WO2005119753A3 - Systems and methods for nanowire growth and harvesting - Google Patents

Systems and methods for nanowire growth and harvesting Download PDF

Info

Publication number
WO2005119753A3
WO2005119753A3 PCT/US2005/014923 US2005014923W WO2005119753A3 WO 2005119753 A3 WO2005119753 A3 WO 2005119753A3 US 2005014923 W US2005014923 W US 2005014923W WO 2005119753 A3 WO2005119753 A3 WO 2005119753A3
Authority
WO
WIPO (PCT)
Prior art keywords
methods
nanowire growth
harvesting
systems
growth
Prior art date
Application number
PCT/US2005/014923
Other languages
French (fr)
Other versions
WO2005119753A2 (en
Inventor
Yaoling Pan
Xiangfeng Duan
Bob Dubrow
Jay Goldman
Shahriar Mostarshed
Chunming Niu
Linda T Romano
Dave Stumbo
Original Assignee
Nanosys Inc
Yaoling Pan
Xiangfeng Duan
Bob Dubrow
Jay Goldman
Shahriar Mostarshed
Chunming Niu
Linda T Romano
Dave Stumbo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanosys Inc, Yaoling Pan, Xiangfeng Duan, Bob Dubrow, Jay Goldman, Shahriar Mostarshed, Chunming Niu, Linda T Romano, Dave Stumbo filed Critical Nanosys Inc
Priority to EP05779674A priority Critical patent/EP1747577A2/en
Priority to AU2005251089A priority patent/AU2005251089A1/en
Priority to JP2007511037A priority patent/JP2007535413A/en
Priority to CA002564220A priority patent/CA2564220A1/en
Priority to CN2005800219041A priority patent/CN101010780B/en
Publication of WO2005119753A2 publication Critical patent/WO2005119753A2/en
Publication of WO2005119753A3 publication Critical patent/WO2005119753A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/08Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt every component of the crystal composition being added during the crystallisation
    • C30B11/12Vaporous components, e.g. vapour-liquid-solid-growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/42Bombardment with radiation
    • H01L21/423Bombardment with radiation with high-energy radiation
    • H01L21/425Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • H01L29/7854Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection with rounded corners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/962Quantum dots and lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • Y10S977/891Vapor phase deposition

Abstract

The present invention is directed to systems and methods for nanowire growth and harvesting. In an embodiment, methods for nanowire growth and doping are provided, including methods for epitaxial oriented nanowire growth using a combination of silicon precursors. In a further aspect of the invention, methods to improve nanowire quality through the use of sacrifical growth layers are provided. In another aspect of the invention, methods for transferring nanowires from one substrate to another substrate are provided.
PCT/US2005/014923 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting WO2005119753A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP05779674A EP1747577A2 (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting
AU2005251089A AU2005251089A1 (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting
JP2007511037A JP2007535413A (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting
CA002564220A CA2564220A1 (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting
CN2005800219041A CN101010780B (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56660204P 2004-04-30 2004-04-30
US60/566,602 2004-04-30
US58836304P 2004-07-16 2004-07-16
US60/588,363 2004-07-16

Publications (2)

Publication Number Publication Date
WO2005119753A2 WO2005119753A2 (en) 2005-12-15
WO2005119753A3 true WO2005119753A3 (en) 2006-07-27

Family

ID=35463606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/014923 WO2005119753A2 (en) 2004-04-30 2005-04-29 Systems and methods for nanowire growth and harvesting

Country Status (8)

Country Link
US (3) US7105428B2 (en)
EP (1) EP1747577A2 (en)
JP (1) JP2007535413A (en)
KR (1) KR20070011550A (en)
CN (2) CN102351169B (en)
AU (1) AU2005251089A1 (en)
CA (1) CA2564220A1 (en)
WO (1) WO2005119753A2 (en)

Families Citing this family (206)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101798057A (en) * 2000-08-22 2010-08-11 哈佛学院董事会 Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US7301199B2 (en) * 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
CA2430888C (en) * 2000-12-11 2013-10-22 President And Fellows Of Harvard College Nanosensors
US8294025B2 (en) * 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
AU2003283973B2 (en) 2002-09-30 2008-10-30 Oned Material Llc Large-area nanoenabled macroelectronic substrates and uses therefor
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
US20090227107A9 (en) * 2004-02-13 2009-09-10 President And Fellows Of Havard College Nanostructures Containing Metal Semiconductor Compounds
DE102004019760A1 (en) * 2004-04-23 2005-11-17 Degussa Ag Process for the preparation of HSiCl 3 by catalytic hydrodehalogenation of SiCl 4
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
US20070264623A1 (en) * 2004-06-15 2007-11-15 President And Fellows Of Harvard College Nanosensors
CN100560811C (en) * 2004-08-28 2009-11-18 清华大学 silicon nanowire structure and growth method thereof
US7560366B1 (en) 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
JP2008523590A (en) 2004-12-06 2008-07-03 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Nanoscale wire-based data storage device
US7842432B2 (en) * 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
AU2005314211B2 (en) * 2004-12-09 2010-07-08 Oned Material, Inc. Nanowire-based membrane electrode assemblies for fuel cells
US8278011B2 (en) 2004-12-09 2012-10-02 Nanosys, Inc. Nanostructured catalyst supports
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
KR100635546B1 (en) * 2004-12-24 2006-10-17 학교법인 포항공과대학교 Probe of scanning probe microscope having a field effect transistor channel and Fabrication method thereof
US8072005B2 (en) * 2005-02-04 2011-12-06 Brown University Research Foundation Apparatus, method and computer program product providing radial addressing of nanowires
US8883568B2 (en) 2008-06-10 2014-11-11 Brown University Research Foundation Method providing radial addressing of nanowires
KR100707183B1 (en) * 2005-02-19 2007-04-13 삼성전자주식회사 Layer-builting structure of the nanoparticle, and a manufacturing method of the same
US20060263974A1 (en) * 2005-05-18 2006-11-23 Micron Technology, Inc. Methods of electrically interconnecting different elevation conductive structures, methods of forming capacitors, methods of forming an interconnect between a substrate bit line contact and a bit line in DRAM, and methods of forming DRAM memory cell
US20100227382A1 (en) * 2005-05-25 2010-09-09 President And Fellows Of Harvard College Nanoscale sensors
WO2006132659A2 (en) 2005-06-06 2006-12-14 President And Fellows Of Harvard College Nanowire heterostructures
WO2007053202A2 (en) * 2005-06-17 2007-05-10 Georgia Tech Research Corporation Systems and methods for nanomaterial transfer
US7553472B2 (en) * 2005-06-27 2009-06-30 Micron Technology, Inc. Nanotube forming methods
KR20070015260A (en) * 2005-07-30 2007-02-02 삼성전자주식회사 Making method of one-dimensional nano material, one-dimensional nano material thereby and thin film transistor substrate using one-dimensional nano material
EP1938381A2 (en) * 2005-09-23 2008-07-02 Nanosys, Inc. Methods for nanostructure doping
US8110510B1 (en) * 2005-10-17 2012-02-07 Merck Patent Gmbh Low temperature synthesis of nanowires in solution
KR100741243B1 (en) * 2005-11-07 2007-07-19 삼성전자주식회사 Nanowire Comprising Metal Nanodots and Method for Producing the Same
KR101287350B1 (en) * 2005-12-29 2013-07-23 나노시스, 인크. Methods for oriented growth of nanowires on patterned substrates
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
KR101322708B1 (en) * 2006-01-02 2013-10-29 삼성전자주식회사 Method for Manufacturing Zinc Oxide Nanowires and Nanowires Manufactured therefrom
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
WO2008048349A2 (en) * 2006-03-06 2008-04-24 National Institute Of Aerospace Associates Depositing nanometer-sized metal particles onto substrates
WO2007145701A2 (en) * 2006-04-07 2007-12-21 President And Fellows Of Harvard College Nanoscale wire methods and devices
WO2007124477A2 (en) 2006-04-21 2007-11-01 William Marsh Rice University Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them
US7544546B2 (en) * 2006-05-15 2009-06-09 International Business Machines Corporation Formation of carbon and semiconductor nanomaterials using molecular assemblies
US7741647B2 (en) * 2006-05-22 2010-06-22 Hewlett-Packard Development Company Utilizing nanowire for different applications
US20080008844A1 (en) * 2006-06-05 2008-01-10 Martin Bettge Method for growing arrays of aligned nanostructures on surfaces
WO2008051316A2 (en) 2006-06-12 2008-05-02 President And Fellows Of Harvard College Nanosensors and related technologies
US7998788B2 (en) * 2006-07-27 2011-08-16 International Business Machines Corporation Techniques for use of nanotechnology in photovoltaics
US7803707B2 (en) * 2006-08-17 2010-09-28 Wisconsin Alumni Research Foundation Metal silicide nanowires and methods for their production
US8058640B2 (en) 2006-09-11 2011-11-15 President And Fellows Of Harvard College Branched nanoscale wires
EP2082425A4 (en) * 2006-10-05 2011-07-13 Hitachi Chemical Co Ltd Well-aligned, high aspect-ratio, high-density silicon nanowires and methods of making the same
GB2442768A (en) * 2006-10-11 2008-04-16 Sharp Kk A method of encapsulating low dimensional structures
US7592679B1 (en) * 2006-10-19 2009-09-22 Hewlett-Packard Development Company, L.P. Sensor and method for making the same
KR20090087467A (en) * 2006-11-07 2009-08-17 나노시스, 인크. Systems and methods for nanowire groth
WO2008060455A2 (en) 2006-11-09 2008-05-22 Nanosys, Inc. Methods for nanowire alignment and deposition
EP2092590A4 (en) * 2006-11-10 2011-01-12 Univ California Atmospheric pressure plasma-induced graft polymerization
WO2008123869A2 (en) * 2006-11-21 2008-10-16 President And Fellows Of Harvard College Millimeter-long nanowires
US8575663B2 (en) * 2006-11-22 2013-11-05 President And Fellows Of Harvard College High-sensitivity nanoscale wire sensors
US20090014423A1 (en) * 2007-07-10 2009-01-15 Xuegeng Li Concentric flow-through plasma reactor and methods therefor
KR100833574B1 (en) * 2006-12-29 2008-06-03 에이비씨나노텍 주식회사 Plasma reactor system for the mass production of metal nanoparticle powder and the method thereof
US7781317B2 (en) * 2007-01-03 2010-08-24 Toyota Motor Engineering & Manufacturing North America, Inc. Method of non-catalytic formation and growth of nanowires
US7566657B2 (en) * 2007-01-17 2009-07-28 Hewlett-Packard Development Company, L.P. Methods of forming through-substrate interconnects
US8183566B2 (en) * 2007-03-01 2012-05-22 Hewlett-Packard Development Company, L.P. Hetero-crystalline semiconductor device and method of making same
US7608530B2 (en) * 2007-03-01 2009-10-27 Hewlett-Packard Development Company, L.P. Hetero-crystalline structure and method of making same
US7906778B2 (en) * 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7859036B2 (en) 2007-04-05 2010-12-28 Micron Technology, Inc. Memory devices having electrodes comprising nanowires, systems including same and methods of forming same
US7803698B2 (en) * 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
KR100852684B1 (en) * 2007-04-26 2008-08-19 연세대학교 산학협력단 Preparation methods of the selective nanowire
KR100913886B1 (en) * 2007-05-04 2009-08-26 삼성전자주식회사 Devices and Methods for preparing Nano Particle using Pulse cold Plasma
US7892610B2 (en) * 2007-05-07 2011-02-22 Nanosys, Inc. Method and system for printing aligned nanowires and other electrical devices
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
US7659210B2 (en) * 2007-05-14 2010-02-09 Micron Technology, Inc. Nano-crystal etch process
KR100902512B1 (en) * 2007-05-17 2009-06-15 삼성코닝정밀유리 주식회사 Method for growing GaN crystal on silicon substrate, method for manufacturing GaN-based light emitting device and GaN-based light emitting device
US20110023955A1 (en) * 2007-06-26 2011-02-03 Fonash Stephen J Lateral collection photovoltaics
US20090000539A1 (en) * 2007-06-29 2009-01-01 Kamins Theodore I Apparatus for growing a nanowire and method for controlling position of catalyst material
KR100904588B1 (en) * 2007-07-05 2009-06-25 삼성전자주식회사 Method of preparing core/shell type Nanowire, Nanowire prepared therefrom and Display device comprising the same
EP2168147A4 (en) * 2007-07-10 2012-07-11 Univ California Composite nanorods
US8968438B2 (en) * 2007-07-10 2015-03-03 Innovalight, Inc. Methods and apparatus for the in situ collection of nucleated particles
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
EP2171745A4 (en) * 2007-07-19 2014-10-15 California Inst Of Techn Structures of and methods for forming vertically aligned si wire arrays
AU2008275956A1 (en) * 2007-07-19 2009-01-22 California Institute Of Technology Structures of ordered arrays of semiconductors
US8058155B1 (en) * 2007-07-30 2011-11-15 University Of South Florida Integrated nanowires/microelectrode array for biosensing
US8110898B2 (en) * 2007-08-28 2012-02-07 California Institute Of Technology Polymer-embedded semiconductor rod arrays
JP4450850B2 (en) * 2007-09-26 2010-04-14 Okiセミコンダクタ株式会社 Manufacturing method of semiconductor device
WO2009085356A2 (en) * 2007-10-01 2009-07-09 University Of Southern California Usc Stevens Methods of using and constructing nanosensor platforms
US7915146B2 (en) 2007-10-23 2011-03-29 International Business Machines Corporation Controlled doping of semiconductor nanowires
KR100952048B1 (en) * 2007-11-13 2010-04-07 연세대학교 산학협력단 Crystallization method using solution fabricating process and silicon nano-structures
US8006407B2 (en) * 2007-12-12 2011-08-30 Richard Anderson Drying system and method of using same
US20090155963A1 (en) * 2007-12-12 2009-06-18 Hawkins Gilbert A Forming thin film transistors using ablative films
WO2009123666A2 (en) * 2007-12-19 2009-10-08 University Of Maryland College Park High-powered electrochemical energy storage devices and methods for their fabrication
US7927905B2 (en) * 2007-12-21 2011-04-19 Palo Alto Research Center Incorporated Method of producing microsprings having nanowire tip structures
US8273983B2 (en) * 2007-12-21 2012-09-25 Hewlett-Packard Development Company, L.P. Photonic device and method of making same using nanowires
WO2009096961A1 (en) * 2008-01-30 2009-08-06 Hewlett-Packard Development Company, L.P. Nanostructures and methods of making the same
US20090188557A1 (en) * 2008-01-30 2009-07-30 Shih-Yuan Wang Photonic Device And Method Of Making Same Using Nanowire Bramble Layer
US8603246B2 (en) * 2008-01-30 2013-12-10 Palo Alto Research Center Incorporated Growth reactor systems and methods for low-temperature synthesis of nanowires
KR100978031B1 (en) * 2008-02-04 2010-08-26 연세대학교 산학협력단 Single Crystal Si nanoribbons and the manufacturing method of the same
US8273591B2 (en) * 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
WO2009137241A2 (en) 2008-04-14 2009-11-12 Bandgap Engineering, Inc. Process for fabricating nanowire arrays
WO2009128800A1 (en) * 2008-04-17 2009-10-22 The Board Of Trustees Of The University Of Illinois Silicon nanowire and composite formation and highly pure and uniform length silicon nanowires
US8491718B2 (en) * 2008-05-28 2013-07-23 Karin Chaudhari Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US10199518B2 (en) 2008-05-28 2019-02-05 Solar-Tectic Llc Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
US8178784B1 (en) 2008-07-20 2012-05-15 Charles Wesley Blackledge Small pins and microscopic applications thereof
US8138102B2 (en) * 2008-08-21 2012-03-20 International Business Machines Corporation Method of placing a semiconducting nanostructure and semiconductor device including the semiconducting nanostructure
US7814565B2 (en) * 2008-08-27 2010-10-12 Snu R&Db Foundation Nanostructure on a probe tip
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
EP2332883B1 (en) * 2008-09-12 2017-06-28 LG Chem, Ltd. Metal nano belt, method of manufacturing same, and conductive ink composition and conductive film including the same
US8168251B2 (en) * 2008-10-10 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Method for producing tapered metallic nanowire tips on atomic force microscope cantilevers
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
US20100204062A1 (en) * 2008-11-07 2010-08-12 University Of Southern California Calibration methods for multiplexed sensor arrays
US8529698B2 (en) * 2008-11-11 2013-09-10 Arizona Board Of Regents For And On Behalf Of Arizona State University Ingan columnar nano-heterostructures for solar cells
KR101064908B1 (en) * 2008-11-12 2011-09-16 연세대학교 산학협력단 Method for patterning nanowires on substrate using novel sacrificial layer material
WO2010065587A2 (en) * 2008-12-02 2010-06-10 Drexel University Ferroelectric nanoshell devices
KR101539669B1 (en) * 2008-12-16 2015-07-27 삼성전자주식회사 Method of forming core-shell type structure and method of manufacturing transistor using the same
US7981772B2 (en) * 2008-12-29 2011-07-19 International Business Machines Corporation Methods of fabricating nanostructures
EP2208526A1 (en) 2008-12-30 2010-07-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. An autosynthesizer for the controlled synthesis of nano- and sub-nanostructures
WO2010087837A1 (en) * 2009-01-29 2010-08-05 Hewlett-Packard Development Company Nanoscale apparatus and sensor with nanoshell and method of making same
US8093129B2 (en) * 2009-02-03 2012-01-10 Micron Technology, Inc. Methods of forming memory cells
US7884004B2 (en) 2009-02-04 2011-02-08 International Business Machines Corporation Maskless process for suspending and thinning nanowires
KR101040449B1 (en) * 2009-02-06 2011-06-09 연세대학교 산학협력단 Method for composition of silicon nano structures using organomonosilane and silicon tetrachloride
US8110167B2 (en) 2009-02-10 2012-02-07 Battelle Memorial Institute Nanowire synthesis from vapor and solid sources
WO2010115143A1 (en) * 2009-04-03 2010-10-07 University Of Southern California Surface modification of nanosensor platforms to increase sensitivity and reproducibility
FR2944783B1 (en) * 2009-04-28 2011-06-03 Commissariat Energie Atomique PROCESS FOR THE PRODUCTION OF SILICON NANOWILS AND / OR GERMANIUM
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
CN101880023B (en) * 2009-05-08 2015-08-26 清华大学 Nanomaterial membrane structure
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
WO2010131241A2 (en) * 2009-05-13 2010-11-18 Yevgeni Preezant Improved photo-voltaic cell structure
KR101935416B1 (en) 2009-05-19 2019-01-07 원드 매터리얼 엘엘씨 Nanostructured materials for battery applications
JP2012528020A (en) 2009-05-26 2012-11-12 ナノシス・インク. Methods and systems for electric field deposition of nanowires and other devices
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
US9297796B2 (en) 2009-09-24 2016-03-29 President And Fellows Of Harvard College Bent nanowires and related probing of species
EP2499686A2 (en) 2009-11-11 2012-09-19 Amprius, Inc. Intermediate layers for electrode fabrication
US8841652B2 (en) * 2009-11-30 2014-09-23 International Business Machines Corporation Self aligned carbide source/drain FET
WO2011066570A2 (en) * 2009-11-30 2011-06-03 California Institute Of Technology Semiconductor wire array structures, and solar cells and photodetectors based on such structures
US20110127492A1 (en) 2009-11-30 2011-06-02 International Business Machines Corporation Field Effect Transistor Having Nanostructure Channel
US7991340B2 (en) * 2009-12-16 2011-08-02 Xerox Corporation Fuser member
JP5753192B2 (en) * 2009-12-22 2015-07-22 クナノ・アーベー Method for manufacturing a nanowire structure
US8377729B2 (en) * 2010-01-19 2013-02-19 Eastman Kodak Company Forming II-VI core-shell semiconductor nanowires
JP5599906B2 (en) * 2010-03-11 2014-10-01 エルジー・ケム・リミテッド Belt-like metal nanostructure and manufacturing method thereof
WO2011112021A2 (en) 2010-03-11 2011-09-15 주식회사 엘지화학 Method for manufacturing metal nanobelt
WO2011156042A2 (en) 2010-03-23 2011-12-15 California Institute Of Technology Heterojunction wire array solar cells
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR101838627B1 (en) * 2010-05-28 2018-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Energy storage device and manufacturing method thereof
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
US8211535B2 (en) 2010-06-07 2012-07-03 Xerox Corporation Nano-fibrils in a fuser member
TWI477438B (en) * 2010-06-23 2015-03-21 Hon Hai Prec Ind Co Ltd Nanowire film and manufacturing method of same
CN102294852B (en) * 2010-06-24 2014-07-16 鸿富锦精密工业(深圳)有限公司 Nano wire film and manufacturing method thereof
US8680510B2 (en) * 2010-06-28 2014-03-25 International Business Machines Corporation Method of forming compound semiconductor
WO2012024114A2 (en) * 2010-08-20 2012-02-23 Applied Materials, Inc. Methods for forming a hydrogen free silicon containing dielectric film
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
EP2727175A4 (en) 2011-07-01 2015-07-01 Amprius Inc Template electrode structures with enhanced adhesion characteristics
HUE057562T2 (en) 2011-07-26 2022-06-28 Oned Mat Inc Method for producing silicon nanowires
CN102409462B (en) * 2011-08-31 2014-01-22 青岛大学 Method for printing disordered micro nanofibers into ordered fiber array
US10483385B2 (en) 2011-12-23 2019-11-19 Intel Corporation Nanowire structures having wrap-around contacts
US10026560B2 (en) 2012-01-13 2018-07-17 The California Institute Of Technology Solar fuels generator
WO2013106793A1 (en) 2012-01-13 2013-07-18 California Institute Of Technology Solar fuel generators
KR101339962B1 (en) * 2012-02-06 2013-12-10 한국과학기술원 METHOD OF FABRICATING AN AuAg Single Crystal NANOWIRE
CN102569034A (en) * 2012-02-15 2012-07-11 中国科学院半导体研究所 Method for growing of InAs nanowire on naturally oxidized Si substrate
US10090425B2 (en) 2012-02-21 2018-10-02 California Institute Of Technology Axially-integrated epitaxially-grown tandem wire arrays
WO2013152043A1 (en) 2012-04-02 2013-10-10 California Institute Of Technology Solar fuels generator
WO2013152132A1 (en) 2012-04-03 2013-10-10 The California Institute Of Technology Semiconductor structures for fuel generation
CN102701138A (en) * 2012-04-27 2012-10-03 苏州大学 Large-area layering etching and transferring method of auxiliary metal silicon nanometer line array
US20150322589A1 (en) * 2012-06-29 2015-11-12 Northeastern University Three-Dimensional Crystalline, Homogenous, and Hybrid Nanostructures Fabricated by Electric Field Directed Assembly of Nanoelements
US9457128B2 (en) 2012-09-07 2016-10-04 President And Fellows Of Harvard College Scaffolds comprising nanoelectronic components for cells, tissues, and other applications
US9786850B2 (en) * 2012-09-07 2017-10-10 President And Fellows Of Harvard College Methods and systems for scaffolds comprising nanoelectronic components
CN103255374A (en) * 2012-09-19 2013-08-21 苏州大学 Method for preparing ordered one-dimensional organic nano wire array
FR3000298B1 (en) * 2012-12-20 2015-01-16 Aledia OPTIMIZED PROCESS FOR MANUFACTURING ELECTROLUMINESCENT NANOWIRES
US9553223B2 (en) 2013-01-24 2017-01-24 California Institute Of Technology Method for alignment of microwires
US9287516B2 (en) * 2014-04-07 2016-03-15 International Business Machines Corporation Forming pn junction contacts by different dielectrics
CN104762608B (en) * 2015-03-05 2017-07-25 湖南大学 A kind of preparation method of the controllable horizontal CdS nano-wire arrays of the direction of growth
US9774033B2 (en) * 2015-03-27 2017-09-26 Nanotek Instruments, Inc. Process for producing silicon nanowires directly from silicon particles
US20180178207A1 (en) * 2015-08-24 2018-06-28 Okinawa Institute Of Science And Technology School Corporation In-situ growth and catalytic nanoparticle decoration of metal oxide nanowires
EP3188260B1 (en) * 2015-12-31 2020-02-12 Dow Global Technologies Llc Nanostructure material structures and methods
KR101787435B1 (en) * 2016-02-29 2017-10-19 피에스아이 주식회사 Method for manufacturing nanorods
US10420939B2 (en) * 2016-03-31 2019-09-24 The Cleveland Clinic Foundation Nerve stimulation to promote neuroregeneration
US10259704B2 (en) 2016-04-07 2019-04-16 Regents Of The University Of Minnesota Nanopillar-based articles and methods of manufacture
WO2018013991A2 (en) 2016-07-15 2018-01-18 Oned Material Llc Manufacturing apparatus and method for making silicon nanowires on carbon based powders for use in batteries
CN106367063B (en) * 2016-08-10 2022-02-22 渤海大学 S-doped SiO2 microsphere and preparation method thereof
CN106825601B (en) * 2016-12-30 2019-03-29 西安交通大学青岛研究院 A kind of preparation method of silver nanowires
CN107146760A (en) * 2017-05-11 2017-09-08 中国科学院物理研究所 FET, its preparation method and application based on topological insulator nano wire
CN110164997B (en) * 2019-06-05 2020-09-29 山东大学 High-performance infrared detector based on high-hole-mobility GaSb nanowire and preparation method thereof
KR102184173B1 (en) * 2019-12-09 2020-11-27 전남대학교 산학협력단 Method for transfering semiconductor nanowires
CN113523270B (en) * 2021-07-08 2023-03-31 哈尔滨理工大学 Preparation method of metal nanowire array based on interface reaction and solid-state phase change
CN115820112B (en) * 2022-12-01 2023-09-19 广东美的白色家电技术创新中心有限公司 Coating composition and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235675B1 (en) * 1998-09-22 2001-05-22 Idaho Research Foundation, Inc. Methods of forming materials containing carbon and boron, methods of forming catalysts, filaments comprising boron and carbon, and catalysts
US6248674B1 (en) * 2000-02-02 2001-06-19 Hewlett-Packard Company Method of aligning nanowires
US6383923B1 (en) * 1999-10-05 2002-05-07 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US20020130311A1 (en) * 2000-08-22 2002-09-19 Lieber Charles M. Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20020175408A1 (en) * 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6773616B1 (en) * 2001-11-13 2004-08-10 Hewlett-Packard Development Company, L.P. Formation of nanoscale wires
US6831017B1 (en) * 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218204A (en) * 1962-07-13 1965-11-16 Monsanto Co Use of hydrogen halide as a carrier gas in forming ii-vi compound from a crude ii-vicompound
US5332910A (en) 1991-03-22 1994-07-26 Hitachi, Ltd. Semiconductor optical device with nanowhiskers
US5196396A (en) 1991-07-16 1993-03-23 The President And Fellows Of Harvard College Method of making a superconducting fullerene composition by reacting a fullerene with an alloy containing alkali metal
US5274602A (en) 1991-10-22 1993-12-28 Florida Atlantic University Large capacity solid-state memory
US5505928A (en) * 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
WO1993010564A1 (en) 1991-11-22 1993-05-27 The Regents Of The University Of California Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers
JP2697474B2 (en) * 1992-04-30 1998-01-14 松下電器産業株式会社 Manufacturing method of microstructure
US5252835A (en) 1992-07-17 1993-10-12 President And Trustees Of Harvard College Machining oxide thin-films with an atomic force microscope: pattern and object formation on the nanometer scale
US5338430A (en) 1992-12-23 1994-08-16 Minnesota Mining And Manufacturing Company Nanostructured electrode membranes
US6048616A (en) 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
WO1995002709A2 (en) 1993-07-15 1995-01-26 President And Fellows Of Harvard College EXTENDED NITRIDE MATERIAL COMPRISING β-C3N¿4?
US5962863A (en) 1993-09-09 1999-10-05 The United States Of America As Represented By The Secretary Of The Navy Laterally disposed nanostructures of silicon on an insulating substrate
US5512131A (en) 1993-10-04 1996-04-30 President And Fellows Of Harvard College Formation of microstamped patterns on surfaces and derivative articles
US20030044777A1 (en) 1993-10-28 2003-03-06 Kenneth L. Beattie Flowthrough devices for multiple discrete binding reactions
EP0812434B1 (en) 1995-03-01 2013-09-18 President and Fellows of Harvard College Microcontact printing on surfaces and derivative articles
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
US6190634B1 (en) 1995-06-07 2001-02-20 President And Fellows Of Harvard College Carbide nanomaterials
US5690807A (en) 1995-08-03 1997-11-25 Massachusetts Institute Of Technology Method for producing semiconductor particles
JP3478012B2 (en) 1995-09-29 2003-12-10 ソニー株式会社 Method for manufacturing thin film semiconductor device
US5869405A (en) 1996-01-03 1999-02-09 Micron Technology, Inc. In situ rapid thermal etch and rapid thermal oxidation
US6036774A (en) 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US5897945A (en) 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
EP0792688A1 (en) 1996-03-01 1997-09-03 Dow Corning Corporation Nanoparticles of silicon oxide alloys
US5640343A (en) 1996-03-18 1997-06-17 International Business Machines Corporation Magnetic memory array using magnetic tunnel junction devices in the memory cells
JPH10106960A (en) 1996-09-25 1998-04-24 Sony Corp Manufacture of quantum thin line
US5976957A (en) 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
US5997832A (en) 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
US6413489B1 (en) 1997-04-15 2002-07-02 Massachusetts Institute Of Technology Synthesis of nanometer-sized particles by reverse micelle mediated techniques
JPH1186719A (en) * 1997-09-05 1999-03-30 Yamaha Corp Manufacture of field emission element
WO1999014381A1 (en) * 1997-09-15 1999-03-25 'holderbank' Financiere Glarus Ag Steel slag and ferriferous material reprocessing process useful to produce pig iron and environmentally compatible slags
US6004444A (en) 1997-11-05 1999-12-21 The Trustees Of Princeton University Biomimetic pathways for assembling inorganic thin films and oriented mesoscopic silicate patterns through guided growth
US6322901B1 (en) 1997-11-13 2001-11-27 Massachusetts Institute Of Technology Highly luminescent color-selective nano-crystalline materials
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
US6159742A (en) 1998-06-05 2000-12-12 President And Fellows Of Harvard College Nanometer-scale microscopy probes
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
US6815218B1 (en) 1999-06-09 2004-11-09 Massachusetts Institute Of Technology Methods for manufacturing bioelectronic devices
ATE481745T1 (en) 1999-07-02 2010-10-15 Harvard College ARRANGEMENT CONTAINING NANOSCOPIC WIRE, LOGICAL FIELDS AND METHOD FOR THE PRODUCTION THEREOF
US6438025B1 (en) 1999-09-08 2002-08-20 Sergei Skarupo Magnetic memory device
RU2173003C2 (en) 1999-11-25 2001-08-27 Септре Электроникс Лимитед Method for producing silicon nanostructure, lattice of silicon quantum conducting tunnels, and devices built around them
KR100480773B1 (en) * 2000-01-07 2005-04-06 삼성에스디아이 주식회사 Method for fabricating triode-structure carbon nanotube field emitter array
US6306736B1 (en) 2000-02-04 2001-10-23 The Regents Of The University Of California Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process
US6225198B1 (en) 2000-02-04 2001-05-01 The Regents Of The University Of California Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
US6360736B1 (en) * 2000-02-18 2002-03-26 Yung Che Cheng Air gun firing system
WO2001081487A1 (en) 2000-04-21 2001-11-01 Science & Technology Corporation @ Unm Prototyping of patterned functional nanostructures
KR100360476B1 (en) 2000-06-27 2002-11-08 삼성전자 주식회사 Vertical nano-size transistor using carbon nanotubes and manufacturing method thereof
WO2002003472A2 (en) 2000-06-29 2002-01-10 California Institute Of Technology Aerosol silicon nanoparticles for use in semiconductor device fabrication
EP1299914B1 (en) 2000-07-04 2008-04-02 Qimonda AG Field effect transistor
US6515339B2 (en) 2000-07-18 2003-02-04 Lg Electronics Inc. Method of horizontally growing carbon nanotubes and field effect transistor using the carbon nanotubes grown by the method
US6447663B1 (en) 2000-08-01 2002-09-10 Ut-Battelle, Llc Programmable nanometer-scale electrolytic metal deposition and depletion
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
CA2430888C (en) 2000-12-11 2013-10-22 President And Fellows Of Harvard College Nanosensors
EP1362367A2 (en) 2001-01-23 2003-11-19 Quantum Polymer Technologies, Inc. Conductive polymer materials and methods for their manufacture and use
AU2002251946A1 (en) 2001-02-14 2002-08-28 Science And Technology Corporation @ Unm Nanostructured devices for separation and analysis
US6593065B2 (en) 2001-03-12 2003-07-15 California Institute Of Technology Method of fabricating nanometer-scale flowchannels and trenches with self-aligned electrodes and the structures formed by the same
WO2002073699A2 (en) 2001-03-14 2002-09-19 University Of Massachusetts Nanofabrication
US6797336B2 (en) * 2001-03-22 2004-09-28 Ambp Tech Corporation Multi-component substances and processes for preparation thereof
US6486958B1 (en) * 2001-04-24 2002-11-26 Agilent Technologies, Inc. Method and system for optical spectrum analysis with matched filter detection
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
JP2004535066A (en) * 2001-05-18 2004-11-18 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Nanoscale wires and related devices
US6858455B2 (en) 2001-05-25 2005-02-22 Ut-Battelle, Llc Gated fabrication of nanostructure field emission cathode material within a device
US6896864B2 (en) 2001-07-10 2005-05-24 Battelle Memorial Institute Spatial localization of dispersed single walled carbon nanotubes into useful structures
NZ513637A (en) 2001-08-20 2004-02-27 Canterprise Ltd Nanoscale electronic devices & fabrication methods
JP2005501404A (en) 2001-08-30 2005-01-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetoresistive device and electronic device
WO2003050854A2 (en) 2001-12-12 2003-06-19 The Pennsylvania State University Chemical reactor templates: sacrificial layer fabrication and template use
US7049625B2 (en) 2002-03-18 2006-05-23 Max-Planck-Gesellschaft Zur Fonderung Der Wissenschaften E.V. Field effect transistor memory cell, memory device and method for manufacturing a field effect transistor memory cell
US6872645B2 (en) 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6760245B2 (en) 2002-05-01 2004-07-06 Hewlett-Packard Development Company, L.P. Molecular wire crossbar flash memory
US6815750B1 (en) * 2002-05-22 2004-11-09 Hewlett-Packard Development Company, L.P. Field effect transistor with channel extending through layers on a substrate
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
AU2003268487A1 (en) 2002-09-05 2004-03-29 Nanosys, Inc. Nanocomposites
US7662313B2 (en) 2002-09-05 2010-02-16 Nanosys, Inc. Oriented nanostructures and methods of preparing
EP1540741B1 (en) 2002-09-05 2014-10-29 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7115916B2 (en) 2002-09-26 2006-10-03 International Business Machines Corporation System and method for molecular optical emission
AU2003283973B2 (en) 2002-09-30 2008-10-30 Oned Material Llc Large-area nanoenabled macroelectronic substrates and uses therefor
WO2004032190A2 (en) 2002-09-30 2004-04-15 Nanosys, Inc. Integrated displays using nanowire transistors
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
WO2004032191A2 (en) 2002-09-30 2004-04-15 Nanosys, Inc. Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
ATE321087T1 (en) * 2002-12-21 2006-04-15 Goldschmidt Gmbh METHOD FOR PROCESSING POLYETHER SILOXANES
JP2007505991A (en) 2003-09-04 2007-03-15 ナノシス・インク. Nanocrystal processing method and composition, device and system comprising said nanocrystal
US7067328B2 (en) * 2003-09-25 2006-06-27 Nanosys, Inc. Methods, devices and compositions for depositing and orienting nanostructures
US7628974B2 (en) * 2003-10-22 2009-12-08 International Business Machines Corporation Control of carbon nanotube diameter using CVD or PECVD growth
US7208094B2 (en) * 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
US7018549B2 (en) * 2003-12-29 2006-03-28 Intel Corporation Method of fabricating multiple nanowires of uniform length from a single catalytic nanoparticle
US20050279274A1 (en) 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US7129154B2 (en) 2004-05-28 2006-10-31 Agilent Technologies, Inc Method of growing semiconductor nanowires with uniform cross-sectional area using chemical vapor deposition
US20060057388A1 (en) * 2004-09-10 2006-03-16 Sungho Jin Aligned and open-ended nanotube structure and method for making the same
WO2006038504A1 (en) * 2004-10-04 2006-04-13 Matsushita Electric Industrial Co., Ltd. Vertical field effect transistor and method for making the same
US20060276056A1 (en) * 2005-04-05 2006-12-07 Nantero, Inc. Nanotube articles with adjustable electrical conductivity and methods of making the same
US20070037365A1 (en) * 2005-08-15 2007-02-15 Ranganath Tirumala R Semiconductor nanostructures and fabricating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6235675B1 (en) * 1998-09-22 2001-05-22 Idaho Research Foundation, Inc. Methods of forming materials containing carbon and boron, methods of forming catalysts, filaments comprising boron and carbon, and catalysts
US6383923B1 (en) * 1999-10-05 2002-05-07 Agere Systems Guardian Corp. Article comprising vertically nano-interconnected circuit devices and method for making the same
US6248674B1 (en) * 2000-02-02 2001-06-19 Hewlett-Packard Company Method of aligning nanowires
US20020130311A1 (en) * 2000-08-22 2002-09-19 Lieber Charles M. Doped elongated semiconductors, growing such semiconductors, devices including such semiconductors and fabricating such devices
US20020175408A1 (en) * 2001-03-30 2002-11-28 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6773616B1 (en) * 2001-11-13 2004-08-10 Hewlett-Packard Development Company, L.P. Formation of nanoscale wires
US6831017B1 (en) * 2002-04-05 2004-12-14 Integrated Nanosystems, Inc. Catalyst patterning for nanowire devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TANG T. ET AL: "Synthesis of InN Nanowires Using a Two-Zone Chemical Vapor Deposition Approach", IEEE, 14 August 2003 (2003-08-14), pages 205 - 207, XP010658006 *
WANG D. ET AL: "Low Temperature Synthesis of Single-Crystal Germanium Nanowires by Chemical Vapor Deposition", ANGEW. CHEM. INT. ED., vol. 41, no. 24, 2002, pages 4783 - 4786, XP003002703 *

Also Published As

Publication number Publication date
CN101010780B (en) 2012-07-25
US7105428B2 (en) 2006-09-12
US20060019472A1 (en) 2006-01-26
US7666791B2 (en) 2010-02-23
US7273732B2 (en) 2007-09-25
KR20070011550A (en) 2007-01-24
CA2564220A1 (en) 2005-12-15
EP1747577A2 (en) 2007-01-31
US20080072818A1 (en) 2008-03-27
CN102351169A (en) 2012-02-15
CN101010780A (en) 2007-08-01
US20060255481A1 (en) 2006-11-16
CN102351169B (en) 2013-11-27
WO2005119753A2 (en) 2005-12-15
JP2007535413A (en) 2007-12-06
AU2005251089A1 (en) 2005-12-15

Similar Documents

Publication Publication Date Title
WO2005119753A3 (en) Systems and methods for nanowire growth and harvesting
WO2007136412A3 (en) Methods for oriented growth of nanowires on patterned substrates
WO2006068654A3 (en) Systems and methods for nanowire growth and manufacturing
EP1975984A3 (en) Compound semiconductor device including ain layer of controlled skewness
EP1936668A3 (en) Nitride semiconductor substrate and manufacturing method thereof
EP2080823A4 (en) Group iii element nitride substrate, substrate with epitaxial layer, processes for producing these, and process for producing semiconductor element
EP2271794A4 (en) Epitaxial growth on low degree off-axis silicon carbide substrates and semiconductor devices made thereby
WO2007103249A3 (en) Methods of forming thermoelectric devices using islands of thermoelectric material and related structures
WO2005027201A8 (en) Method of fabrication and device comprising elongated nanosize elements
JP2008528420A5 (en)
EP1736572A4 (en) Group iii nitride crystal substrate, method for producing same, and group iii nitride semiconductor device
EP2230332A4 (en) Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
TW200610192A (en) Group III nitride semiconductor crystal and manufacturing method of the same, group III nitride semiconductor device and manufacturing method of the same, and light emitting device
EP1787330A4 (en) Fabrication of nonpolar indium gallium nitride thin films, heterostructures and devices by metalorganic chemical vapor deposition
EP2016614A4 (en) Method of zinc oxide film grown on the epitaxial lateral overgrowth gallium nitride template
HK1088715A1 (en) Single crystal gallium nitride substrate, method of growing the same and method of producing the same
WO2007098215A8 (en) Method for growth of semipolar (al,in,ga,b)n optoelectronic devices
TW200833885A (en) Nitride semiconductor device and nitride semiconductor manufacturing method
WO2008149548A1 (en) Semiconductor nanowire and its manufacturing method
EP1754811A4 (en) Iii group nitride crystal and method for preparation thereof, and iii group nitride crystal substrate and semiconductor device
WO2009017856A3 (en) Semiconductor nanowire thermoelectric materials and devices, and processes for producing same
EP1931818A4 (en) Method for epitaxial growth of silicon carbide
GB2420118B (en) A trimethylgallium, a method for producing the same and a gallium nitride thin film grown from the trimethylgallium
TW200721516A (en) Silicon-based photodetector and method of fabricating the same
PL2122015T3 (en) Method for manufacturing a single crystal of nitride by epitaxial growth on a substrate preventing growth on the edges of the substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2564220

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007511037

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005251089

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005779674

Country of ref document: EP

Ref document number: 1020067025129

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2005251089

Country of ref document: AU

Date of ref document: 20050429

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005251089

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200580021904.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067025129

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005779674

Country of ref document: EP