
  • Hysteresis is minimal. Fatigue lifetime is many millions of cycles. Component materials are inexpensive, and low cost may be achieved in mass manufacture. Electrical resistivity is low.
  • Beta phase has desirable hyperelastic qualities.
  • a similar phase diagram applies to the ternary CuAINi system.
  • Individual needles of CuAINi are cut from rods and formed to shape by conventional methods of machining, including electrical discharge machining and sawing (dicing). After machining operations the individual components are smoothed to remove surface micro-cracks and nano-crystals that are formed on the surface by heat and/or stress. Smoothing may be done by abrasives or by electropoUshing.
  • Figs. 6 and 7 illustrate certain of the steps in fabricating a plurality of probe tips 70, 72 in accordance with the invention.
  • a round single crystal boule 5mm-10 mm diameter is pulled from CuAINi melt. The boule is heated to 900 Celsius and quenched in salt water.
  • a thin rectangular parallelepiped slice 74 (0.01 to 0.1 mm thick, 2 to 10 mm wide, and 8 to
  • the slice is cut to have the shape of Fig. 6 along the ⁇ 100> direction of the crystal.
  • each cantilever is formed on the end of each cantilever to define a row of sharp points.
  • the slots are cut very narrow parallel to the ⁇ 100> direction. The and spaced apart a distance of 0.1 to 0.5 mm.
  • Narrow slots are formed as extensions from slots 76, 78 to mechanically separate and electrically isolate the individual cantilevers.
  • the assembly comprising the cantilevers on slice 74 is then affixed to a PC board, not shown, carrying traces that make electrical contacts with the cantilevers.
  • the present embodiment comprises a spring, shown at 80 in Fig. 8, of the well-known Belleville washer configuration and which is comprised of a hyperelastic CuAINi SMA material.
  • Belleville washers are used in applications that require storage of a large amount of energy in a small volume.
  • Materials used for Belleville washers include steel, beryllium copper, and stainless steel.
  • Fig. 9 illustrates the force-displacement curve for a Belleville spring made of hardened stainless steel. This type of spring is very stiff unless it is extremely thin, and the stroke is necessarily small or the steel becomes overstrained. Use of hyperelastic SMA enables -a much larger stroke.
  • the present embodiment of a Belleville washer configuration formed of hyperelastic CuAINi SMA provides for springs with extremely different characteristics from those made of ordinary materials.
  • the shape of the force-displacement curve for materials with ordinary elasticity is dictated by the Young's modulus E which, for normally elastic elements, is constant.
  • Young's modulus E In the case of hyperelastic materials, E is constant up to the 'knee' of the stress-strain curve, beyond which point the force is nearly constant as the stress-strain curve becomes a plateau: Young's modulus E becomes a dependent variable.
  • Young's modulus E becomes a dependent variable.
  • the stress varies along a radius, so the point at which E changes depends on position. This non-linear behavior of a hyperelastic alloy makes calculation or simulation of behavior by calculation difficult and unproductive. Instead, devices are fabricated and force versus distance characteristics are measured in trial and error fashion.
  • Bistable elements such as buckling beams and Belleville washers made from Hyperelastic SMA have improved characteristics compared to bistable elements fabricated from ordinary materials such as steel and beryllium copper.
  • the sidewise displacement of a buckling beam of specific dimensions can be an order of magnitude larger than that of a beam of material with ordinary elasticity, and the force needed to change the state of a bistable buckling beam is much less. This permits their use in miniature switches and valves.
  • a buckling element uses material in pure compressive stress or in bending which is a combination of compression and tension.
  • Hyperelastic CuAINi has different characteristics in compression than in tension. This enables designs that are not feasible with normal materials. Because the modulus for compression is higher than the modulus for tensile stress the neutral axis does not correspond to the geometrical center of a bending beam.
  • Figs. 10A and 10B show an embodiment comprising a device 82 for use as a probe, such as for medical use in the human body, or as a pin for releasably securing things together, or as a needle.
  • Device 82 is comprised of a proximal end 84, which can be a handle or catheter, and a distal end 86 formed with a pointed tip 88. The distal end is formed of a hyperelastic
  • Fig. 10A shows the distal end in its low temperature martensite state
  • Fig. 10B shows the distal end it its high temperature aus enite ..state
  • w ⁇ ic is. its memory snape.
  • ⁇ t LL i memory shape is in the form of a hook.
  • Embodiment Providing Spring Actuator Figs. 11A and 11B show an embodiment comprising a compression coil spring 85, which can be used as an actuator.
  • Spring 85 is formed of a hyperelastic SMA.
  • Fig. HA shows the spring in its low temperature martensite state.
  • Fig. 11B shows the distal end it its high temperature austenite state, which is its "memory" shape.
  • the memory shape is where the coils axially expand to apply a force, such as to throw a switch or the like.
  • Other hyperelastic SMA spring configurations such as those which apply tension or which apply torsion when in their memory shapes, are within the scope of the invention.
  • Figs. 12A and 12B show an embodiment comprising a heat pipe 87.
  • the heat pipe is formed of a hyperelastic single CuAINi SMA. With the pipe formed of this material, it can tolerate severe bending without failure. It is shown adapted for use on a spacecraft having a deployable 89 (only a part of which is shown) which is pivotally connected by a hinge 91 with a structure or frame 90. A gas or liquid is directed by the pipe across the hinge line, such as for use on the deployable.
  • the hyperelastic properties enable bending of the pipe through a wide arc of travel, shown as 180 degrees.
  • Fig. 12A shows the pipe in a bent shape with the deployable stowed.
  • FIG. 12B shows the pipe bent to a straight shape after the deployable is pivoted out into its deploj ⁇ ed position.
  • FIGs. 13A and 13B show an embodiment comprising a pair of hyperelastic flexures 92, 94, such as for use in a small size electrical switch having a moving contact 96 for opening and closing a circuit.
  • Each flexure is formed of a hyperelastic CuAINi SMA.
  • the hyperelastic properties enable the flexures and contact to be very small while allowing the flexures to easily yield by bending upon upward movement of the contact.
  • Fig. 13A shows the parts before the flexures are touched by the contact so that the circuit is open.
  • Fig. 13B shows the flexures after being touched by and yieldably bent by the contact to close the circuit.
  • Figs. 14A and 14B show an embodiment comprising a leaf spring 98.
  • the spring is formed of a hyperelastic SMA.
  • the hyperelastic properties enable extreme bending of the spring. As a result, the spring is optimum for use in aerospace applications where size and mass must be minimized.
  • Fig. 14A shows the spring before bending.
  • Fig. 14B shows the spring after being bent through a wide arc, illustrated as 180 degrees.
  • the constant force plateau of stress resulting from the hyperelastic properties also provides significant advantages in giving the spring an inherent "snap-action" feature. Further, the hyperelastic properties minimize the total energy stored when fully bent (i.e. strained up to its failure point).
  • Figs. 15A and 15B show an embodiment comprising a plunger type actuator 100.
  • the actuator is comprised of a main spring 102, shown as a coil spring although it could be in other configurations, mounted coaxially within a cylindrical shell housing 104.
  • Spring 102 is formed of a hyperelastic SMA.
  • a plunger 106 is slidably mounted within the housing so that elongation of the main spring drives the plunger's distal end 108 out through the end of the housing.
  • a bias coil spring 110 is mounted within the housing on a side of the plunger opposite the main spring.
  • Fig. 15A shows the actuator with its components in standby mode before actuation.
  • main spring 102 is in its low temperature martensite crystal phase with a strength which is sufficiently low to enable the bias spring to drive against and hold the main spring in its standby mode.
  • Fig. 15B shows the spring after actuation by being heated by a suitable heater (not shown) above the SMA s phase transition temperature. The SMA then reverts to its austenite phase so that the main spring elongates to its memory shape and thereby forcefully acts against and moves the plunger out while also compressing the bias spring.
  • Figs. 16 A, 16B and 16C show an embodiment comprising a collapsible tube 112, such as for use in various medical applications including stents.
  • the tube is shown for use as an intravascular medical device that has a catheter 114 which carries the tube to the desired place in a human body.
  • the tube is comprised of a cross mesh or web of strands that are formed of a hyperelastic SMA.
  • the cross mesh allows the tube to be easily deformed and collapsed into a size which is sufficiently small to fit within the catheter, as shown in Fig. 16 A.
  • the mesh Upon being released from the constraining catheter the mesh begins to expand as the strands deform out toward their memory shapes, as at 112 in Fig. 16B.
  • 16C shows the mesh after emerging fully expanded from the end of the catheter as at 112 upon placement in the patient's vasculature.
  • the b ⁇ yp,erelastic constrainp.r ⁇ perties imparto,fduty.tlie .mesh strands enable the tube to be collapsed to a much smaller size as compared to prior art catheters, such as those employing superelastic TiNi SMA or other materials.
  • Embodiment Providing Solid Hinge Figs. 17A and 17B show an embodiment comprising a solid hinge 120 for pivotally moving elements with respect to one another.
  • the term "solid hinge” means that it has no separate elements or parts that move with respect to one another.
  • the hinge 120 is formed of a hyperelastic SMA.
  • One example of the solid hinge's use is as shown in the figures for pivoting a deployable 122 (only a part of which is shown) held on a spacecraft structure 124.
  • Fig. 17A shows the hinge in a bent shape with the deployable stowed.
  • Fig. 17B shows the hinge bent to a flat shape after the deployable is pivoted out into its deployed position.
  • the hyperelastic properties of the solid hinge enable it to bend through a wider arc of travel, shown as 180 degrees, than would be possible were it to be made of superelastic SMA such as TiNi or other high strength materials.
  • the hinge has no separate moving parts as in a piano type hinge. This results in low maintenance requirements and greater operating reliability. This is important in deep space flights where the deployable must be held by the hinge in stowed position for many years and then be depended on to properly operate when required.
  • the solid hinge's hyperelastic properties also enable it to bend back and forth indefinitely without losing its recoverability.
  • the hyperelastic properties also enable the hinge to have a robust thickness, which is sufficient to provide strength for holding heavy loads while the hinge still can easily bend. These requirements of thickness /strength with ease of bending cannot be achieved by solid hinges made of other metals, metal alloys or polymer materials.

Abstract

Devices and methods of making devices having one or more components made of single crystal shape memory alloys capable of large recoverable distortions, defined herein as 'hyperelastic' SMA, Recoverable strains are as large as 9 percent, and in special circumstances as large as 22 percent. The alloys typically have stress-strain curves (20, 22) as depicted graphically in Figure 1. Hypeelastic SMAs exhibit no creep or gradual change during repeated cycling because there are no crystal boundaries. Hyperelastic properties are inherent in the single crystal as formed; no cold work or special heat treatment is necessary. Alloy components are Cu- Al-X where X may be Ni, Fe, Co, or Mn. Single crystals are pulled from melts as in the Stepanov method and quenched by rapid cooling to prevent selective precipitation of individual element components. Conventional methods of finishing are used.

Description

SINGLE CRYSTAL SHAPE MEMORY ALLOY DEVICES AND METHODS
Cross -Reference to Prior Application
This application claims the benefit under 35 USC §119(e) of United States provisional application serial no. 60/569,659 filed May 6, 2004, and also claims the benefit under 35 USC §120 of non-provisional application serial no. 11/041,185 filed Jan. 24,2005.
Background of the Invention
1. Field of the Invention
This invention relates to mechanical devices that have a component in which large recoverable distortions are advantageous.
2. Description of the Related Art
Shape memory alloy materials (also termed SMA) are well known. One Common SMA material is TiNi (also known as nitinol), which is an alloy of nearly equal atomic, content of the elements Ti and Ni. Such an SMA material will undergo a crystalline phase transformation from martensite to austenite when heated through the material s phase change temperature. When below that temperature the material can be plastically deformed from a "memory shape" responsive to stress. When heated through the transformation temperature, it reverts to the memory shape while exerting considerable force.
In the prior art many different useful devices employing SMA have been developed and commercialized. The typical SMAs used in the prior art devices are of polycrystalline form. Polycrystalline SMA exhibits both: 1) shape memory recovery (when cycled through the material's transformation temperature) and 2) superelasticity. The term superelasticity applies to an SMA material which, when above the transformation temperature (in the austenite crystalline phase), exhibits a strain recovery of several percent. This is in comparison to a strain recovery on the order of only about 0.5 percent for non-SMA me a s, ,anςi, rnejaJ, £ .Py$<
Superelasticity results from stress-induced conversion from austenite to martensite as stress is increased beyond a critical level, and reversion from martensite to austenite as stress is reduced below a second (lower) critical level. These phenomena produce a pair of plateaus of constant stress in the plot of stress versus strain at a particular temperature. Single crystal superelasticity is characterized by an abrupt change in slope of the stress strain plot at a combination of stress, strain, and temperature characteristic of that particular alloy.
Shape memory copper-aluminum based alloys grown as single crystals have been experimentally made in laboratories, typically in combination with about 5 percent Ni, Fe, Co, or Mn. The most common such CuAl-based alloy is CuAlNi, which is used throughout this description as the primary example: others are CuAlFe, CuAICo, and CuAlMn. Single crystal SMA materials when stressed have the property of enabling a shape memory strain recovery much greater than polycrystalline SMA, and superelastic shape recovery as great as 24 percent.
Brief Description of The Drawings
Figs. 1A and IB is a graph show the stress-strain curves for the typical superelastic properties of a polycrystalline SMA compared with the hyperelastic properties of single crystal SMA in accordance with the invention.
Figs. 2A, 2B and 2C are perspective views of a snap-through hinge in accordance with another embodiment of the invention showing the hinge in different operating configurations.
Fig. 3 is a perspective view of an extendible boom in accordance with another embodiment incorporating the hinges of Figs. 2A, 2B and 2C and in its stowed mode. Fig. 4 is a perspective view of the extendible boom of Fig. 3 shown in its deployed mode.
Fig. 5 is a perspective view of a guidewire in accordance with another embodiment.
Fig. 6 is a perspective view of a group of probe tips in accordance with another embodiment.
Fig. 7 is a side view taken along the line 7-7 of Fig. 6.
Fig. 8 is an axial section view of a spring in accordance with another embodiment.
Fig. 9 is a load-deflection chart for the spring of Fig. 8.
Figs. 10A and 10B are perspective views of a device useful as a probe or pin in accordance with another embodiment showing different operating positions.
Figs. 11A and 11B are perspective views of a spring actuator in accordance with another embodiment showing different operating positions.
Fig. 12A is a perspective view of a heat pipe and deployable in accordance with another embodiment shown in one operating position.
Fig. 12B is a perspective view of the heat pipe and deployable of Fig. 12A shown in another operating position.
Fig. 13A is a perspective view of a switch flexure in accordance with another embodiment shown in one operating position.
Fig. 13B is a perspective view of the flexure of Fig. 13A shown in another operating position
Figs. 14A and 14B are perspective views of a leaf spring in accordance with another embodiment shown in different operating positions.
Fig. 15A is an axial section view of an actuator in accordance with another embodiment shown in one operating position.
Fig. 15B is an axial section view of the actuator of Fig. 15A shown in another operating position.
Fig. 16A, 16B and 16C are perspective views of a collapsible tube in accordance with another embodiment shown in different operating positions.
Fig. 17A is a perspective view of a hinge for a deployable in accordance with another embodiment shown in one set of operating positions.
Fig. 17B is a perspective view of the hinge and deployable of Fig. 17A shown in another set of operating positions.
Objects And Summary of the Invention
A general object of this invention is to provide new and improved devices and apparatus having a component or components in which large recoverable distortions can be advantageous.
The invention in summary provides devices and apparatus having at least one component made of a single crystal shape memory alloy, defined herein as hyperelastic SMA, having properties enabling the component to undergo large recoverable distortions. Such distortions can be at least an order of magnitude greater than that which could be obtained if the component were made of non-SMA metals and alloys, and nearly an order of magnitude greater than can be obtained with polycrystalline SMA materials. In different embodiment's' of the 'invention, devices and apparatus having components comprised of hyperelastic SMA can serve as: actuators for the active deployment of structures such as booms, antennae and solar panels; actuators for releasing door locks, moving mirrors and fuel injectors; flexures; constant force springs; connectors; dampeners; valves; microchip substrates; support members; non-explosive separation devices; catheter guide wires; laproscopic instruments; medical implants such as stents; micro-connectors; switches; circuit breakers; electronic test equipment; flexible electric cables; heat conductors; consumer products such as safety valves, eyeglass frames and cellular telephone antennae; and many other devices and apparatus in which large recoverable distortions of a component or components can be advantageous.
Description Of The Preferred Embodiments
In its broadest concept, the present invention provides devices and apparatus having a component made of a single crystal SMA material which has the property of enabling a repeatable strain recovery of as much as 24 percent.
Because the range of strain recovery is so far beyond the maximum strain recovery of both conventional polycrystalline SMA materials and non-SMA metals and alloys, such repeatable strain recovery property of single crystal SMA is referred to herein as hyperelastic. Further, materials exhibiting hyperelastic properties are referred to herein as hyperelastic materials. Also as used herein, the phrase large recoverable distortion means the magnitude of repeatable strain recovery described above for a hyperelastic material.
Within the past two decades, SMA materials have become popular for use as actuators due to their ability to generate substantial stress during shape recovery of large strains during temperature-induced phase transformation. The energy density of such actuators is high compared to other alternatives, suchuasi-electronaagnetio; «le<jtr,ofi atic, bimetals, piezoelectric, and linear and volume thermal expansion effects of ordinary materials. The operating cycle of an SMA actuator includes deformation during or after cooling, and subsequent heating which results in a temperature-induced phase transformation and recovery of the deformation. SMA actuation is favored where relatively large force and small displacements are required in a device that is small in size and low in mass.
Shape memory is the ability of certain alloys to recover plastic deformation, which is based on a diffusionless solid-solid lattice distortive structural phase transformation. The performance of shape memory alloy based actuators strongly depends on the amount of recoverable deformation. In turn, recoverable deformation itself is a function of the lattice distortions which take place during martensitic phase transformation in the particular SMA. For an individual grain (single crystal) of SMA, the amount of possible recoverable strain after uniaxial loading, depends on the particular crystallographic orientation of the deformation tensor relative to the crystallographic axes of the high temperature (austenite) phase and the sign of applied load (tension or compression).
For a given deformation mode, the recoverable strain is strongly orientation dependent, and for the various crystallographic directions it differs by approximately a factor of two.
The recoverable deformation of these polycrystalline SMA alloys, due to the lattice distortion during diffusionless solid-solid phase transition, is substantially lower than is theoretically possible for a given material. The main reason for this is that for a conglomerate of randomly oriented grains (as is normally the case for polycrystalline materials), the average deformation will always be less than the maximum available value for a given grain. The diffusionless nature of phase transitions in SMA results in strict lattice correspondence between the high temperature (austenite) and low temperature (martensite) lattices. As the symmetry of the martensite lattice is lower than that of austenite, maximum deformation in each grain can only be attained in one particular crystallographic direction. This means that for randomly oriented grains (as normally is the case for polycrystalline materials), the average deformation will be at least a factor of two less than the maximum.
The restrictions imposed on a polycrystalline body by the deformation mechanism is another reason for diminished recoverable deformation in polycrystals as compared with a single crystal. To maintain integrity of the polycrystal, deformation of each particular grain has to be less than that corresponding to the theoretical limit for lattice distortion.
Therefore, for polycrystalline material, resultant recovery is the vector sum of particular grain deformations over the whole range of grain orientations, and is significantly smaller than the maximum value for an individual single crystalline grain.
By comparison, recoverable deformation close to the theoretical value (lattice distortion) can be achieved in single crystalline SMA. In addition to the substantially increased recoverable deformation, absence of grain boundaries results in increased strength and longer fatigue life. Specifically, as a single crystal, the strength of the grain for CuAINi SMA can be as high as 800 MPa with the potential limit for recoverable deformation up to 9 percent and even higher for special deformation modes. An additional advantage of a single crystal SMA is that not only the thermally induced phase transformation may contribute to the recoverable deformation, as in the case for polycrystals, but also the stress-induced martensite-to-martensite phase transitions. Depending on the material, this additional contribution may be up to 15 percanfe ifte total t'heoii 'al recovery can be as high as 24 percent.
The graphs of Fig. 1A and IB show the stress-strain curves for a CuAINi single crystal SMA of the invention as well for a prior art polycrystal TiNi SMA. Solid line curve 20 shows the single crystal SMA in its austenitic phase while curve 22 shows the martensitic phase. Solid line curve 24 shows the polycrystal SMA in its austenitic phase while curve 26 shows the martensitic phase. The graphs show the comparisons between the two SMAs as explained in the following.
The advantages of single crystal SMA over polycrystal SMA for mechanical devices include: 1. Greater than 9 percent strain recovery. In Fig. 1A the region 28 of curve 22 for the austenitic phase of the single hyperelastic SMA shows the magnitude of its strain recovery in comparison to the comparable region 30 of curve 26 for an austenitic polycrystal SMA. There is a three-fold gain in performance over the conventional SMA materials made from bulk materials, such as TiNi. Depending on how the sample is used, the greater than 9 percent recovery can either be used in the high temperature state (when in austenite phase) as a hyperelastic spring, for example, or deformed 9 percent (when in martensite phase) and then heated to recovery as an actuator. 2. True constant force deflection. Unlike polycrystalline materials which reach their strain/stress plateau strength in a gradual fashion and maintain an upward slope when deformed further, hyperelastic SMA materials have a very sharp and clear plateau strain /stress that provides a truly flat spring rate when deformed up to 9 percent. This is shown in Fig. IB by the region 32 of curve 20. The stress level at which the plateau occurs depends on the temperature difference between the transformation temperature and the loading temperature. Additio ally, 'sVi'gle cr^sta 'SMAs exhibiting hyperelasticity benefit from a second stress plateau which can increase the total recoverable strain to 22 percent. 3. Very narrow loading-unloading hysteresis. As a result there is substantially the same constant force spring rate during both loading (increasing stress) and unloading (decreasing stress). This is shown in Fig. IB by the narrow vertical spacing 34 between the upper portion of curve 20 which represents loading and the lower portion representing unloading. This characteristic is key in applications where the flexure undergoes repeated cycling. In comparison, there is a relatively wide spacing between the corresponding loading and unloading portions of curve 24. 4. Recovery which is 100 percent repeatable and complete. One of the drawbacks of polycrystalline SMA materials has always been the "settling" that occurs as the material is cycled back and forth. This is shown in Fig. IB for curve 24 by the spacing 36 of the curve end representing the beginning of the loading and the curve end representing the end of the unloading. The settling problem has required that the material be either "trained" as part of the manufacturing process, or designed into the application such that the permanent deformation which occurs over the first several cycles does not adversely affect the function of the device. By comparison, hyperelastic SMA materials do not develop such permanent deformations and therefore significantly simplify the design process into various applications. This is shown in Fig. IB where the beginning of curve 20 representing unloading coincides with the end of the curve representing loading.
5. Very low yield strength when martensitic. This property is shown by the horizontal portion 38 of curve 22, which is relatively much lower than the corresponding portion of curve 26. The property is key for designing an SMA actuator which is two way (i.e., it cycles back and forth between two states). This is typically done by incorporating a biasing element, which overcomes the SMA when cold or martensitic, and establishes position one until the SMA is heated and overcomes the biasing element for driving the mechanism to position two. The problem with this type of deviGe-
Figure imgf000011_0001
SMA is that the biasing element robs a significant amount of work output from the SMA. By comparison, an equivalent hyperelastic SMA element has a much lower yield strength when martensitic, enabling a much softer biasing element, and therefore generating a much greater net work output. 6. Ultra-low transition temperature. Hyperelastic SMA materials made from CuAINi can be manufactured with transition temperatures close to absolute zero (-270 Celsius). This compares to SMA materials made from TiNi which have a practical transition temperature limit of -100 Celsius. The advantage from hyperelastic SMA is its use in various cryogenic applications such as those aboard spacecraft which require cooling of certain instruments and sensors to very cold temperatures. In this case a hyperelastic SMA actuator can be used as a valve to control flow of the cooling medium. 7. Intrinsic hyperelastic property. TiNi SMA can be conditioned, through a combination of alloying, heat treatment and cold working, to have superelastic properties. Single crystal CuAINi SMA has intrinsic hyperelastic properties: a crystal of CuAINi is hyperelastic immediately after being formed (pulled and quenched) with no further processing required.
Method of fabricating single crystal SMA
Since single crystals cannot be processed by conventional hot or cold mechanical formation without breaking single crystallinity, a special procedure is required for shaping single crystals in the process of growth as the crystal is pulled from melt, resulting in finished shape.
Single crystal SMA is made in a special crystal-pulling apparatus. A seed of the desired alloy is lowered into a crucible containing a melted ingot of the alloy composition, and gradually drawn up. Surface tension pulls the melted metal along with the seed. The rising column cools as it leaves the surface of the melt. The rate of drawing is controlled to correspond with the rate of cooling so that a solid crystal is formed at a region that beco&fdfe. al crystallization iftfonC This front remains stationary while the crystal, liquid below and solid above, travels through it. The top surface of the melt can contain a die (of the desired cross-sectional shape) that forms the shape of the crystal as it grows. This procedure generally is known as the Stepanov method of making single crystals.
From the known Cu-Al phase diagram, rapid cooling (quenching) of the drawn crystal is necessary for production of single crystal beta phase that has the desired hyperelastic properties. Starting with beta phase at 850-1000 Celsius, if the alloy is cooled slowly the beta phase precipitates as beta + gamma, and at lower temperatures, as alpha + gamma-2. Single crystal beta phase, which requires that Al remains in solution at room temperature, is formed by rapid cooling in salt water from 850 Celsius. At elevated temperatures, above 300 Celsius, some decomposition gradually occurs; in fact, beta phase is not entirely stable at room temperatures but the time constant for decay is many years. The known phase diagram for the ternary CuAINi alloy has similar characteristics.
General Description Of Device Applications Embodying The Invention
The various device applications contemplated by the invention with hyperelastic single crystal SMA are constrained by the intrinsic properties of the material, and by its behavior during forming and machining and other secondary manufacturing processes. For example, it has been shown that exposure to high temperature and/or stress can lead to recrystallization and the formation of unwanted crystals. The known forming and machining processes which are successful include lathe machining, electro-discharge machining (EDM), grinding, laser cutting, electro-polishing, and the like. These processes can be used to manufacture many basic shapes of the hyperelastic SMA, including rods, ribbons, flexures, coil springs, leaf springs, serrated tubes, tubes, pins and bi-stable elements.
Single crystal shape memory materials have significantly smaller thermal and mechanical hysteresis than polycrystalline materials. This is advantageous since less energy is absorbed in the material on each cycle, less heating occurs and more of the energy is recovered during the shape recovery.
Single crystal SMA hyperelastic components of mechanical devices generally provide a significant advantage over other device components currently available because they enable large displacement at constant force. For example, aerospace applications include actuators which may be used as motors to gently deploy spacecraft components such as booms, antennae and solar panels. Other aerospace applications include usage as constant force springs, flexures or connectors that need to accommodate very severe deformation but which spring back once the constraint is removed.
Commercial applications for hyperelastic SMA components are similarly of wide scope. They may be employed as a significantly improved replacement actuator or flexure over prior art SMA actuator applications. These applications include thermostatic valves, tools and instruments used in medicine, and other applications such as eyeglass frames and cellular telephone antennae.
The invention contemplates the following device applications having hyperelastic SMA components:
• Aerospace and Military: As an actuator for active deployment of a host of devices including booms, antennae and solar panels. • As a flexure or constant force spring used for passive movement of cover doors or hinges. • As a connector where it is necessary to accommodate significant motion of adjacent parts. For example, heat pipes aboard spacecraft require such connectors to carry heating/cooling capability across a hinge to a dejjplqyafole-: • As a damper used to absorb or mitigate energy coming from nearby pyrotechnic release devices. • As a valve for a broad range of temperatures including cryogenic. Such valves have applications aboard missiles and satellites that carry sophisticated instruments such as sensors or cameras that need to be cryogenically cooled. • As an actuator in arming and safing ordnance. • As a substrate or support member for a surface or component which needs to accommodate large motion including applications on optical assemblies which require support and actuation (movement). • As a non-explosive separation device of smaller size than such bolts that are prior art.
• As a flexible heat conductor or heat sink.
• Medical: - For making catheter guidewires that are significantly more flexible than those currently made from stainless steel or polycrystal SMA. The CuAINi alloy has no detectable cytotoxicity effect on the human body, and thus is compatible for use in a non-imp lantable function such as a catheter. - In laproscopic instruments where it is necessary to make tools which can tolerate large distortions. - In implants such as stents where the material can be made bio compatible by coating with Au.
• Automotive: As an actuator for releasing door locks, moving mirrors and for driving fuel injector valves.
• Computers - In micro-connectors and switches where large displacement capability allows for more reliable assembly, and for the fabrication of smaller parts. - Flexible cables for print-heads and the like.
• Commercial: - As rings made for use as metallic connectors to secure braid in cabling applications. - Use in switches, relays, circuit breakers and electronic test equipment. • Consumer Products For use in safety valves, eye glass frames and automobile and cellular telephone antennae.
Embodiments Providing Equipment With Hyperelastic Components The present embodiment provides the use of hyperelastic SMA in applications such as equipment for sports and other activities. • CuAINi single crystal material stores an enormous amount of mechanical energy when it is deformed, and then releases the energy when the deforming force is removed. Unlike normally elastic material however the energy is stored and released at nearly constant force. These characteristics make this material desirable for use in equipment for use in a variety of sports and other activities including: • Bicycle wheel spokes equipped with a hyperelastic part to eliminate transmission to the hands of shocks due to small bumps in the road. • Running shoes and basketball shoes can contain a hyperelastic cushion that will reduce fatigue and enable the player to jump higher. • Skis that have a degree of hyperelastic behavior can reduce the shock of bumpy or irregular snow conditions and thereby improve control and provide a more comfortable, stable platform. • A warfighter may wear a form of 'exoskeleton' that enables a human to jump higher or survive descending from a higher distance than normal. The capacity for storage of mechanical energy is as much as 3 Joules gram of CuAINi, and the majority of the energy is stored or released at a constant force resulting in constant acceleration. A parachutist, for example, wearing special boots containing a few hundred grams of CuAINi would be protected from injury resulting from hitting the ground at a higher than usual speed.
Many of the above benefits will be most advantageous to amateurs, occasional athletes, and elderly people whose flexibility is impaired. Snap-Through Hinge /Flexure Embodiments The following embodiments provide devices such as hinges or flexures made of hyperelastic SMA that allow constrained relative motion without sliding or rotating components. These are used in space vehicles to provide lightweight structures such as booms that must be folded for launch into space. Similar flexures can also be used to replace prior art eyewear hinges.
These embodiments incorporate single-crystal hyperelastic materials into devices resembling tape-hinges resulting in superior load-carrying capability.
For spacecraft applications, the hinges /flexures must bend through an arc of 180 degrees to be useful in folding structures such as booms that are stored during launch in a minimal volume. Minimum size of the folded structure is achieved when the flexures bend through a minimal radius. In prior art implementations, flexures were made of thin steel curved tape. Steel in thin tape form does not provide optimum rigidity and strength for a functioning boom. This invention uses hyperelastic SMA in flexures capable of repeated recoverable large deformations to minimize size, maximize strength, and provide good vibration damping characteristics.
Among the design considerations for flexure design are that compression rigidity and resistance to buckling of the flexures should be consistent with that of the other components of the structure. These considerations set specifications for the flexure: length, thickness, width, curvature. This leads in turn to a design for a sliding die-mold for making the hyperelastic components.
In this embodiment, a tape hinge or flexure is formed by making a portion of a thin-walled cylinder and fixing it to rigid members or struts at the ends. A principal feature of the invention is a "snap-through" action that resists bending because of its cylindrical symmetry which is very rigid for its mass, but when an applied force causes the flexure to buckle, it bends through a large angle with a smaller force. After buckling there is little restoring force because of its shape, that is, bending through a severe bending angle at a small radius of bend is possible because of the hyperelastic quality of the flexure. The flexure returns to its straight cylindrical rigid shape with a snap action because rigidity increases rapidly as the flexure assumes its cylindrical shell shape.
Performance of these devices, and their applicability, can be enhanced by increasing the recoverable strain, enlarging the stress tolerance, and extending the hyperelastic temperature range of the SMA materials. The method of deformation in tape-hinges results in non-uniform strain.
As the bending torque/moment is applied, the edge of the tape element is under tension, resulting in strain. After buckling occurs, this strain remains, and a bending moment is applied such that the inner surface is under compression and the outer surface is under tensile stress, with a neutral axis near the center of the cross-section.
Incorporating the SMA hyperelastic technology into a design in which all mechanical elements are in pure tension or pure compression, it becomes possible to build a structure that is very light, has a high packing factor for stowage, has a minimum of moving parts, and is very rigid for its weight. It is also possible to make it highly damped against vibrations. Hyperelastic alloys allow construction of structures that are strong against buckling while attaining a sharp radius of bend for compact folding.
It is desirable to make hinges that have no rotating or sliding parts. These devices can be used in spacecraft. One known form of hinge is a . carpen r . .,. . ,, en ing an elongate element having a thickness much smaller than the width and having a curved cross-section. Such an element has a 'snap-action'. These hinges when made of steel or materials with ordinary elasticity are restricted to a small thickness in order to control the degree of strain within the elastic limit of the material. Limiting the strain to elastic deformation limits the rigidity that can be achieved with BeCu and steel tape-spring hinges. Thus such prior art hinges are limited to relatively light loads, and Structures incorporating such hinges are not as rigid as is desired.
A material having greatly increased elasticity will enable the fabrication of 'carpenter's tape' hinges with increased load-carrying capacity. One such material is hyperelastic single-crystal copper aluminum nickel in accordance with the present invention. This embodiment provides a significant improvement in the performance of tape hinges by exploiting the properties of hyperelastic shape memory phase change material.
A material having greatly increased elasticity will enable the fabrication of 'carpenter's tape' hinges with increased load-carrying capacity.
Figs. 2A, 2B and 2C illustrate different operational positions of a snap-through hinge or flexure 40 in accordance with one embodiment of the invention shown in Fig. 3. The flexure is comprised of a hollow tube of hyperelastic SMA. Between first and second flexure ends 44 and 46, the tube on one side is partially cut away to provide a weakened portion 42 that is in the shape of a circular segment in cross section.
As shown in Fig. 3, weakened portion 42 causes the flexure to undergo a snap-action or buckling action when its two ends are pivoted to a certain relative position (such as shown in Fig. 2B) between the stowed position with the shape of Fig. 2A and the deployed position with the shape of Fig. 2C The Fig. 2B position is at the buckling point. The pivoting is initiated by a certain applied force until the buckling point is reached. Then mechanical energy stored in the flexure is released to continue the bending until the fully deployed position is reached. The full range of movement between the two positions is through an angle of 180 degrees or more.
Flexure 40 is adapted for use in coupling together components of the extendible boom segment 48 of Figs. 3 and 4. Boom segment 48 has applications for use in spacecraft, such as for deploying payloads, positioning solar panels and the like. The boom segment comprises a pair of rigid frames 50, 52, each of which is comprised of four rigid side struts 54, 56 connected together at their ends to form a rectangular or square frame configuration. The four respective corners of the two frames are interconnected by four sets of paired longitudinal rigid struts 58, 60. When in the stowed position of Fig. 3 the longitudinal struts lay in planes that are parallel to the planes in which the frames lie. When in the deployed position of Fig. 4 each pair of longitudinal struts are coaxial and extend orthogonal with the planes of the frames. In the deployed position brace wires 62, 62 can be fitted diagonally between opposite corners of the squares or rectangles formed between the two frames.
A plurality (shown as eight for the two frames) of flexures 40a, couple together the outer ends of each pair of struts to respective corners of the two frames. One end of each such flexure is secured to the frame corner while the other end of that flexure is secured to the respective end of a strut. A plurality (shown as four for the two frames) of flexures 40d, couple together the inner ends of the strut pairs.
The flexures are operated toward their deployed positions by suitable actuators, not shown. For deployment, the actuators could be operated to move. e pHtr<μ3 S,. ,.
Figure imgf000020_0001
a is ance sutticient to pivotally move the opposite ends of each flexure through arcs that cause the flexure to buckle and snap-through to the full 180 degrees arc of travel, which then becomes a stable position. A plurality of the boom segments could be mounted together in stacked relationship to form a boom structure that can deploy out to a longer overall length, as desired.
The snap-through hinge or flexure 40 offers additional stiffness when in the deployed position. In the prior art, hinge/flexure devices have been manufactured from materials such as Stainless Steel or Beryllium Copper. However, such devices aboard space applications have been limited to smaller deployables primarily because they lack the stiffness necessary to support larger structures. This is due to the very limited strain (<0.3 percent elastic) which these materials can endure. Therefore to achieve the necessary 180 degree fold for compact stowage, they must be made ultra thin reducing their axial stiffness. By comparison, the much greater strain recovery capability of hyperelastic SMA components allows flexures as in the present invention to be made on the order of 30 times thicker, providing an order of magnitude increase in axial rigidity.
Combining novel boom architecture with hyperelastic SMA enables implementation of ultralight, compact structures such as booms for use in space deployment of solar sails, large-aperture antennas, and optical instruments. These booms will have the advantages of light weight, minimal moving parts, and reduced stored mechanical energy compared to other folding structure designs.
Advantages and disadvantages of the hyperelastic tape hinge flexure/boom device embodiments of the invention include: • There are fewer moving parts. The flexure has only one part: it deploys by unfolding without sliding or rotating parts. • The boom can be scaled from a few cm to many meters in length. It has a potentially high packing Factor ; a large boom can be stowed in a small volume. Its deployed length to stowed length ratio may be 50 to one or higher. • Light weight. Since all elements are in pure tension or pure compression, it will be possible to optimize the elements for a particular design to minimize weight. β The boom contains no sliding or rotating parts. There is less opportunity for stiction to present a problem as may happen with age in a mechanism such as a hinge with a pin. • Each boom segment is readily re-stowable on the ground to permit testing. The segment could be made remotely re-stowable.
Hyperelastic Guidewire Embodiments Guidewires are used to enable insertion of catheters into blood vessels and many other medical procedures. A guidewire is inserted ahead of the tip of the catheter, and then the catheter is advanced thought the blood vessel guided by the wire. The principal characteristics of guidewires are flexibility to permit following the contour of tortuous lumens, and resistance to kinking.
The best prior art guidewires in current use are superelastic wires made of polycrystalline SMA, principally TiNi. The superelastic property of TiNi limits the forces exerted by the wire against the blood vessel tissue while the wire bends as it follows curvatures of the lumen. TiNi superelastic guidewires are less susceptible to kinking than stainless steel wires, and they have good "torque-ability7', that is they can be turned (twisted) along their long axis without objectionable flexing.
Single-crystal wires of CuAINi SMA exhibit hyperelasticity compared to prior art shape memory wires, and the shape recovery is total rather than partial, as shown in Fig. 1. These properties are exploited to produce guidewires that can access blood vessels that are so tortuous as to be inaccessible rmearfy inaccessible' t prior art guidewires.
Method of forming hyperelastic SMA wires Rods of CuAINi are formed by pulling them from a melted ingot by the Stepanov method. The composition of the ingot from which the wire is drawn can be adjusted, thereby lowering its transformation temperature, and making the wire stiffer. The composition of the ingot is made such that at human body temperature of 37 Celsius, the CuAINi material is hyperelastic
The rod is subsequently re-heated and quenched by rapid cooling to retain the nickel and aluminum dissolved in the copper matrix. The rod is heated in an air furnace and dropped into a salt-water bath. Salt water is used for the quenching bath because fewer bubbles are formed and the resulting temperature drop is more rapid.
CuAINi single crystal material cannot be plastically deformed to reduced diameter, so after quenching the rod is centerless ground and otherwise processed by abrasive machining to achieve the desired size and shape. The rod may be processed by conventional machining so long as the surface stresses are not so great as to cause multiple large crystals to form at the surface. Micro- or nano-crystals may be removed by abrasion and polishing, including electro-polishing.
The rod may also be processed by EDM. After EDM, the surface should be abraded to remove the re-deposited material and micro- or nano-crystals that may have formed. Otherwise these may act as a source for crack initiation. Single crystal CuAINi is notch and crack sensitive, making it appear brittle if the surface is not smooth.
Wires of single crystal CuAINi SMA can be deformed more than TiNi wires an gtiii. ecovQξ-aJi i, or e e w arfion wit out amage w en t e restraining force is removed. Increased flexibility enables a CuAINi wire to bend through a smaller radius without becoming permanently deformed. Hence CuAINi SMA guidewires are superior to those made of polycrystalline SMAs such as Nitinol.
In hyperelastic SMA wires stiffness is not isotropic. For example, a wire can be elongated in the <100> direction much more easily and to a larger strain than in the <110> direction. This is used to advantage for making guidewires that are very flexible but have good 'torque-ability'.
Stiffness can be tuned from wire to wire. Two wires of the same diameter may be designed to have different stiffness through minor adjustments in the composition.
Stiffness can also be tuned along the length of a wire by two methods. First, differing composition can be accomplished, as an ingot of a given composition can be used as a seed for pulling a second ingot as a continuous single crystal of slightly different composition having increased or diminished stiffness. Second, the fraction of aluminum that remains in solution depends on the temperature to which the material is heated before quenching. In that case, a heater is provided to heat one end of the wire to a slightly higher temperature than the other so that when the wire is quenched by rapid submersion in salt water the cooler end has less dissolved aluminum and nickel.
Description of a guidewire embodiment
Fig. 5 illustrates an embodiment of the invention, which comprises a hyperelastic guidewire 64 of single crystal SMA. The guidewire is shown with its distal end protruding from the forward end of a catheter 66, although the invention contemplates use of a hyperelastic guidewire in other procedures within the human body. The guidewire is formed with a thickness in the range 0.012 to 0.039 inches, and preferably 0.018 and 0.038 inches. The guidewire can have different lengths depending on the application. The preferred length is in the range of 42 and 100 inches.
The hyperelastic SMA guidewire can be fabricated with a non-elastic segment, such as the tip. This is accomplished by making the segment of single crystal SMA having a transition temperature above body temperature of 37°C. The material in this segment is then martensitic, is easily deformed, and remains deformed after being deformed. Deformation can be removed by heating to above the transformation temperature while the object is at zero external stress so that the wire can be inserted into a lumen. At the desired position within the lumen, the segment is then heated by suitable means above the transition temperature so that the tip reverts to its memory shape with the specific curve or turn and in which the tip segment remains non-elastic as long as it is above the transition temperature.
CuAINi can also be combined with other materials to make composite materials with specific properties. CuAINi single crystal can be pulled from melt as a cylinder or tube. Adding lubricants can increase tube lubricity. The single crystal CuAINi wires can be coated with polymers or with metals. Such coatings can be used for providing increased biocompatibility.
Single Crystal SMA guidewire advantages
The advantages of the guidewires of the invention include their suitability for use in minimally invasive surgery, especially intravascular procedures. The guidewires have increased flexibility compared with conventional materials used in such procedures. The guidewires enable surgeons of ordinary skill to perform certain specific procedures that currently require n ighl uskil ei -spedji listSfiiThe guidewires of these embodiments can save time in the operating room. The guidewires have the ability to be more versatile than ordinary prior art guidewires, in particular enabling the surgeon to use the same guidewire both for entering a tortuous lumen and for deployment of a balloon or other appliance.
Probe Tip Embodiments Microelectronics circuits, fabricated on silicon dies, are becoming smaller, more complex, and faster. Each of these characteristics raises problems with manufacture.
The microelectronics industry faces two principal problems: extreme miniaturization and high data transfer rates, which manifests itself as High frequencies. The time may be approaching when microelectronics circuits on chips can be manufactured but cannot be adequately tested during manufacture.
Smaller chips mean that spacing between contact pads becomes smaller. Typical pitch of bonding pads ('bumps') is now smaller than 0.5 mm. Recommended contact force is in the tens of grams.
Increasing complexity brings with it a need for increased testing during manufacture. Wafers, dies, and die modules are tested before installation of a component in a system. This increased testing is expensive: up to 60 percent of manufacturing cost. And increased handling can lead to damage of the die unless the contacts are carefully probed. Each test runs some risk of damage to the die, so that methods that minimize damage are desirable to optimize yield.
Microprocessors now operate at multiple gigahertz rates. At such high frequencies, radiation from exposed conductors as short as a few millimeters is significant, leading to cross talk between connectors and loss of signal strength. A
Figure imgf000026_0001
shielding leads, analogous to coaxial cable, would ameliorate this source of testin Όg failure.
A solution to these problems is constrained by requirements of manufacturing:
Every new tool should be backwards compatible so that new equipment can be integrated with existing equipment and methods.
Methods should not damage pads.
Contact should have 'wipe' to remove oxide and make low-ohmic contact.
Contact force should be adequate for low-ohmic contact: tens of grams.
Compliance is needed to compensate for tolerances in pad height and misalignment of dies in fixturing.
Variation in height of 'bumps' is of the order of 0.0001 to 0.001 inches. 2.5 to 25 micrometers)
A method of contact that is reversible (that is, a temporary contact in the sense that it can be un-made) would solve many problems. Soldered contacts are not easily reversed, and damage is likely. Differential thermal expansion of silicon dies and ball grid arrays means that re-flowed solder is deformed repeatedly throughout the lifetime as the chip is heated and cooled. Solder hardens and crystallizes with time, and becomes brittle. When it fractures, malfunctions (especially intermittent problems) occur.
The present embodiment provides means of establishing temporary low-resistance ''electrical connections1 with greatly increased compliance and uniform contacting force. For this purpose an alloy with high electrical conductivity and hyperelasticity is used: single crystal' copper-aluminum-nickel SMA. Such an alloy constitutes an enabling technology for surmounting the problems of electrical connectors in microelectronics manufacture and testing.
Single crystal CuAINi may be deformed (strained) more than 9 percent, and recovery is complete. After a linear elastic region, the typical stress-strain isothermal curve for hyperelastic CuAINi is a plateau.
Recovery produces a second plateau. Hysteresis is minimal. Fatigue lifetime is many millions of cycles. Component materials are inexpensive, and low cost may be achieved in mass manufacture. Electrical resistivity is low.
Among the advantages that electrical contacts made from hyperelastic CuAINi provide over existing tungsten and molybdenum needles are: • Hyperelastic contacts that produce the same force regardless of displacement means that the total force for a specific number of contacts is constant and predictable. • Good electrical conductance (low resistivity) means less loss of power and less generation of heat. • Enablement of systems for reversible electrical contact directly to the bare die or bumps on the bare die. Such a system would enable multi-chip modules to be reversibly assembled, and if one chip in a module fails, it may be replaced rather than discard the entire module or attempt to un-solder it for repair. • The potential to provide small, low-ohmic, reversible, minimally-damaging, constant-force electrical contactors for die testing and for assembly of die modules. • Electrical contactors made of single-crystal CuAINi are capable of large strain; their mode of deformation is hyperelastic; repeated large strains are completely recovered with no fatigue. Method of fabricating single-crystal CuAINi probe tips. Single crystal rods of CuAINi are pulled from melted ingot by the Stepanov method, then heated and quenched to lock in the dissolved aluminum.
From the phase diagram for Cu-Al it may be seen that quenching is necessary to retain dissolved Al. When the alloy is cooled slowly the beta phase precipitates as beta + gamma, and at lower temperatures, as alpha + gamma-2. Beta phase has desirable hyperelastic qualities. A similar phase diagram applies to the ternary CuAINi system.
Individual needles of CuAINi are cut from rods and formed to shape by conventional methods of machining, including electrical discharge machining and sawing (dicing). After machining operations the individual components are smoothed to remove surface micro-cracks and nano-crystals that are formed on the surface by heat and/or stress. Smoothing may be done by abrasives or by electropoUshing.
Description of probe tip embodiment
Figs. 6 and 7 illustrate certain of the steps in fabricating a plurality of probe tips 70, 72 in accordance with the invention. A round single crystal boule 5mm-10 mm diameter is pulled from CuAINi melt. The boule is heated to 900 Celsius and quenched in salt water. A thin rectangular parallelepiped slice 74 (0.01 to 0.1 mm thick, 2 to 10 mm wide, and 8 to
15 mm long) is cut from the boule by the EDM process. At the same time, a plurality (shown as six) of spaced-apart slots 76, 78 are cut at one end of the slice to define seven cantilevers, 70, 72 between the slots.
The slice is cut to have the shape of Fig. 6 along the <100> direction of the crystal. As the slots are formed a wedge shaped feature or point
77 is formed on the end of each cantilever to define a row of sharp points. The slots are cut very narrow parallel to the <100> direction. The
Figure imgf000029_0001
and spaced apart a distance of 0.1 to 0.5 mm. Narrow slots, not shown, are formed as extensions from slots 76, 78 to mechanically separate and electrically isolate the individual cantilevers.
The assembly comprising the cantilevers on slice 74 is then affixed to a PC board, not shown, carrying traces that make electrical contacts with the cantilevers.
Large Displacement Spring Embodiment The present embodiment comprises a spring, shown at 80 in Fig. 8, of the well-known Belleville washer configuration and which is comprised of a hyperelastic CuAINi SMA material.
Belleville washers are used in applications that require storage of a large amount of energy in a small volume. Materials used for Belleville washers include steel, beryllium copper, and stainless steel.
Fig. 9 illustrates the force-displacement curve for a Belleville spring made of hardened stainless steel. This type of spring is very stiff unless it is extremely thin, and the stroke is necessarily small or the steel becomes overstrained. Use of hyperelastic SMA enables -a much larger stroke.
The present embodiment of a Belleville washer configuration formed of hyperelastic CuAINi SMA provides for springs with extremely different characteristics from those made of ordinary materials. The shape of the force-displacement curve for materials with ordinary elasticity is dictated by the Young's modulus E which, for normally elastic elements, is constant. In the case of hyperelastic materials, E is constant up to the 'knee' of the stress-strain curve, beyond which point the force is nearly constant as the stress-strain curve becomes a plateau: Young's modulus E becomes a dependent variable. In the case of a Belleville spring the stress varies along a radius, so the point at which E changes depends on position. This non-linear behavior of a hyperelastic alloy makes calculation or simulation of behavior by calculation difficult and unproductive. Instead, devices are fabricated and force versus distance characteristics are measured in trial and error fashion.
Bistable Element Embodiments Bistable elements such as buckling beams and Belleville washers made from Hyperelastic SMA have improved characteristics compared to bistable elements fabricated from ordinary materials such as steel and beryllium copper. In particular, the sidewise displacement of a buckling beam of specific dimensions can be an order of magnitude larger than that of a beam of material with ordinary elasticity, and the force needed to change the state of a bistable buckling beam is much less. This permits their use in miniature switches and valves.
A buckling element uses material in pure compressive stress or in bending which is a combination of compression and tension. Hyperelastic CuAINi has different characteristics in compression than in tension. This enables designs that are not feasible with normal materials. Because the modulus for compression is higher than the modulus for tensile stress the neutral axis does not correspond to the geometrical center of a bending beam.
Embodiments Providing Probes and Pins
Figs. 10A and 10B show an embodiment comprising a device 82 for use as a probe, such as for medical use in the human body, or as a pin for releasably securing things together, or as a needle. Device 82 is comprised of a proximal end 84, which can be a handle or catheter, and a distal end 86 formed with a pointed tip 88. The distal end is formed of a hyperelastic
CuAINi SMA. Fig. 10A shows the distal end in its low temperature martensite state, while Fig. 10B shows the distal end it its high temperature aus enite ..state, wαic is. its memory snape. m me u&ιraτeu ciιιu uι. ιιt LL i memory shape is in the form of a hook. The use of hyperelastic CuAINi SMA in place of other materials such as superelastic TiNi SMA provides advantages comprising allowing for more severe bending of the distal end, and greater resistance to breakage or other failures.
Embodiment Providing Spring Actuator Figs. 11A and 11B show an embodiment comprising a compression coil spring 85, which can be used as an actuator. Spring 85 is formed of a hyperelastic SMA. Fig. HA shows the spring in its low temperature martensite state. Fig. 11B shows the distal end it its high temperature austenite state, which is its "memory" shape. In the illustrated embodiment the memory shape is where the coils axially expand to apply a force, such as to throw a switch or the like. Other hyperelastic SMA spring configurations, such as those which apply tension or which apply torsion when in their memory shapes, are within the scope of the invention.
Embodiment Providing Bendable Heat Pipe
Figs. 12A and 12B show an embodiment comprising a heat pipe 87. The heat pipe is formed of a hyperelastic single CuAINi SMA. With the pipe formed of this material, it can tolerate severe bending without failure. It is shown adapted for use on a spacecraft having a deployable 89 (only a part of which is shown) which is pivotally connected by a hinge 91 with a structure or frame 90. A gas or liquid is directed by the pipe across the hinge line, such as for use on the deployable. The hyperelastic properties enable bending of the pipe through a wide arc of travel, shown as 180 degrees. Fig. 12A shows the pipe in a bent shape with the deployable stowed. Fig. 12B shows the pipe bent to a straight shape after the deployable is pivoted out into its deploj^ed position. Embodiήrent PVbvidlng'Flextires Fot Electrical Switches Figs. 13A and 13B show an embodiment comprising a pair of hyperelastic flexures 92, 94, such as for use in a small size electrical switch having a moving contact 96 for opening and closing a circuit. Each flexure is formed of a hyperelastic CuAINi SMA. The hyperelastic properties enable the flexures and contact to be very small while allowing the flexures to easily yield by bending upon upward movement of the contact. This allows the switch to be more forgiving (and therefore more reliable in its operation) of any variations in switch part dimensions due to manufacturing tolerances. Fig. 13A shows the parts before the flexures are touched by the contact so that the circuit is open. Fig. 13B shows the flexures after being touched by and yieldably bent by the contact to close the circuit.
Embodiment Providing Leaf Spring
Figs. 14A and 14B show an embodiment comprising a leaf spring 98. The spring is formed of a hyperelastic SMA. The hyperelastic properties enable extreme bending of the spring. As a result, the spring is optimum for use in aerospace applications where size and mass must be minimized. Fig. 14A shows the spring before bending. Fig. 14B shows the spring after being bent through a wide arc, illustrated as 180 degrees.
The constant force plateau of stress resulting from the hyperelastic properties also provides significant advantages in giving the spring an inherent "snap-action" feature. Further, the hyperelastic properties minimize the total energy stored when fully bent (i.e. strained up to its failure point).
Embodiment Providing Plunger Actuator
Figs. 15A and 15B show an embodiment comprising a plunger type actuator 100. The actuator is comprised of a main spring 102, shown as a coil spring although it could be in other configurations, mounted coaxially within a cylindrical shell housing 104. Spring 102 is formed of a hyperelastic SMA. A plunger 106 is slidably mounted within the housing so that elongation of the main spring drives the plunger's distal end 108 out through the end of the housing. A bias coil spring 110 is mounted within the housing on a side of the plunger opposite the main spring.
Fig. 15A shows the actuator with its components in standby mode before actuation. In this mode main spring 102 is in its low temperature martensite crystal phase with a strength which is sufficiently low to enable the bias spring to drive against and hold the main spring in its standby mode. Fig. 15B shows the spring after actuation by being heated by a suitable heater (not shown) above the SMA s phase transition temperature. The SMA then reverts to its austenite phase so that the main spring elongates to its memory shape and thereby forcefully acts against and moves the plunger out while also compressing the bias spring.
Embodiment Providing Collapsible Tube
Figs. 16 A, 16B and 16C show an embodiment comprising a collapsible tube 112, such as for use in various medical applications including stents. The tube is shown for use as an intravascular medical device that has a catheter 114 which carries the tube to the desired place in a human body. The tube is comprised of a cross mesh or web of strands that are formed of a hyperelastic SMA. The cross mesh allows the tube to be easily deformed and collapsed into a size which is sufficiently small to fit within the catheter, as shown in Fig. 16 A. Upon being released from the constraining catheter the mesh begins to expand as the strands deform out toward their memory shapes, as at 112 in Fig. 16B. Fig. 16C shows the mesh after emerging fully expanded from the end of the catheter as at 112 upon placement in the patient's vasculature. The bιyp,erelastic„p.røperties„o,f„.tlie .mesh strands enable the tube to be collapsed to a much smaller size as compared to prior art catheters, such as those employing superelastic TiNi SMA or other materials.
Embodiment Providing Solid Hinge Figs. 17A and 17B show an embodiment comprising a solid hinge 120 for pivotally moving elements with respect to one another. The term "solid hinge" means that it has no separate elements or parts that move with respect to one another. The hinge 120 is formed of a hyperelastic SMA. One example of the solid hinge's use is as shown in the figures for pivoting a deployable 122 (only a part of which is shown) held on a spacecraft structure 124. Fig. 17A shows the hinge in a bent shape with the deployable stowed. Fig. 17B shows the hinge bent to a flat shape after the deployable is pivoted out into its deployed position.
The hyperelastic properties of the solid hinge enable it to bend through a wider arc of travel, shown as 180 degrees, than would be possible were it to be made of superelastic SMA such as TiNi or other high strength materials.
The hinge has no separate moving parts as in a piano type hinge. This results in low maintenance requirements and greater operating reliability. This is important in deep space flights where the deployable must be held by the hinge in stowed position for many years and then be depended on to properly operate when required.
The solid hinge's hyperelastic properties also enable it to bend back and forth indefinitely without losing its recoverability. The hyperelastic properties also enable the hinge to have a robust thickness, which is sufficient to provide strength for holding heavy loads while the hinge still can easily bend. These requirements of thickness /strength with ease of bending cannot be achieved by solid hinges made of other metals, metal alloys or polymer materials.

Claims

Claims 1: A device comprising a mechanical component, the mechanical component being formed of a hyperelastic material having a crystalline phase change transition temperature.
2. A device as in claim 1 in which the hyperelastic material has an austenite crystalline phase when at a temperature above the phase change transition temperature, the material being in a martensite crystalline phase when at a temperature below the phase change transition temperature.
3. A device as in claim 1 in which the hyperelastic material has an austenite crystalline phase when below the material's phase change transition stress level, the material being in a martensite crystalline phase when at a mechanical stress above the material's phase change transition stress level.
4. A device as in claim 1 in which the hyperelastic material is a single crystal of CuAINi alloy.
5. A device as in claim 4 in which the hyperelastic material is CuAINi alloy and its crystallographic direction <100> of the crystal is aligned with the longitudinal axis of the guidewire.
6. A device as in claim 1 in which the hyperelastic material comprises copper, aluminum, and a metal selected from the group consisting of Ni, Fe, Co, and Mn.
7. A device as in claim 1 for use in medical procedures on a body of a human or other animal, the mechanical component comprises a guidewire which is sized for insertion into the body.
8. A device as in claim 7" ΪM wh-icjh the metallic components of the alloy are sufficiently proportioned to provide properties of flexibility and torqueability enabling optimum movement of the guidewire through the body.
9. A device as in claim 7 and further comprising a biocompatible coating formed about the guidewire, the coating being comprised of a material selected from the group consisting of gold, a biocompatible plastic, and a biocompatible polymer.
10. A device as in claim 7 in which the guidewire has one portion comprised of a hyperelastic SMA material having a phase change transition temperature no greater than the temperature of the body whereby the one portion when in the body is heated to the austenite phase and has hyperelastic properties.
11. A device as in claim 7 in which the guidewire has an other portion comprised of a hyperelastic material having a phase change transition temperature greater than the body temperature whereby the other portion when in the body is in a martensite phase and has malleable properties.
12. A device as in claim 7 in which the guidewire has a given diameter, and the hyperelastic material when in the austenite phase has a recoverable distortion sufficient to enable the guidewire responsive to a stress being deformed by bending through an arc as much as 9 percent of the guidewire diameter divided by the arc diameter and further enabling the guidewire when unstressed to recover all of the deformation.
13. A device as in claim 7 in which the guidewire comprises one portion having a given diameter and an other portion, the other portion having a diameter that is less than the given diameter sufficient to enable the other portion responsive to a given stress to flex through a greater degree than when the one portion is flexed responsive to the given stress.
14. A device as in claim 7 in which the guidewire comprises one portion having a given diameter and an other portion, the other portion having a composition different from the first portion sufficient to enable the other portion responsive to a given stress to flex through a greater degree than when the one portion is flexed responsive to the given stress.
15. A device as in claim 7 in which the device further comprises a catheter having a hollow sleeve, and the guidewire is fitted for axial movement within the sleeve.
16. A method of fabricating a single crystal shape memory alloy having hyperelastic properties, the method comprising the steps of: providing a molten melt of a copper aluminum based alloy, pulling a column of the alloy from the melt at a predetermined pulling rate, applying a predetermined hydrostatic pressure on the column and heating the column to a predetermined temperature, the predetermined pulling rate, hydrostatic pressure and temperature being sufficient to crystallize the alloy in the column into a single crystal, and quenching the single crystal.
17. A method as in claim 16 in which the predetermined temperature is at least about 1000 degrees Celsius, and the quenching step is carried out by quenching from about 850 degrees Celsius.
18. A method as in claim 16 in which the compositions of the alloy are substantially 80 percent Cu, 15 percent Al and 5 percent of a metal selected from the group consisting of Ni, Co, Mn, Fe.
19. A method as in claim 16 in which the quenching step is carried out by quenching the alloy in salt water.
20. A method as in claim 16 in which the single crystal shape memory alloy is or use as a gΛΛidawire w me ica proce ures, e s ep o pu ing the column is sufficient to form a length of wire, and grinding the surface of the wire to a diameter in the range of from 0.012 inches to 0.039 inches.
21. A method as in claim 16 in which the grinding step is carried out by centerless grinding of the surface.
22. A method as in claim 20 and further comprising the step of electropolishing the wire to a smoothness of less than 0.0001 inches.
23. A method as in claim 20 and further comprising the step of coating the surface of the wire with a material selected from the group consisting of gold, a biocompatible plastic, and a biocompatible polymer.
24. A method as in claim 20 and further comprising the step of coating the surface of the wire with a lubricant.
25. A method as in claim 20 and further comprising the step of etching a portion of the surface of the wire in a mixture of hydrofluoric acid and nitric acid in amounts which reduce the diameter of the wire sufficient to increase the flexibility of the portion.
26. A method as in claim 16 in which the step of pulling the column is carried out by pulling a hollow cross-sectional elongated shaped column.
27. A method as in claim 20 in which the column has an outer layer comprised of CuAINi polycrystal, and further comprising the step of removing the polycrystal in the outer layer.
28. A device as in claim 1 for use as a flexure in which the mechanical component comprises an elongated strip having an arcuate cross-section lateral of the strip's long axis, the strip having a given width and a thickness which is sufficiently thinner than the given width to enable the strip to buckle transversely of the long axis responsive to a first load while further enabling the strip to have a rigidity which resists the buckling responsive to a second load which is less than the first load.
29. A device as in claim 28 which further comprises a deployable structure, the deployable structure comprising first and second struts, and the flexure interconnects the first and second struts for flexure between a stowed orientation in which the struts are folded toward each other and a deployed orientation in which the struts extend substantially along a common axis.
30. A device as in claim 29 in which the deployable structure comprises a boom.
31. A device as in claim 29 in which the deployable structure comprises an antenna.
32. A device as in claim 29 in which the deployable structure comprises a solar panel.
33. A device as in claim 1 for use as an actuator, the device further comprising a first element, an actuation element which is mounted for movement relative to the first element between a stowed position and a deployed position, a bias element which applies a restoring force urging the actuation element toward the stowed position, and the mechanical component is in the form of a spring which applies a force of a given magnitude urging the actuation element toward the deployed position responsive to the hyperelastic material being in the austenite crystalline phase, and the mechanical component further applying a force less than the restoring force responsive to the hyperelastic material being in the martensite crystalline phase.
34. A device as in claim 1 for use as a combination heat pipe and flexure, the device comprising first and second elements, the mechanical component comprises a tubular joint having a hollow interior for constraining a fluid flow, the joint having a first end connected with the first element and a second end connected with the second element, the elements being pivotal about the axis between a deployed orientation responsive to the hyperelastic material being in the austenite crystalline phase and a stowed orientation responsive to the hyperelastic material being in the martensite crystalline phase, and means for directing the flow of a fluid between the first and second ends of the joint.
35. A device as in claim 1 for use as an electrical switch to open and close a circuit path, the device further comprising a first contact which is connected with the circuit, the mechanical component further comprising a second contact, the second contact being positioned for movement toward a position spaced from the first contact to open the circuit responsive to the hyperelastic material being in the martensite crystalline phase, and the second contact being positioned for movement toward an other position in contact with the first contact to close the circuit responsive to the hyperelastic material being in the austenite crystalline phase.
36. A device as in claim 1 for use in applying a substantially constant force throughout a range of movement between first and second structures, the mechanical component further comprising a force-applying element having a first portion carried on the first structure and a second portion carried on the second structure, the force-applying element when the hyperelastic material is in the austenite crystalline phase being enabled to distort through a range of movement while applying a substantially constant force between the first and second structures.
37. A device as in claim 3≤ m ,wnJch the force-applying element comprises a torsion spring.
38. A device as in claim 36 in which the force-applying element comprises a compression spring.
39. A device as in claim 36 in which the force-applying element comprises a tension spring.
40. A device as in claim 36 in which the force-applying element comprises a leaf spring.
41. A device as in claim 1 for use as a collapsible tube, the device further comprising a hollow tube having a first portion axially carried with a second portion, the second portion being comprised of the hyperelastic material, the second portion being shaped to expand outwardly to a deployed configuration having a given diameter responsive to the hyperelastic material being in the austenite crystalline phase, the second portion collapsing inwardly to a diameter smaller than the given diameter responsive to the hyperelastic material being in the martensite crystalline phase.
42. A device as in claim 41 in which the shape of the second portion comprises a plurality of interconnected strips separated by openings.
43. A device as in claim 1 for use as a probe tip in closing an electrical circuit with a contact pad of a microelectronic circuit on an integrated circuit chip, the mechanical component further comprising a cantilever beam having a longitudinal axis with a proximal end and a distal end, the crystalline direction <100> of the crystal being parallel to the axis, the distal end being formed with a point which moves into contact with the pad for closing the circuit.
44. A device as in claim 1 for use in storing large amounts of mechanical energy in a relatively small volume, the mechanical component further comprising a washer having a frusto-conical wall centered about a longitudinal axis, the wall flaring out from an opening of a given diameter at one end to an opening of a diameter larger than the given diameter at an opposite end, the wall responsive to an applied force along the axis gradually flattening while the ends move toward each other and the hyperelastic material in the austenite crystalline phase applying a constant resisting force against the applied force while storing mechanical energy from the applied force.
45. A device as in claim 1 for use in a structure for storing mechanical energy responsive to an applied force and releasing the stored energy responsive to the applied force being removed, the mechanical component further comprising a spring having one end carried by the structure and an other end, the other end being positioned to yieldably move in one direction responsive to the applied force, the hyperelastic material applying a constant resisting force against the applied force while storing mechanical energy from the applied force, and the hyperelastic material responsive to removal of the applied force causing the other end to move in an other direction while releasing the stored energy.
46. A device as in claim 45 in which the structure is selected from the group consisting of a bicycle wheel with spokes, athletic footwear, skis, and exercise equipment.
47. A device as in claim 1 for use as a pointed instrument, probe or needle, the mechanical component further comprising an elongated shaft extending along a longitudinal axis and having a distal end with a tip that has a sharp point, the tip being comprised of the hyperelastic mateijϊal, the tip eing enabled-by the hyperelastic material in the austenite crystalline phase to bend away from the longitudinal axis throuo-h a large displacement responsive to a force externally applied on the tip, and the tip returning to the initial position responsive to removal of the force.
48. A device as in claim 1 in which the mechanical component comprises an implantable medical tool for use in a human body.
49. A device as in claim 48 in which the medical tool comprises a stent.
PCT/US2005/015703 2004-05-06 2005-05-04 Single crystal shape memory alloy devices and methods WO2005108635A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/588,413 US7544257B2 (en) 2004-05-06 2005-05-04 Single crystal shape memory alloy devices and methods
EP05744403A EP1747299A4 (en) 2004-05-06 2005-05-04 Single crystal shape memory alloy devices and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56965904P 2004-05-06 2004-05-06
US60/569,659 2004-05-06
US11/041,185 US7632361B2 (en) 2004-05-06 2005-01-24 Single crystal shape memory alloy devices and methods
US11/041,185 2005-01-24

Publications (2)

Publication Number Publication Date
WO2005108635A2 true WO2005108635A2 (en) 2005-11-17
WO2005108635A3 WO2005108635A3 (en) 2007-01-18

Family

ID=35320816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/015703 WO2005108635A2 (en) 2004-05-06 2005-05-04 Single crystal shape memory alloy devices and methods

Country Status (3)

Country Link
US (2) US7632361B2 (en)
EP (1) EP1747299A4 (en)
WO (1) WO2005108635A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008092028A1 (en) * 2007-01-25 2008-07-31 Tini Alloy Company Frangible shape memory alloy fire sprinkler valve actuator
EP2423338A1 (en) 2010-08-24 2012-02-29 Ormco Corporation Shape setting a shape memory alloy dental arch
EP2644131A1 (en) * 2012-03-30 2013-10-02 DePuy Synthes Products, LLC Embolic coil detachment mechanism with heating element and kicker
US8685183B1 (en) 2006-12-01 2014-04-01 Ormco Corporation Method of alloying reactive components
US20140216607A1 (en) * 2007-11-30 2014-08-07 Ormco Corporation Biocompatible copper-based single-crystal shape memory alloys
US9127338B2 (en) 2007-12-03 2015-09-08 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
WO2017081403A1 (en) * 2015-11-13 2017-05-18 Nimesis Technology Method for producing monocrystalline copper alloys
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
CN108802085A (en) * 2018-06-15 2018-11-13 国网辽宁省电力有限公司电力科学研究院 A kind of state evaluating method of electrical support equipment
US10610620B2 (en) 2007-07-30 2020-04-07 Monarch Biosciences, Inc. Method and devices for preventing restenosis in cardiovascular stents
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator
CN113340735A (en) * 2021-07-05 2021-09-03 吉林大学 Self-sensing elastic energy storage and ejection release testing device for superelastic memory alloy wire

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8458879B2 (en) * 2001-07-03 2013-06-11 Advanced Bio Prosthetic Surfaces, Ltd., A Wholly Owned Subsidiary Of Palmaz Scientific, Inc. Method of fabricating an implantable medical device
US7040323B1 (en) * 2002-08-08 2006-05-09 Tini Alloy Company Thin film intrauterine device
US7763342B2 (en) * 2005-03-31 2010-07-27 Tini Alloy Company Tear-resistant thin film methods of fabrication
US8631844B2 (en) * 2005-06-13 2014-01-21 Millenworks Variable compliance wheel
US20120232595A1 (en) * 2011-03-07 2012-09-13 Tyler HOLSCHLAG Fastener retention system for spinal plates
US11241260B2 (en) * 2006-06-30 2022-02-08 Alphatec Spine, Inc. Fastener retention system for spinal plates
US20080213062A1 (en) * 2006-09-22 2008-09-04 Tini Alloy Company Constant load fastener
US20080075557A1 (en) * 2006-09-22 2008-03-27 Johnson A David Constant load bolt
US8584767B2 (en) 2007-01-25 2013-11-19 Tini Alloy Company Sprinkler valve with active actuation
US7842143B2 (en) * 2007-12-03 2010-11-30 Tini Alloy Company Hyperelastic shape setting devices and fabrication methods
US8499779B2 (en) * 2008-01-16 2013-08-06 The United States Of America As Represented By The Administrator Of The National Aeronautics Space Administration Systems, methods and apparatus of a nitinol valve
US8282746B2 (en) * 2008-07-09 2012-10-09 Massachusetts Institute Of Technology Superelastic alloy structural geometry for ultrahigh mechanical damping
JP5363925B2 (en) * 2009-09-05 2013-12-11 株式会社タケモト Solar cell module fixing structure
US8403799B2 (en) * 2009-11-11 2013-03-26 Honda Motor Co., Ltd. Axle assembly including differential lock and blocking member
US8915180B2 (en) * 2010-01-08 2014-12-23 William J. Jacob Autonomously rotating cookware
US8683755B1 (en) * 2010-01-21 2014-04-01 Deployable Space Systems, Inc. Directionally controlled elastically deployable roll-out solar array
US8500658B2 (en) 2010-10-28 2013-08-06 Abbott Cardiovascular Systems Inc. Nickel-titanium core guide wire
EP2825680A1 (en) * 2012-03-15 2015-01-21 Dentsply International Inc. Medical instrument made of mono-crystalline shape memory alloys and manufacturing methods
US9548678B2 (en) 2012-07-02 2017-01-17 Massachusetts Institute Of Technology Electric field activation of shape memory ceramics
US9018117B2 (en) 2012-07-02 2015-04-28 Massachusetts Institute Of Technology Ceramic structures for enhanced shape memory and pseudoelastic effects
US9435107B2 (en) 2012-09-07 2016-09-06 Kohler Co. Shape memory faucet
US9623628B2 (en) * 2013-01-10 2017-04-18 Apple Inc. Sapphire component with residual compressive stress
JP5999668B2 (en) 2013-02-12 2016-09-28 アップル インコーポレイテッド Multi-step ion implantation and ion implantation system
ES2683219T3 (en) * 2013-09-06 2018-09-25 Ormco Corporation Orthodontic appliances and methods of making them
US9793830B2 (en) 2013-09-16 2017-10-17 Board Of Trustees Of Michigan State University Self-powered sensing system for the monitoring of quasi-static structural response
EP2868853B1 (en) * 2013-10-31 2018-12-26 Electrolux Appliances Aktiebolag Household appliance comprising an actuation system
EP3063308A4 (en) * 2013-11-01 2018-04-04 Kinalco, Inc. Shape memory alloy conductor resists plastic deformation
EP3068914A1 (en) * 2013-11-15 2016-09-21 Massachusetts Institute Of Technology Method for controlling the energy damping of a shape memory alloy with surface roughness
US10280504B2 (en) 2015-09-25 2019-05-07 Apple Inc. Ion-implanted, anti-reflective layer formed within sapphire material
JP2017181135A (en) * 2016-03-29 2017-10-05 株式会社日立ハイテクサイエンス Scanning type probe microscope and method for detecting the probe contact
US9964363B2 (en) * 2016-05-24 2018-05-08 Microsoft Technology Licensing, Llc Heat pipe having a predetermined torque resistance
WO2019204322A1 (en) * 2018-04-17 2019-10-24 Raytheon Company Thermally-enhanced and deployable structures
US11459127B2 (en) 2018-04-17 2022-10-04 Raytheon Company Integrated thermal energy transport and storage structures
US20190315501A1 (en) * 2018-04-17 2019-10-17 Raytheon Company Thermally-enhanced and deployable structures
CN109630579B (en) * 2018-11-30 2021-01-15 浙江理工大学 Variable-stiffness composite plate spring and stiffness control method thereof
CN110658086B (en) * 2019-08-31 2022-05-27 长沙理工大学 Asphalt pavement load response analysis method considering tension-compression modulus difference
CN113293274B (en) * 2021-05-19 2022-10-28 江西耐乐铜业有限公司 Special material frame for annealing of oxygen-free copper pipe
US20230178952A1 (en) * 2021-12-08 2023-06-08 Eagle Technology, Llc Optical system for use with a vacuum chamber and associated method

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US368425A (en) 1887-08-16 Alexander ross and cyrus abrom mcallister
US538593A (en) 1895-04-30 Automatic fire-extinguisher
US1560335A (en) 1924-03-27 1925-11-03 American Lurgi Corp Process of improving alloys and metals
US1904828A (en) 1930-01-28 1933-04-18 Pawtucket Screw Company Thermoelectric sprinkler head
US1926925A (en) 1931-04-07 1933-09-12 Gulf Res & Dev Corp Pin, bolt, and other connecting device
GB425439A (en) 1934-04-25 1935-03-14 Erwin Glatte Improvements in or relating to screw-threaded metal parts
US2371614A (en) * 1942-12-31 1945-03-20 Packard Motor Car Co Engine connecting rod and method of securing parts together
US2586556A (en) * 1946-11-23 1952-02-19 Mullikin Alfred Flexible binder post
US2647017A (en) * 1951-04-19 1953-07-28 Ind Res Inst Nozzle
US2610300A (en) 1951-08-07 1952-09-09 Wilson W Walton Flow control
US2608996A (en) 1951-08-30 1952-09-02 Forman Ralph Glass valve
US2911504A (en) 1958-05-15 1959-11-03 Sigmund Cohn Corp Fuse member and method of making the same
US3229956A (en) * 1962-03-02 1966-01-18 Stevens Mfg Co Inc Diaphragm fluid valve
CH418759A (en) 1964-12-23 1966-08-15 Taco Heizungen Ag Remote controlled valve for heating systems
US3357432A (en) 1965-02-09 1967-12-12 Edwards Lab Inc Anastomotic coupling
US3351463A (en) 1965-08-20 1967-11-07 Alexander G Rozner High strength nickel-base alloys
US3445086A (en) * 1966-11-25 1969-05-20 Zyrotron Ind Inc Snap acting valve and control mechanism therefor
US3408890A (en) 1967-01-27 1968-11-05 Hi Shear Corp Separable fastener assembly
US3454286A (en) * 1967-03-01 1969-07-08 Us Navy Thermally operated release mechanism
US3561537A (en) 1968-06-20 1971-02-09 Fire Protection Co Automatic sprinkler head
US3546996A (en) 1969-04-10 1970-12-15 Atomic Energy Commission Release latch actuated by temperature excursion
US3613732A (en) 1969-07-17 1971-10-19 Robertshaw Controls Co Temperature-responsive valve operators
US3659625A (en) * 1970-02-16 1972-05-02 Westinghouse Air Brake Co Drain valve device
US3620212A (en) 1970-06-15 1971-11-16 Robert D Fannon Jr Intrauterine contraceptive device
US3725835A (en) * 1970-07-20 1973-04-03 J Hopkins Memory material actuator devices
US3789838A (en) * 1971-02-19 1974-02-05 E Fournier Force transmitting intrauterine device
US3918443A (en) 1971-10-20 1975-11-11 Ethyl Corp Method for birth control
US3888975A (en) * 1972-12-27 1975-06-10 Alza Corp Erodible intrauterine device
US3974844A (en) * 1973-06-11 1976-08-17 Texas Instruments Incorporated Valve
US3849756A (en) 1973-06-14 1974-11-19 American Thermostat Corp Nitinol activated switch usable as a slow acting relay
FR2279001A1 (en) 1974-05-28 1976-02-13 Mediterranee Const Navales Ind DEVICE FOR QUICK DISASSEMBLY AND REASSEMBLY OF COVERS OF PRESSURE TANKS, ESPECIALLY OF NUCLEAR REACTOR TANKS
JPS5197024A (en) * 1975-02-22 1976-08-26 Kinkyushadanyo hikagyakuben
US4176719A (en) 1976-03-12 1979-12-04 Mather & Platt Limited Heat sensitive release devices
US4055955A (en) 1976-08-16 1977-11-01 Alfred Davis Johnson Memory alloy heat engine and method of operation
US4096993A (en) * 1977-01-21 1978-06-27 Emerson Electric Co. Compensated control valve
US4195773A (en) 1977-03-21 1980-04-01 Ralph Ogden Programmable controller system for industrial process apparatus
DE2832731A1 (en) * 1978-07-26 1980-02-07 Vacuumschmelze Gmbh MAGNETIC CORE MADE OF A SOFT MAGNETIC AMORPHOUS ALLOY
US4177327A (en) 1978-11-20 1979-12-04 P. R. Mallory & Co. Inc. Metal-air battery having electrically operated air access vent cover
US4243963A (en) * 1979-04-02 1981-01-06 Gte Automatic Electric Laboratories Incorporated Construction of a printed wiring card mountable reed relay
US4279790A (en) * 1979-07-05 1981-07-21 Kabushiki Kaisha Mikuni Seisakusho Composite material compositions using wasterpaper and method of producing same
US4501058A (en) * 1979-08-27 1985-02-26 Pda Engineering Method of pre-stressing a structural member
US4340049A (en) * 1979-10-18 1982-07-20 Baxter Travenol Laboratories, Inc. Breakaway valve
JPS5888200A (en) * 1981-11-20 1983-05-26 Mitsui Eng & Shipbuild Co Ltd Preparation of single crystal of cu-zn-al alloy having shape memory
LU84677A1 (en) 1983-03-07 1984-11-14 Leuven Res & Dev Vzw THERMOSENSITIVE VALVE
JPS59179771A (en) * 1983-03-30 1984-10-12 Sumitomo Electric Ind Ltd Using method of functional alloy member
US4485545A (en) 1983-07-07 1984-12-04 Ford Motor Company Method of attaching a metal shaft to a ceramic shaft and product thereby
EP0131997B1 (en) * 1983-07-11 1986-12-17 Leuven Research & Development Temperature responsive bolt element
US4553393A (en) 1983-08-26 1985-11-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Memory metal actuator
US5190546A (en) * 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4585209A (en) * 1983-10-27 1986-04-29 Harry E. Aine Miniature valve and method of making same
US4524343A (en) * 1984-01-13 1985-06-18 Raychem Corporation Self-regulated actuator
FR2561743B1 (en) 1984-03-21 1986-09-05 Aerospatiale PYROTECHNIC VALVE
US4551974A (en) 1984-04-27 1985-11-12 Raychem Corporation Shape memory effect actuator and methods of assembling and operating therefor
US4706758A (en) 1984-04-30 1987-11-17 U.S. Fire Control Corporation Automatic on-off sprinkler head
US4558715A (en) 1984-05-16 1985-12-17 Kowatachi International, Ltd. Apparatus for injecting measured quantities of liquid into a fluid stream
DE3421654A1 (en) * 1984-06-09 1985-12-12 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe RELIEF DEVICE FOR THE SECURITY CONTAINER OF A PRESSURE WATER CORE REACTOR
US4589179A (en) * 1984-09-10 1986-05-20 Caterpillar Tractor Co. Flexible positioner
US4567549A (en) * 1985-02-21 1986-01-28 Blazer International Corp. Automatic takeup and overload protection device for shape memory metal actuator
NL8600391A (en) * 1986-02-17 1987-09-16 Philips Nv CATHODE JET TUBE AND METHOD FOR MANUFACTURING A CATHODE JET TUBE.
US4753465A (en) * 1986-04-11 1988-06-28 James F. Dalby Remotely operable locking mechanism
US4684913A (en) * 1986-09-05 1987-08-04 Raychem Corporation Slider lifter
US4821997A (en) * 1986-09-24 1989-04-18 The Board Of Trustees Of The Leland Stanford Junior University Integrated, microminiature electric-to-fluidic valve and pressure/flow regulator
US4943032A (en) * 1986-09-24 1990-07-24 Stanford University Integrated, microminiature electric to fluidic valve and pressure/flow regulator
US4824073A (en) * 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
SU1592414A1 (en) * 1986-11-26 1990-09-15 Vni Pk T I Elektrotermicheskog Method and apparatus for growing profiled crystals of high-melting compounds
US4823607A (en) * 1987-05-18 1989-04-25 Massachusetts Institute Of Technology Released film structures and method of measuring film properties
GB8723226D0 (en) * 1987-10-02 1987-11-04 Bolton & Johnson Ltd Thomas Fire sprinklers
US4848388A (en) * 1987-10-19 1989-07-18 Memory Metals, Inc. Emergency valve with test capability
US5245738A (en) 1988-09-19 1993-09-21 Tini Alloy Company Method for securing together and non-explosively separating multiple components
US5119555A (en) * 1988-09-19 1992-06-09 Tini Alloy Company Non-explosive separation device
US4854797A (en) 1988-10-05 1989-08-08 Ford Motor Company Threaded fastener with resilient linking means
US4864824A (en) 1988-10-31 1989-09-12 American Telephone And Telegraph Company, At&T Bell Laboratories Thin film shape memory alloy and method for producing
US5072288A (en) 1989-02-21 1991-12-10 Cornell Research Foundation, Inc. Microdynamic release structure
FR2648199B1 (en) 1989-06-09 1991-09-27 Aerospatiale TEMPORARY LINK DEVICE, PARTICULARLY FOR ARTIFICIAL SATELLITE APPENDIX, AND METHOD FOR RELEASING SUCH A LINK
US5069419A (en) 1989-06-23 1991-12-03 Ic Sensors Inc. Semiconductor microactuator
US5061914A (en) 1989-06-27 1991-10-29 Tini Alloy Company Shape-memory alloy micro-actuator
US4893655A (en) * 1989-08-23 1990-01-16 The United States Of America As Represented By The Secretary Of The Navy Double valve mechanism for an acoustic modulator
US5117916A (en) * 1990-04-11 1992-06-02 Hochiki Kabushiki Kaisha Sprinkler head and operation monitor therefor
US5390061A (en) * 1990-06-08 1995-02-14 Hitachi, Ltd. Multilayer magnetoresistance effect-type magnetic head
US5114504A (en) * 1990-11-05 1992-05-19 Johnson Service Company High transformation temperature shape memory alloy
US5129753A (en) * 1990-11-13 1992-07-14 Trw Inc. Shape memory wire latch mechanism
US5061137A (en) 1991-04-29 1991-10-29 Ford Motor Company Fastener with resilient linking means
US5211371A (en) * 1991-07-22 1993-05-18 Advanced Control Technologies, Inc. Linearly actuated valve
US5116252A (en) * 1991-08-02 1992-05-26 Hartman Thomas A In-line sleeve valve having velocity guide pressure equalization and drive assembly with improved drive pin mountings
US5192147A (en) * 1991-09-03 1993-03-09 Lockheed Missiles & Space Company, Inc. Non-pyrotechnic release system
US5312152A (en) * 1991-10-23 1994-05-17 Martin Marietta Corporation Shape memory metal actuated separation device
WO1993012410A1 (en) * 1991-12-13 1993-06-24 Honeywell Inc. Piezoresistive silicon pressure sensor design
US5364046A (en) 1992-02-24 1994-11-15 Environmental Research Institute Of Michigan Automatic compliant capture and docking mechanism for spacecraft
US5218998A (en) * 1992-04-01 1993-06-15 Bakken Gary M Linearly adjustable
FI90394C (en) * 1992-04-23 1994-02-10 Goeran Sundholm The fire-fighting unit
US5160233A (en) 1992-05-13 1992-11-03 The United State Of America As Representd By The Administrator Of The National Aeronautics And Space Administration Fastening apparatus having shape memory alloy actuator
US5837394A (en) 1992-05-20 1998-11-17 Brooke Schumm, Jr. Electric appliance and fluid depolarized cell with low parasitic usage microactuated valve
DE4234237C2 (en) 1992-10-10 2000-11-30 Bosch Gmbh Robert Temperature compensated micro actuator
US5309717A (en) * 1993-03-22 1994-05-10 Minch Richard B Rapid shape memory effect micro-actuators
US5325880A (en) * 1993-04-19 1994-07-05 Tini Alloy Company Shape memory alloy film actuated microvalve
ES2135688T3 (en) * 1993-11-30 1999-11-01 Kvaerner Tamturbine Oy PRE-TENSIONING DEVICE FOR FIXING ELEMENTS AND METHOD TO PRETENSION A FIXING ELEMENT.
KR950024146A (en) * 1994-01-31 1995-08-21 모리시타 요이찌 Information recording and reproducing apparatus and information recording and reproducing method
US5494113A (en) * 1994-02-01 1996-02-27 Central Sprinkler Corporation Sprinklers with shape-memory alloy actuators
BR9507017A (en) * 1994-03-10 1997-09-09 Schneider Usa Inc Body catheter with variable stiffness
US5502982A (en) * 1994-04-28 1996-04-02 Liquid Carbonic Industries Corporation Cryogenic tie pin
US5648665A (en) * 1994-04-28 1997-07-15 Ngk Insulators, Ltd. Semiconductor device having a plurality of cavity defined gating regions and a fabrication method therefor
US5840199A (en) 1994-06-01 1998-11-24 Litton Systems, Inc. Method for purging a multi-layer sacrificial etched silicon substrate
US5473944A (en) * 1994-08-18 1995-12-12 Kulite Semi Conductor Products, Inc. Seam pressure sensor employing dielectically isolated resonant beams and related method of manufacture
EP0709482B1 (en) * 1994-10-28 1999-07-28 Kazuhiro Otsuka Method of manufacturing high-temperature shape memory alloys
US5619177A (en) * 1995-01-27 1997-04-08 Mjb Company Shape memory alloy microactuator having an electrostatic force and heating means
FR2730322B1 (en) * 1995-02-02 1997-04-30 Imago METALLIC GLASSES
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5916178A (en) * 1995-03-30 1999-06-29 Medtronic, Inc. Steerable high support guidewire with thin wall nitinol tube
US5771902A (en) 1995-09-25 1998-06-30 Regents Of The University Of California Micromachined actuators/sensors for intratubular positioning/steering
US5722989A (en) 1995-05-22 1998-03-03 The Regents Of The University Of California Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable
US5771742A (en) * 1995-09-11 1998-06-30 Tini Alloy Company Release device for retaining pin
US5825275A (en) 1995-10-27 1998-10-20 University Of Maryland Composite shape memory micro actuator
US5850837A (en) * 1996-03-21 1998-12-22 Furukawa Electric Co., Ltd. Device for correcting an ingrown nail
WO1997044780A1 (en) * 1996-05-20 1997-11-27 International Business Machines Corporation Shape memory alloy recording medium, storage devices based thereon, and method for using these storage devices
US5676356A (en) 1996-05-30 1997-10-14 The Boler Company Flexible bolster
JP3198458B2 (en) * 1996-07-02 2001-08-13 千住スプリンクラー株式会社 Sprinkler head
US6072617A (en) * 1996-11-26 2000-06-06 Texas Instruments Incorporated Micro mechanical device with memory metal component
US6080160A (en) * 1996-12-04 2000-06-27 Light Sciences Limited Partnership Use of shape memory alloy for internally fixing light emitting device at treatment site
US5796152A (en) * 1997-01-24 1998-08-18 Roxburgh Ltd. Cantilevered microstructure
US6042553A (en) * 1997-04-15 2000-03-28 Symbiosis Corporation Linear elastic member
US5903099A (en) * 1997-05-23 1999-05-11 Tini Alloy Company Fabrication system, method and apparatus for microelectromechanical devices
JP3538000B2 (en) * 1997-07-25 2004-06-14 ホーチキ株式会社 Sprinkler head
US5867302A (en) * 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US6075239A (en) * 1997-09-10 2000-06-13 Lucent Technologies, Inc. Article comprising a light-actuated micromechanical photonic switch
US5899818A (en) * 1998-01-20 1999-05-04 Beta Golf, Inc. Temperature compensated golf club head
US6195478B1 (en) * 1998-02-04 2001-02-27 Agilent Technologies, Inc. Planar lightwave circuit-based optical switches using micromirrors in trenches
FI982407A0 (en) * 1998-03-03 1998-11-06 Adaptamat Tech Oy Controls and devices
NL1010386C2 (en) * 1998-10-23 2000-04-26 Eric Berreklouw Anastomosis device.
JP2000185999A (en) * 1998-12-21 2000-07-04 Tokin Corp Production of alloy single crystal
US6203715B1 (en) * 1999-01-19 2001-03-20 Daewoo Electronics Co., Ltd. Method for the manufacture of a thin film actuated mirror array
US6410360B1 (en) * 1999-01-26 2002-06-25 Teledyne Industries, Inc. Laminate-based apparatus and method of fabrication
FR2791547B1 (en) * 1999-03-31 2001-06-08 Soprane Sa BIPOLAR FORCEPS FOR PELVISCOPY
US6406605B1 (en) * 1999-06-01 2002-06-18 Ysi Incorporated Electroosmotic flow controlled microfluidic devices
US6229640B1 (en) * 1999-08-11 2001-05-08 Adc Telecommunications, Inc. Microelectromechanical optical switch and method of manufacture thereof
US6255757B1 (en) * 1999-09-01 2001-07-03 Jds Uniphase Inc. Microactuators including a metal layer on distal portions of an arched beam
US6592724B1 (en) * 1999-09-22 2003-07-15 Delphi Technologies, Inc. Method for producing NiTiHf alloy films by sputtering
US6537310B1 (en) * 1999-11-19 2003-03-25 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal implantable devices and method of making same
WO2001053559A1 (en) * 2000-01-24 2001-07-26 Smart Therapeutics, Inc. Thin-film shape memory alloy device and method
US6247493B1 (en) * 2000-03-09 2001-06-19 Richard C. Henderson Miniature pulsatile flow controller
US6407478B1 (en) * 2000-08-21 2002-06-18 Jds Uniphase Corporation Switches and switching arrays that use microelectromechanical devices having one or more beam members that are responsive to temperature
US20020062154A1 (en) * 2000-09-22 2002-05-23 Ayers Reed A. Non-uniform porosity tissue implant
US6672502B1 (en) * 2000-11-28 2004-01-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Method for making devices having intermetallic structures and intermetallic devices made thereby
US6688828B1 (en) * 2000-12-01 2004-02-10 Arizona Board Of Regents Self-torquing fasteners
US6582985B2 (en) * 2000-12-27 2003-06-24 Honeywell International Inc. SOI/glass process for forming thin silicon micromachined structures
US20030002994A1 (en) * 2001-03-07 2003-01-02 Johnson A. David Thin film shape memory alloy actuated flow controller
EP1238600A1 (en) * 2001-03-08 2002-09-11 Thierry Holemans NA device using shape memory alloys and a bias element to reduce the thermal hysteresis of the phase change
US6742761B2 (en) * 2001-04-10 2004-06-01 Tini Alloy Company Miniature latching valve
US6729599B2 (en) * 2001-06-26 2004-05-04 Tini Alloy Company Liquid microvalve
CN100576775C (en) * 2001-08-09 2009-12-30 松下电器产业株式会社 Dual mode radio cmmunication apparatus
US7144363B2 (en) * 2001-10-16 2006-12-05 Extensia Medical, Inc. Systems for heart treatment
DE10162296C1 (en) * 2001-12-19 2003-04-03 Karlsruhe Forschzent Producing and maintaining two- or three-dimensional curve in rod or band of super-elastic, monocrystalline copper alloy comprises heating it, pressing into heated mold, cooling, reheating and quenching
DE10208202A1 (en) * 2002-02-26 2003-09-11 Karlsruhe Forschzent vein graft
JP2003325695A (en) * 2002-03-06 2003-11-18 Senju Sprinkler Kk Sprinkler head cover
US7410502B2 (en) * 2002-04-09 2008-08-12 Numat As Medical prosthetic devices having improved biocompatibility
US6908275B2 (en) * 2002-04-29 2005-06-21 Charles Nelson Fastener having supplemental support and retention capabilities
US6746890B2 (en) * 2002-07-17 2004-06-08 Tini Alloy Company Three dimensional thin film devices and methods of fabrication
US7040323B1 (en) * 2002-08-08 2006-05-09 Tini Alloy Company Thin film intrauterine device
US7201367B2 (en) * 2002-12-12 2007-04-10 Caterpillar Inc Load-bearing resilient mount
US6920966B2 (en) * 2003-03-24 2005-07-26 Honeywell International Inc. Remotely releasable support strut
US6843465B1 (en) * 2003-08-14 2005-01-18 Loren W. Scott Memory wire actuated control valve
US7338530B2 (en) * 2003-11-24 2008-03-04 Checkmed Systems, Inc. Stent
DE602004024759D1 (en) * 2004-01-29 2010-02-04 Sony Ericsson Mobile Comm Ab Sound reproduction for portable electronic device
US7044596B2 (en) * 2004-02-02 2006-05-16 Park Andrew Q Hingeless eyeglasses frame
US20060118210A1 (en) * 2004-10-04 2006-06-08 Johnson A D Portable energy storage devices and methods
US20080075557A1 (en) * 2006-09-22 2008-03-27 Johnson A David Constant load bolt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1747299A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9340858B2 (en) 2006-12-01 2016-05-17 Ormco Corporation Method of alloying reactive components
US10190199B2 (en) 2006-12-01 2019-01-29 Ormco Corporation Method of alloying reactive components
US8685183B1 (en) 2006-12-01 2014-04-01 Ormco Corporation Method of alloying reactive components
WO2008092028A1 (en) * 2007-01-25 2008-07-31 Tini Alloy Company Frangible shape memory alloy fire sprinkler valve actuator
US10610620B2 (en) 2007-07-30 2020-04-07 Monarch Biosciences, Inc. Method and devices for preventing restenosis in cardiovascular stents
US20140216607A1 (en) * 2007-11-30 2014-08-07 Ormco Corporation Biocompatible copper-based single-crystal shape memory alloys
US9539372B2 (en) * 2007-11-30 2017-01-10 Ormco Corporation Biocompatible copper-based single-crystal shape memory alloys
US9127338B2 (en) 2007-12-03 2015-09-08 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
US20150374461A1 (en) * 2007-12-03 2015-12-31 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
EP2423338A1 (en) 2010-08-24 2012-02-29 Ormco Corporation Shape setting a shape memory alloy dental arch
US10154890B2 (en) 2010-08-24 2018-12-18 Ormco Corporation Shape setting a shape memory alloy dental arch
EP2644131A1 (en) * 2012-03-30 2013-10-02 DePuy Synthes Products, LLC Embolic coil detachment mechanism with heating element and kicker
US10426485B2 (en) 2012-03-30 2019-10-01 DePuy Synthes Products, Inc. Embolic coil detachment mechanism with heating element and kicker
US9155540B2 (en) 2012-03-30 2015-10-13 DePuy Synthes Products, Inc. Embolic coil detachment mechanism with heating element and kicker
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator
WO2017081403A1 (en) * 2015-11-13 2017-05-18 Nimesis Technology Method for producing monocrystalline copper alloys
FR3043698A1 (en) * 2015-11-13 2017-05-19 Nimesis Tech PROCESS FOR THE PREPARATION OF COPPER MONOCRYSTALLINE ALLOYS
CN108802085A (en) * 2018-06-15 2018-11-13 国网辽宁省电力有限公司电力科学研究院 A kind of state evaluating method of electrical support equipment
CN113340735A (en) * 2021-07-05 2021-09-03 吉林大学 Self-sensing elastic energy storage and ejection release testing device for superelastic memory alloy wire
CN113340735B (en) * 2021-07-05 2022-07-01 吉林大学 Self-sensing elastic energy storage and ejection release testing device for superelastic memory alloy wire

Also Published As

Publication number Publication date
US7632361B2 (en) 2009-12-15
US20090171294A1 (en) 2009-07-02
EP1747299A2 (en) 2007-01-31
EP1747299A4 (en) 2010-08-11
US7544257B2 (en) 2009-06-09
US20070137740A1 (en) 2007-06-21
WO2005108635A3 (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US7544257B2 (en) Single crystal shape memory alloy devices and methods
US4509517A (en) Kidney stone instrument
EP1406681B1 (en) Cold worked nickel-titanium devices
US6669794B1 (en) Method for treating an object with a laser
Wilkes et al. The fatigue behavior of shape-memory alloys
Stöckel The shape memory effect-phenomenon, alloys and applications
US6582461B1 (en) Tissue supporting devices
US6540849B2 (en) Process for the improved ductility of nitinol
US10190199B2 (en) Method of alloying reactive components
US7540899B1 (en) Shape memory alloy thin film, method of fabrication, and articles of manufacture
US20190161832A1 (en) Shape Memory Alloy Wire With Controlled Energy Damping
CA2542078A1 (en) Long fatigue life nitinol
Duerig et al. SMA: smart materials for medical applications
US20030000605A1 (en) Shape memory alloy actuator and method of designing the same
Ito Damping capacity in Fe-27Mn-3.5 Si alloy
Rahman Patents on superelastic shape memory alloy
Sakamoto et al. Effects of the Sense of Stress on Martensitic Transformations in Monocrystalline Cu–Al–Ni Shape Memory Alloys
Miyazaki et al. Recent developments in TiNi-based shape memory alloys
Schcetky The current status of industrial applictions for shape memory alloys

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007137740

Country of ref document: US

Ref document number: 10588413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005744403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005744403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10588413

Country of ref document: US