WO2005120337A2 - Biofeedback ring sensors - Google Patents

Biofeedback ring sensors Download PDF

Info

Publication number
WO2005120337A2
WO2005120337A2 PCT/US2005/019091 US2005019091W WO2005120337A2 WO 2005120337 A2 WO2005120337 A2 WO 2005120337A2 US 2005019091 W US2005019091 W US 2005019091W WO 2005120337 A2 WO2005120337 A2 WO 2005120337A2
Authority
WO
WIPO (PCT)
Prior art keywords
appendage
rest
wing
biasing member
sensor
Prior art date
Application number
PCT/US2005/019091
Other languages
French (fr)
Other versions
WO2005120337A3 (en
Inventor
Kurt Smith
Corwin Bell
Jan Delaney
Todd Gilbreath
Ehsan Alipour
Timothy Nutt
Eric Edward Schultz
Original Assignee
Healing Rhythms, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Healing Rhythms, Inc. filed Critical Healing Rhythms, Inc.
Publication of WO2005120337A2 publication Critical patent/WO2005120337A2/en
Publication of WO2005120337A3 publication Critical patent/WO2005120337A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient

Definitions

  • Biofeedback sensors provide information about physiological aspects of a person.
  • the client sits in a chair or lays on a couch or bed.
  • Sensors are attached to the client's skin at various locations on the body, such as, for example, the shoulders, fingers, back, and head. Electrical signals or impulses from these locations are used to provide visual or auditory feedback reflecting various information.
  • Other variations on biofeedback sessions are possible, with the above being an exemplary type of biofeedback session for background purposes.
  • Some biofeedback sensors are simple electrodes attached to the client using an adhesive tab with an electrical contact or electrode.
  • the electrode sensors are good measures of electrical information, such as epidural skin response, which is a measure of skin resistance and useful for measuring stress or the like, the use of adhesives on the client can result in an unpleasant removal experience.
  • the simple electrode sensor is attached to a VELCRO strip and wrapped around an appendage, such as, for example, a finger.
  • Another type of biofeedback sensor is an infrared sensor. Infrared sensors generally are not used to determine skin electrical responses, but may be used to determine other biometric information, such as, heart rate, blood pressure, blood oxygen levels, or the like.
  • infrared sensor can be place on the client using an adhesive tab, they are more typically located by locating the infrared sensor on the client, and wrapping tape, VELCRO® straps, an elastic bandage, or the like around the client and the sensor to locate the infrared sensor. Again, while the sensor is adequate for measuring the biometric information, using tape, VELCRO® straps or the like leaves much to be desired. Frequently, the attachment devices wear out requiring frequent replacement. Some infrared sensors are loaded in clip style devices, such as, for example, an ear clip or a finger clip. While these clips work somewhat better than the attachment devices above, they are frequently bulky and not well suited for all individuals. Thus, it would be desirous to develop and improved finger sensor to read biometric information.
  • the present invention provides an improved finger sensor.
  • the improved finger sensor comprises an appendage rest with a sensor coupled to the apparatus such that when an appendage of a client is in the appendage rest, the sensor measures biometric information.
  • a cover or wing pivotally connected to the apparatus is attached to a biasing member that provides a compressive force to the appendage tending to snuggly contain the appendage in the appendage rest with the wing.
  • the present invention also provides a system for obtaining a plurality of biometric information using a plurality of sensors. Each of the sensors comprises an appendage rest and a cover pivotally connected to the appendage rest.
  • FIG. 1 is an exploded view of a biofeedback sensor constructed in accordance with an embodiment of the present invention
  • FIG. 2 A and 2B are side elevation views of wings associated with the biofeedback sensor of FIG. 1;
  • FIG. 3 is a top plan view of a finger rest associated with the biofeedback sensor of FIG. 1;
  • FIG. 4 is a top plan view of a bottom associated with the biofeedback sensor of FIG. 1;
  • FIG. 5 is a side elevation view of a elastic biasing member associated with the biofeedback sensor of FIG. 1;
  • FIG. 6A-6C show a top plan view, a side elevations view, and a front elevation view of the biofeedback sensor of FIG. 1;
  • FIG. 7 is a cross-sectional view of another means for attaching the finger rest and bottom of figure 1 ;
  • FIG. 8 is a cross-sectional view of still another means for attaching the finger rest and bottom of figure 1.
  • FIGS. 1 to 8 are diagrammatic and schematic representations of particular embodiments of the present invention, and are not limiting, nor are they drawn to scale. Further, while the present invention is described in relation to a finger sensor, the sensor could be placed in other locations, such as a toe or the like. Finally, while the present invention is described using an electrode and/or an infrared biofeedback sensor, one of ordinary skill in the art would recognize on reading the disclosure that other types of biofeedback sensors could be used. Referring first to FIG. 1, an exploded view of a biofeedback sensor 100 is shown.
  • Biofeedback sensor 100 includes a bottom 102, a finger rest 104, a pair of elastic biasing members 106, such as the springs as shown, pins 108, and a pair of top wings 110 or panels. While shown with two elastic biasing members 106 and two top wings 110, biofeedback sensor 100 could be constructed with one elastic biasing member 106 and top wing 110, but it is believed using two wings 110 provides a better fit and aesthetic design. As shown, bottom 102 is coupled to fmger rest 104 by pegs 112 on finger rest 104 frictionally engaging holes 114 on bottom 102.
  • Pegs 112 could be replaced by through holes 702, and holes 114 could be threaded holes 704 such that screws 706 could be inserted through through holes 702 and threaded into threaded holes 704.
  • Bottom rest 102 has a plurality of shoulders 116 and a plurality of alignment tabs 118 with a pin hole 120 in each alignment tab.
  • Finger rest 104 has a corresponding number of lips 122 and a plurality of alignment tabs 118 each with pin hole 120, such that when aligned, the pin holes are sufficiently aligned that pins 108 can be inserted through each of the pin holes.
  • Pins 108 form axles that top wings 110 may pivot on, as will be explained further below. In other words, wings 110 pivot about a longitudinal axis A (as shown in FIG.
  • Top wings 110 have each have at least one alignment tab 124. Alignment tabs 124 each have pin hole 120 such that when alignment tabs 124 are positioned on fmger rest 104, pin 108 is inserted through pin holes 120. Pin 108 acts similar to a hinge allowing top wings 110 to pivot about pin 108.
  • Elastic biasing members 106 are mounted on pins 108, as shown by FIG. 5. Elastic biasing member 106 has prongs 502 and 504. Prong 502 is substantially aligned with finger rest 104 or bottom 102 while prong 504 is substantially aligned with wing 110.
  • Elastic biasing member 106 is generally under a compressive force, tending to cause wings 110 to pivot towards bottom 102.
  • wings 110 pivot away from bottom 102 by the pressure associated with inserting a fmger, but the compressive force associated with elastic biasing member 106 exerts a pressure tending to caused wings 110 to pivot towards bottom 102 causing a snug, but comfortable, fit on the finger of a client.
  • tension or compression members would be equally useful, such as, for example, spring steel, plastic composites with sufficient elasticity, or the like.
  • the elastic biasing member simply needs to supply sufficient force that wings 110 seat snuggly, but not uncomfortably, on the appendage of the client. While a number of torque values are possible, it has been found that biasing member 106 works well if the torque value is between 200 and 600 gf For the specific design shown where the covers portions 202 and 204 are specifically contoured, it has been found that having different biasing values for each member provides a snug fit on the appendage. In this case, the torque value for the right biasing member would be in the range of about 350 gf to 400 gf and more preferably 360 gf.
  • the torque value for the left biasing member would be a greater torque and in the range of 450 gf to 500 gf and more preferably about 460 gf.
  • Bottom 102 (or finger rest 104) has a recess 130. If recess 130 is in bottom 102, fmger rest 104 has an opening 132 or window substantially aligned with recess 130.
  • An electrode 126 or infrared sensor 128 resides in recess 130 having an electrical cable coupled to connector 134 or wireless transmitter 136 to transmit the biofeedback signal to a processor (not shown). Opening 132 in finger rest 104 allows sensor, which could be, for example, infrared sensor 128 to sensor biometrics from a finger or other appendage resting on fmger rest 104.
  • FIG. 2A shows a side elevation view of a wing 110.
  • wing 110 has alignment tabs 124 with pin holes 120. Wing 110 pivots about pin 108 that would extend between alignment tabs 124.
  • FIG. 2B shows a side elevation view of the other wing 110.
  • Wings 110 have cover portions 202 and 204 designed to fold together over, for example, a fmger. While wings 110 could have identical shapes, individually contouring each cover portion 202 and 204 allows better fit. For example, cover portions 202 and 204 are contoured to fit the ring, middle, and index fmger of a client. Other contours are possible to fit other appendages as desired.
  • FIG. 6C shows how cover portions 202 and 204 fit together in more detail.
  • FIGS. 3A and 3B a top plan view (FIG. 3B) and a front elevation view (FIG. 3 A) of finger rest 104 is shown.
  • bottom 102 is partially shown below finger rest 104.
  • Finger rest 104 is designed with a rounded front end 302 and an open back end 304. While front end 302 is shown rounded, it could have other shapes, but it is believed a rounded end fits best with, for example, a fmger where ring type biometric sensors are typically located on a client.
  • a resting surface 306 has a concave shape generally contoured to the shape of an appendage, such as a finger or toe.
  • the tip of the client's finger (or distal end of an appendage) would be placed substantially adjacent or abutting rounded front end 302.
  • the knuckle end of the client's finger (or proximate end of an appendage) would extend out the open back end 304.
  • the fmger print part of the index finger (or corresponding part of another appendage) would reside substantially aligned with opening 132.
  • FIG. 4 a top plan view of bottom 102 is shown.
  • Bottom 102 has a concave lower surface 402 in which finger rest 104 resides.
  • Bottom 102 has an outer surface 404.
  • Outer surface 404 is shown as rounded to more conform to the appendage of a client, such as a client's fmger, but could be flat or other shapes as a matter of design choice.
  • Concave lower surface 402 contains recess 130, unless recess 130 is designed into finger rest 104, in which case finger rest 104 would not need opening 132.
  • Bottom 102 has shoulders 116. Extending from shoulders 116 are alignment tabs 118. The lips 122 of finger rest 104 may rest on shoulders 116 such that pin holes 120 in the alignment tabs 118 align sufficiently that pins 108 may be inserted through pin holes 120.
  • Pegs 112 of finger rest 104 are placed in holes 114 of bottom 102 to hold finger rest 104 in place. Notice, instead of a frictional engagement, pegs 112 could have a protrusion 802 and holes 114 could have a shoulder 804 such that pegs 112 and holes 114 form a snap-lock (see FIG.
  • FIGS. 6 A to 6C a top plan, side elevation, and front elevation view of sensor 100 is provided.
  • FIG. 6A shows how cover portions 202 and 204 of wings 110 fit together to form a snug enclosure 602 for an appendage of the client, such as, in this case, a finger.
  • covers 202 and 204 and front end 302 are contoured to fit a finger and could have alternative shapes to fit different appendages or for aesthetic reasons.
  • FIG. 6C also best shows pin 108 inserted into pin holes 120 to allow wings 110 to pivot.
  • Elastic biasing members 106 (not shown in FIGS. 6) cause wings 110 to "clamp" around a finger or other appendage of the client to form a snug fit.
  • bottom 102 also is contoured to generally match the contour of the appendage, but bottom 102 could have alternative configurations, such as, flat, rounded, elliptical, random, or the like and the shape of bottom 102 is largely a matter of design choice.
  • wings 110 "clamp" down on, for example, a finger, they may be constructed out of a plastic or have a pad 138 attached to rest on the finger.
  • Pad 138 may be a foam or gel layer that conforms more to the finger (or appendage) than, for example, a stiffer plastic or metal.

Abstract

The present invention provides a novel ring type sensor for measuring biometric information. The ring sensor includes a rest for an appendage and a wing pivotally connected to the rest. A biasing member supplies a compressive force to the wing (relative to the rest) such that an appendage from which biometric information is to be measured is snuggly held by the rest and the wing.

Description

BIOFEEDBACK RING SENSORS
FIELD OF THE INVENTION The present invention relates to biofeedback sensors and, more particularly, to biofeedback ring sensors. BACKGROUND OF THE INVENTION Biofeedback sensors provide information about physiological aspects of a person. In some biofeedback sessions, the client sits in a chair or lays on a couch or bed. Sensors are attached to the client's skin at various locations on the body, such as, for example, the shoulders, fingers, back, and head. Electrical signals or impulses from these locations are used to provide visual or auditory feedback reflecting various information. Other variations on biofeedback sessions are possible, with the above being an exemplary type of biofeedback session for background purposes. Some biofeedback sensors are simple electrodes attached to the client using an adhesive tab with an electrical contact or electrode. These adhesive tabs are placed in the desired locations on the client with the electrode between the client's skin and the tab. The electrode sensors are good measures of electrical information, such as epidural skin response, which is a measure of skin resistance and useful for measuring stress or the like, the use of adhesives on the client can result in an unpleasant removal experience. Sometimes the simple electrode sensor is attached to a VELCRO strip and wrapped around an appendage, such as, for example, a finger. Another type of biofeedback sensor is an infrared sensor. Infrared sensors generally are not used to determine skin electrical responses, but may be used to determine other biometric information, such as, heart rate, blood pressure, blood oxygen levels, or the like. Although infrared sensor can be place on the client using an adhesive tab, they are more typically located by locating the infrared sensor on the client, and wrapping tape, VELCRO® straps, an elastic bandage, or the like around the client and the sensor to locate the infrared sensor. Again, while the sensor is adequate for measuring the biometric information, using tape, VELCRO® straps or the like leaves much to be desired. Frequently, the attachment devices wear out requiring frequent replacement. Some infrared sensors are loaded in clip style devices, such as, for example, an ear clip or a finger clip. While these clips work somewhat better than the attachment devices above, they are frequently bulky and not well suited for all individuals. Thus, it would be desirous to develop and improved finger sensor to read biometric information.
SUMMARY OF THE INVENTION The present invention provides an improved finger sensor. The improved finger sensor comprises an appendage rest with a sensor coupled to the apparatus such that when an appendage of a client is in the appendage rest, the sensor measures biometric information. A cover or wing pivotally connected to the apparatus is attached to a biasing member that provides a compressive force to the appendage tending to snuggly contain the appendage in the appendage rest with the wing. The present invention also provides a system for obtaining a plurality of biometric information using a plurality of sensors. Each of the sensors comprises an appendage rest and a cover pivotally connected to the appendage rest. The pivotal connection includes means for causing the cover to snuggly hold an appendage of the user in the appendage rest such that a plurality of sensors measures biometric information. The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings. BRIEF DESCRIPTION OF THE DRAWING The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention, and together with the description, serve to explain the principles thereof. Like items in the drawings are referred to using the same numerical reference. FIG. 1 is an exploded view of a biofeedback sensor constructed in accordance with an embodiment of the present invention; FIGS. 2 A and 2B are side elevation views of wings associated with the biofeedback sensor of FIG. 1; FIG. 3 is a top plan view of a finger rest associated with the biofeedback sensor of FIG. 1; FIG. 4 is a top plan view of a bottom associated with the biofeedback sensor of FIG. 1; FIG. 5 is a side elevation view of a elastic biasing member associated with the biofeedback sensor of FIG. 1; FIG. 6A-6C show a top plan view, a side elevations view, and a front elevation view of the biofeedback sensor of FIG. 1; FIG. 7 is a cross-sectional view of another means for attaching the finger rest and bottom of figure 1 ; and FIG. 8 is a cross-sectional view of still another means for attaching the finger rest and bottom of figure 1.
DETAILED DESCRIPTION The present invention will be explained with specific reference to FIGS. 1 to 8. It is to be understood that the drawings are diagrammatic and schematic representations of particular embodiments of the present invention, and are not limiting, nor are they drawn to scale. Further, while the present invention is described in relation to a finger sensor, the sensor could be placed in other locations, such as a toe or the like. Finally, while the present invention is described using an electrode and/or an infrared biofeedback sensor, one of ordinary skill in the art would recognize on reading the disclosure that other types of biofeedback sensors could be used. Referring first to FIG. 1, an exploded view of a biofeedback sensor 100 is shown. Biofeedback sensor 100 includes a bottom 102, a finger rest 104, a pair of elastic biasing members 106, such as the springs as shown, pins 108, and a pair of top wings 110 or panels. While shown with two elastic biasing members 106 and two top wings 110, biofeedback sensor 100 could be constructed with one elastic biasing member 106 and top wing 110, but it is believed using two wings 110 provides a better fit and aesthetic design. As shown, bottom 102 is coupled to fmger rest 104 by pegs 112 on finger rest 104 frictionally engaging holes 114 on bottom 102. Pegs 112 could be replaced by through holes 702, and holes 114 could be threaded holes 704 such that screws 706 could be inserted through through holes 702 and threaded into threaded holes 704. Bottom rest 102 has a plurality of shoulders 116 and a plurality of alignment tabs 118 with a pin hole 120 in each alignment tab. Finger rest 104 has a corresponding number of lips 122 and a plurality of alignment tabs 118 each with pin hole 120, such that when aligned, the pin holes are sufficiently aligned that pins 108 can be inserted through each of the pin holes. Pins 108 form axles that top wings 110 may pivot on, as will be explained further below. In other words, wings 110 pivot about a longitudinal axis A (as shown in FIG. 6 A) rather than about a transverse axis B (orthogonal to axes A). Top wings 110 have each have at least one alignment tab 124. Alignment tabs 124 each have pin hole 120 such that when alignment tabs 124 are positioned on fmger rest 104, pin 108 is inserted through pin holes 120. Pin 108 acts similar to a hinge allowing top wings 110 to pivot about pin 108. Elastic biasing members 106 are mounted on pins 108, as shown by FIG. 5. Elastic biasing member 106 has prongs 502 and 504. Prong 502 is substantially aligned with finger rest 104 or bottom 102 while prong 504 is substantially aligned with wing 110. Elastic biasing member 106 is generally under a compressive force, tending to cause wings 110 to pivot towards bottom 102. Thus, when placed on a fmger, wings 110 pivot away from bottom 102 by the pressure associated with inserting a fmger, but the compressive force associated with elastic biasing member 106 exerts a pressure tending to caused wings 110 to pivot towards bottom 102 causing a snug, but comfortable, fit on the finger of a client. Finally, while shown as a coil spring for convenience, one of ordinary skill in the art would recognize that other tension or compression members would be equally useful, such as, for example, spring steel, plastic composites with sufficient elasticity, or the like. Basically, the elastic biasing member simply needs to supply sufficient force that wings 110 seat snuggly, but not uncomfortably, on the appendage of the client. While a number of torque values are possible, it has been found that biasing member 106 works well if the torque value is between 200 and 600 gf For the specific design shown where the covers portions 202 and 204 are specifically contoured, it has been found that having different biasing values for each member provides a snug fit on the appendage. In this case, the torque value for the right biasing member would be in the range of about 350 gf to 400 gf and more preferably 360 gf. The torque value for the left biasing member would be a greater torque and in the range of 450 gf to 500 gf and more preferably about 460 gf. Bottom 102 (or finger rest 104) has a recess 130. If recess 130 is in bottom 102, fmger rest 104 has an opening 132 or window substantially aligned with recess 130. An electrode 126 or infrared sensor 128 resides in recess 130 having an electrical cable coupled to connector 134 or wireless transmitter 136 to transmit the biofeedback signal to a processor (not shown). Opening 132 in finger rest 104 allows sensor, which could be, for example, infrared sensor 128 to sensor biometrics from a finger or other appendage resting on fmger rest 104. FIG. 2A shows a side elevation view of a wing 110. As described above, wing 110 has alignment tabs 124 with pin holes 120. Wing 110 pivots about pin 108 that would extend between alignment tabs 124. FIG. 2B shows a side elevation view of the other wing 110. Wings 110 have cover portions 202 and 204 designed to fold together over, for example, a fmger. While wings 110 could have identical shapes, individually contouring each cover portion 202 and 204 allows better fit. For example, cover portions 202 and 204 are contoured to fit the ring, middle, and index fmger of a client. Other contours are possible to fit other appendages as desired. FIG. 6C shows how cover portions 202 and 204 fit together in more detail. Referring now to FIGS. 3A and 3B, a top plan view (FIG. 3B) and a front elevation view (FIG. 3 A) of finger rest 104 is shown. In FIG. 3B, bottom 102 is partially shown below finger rest 104. Finger rest 104 is designed with a rounded front end 302 and an open back end 304. While front end 302 is shown rounded, it could have other shapes, but it is believed a rounded end fits best with, for example, a fmger where ring type biometric sensors are typically located on a client. A resting surface 306 has a concave shape generally contoured to the shape of an appendage, such as a finger or toe. If, for example, an index finger were resting on fmger rest 104, the tip of the client's finger (or distal end of an appendage) would be placed substantially adjacent or abutting rounded front end 302. The knuckle end of the client's finger (or proximate end of an appendage) would extend out the open back end 304. The fmger print part of the index finger (or corresponding part of another appendage) would reside substantially aligned with opening 132. Sensor, for example, infrared sensor 128 in recess 130 of bottom 102 would thus be proximate the appropriate part of the client's fmger (or other appendage) to read the appropriate biometric information, such as, for example, blood oxygen levels, pulse, or the like. Referring now to FIG. 4, a top plan view of bottom 102 is shown. Bottom 102 has a concave lower surface 402 in which finger rest 104 resides. Bottom 102 has an outer surface 404. Outer surface 404 is shown as rounded to more conform to the appendage of a client, such as a client's fmger, but could be flat or other shapes as a matter of design choice. Concave lower surface 402 contains recess 130, unless recess 130 is designed into finger rest 104, in which case finger rest 104 would not need opening 132. Bottom 102 has shoulders 116. Extending from shoulders 116 are alignment tabs 118. The lips 122 of finger rest 104 may rest on shoulders 116 such that pin holes 120 in the alignment tabs 118 align sufficiently that pins 108 may be inserted through pin holes 120. Pegs 112 of finger rest 104 are placed in holes 114 of bottom 102 to hold finger rest 104 in place. Notice, instead of a frictional engagement, pegs 112 could have a protrusion 802 and holes 114 could have a shoulder 804 such that pegs 112 and holes 114 form a snap-lock (see FIG. 8). Referring now to FIGS. 6 A to 6C, a top plan, side elevation, and front elevation view of sensor 100 is provided. FIG. 6A shows how cover portions 202 and 204 of wings 110 fit together to form a snug enclosure 602 for an appendage of the client, such as, in this case, a finger. As best seen in FIG. 6C, covers 202 and 204 and front end 302 are contoured to fit a finger and could have alternative shapes to fit different appendages or for aesthetic reasons. FIG. 6C also best shows pin 108 inserted into pin holes 120 to allow wings 110 to pivot. Elastic biasing members 106 (not shown in FIGS. 6) cause wings 110 to "clamp" around a finger or other appendage of the client to form a snug fit. As shown best in FIG. 6B, bottom 102 also is contoured to generally match the contour of the appendage, but bottom 102 could have alternative configurations, such as, flat, rounded, elliptical, random, or the like and the shape of bottom 102 is largely a matter of design choice. Because wings 110 "clamp" down on, for example, a finger, they may be constructed out of a plastic or have a pad 138 attached to rest on the finger. Pad 138 may be a foam or gel layer that conforms more to the finger (or appendage) than, for example, a stiffer plastic or metal. While the invention has been particularly shown and described with reference to an embodiment thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.

Claims

We claim: 1. A biofeedback measuring apparatus, comprising: an appendage rest; at least one sensor; the at least one sensor coupled to the apparatus such that when an appendage of a client is in the appendage rest, the at least one sensor can measure biometric information; a plurality of wings; a plurality of elastic biasing members coupled to the plurality of wings and the appendage rest; and the plurality of wings pivotally coupled to the appendage rest such that the plurality of elastic biasing members provide a force tending to snuggly contain the appendage in the appendage rest and the plurality of wings. 2. The apparatus of claim 1, further comprising: a bottom, the bottom coupled to the fmger rest; at least one recess located in the bottom for holding the at least one sensor; and wherein the appendage rest includes at least one opening substantially aligned with the at least one recess. 3. The apparatus of claim 1, wherein the plurality of elastic biasing members comprise springs. 4. The apparatus of claim 3, wherein the springs are selected from a group of springs consisting of coiled springs, leaf springs, spiral springs, and helical springs. 5. The apparatus according to claim 2 wherein the springs comprise spring steel. 6. The apparatus of claim 1, wherein the plurality of elastic biasing members comprise plastics. 7. The apparatus of claim 1, wherein the plurality of elastic biasing members comprise at least one of a member selected from the group consisting of coiled springs, helical springs, leaf springs, spiral springs, spring steels, and plastics. 8. The apparatus of claim 1, wherein the appendage rest and the plurality of wings form an enclosure for the appendage of the client. 9. The apparatus of claim 8, wherein the appendage rest is contoured to a shape to fit the appendage of the client. 10. The apparatus of claim 8, wherein the wings have at least one cover portion contoured to a shape to fit the appendage of the client. 11. The apparatus of claim 10, wherein the appendage rest is contoured to the shape to fit the appendage of the client such that the enclosure is generally the shape of the appendage. 12. The apparatus of claim 11, wherein the shape is the shape of a finger. 13. The apparatus of claim 1, wherein the appendage rest further comprises: a recess on a lower surface; and the sensor resides in the recess. 14. The apparatus of claim 1, further comprising a plurality of pads corresponding to the plurality of wings such that each cover has a pad between the cover and the appendage of the client. 15. A biofeedback apparatus, comprising: a bottom, the bottom having a recess; a sensor residing in the recess; the bottom having at least one shoulder; the bottom having at least one bottom alignment tab projecting from the at least one shoulder, the at least one bottom alignment tab having at least one bottom pin hole; an appendage rest, the appendage having at least one lip and at least one rest alignment tab, the at least one rest alignment tab having at least one rest pin hole, such that when the at least one lip abuts the at least one shoulder the at least one bottom alignment tab and the at least one rest alignment tab are arranged such that the at least one bottom pin hole and the at least one rest pin hole are aligned; at least one wing; the at least one wing having at least one cover and at least one wing alignment tab with at least one wing pin hole; and at least one pin, wherein the at least one wing is pivotally coupled to the bottom and the appendage rest by aligning the at least one wing alignment tab with the at least one bottom alignment tab and the at least one rest alignment tab such that the at least one wing pin hole, the at least one rest pin hole, and the at least one bottom pin hole align such that the at least one pin can be inserted, wherein the appendage rest and the at least one wing form an enclosure to enclose an appendage of a client and retain the appendage in proximity to the sensor such that the sensor can obtain biometric information from the appendage through the opening in the appendage rest. 16. The apparatus of claim 15, further comprising: at least one elastic biasing member; the at least one elastic biasing member is coupled to the at least one pin and provides pivotal force to the at least one wing. 17. The apparatus according to claim 16, wherein pivotal force tends to cause the wing to fit snuggly on the appendage of the client. 18. The apparatus according to claim 15, wherein the appendage rest and the at least one wing are contoured to conform to the appendage of the client. 19. The apparatus according to claim 15, further comprising at least one pad coupled to the at least one wing such that the at least one pad resides between the at least one wing and the appendage of the client. 20. The apparatus according to claim 16, wherein the at least one elastic biasing member is a spring. 21. The apparatus of claim 15, wherein the bottom comprises a plurality of holes; the appendage rest comprises a plurality of pegs, wherein when the bottom and the appendage rest are coupled together, the plurality of pegs reside in the plurality of holes. 22. The apparatus of claim 21, wherein the plurality of pegs and the plurality of holes form a frictional engagement. 23. The apparatus of claim 21, wherein each of the plurality of holes comprises at least one shoulder, and each of the plurality of pegs comprise at least one lip, such that the plurality of holes and plurality of pegs form a snap lock. 24. The apparatus of claim 15, wherein the bottom further comprises a plurality of threaded holes and the appendage rest comprises a corresponding plurality of through holes, further comprising a plurality of threaded members extending through the plurality of through holes and threaded into the plurality of threaded holes to couple the bottom and the appendage rest together.
I 25. A biofeedback measuring apparatus, comprising: an appendage rest; at least one sensor; the at least one sensor coupled to the apparatus such that when an appendage of a client is in the appendage rest, the at least one sensor can measure biometric information; at least one wing; at least one elastic biasing member coupled to the at least one wing and the appendage rest; and the at least one wing pivotally coupled to the appendage rest so the at least one wing pivots about a longitudinal axis and such that the at least one elastic biasing member provides a force tending to snuggly contain the appendage in the appendage rest and the at least one wing. 26. The apparatus of claim 25, further comprising: a bottom, the bottom coupled to the finger rest; at least one recess located in the bottom for holding the at least one sensor; and wherein the appendage rest includes at least one opening substantially aligned with the at least one recess. 27. The apparatus of claim 25, wherein the at least one biasing member provides a compressive force. 28. The apparatus of claim 27, wherein the compressive force is about 200 gf to about 600 gf. 29. The apparatus of claim 28, wherein the compressive force is about 350 gf to about 500 gf. 30. The apparatus of claim 25, wherein the at least one wing comprises at least a left wing and a right wing and the at least one biasing member comprises a left biasing member and a right biasing member. 31. The apparatus of claim 30, wherein the left biasing member and the right biasing member provide a compressive force in the range of about
200 gf to about 600 gf. 32. The apparatus of claim 31, wherein the left biasing member provides a compressive force in the range of about 450 to 500 gf. 33. The apparatus of claim 31, wherein the right biasing member provides a compressive force in the range of about 350 gf to 400 gf. 34. The apparatus of claim 33, wherein the left biasing member provides a compressive force in the range of about 450 gt to 500 gf. 35. The apparatus of claim 34, wherein the right biasing member provides a compressive force of about 360 gf and the left biasing member provides a compressive force of about 460 gf. 36. A system for measuring biometric information of a user comprising, a plurality of rings, each ring comprising an appendage rest; at least one cover pivotally connected to the appendage rest; means for causing the at least one cover to snuggly hold an appendage of the user in the appendage rest; a plurality of sensors, wherein at least one of the plurality of sensors is coupled to a corresponding one of the plurality of rings; and wherein each of the plurality of sensors is use to measure biometric information. 37. The system of claim 36, wherein at least one of the plurality of sensors is different from the others of the plurality of sensors. 38. The system of claim 36, wherein at least one of the plurality of sensors is an infrared sensor. 39. The system of claim 36, wherein at least two of the plurality of sensors are electrodes that are used in combination to measure epidural skin response. 40. The system of claim 36, wherein the means for causing the at least one cover to snuggly hold an appendage of the user in the appendage rest comprises a spring.
PCT/US2005/019091 2004-06-07 2005-06-01 Biofeedback ring sensors WO2005120337A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/863,029 US7263393B2 (en) 2004-06-07 2004-06-07 Biofeedback ring sensors
US10/863,029 2004-06-07

Publications (2)

Publication Number Publication Date
WO2005120337A2 true WO2005120337A2 (en) 2005-12-22
WO2005120337A3 WO2005120337A3 (en) 2006-11-23

Family

ID=35449946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/019091 WO2005120337A2 (en) 2004-06-07 2005-06-01 Biofeedback ring sensors

Country Status (2)

Country Link
US (1) US7263393B2 (en)
WO (1) WO2005120337A2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018673A (en) * 1996-10-10 2000-01-25 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
US7810359B2 (en) 2002-10-01 2010-10-12 Nellcor Puritan Bennett Llc Headband with tension indicator
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
US7590439B2 (en) 2005-08-08 2009-09-15 Nellcor Puritan Bennett Llc Bi-stable medical sensor and technique for using the same
US7657295B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7657294B2 (en) 2005-08-08 2010-02-02 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US20070060808A1 (en) 2005-09-12 2007-03-15 Carine Hoarau Medical sensor for reducing motion artifacts and technique for using the same
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7899510B2 (en) 2005-09-29 2011-03-01 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7869850B2 (en) 2005-09-29 2011-01-11 Nellcor Puritan Bennett Llc Medical sensor for reducing motion artifacts and technique for using the same
US7483731B2 (en) 2005-09-30 2009-01-27 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US7881762B2 (en) 2005-09-30 2011-02-01 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8073518B2 (en) 2006-05-02 2011-12-06 Nellcor Puritan Bennett Llc Clip-style medical sensor and technique for using the same
US8145288B2 (en) 2006-08-22 2012-03-27 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8219170B2 (en) 2006-09-20 2012-07-10 Nellcor Puritan Bennett Llc System and method for practicing spectrophotometry using light emitting nanostructure devices
US8195264B2 (en) 2006-09-22 2012-06-05 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US8396527B2 (en) 2006-09-22 2013-03-12 Covidien Lp Medical sensor for reducing signal artifacts and technique for using the same
US8175671B2 (en) 2006-09-22 2012-05-08 Nellcor Puritan Bennett Llc Medical sensor for reducing signal artifacts and technique for using the same
US7869849B2 (en) 2006-09-26 2011-01-11 Nellcor Puritan Bennett Llc Opaque, electrically nonconductive region on a medical sensor
US7574245B2 (en) 2006-09-27 2009-08-11 Nellcor Puritan Bennett Llc Flexible medical sensor enclosure
US7684842B2 (en) * 2006-09-29 2010-03-23 Nellcor Puritan Bennett Llc System and method for preventing sensor misuse
US8065790B2 (en) * 2007-02-23 2011-11-29 Continental Automotive Systems Us, Inc. Bearing mounted sensor assembly
US8280469B2 (en) 2007-03-09 2012-10-02 Nellcor Puritan Bennett Llc Method for detection of aberrant tissue spectra
US8265724B2 (en) 2007-03-09 2012-09-11 Nellcor Puritan Bennett Llc Cancellation of light shunting
US7894869B2 (en) * 2007-03-09 2011-02-22 Nellcor Puritan Bennett Llc Multiple configuration medical sensor and technique for using the same
US8346328B2 (en) 2007-12-21 2013-01-01 Covidien Lp Medical sensor and technique for using the same
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8199007B2 (en) * 2007-12-31 2012-06-12 Nellcor Puritan Bennett Llc Flex circuit snap track for a biometric sensor
US8250454B2 (en) * 2008-04-03 2012-08-21 Microsoft Corporation Client-side composing/weighting of ads
US20090251407A1 (en) * 2008-04-03 2009-10-08 Microsoft Corporation Device interaction with combination of rings
US20090289937A1 (en) * 2008-05-22 2009-11-26 Microsoft Corporation Multi-scale navigational visualtization
US8682736B2 (en) 2008-06-24 2014-03-25 Microsoft Corporation Collection represents combined intent
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8858606B2 (en) * 2008-12-09 2014-10-14 Smith & Nephew, Inc. Tissue repair assembly
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501384A (en) * 1994-07-11 1996-03-26 Prince Corporation Storage system
US6353750B1 (en) * 1997-06-27 2002-03-05 Sysmex Corporation Living body inspecting apparatus and noninvasive blood analyzer using the same
US20020188205A1 (en) * 1999-10-07 2002-12-12 Mills Alexander K. Device and method for noninvasive continuous determination of physiologic characteristics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501384A (en) * 1994-07-11 1996-03-26 Prince Corporation Storage system
US6353750B1 (en) * 1997-06-27 2002-03-05 Sysmex Corporation Living body inspecting apparatus and noninvasive blood analyzer using the same
US20020188205A1 (en) * 1999-10-07 2002-12-12 Mills Alexander K. Device and method for noninvasive continuous determination of physiologic characteristics

Also Published As

Publication number Publication date
WO2005120337A3 (en) 2006-11-23
US20050272986A1 (en) 2005-12-08
US7263393B2 (en) 2007-08-28

Similar Documents

Publication Publication Date Title
US7263393B2 (en) Biofeedback ring sensors
EP3091899B1 (en) Wearable apparatus for brain sensors
US20200085331A1 (en) Wearable electrocardiographic measurement device
US20180014740A1 (en) Biological signal measuring equipment
JP5589593B2 (en) Biological signal measuring device
US4685464A (en) Durable sensor for detecting optical pulses
US9314183B2 (en) Transducer assemblies for dry applications of transducers
US20190000338A1 (en) Method and system for obtaining signals from dry eeg electrodes
US20180333056A1 (en) Apparatus for monitoring cardiovascular health
JP2009530064A (en) Electrode and electrode headset
US20080208023A1 (en) Foldable sensor device and method of using same
CN114173659A (en) Method and apparatus for bio-signal sensing and influenced motion suppression
JP2020502589A (en) Glasses with biosensor
JP5842955B2 (en) Biological signal measuring device
CN209003960U (en) Multipurpose physiology-detecting system
CN210204730U (en) Multipurpose physiological detection system
CN209391925U (en) Multipurpose physiology detection apparatus
CN209474599U (en) Multipurpose physiology-detecting system
EP3415080B1 (en) Wearable device
KR102273065B1 (en) Palm rest type measuring device for bio information
CN216022075U (en) Eye massager
TW201934075A (en) Multi-purpose physiological detecting device capable of contacting different parts of the body to respectively obtain the ECG signals of different projection angles
TWM582375U (en) Multi-purpose physiological examination system
KR101958023B1 (en) Apparatus for measuring of pulse wave
WO2008051168A1 (en) Wrist stabiliser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase