WO2006014815A2 - Self-cooling beverage container with permeable wall - Google Patents

Self-cooling beverage container with permeable wall Download PDF

Info

Publication number
WO2006014815A2
WO2006014815A2 PCT/US2005/026120 US2005026120W WO2006014815A2 WO 2006014815 A2 WO2006014815 A2 WO 2006014815A2 US 2005026120 W US2005026120 W US 2005026120W WO 2006014815 A2 WO2006014815 A2 WO 2006014815A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
container
cooling
porous
Prior art date
Application number
PCT/US2005/026120
Other languages
French (fr)
Other versions
WO2006014815A3 (en
Inventor
Serena Giori
Claudio Giori
Original Assignee
Serena Giori
Claudio Giori
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Serena Giori, Claudio Giori filed Critical Serena Giori
Priority to CA2611793A priority Critical patent/CA2611793C/en
Priority to EP05775588A priority patent/EP1773588A4/en
Priority to AU2005269621A priority patent/AU2005269621B2/en
Publication of WO2006014815A2 publication Critical patent/WO2006014815A2/en
Publication of WO2006014815A3 publication Critical patent/WO2006014815A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/18Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents providing specific environment for contents, e.g. temperature above or below ambient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/10Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
    • F25D3/107Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/006Other cooling or freezing apparatus specially adapted for cooling receptacles, e.g. tanks
    • F25D31/007Bottles or cans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/913Ventilated container
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1362Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing

Definitions

  • This invention relates to a self-cooling container for water or other beverage.
  • the wall of the container comprises a non-porous permeable membrane permitting transmission of water vapor. Evaporative cooling keeps the temperature of the water in the container below ambient.
  • a method proposed involves the use of an endothermic reaction to cool a liquid that is in contact with the water container. This method is undesirable because it is impractical, costly, and it involves the use of chemicals that may present a safety hazard. Furthermore, it provides a cooling effect that is only temporary.
  • US patent 4,368,766 claims water containers with a porous wall having maximum pore size of 0.1-50 microns, preferably less than 5 microns. Continuously porous, expanded polytetrafluoroethylene film is said to be the preferred material, optionally laminated to a fabric on one or both sides. The fine pore size allows passage of water vapor but not liquid water, thus a cooling effect is produced while the outer surface of the container remains dry.
  • the present invention is directed to a self-cooling container for water or other beverage utilizing a moisture vapor permeable, non-porous membrane to provide evaporative cooling.
  • the permeable membrane is monolithic and pinhole-free. It provides evaporative cooling by allowing moisture vapor to escape while preventing penetration of contaminants including liquids, particulates, and bacteria.
  • the membrane can be laminated to a fabric material for reinforcement.
  • a water container with porous walls may provide cooling by controlled evaporation, such an effect would not be expected with a container having a monolithic, non-porous construction.
  • the walls of the container must have the ability to transport moisture through a solution/diffusion mechanism, quite different from the transport of moisture through the walls of a porous material, where tiny holes provide a path for moisture passage.
  • a non-porous membrane For moisture transport to occur through a non-porous membrane, water must dissolve into the membrane, diffuse through the membrane and desorb from the opposite surface into the environment. This solution/diffusion process allows a non-porous membrane to transmit water vapor. Ih turn, as water is vaporized, a cooling effect is produced.
  • the ability of a membrane to transport water vapor is expressed by its permeability, which is defined as the rate of water vapor transmission through a unit area of material induced by a unit vapor pressure difference between the two surfaces under specified temperature and humidity conditions.
  • the permeability P of a non-porous membrane is related to two more basic material properties, the diffusion coefficient D and the solubility coefficient S:
  • the solubility coefficient S is a thermodynamic factor that defines the amount of water that can dissolve into the membrane.
  • the diffusion coefficient D is a kinetic factor that defines the rate of moisture transport across the membrane.
  • the product of D and S defines the ability of a non-porous membrane to transmit water vapor by a solution/diffusion mechanism and in turn its ability to provide the desired cooling effect.
  • the liquid water in the container is vaporized directly at the membrane interface, or vaporized into the free space above the water level to maintain equilibrium vapor pressure as water vapor diffuses out of the container. Either way, heat is absorbed in the endothermic process.
  • a high diffusion coefficient D is generally associated with rubbery polymers, that is, polymers having a low glass transition temperature (Tg), preferably below 0 0 C.
  • Tg glass transition temperature
  • the mobility of a polymer chain is sharply reduced as transition occurs from a rubbery state (below Tg) to a glassy state (above Tg).
  • the chain mobility in a rubbery polymer allows diffusion of water molecules that would otherwise be difficult across a rigid, glassy polymer.
  • a high solubility coefficient S is generally associated with polymeric membranes having high affinity for water so that water molecules can effectively dissolve in the film. Of course, excessive affinity for water must be avoided as it may result in unacceptable swelling or even dissolution of the membrane.
  • a type of membrane that we found to be suitable for self-cooling, non-porous containers is made from a thermoplastic elastomer exhibiting the ability to transport water vapor by a solution/diffusion process.
  • the preferred thermoplastic elastomers are block copolymers of the (AB)n type, consisting of alternating soft and rigid segments. These materials provide the required combination of high solubility coefficient and high diffusion coefficient for water permeation.
  • the soft segment is typically an aliphatic polyether or polyester with high hydrophilicity.
  • the soft aliphatic ether or ester blocks are linked to rigid, generally aromatic blocks via a urethane, amide or ester bond.
  • Moisture breathable membrane films of this type are available from Epurex Films (a Bayer Polymer Company) in Germany and frpm Stevens Urethane (a unit of JPS Elastomerics), Mylan Technologies and Deerfield Urethane (also a Bayer Polymers Company) in the US.
  • these membranes Because of their monolithic, non-porous structure, these membranes have found application in the medical field where contamination is a concern. As wound dressings, they allow moisture to escape while acting as barriers to liquids, particulates and bacteria. Although these applications are well known, there has been no prior suggestion that these membranes could be utilized for the construction of beverage containers, whereby the high moisture vapor transmission provides evaporative cooling while the monolithic structure provides protection against water contamination.
  • the ability of a membrane to provide evaporative cooling of water is directly related to its moisture vapor transmission rate.
  • the permeability P is the key factor determining the ability of a membrane to transport water vapor by a solution/diffusion mechanism. There are, however, other parameters affecting the water transport process.
  • the transport of water vapor through a non-porous membrane under steady state conditions can be described by an equation based on Fick's First Law:
  • ⁇ M H2O / ⁇ t represents the steady state rate of water transport through the membrane
  • P is the membrane permeability
  • A is the surface area
  • L is the thickness of the membrane
  • ⁇ pi&o is the vapor pressure difference across the membrane.
  • the permeability P has been discussed above.
  • the surface area A is dependent on container size and geometry. Container shapes maximizing the surface to volume ratio would provide more effective cooling. Embossing or engraving the membrane would also increase the surface area A and in turn increase the water vapor transmission rate and cooling ability.
  • the water vapor transmission rate is inversely proportional to the thickness of the membrane L, that is, the thinner the membrane the greater the transmission rate.
  • a preferred membrane thickness for a self-cooling water container is in the 10 to 75 micron range, most preferably in the 25-50 micron range.
  • the water vapor pressure differential ⁇ p ⁇ 2 o defines the driving force for evaporation across the membrane and is strictly dependent on environmental factors. When relative humidity reaches 100%, Ap H20 becomes zero and the membrane provides no cooling effect. In temperate climates with moderate humidity the membrane provides a significant cooling effect. In dry desert climates, ⁇ p H2 o is very high and the cooling effect is most pronounced.
  • the maximum cooling effect achievable by evaporation from a water container is the difference between dry and wet bulb temperature.
  • Most physics handbooks have charts or tables showing the correlation between relative humidity and bulb temperatures.
  • the container can be designed in various ways depending on its specific end use.
  • the water permeable membranes of this invention are typically made of thermoplastic materials that can be converted into bags using standard film conversion technologies including heat or high frequency sealing. Two membrane layers facing each other are sealed together along the peripheral edge to provide a water tight bond. If so desired, the bag can be made with the permeable membrane on one side only, while the other side could be made of a conventional impermeable thermoplastic film such as polyethylene or polyvinylchloride. Adhesive bonding along the peripheral edge of the bag can be used as an alternative to sealing. A spout can be attached to the top of the bag or a drain valve to the bottom of the bag using similar sealing methods or adhesive bonding techniques.
  • the membrane For added strength and durability, it is preferred to laminate the membrane to a porous fabric so that the fabric is on the outside of the container. Alternatively, the fabric could be on both sides of the membrane. Fabric lamination is particularly useful with very thin membranes.
  • the fabric material can be knitted, woven or non-woven.
  • the porous fabric does not affect transport of water vapor while it provides toughness and puncture resistance.
  • Heat lamination or adhesive laminations are both viable options. If an adhesive is used for fabric lamination, care should be taken to ensure that the adhesive does not compromise permeability.
  • the adhesive should preferably be applied only at the edges of the bag, or if applied over the entire membrane area it should be applied discontinuously. Discontinuous or pattern lamination of fabrics to films using adhesives is a Well established technology.
  • a water bag having soft flexible walls such as the one just described can be folded when empty and carried conveniently.
  • Soft water bags of this type are available commercially but are made of water barrier films that do not provide cooling. In fact, when these bags are used outdoors the temperature of the water often exceeds ambient temperature because heat is transferred to the water not only by conduction but also by radiation, and plastic materials are typically poor reflectors.
  • a particularly useful water bag design is the so called hydration bladder, which is provided with a long tube attached to the bottom of the bag to allow drinking during outdoors activities.
  • This type of bag is very popular with hikers and bikers.
  • a rigid shape could be maintained by using a metallic grid or perforated rigid plastic for support.
  • a metallic grid or perforated rigid plastic for support is provided for illustration purposes and is not intended to limit the scope of the invention.
  • a bag was made using a 25 micron thick polyether-urethane membrane film from Deerfield Urethane (Dureflex PTl 710S). Two sheets placed one on top of the other were heat sealed together along the peripheral edge. The bag was filled with water at ambient temperature and hung outdoors in the shade. The outdoor temperature was 28°C, the relative humidity was 48% and the air was calm. The temperature of the water inside the bag began to drop immediately and reached a stable value of 21 0 C after about 30 minutes. The wet bulb temperature for the given conditions of temperature and relative humidity was calculated to be 20 0 C, indicating that the water cooling effect approaches the wet bulb temperature depression. There was no significant water loss from the bag even after hanging for 24 hours.

Abstract

A self-cooling container for water or other beverage utilizing a non-porous moisture vapor permeable membrane is provided. The membrane allows moisture vapor to escape while preventing penetration of contaminants including liquids, particulates, and bacteria. Evaporative cooling keeps the beverage temperature below ambient. Optionally, the membrane can be laminated to a fabric material for reinforcement.

Description

SELF-COOLING BEVERAGE CONTAINER WITH PERMEABLE WALL
Field of the invention
This invention relates to a self-cooling container for water or other beverage. The wall of the container comprises a non-porous permeable membrane permitting transmission of water vapor. Evaporative cooling keeps the temperature of the water in the container below ambient.
Background of the Invention
Various approaches have been proposed to cool portable water containers in the absence of a conventional refrigeration device. A simple and effective system would be of great value for general outdoor use but unfortunately none of the methods suggested in the prior art meets the necessary requirements of simplicity and functionality.
A method proposed involves the use of an endothermic reaction to cool a liquid that is in contact with the water container. This method is undesirable because it is impractical, costly, and it involves the use of chemicals that may present a safety hazard. Furthermore, it provides a cooling effect that is only temporary.
The approach claimed in US patent 5,983,662 utilizes evaporative cooling. A standard can is placed into a perforated structure having a layer of sponge disposed along its inner surface. The sponge material is kept wet with water. As the water evaporates from the sponge, the evaporative process draws heat from the surface of the can thus cooling its content. This method has several disadvantages. The construction of the device is relatively complex. Water must be frequently added to the sponge to maintain the evaporative process. Cooling is inefficient because heat is drawn from ambient air as well as from the can.
Other approaches utilize cooling by evaporation of the water present in the container itself. It has been known for a long time that canvas bags made of certain fabric materials such as flax cloth have the peculiar property of providing controlled seepage of water through the cloth to the outer surface. Evaporation of the water from the outer surface of the bag into the environment provides a cooling effect. US patent 2,467,792 claims a similar effect from bags made of non-flax cloth, preferably cotton, impregnated with a material capable to fill the interstitial spaces of the fabric to limit exudation of water to the extent required to maintain a thin film of water on the outer surface without excessive oozing and dripping. US patent 4,368,766 claims water containers with a porous wall having maximum pore size of 0.1-50 microns, preferably less than 5 microns. Continuously porous, expanded polytetrafluoroethylene film is said to be the preferred material, optionally laminated to a fabric on one or both sides. The fine pore size allows passage of water vapor but not liquid water, thus a cooling effect is produced while the outer surface of the container remains dry.
The problem with all containers utilizing porous or microporous walls to provide evaporative cooling is the potential for contamination. These containers permit evaporation because of tiny holes present in the container wall. A portable water container used recreationally on hiking and camping trips or by the military in field operations is likely to be exposed to dirt, rain and mud. Bacteria could find their way into the container if the outside surface of the container is exposed to dirty water. The problem could be aggravated if the container is exposed to dirty water while temporarily empty so that the driving force for water passage is from the outer to the inner surface.
Thus, a need exists for a portable water container capable of maintaining water below ambient temperature by evaporative cooling while assuring that the purity of the water is maintained with no possible effect of outside contaminants.
Summary of the Invention
The present invention is directed to a self-cooling container for water or other beverage utilizing a moisture vapor permeable, non-porous membrane to provide evaporative cooling. The permeable membrane is monolithic and pinhole-free. It provides evaporative cooling by allowing moisture vapor to escape while preventing penetration of contaminants including liquids, particulates, and bacteria. Optionally, the membrane can be laminated to a fabric material for reinforcement.
Detailed Description of the Invention
While it is conceptually intuitive that a water container with porous walls may provide cooling by controlled evaporation, such an effect would not be expected with a container having a monolithic, non-porous construction. To achieve evaporative cooling with a non-porous container, the walls of the container must have the ability to transport moisture through a solution/diffusion mechanism, quite different from the transport of moisture through the walls of a porous material, where tiny holes provide a path for moisture passage.
For moisture transport to occur through a non-porous membrane, water must dissolve into the membrane, diffuse through the membrane and desorb from the opposite surface into the environment. This solution/diffusion process allows a non-porous membrane to transmit water vapor. Ih turn, as water is vaporized, a cooling effect is produced. The ability of a membrane to transport water vapor is expressed by its permeability, which is defined as the rate of water vapor transmission through a unit area of material induced by a unit vapor pressure difference between the two surfaces under specified temperature and humidity conditions. The permeability P of a non-porous membrane is related to two more basic material properties, the diffusion coefficient D and the solubility coefficient S:
P=DS
The solubility coefficient S is a thermodynamic factor that defines the amount of water that can dissolve into the membrane. The diffusion coefficient D is a kinetic factor that defines the rate of moisture transport across the membrane. The product of D and S defines the ability of a non-porous membrane to transmit water vapor by a solution/diffusion mechanism and in turn its ability to provide the desired cooling effect.
The liquid water in the container is vaporized directly at the membrane interface, or vaporized into the free space above the water level to maintain equilibrium vapor pressure as water vapor diffuses out of the container. Either way, heat is absorbed in the endothermic process.
A high diffusion coefficient D is generally associated with rubbery polymers, that is, polymers having a low glass transition temperature (Tg), preferably below 00C. In simple terms, the mobility of a polymer chain is sharply reduced as transition occurs from a rubbery state (below Tg) to a glassy state (above Tg). The chain mobility in a rubbery polymer allows diffusion of water molecules that would otherwise be difficult across a rigid, glassy polymer.
A high solubility coefficient S is generally associated with polymeric membranes having high affinity for water so that water molecules can effectively dissolve in the film. Of course, excessive affinity for water must be avoided as it may result in unacceptable swelling or even dissolution of the membrane.
A type of membrane that we found to be suitable for self-cooling, non-porous containers is made from a thermoplastic elastomer exhibiting the ability to transport water vapor by a solution/diffusion process. The preferred thermoplastic elastomers are block copolymers of the (AB)n type, consisting of alternating soft and rigid segments. These materials provide the required combination of high solubility coefficient and high diffusion coefficient for water permeation. The soft segment is typically an aliphatic polyether or polyester with high hydrophilicity. The soft aliphatic ether or ester blocks are linked to rigid, generally aromatic blocks via a urethane, amide or ester bond. Moisture breathable membrane films of this type are available from Epurex Films (a Bayer Polymer Company) in Germany and frpm Stevens Urethane (a unit of JPS Elastomerics), Mylan Technologies and Deerfield Urethane (also a Bayer Polymers Company) in the US.
Because of their monolithic, non-porous structure, these membranes have found application in the medical field where contamination is a concern. As wound dressings, they allow moisture to escape while acting as barriers to liquids, particulates and bacteria. Although these applications are well known, there has been no prior suggestion that these membranes could be utilized for the construction of beverage containers, whereby the high moisture vapor transmission provides evaporative cooling while the monolithic structure provides protection against water contamination.
The ability of a membrane to provide evaporative cooling of water is directly related to its moisture vapor transmission rate. The permeability P is the key factor determining the ability of a membrane to transport water vapor by a solution/diffusion mechanism. There are, however, other parameters affecting the water transport process. The transport of water vapor through a non-porous membrane under steady state conditions can be described by an equation based on Fick's First Law:
ΔMH2O / Δt = (P A ΔpH2o) / L
where ΔMH2O / Δt represents the steady state rate of water transport through the membrane, P is the membrane permeability, A is the surface area, L is the thickness of the membrane and Δpi&o is the vapor pressure difference across the membrane. The permeability P has been discussed above. The surface area A is dependent on container size and geometry. Container shapes maximizing the surface to volume ratio would provide more effective cooling. Embossing or engraving the membrane would also increase the surface area A and in turn increase the water vapor transmission rate and cooling ability. The water vapor transmission rate is inversely proportional to the thickness of the membrane L, that is, the thinner the membrane the greater the transmission rate. A preferred membrane thickness for a self-cooling water container is in the 10 to 75 micron range, most preferably in the 25-50 micron range. The water vapor pressure differential Δpκ2o defines the driving force for evaporation across the membrane and is strictly dependent on environmental factors. When relative humidity reaches 100%, ApH20 becomes zero and the membrane provides no cooling effect. In temperate climates with moderate humidity the membrane provides a significant cooling effect. In dry desert climates, ΔpH2o is very high and the cooling effect is most pronounced.
The maximum cooling effect achievable by evaporation from a water container is the difference between dry and wet bulb temperature. The lower the relative humidity the greater is the difference between dry and wet bulb temperature and the greater the cooling ability of the container. Most physics handbooks have charts or tables showing the correlation between relative humidity and bulb temperatures.
The container can be designed in various ways depending on its specific end use. The water permeable membranes of this invention are typically made of thermoplastic materials that can be converted into bags using standard film conversion technologies including heat or high frequency sealing. Two membrane layers facing each other are sealed together along the peripheral edge to provide a water tight bond. If so desired, the bag can be made with the permeable membrane on one side only, while the other side could be made of a conventional impermeable thermoplastic film such as polyethylene or polyvinylchloride. Adhesive bonding along the peripheral edge of the bag can be used as an alternative to sealing. A spout can be attached to the top of the bag or a drain valve to the bottom of the bag using similar sealing methods or adhesive bonding techniques.
For added strength and durability, it is preferred to laminate the membrane to a porous fabric so that the fabric is on the outside of the container. Alternatively, the fabric could be on both sides of the membrane. Fabric lamination is particularly useful with very thin membranes. The fabric material can be knitted, woven or non-woven. The porous fabric does not affect transport of water vapor while it provides toughness and puncture resistance. Heat lamination or adhesive laminations are both viable options. If an adhesive is used for fabric lamination, care should be taken to ensure that the adhesive does not compromise permeability. The adhesive should preferably be applied only at the edges of the bag, or if applied over the entire membrane area it should be applied discontinuously. Discontinuous or pattern lamination of fabrics to films using adhesives is a Well established technology.
A water bag having soft flexible walls such as the one just described can be folded when empty and carried conveniently. Soft water bags of this type are available commercially but are made of water barrier films that do not provide cooling. In fact, when these bags are used outdoors the temperature of the water often exceeds ambient temperature because heat is transferred to the water not only by conduction but also by radiation, and plastic materials are typically poor reflectors.
A particularly useful water bag design is the so called hydration bladder, which is provided with a long tube attached to the bottom of the bag to allow drinking during outdoors activities. This type of bag is very popular with hikers and bikers.
If a rigid container is desired, a rigid shape could be maintained by using a metallic grid or perforated rigid plastic for support. The following example is provided for illustration purposes and is not intended to limit the scope of the invention.
Example
A bag was made using a 25 micron thick polyether-urethane membrane film from Deerfield Urethane (Dureflex PTl 710S). Two sheets placed one on top of the other were heat sealed together along the peripheral edge. The bag was filled with water at ambient temperature and hung outdoors in the shade. The outdoor temperature was 28°C, the relative humidity was 48% and the air was calm. The temperature of the water inside the bag began to drop immediately and reached a stable value of 210C after about 30 minutes. The wet bulb temperature for the given conditions of temperature and relative humidity was calculated to be 200C, indicating that the water cooling effect approaches the wet bulb temperature depression. There was no significant water loss from the bag even after hanging for 24 hours.
It will be understood by those skilled in the art that many of the details presented in this disclosure may be varied without departing from the spirit and scope of the invention.

Claims

What is claimed is:
1. A self-cooling container for water and water-based beverages, wherein the wall of said container comprises a non-porous membrane made of a polymeric material comprising hydrophilic units and having the ability to transmit water vapor by a solution/diffusion mechanism, whereby water vaporization inside said container produces a cooling effect capable of maintaining the temperature of said beverage below ambient when relative humidity is below 100%.
2. The container of claim 1 wherein said hydrophilic units of said membrane comprise aliphatic ether or ester groups.
3. The container of claim 1 wherein said membrane comprises a thermoplastic elastomer selected from the group consisting of polyether-amides, polyester- amides, polyether-urethanes, polyester-urethanes, poly ether-esters and copolyestefs.
4. The container of claim 1 wherein a porous fabric is laminated to the outer surface or to both inner and outer surface of said membrane.
PCT/US2005/026120 2004-07-26 2005-07-23 Self-cooling beverage container with permeable wall WO2006014815A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2611793A CA2611793C (en) 2004-07-26 2005-07-23 Self-cooling beverage container with permeable wall
EP05775588A EP1773588A4 (en) 2004-07-26 2005-07-23 Self-cooling beverage container with permeable wall
AU2005269621A AU2005269621B2 (en) 2004-07-26 2005-07-23 Self-cooling beverage container with permeable wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/710,636 US7344767B2 (en) 2004-07-26 2004-07-26 Self-cooling beverage container with permeable wall
US10/710,636 2004-07-26

Publications (2)

Publication Number Publication Date
WO2006014815A2 true WO2006014815A2 (en) 2006-02-09
WO2006014815A3 WO2006014815A3 (en) 2006-12-21

Family

ID=35657523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/026120 WO2006014815A2 (en) 2004-07-26 2005-07-23 Self-cooling beverage container with permeable wall

Country Status (5)

Country Link
US (1) US7344767B2 (en)
EP (1) EP1773588A4 (en)
AU (1) AU2005269621B2 (en)
CA (1) CA2611793C (en)
WO (1) WO2006014815A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973339A (en) * 2014-04-04 2015-10-14 郑静晨 Mobile drugstore for disaster rescue

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080271476A1 (en) * 2007-02-09 2008-11-06 Elias Langguth Endothermic beverage cooler
US20100251731A1 (en) * 2009-04-02 2010-10-07 Bergida John R Self-Chilling Beverage Can
US20120186285A1 (en) * 2009-05-28 2012-07-26 Rolf Gerald Baumgartner Drinking water cooler
US9144464B2 (en) * 2009-08-14 2015-09-29 Ufp Technologies, Inc. Composite for packaging a medical device and method of forming the same
GB201011212D0 (en) * 2010-07-02 2010-08-18 Linde Aktiengesellshcaft Gas storage apparatus
WO2012054878A2 (en) 2010-10-21 2012-04-26 Gliders, LLC Delivery systems and method thereof
WO2013010192A2 (en) * 2011-07-08 2013-01-17 Holdsworth Milinda Heat inhibitor
US9428326B2 (en) 2014-06-03 2016-08-30 Marlido, LLC Portable water supply
US9708113B1 (en) 2014-06-03 2017-07-18 Marlido, LLC Portable water supply
USD887547S1 (en) 2017-10-25 2020-06-16 Gliders, LLC Liquid dispenser
USD882072S1 (en) 2017-10-25 2020-04-21 Gliders, LLC Liquid dispenser
BR112020017698A2 (en) * 2018-03-02 2021-07-06 Michael Mark Anthony HUMIDIFICATION AND DEHUMIDIFYING PROCESS AND APPLIANCE TO COOL BEVERAGES AND OTHER FOOD PRODUCTS AND MANUFACTURING PROCESS

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2467792A (en) * 1945-04-23 1949-04-19 Fred H Wenzel Self-cooling water bag
US2865240A (en) * 1956-03-16 1958-12-23 Thomas J Kniser Holding, clamping and retrieving tool
US2865420A (en) * 1957-09-27 1958-12-23 Pueblo Tent And Awning Co Inc Flexible canteens
US3949742A (en) * 1974-09-20 1976-04-13 Frigitronics, Inc. Medical dressing
JPS6229901Y2 (en) * 1979-12-24 1987-07-31
DE4410921C2 (en) * 1994-03-29 1996-12-19 Atochem Elf Deutschland Polymer blend and its use
AU684210B2 (en) * 1994-08-19 1997-12-04 Water Research Commission A water purification device
US6074738A (en) * 1996-06-25 2000-06-13 Von Fragstein; Rainer Flexible water and oil resistant composites
US5983662A (en) * 1997-04-21 1999-11-16 Luetsch; Guido Self cooling beverage cooler
US7107783B2 (en) * 1997-09-19 2006-09-19 Advanced Porcus Technologies, Llc Self-cooling containers for liquids
US6716778B1 (en) * 1997-10-01 2004-04-06 Martin Hottner Seam joining a waterproof laminate with textile layer made of multi-component yarns
JP3998420B2 (en) * 1998-11-13 2007-10-24 アクゾ ノーベル ナムローゼ フェンノートシャップ Pervaporation device and irrigation mat
US6511052B1 (en) * 1999-08-06 2003-01-28 E. I. Du Pont De Nemours And Company Humidifying gas induction or supply system
DE10109622B4 (en) * 2001-02-28 2004-03-25 Ems-Chemie Ag Process for gluing a copolyetherester film with copolyester

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1773588A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104973339A (en) * 2014-04-04 2015-10-14 郑静晨 Mobile drugstore for disaster rescue
CN104973339B (en) * 2014-04-04 2017-08-15 郑静晨 Mobile pharmacy for disaster assistance

Also Published As

Publication number Publication date
US7344767B2 (en) 2008-03-18
AU2005269621A1 (en) 2006-02-09
US20060019047A1 (en) 2006-01-26
EP1773588A4 (en) 2011-07-06
AU2005269621B2 (en) 2009-11-05
CA2611793C (en) 2011-03-08
WO2006014815A3 (en) 2006-12-21
CA2611793A1 (en) 2006-02-09
EP1773588A2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
CA2611793C (en) Self-cooling beverage container with permeable wall
CA1112551A (en) Waterproof laminate
JP2005537152A5 (en)
JP5865317B2 (en) Carbon dioxide separation composite, carbon dioxide separation module, and method for producing carbon dioxide separation composite
NO157855B (en) FLEXIBLE LAYERED ARTICLE.
US20080256822A1 (en) Container for freeze-drying
JPS61190535A (en) Waterproofing humidity-permeable sheet material
CN1222883A (en) Flexible water-resistant composites
JPS6229901Y2 (en)
EP3466669B1 (en) Composite textile product
JPH0771795A (en) Humidifier of hollow yarn membrane type
JP2000325384A (en) Heat storage/cold storage sheet
JPH08332306A (en) Degassing membrane and module
JPH08218567A (en) Moisture-permeable composite sheet for concrete waterproofing
JP6061483B2 (en) Cooling seat and neck cooler
JP2001354274A (en) Moisture permeable and waterproof packaging material and package body
JPH08100935A (en) Moistening sheet and moistening element
JP2002370300A (en) Heat insulating material
US20230166217A1 (en) Pleated composite pervaporation laminate and method of making same
CN212046287U (en) Waterproof high-permeability membrane and hanging type dehumidification bag with same
JP2000326527A (en) Ink cartridge
JP2014094369A (en) Spiral type separation membrane module and production method and support of spiral type separation membrane module
EP2927386A1 (en) Multi-walled plate material and sealing tape therefor
CN206665351U (en) A kind of PUR PURs packaging
JP3578495B2 (en) Humidifying element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005269621

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005775588

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005269621

Country of ref document: AU

Date of ref document: 20050723

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005269621

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005775588

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2611793

Country of ref document: CA