WO2006020948A1 - Providing hardware independence to automate code generation of processing device firmware - Google Patents

Providing hardware independence to automate code generation of processing device firmware Download PDF

Info

Publication number
WO2006020948A1
WO2006020948A1 PCT/US2005/028898 US2005028898W WO2006020948A1 WO 2006020948 A1 WO2006020948 A1 WO 2006020948A1 US 2005028898 W US2005028898 W US 2005028898W WO 2006020948 A1 WO2006020948 A1 WO 2006020948A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing device
layer
user
targeted
hardware
Prior art date
Application number
PCT/US2005/028898
Other languages
French (fr)
Other versions
WO2006020948A8 (en
Inventor
Warren Snyder
Dinesh Maheshwari
Kenneth Ogami
Mark Hastings
Original Assignee
Cypress Semiconductor Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypress Semiconductor Corporation filed Critical Cypress Semiconductor Corporation
Publication of WO2006020948A1 publication Critical patent/WO2006020948A1/en
Publication of WO2006020948A8 publication Critical patent/WO2006020948A8/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/30Creation or generation of source code

Definitions

  • Embodiments of the invention relate to the field of processing devices and more specifically, but not exclusively, to providing hardware independence to automate generation of processing device firmware.
  • microcontrollers are widely used in the industry as control elements in many solutions. Most microcontrollers are general in purpose, and are designed for use in a wide variety of problem solutions. As microcontrollers become more programmable and more widely applicable, a designer needs more specific device knowledge to use the microcontroller to solve a problem.
  • hardware and software are usually created for a specific microcontroller, and may be redesigned (sometimes completely) following a change in requirements.
  • a common sequence of events is to first determine the system requirements (often incompletely when time is short) to address a problem, then second to determine hardware and software requirements, then third to determine microcontroller and interfacing circuitry requirements, and fourth to find a suitable microcontroller and design suitable interfaces.
  • the user i must manually configure the microcontroller and write device specific firmware, and the user may have to re-write firmware, redesign circuitry, or choose another microcontroller based upon new/changing requirements.
  • Design changes during this conventional approach may result in costly and inefficient code changes, may cause software and hardware architecture changes and may even require a change in microcontroller and a significant redesign. Such a redesign may be costly and may delay design and production schedules. Also, designing and redesigning conventional microcontrollers may require specialists in a variety of areas including hardware engineering, firmware coding, and system design.
  • Figure 1A is a flowchart illustrating the logic and operations to provide automated code generation of processing device firmware in accordance with one embodiment of the present invention.
  • Figure 1B is a diagram illustrating a system to provide automated code generation of processing device firmware in accordance with one embodiment of the present invention.
  • FIG. 1C is a Graphical User Interface (GUI) in accordance with one embodiment of the present invention.
  • GUI Graphical User Interface
  • Figure 2 is a diagram illustrating a firmware stack in accordance with one embodiment of the present invention.
  • Figure 3 is a diagram illustrating a firmware stack in accordance with one embodiment of the present invention.
  • Figure 4A is a diagram illustrating a driver in accordance with one embodiment of the present invention.
  • Figure 4B is a diagram illustrating a base project in accordance with one embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a processing device in accordance with one embodiment of the present invention.
  • Figure 6 is a diagram illustrating a computer system in accordance with one embodiment of the present invention.
  • Coupled may mean that two or more elements are in direct contact (physically, electrically, magnetically, optically, etc.). “Coupled” may also mean two or more elements are not in direct contact with each other, but still cooperate or interact with each other.
  • Figure 1 A shows a flowchart 100 in accordance with an embodiment of the invention.
  • Figure 1 B shows a system 120 in accordance with an embodiment of the invention.
  • the logic of flowchart 100 and components of system 120 may be embodied in instructions executable by a computer system.
  • a user application is generated in response to user input.
  • user 122 may use a processing device maker GU1 124 to construct user application 127, also referred to as a system, for implementation on a processing device 140.
  • Processing device maker GU1 124 overlays a processing device maker 126.
  • User application 127 may be described in a user application description 128.
  • user application description 128 is a text file that describes the user's application.
  • GUI 124 An embodiment of processing device maker GUI 124 is shown in Figure 1C.
  • GU1 124 may be generated in a variety of ways, such as using HyperText Markup Language (HTML), JavaScript, or the like.
  • GU1 124 may include an interface such for Programmable System on a ChipTM (PSoCTM) ExpressTM of the Cypress Semiconductor Corporation.
  • PSoCTM Programmable System on a ChipTM ExpressTM of the Cypress Semiconductor Corporation.
  • embodiments of GUI 124 are not limited to the interface shown in Figure 1 C or to any interfaces of PSoC ExpressTM.
  • Tabs for various stages in designing a user application are shown at 152. These tabs include Design, Simulation, Bill of Materials/Schematic (BOM/Schem), and Build.
  • the Design tab is where • user 122 may use the GUI to create a user application.
  • the Simulation tab provides a software simulation of the user's application.
  • the BOM/Schem tab is used to generate a bill of materials, schematic and/or a datasheet for the user's application.
  • the Build tab may invoke the automated code functionality to provide a user with code to implement the user's application without coding by the user.
  • user 122 is creating a user application to turn a Light Emitting Diode (LED) on and off using a push-button switch.
  • User 122 may use a tray 154 at the bottom of GU1 124 to drag-and-drop desired input/output devices and set up transfer functions between the input/output devices.
  • LED Light Emitting Diode
  • Transfer function 160 may be defined such that when switch 156 is pressed, LED 158 is on, and when switch 156 is released, LED 158 is off.
  • a transfer function defines the behavior of an output device.
  • the transfer function may define the behavior of an output device in response to one or more inputs.
  • transfer function types include a truth table transfer function for mapping specific output actions and/or output states to permutations of discrete inputs.
  • the transfer function types include a setpoint transfer function to convert a continuous input signal to a number of discrete values.
  • User 122 may provide a number of inputs to the transfer function and assign an output state to each combination of the inputs.
  • processing device maker 126 may validate the transfer function. If the transfer function is determined to be invalid, an error message may be displayed to user 122.
  • user 122 may perform a simulation of user application 127 using system 120, as shown at a block 103.
  • user 122 selects the Simulation tab of GUI 124 to enter a simulation mode.
  • the simulation capability enables hardware independence by verifying the transfer function behavior without requiring the user to compile and debug the firmware on the targeted processing device.
  • Simulation also includes the ability to create complex input files to exhaustively test the transfer function behavior with arbitrarily large combinations of input values. The simulation logs the outputs based on the transfer function behavior so that the results may be analyzed by the user.
  • the logic proceeds to a block 104 to generate processing device code for a targeted processing device without user intervention.
  • user 122 may use processing device maker GUI 124 to request that processing device code be automatically generated. User 122 does not have to perform any actual coding.
  • user 122 selects the Build tab of GU1 124.
  • user 122 may select a targeted processing device from a list of devices. The list may include other information regarding the targeted processing devices, such as processing device cost. After user 122 selects the targeted processing device, code is automatically generated for the device.
  • processing device designer 130 includes PSoC DesignerTM of the Cypress Semiconductor Corporation.
  • Processing device designer 130 may include an automatic code generator 132.
  • Automatic code generator 132 assembles the code for the user's application 127 based on user application description 128. Automatic code generator 132 generates processing device code 135.
  • code 135 may include a high-level language, such as C, a low-level code, such as Assembly, or a combination thereof.
  • automatic code generator 132 includes a Controller Maker engine (CMX) of the Cypress Semiconductor Corporation.
  • CMX Controller Maker engine
  • automatic code generator 132 may reference libraries 136.
  • Libraries 136 include code blocks that may be combined to form code 135.
  • Automatic code generator 132 may use at least a portion of user application description 128 as a guide in gathering together various code blocks. Some of the code blocks may be selected based at least in part on the targeted processing device.
  • code 135 may be compiled by compiler 134 of processing device designer 130 to generate a binary 138, also known as a binary image or a Read-Only Memory (ROM) image.
  • a binary 138 also known as a binary image or a Read-Only Memory (ROM) image.
  • the binary is loaded into the targeted processing device.
  • binary 138 is loaded into a Non-Volatile Storage (NVS) 142 of processing device 140.
  • NVS 142 includes Flash memory.
  • Embodiments of processing device 140 may include one or more general-purpose processing devices, such as a microprocessor or central processing unit, a network processor, a microcontroller, an embedded Programmable Logic Device (PLD), or the like.
  • processing device 140 includes a Cypress Microsystem's PSoCTM microcontroller.
  • the processing device may include one or more special-purpose processing devices, such as a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the processing device may also include any combination of a general-purpose processing device and a special-purpose processing device.
  • processing device code 135 may be generated without user intervention. User 122 does not have to write any code, so there is no need for C coding or Assembly coding experts. Also, because the code is constructed from pre-built and pre-tested code libraries, time wasted on debugging, such as finding syntax errors, is eliminated.
  • user 122 generated user application 127 without referencing a targeted processing device. Instead of choosing a processing device to implement a user application and then writing code for that processing device, embodiments of the present invention allow a user application to be created and then code automatically generated for a particular processing device. Moreover, a user may take a user application, make revisions to the user application, and quickly generate revised programming device code. User 122 no longer has to waste time rewriting and debugging code just because a single sensor has been added to a user application.
  • the logic may continue to a block 110, to generate processing device code for a second targeted processing device, where the second targeted processing device is different than the first targeted processing device.
  • User 122 may take user application 127 that has already been constructed and use it to generate code for a different processing device.
  • Automated code generator 132 is aware of the specific coding requirements of the second targeted device and assembles the appropriate code blocks from libraries 136. Thus, user 122 may easily move user application 127 to other processing devices without spending time and money recoding for a new targeted processing device.
  • one or more libraries used by processing device designer 130 may be updated.
  • CD-ROM Compact Disk Read-Only Memory
  • Libraries 136 may be updated with new components, such as a new temperature sensor, or updated with new targeted processing devices that have come onto the market. Thus, if a new processing device comes on the market, user 122 does not have to worry about learning new firmware coding requirements for the new processing device since all the coding is taken care of by processing device designer 130.
  • firmware stack 200 in accordance with one embodiment of the invention is shown.
  • Firmware stack 200 shows a logical structure of at least a portion of the processing device code 135. As discussed below, a portion of the stack is abstracted away from specific hardware. Such hardware independency provides the automatic code generator a consistent architecture for stitching together various code blocks.
  • Firmware stack 200 includes a system layer 202, a hardware encapsulation layer 204, and a base project layer 206.
  • the functionality of the system layer 202 is independent of the targeted processing device.
  • interfaces such as Application Program Interfaces (APIs)
  • APIs Application Program Interfaces
  • the term "standardized" refers to the hardware independence of the APIs. This abstraction away from specific hardware allows system layer 202 to function without regard to the particular hardware.
  • the low layers of firmware stack 200 have "knowledge" of the specific hardware and take care of the implementation details for the system layer 202.
  • the hardware encapsulation layer 204 and the base project layer 206 are generated based at least in part on the targeted processing device.
  • Hardware encapsulation layer 204 represents the underlying hardware to system layer 202.
  • Base project layer 206 includes a set of standard functions associated with the targeted processing device hardware. Base project layer 206 may include functionality at the register level of the targeted processing device.
  • System layer 202 may include transfer functions 208 and drivers 212.
  • System layer 202 is targeted by an application level mapping function.
  • Transfer functions 208 invoke the transfer functions defined by user 122.
  • Drivers 212 are usually associated with a hardware component of the processing device.
  • drives 212 may include three types: input, output, or interface.
  • An output driver may be used with a device that is controlled by the user application, such as a fan or heater.
  • Input drivers may be used for sensors, such as temperature or voltage sensors.
  • Interface drivers may be used for devices that allow access to system variables and status, such as an Inter-Integrated Circuit (I2C) or a Serial Peripheral Interface (SPI).
  • I2C Inter-Integrated Circuit
  • SPI Serial Peripheral Interface
  • Transfer functions 208 and drivers 212 may communicate with each other using APIs 222.
  • Embodiments of an API include DriverName- lnstantiate to initialize a device, DriverName_GetValue to return a value from an input device, and DriverNameJSetValue to set an output of an output device to a specific value.
  • Such APIs are defined such that the may be invoked regardless of the particular hardware.
  • Channels 224 are hardware independent.
  • a channel may be further defined by a channel type, such as an input voltage channel, an output voltage channel, or the like.
  • channels 224 are implemented as APIs.
  • Hardware encapsulation layer 204 may include low level drivers 214 and system initialization 210.
  • Low level drivers 214 provide the implementation of channels 224.
  • all drivers 212 use one or more channels 224 to communicate with low level drivers 214.
  • a channel may have associated parameters assigned by a low level driver, and the associated driver must conform to those parameters.
  • the base project layer 206 includes User Modules (UMs) 216 and PSoCTM processing device hardware 218.
  • User modules 216 are used with block arrays in PSoCTM processing device hardware 218 to form hardware components, such as an Analog-Digital Converter (ADC) (discussed further below).
  • ADC Analog-Digital Converter
  • base project layer 206 includes a non-PSoCTM processing device.
  • Figure 2 also shows low level drivers 214, user modules 216, and PSoCTM Hardware 218 grouped into a PSoCTM Base Project 220. Embodiments using a PSoCTM Base Project will be discussed below.
  • FIG. 3 a diagram illustrating the interaction between layers of a firmware stack 300 is shown.
  • the embodiment of Figure 3 shows a transfer function between a single input device and a single output device for the sake of clarity.
  • embodiments of the invention may be used with other user applications having various configurations of inputs, outputs, and transfer functions.
  • Firmware stack 300 includes a transfer function 308 layered on a driver 306. Transfer function 308 and driver 306 communicate via APIs 307. Driver 307 is layered on a low level driver 304. Driver 306 and low level driver 304 communicate using volt channels 305. In one embodiment, a volt channel may be used by driver 306 for receiving a voltage from low level driver 304.
  • Low level driver 304 is layered on a user module/processing device 302.
  • User module/processing device 302 includes a temperature sensor 309 and a fan 318.
  • fan 318 is controlled in response to the temperature read by temperature sensor 309.
  • a raw count value 310 corresponding to a reading from sensor 309, is sent to low level driver 304.
  • Low level driver 304 takes the raw count value and converts it to a volt value 312.
  • Driver 306 may request and receive the volt value 312 using volt channels 305.
  • Driver 306 may respond to temperature sensor requests from transfer function 308 and return a temperature value 314 converted from voltage value 312. Transfer function may then issue a command 316, if any, for fan 318 based on the temperature received.
  • transfer function 308 issues command 316 to turn on fan 318 in response to the temperature at temperature sensor 309. This "turn on fan" command may travel down through the firmware stack to execute the command on fan 318.
  • transfer function 308 and driver 306, as well as APIs 307 and volt channels 305, are hardware independent.
  • Low level driver 304 and UM/processing device 302 have "knowledge" of how to interact with the particular hardware components. Since transfer function 308 and driver 306 are hardware independent and their communication interfaces are standardized, they can be easily hooked to low level drivers and UM/processing devices.
  • driver 400 is compatible with the PsoCTM family of products.
  • Driver 400 includes several components for device selection and code generation. These components may be grouped into ControllerMaker Interface files 402, Data files 404, and Source Code files 406.
  • processing device designer 130 includes PsoCTM ControllerMaker.
  • Interface files 402 include files to generate the visual interface in processing device maker GUI 124.
  • Data files 404 are used for driver type selection, resource allocation, user parameter selection, and code generation.
  • Data files 404 may include a DriverName.cmx file that includes information about channel type, resource requirements, association with image files, and user selectable parameters.
  • Source code files 406 include the driver firmware.
  • Driver 400 may be written in C, Assembly, or a combination thereof.
  • base project 420 is shown.
  • base project 420 is compatible with the PSoCTM family of products.
  • a PSoCTM Base Project includes low level drivers and UMs.
  • base project 420 is built around the targeted processing device.
  • Automatic code generator 132 refers to user application description 128 and adds the appropriate code for the drivers and transfer functions.
  • the standardized calls to and from the drivers provide a consistent architecture for reliably connecting base project 420 to drivers.
  • Base project 420 may include any system design project using any of the processing device family of parts that support one or more driver channel types. In one embodiment, if a base project supports a given channel type, it must support it fully. The channel may support an external interface to the input or output signal as well as low level firmware to support the signal acquisition and signal conditioning required for reliable signal measurement. Processing device designer 130 (in one embodiment called “Controller Maker” or 11 PSoC DesignerTM”) adds drivers, such as driver 400, to a base project to support the input/output devices selected by user 122 in user application 127. A project summary file is included in a base project to define what channel types are support and how many channels are available.
  • Base project 420 may include standard project and UM files 422, resource files 424, and low level driver files 426.
  • Standard project and UM files 422 may include common files that are contained in any PSoC DesignerTM project. These files describe the specific user modules employed in the project and their specific placement. The UM's and their placement determine the mapping of the channels to the external pins. With the UM configuration file, specific UM API files are included in so much as they are needed to control specific interrupt behavior required for successful signal acquisition and conditioning. By themselves these files create an empty project.
  • Low level driver files 426 provide the implementation of the channels supported by a given base project.
  • a variety of ways can be used to implement a given channel type. For example, a volts channel can be supported by a wide range of ADCs, multiplexers, and ADC resolutions, as long as the API for the specific channel is fully supported. Some base projects may offer more resolution than others for certain channel types. These differences may be specified in a project summary file (in one embodiment, a CMXProjectSummary.xml file).
  • Resource files may include a CMXProjectSummary.xml file.
  • This extensible Markup Language (XML) file contains metadata that communicate a list of resources provided by the base project to the CMX engine.
  • the XML file indicates the types and count of each of the resource channels and interfaces supported. It also determines the channel assignment order and prioritization, in the case of channels competing for similar resources. It may also provide specifications of each of the channel types, where applicable.
  • Processing device 500 includes a PSoCTM microcontroller.
  • Processing device 500 includes Input/Output (I/O) ports 502.
  • I/O ports 502 are programmable.
  • I/O ports 502 are coupled to a Programmable Interconnect and Logic (PIL) 504 which is coupled to a digital block array 506.
  • PIL Programmable Interconnect and Logic
  • digital block array 506 includes a UM 508 that has been configured as a Universal Asynchronous Receive/Transmitter (UART).
  • Digital block array 506 is coupled to a system bus 512.
  • a Static Random Access Memory (SRAM) 510 and a processing core 514 are also coupled to system bus 512.
  • Processing core 514 is coupled to NVS 516 which has stored a binary 517.
  • binary 517 includes instructions generated as described herein.
  • binary 517 may include instructions executable be processing core 514 as well as instructions for configuring block arrays 516 and 518.
  • Analog block array 518 is coupled to system bus 512.
  • analog block array 518 includes a UM 520 configured as a filter and a UM 522 configured as an ADC.
  • Analog block array 518 is also coupled to an analog I/O unit 524 which is coupled to I/O ports 502.
  • Processing device 500 may also include other components, not shown for clarity, including a clock generator, an interrupt controller, an I2C, or the like.
  • Embodiments of the present invention provide automatic generation of processing device code.
  • a user is presented with a user application design tool for constructing a user application.
  • Processing device code for the user's application is automatically generated without user intervention.
  • the processing device code includes layers of hardware abstraction that progressively isolate hardware interactions to specific hardware components.
  • Embodiments herein produce firmware with deterministic results, eliminate the need for debugging, and significantly reduce project completion time. Design verification may be performed at the user application level instead of struggling with assembly-language and register level verification.
  • Embodiments herein automatically stitch code pieces together from various library files.
  • Embodiments herein also provide expansion capability by updating files to support code for new processing devices and hardware components.
  • FIG. 6 is an illustration of one embodiment of an example computer system 600 on which embodiments of the present invention may be implemented.
  • Computer system 600 includes a processor 602 and a memory 604 coupled to a chipset 606.
  • Storage 612, Non-Volatile Storage (NVS) 605, network interface (I/F) 614, and Input/Output (I/O) ports 618 may also be coupled to chipset 606.
  • Embodiments of computer system 600 include, but are not limited to, a desktop computer, a notebook computer, a server, a personal digital assistant, a network workstation, or the like.
  • computer system 600 includes processor 602 coupled to memory 604, processor 602 to execute instructions stored in memory 604.
  • Memory 604 may include, but is not limited to, Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), Synchronized Dynamic Random Access Memory (SDRAM), Rambus Dynamic Random Access Memory (RDRAM), or the like.
  • DRAM Dynamic Random Access Memory
  • SRAM Static Random Access Memory
  • SDRAM Synchronized Dynamic Random Access Memory
  • RDRAM Rambus Dynamic Random Access Memory
  • Chipset 606 may include a memory controller and an input/output controller. Chipset 606 may also include system clock support, power management support, audio support, graphics support, or the like. In one embodiment, chipset 606 is coupled to a board that includes sockets for processor 602 and memory 604.
  • Interconnects may include a Peripheral Component Interconnect (PCI), a System Management bus (SMBUS), a Low Pin Count (LPC) bus, a Serial Peripheral Interface (SPI) bus, an Accelerated Graphics Port (AGP) interface, or the like.
  • PCI Peripheral Component Interconnect
  • SMBUS System Management bus
  • LPC Low Pin Count
  • SPI Serial Peripheral Interface
  • AGP Accelerated Graphics Port
  • I/O ports 616 may include ports for a keyboard, a mouse, a display, a printer, a scanner, or the like.
  • Embodiments of I/O ports 616 include a Universal Serial Bus port, a Firewire port, a Video Graphics Array (VGA) port, a Personal System/2 (PS/2) port, or the like.
  • VGA Video Graphics Array
  • PS/2 Personal System/2
  • Processing device 140 may be coupled to computer system 600 via I/O ports 616.
  • Computer system 600 may have stored computer- readable instructions, in accordance with embodiments described herein, to allow user 122 to automatically generate processing device code for processing device 140 using computer system 600. This code may be compiled into a binary and loaded into NVS 142.
  • Computer system 600 may interface to external systems through network interface 614.
  • Network interface 614 may include, but is not limited to, a modem, a Network Interface Card (NIC), or other interfaces for coupling a computer system to other computer systems.
  • a carrier wave signal 623 may be received/transmitted by network interface 614.
  • carrier wave signal 623 is used to interface computer system 600 with a network 624, such as a Local Area Network (LAN), a Wide Area Network (WAN), the Internet, or any combination thereof.
  • network 624 is further coupled to a computer system 625 such that computer system 600 and computer system 625 may communicate over network 624.
  • Computer system 600 also includes non-volatile storage 605 on which firmware and/or data may be stored.
  • Non-volatile storage devices include, but are not limited to, Read-Only Memory (ROM), Flash memory,. Erasable Programmable Read Only Memory (EPROM), Electronically Erasable Programmable Read Only Memory (EEPROM), Non-Volatile Random Access Memory (NVRAM), or the like.
  • Storage 612 includes, but is not limited to, a magnetic disk drive, a magnetic tape drive, an optical disk drive, or the like. It is appreciated that instructions executable by processor 602 may reside in storage 612, memory 604, non-volatile storage 605, or may be transmitted or received via network interface 614.
  • computer system 600 may execute Operating System (OS) software.
  • OS Operating System
  • one embodiment of the present invention utilizes Microsoft Windows® as the operating system for computer system 600.
  • Other operating systems that may also be used with computer system 600 include, but are not limited to, the Apple Macintosh operating system, the Linux operating system, the Unix operating system, or the like.
  • a machine-readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form readable or accessible by a machine (e.g., a computer, network device, personal digital assistant, manufacturing tool, any device with a set of one or more processors, etc.).
  • a machine-readable medium includes, but is not limited to, recordable/non- recordable media (e.g., Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disk storage media, optical storage media, a flash memory device, etc.).
  • a machine-readable medium may include propagated signals such as electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.).

Abstract

A user application is generated in response to user input, wherein the user application is described in a user application description. Processing device code is generated for a targeted processing device based at least in part on the user application description without user intervention, wherein the processing device code includes a system layer, wherein functionality of the system layer is independent of the targeted processing device.

Description

PROVIDING HARDWARE INDEPENDENCE TO AUTOMATE CODE GENERATION OF PROCESSING DEVICE FIRMWARE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 60/601 ,225, filed August 13, 2004, and incorporated herein by reference in its entirety.
BACKGROUND
Field
Embodiments of the invention relate to the field of processing devices and more specifically, but not exclusively, to providing hardware independence to automate generation of processing device firmware.
Background Information
Processing devices, such as microcontrollers, are widely used in the industry as control elements in many solutions. Most microcontrollers are general in purpose, and are designed for use in a wide variety of problem solutions. As microcontrollers become more programmable and more widely applicable, a designer needs more specific device knowledge to use the microcontroller to solve a problem.
In a conventional solution, hardware and software are usually created for a specific microcontroller, and may be redesigned (sometimes completely) following a change in requirements. A common sequence of events is to first determine the system requirements (often incompletely when time is short) to address a problem, then second to determine hardware and software requirements, then third to determine microcontroller and interfacing circuitry requirements, and fourth to find a suitable microcontroller and design suitable interfaces. Finally, the user i must manually configure the microcontroller and write device specific firmware, and the user may have to re-write firmware, redesign circuitry, or choose another microcontroller based upon new/changing requirements.
Design changes during this conventional approach may result in costly and inefficient code changes, may cause software and hardware architecture changes and may even require a change in microcontroller and a significant redesign. Such a redesign may be costly and may delay design and production schedules. Also, designing and redesigning conventional microcontrollers may require specialists in a variety of areas including hardware engineering, firmware coding, and system design.
BRIEF DESCRIPTION OF THE DRAWINGS
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Figure 1A is a flowchart illustrating the logic and operations to provide automated code generation of processing device firmware in accordance with one embodiment of the present invention.
Figure 1B is a diagram illustrating a system to provide automated code generation of processing device firmware in accordance with one embodiment of the present invention.
Figure 1C is a Graphical User Interface (GUI) in accordance with one embodiment of the present invention.
Figure 2 is a diagram illustrating a firmware stack in accordance with one embodiment of the present invention.
Figure 3 is a diagram illustrating a firmware stack in accordance with one embodiment of the present invention. Figure 4A is a diagram illustrating a driver in accordance with one embodiment of the present invention.
Figure 4B is a diagram illustrating a base project in accordance with one embodiment of the present invention.
Figure 5 is a diagram illustrating a processing device in accordance with one embodiment of the present invention.
Figure 6 is a diagram illustrating a computer system in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION
In the following description, numerous specific details are set forth to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that embodiments of the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring understanding of this description.
Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
In the following description and claims, the term "coupled" and its derivatives may be used. "Coupled" may mean that two or more elements are in direct contact (physically, electrically, magnetically, optically, etc.). "Coupled" may also mean two or more elements are not in direct contact with each other, but still cooperate or interact with each other.
Turning to Figures 1A-1B, embodiments to provide automated code generation of processing device firmware is shown. Figure 1 A shows a flowchart 100 in accordance with an embodiment of the invention. Figure 1 B shows a system 120 in accordance with an embodiment of the invention. In one embodiment, the logic of flowchart 100 and components of system 120 may be embodied in instructions executable by a computer system.
Starting in a block 102 of flowchart 100, a user application is generated in response to user input. Referring to Figure 1B, user 122 may use a processing device maker GU1 124 to construct user application 127, also referred to as a system, for implementation on a processing device 140. Processing device maker GU1 124 overlays a processing device maker 126. User application 127 may be described in a user application description 128. In one embodiment, user application description 128 is a text file that describes the user's application.
An embodiment of processing device maker GUI 124 is shown in Figure 1C. GU1 124 may be generated in a variety of ways, such as using HyperText Markup Language (HTML), JavaScript, or the like. GU1 124 may include an interface such for Programmable System on a Chip™ (PSoC™) Express™ of the Cypress Semiconductor Corporation. However, it will be understood that embodiments of GUI 124 are not limited to the interface shown in Figure 1 C or to any interfaces of PSoC Express™.
Tabs for various stages in designing a user application are shown at 152. These tabs include Design, Simulation, Bill of Materials/Schematic (BOM/Schem), and Build. The Design tab is where • user 122 may use the GUI to create a user application. The Simulation tab provides a software simulation of the user's application. The BOM/Schem tab is used to generate a bill of materials, schematic and/or a datasheet for the user's application. The Build tab may invoke the automated code functionality to provide a user with code to implement the user's application without coding by the user.
In Figure 1C, user 122 is creating a user application to turn a Light Emitting Diode (LED) on and off using a push-button switch. User 122 may use a tray 154 at the bottom of GU1 124 to drag-and-drop desired input/output devices and set up transfer functions between the input/output devices.
In the example of Figure 1C, user 122 has dragged push-button switch 156 and LED 158 into the design area. User 122 has also set up a transfer function 160 between switch 156 and LED 158. Transfer function 160 may be defined such that when switch 156 is pressed, LED 158 is on, and when switch 156 is released, LED 158 is off.
In general, a transfer function defines the behavior of an output device. The transfer function may define the behavior of an output device in response to one or more inputs. In one embodiment, transfer function types include a truth table transfer function for mapping specific output actions and/or output states to permutations of discrete inputs. In another embodiment, the transfer function types include a setpoint transfer function to convert a continuous input signal to a number of discrete values. User 122 may provide a number of inputs to the transfer function and assign an output state to each combination of the inputs. After the transfer function is defined, processing device maker 126 may validate the transfer function. If the transfer function is determined to be invalid, an error message may be displayed to user 122.
In one embodiment, after block 102 of flowchart 100, user 122 may perform a simulation of user application 127 using system 120, as shown at a block 103. In one embodiment, user 122 selects the Simulation tab of GUI 124 to enter a simulation mode. The simulation capability enables hardware independence by verifying the transfer function behavior without requiring the user to compile and debug the firmware on the targeted processing device. Simulation also includes the ability to create complex input files to exhaustively test the transfer function behavior with arbitrarily large combinations of input values. The simulation logs the outputs based on the transfer function behavior so that the results may be analyzed by the user.
After block 103, the logic proceeds to a block 104 to generate processing device code for a targeted processing device without user intervention. After user 122 has completed the user application 127, user 122 may use processing device maker GUI 124 to request that processing device code be automatically generated. User 122 does not have to perform any actual coding.
In one embodiment, user 122 selects the Build tab of GU1 124. In one embodiment, user 122 may select a targeted processing device from a list of devices. The list may include other information regarding the targeted processing devices, such as processing device cost. After user 122 selects the targeted processing device, code is automatically generated for the device.
Turning to Figure 1B, user application description 128 is handed-off to a processing device designer 130 for the generation of processing device code. In one embodiment, processing device designer 130 includes PSoC Designer™ of the Cypress Semiconductor Corporation.
Processing device designer 130 may include an automatic code generator 132. Automatic code generator 132 assembles the code for the user's application 127 based on user application description 128. Automatic code generator 132 generates processing device code 135. In one embodiment, code 135 may include a high-level language, such as C, a low-level code, such as Assembly, or a combination thereof. In one embodiment, automatic code generator 132 includes a Controller Maker engine (CMX) of the Cypress Semiconductor Corporation.
In one embodiment, to assemble code 135, automatic code generator 132 may reference libraries 136. Libraries 136 include code blocks that may be combined to form code 135. Automatic code generator 132 may use at least a portion of user application description 128 as a guide in gathering together various code blocks. Some of the code blocks may be selected based at least in part on the targeted processing device.
Returning to flowchart 100, after block 104, the logic may continue to a block 106 where code 135 is compiled. In system 120, code 135 may be compiled by compiler 134 of processing device designer 130 to generate a binary 138, also known as a binary image or a Read-Only Memory (ROM) image.
Continuing to a block 108, the binary is loaded into the targeted processing device. In Figure 1B, binary 138 is loaded into a Non-Volatile Storage (NVS) 142 of processing device 140. In one embodiment, NVS 142 includes Flash memory.
Embodiments of processing device 140 may include one or more general-purpose processing devices, such as a microprocessor or central processing unit, a network processor, a microcontroller, an embedded Programmable Logic Device (PLD), or the like. In one embodiment, processing device 140 includes a Cypress Microsystem's PSoC™ microcontroller. Alternatively, the processing device may include one or more special-purpose processing devices, such as a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. The processing device may also include any combination of a general-purpose processing device and a special-purpose processing device.
It will be appreciated that processing device code 135 may be generated without user intervention. User 122 does not have to write any code, so there is no need for C coding or Assembly coding experts. Also, because the code is constructed from pre-built and pre-tested code libraries, time wasted on debugging, such as finding syntax errors, is eliminated.
It will also be appreciated that user 122 generated user application 127 without referencing a targeted processing device. Instead of choosing a processing device to implement a user application and then writing code for that processing device, embodiments of the present invention allow a user application to be created and then code automatically generated for a particular processing device. Moreover, a user may take a user application, make revisions to the user application, and quickly generate revised programming device code. User 122 no longer has to waste time rewriting and debugging code just because a single sensor has been added to a user application.
In flowchart 100, after block 108, the logic may continue to a block 110, to generate processing device code for a second targeted processing device, where the second targeted processing device is different than the first targeted processing device. User 122 may take user application 127 that has already been constructed and use it to generate code for a different processing device. Automated code generator 132 is aware of the specific coding requirements of the second targeted device and assembles the appropriate code blocks from libraries 136. Thus, user 122 may easily move user application 127 to other processing devices without spending time and money recoding for a new targeted processing device. Continuing to a block 112 of flowchart 100, one or more libraries used by processing device designer 130 may be updated. These updates may be received on disk, such as a Compact Disk Read-Only Memory (CD-ROM), or downloaded over a network. Libraries 136 may be updated with new components, such as a new temperature sensor, or updated with new targeted processing devices that have come onto the market. Thus, if a new processing device comes on the market, user 122 does not have to worry about learning new firmware coding requirements for the new processing device since all the coding is taken care of by processing device designer 130.
Referring to Figure 2, a firmware stack 200 in accordance with one embodiment of the invention is shown. Firmware stack 200 shows a logical structure of at least a portion of the processing device code 135. As discussed below, a portion of the stack is abstracted away from specific hardware. Such hardware independency provides the automatic code generator a consistent architecture for stitching together various code blocks.
Firmware stack 200 includes a system layer 202, a hardware encapsulation layer 204, and a base project layer 206. As will be described further below, the functionality of the system layer 202 is independent of the targeted processing device. Also, interfaces, such as Application Program Interfaces (APIs), made between system layer 202 and the remaining layers of firmware stack 200 are standardized regardless of the targeted processing device. The term "standardized" refers to the hardware independence of the APIs. This abstraction away from specific hardware allows system layer 202 to function without regard to the particular hardware. The low layers of firmware stack 200 have "knowledge" of the specific hardware and take care of the implementation details for the system layer 202. The hardware encapsulation layer 204 and the base project layer 206 are generated based at least in part on the targeted processing device. Hardware encapsulation layer 204 represents the underlying hardware to system layer 202. Base project layer 206 includes a set of standard functions associated with the targeted processing device hardware. Base project layer 206 may include functionality at the register level of the targeted processing device.
System layer 202 may include transfer functions 208 and drivers 212. System layer 202 is targeted by an application level mapping function. Transfer functions 208 invoke the transfer functions defined by user 122.
Drivers 212 are usually associated with a hardware component of the processing device. In one embodiment, drives 212 may include three types: input, output, or interface. An output driver may be used with a device that is controlled by the user application, such as a fan or heater. Input drivers may be used for sensors, such as temperature or voltage sensors. Interface drivers may be used for devices that allow access to system variables and status, such as an Inter-Integrated Circuit (I2C) or a Serial Peripheral Interface (SPI).
Transfer functions 208 and drivers 212 may communicate with each other using APIs 222. Embodiments of an API include DriverName- lnstantiate to initialize a device, DriverName_GetValue to return a value from an input device, and DriverNameJSetValue to set an output of an output device to a specific value. Such APIs are defined such that the may be invoked regardless of the particular hardware.
Drivers 212 communicate with hardware encapsulation layer 204 using channels 224. Channels 224 are hardware independent. A channel may be further defined by a channel type, such as an input voltage channel, an output voltage channel, or the like. In one embodiment, channels 224 are implemented as APIs.
Hardware encapsulation layer 204 may include low level drivers 214 and system initialization 210. Low level drivers 214 provide the implementation of channels 224. In one embodiment, all drivers 212 use one or more channels 224 to communicate with low level drivers 214. In one embodiment, a channel may have associated parameters assigned by a low level driver, and the associated driver must conform to those parameters.
In one embodiment, the base project layer 206 includes User Modules (UMs) 216 and PSoC™ processing device hardware 218. User modules 216 are used with block arrays in PSoC™ processing device hardware 218 to form hardware components, such as an Analog-Digital Converter (ADC) (discussed further below). It will be understood that embodiments of the invention are not limited to PSoC™ processing devices. In alternative embodiments, base project layer 206 includes a non-PSoC™ processing device.
Figure 2 also shows low level drivers 214, user modules 216, and PSoC™ Hardware 218 grouped into a PSoC™ Base Project 220. Embodiments using a PSoC™ Base Project will be discussed below.
Turning to Figure 3, a diagram illustrating the interaction between layers of a firmware stack 300 is shown. The embodiment of Figure 3 shows a transfer function between a single input device and a single output device for the sake of clarity. However, it will be appreciated that embodiments of the invention may be used with other user applications having various configurations of inputs, outputs, and transfer functions.
Firmware stack 300 includes a transfer function 308 layered on a driver 306. Transfer function 308 and driver 306 communicate via APIs 307. Driver 307 is layered on a low level driver 304. Driver 306 and low level driver 304 communicate using volt channels 305. In one embodiment, a volt channel may be used by driver 306 for receiving a voltage from low level driver 304.
Low level driver 304 is layered on a user module/processing device 302. User module/processing device 302 includes a temperature sensor 309 and a fan 318.
In the embodiment of Figure 3, fan 318 is controlled in response to the temperature read by temperature sensor 309. At user module/processing hardware 302, a raw count value 310, corresponding to a reading from sensor 309, is sent to low level driver 304. Low level driver 304 takes the raw count value and converts it to a volt value 312.
Driver 306 may request and receive the volt value 312 using volt channels 305. Driver 306 may respond to temperature sensor requests from transfer function 308 and return a temperature value 314 converted from voltage value 312. Transfer function may then issue a command 316, if any, for fan 318 based on the temperature received. In Figure 3, transfer function 308 issues command 316 to turn on fan 318 in response to the temperature at temperature sensor 309. This "turn on fan" command may travel down through the firmware stack to execute the command on fan 318.
It will be appreciated that transfer function 308 and driver 306, as well as APIs 307 and volt channels 305, are hardware independent. Low level driver 304 and UM/processing device 302 have "knowledge" of how to interact with the particular hardware components. Since transfer function 308 and driver 306 are hardware independent and their communication interfaces are standardized, they can be easily hooked to low level drivers and UM/processing devices.
Turning to Figure 4A, an embodiment of driver 400 is shown. In one embodiment, driver 400 is compatible with the PsoC™ family of products. Driver 400 includes several components for device selection and code generation. These components may be grouped into ControllerMaker Interface files 402, Data files 404, and Source Code files 406. In one embodiment, processing device designer 130 includes PsoC™ ControllerMaker.
Interface files 402 include files to generate the visual interface in processing device maker GUI 124. Data files 404 are used for driver type selection, resource allocation, user parameter selection, and code generation. Data files 404 may include a DriverName.cmx file that includes information about channel type, resource requirements, association with image files, and user selectable parameters. Source code files 406 include the driver firmware. Driver 400 may be written in C, Assembly, or a combination thereof.
Turning to Figure 4B, an embodiment of a base project 420 is shown. In one embodiment, base project 420 is compatible with the PSoC™ family of products. A PSoC™ Base Project includes low level drivers and UMs.
In one embodiment, base project 420 is built around the targeted processing device. Automatic code generator 132 refers to user application description 128 and adds the appropriate code for the drivers and transfer functions. The standardized calls to and from the drivers provide a consistent architecture for reliably connecting base project 420 to drivers.
Base project 420 may include any system design project using any of the processing device family of parts that support one or more driver channel types. In one embodiment, if a base project supports a given channel type, it must support it fully. The channel may support an external interface to the input or output signal as well as low level firmware to support the signal acquisition and signal conditioning required for reliable signal measurement. Processing device designer 130 (in one embodiment called "Controller Maker" or 11PSoC Designer™") adds drivers, such as driver 400, to a base project to support the input/output devices selected by user 122 in user application 127. A project summary file is included in a base project to define what channel types are support and how many channels are available.
Base project 420 may include standard project and UM files 422, resource files 424, and low level driver files 426. Standard project and UM files 422 may include common files that are contained in any PSoC Designer™ project. These files describe the specific user modules employed in the project and their specific placement. The UM's and their placement determine the mapping of the channels to the external pins. With the UM configuration file, specific UM API files are included in so much as they are needed to control specific interrupt behavior required for successful signal acquisition and conditioning. By themselves these files create an empty project.
Low level driver files 426 provide the implementation of the channels supported by a given base project. A variety of ways can be used to implement a given channel type. For example, a volts channel can be supported by a wide range of ADCs, multiplexers, and ADC resolutions, as long as the API for the specific channel is fully supported. Some base projects may offer more resolution than others for certain channel types. These differences may be specified in a project summary file (in one embodiment, a CMXProjectSummary.xml file).
Resource files may include a CMXProjectSummary.xml file. This extensible Markup Language (XML) file contains metadata that communicate a list of resources provided by the base project to the CMX engine. The XML file indicates the types and count of each of the resource channels and interfaces supported. It also determines the channel assignment order and prioritization, in the case of channels competing for similar resources. It may also provide specifications of each of the channel types, where applicable.
Turning to Figure 5, an embodiment of a processing device 500 is shown. Processing device 500 includes a PSoC™ microcontroller. Processing device 500 includes Input/Output (I/O) ports 502. In one embodiment, I/O ports 502 are programmable. I/O ports 502 are coupled to a Programmable Interconnect and Logic (PIL) 504 which is coupled to a digital block array 506. In Figure 5, digital block array 506 includes a UM 508 that has been configured as a Universal Asynchronous Receive/Transmitter (UART). Digital block array 506 is coupled to a system bus 512.
A Static Random Access Memory (SRAM) 510 and a processing core 514 are also coupled to system bus 512. Processing core 514 is coupled to NVS 516 which has stored a binary 517. In one embodiment, binary 517 includes instructions generated as described herein. In another embodiment, binary 517 may include instructions executable be processing core 514 as well as instructions for configuring block arrays 516 and 518.
Analog block array 518 is coupled to system bus 512. In the embodiment of Figure 5, analog block array 518 includes a UM 520 configured as a filter and a UM 522 configured as an ADC. Analog block array 518 is also coupled to an analog I/O unit 524 which is coupled to I/O ports 502. Processing device 500 may also include other components, not shown for clarity, including a clock generator, an interrupt controller, an I2C, or the like.
Embodiments of the present invention provide automatic generation of processing device code. A user is presented with a user application design tool for constructing a user application. Processing device code for the user's application is automatically generated without user intervention. The processing device code includes layers of hardware abstraction that progressively isolate hardware interactions to specific hardware components. Embodiments herein produce firmware with deterministic results, eliminate the need for debugging, and significantly reduce project completion time. Design verification may be performed at the user application level instead of struggling with assembly-language and register level verification.
Further, changes may be made to the user application and new code generated without the user having to endure the painful processing of revising code written previously, and in some cases, code written by someone else. Embodiments herein automatically stitch code pieces together from various library files. Embodiments herein also provide expansion capability by updating files to support code for new processing devices and hardware components.
Figure 6 is an illustration of one embodiment of an example computer system 600 on which embodiments of the present invention may be implemented. Computer system 600 includes a processor 602 and a memory 604 coupled to a chipset 606. Storage 612, Non-Volatile Storage (NVS) 605, network interface (I/F) 614, and Input/Output (I/O) ports 618 may also be coupled to chipset 606. Embodiments of computer system 600 include, but are not limited to, a desktop computer, a notebook computer, a server, a personal digital assistant, a network workstation, or the like. In one embodiment, computer system 600 includes processor 602 coupled to memory 604, processor 602 to execute instructions stored in memory 604.
Memory 604 may include, but is not limited to, Dynamic Random Access Memory (DRAM), Static Random Access Memory (SRAM), Synchronized Dynamic Random Access Memory (SDRAM), Rambus Dynamic Random Access Memory (RDRAM), or the like.
Chipset 606 may include a memory controller and an input/output controller. Chipset 606 may also include system clock support, power management support, audio support, graphics support, or the like. In one embodiment, chipset 606 is coupled to a board that includes sockets for processor 602 and memory 604.
Components of computer system 600 may be connected by various interconnects. Such interconnects may include a Peripheral Component Interconnect (PCI), a System Management bus (SMBUS), a Low Pin Count (LPC) bus, a Serial Peripheral Interface (SPI) bus, an Accelerated Graphics Port (AGP) interface, or the like.
I/O ports 616 may include ports for a keyboard, a mouse, a display, a printer, a scanner, or the like. Embodiments of I/O ports 616 include a Universal Serial Bus port, a Firewire port, a Video Graphics Array (VGA) port, a Personal System/2 (PS/2) port, or the like.
Processing device 140 may be coupled to computer system 600 via I/O ports 616. Computer system 600 may have stored computer- readable instructions, in accordance with embodiments described herein, to allow user 122 to automatically generate processing device code for processing device 140 using computer system 600. This code may be compiled into a binary and loaded into NVS 142.
Computer system 600 may interface to external systems through network interface 614. Network interface 614 may include, but is not limited to, a modem, a Network Interface Card (NIC), or other interfaces for coupling a computer system to other computer systems. A carrier wave signal 623 may be received/transmitted by network interface 614. In the embodiment illustrated in Figure 6, carrier wave signal 623 is used to interface computer system 600 with a network 624, such as a Local Area Network (LAN), a Wide Area Network (WAN), the Internet, or any combination thereof. In one embodiment, network 624 is further coupled to a computer system 625 such that computer system 600 and computer system 625 may communicate over network 624.
Computer system 600 also includes non-volatile storage 605 on which firmware and/or data may be stored. Non-volatile storage devices include, but are not limited to, Read-Only Memory (ROM), Flash memory,. Erasable Programmable Read Only Memory (EPROM), Electronically Erasable Programmable Read Only Memory (EEPROM), Non-Volatile Random Access Memory (NVRAM), or the like. Storage 612 includes, but is not limited to, a magnetic disk drive, a magnetic tape drive, an optical disk drive, or the like. It is appreciated that instructions executable by processor 602 may reside in storage 612, memory 604, non-volatile storage 605, or may be transmitted or received via network interface 614.
It will be appreciated that in one embodiment, computer system 600 may execute Operating System (OS) software. For example, one embodiment of the present invention utilizes Microsoft Windows® as the operating system for computer system 600. Other operating systems that may also be used with computer system 600 include, but are not limited to, the Apple Macintosh operating system, the Linux operating system, the Unix operating system, or the like.
For the purposes of the specification, a machine-readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form readable or accessible by a machine (e.g., a computer, network device, personal digital assistant, manufacturing tool, any device with a set of one or more processors, etc.). For example, a machine-readable medium includes, but is not limited to, recordable/non- recordable media (e.g., Read-Only Memory (ROM), Random Access Memory (RAM), magnetic disk storage media, optical storage media, a flash memory device, etc.). In addition, a machine-readable medium may include propagated signals such as electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.).
Various operations of embodiments of the present invention are described herein. These operations may be implemented by a machine using a processor, an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. In one embodiment, one or more of the operations described may constitute instructions stored on a machine-readable medium, that when executed by a machine will cause the machine to perform the operations described. The order in which some or all of the operations are described should not be construed as to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated by one skilled in the art having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment of the invention.
The above description of illustrated embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible, as those skilled in the relevant art will recognize. These modifications can be made to embodiments of the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification. Rather, the following claims are to be construed in accordance with established doctrines of claim interpretation. CLAIMS

Claims

What is claimed is:
1. A method, comprising: generating a user application in response to user input, wherein the user application is described in a user application description; and generating processing device code for a targeted processing device based at least in part on the user application description without user intervention, wherein the processing device code includes a system layer, wherein functionality of the system layer is independent of the targeted processing device.
2. The method of claim 1 wherein the processing device code includes a hardware encapsulation layer to represent the targeted processing device to the system layer, wherein the hardware encapsulation layer is generated based at least in part on the targeted processing device.
3. The method of claim 2 wherein the system layer and the hardware encapsulation layer communicate using hardware independent interfaces.
4. The method of claim 2 wherein the processing device code includes a base project layer to support the hardware encapsulation layer, wherein the base project layer is generated based at least in part on the targeted processing device.
5. The method of claim 1 wherein generating the processing device code includes obtaining processing device code from libraries.
6. The method of claim 5, further comprising updating the libraries with new processing device code.
7. The method of claim 1 , further comprising generating second processing device code for a second targeted processing device based at least in part on the user application description without user intervention, wherein the second targeted processing device is different than the targeted processing device, wherein the second processing device code includes a second system layer that is substantially similar to the system layer.
8. The method of claim 1 , further comprising performing a simulation of the user application, wherein the simulation is performed independent of the targeted processing device.
9. An article of manufacture, comprising: a machine-readable medium including a plurality of instructions which when executed perform operations comprising: presenting a processing device maker graphical user interface (GUI) to allow a user to construct a user application using a processing device maker, wherein the user application is described in a user application description; and generating processing device code for a targeted processing device based at least in part on the user application description without user intervention, wherein the processing device code includes a system layer, wherein functionality of the system layer is independent of the targeted processing device.
10. The article of manufacture of claim 9 wherein the system layer includes: a transfer function to describe behavior of an output device of the targeted processing device; and a driver associated with the output device.
11. The article of manufacture of claim 10 wherein the transfer function and the driver communicate using hardware independent application program interfaces.
12. The article of manufacture of claim 9 wherein the processing device code includes a hardware encapsulation layer to represent the targeted processing device to the system layer, wherein the hardware encapsulation layer is generated based at least in part on the targeted processing device.
13. The article of manufacture of claim 12 wherein the system layer communicates with the hardware encapsulation layer using hardware independent channels.
14. The article of manufacture of claim 12 wherein the processing device code includes a base project layer to operate at a register level of the targeted processing device to support the hardware encapsulation layer, wherein the base project layer is generated based at least in part on the targeted processing device.
15. The article of manufacture of claim 14 wherein the base project layer includes a user module to configure a portion of a block array of the targeted processing device.
16. The article of manufacture of claim 9 wherein execution of the plurality of instructions further perform operations comprising: generating second processing device code for a second targeted processing device based at least in part on the user application description without user intervention, wherein the second targeted processing device is different than the targeted processing device, wherein the second processing device code includes the system layer, a second hardware encapsulation layer, and a second base project layer, wherein the second hardware encapsulation layer and the second base project layer are generated for the second targeted processing device.
17. A system, comprising: a targeted processing device including a non-volatile storage device; and a computer system coupled to the targeted processing device, the computer system having stored a plurality of instructions which when executed by the computer system perform operations comprising: presenting a processing device maker graphical user interface (GUI) to allow a user to construct a user application using a processing device maker, wherein the user application is described in a user application description; and generating processing device code for the targeted processing device based at least in part on the user application description without user intervention, wherein the processing device code includes a system layer, wherein functionality of the system layer is independent of the targeted processing device.
18. The system of claim 17 wherein the processing device code further includes: a hardware encapsulation layer; and a base project layer, wherein the hardware encapsulation layer and the base project layer are generated based on the targeted processing device.
19. The system of claim 18 wherein the system layer communicates with the hardware encapsulation layer using hardware independent channels.
20. The system of claim 17 wherein execution of the plurality of instructions further perform operations comprising: compiling the processing device code into a binary image; and loading the binary image into the non-volatile storage of the targeted processing device.
PCT/US2005/028898 2004-08-13 2005-08-12 Providing hardware independence to automate code generation of processing device firmware WO2006020948A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60122504P 2004-08-13 2004-08-13
US60/601,225 2004-08-13
US11/200,619 2005-08-10
US11/200,619 US8069436B2 (en) 2004-08-13 2005-08-10 Providing hardware independence to automate code generation of processing device firmware

Publications (2)

Publication Number Publication Date
WO2006020948A1 true WO2006020948A1 (en) 2006-02-23
WO2006020948A8 WO2006020948A8 (en) 2007-05-03

Family

ID=35801475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2005/028898 WO2006020948A1 (en) 2004-08-13 2005-08-12 Providing hardware independence to automate code generation of processing device firmware

Country Status (2)

Country Link
US (1) US8069436B2 (en)
WO (1) WO2006020948A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904878B2 (en) 2006-12-26 2011-03-08 Vayavya Technologies Private Limited Simplifying generation of device drivers for different user systems to facilitate communication with a hardware device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7853669B2 (en) * 2007-05-04 2010-12-14 Microsoft Corporation Mesh-managing data across a distributed set of devices
US8884981B2 (en) * 2007-09-04 2014-11-11 Apple Inc. Dynamically reconfigurable graphics layer system and method
US8584102B2 (en) * 2007-12-27 2013-11-12 Microsoft Corporation Creating and using deltas to modify existing computer code
US9298747B2 (en) * 2008-03-20 2016-03-29 Microsoft Technology Licensing, Llc Deployable, consistent, and extensible computing environment platform
US8572033B2 (en) 2008-03-20 2013-10-29 Microsoft Corporation Computing environment configuration
US8484174B2 (en) * 2008-03-20 2013-07-09 Microsoft Corporation Computing environment representation
US9753712B2 (en) 2008-03-20 2017-09-05 Microsoft Technology Licensing, Llc Application management within deployable object hierarchy
US20090248737A1 (en) * 2008-03-27 2009-10-01 Microsoft Corporation Computing environment representation
US8595689B2 (en) 2008-12-24 2013-11-26 Flir Systems Ab Executable code in digital image files
US8683428B2 (en) * 2011-03-23 2014-03-25 Microsoft Corporation Automated generation of client/driver communication interfaces
US9251554B2 (en) 2012-12-26 2016-02-02 Analog Devices, Inc. Block-based signal processing
US9078578B2 (en) 2013-07-02 2015-07-14 General Electric Company System and method for optimizing electrocardiography study performance
US10543706B2 (en) 2013-08-09 2020-01-28 MeccoPartners, LLC EIP protocol converter system for laser for dot peen marking systems
US10444862B2 (en) 2014-08-22 2019-10-15 Synaptics Incorporated Low-profile capacitive pointing stick
WO2017066194A1 (en) 2015-10-11 2017-04-20 Renesas Electronics America Inc. Data driven embedded application building and configuration
US10372865B2 (en) 2016-11-19 2019-08-06 International Business Machines Corporation System design based on unified chip specification

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996799B1 (en) * 2000-08-08 2006-02-07 Mobilygen Corporation Automatic code generation for integrated circuit design

Family Cites Families (984)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236494A (en) 1969-06-23 1971-06-23 Marconi Co Ltd Improvements in or relating to phase difference detectors
US3637319A (en) 1969-12-08 1972-01-25 Gen Electric Method for dual mode control changeover in a steam turbine
US3725804A (en) 1971-11-26 1973-04-03 Avco Corp Capacitance compensation circuit for differential amplifier
US3810036A (en) 1972-10-05 1974-05-07 Hewlett Packard Co Phase lock loop for locking on highest amplitude signal
US3845328A (en) 1972-10-09 1974-10-29 Rca Corp Tri-state logic circuit
US3831113A (en) 1973-06-01 1974-08-20 Rca Corp Relaxation oscillator
US3940760A (en) 1975-03-21 1976-02-24 Analog Devices, Inc. Digital-to-analog converter with current source transistors operated accurately at different current densities
JPS5717533Y2 (en) 1976-02-27 1982-04-13
US4134073A (en) 1976-07-12 1979-01-09 Honeywell Information Systems Inc. Clock system having adaptive synchronization feature
US4138671A (en) 1977-02-14 1979-02-06 Precision Monolithics, Inc. Selectable trimming circuit for use with a digital to analog converter
GB2014387B (en) 1978-02-14 1982-05-19 Motorola Inc Differential to single-ended converter utilizing inverted transistors
US4176258A (en) 1978-05-01 1979-11-27 Intel Corporation Method and circuit for checking integrated circuit chips
US4250464A (en) 1978-07-03 1981-02-10 Rca Corporation Multi-mode relaxation oscillator
SE413826B (en) 1978-09-21 1980-06-23 Ellemtel Utvecklings Ab SET IN A TELECOMMUNICATION SYSTEM REGULATING THE PHASE OF A CONTROLLED SIGNAL IN RELATION TO A REFERENCE SIGNAL AND DEVICE FOR IMPLEMENTATION OF THE SET
US4283713A (en) 1979-01-15 1981-08-11 Tektronix, Inc. Waveform acquisition circuit
US4272760A (en) 1979-04-10 1981-06-09 Burr-Brown Research Corporation Self-calibrating digital to analog conversion system and method
US4794558A (en) 1979-06-12 1988-12-27 Motorola, Inc. Microprocessor having self-programmed eprom
US4344067A (en) 1979-11-21 1982-08-10 Motorola, Inc. Analog to digital converter and method of calibrating same
US4689740A (en) 1980-10-31 1987-08-25 U.S. Philips Corporation Two-wire bus-system comprising a clock wire and a data wire for interconnecting a number of stations
US4438404A (en) 1982-01-04 1984-03-20 Tektronix, Inc. Signal sampling system
US4610026A (en) 1982-04-30 1986-09-02 Hitachi, Ltd. Method of and apparatus for enlarging/reducing two-dimensional images
DE3222607A1 (en) 1982-06-16 1983-12-22 Philips Patentverwaltung Gmbh, 2000 Hamburg CIRCUIT ARRANGEMENT WITH SEVERAL SIGNAL PATHS, MADE BY ACTIVE CIRCUITS
US4499549A (en) 1982-06-25 1985-02-12 Automation Systems, Inc. Digital computer having analog signal circuitry
US4497575A (en) 1982-11-01 1985-02-05 Tektronix, Inc. Optical fiber test instrument calibrator
US4475151A (en) 1982-11-04 1984-10-02 Harald Philipp Switching amplifier circuit
JPS59146352A (en) 1983-02-09 1984-08-22 Nec Corp Single chip microcomputer system
US4656603A (en) 1984-03-01 1987-04-07 The Cadware Group, Ltd. Schematic diagram generating system using library of general purpose interactively selectable graphic primitives to create special applications icons
US4827401A (en) 1984-10-24 1989-05-02 International Business Machines Corporation Method and apparatus for synchronizing clocks prior to the execution of a flush operation
JPS61135243A (en) 1984-12-06 1986-06-23 Fujitsu Ltd Multiplex transmission method
NL8501088A (en) 1985-04-12 1986-11-03 Philips Nv TUNABLE OSCILLATOR SWITCH.
US4849880A (en) 1985-11-18 1989-07-18 John Fluke Mfg. Co., Inc. Virtual machine programming system
US4701907C1 (en) 1986-02-03 2002-08-27 Collins Mary Dynamically reconfigurable time-space-time digital switch and network
JPS62247275A (en) 1986-03-31 1987-10-28 Ando Electric Co Ltd Cpu identification circuit for in-circuit emulator
US4914568A (en) 1986-10-24 1990-04-03 National Instruments, Inc. Graphical system for modelling a process and associated method
US4773024A (en) 1986-06-03 1988-09-20 Synaptics, Inc. Brain emulation circuit with reduced confusion
US5451887A (en) 1986-09-19 1995-09-19 Actel Corporation Programmable logic module and architecture for field programmable gate array device
US4740966A (en) 1986-09-30 1988-04-26 Texas Instruments Incorporated Analog input circuit for microcontroller apparatus
JPS63121934A (en) 1986-11-10 1988-05-26 Oki Electric Ind Co Ltd One-chip microcomputer for evaluation
US5155836A (en) 1987-01-27 1992-10-13 Jordan Dale A Block diagram system and method for controlling electronic instruments with simulated graphic display
US4736097A (en) 1987-02-02 1988-04-05 Harald Philipp Optical motion sensor
JPH083773B2 (en) 1987-02-23 1996-01-17 株式会社日立製作所 Large-scale semiconductor logic circuit
US4942540A (en) 1987-03-02 1990-07-17 Wang Laboratories, Inc. Method an apparatus for specification of communication parameters
US4802119A (en) 1987-03-17 1989-01-31 Motorola, Inc. Single chip microcomputer with patching and configuration controlled by on-board non-volatile memory
US5089352A (en) 1987-04-16 1992-02-18 W. R. Grace & Co.-Conn. Cross-linked multilayer heat-shrinkable oriented polymeric film
DE3713376A1 (en) 1987-04-21 1988-11-10 Sgs Halbleiterbauelemente Gmbh COMPARATOR WITH EXTENDED INPUT CURRENT VOLTAGE RANGE
US4755766A (en) 1987-04-22 1988-07-05 Tektronix, Inc. Differential to single-ended converter
US5329471A (en) 1987-06-02 1994-07-12 Texas Instruments Incorporated Emulation devices, systems and methods utilizing state machines
JPS6432075A (en) 1987-07-28 1989-02-02 Kenichi Goto Power generating method using shape memory alloy and device therefor
US5535331A (en) 1987-09-04 1996-07-09 Texas Instruments Incorporated Processor condition sensing circuits, systems and methods
US5127103A (en) 1987-10-14 1992-06-30 North American Philips Corporation Real-time tracing of dynamic local data in high level languages in the presence of process context switches
US4999519A (en) 1987-12-04 1991-03-12 Hitachi Vlsi Engineering Corporation Semiconductor circuit with low power consumption having emitter-coupled logic or differential amplifier
US4878200A (en) 1987-12-30 1989-10-31 Intel Corporation Product term sharing/allocation in an EPROM array
US4876534A (en) 1988-02-05 1989-10-24 Synaptics Incorporated Scanning method and apparatus for current signals having large dynamic range
US4939637A (en) 1988-02-10 1990-07-03 Metalink Corporation Circuitry for producing emulation mode in single chip microcomputer
US4879461A (en) 1988-04-25 1989-11-07 Harald Philipp Energy field sensor using summing means
US5206582A (en) 1988-05-18 1993-04-27 Hewlett-Packard Company Control system for automated parametric test equipment
US5581763A (en) 1988-06-14 1996-12-03 Progressive Technology Inc. Secure architecture and apparatus using an independent computer cartridge
US4885484A (en) 1988-07-05 1989-12-05 Motorola, Inc. Voltage clamped differential to single ended converter circuit
US5270963A (en) 1988-08-10 1993-12-14 Synaptics, Incorporated Method and apparatus for performing neighborhood operations on a processing plane
US4833418A (en) 1988-09-01 1989-05-23 Archive Corporation Compensation circuit for nullifying differential offset voltage and regulating common mode voltage of differential signals
US4980652A (en) 1988-09-02 1990-12-25 Nippon Telegraph And Telephone Corporation Frequency synthesizer having compensation for nonlinearities
US4868525A (en) 1988-09-23 1989-09-19 Dallas Semiconductor Corporation Temperature-stabilized oscillator
US5161124A (en) 1988-10-27 1992-11-03 Texas Instruments Incorporated Bond programmable integrated circuit
US5381515A (en) 1988-12-09 1995-01-10 Synaptics, Incorporated Two layer neural network comprised of neurons with improved input range and input offset
US5119038A (en) 1988-12-09 1992-06-02 Synaptics, Corporation CMOS current mirror with offset adaptation
US4935702A (en) 1988-12-09 1990-06-19 Synaptics, Inc. Subthreshold CMOS amplifier with offset adaptation
US5160899A (en) 1988-12-09 1992-11-03 Synaptics, Incorporated Adaptable MOS current mirror
US5049758A (en) 1988-12-09 1991-09-17 Synaptics, Incorporated Adaptable CMOS winner-take all circuit
US5068622A (en) 1988-12-09 1991-11-26 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5331215A (en) 1988-12-09 1994-07-19 Synaptics, Incorporated Electrically adaptable neural network with post-processing circuitry
US5146106A (en) 1988-12-09 1992-09-08 Synaptics, Incorporated CMOS winner-take all circuit with offset adaptation
US5073759A (en) 1988-12-09 1991-12-17 Synaptics, Incorporated Adaptable current mirror
US5059920A (en) 1988-12-09 1991-10-22 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5109261A (en) 1988-12-09 1992-04-28 Synaptics, Incorporated CMOS amplifier with offset adaptation
US5122800A (en) 1989-01-26 1992-06-16 Harald Philipp Variable successive approximation converter
US5083044A (en) 1989-03-10 1992-01-21 Synaptics, Incorporated Synaptic element and array
US5120996A (en) 1989-03-10 1992-06-09 Synaptics, Incorporated Synaptic element and array
US5053949A (en) 1989-04-03 1991-10-01 Motorola, Inc. No-chip debug peripheral which uses externally provided instructions to control a core processing unit
KR940011436B1 (en) 1989-04-19 1994-12-15 가부시끼가이샤 히다찌세이사꾸쇼 Magnetic disk memory apparatus
US4962342A (en) 1989-05-04 1990-10-09 Synaptics, Inc. Dynamic synapse for neural network
JPH0387909A (en) 1989-05-10 1991-04-12 Seiko Epson Corp Information processor and microprocessor
US4977381A (en) 1989-06-05 1990-12-11 Motorola, Inc. Differential relaxation oscillator
US4953928A (en) 1989-06-09 1990-09-04 Synaptics Inc. MOS device for long-term learning
US5200751A (en) 1989-06-26 1993-04-06 Dallas Semiconductor Corp. Digital to analog converter using a programmable logic array
US5805792A (en) 1989-07-31 1998-09-08 Texas Instruments Incorporated Emulation devices, systems, and methods
US5212652A (en) 1989-08-15 1993-05-18 Advanced Micro Devices, Inc. Programmable gate array with improved interconnect structure
US5305017A (en) 1989-08-16 1994-04-19 Gerpheide George E Methods and apparatus for data input
US4947169A (en) 1989-10-24 1990-08-07 Burr-Brown Corporation Dummy/trim DAC for capacitor digital-to-analog converter
US4970408A (en) 1989-10-30 1990-11-13 Motorola, Inc. CMOS power-on reset circuit
US6070003A (en) 1989-11-17 2000-05-30 Texas Instruments Incorporated System and method of memory access in apparatus having plural processors and plural memories
US5276890A (en) 1989-11-30 1994-01-04 Kabushiki Kaisha Toshiba Resume control system and method for executing resume processing while checking operation mode of CPU
US5050168A (en) 1989-12-29 1991-09-17 Paterson Timothy L Test coverage analyzer
US5159335A (en) 1990-01-19 1992-10-27 Siecor Corporation Switched capacitance automatic meter reading device
US5055827A (en) 1990-02-20 1991-10-08 Harald Philipp Fiber optic security system
US5128871A (en) 1990-03-07 1992-07-07 Advanced Micro Devices, Inc. Apparatus and method for allocation of resoures in programmable logic devices
US5150079A (en) 1990-03-27 1992-09-22 Dallas Semiconductor Corporation Two-mode oscillator
JP2834837B2 (en) 1990-03-30 1998-12-14 松下電工株式会社 Programmable controller
US5144582A (en) 1990-03-30 1992-09-01 Sgs-Thomson Microelectronics, Inc. Sram based cell for programmable logic devices
GB9007492D0 (en) 1990-04-03 1990-05-30 Pilkington Micro Electronics Semiconductor integrated circuit
US5220512A (en) 1990-04-19 1993-06-15 Lsi Logic Corporation System for simultaneous, interactive presentation of electronic circuit diagrams and simulation data
US5867399A (en) 1990-04-06 1999-02-02 Lsi Logic Corporation System and method for creating and validating structural description of electronic system from higher-level and behavior-oriented description
US5544067A (en) 1990-04-06 1996-08-06 Lsi Logic Corporation Method and system for creating, deriving and validating structural description of electronic system from higher level, behavior-oriented description, including interactive schematic design and simulation
US5572437A (en) 1990-04-06 1996-11-05 Lsi Logic Corporation Method and system for creating and verifying structural logic model of electronic design from behavioral description, including generation of logic and timing models
US5179531A (en) 1990-04-27 1993-01-12 Pioneer Electronic Corporation Accelerated digital signal processor
US5043674A (en) 1990-04-30 1991-08-27 International Business Machines Corporation Differential receiver with high common-mode range
US5175884A (en) 1990-06-01 1992-12-29 Motorola, Inc. Voltage controlled oscillator with current control
EP0464433A3 (en) 1990-06-29 1994-05-18 Nat Semiconductor Corp Microcontroller device having remotely programmable eprom & method of programming
KR930004033B1 (en) 1990-08-09 1993-05-19 현대전자산업 주식회사 Input/output macro cell of programmable logic element
US5097154A (en) 1990-08-13 1992-03-17 Dallas Semiconductor Corporation Latched multiplexer for stabilizing the switch crystal to ring oscillator at power-down
US5095284A (en) 1990-09-10 1992-03-10 Synaptics, Incorporated Subthreshold CMOS amplifier with wide input voltage range
US5493723A (en) 1990-11-06 1996-02-20 National Semiconductor Corporation Processor with in-system emulation circuitry which uses the same group of terminals to output program counter bits
US5355007A (en) 1990-11-23 1994-10-11 Texas Instruments Incorporated Devices for non-volatile memory, systems and methods
JPH0727504B2 (en) 1990-12-10 1995-03-29 インターナショナル・ビジネス・マシーンズ・コーポレイション System for defining network configuration, method for generating configuration parameters for network, and system for configuring network
US5438672A (en) 1990-12-18 1995-08-01 National Semiconductor Corporation Microcontroller emulator for plural device architecture configured by mode control data and operated under control code transmitted via same switching bus
US5126685A (en) 1990-12-18 1992-06-30 Synaptics, Incorporated Circuits for linear conversion between voltages and currents
US5165054A (en) 1990-12-18 1992-11-17 Synaptics, Incorporated Circuits for linear conversion between currents and voltages
US5107149A (en) 1990-12-18 1992-04-21 Synaptics, Inc. Linear, continuous-time, two quadrant multiplier
AU8966391A (en) 1990-12-24 1992-06-25 Ball Corporation System for analysis of embedded computer systems
DE69121382T2 (en) 1991-01-17 1997-02-27 Philips Electronics Nv Emulator for emulating a connectionless microcontroller and microcontroller for use in such an emulator
US5248843A (en) 1991-02-08 1993-09-28 Sight & Sound Incorporated Electronic musical instrument with sound-control panel and keyboard
US5107146A (en) 1991-02-13 1992-04-21 Actel Corporation Mixed mode analog/digital programmable interconnect architecture
JPH04257932A (en) 1991-02-13 1992-09-14 Oki Electric Ind Co Ltd Chip for emulation for digital signal processor
US5260592A (en) 1991-02-19 1993-11-09 Synaptics, Incorporated Integrating photosensor and imaging system having wide dynamic range with varactors
US5324958A (en) 1991-02-19 1994-06-28 Synaptics, Incorporated Integrating imaging systgem having wide dynamic range with sample/hold circuits
US5097305A (en) 1991-02-19 1992-03-17 Synaptics Corporation Integrating photosensor and imaging system having wide dynamic range
US5276407A (en) 1991-02-19 1994-01-04 Synaptics, Incorporated Sense amplifier
US5220213A (en) 1991-03-06 1993-06-15 Quicklogic Corporation Programmable application specific integrated circuit and logic cell therefor
FR2674076A1 (en) 1991-03-14 1992-09-18 Bull Sa INTEGRATED CIRCUIT WITH ENSURED IMPEDANCES AND APPLICATION TO RECEIVER TRANSMITTERS, IN PARTICULAR FOR COMMUNICATION BETWEEN UNITS OF A COMPUTER SYSTEM.
US5230000A (en) 1991-04-25 1993-07-20 At&T Bell Laboratories Built-in self-test (bist) circuit
US5241492A (en) 1991-05-06 1993-08-31 Motorola, Inc. Apparatus for performing multiply and accumulate instructions with reduced power and a method therefor
US5243554A (en) 1991-05-09 1993-09-07 Synaptics, Incorporated Writable analog reference voltage storage device
US5541878A (en) 1991-05-09 1996-07-30 Synaptics, Incorporated Writable analog reference voltage storage device
US5166562A (en) 1991-05-09 1992-11-24 Synaptics, Incorporated Writable analog reference voltage storage device
JPH04336308A (en) 1991-05-13 1992-11-24 Nec Corp Single-chip microcomputer
KR960009739B1 (en) 1991-05-14 1996-07-23 Toshiba Kk Differential input circuit
US5260979A (en) 1991-05-28 1993-11-09 Codex Corp. Circuit and method of switching between redundant clocks for a phase lock loop
US5321828A (en) 1991-06-07 1994-06-14 Step Engineering High speed microcomputer in-circuit emulator
US5248873A (en) 1991-06-10 1993-09-28 Synaptics, Incorporated Integrated device for recognition of moving objects
US5235617A (en) 1991-06-11 1993-08-10 Digital Equipment Corporation Transmission media driving system
US5202687A (en) 1991-06-12 1993-04-13 Intellectual Property Development Associates Of Connecticut Analog to digital converter
US5378935A (en) 1991-06-18 1995-01-03 Nokia Mobile Phones Ltd. Clock frequency adjustment of an electrical circuit
US5495594A (en) 1991-07-12 1996-02-27 Zilog, Inc. Technique for automatically adapting a peripheral integrated circuit for operation with a variety of microprocessor control signal protocols
US5574841A (en) 1991-08-05 1996-11-12 Calligraphic Systems Limited Apparatus and method for three-dimensional powerline designing and maintenance
US5142247A (en) 1991-08-06 1992-08-25 Compaq Computer Corporation Multiple frequency phase-locked loop clock generator with stable transitions between frequencies
JPH05257710A (en) 1991-08-12 1993-10-08 Advanced Micro Devicds Inc System for giving internal execution parameter and array for verifying instruction to be executed by processor
EP0529142A1 (en) 1991-08-30 1993-03-03 Acer Incorporated Upgradeable/downgradeable computers
US5341267A (en) 1991-09-23 1994-08-23 Aptix Corporation Structures for electrostatic discharge protection of electrical and other components
US5734334A (en) 1991-10-30 1998-03-31 I-Cube, Inc. Programmable port for crossbar switch
US5499192A (en) 1991-10-30 1996-03-12 Xilinx, Inc. Method for generating logic modules from a high level block diagram
US5371524A (en) 1991-11-25 1994-12-06 Eastman Kodak Company End pulse width modulation for digital image printer with halftone gray scale capability
US5303329A (en) 1991-12-10 1994-04-12 Synaptics, Incorporated Continuous synaptic weight update mechanism
US5307381A (en) 1991-12-27 1994-04-26 Intel Corporation Skew-free clock signal distribution network in a microprocessor
US5204549A (en) 1992-01-28 1993-04-20 Synaptics, Incorporated Synaptic element including weight-storage and weight-adjustment circuit
US5305312A (en) 1992-02-07 1994-04-19 At&T Bell Laboratories Apparatus for interfacing analog telephones and digital data terminals to an ISDN line
US5159292A (en) 1992-02-25 1992-10-27 Thomson Consumer Electronics, Inc. Adaptive phase locked loop
JP3322685B2 (en) 1992-03-02 2002-09-09 日本テキサス・インスツルメンツ株式会社 Constant voltage circuit and constant current circuit
US5691976A (en) 1992-04-02 1997-11-25 Applied Digital Access Performance monitoring and test system for a telephone network
US5416895A (en) 1992-04-08 1995-05-16 Borland International, Inc. System and methods for improved spreadsheet interface with user-familiar objects
GB2266606B (en) 1992-04-27 1996-02-14 Intel Corp A microprocessor with an external command mode
US5384745A (en) 1992-04-27 1995-01-24 Mitsubishi Denki Kabushiki Kaisha Synchronous semiconductor memory device
US5336936A (en) 1992-05-06 1994-08-09 Synaptics, Incorporated One-transistor adaptable analog storage element and array
DE69317149T2 (en) 1992-05-12 1998-10-08 Nec Corp Microcomputer with command memory for commands for reading out internal conditions
US5317202A (en) 1992-05-28 1994-05-31 Intel Corporation Delay line loop for 1X on-chip clock generation with zero skew and 50% duty cycle
US6239389B1 (en) 1992-06-08 2001-05-29 Synaptics, Inc. Object position detection system and method
US6028271A (en) 1992-06-08 2000-02-22 Synaptics, Inc. Object position detector with edge motion feature and gesture recognition
US5455731A (en) 1992-06-08 1995-10-03 United Technologies Corporation Power controller reset during load starting
DE69324067T2 (en) 1992-06-08 1999-07-15 Synaptics Inc Object position detector
US5488204A (en) 1992-06-08 1996-01-30 Synaptics, Incorporated Paintbrush stylus for capacitive touch sensor pad
US5889236A (en) 1992-06-08 1999-03-30 Synaptics Incorporated Pressure sensitive scrollbar feature
US5543588A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
US5942733A (en) 1992-06-08 1999-08-24 Synaptics, Inc. Stylus input capacitive touchpad sensor
US5861583A (en) 1992-06-08 1999-01-19 Synaptics, Incorporated Object position detector
US5914465A (en) 1992-06-08 1999-06-22 Synaptics, Inc. Object position detector
US5543590A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature
US5880411A (en) 1992-06-08 1999-03-09 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5543591A (en) 1992-06-08 1996-08-06 Synaptics, Incorporated Object position detector with edge motion feature and gesture recognition
US5819028A (en) 1992-06-10 1998-10-06 Bay Networks, Inc. Method and apparatus for determining the health of a network
US5331315A (en) 1992-06-12 1994-07-19 Universities Research Association, Inc. Switch for serial or parallel communication networks
US5339262A (en) 1992-07-10 1994-08-16 Lsi Logic Corporation Method and apparatus for interim, in-situ testing of an electronic system with an inchoate ASIC
US5245262A (en) 1992-07-13 1993-09-14 Allegro Microsystems, Inc. Hybrid control law servo co-processor integrated circuit
US5258760A (en) 1992-07-13 1993-11-02 Allegro Microsystems, Inc. Digitally dual-programmable integrator circuit
US5861875A (en) 1992-07-13 1999-01-19 Cirque Corporation Methods and apparatus for data input
US5565658A (en) 1992-07-13 1996-10-15 Cirque Corporation Capacitance-based proximity with interference rejection apparatus and methods
JP2927108B2 (en) 1992-07-22 1999-07-28 日本電気株式会社 In-circuit emulator
US5331571A (en) 1992-07-22 1994-07-19 Nec Electronics, Inc. Testing and emulation of integrated circuits
US5414308A (en) 1992-07-29 1995-05-09 Winbond Electronics Corporation High frequency clock generator with multiplexer
US5802290A (en) 1992-07-29 1998-09-01 Virtual Computer Corporation Computer network of distributed virtual computers which are EAC reconfigurable in response to instruction to be executed
US5684980A (en) 1992-07-29 1997-11-04 Virtual Computer Corporation FPGA virtual computer for executing a sequence of program instructions by successively reconfiguring a group of FPGA in response to those instructions
US5805897A (en) 1992-07-31 1998-09-08 International Business Machines Corporation System and method for remote software configuration and distribution
US5319370A (en) 1992-08-31 1994-06-07 Crystal Semiconductor, Inc. Analog-to-digital converter with a continuously calibrated voltage reference
US5440305A (en) 1992-08-31 1995-08-08 Crystal Semiconductor Corporation Method and apparatus for calibration of a monolithic voltage reference
US5790834A (en) 1992-08-31 1998-08-04 Intel Corporation Apparatus and method using an ID instruction to identify a computer microprocessor
US5313618A (en) 1992-09-03 1994-05-17 Metalink Corp. Shared bus in-circuit emulator system and method
US5355097A (en) 1992-09-11 1994-10-11 Cypress Semiconductor Corporation Potentiometric oscillator with reset and test input
AT400769B (en) 1992-10-16 1996-03-25 Avl Verbrennungskraft Messtech MEASURING DEVICE FOR DETECTING COMBUSTION PROCESSES
US5345195A (en) 1992-10-22 1994-09-06 United Memories, Inc. Low power Vcc and temperature independent oscillator
US6101457A (en) 1992-10-29 2000-08-08 Texas Instruments Incorporated Test access port
EP0596651A1 (en) 1992-11-02 1994-05-11 National Semiconductor Corporation Network for data communication with isochronous capability
US5857109A (en) 1992-11-05 1999-01-05 Giga Operations Corporation Programmable logic device for real time video processing
US5339213A (en) 1992-11-16 1994-08-16 Cirque Corporation Portable computer touch pad attachment
US5304955A (en) 1992-11-19 1994-04-19 Motorola, Inc. Voltage controlled oscillator operating with digital controlled loads in a phase lock loop
US5604466A (en) 1992-12-08 1997-02-18 International Business Machines Corporation On-chip voltage controlled oscillator
US5481471A (en) 1992-12-18 1996-01-02 Hughes Aircraft Company Mixed signal integrated circuit architecture and test methodology
US5384910A (en) 1992-12-31 1995-01-24 International Business Machines Corporation Method and apparatus for facilitating operator reconfiguration of a graphical user interface in a data processing system
US6002268A (en) 1993-01-08 1999-12-14 Dynachip Corporation FPGA with conductors segmented by active repeaters
JP3194636B2 (en) 1993-01-12 2001-07-30 三菱電機株式会社 Level conversion circuit, microcomputer for emulator with built-in level conversion circuit, piggyback microcomputer with built-in level conversion circuit, emulation system with built-in level conversion circuit, and LSI test system with built-in level conversion circuit
US5559502A (en) 1993-01-14 1996-09-24 Schutte; Herman Two-wire bus system comprising a clock wire and a data wire for interconnecting a number of stations and allowing both long-format and short-format slave addresses
US5396245A (en) 1993-01-21 1995-03-07 Linear Technology Corporation Digital to analog converter
US5430734A (en) 1993-02-12 1995-07-04 Metalithic Systems, Inc. Fault-tolerant waferscale integrated circuit device and method
JP3210466B2 (en) 1993-02-25 2001-09-17 株式会社リコー CPU core, ASIC having the CPU core, and emulation system including the ASIC
US5303146A (en) 1993-03-11 1994-04-12 Borland International, Inc. System and methods for improved scenario management in an electronic spreadsheet
US5334952A (en) 1993-03-29 1994-08-02 Spectralink Corporation Fast settling phase locked loop
US5515524A (en) 1993-03-29 1996-05-07 Trilogy Development Group Method and apparatus for configuring systems
US5758058A (en) 1993-03-31 1998-05-26 Intel Corporation Apparatus and method for initializing a master/checker fault detecting microprocessor
US6223147B1 (en) 1993-03-31 2001-04-24 Intel Corporation Multiple use chip socket for integrated circuits and the like
US5432476A (en) 1993-04-09 1995-07-11 National Semiconductor Corporation Differential to single-ended converter
US5517198A (en) 1993-04-12 1996-05-14 The Regents Of The University Of California Ultra-wideband directional sampler
US5414380A (en) 1993-04-19 1995-05-09 Motorola, Inc. Integrated circuit with an active-level configurable and method therefor
US5564010A (en) 1993-05-24 1996-10-08 Thomson Consumer Electronics, Inc. Reset signal generator, for generating resets of multiple duration
US5408194A (en) 1993-06-25 1995-04-18 Synaptics, Incorporated Adaptive analog minimum/maximum selector and subtractor circuit
EP0705465B1 (en) 1993-06-25 1996-10-30 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Configurable analog and digital array
US5574892A (en) 1993-06-30 1996-11-12 Intel Corporation Use of between-instruction breaks to implement complex in-circuit emulation features
US5752013A (en) 1993-06-30 1998-05-12 Intel Corporation Method and apparatus for providing precise fault tracing in a superscalar microprocessor
US5399922A (en) 1993-07-02 1995-03-21 Altera Corporation Macrocell comprised of two look-up tables and two flip-flops
US5349303A (en) 1993-07-02 1994-09-20 Cirque Corporation Electrical charge transfer apparatus
US5479603A (en) 1993-07-21 1995-12-26 Xerox Corporation Method and apparatus for producing a composite second image in the spatial context of a first image
US5729704A (en) 1993-07-21 1998-03-17 Xerox Corporation User-directed method for operating on an object-based model data structure through a second contextual image
DE69415600T2 (en) 1993-07-28 1999-07-15 Koninkl Philips Electronics Nv Microcontroller with hardware troubleshooting support based on the boundary scan method
US5457410A (en) 1993-08-03 1995-10-10 Btr, Inc. Architecture and interconnect scheme for programmable logic circuits
US5457644A (en) 1993-08-20 1995-10-10 Actel Corporation Field programmable digital signal processing array integrated circuit
US5392784A (en) 1993-08-20 1995-02-28 Hewlett-Packard Company Virtual right leg drive and augmented right leg drive circuits for common mode voltage reduction in ECG and EEG measurements
EP0640978A3 (en) 1993-08-31 1998-10-07 Ohmeda Inc. Non-invasive software update apparatus
US5663900A (en) 1993-09-10 1997-09-02 Vasona Systems, Inc. Electronic simulation and emulation system
DE4332499A1 (en) 1993-09-24 1995-03-30 Bosch Gmbh Robert Procedure for completely reprogramming an erasable, non-volatile memory
US5630052A (en) 1993-09-30 1997-05-13 Intel Corporation System development and debug tools for power management functions in a computer system
US5579353A (en) 1993-10-12 1996-11-26 Texas Instruments Incorporated Dynamic clock mode switch
US5428319A (en) 1993-11-29 1995-06-27 Motorola, Inc. Method and apparatus for providing a modified temperature compensation signal in a TCXO circuit
US5455525A (en) 1993-12-06 1995-10-03 Intelligent Logic Systems, Inc. Hierarchically-structured programmable logic array and system for interconnecting logic elements in the logic array
US5424689A (en) 1993-12-22 1995-06-13 Motorola, Inc. Filtering device for use in a phase locked loop controller
US5959871A (en) 1993-12-23 1999-09-28 Analogix/Portland State University Programmable analog array circuit
US5426384A (en) 1993-12-27 1995-06-20 Motorola, Inc. Voltage controlled oscillator (VCO) with symmetrical output and logic gate for use in same
US5563526A (en) 1994-01-03 1996-10-08 Texas Instruments Incorporated Programmable mixed-mode integrated circuit architecture
US5430687A (en) 1994-04-01 1995-07-04 Xilinx, Inc. Programmable logic device including a parallel input device for loading memory cells
US6148441A (en) 1994-04-06 2000-11-14 Dell Usa, L.P. Method for reprogramming flash ROM in a personal computer implementing an EISA bus system
GB2288255B (en) 1994-04-07 1998-03-11 Advanced Risc Mach Ltd Write request interlock
US6181162B1 (en) 1994-04-10 2001-01-30 Altera Corporation Programmable logic device with highly routable interconnect
US5426378A (en) 1994-04-20 1995-06-20 Xilinx, Inc. Programmable logic device which stores more than one configuration and means for switching configurations
US5572665A (en) 1994-04-21 1996-11-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit for developing a system using a microprocessor
US20030062889A1 (en) 1996-12-12 2003-04-03 Synaptics (Uk) Limited Position detector
US6249234B1 (en) 1994-05-14 2001-06-19 Absolute Sensors Limited Position detector
US5689195A (en) 1995-05-17 1997-11-18 Altera Corporation Programmable logic array integrated circuit devices
AU2646595A (en) 1994-05-24 1995-12-18 Imp Inc. Integrated circuit having programmable analog modules with configurable interconnects between them
CN1136529C (en) 1994-05-31 2004-01-28 夏普株式会社 Sampling circuit, signal amplifier, and image display
US5457479A (en) 1994-06-13 1995-10-10 Primax Electronics Ltd. Apparatus having dual modes for controlling cursor on display screen
US5625316A (en) 1994-07-01 1997-04-29 Motorola, Inc. Tuning circuit for an RC filter
US5684952A (en) 1994-07-25 1997-11-04 Apple Computer, Inc. Supervisory control system for networked multimedia workstations that provides reconfiguration of workstations by remotely updating the operating system
DE69525830T2 (en) 1994-08-04 2002-11-07 Nat Semiconductor Corp SIGNAL CONDITIONING DEVICE AND METHOD WITH PRECISION INPUT IMPEDANCE AND REINFORCEMENT PROPERTIES IN MAKING AREAS AND OPERATING ENVIRONMENT
US5530813A (en) 1994-08-04 1996-06-25 Pattern Processing Technology Field-programmable electronic crossbar system and method for using same
US5552725A (en) 1994-08-05 1996-09-03 Advanced Micro Devices, Inc. Low power, slew rate insensitive power-on reset circuit
US5694063A (en) 1994-08-11 1997-12-02 Ltx Corporation High speed IDDQ monitor circuit
US6104217A (en) 1994-08-26 2000-08-15 Advanced Micro Devices, Inc. Power on/off control circuit and method
US5644593A (en) 1994-09-02 1997-07-01 Microcom Systems, Inc. High performance communications interface
US5493246A (en) 1994-09-06 1996-02-20 Motorola, Inc. Circuit and method of canceling leakage current in an analog array
US6345383B1 (en) 1994-09-14 2002-02-05 Kabushiki Kaisha Toshiba Debugging support device and debugging support method
US5802073A (en) 1994-09-23 1998-09-01 Vlsi Technology, Inc. Built-in self test functional system block for UTOPIA interface
US5491458A (en) 1994-11-08 1996-02-13 Mccune, Jr.; Earl W. Apparatus for spreading the spectrum of a signal and method therefor
US5629857A (en) 1994-11-15 1997-05-13 International Business Machines Corporation Method and system for indicating a status of a circuit design
US5572719A (en) 1994-11-22 1996-11-05 Advanced Micro Devices Clock control system for microprocessors including a delay sensing circuit
US5495181A (en) 1994-12-01 1996-02-27 Quicklogic Corporation Integrated circuit facilitating simultaneous programming of multiple antifuses
EP0746820B1 (en) 1994-12-02 2001-09-26 Koninklijke Philips Electronics N.V. Circuit for Coupling Data Communication Busses
US5630102A (en) 1994-12-19 1997-05-13 Intel Corporation In-circuit-emulation event management system
CN1316368C (en) 1994-12-28 2007-05-16 株式会社东芝 Microprocessor and debugging system
US5727170A (en) 1994-12-29 1998-03-10 Siemens Energy & Automation, Inc. User defined port and protocol scheme for a programmable logic controller
US5566702A (en) 1994-12-30 1996-10-22 Philipp; Harald Adaptive faucet controller measuring proximity and motion
US5889988A (en) 1995-01-03 1999-03-30 Intel Corporation Debugger for debugging tasks in an operating system virtual device driver
US5530444A (en) 1995-01-05 1996-06-25 Analog Devices, Inc. Differential amplifiers which can form a residue amplifier in sub-ranging A/D converters
US5706453A (en) 1995-02-06 1998-01-06 Cheng; Yang-Leh Intelligent real-time graphic-object to database linking-actuator for enabling intuitive on-screen changes and control of system configuration
US5566123A (en) 1995-02-10 1996-10-15 Xilinx, Inc. Synchronous dual port ram
US5537057A (en) 1995-02-14 1996-07-16 Altera Corporation Programmable logic array device with grouped logic regions and three types of conductors
US5546562A (en) 1995-02-28 1996-08-13 Patel; Chandresh Method and apparatus to emulate VLSI circuits within a logic simulator
US5574678A (en) 1995-03-01 1996-11-12 Lattice Semiconductor Corp. Continuous time programmable analog block architecture
FR2731570B1 (en) 1995-03-07 1997-05-23 Sgs Thomson Microelectronics DIFFERENTIAL STAGE LOGIC CIRCUIT
US5546433A (en) 1995-03-21 1996-08-13 National Semiconductor Corporation Digital phase lock loop having frequency offset cancellation circuitry
US6049223A (en) 1995-03-22 2000-04-11 Altera Corporation Programmable logic array integrated circuit with general-purpose memory configurable as a random access or FIFO memory
US5757368A (en) 1995-03-27 1998-05-26 Cirque Corporation System and method for extending the drag function of a computer pointing device
US5682510A (en) 1995-03-30 1997-10-28 Microsoft Corporation Method and system for adding application defined properties and application defined property sheet pages
US5651035A (en) 1995-04-28 1997-07-22 International Microcircuits, Inc. Apparatus for reducing jitter of a spectrum spread clock signal and method therefor
GB9508931D0 (en) 1995-05-02 1995-06-21 Xilinx Inc Programmable switch for FPGA input/output signals
US5555452A (en) 1995-05-12 1996-09-10 Callaway, Jr.; Edgar H. Peak and valley signal measuring circuit using single digital-to-analog converter
US5812698A (en) 1995-05-12 1998-09-22 Synaptics, Inc. Handwriting recognition system and method
JP3414052B2 (en) 1995-05-18 2003-06-09 三菱電機株式会社 Phase modulation signal demodulation method
US5563529A (en) 1995-05-26 1996-10-08 Xilinx, Inc. High speed product term allocation structure supporting logic iteration after committing device pin locations
US5737557A (en) 1995-05-26 1998-04-07 Ast Research, Inc. Intelligent window user interface for computers
US5521529A (en) 1995-06-02 1996-05-28 Advanced Micro Devices, Inc. Very high-density complex programmable logic devices with a multi-tiered hierarchical switch matrix and optimized flexible logic allocation
US5781030A (en) 1995-06-02 1998-07-14 Advanced Micro Devices, Inc. Programmable uniform symmetrical distribution logic allocator for a high-density complex PLD
US5555907A (en) 1995-06-02 1996-09-17 Philipp; Harald Divided box for valve controller
US5811987A (en) 1995-06-02 1998-09-22 Advanced Micro Devices, Inc. Block clock and initialization circuit for a complex high density PLD
US5818254A (en) 1995-06-02 1998-10-06 Advanced Micro Devices, Inc. Multi-tiered hierarchical high speed switch matrix structure for very high-density complex programmable logic devices
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US5646544A (en) 1995-06-05 1997-07-08 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
US5552748A (en) 1995-06-07 1996-09-03 American Microsystems, Inc. Digitally-tuned oscillator including a self-calibrating RC oscillator circuit
US5594388A (en) 1995-06-07 1997-01-14 American Microsystems, Inc. Self-calibrating RC oscillator
US5608892A (en) 1995-06-09 1997-03-04 Alantec Corporation Active cache for a microprocessor
US5710906A (en) 1995-07-07 1998-01-20 Opti Inc. Predictive snooping of cache memory for master-initiated accesses
US5742602A (en) 1995-07-12 1998-04-21 Compaq Computer Corporation Adaptive repeater system
US5696952A (en) 1995-08-03 1997-12-09 Pontarelli; Mark C. Dynamic speed switching software for power management
US5754826A (en) 1995-08-04 1998-05-19 Synopsys, Inc. CAD and simulation system for targeting IC designs to multiple fabrication processes
US5875293A (en) 1995-08-08 1999-02-23 Dell Usa, L.P. System level functional testing through one or more I/O ports of an assembled computer system
US5764080A (en) 1995-08-24 1998-06-09 Altera Corporation Input/output interface circuitry for programmable logic array integrated circuit devices
US5721842A (en) 1995-08-25 1998-02-24 Apex Pc Solutions, Inc. Interconnection system for viewing and controlling remotely connected computers with on-screen video overlay for controlling of the interconnection switch
US5964893A (en) 1995-08-30 1999-10-12 Motorola, Inc. Data processing system for performing a trace function and method therefor
EP0762280B1 (en) 1995-08-30 2001-11-14 Motorola, Inc. Data processor with built-in emulation circuit
US5544311A (en) 1995-09-11 1996-08-06 Rockwell International Corporation On-chip debug port
US5917356A (en) 1995-09-11 1999-06-29 International Business Machines Corp. Three state phase detector
US5790957A (en) 1995-09-12 1998-08-04 Nokia Mobile Phones Ltd. Speech recall in cellular telephone
JP3360501B2 (en) 1995-09-20 2002-12-24 三菱電機株式会社 Amplifier circuit and semiconductor integrated circuit device for mobile phone
US5901062A (en) 1995-09-25 1999-05-04 Texas Instruments Incorporated Semiconductor structure design and process visualization through the use of simple process models and intuitive interfaces
US5587957A (en) 1995-09-29 1996-12-24 Intel Corporation Circuit for sharing a memory of a microcontroller with an external device
US5663965A (en) 1995-10-06 1997-09-02 International Business Machines Corp. Apparatus and method for testing a memory array
US5737760A (en) 1995-10-06 1998-04-07 Motorola Inc. Microcontroller with security logic circuit which prevents reading of internal memory by external program
US5841996A (en) 1995-10-13 1998-11-24 Microchip Technology Incorporated Serial communication interface system having programmable microcontroller for use in a battery pack
US5744991A (en) 1995-10-16 1998-04-28 Altera Corporation System for distributing clocks using a delay lock loop in a programmable logic circuit
US5684434A (en) 1995-10-30 1997-11-04 Cypress Semiconductor Erasable and programmable single chip clock generator
US5587945A (en) 1995-11-06 1996-12-24 Advanced Micro Devices, Inc. CMOS EEPROM cell with tunneling window in the read path
US6473069B1 (en) 1995-11-13 2002-10-29 Cirque Corporation Apparatus and method for tactile feedback from input device
US5767457A (en) 1995-11-13 1998-06-16 Cirque Corporation Apparatus and method for audible feedback from input device
US5781747A (en) 1995-11-14 1998-07-14 Mesa Ridge Technologies, Inc. Method and apparatus for extending the signal path of a peripheral component interconnect bus to a remote location
US5889936A (en) 1995-11-22 1999-03-30 Cypress Semiconductor Corporation High speed asynchronous digital testing module
JP2914259B2 (en) 1995-12-14 1999-06-28 日本電気株式会社 Portable electronic device and charge control method for portable electronic device
AT1157U1 (en) 1995-12-15 1996-11-25 Avl Verbrennungskraft Messtech METHOD FOR THE OPTICAL MEASUREMENT OF GAS BUBBLES IN A COOLANT
JPH09231788A (en) 1995-12-19 1997-09-05 Fujitsu Ltd Shift register and programmable logic circuit and programmable logic circuit system
US5923264A (en) 1995-12-22 1999-07-13 Harrow Products, Inc. Multiple access electronic lock system
US5730165A (en) 1995-12-26 1998-03-24 Philipp; Harald Time domain capacitive field detector
US5848285A (en) 1995-12-26 1998-12-08 Cypress Semiconductor Corporation Macrocell having a dual purpose input register for use in a logic device
US5799176A (en) 1995-12-26 1998-08-25 Cypress Semiconductor Corp. Method and apparatus for providing clock signals to macrocells of logic devices
US5691664A (en) 1996-01-16 1997-11-25 Motorola, Inc. Programmable analog array and method for establishing a feedback loop therein
US6246410B1 (en) 1996-01-19 2001-06-12 International Business Machines Corp. Method and system for database access
US5796183A (en) 1996-01-31 1998-08-18 Nartron Corporation Capacitive responsive electronic switching circuit
US5680070A (en) 1996-02-05 1997-10-21 Motorola, Inc. Programmable analog array and method for configuring the same
US5850156A (en) 1996-02-07 1998-12-15 Lucent Technologies Inc. Processor supervisory circuit and method having increased range of power-on reset signal stability
US5808883A (en) 1996-02-15 1998-09-15 Harris Corporation DC-to-DC converter having charge pump and associated methods
US5991296A (en) 1996-02-22 1999-11-23 Fujitsu, Ltd. Crossbar switch and method with reduced voltage swing and no internal blocking data path
US5682032A (en) 1996-02-22 1997-10-28 Philipp; Harald Capacitively coupled identity verification and escort memory apparatus
US5991887A (en) 1996-02-28 1999-11-23 Dallas Semiconductor Corporation Low power wake up circuitry, with internal power down of the wake up circuitry itself
US6038551A (en) 1996-03-11 2000-03-14 Microsoft Corporation System and method for configuring and managing resources on a multi-purpose integrated circuit card using a personal computer
US5828693A (en) 1996-03-21 1998-10-27 Amtech Corporation Spread spectrum frequency hopping reader system
US5822387A (en) 1996-03-25 1998-10-13 Cypress Semiconductor Corporation Apparatus for fast phase-locked loop (PLL) frequency slewing during power on
US5646901A (en) 1996-03-26 1997-07-08 Advanced Micro Devices, Inc. CMOS memory cell with tunneling during program and erase through the NMOS and PMOS transistors and a pass gate separating the NMOS and PMOS transistors
US5673198A (en) 1996-03-29 1997-09-30 Xilinx, Inc. Concurrent electronic circuit design and implementation
EP0800259B1 (en) 1996-03-29 2001-10-17 STMicroelectronics S.r.l. Standby voltage boosting stage and method for a memory device
US6023565A (en) 1996-03-29 2000-02-08 Xilinx, Inc. Method for configuring circuits over a data communications link
US5914708A (en) 1996-04-04 1999-06-22 Cirque Corporation Computer input stylus method and apparatus
US5869979A (en) 1996-04-05 1999-02-09 Altera Corporation Technique for preconditioning I/Os during reconfiguration
US5838583A (en) 1996-04-12 1998-11-17 Cadence Design Systems, Inc. Optimized placement and routing of datapaths
US5977791A (en) 1996-04-15 1999-11-02 Altera Corporation Embedded memory block with FIFO mode for programmable logic device
US5999725A (en) 1996-04-23 1999-12-07 Mentor Graphics Corporation Method and apparatus tracing any node of an emulation
US5996032A (en) 1996-04-30 1999-11-30 Texas Instruments Incorporated System for writing a plurality of data bits less than from the total number of bits in a data register using a single register write operation
US5699024A (en) 1996-05-06 1997-12-16 Delco Electronics Corporation Accurate integrated oscillator circuit
US5894565A (en) 1996-05-20 1999-04-13 Atmel Corporation Field programmable gate array with distributed RAM and increased cell utilization
US5686844A (en) 1996-05-24 1997-11-11 Microchip Technology Incorporated Integrated circuit pins configurable as a clock input pin and as a digital I/O pin or as a device reset pin and as a digital I/O pin and method therefor
US5670915A (en) 1996-05-24 1997-09-23 Microchip Technology Incorporated Accurate RC oscillator having peak - to - peak voltage control
JPH09318704A (en) 1996-05-30 1997-12-12 Ando Electric Co Ltd Ic testing apparatus
US6058263A (en) 1996-06-03 2000-05-02 Microsoft Corporation Interface hardware design using internal and external interfaces
US5973368A (en) 1996-06-05 1999-10-26 Pearce; Lawrence G. Monolithic class D amplifier
US5745011A (en) 1996-06-05 1998-04-28 Cypress Semiconductor Corporation Data recovery phase locked loop
US5748875A (en) 1996-06-12 1998-05-05 Simpod, Inc. Digital logic simulation/emulation system
EP0814404B1 (en) 1996-06-19 2001-01-31 Matsushita Electric Industrial Co., Ltd. Debugging apparatus for debugging a program
US6788221B1 (en) 1996-06-28 2004-09-07 Synaptics (Uk) Limited Signal processing apparatus and method
US5844265A (en) 1996-07-11 1998-12-01 Synaptics, Incorporated Sense amplifier for high-density imaging array
US6097211A (en) 1996-07-18 2000-08-01 Altera Corporation Configuration memory integrated circuit
JP3494813B2 (en) 1996-07-19 2004-02-09 株式会社東芝 Estimation method of power consumption of microprocessor
US5822531A (en) 1996-07-22 1998-10-13 International Business Machines Corporation Method and system for dynamically reconfiguring a cluster of computer systems
US5774704A (en) 1996-07-29 1998-06-30 Silicon Graphics, Inc. Apparatus and method for dynamic central processing unit clock adjustment
US6288707B1 (en) 1996-07-29 2001-09-11 Harald Philipp Capacitive position sensor
US5886582A (en) 1996-08-07 1999-03-23 Cypress Semiconductor Corp. Enabling clock signals with a phase locked loop (PLL) lock detect circuit
JPH1056329A (en) 1996-08-12 1998-02-24 Matsushita Electric Ind Co Ltd Frequency control oscillator
US5872464A (en) 1996-08-12 1999-02-16 Cypress Semiconductor Corp. Input buffer with stabilized trip points
US5818444A (en) 1996-08-14 1998-10-06 International Business Machines Corporation Method, apparatus and application for object selective but global attribute modification
US6144327A (en) 1996-08-15 2000-11-07 Intellectual Property Development Associates Of Connecticut, Inc. Programmably interconnected programmable devices
JP2959482B2 (en) 1996-08-19 1999-10-06 日本電気株式会社 Large-scale integrated circuits
US5764714A (en) 1996-08-20 1998-06-09 Cypress Semiconductor Corporation Latching inputs and enabling outputs on bidirectional pins with a phase locked loop (PLL) lock detect circuit
US5878425A (en) 1996-08-21 1999-03-02 International Business Machines Corp. Intuitive technique for visually creating resource files
JP2994272B2 (en) 1996-08-23 1999-12-27 九州日本電気株式会社 Multi-phase clock generation circuit
US6338109B1 (en) 1996-08-30 2002-01-08 Cypress Semiconductor Corp. Microcontroller development system and applications thereof for development of a universal serial bus microcontroller
US5933023A (en) 1996-09-03 1999-08-03 Xilinx, Inc. FPGA architecture having RAM blocks with programmable word length and width and dedicated address and data lines
US6272646B1 (en) 1996-09-04 2001-08-07 Cypress Semiconductor Corp. Programmable logic device having an integrated phase lock loop
US5930150A (en) 1996-09-06 1999-07-27 Lucent Technologies Inc. Method and system for designing and analyzing optical application specific integrated circuits
US5903718A (en) 1996-09-16 1999-05-11 International Business Machines Corporation Remote program monitor method and system using a system-under-test microcontroller for self-debug
US6380929B1 (en) 1996-09-20 2002-04-30 Synaptics, Incorporated Pen drawing computer input device
US6437805B1 (en) 1996-09-23 2002-08-20 National Instruments Corporation System and method for accessing object capabilities in a graphical program
KR19990071991A (en) 1996-10-10 1999-09-27 파레 호세 마리아 인센서 Process for prototyping of mixed-signal applications and field programmable systems on chip for application of these processes
EP0932865B1 (en) * 1996-10-25 2002-08-14 SCHLUMBERGER Systèmes Using a high level programming language with a microcontroller
US6317860B1 (en) 1996-10-28 2001-11-13 Altera Corporation Electronic design automation tool for display of design profile
US5724009A (en) 1996-10-29 1998-03-03 Motorola Inc. Crystal oscillator having input/output pins selectively used for analog or digital signals
US5933816A (en) 1996-10-31 1999-08-03 Citicorp Development Center, Inc. System and method for delivering financial services
GB9622682D0 (en) 1996-10-31 1997-01-08 Sgs Thomson Microelectronics An integrated circuit device and method of communication therewith
US5974235A (en) 1996-10-31 1999-10-26 Sensormatic Electronics Corporation Apparatus having flexible capabilities for analysis of video information
US5834947A (en) 1996-11-01 1998-11-10 Waferscale Integration Inc. Microcontroller accessible macrocell
US5854625A (en) 1996-11-06 1998-12-29 Synaptics, Incorporated Force sensing touchpad
US6134707A (en) 1996-11-14 2000-10-17 Altera Corporation Apparatus and method for in-system programming of integrated circuits containing programmable elements
US5926566A (en) 1996-11-15 1999-07-20 Synaptics, Inc. Incremental ideographic character input method
US5935266A (en) 1996-11-15 1999-08-10 Lucent Technologies Inc. Method for powering-up a microprocessor under debugger control
US5920310A (en) 1996-11-15 1999-07-06 Synaptics, Incorporated Electronic device employing a touch sensitive transducer
JPH10149285A (en) 1996-11-18 1998-06-02 Hitachi Ltd Method for controlling execution of instruction and information processor
US5969632A (en) 1996-11-22 1999-10-19 Diamant; Erez Information security method and apparatus
US5949264A (en) 1996-11-29 1999-09-07 Lo; Dennis C. Digital phase detector and charge pump system reset and balanced current source matching methods and systems
CN1158762C (en) 1996-12-10 2004-07-21 触摸传感器技术有限责任公司 Differential touch sensor and control circuit thereof
US5894243A (en) 1996-12-11 1999-04-13 Micro Linear Corporation Three-pin buck and four-pin boost converter having open loop output voltage control
US5748048A (en) 1996-12-12 1998-05-05 Cypress Semiconductor Corporation Voltage controlled oscillator (VCO) frequency gain compensation circuit
US5852733A (en) 1996-12-16 1998-12-22 Chien; Yung-Ping S. Microcontroller development tool using software programs
US5911059A (en) 1996-12-18 1999-06-08 Applied Microsystems, Inc. Method and apparatus for testing software
US6430305B1 (en) 1996-12-20 2002-08-06 Synaptics, Incorporated Identity verification methods
US5880598A (en) 1997-01-10 1999-03-09 Xilinx, Inc. Tile-based modular routing resources for high density programmable logic device
US6718520B1 (en) 1997-01-27 2004-04-06 Unisys Corporation Method and apparatus for selectively providing hierarchy to a circuit design
JPH10214201A (en) 1997-01-29 1998-08-11 Mitsubishi Electric Corp Microcomputer
US6008703A (en) 1997-01-31 1999-12-28 Massachusetts Institute Of Technology Digital compensation for wideband modulation of a phase locked loop frequency synthesizer
US5884078A (en) 1997-01-31 1999-03-16 Sun Microsystems, Inc. System, method and article of manufacture for creating an object oriented component having multiple bidirectional ports for use in association with a java application or applet
US5987246A (en) 1997-02-14 1999-11-16 National Instruments Corp. Graphical programming system and method including three-dimensional nodes with pre-defined input and output capabilities
US6618854B1 (en) 1997-02-18 2003-09-09 Advanced Micro Devices, Inc. Remotely accessible integrated debug environment
US6222528B1 (en) 1997-03-07 2001-04-24 Cirque Corporation Method and apparatus for data input
US6411452B1 (en) 1997-03-11 2002-06-25 Western Digital Technologies, Inc. Disk drive employing read error tolerant sync mark detection
WO1998040817A1 (en) 1997-03-11 1998-09-17 Mitsubishi Denki Kabushiki Kaisha Visual programming method and its system
US5929710A (en) 1997-03-20 1999-07-27 National Semiconductor Corporation Cascode single-ended to differential converter
JP2923882B2 (en) 1997-03-31 1999-07-26 日本電気株式会社 Semiconductor integrated circuit having clock supply circuit
US5874958A (en) 1997-03-31 1999-02-23 Sun Microsystems, Inc. Method and apparatus for accessing information and items across workspaces
US6141376A (en) 1997-04-01 2000-10-31 Lsi Logic Corporation Single chip communication device that implements multiple simultaneous communication channels
US6150866A (en) 1997-04-01 2000-11-21 Fujitsu Limited Clock supplying circuit and integrated circuit device using it
US6014135A (en) 1997-04-04 2000-01-11 Netscape Communications Corp. Collaboration centric document processing environment using an information centric visual user interface and information presentation method
US6041406A (en) 1997-04-08 2000-03-21 Advanced Micro Devices, Inc. Parallel and serial debug port on a processor
US5905398A (en) 1997-04-08 1999-05-18 Burr-Brown Corporation Capacitor array having user-adjustable, manufacturer-trimmable capacitance and method
US6185732B1 (en) 1997-04-08 2001-02-06 Advanced Micro Devices, Inc. Software debug port for a microprocessor
US6009270A (en) 1997-04-08 1999-12-28 Advanced Micro Devices, Inc. Trace synchronization in a processor
US6314530B1 (en) 1997-04-08 2001-11-06 Advanced Micro Devices, Inc. Processor having a trace access instruction to access on-chip trace memory
US5940852A (en) 1997-05-01 1999-08-17 Altera Corporation Memory cells configurable as CAM or RAM in programmable logic devices
US6134516A (en) 1997-05-02 2000-10-17 Axis Systems, Inc. Simulation server system and method
US5986479A (en) 1997-05-05 1999-11-16 National Semiconductor Corporation Fully switched, class-B, high speed current amplifier driver
AU7665998A (en) 1997-05-28 1998-12-30 Absolute Sensors Limited Transducer and method of manufacture
JP3055607B2 (en) 1997-05-29 2000-06-26 日本電気株式会社 Phase locked loop circuit using Schmitt trigger circuit
WO1998054630A2 (en) 1997-05-30 1998-12-03 Koninklijke Philips Electronics N.V. Method and system for emulating a non-bond-out version of a microcontroller that has standard port means
US5960191A (en) 1997-05-30 1999-09-28 Quickturn Design Systems, Inc. Emulation system with time-multiplexed interconnect
US6011407A (en) 1997-06-13 2000-01-04 Xilinx, Inc. Field programmable gate array with dedicated computer bus interface and method for configuring both
JP2002505024A (en) 1997-06-13 2002-02-12 シンポッド・インク Concurrent hardware-software co-simulation
US6026134A (en) 1997-06-19 2000-02-15 Cypress Semiconductor Corp. Phase locked loop (PLL) with linear parallel sampling phase detector
ID24894A (en) 1997-06-25 2000-08-31 Samsung Electronics Co Ltd Cs METHOD AND APPARATUS FOR THREE-OTO DEVELOPMENTS A HOME NETWORK
US6249167B1 (en) 1997-07-03 2001-06-19 Seiko Epson Corporation Semiconductor integrated circuit, semiconductor device, and electronic equipment comprising the same
US5966532A (en) 1997-07-10 1999-10-12 National Instruments Corporation Graphical code generation wizard for automatically creating graphical programs
US6051772A (en) 1997-07-15 2000-04-18 Aureal Semiconductor, Inc. Method and apparatus for emulating a frequency modulation device
JP3151808B2 (en) 1997-07-16 2001-04-03 日本電気株式会社 Integrated circuit device, circuit inspection device and method
US6377646B1 (en) 1997-07-21 2002-04-23 Cypress Semiconductor Corp. Spread spectrum at phase lock loop (PLL) feedback path
US6016554A (en) 1997-07-28 2000-01-18 Advanced Micro Devices, Inc. Method for event-related functional testing of a microprocessor
US5982241A (en) 1997-07-31 1999-11-09 Dallas Semiconductor Corporation Monolithic oscillator utilizing frequency-locked loop feedback network
US5963105A (en) 1997-07-31 1999-10-05 Dallas Semiconductor Corporation Trimmable circuitry for providing compensation for the temperature coefficients of a voltage controlled crystal-less oscillator
US5914633A (en) 1997-08-08 1999-06-22 Lucent Technologies Inc. Method and apparatus for tuning a continuous time filter
US5943052A (en) 1997-08-12 1999-08-24 Synaptics, Incorporated Method and apparatus for scroll bar control
US6311149B1 (en) 1997-08-18 2001-10-30 National Instruments Corporation Reconfigurable test system
DE19736900B4 (en) 1997-08-25 2006-02-16 Telefonaktiebolaget Lm Ericsson (Publ) Line receiver circuit with large common-mode voltage range for differential input signals
US5870345A (en) 1997-09-04 1999-02-09 Siemens Aktiengesellschaft Temperature independent oscillator
US5895494A (en) 1997-09-05 1999-04-20 International Business Machines Corporation Method of executing perform locked operation instructions for supporting recovery of data consistency if lost due to processor failure, and a method of recovering the data consistency after processor failure
US6188381B1 (en) 1997-09-08 2001-02-13 Sarnoff Corporation Modular parallel-pipelined vision system for real-time video processing
US5887995A (en) 1997-09-23 1999-03-30 Compaq Computer Corporation Touchpad overlay with tactile response
DE19742577C1 (en) 1997-09-26 1998-11-12 Siemens Ag In-circuit emulation circuit for microcontroller
US5870309A (en) 1997-09-26 1999-02-09 Xilinx, Inc. HDL design entry with annotated timing
US5966027A (en) 1997-09-30 1999-10-12 Cypress Semiconductor Corp. Symmetric logic block input/output scheme
US6263484B1 (en) 1997-10-01 2001-07-17 Yang-Sei Yang Prototyping system and a method of operating the same
GB9720954D0 (en) 1997-10-02 1997-12-03 Scient Generics Ltd Commutators for motors
US6201407B1 (en) 1997-10-07 2001-03-13 Cypress Semiconductor Corp Circular product term allocations scheme for a programmable device
US6130551A (en) 1998-01-19 2000-10-10 Vantis Corporation Synthesis-friendly FPGA architecture with variable length and variable timing interconnect
US6133773A (en) 1997-10-10 2000-10-17 Rambus Inc Variable delay element
US6185703B1 (en) 1997-10-10 2001-02-06 Intel Corporation Method and apparatus for direct access test of embedded memory
US6373954B1 (en) 1997-10-14 2002-04-16 Cirrus Logic, Inc. Single-chip audio circuitry, method, and systems using the same
EP1042871B1 (en) 1997-10-14 2009-04-15 Cypress Semiconductor Corporation Digital radio-frequency transceiver
GB9721891D0 (en) 1997-10-15 1997-12-17 Scient Generics Ltd Symmetrically connected spiral transducer
US6191998B1 (en) 1997-10-16 2001-02-20 Altera Corporation Programmable logic device memory array circuit having combinable single-port memory arrays
US5870004A (en) 1997-10-16 1999-02-09 Utron Technology Inc. Temperature compensated frequency generating circuit
US6005904A (en) 1997-10-16 1999-12-21 Oasis Design, Inc. Phase-locked loop with protected output during instances when the phase-locked loop is unlocked
US6121965A (en) 1997-10-17 2000-09-19 Lucent Technologies Inc. User interface for graphical application tool
JP3272281B2 (en) 1997-10-20 2002-04-08 インターナショナル・ビジネス・マシーンズ・コーポレーション Data item display method and display device, storage medium storing program for controlling display of data item
US6079985A (en) 1997-10-23 2000-06-27 Hasbro, Inc. Programmable sound and music making device
JP3571526B2 (en) 1997-10-23 2004-09-29 富士通株式会社 System design / evaluation CAD system and its program storage medium
US6236275B1 (en) 1997-10-24 2001-05-22 Ericsson Inc. Digital frequency synthesis by sequential fraction approximations
US6286114B1 (en) 1997-10-27 2001-09-04 Altera Corporation Enhanced embedded logic analyzer
US6094730A (en) 1997-10-27 2000-07-25 Hewlett-Packard Company Hardware-assisted firmware tracing method and apparatus
US6356960B1 (en) 1997-10-29 2002-03-12 Sgs-Thomson Microelectronics Limited Microprocessor having an on-chip CPU fetching a debugging routine from a memory in an external debugging device in response to a control signal received through a debugging port
US6002398A (en) 1997-10-30 1999-12-14 Novell, Inc. Navigation between property pages with tabs and menus
US6141790A (en) 1997-10-30 2000-10-31 Synopsys, Inc. Instructions signature and primary input and primary output extraction within an IEEE 1149.1 compliance checker
US6009496A (en) 1997-10-30 1999-12-28 Winbond Electronics Corp. Microcontroller with programmable embedded flash memory
US5982105A (en) 1997-11-10 1999-11-09 Applied Concepts, Inc. Transformerless electroluminescent lamp driver topology
US6003133A (en) 1997-11-17 1999-12-14 Motorola, Inc. Data processor with a privileged state firewall and method therefore
US5982229A (en) 1997-11-17 1999-11-09 Lsi Logic Corporation Signal processing scheme utilizing oversampled switched capacitor filter
US6664978B1 (en) 1997-11-17 2003-12-16 Fujitsu Limited Client-server computer network management architecture
GB9724542D0 (en) 1997-11-21 1998-01-21 Philipp Harald Electronic Smart Hammer
US6107882A (en) 1997-12-11 2000-08-22 Lucent Technologies Inc. Amplifier having improved common mode voltage range
US6161199A (en) 1997-12-12 2000-12-12 Scenix Semiconductor, Inc. Non-intrusive in-system debugging for a microcontroller with in-system programming capabilities using in-system debugging circuitry and program embedded in-system debugging commands
US6175914B1 (en) 1997-12-17 2001-01-16 Advanced Micro Devices, Inc. Processor including a combined parallel debug and trace port and a serial port
US6167077A (en) 1997-12-23 2000-12-26 Lsi Logic Corporation Using multiple high speed serial lines to transmit high data rates while compensating for overall skew
US6016563A (en) 1997-12-30 2000-01-18 Fleisher; Evgeny G. Method and apparatus for testing a logic design of a programmable logic device
US6192431B1 (en) 1997-12-31 2001-02-20 Intel Corporation Method and apparatus for configuring the pinout of an integrated circuit
US5994939A (en) 1998-01-14 1999-11-30 Intel Corporation Variable delay cell with a self-biasing load
US6137308A (en) 1998-01-20 2000-10-24 Cypress Semiconductor Corporation Programmable interconnect matrix architecture for complex programmable logic device
US6034538A (en) 1998-01-21 2000-03-07 Lucent Technologies Inc. Virtual logic system for reconfigurable hardware
US20020023110A1 (en) 1998-01-23 2002-02-21 Ronald E. Fortin Document markup language and system and method for generating and displaying documents therein
US7663607B2 (en) 2004-05-06 2010-02-16 Apple Inc. Multipoint touchscreen
US6185450B1 (en) 1998-01-26 2001-02-06 Physio-Control Manufacturing Corporation Digital sliding pole fast-restore for an electrocardiograph display
KR100595922B1 (en) 1998-01-26 2006-07-05 웨인 웨스터만 Method and apparatus for integrating manual input
US6411974B1 (en) 1998-02-04 2002-06-25 Novell, Inc. Method to collate and extract desired contents from heterogeneous text-data streams
US6286127B1 (en) 1998-02-06 2001-09-04 Texas Instruments Incorporated Control circuit having multiple functions set by a single programmable terminal
US6289300B1 (en) 1998-02-06 2001-09-11 Analog Devices, Inc. Integrated circuit with embedded emulator and emulation system for use with such an integrated circuit
US6081140A (en) 1998-02-06 2000-06-27 Texas Instruments, Inc. Control circuit with both positive and negative sensing
US7152027B2 (en) 1998-02-17 2006-12-19 National Instruments Corporation Reconfigurable test system
US5945878A (en) 1998-02-17 1999-08-31 Motorola, Inc. Single-ended to differential converter
US6298320B1 (en) 1998-02-17 2001-10-02 Applied Microsystems Corporation System and method for testing an embedded microprocessor system containing physical and/or simulated hardware
US7085670B2 (en) 1998-02-17 2006-08-01 National Instruments Corporation Reconfigurable measurement system utilizing a programmable hardware element and fixed hardware resources
US5939904A (en) 1998-02-19 1999-08-17 Lucent Technologies, Inc. Method and apparatus for controlling the common-mode output voltage of a differential buffer
US6922659B2 (en) 1998-02-26 2005-07-26 Micron Technology, Inc. Parameter population of cells of a hierarchical semiconductor structure via file relation
JP3214830B2 (en) 1998-02-27 2001-10-02 アジレント・テクノロジー株式会社 Data processing device for IC test
US6567426B1 (en) 1998-03-05 2003-05-20 Silicon Graphics, Inc. Preemptive timer multiplexed shared memory access
US6385742B1 (en) 1998-03-06 2002-05-07 Lsi Logic Corporation Microprocessor debugging mechanism employing scan interface
US5939949A (en) 1998-03-16 1999-08-17 National Semiconductor Corporation Self-adjusting startup control for charge pump current source in phase locked loop
US6574590B1 (en) 1998-03-18 2003-06-03 Lsi Logic Corporation Microprocessor development systems
US6052035A (en) 1998-03-19 2000-04-18 Microchip Technology Incorporated Oscillator with clock output inhibition control
US5969513A (en) 1998-03-24 1999-10-19 Volterra Semiconductor Corporation Switched capacitor current source for use in switching regulators
US6223144B1 (en) 1998-03-24 2001-04-24 Advanced Technology Materials, Inc. Method and apparatus for evaluating software programs for semiconductor circuits
US6175949B1 (en) 1998-03-24 2001-01-16 International Business Machines Corporation Method and system for selecting sizes of components for integrated circuits
GB2335822B (en) 1998-03-25 2003-09-10 Nokia Mobile Phones Ltd Context sensitive pop-up window for a portable phone
US5952888A (en) 1998-03-25 1999-09-14 Cypress Semiconductor Corp. Roving range control to limit receive PLL frequency of operation
US6198303B1 (en) 1998-03-25 2001-03-06 Altera Corporation Configuration eprom with programmable logic
US6166367A (en) 1998-03-26 2000-12-26 Photobit Corporation Programmable analog arithmetic circuit for imaging sensor
US6031365A (en) 1998-03-27 2000-02-29 Vantis Corporation Band gap reference using a low voltage power supply
JP3684832B2 (en) 1998-03-31 2005-08-17 セイコーエプソン株式会社 Microcomputer, electronic equipment and debugging system
US6188975B1 (en) 1998-03-31 2001-02-13 Synopsys, Inc. Programmatic use of software debugging to redirect hardware related operations to a hardware simulator
US6219729B1 (en) 1998-03-31 2001-04-17 Texas Instruments Incorporated Apparatus and method for providing for efficient communication between high and low-level processing engine of a disk drive formatter
US6005814A (en) 1998-04-03 1999-12-21 Cypress Semiconductor Corporation Test mode entrance through clocked addresses
US6201829B1 (en) 1998-04-03 2001-03-13 Adaptec, Inc. Serial/parallel GHZ transceiver with pseudo-random built in self test pattern generator
US6614458B1 (en) 1998-05-12 2003-09-02 Autodesk, Inc. Method and apparatus for displaying and manipulating multiple geometric constraints of a mechanical design
US6111431A (en) 1998-05-14 2000-08-29 National Semiconductor Corporation LVDS driver for backplane applications
US6173419B1 (en) 1998-05-14 2001-01-09 Advanced Technology Materials, Inc. Field programmable gate array (FPGA) emulator for debugging software
US6052524A (en) 1998-05-14 2000-04-18 Software Development Systems, Inc. System and method for simulation of integrated hardware and software components
US6037807A (en) 1998-05-18 2000-03-14 Integrated Device Technology, Inc. Synchronous sense amplifier with temperature and voltage compensated translator
GB9811151D0 (en) 1998-05-22 1998-07-22 Scient Generics Ltd Rotary encoder
US6057705A (en) 1998-05-28 2000-05-02 Microchip Technology Incorporated Programmable pin designation for semiconductor devices
US6239798B1 (en) 1998-05-28 2001-05-29 Sun Microsystems, Inc. Methods and apparatus for a window access panel
US6351789B1 (en) 1998-05-29 2002-02-26 Via-Cyrix, Inc. Built-in self-test circuit and method for validating an associative data array
JPH11353338A (en) 1998-06-04 1999-12-24 Mitsubishi Electric Corp Method for simulating integrated circuit, and recording medium
TW555759B (en) 1998-06-08 2003-10-01 Darwin Discovery Ltd Heterocyclic compounds and their therapeutic use
US6496033B2 (en) 1998-06-08 2002-12-17 Cypress Semiconductor Corp. Universal logic chip
US6061511A (en) 1998-06-12 2000-05-09 Ikos Systems, Inc. Reconstruction engine for a hardware circuit emulator
US6453175B2 (en) 1998-06-19 2002-09-17 Nortel Networks Limited Multi-function coding element and an associated telecommunications network
US6560734B1 (en) 1998-06-19 2003-05-06 Texas Instruments Incorporated IC with addressable test port
GB2338791B (en) 1998-06-22 2002-09-18 Advanced Risc Mach Ltd Apparatus and method for testing master logic units within a data processing apparatus
DE19827522A1 (en) 1998-06-22 1999-12-23 Jenapharm Gmbh New derivatives of 19-norandrostane useful in fertility control or treatment of e.g. endometriosis, mammary carcinoma or hypogonadism
US6262717B1 (en) 1998-07-02 2001-07-17 Cirque Corporation Kiosk touch pad
US6188391B1 (en) 1998-07-09 2001-02-13 Synaptics, Inc. Two-layer capacitive touchpad and method of making same
AT2910U1 (en) 1998-07-09 1999-06-25 Avl List Gmbh OPTOELECTRONIC MEASURING DEVICE FOR DETECTING COMBUSTION PROCESSES
US6223272B1 (en) 1998-07-15 2001-04-24 Siemens Aktiengesellschaft Test vector verification system
US6480921B1 (en) 1998-07-22 2002-11-12 Micron Technology, Inc. Reducing internal bus speed in a bus system without reducing readout rate
JP4008583B2 (en) 1998-07-22 2007-11-14 株式会社沖データ Electronics
DE19833208C1 (en) 1998-07-23 1999-10-28 Siemens Ag Integrated circuit with built-in self-test device
US6172571B1 (en) 1998-07-28 2001-01-09 Cypress Semiconductor Corp. Method for reducing static phase offset in a PLL
US6205574B1 (en) 1998-07-28 2001-03-20 Xilinx, Inc. Method and system for generating a programming bitstream including identification bits
US6377575B1 (en) 1998-08-05 2002-04-23 Vitesse Semiconductor Corporation High speed cross point switch routing circuit with word-synchronous serial back plane
US6339815B1 (en) 1998-08-14 2002-01-15 Silicon Storage Technology, Inc. Microcontroller system having allocation circuitry to selectively allocate and/or hide portions of a program memory address space
US6107826A (en) 1998-08-19 2000-08-22 Xilinx, Inc. Interconnect structure for FPGA with configurable delay locked loop
JP3202196B2 (en) 1998-08-25 2001-08-27 沖電気工業株式会社 Output circuit and input circuit
US6282547B1 (en) 1998-08-25 2001-08-28 Informix Software, Inc. Hyperlinked relational database visualization system
US6263339B1 (en) 1998-08-25 2001-07-17 Informix Software, Inc. Dynamic object visualization and code generation
US20060117274A1 (en) 1998-08-31 2006-06-01 Tseng Ping-Sheng Behavior processor system and method
DE19840241C1 (en) 1998-09-03 2000-03-23 Siemens Ag Digital PLL (Phase Locked Loop) frequency synthesizer
US6356862B2 (en) 1998-09-24 2002-03-12 Brian Bailey Hardware and software co-verification employing deferred synchronization
US6968514B2 (en) 1998-09-30 2005-11-22 Cadence Design Systems, Inc. Block based design methodology with programmable components
US6121805A (en) 1998-10-08 2000-09-19 Exar Corporation Universal duty cycle adjustment circuit
US6211741B1 (en) 1998-10-16 2001-04-03 Cypress Semiconductor Corp. Clock and data recovery PLL based on parallel architecture
US6342907B1 (en) 1998-10-19 2002-01-29 International Business Machines Corporation Specification language for defining user interface panels that are platform-independent
TW388807B (en) 1998-10-21 2000-05-01 Via Tech Inc Low voltage and low jitter voltage controlled oscillator
US6681280B1 (en) 1998-10-29 2004-01-20 Fujitsu Limited Interrupt control apparatus and method separately holding respective operation information of a processor preceding a normal or a break interrupt
US6374370B1 (en) 1998-10-30 2002-04-16 Hewlett-Packard Company Method and system for flexible control of BIST registers based upon on-chip events
US6421698B1 (en) 1998-11-04 2002-07-16 Teleman Multimedia, Inc. Multipurpose processor for motion estimation, pixel processing, and general processing
KR100337006B1 (en) 1998-11-17 2002-05-17 김 만 복 Method and apparatus for design verification of electronic circuits
US6466036B1 (en) 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
MXPA01005267A (en) 1998-11-27 2002-04-24 Synaptics Uk Ltd Position sensor.
US6590589B1 (en) * 1998-11-30 2003-07-08 International Business Machines Corporation Automatic generation of fastpath applications
US5949632A (en) 1998-12-01 1999-09-07 Exonix Corporation Power supply having means for extending the operating time of an implantable medical device
JP3189815B2 (en) 1998-12-07 2001-07-16 日本電気株式会社 Input circuit, output circuit, input / output circuit, and input signal processing method
US6294962B1 (en) 1998-12-09 2001-09-25 Cypress Semiconductor Corp. Circuit(s), architecture and method(s) for operating and/or tuning a ring oscillator
US6347395B1 (en) 1998-12-18 2002-02-12 Koninklijke Philips Electronics N.V. (Kpenv) Method and arrangement for rapid silicon prototyping
US6275117B1 (en) 1998-12-18 2001-08-14 Cypress Semiconductor Corp. Circuit and method for controlling an output of a ring oscillator
US6281753B1 (en) 1998-12-18 2001-08-28 Texas Instruments Incorporated MOSFET single-pair differential amplifier having an adaptive biasing scheme for rail-to-rail input capability
GB9828196D0 (en) 1998-12-21 1999-02-17 Northern Telecom Ltd Phase locked loop clock extraction
US6157270A (en) 1998-12-28 2000-12-05 Exar Corporation Programmable highly temperature and supply independent oscillator
US6107769A (en) 1998-12-29 2000-08-22 Schneider Automation Inc. Positional-based motion controller with a bias latch
US6154064A (en) 1998-12-30 2000-11-28 Proebsting; Robert J. Differential sense amplifier circuit
US6191603B1 (en) 1999-01-08 2001-02-20 Agilent Technologies Inc. Modular embedded test system for use in integrated circuits
US6466898B1 (en) 1999-01-12 2002-10-15 Terence Chan Multithreaded, mixed hardware description languages logic simulation on engineering workstations
US6320282B1 (en) 1999-01-19 2001-11-20 Touchsensor Technologies, Llc Touch switch with integral control circuit
US6181163B1 (en) 1999-01-21 2001-01-30 Vantis Corporation FPGA integrated circuit having embedded SRAM memory blocks and interconnect channel for broadcasting address and control signals
US6516428B2 (en) 1999-01-22 2003-02-04 Infineon Technologies Ag On-chip debug system
US6535200B2 (en) 1999-01-25 2003-03-18 Harald Philipp Capacitive position sensor
JP4275865B2 (en) 1999-01-26 2009-06-10 キューアールジー リミテッド Capacitive sensors and arrays
US6477683B1 (en) 1999-02-05 2002-11-05 Tensilica, Inc. Automated processor generation system for designing a configurable processor and method for the same
US6280391B1 (en) 1999-02-08 2001-08-28 Physio-Control Manufacturing Corporation Method and apparatus for removing baseline wander from an egg signal
US6356958B1 (en) 1999-02-08 2002-03-12 Mou-Shiung Lin Integrated circuit module has common function known good integrated circuit die with multiple selectable functions
US6332137B1 (en) 1999-02-11 2001-12-18 Toshikazu Hori Parallel associative learning memory for a standalone hardwired recognition system
US6289489B1 (en) 1999-02-23 2001-09-11 Stephen L. Bold Method and apparatus for automatically cross-referencing graphical objects and HDL statements
US6134181A (en) 1999-02-24 2000-10-17 Cypress Semiconductor Corp. Configurable memory block
US6396302B2 (en) 1999-02-25 2002-05-28 Xilinx, Inc. Configurable logic element with expander structures
US6718533B1 (en) 1999-02-26 2004-04-06 Real-Time Innovations, Inc. Method for building a real-time control system with mode and logical rate
EP1037157A1 (en) 1999-03-05 2000-09-20 International Business Machines Corporation Method and system for processing different cell protection modes in an electronic spreadsheet
JP3754221B2 (en) 1999-03-05 2006-03-08 ローム株式会社 Multi-chip type semiconductor device
US6384947B1 (en) 1999-03-09 2002-05-07 Agere Systems Guardian Corp. Two path digital wavelength stabilization
US6507857B1 (en) 1999-03-12 2003-01-14 Sun Microsystems, Inc. Extending the capabilities of an XSL style sheet to include components for content transformation
US6429882B1 (en) 1999-03-15 2002-08-06 Sun Microsystems, Inc. User interface component
JP3942765B2 (en) 1999-03-15 2007-07-11 株式会社アドバンテスト Semiconductor device simulation apparatus and program debugging apparatus for semiconductor test using the same
JP3167980B2 (en) 1999-03-15 2001-05-21 インターナショナル・ビジネス・マシーンズ・コーポレ−ション Component placement method, component placement device, storage medium storing component placement control program
US6499101B1 (en) 1999-03-18 2002-12-24 I.P. First L.L.C. Static branch prediction mechanism for conditional branch instructions
US6332201B1 (en) 1999-03-23 2001-12-18 Hewlett-Packard Company Test results checking via predictive-reactive emulation
US6271679B1 (en) 1999-03-24 2001-08-07 Altera Corporation I/O cell configuration for multiple I/O standards
US6191660B1 (en) 1999-03-24 2001-02-20 Cypress Semiconductor Corp. Programmable oscillator scheme
US6601236B1 (en) 1999-03-29 2003-07-29 International Business Machines Corporation Cross platform program installation on drives using drive object
US6625765B1 (en) 1999-03-31 2003-09-23 Cypress Semiconductor Corp. Memory based phase locked loop
US6912487B1 (en) 1999-04-09 2005-06-28 Public Service Company Of New Mexico Utility station automated design system and method
KR100330164B1 (en) 1999-04-27 2002-03-28 윤종용 A method for simultaneously programming plural flash memories having invalid blocks
EP1049256A1 (en) 1999-04-30 2000-11-02 STMicroelectronics S.r.l. Low supply voltage oscillator circuit, particularly of the CMOS type
US6188241B1 (en) 1999-05-14 2001-02-13 Advanced Micro Devices, Inc. Microcontroller having a block of logic configurable to perform a selected logic function and to produce output signals coupled to corresponding I/O pads according to a predefined hardware interface
US6438735B1 (en) 1999-05-17 2002-08-20 Synplicity, Inc. Methods and apparatuses for designing integrated circuits
US6366874B1 (en) 1999-05-24 2002-04-02 Novas Software, Inc. System and method for browsing graphically an electronic design based on a hardware description language specification
US6598178B1 (en) 1999-06-01 2003-07-22 Agere Systems Inc. Peripheral breakpoint signaler
US6453461B1 (en) 1999-06-09 2002-09-17 Compaq Information Technologies Group, L.P. Method and apparatus for testing ASL plug and play code in an ACPI operating system
US6614374B1 (en) 1999-06-15 2003-09-02 Globespanvirata, Inc. High performance switched-capacitor filter for oversampling Sigma-Delta digital to analog converters
US6613098B1 (en) 1999-06-15 2003-09-02 Microsoft Corporation Storage of application specific data in HTML
US6634008B1 (en) 1999-06-20 2003-10-14 Fujitsu Limited Methodology server based integrated circuit design
US6246258B1 (en) 1999-06-21 2001-06-12 Xilinx, Inc. Realizing analog-to-digital converter on a digital programmable integrated circuit
US7151528B2 (en) 1999-06-22 2006-12-19 Cirque Corporation System for disposing a proximity sensitive touchpad behind a mobile phone keypad
US6730863B1 (en) 1999-06-22 2004-05-04 Cirque Corporation Touchpad having increased noise rejection, decreased moisture sensitivity, and improved tracking
DE60015972T2 (en) 1999-06-25 2005-11-10 The Board Of Trustees Of The University Of Illinois, Chicago BATTERY WITH BUILT-IN DYNAMICALLY SWITCHED CAPACITIVE POWER CONVERSION
US6211708B1 (en) 1999-06-28 2001-04-03 Ericsson, Inc. Frequency doubling circuits, method, and systems including quadrature phase generators
US6456304B1 (en) 1999-06-30 2002-09-24 Microsoft Corporation Procedural toolbar user interface
GB2351619A (en) 1999-07-01 2001-01-03 Ericsson Telefon Ab L M A frequency trimmable oscillator with insensitivity to power supply variations and parasitic capacitance
US6130548A (en) 1999-07-09 2000-10-10 Motorola Inc. Signal converting receiver having constant hysteresis, and method therefor
JP3743487B2 (en) 1999-07-14 2006-02-08 富士ゼロックス株式会社 Programmable logic circuit device, information processing system, method for reconfiguring circuit into programmable logic circuit device, and method for compressing circuit information for programmable logic circuit device
US6355980B1 (en) 1999-07-15 2002-03-12 Nanoamp Solutions Inc. Dual die memory
JP3954245B2 (en) 1999-07-22 2007-08-08 株式会社東芝 Voltage generation circuit
US6425109B1 (en) 1999-07-23 2002-07-23 International Business Machines Corporation High level automatic core configuration
US6564179B1 (en) 1999-07-26 2003-05-13 Agere Systems Inc. DSP emulating a microcontroller
US6606731B1 (en) 1999-08-05 2003-08-12 The Boeing Company Intelligent wiring diagram system
US6249447B1 (en) 1999-08-13 2001-06-19 Tyco Electronics Logistics Ag System and method for determining output current and converter employing the same
US6204687B1 (en) 1999-08-13 2001-03-20 Xilinx, Inc. Method and structure for configuring FPGAS
US6441073B1 (en) 1999-08-17 2002-08-27 Taki Chemical Co., Ltd. Biological materials
US6324628B1 (en) 1999-08-24 2001-11-27 Trimble Navigation Limited Programming flash in a closed system
US6704879B1 (en) 1999-08-26 2004-03-09 Micron Technology, Inc. Dynamically controlling a power state of a graphics adapter
US6970844B1 (en) 1999-08-27 2005-11-29 Computer Sciences Corporation Flow designer for establishing and maintaining assignment and strategy process maps
GB9920301D0 (en) 1999-08-27 1999-11-03 Philipp Harald Level sensing
US6611276B1 (en) 1999-08-31 2003-08-26 Intel Corporation Graphical user interface that displays operation of processor threads over time
US6377009B1 (en) 1999-09-08 2002-04-23 Harald Philipp Capacitive closure obstruction sensor
JP2003509770A (en) 1999-09-10 2003-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Microcomputer with test instruction memory
EP1085335A1 (en) 1999-09-14 2001-03-21 Alcatel Method and apparatus for testing integrated circuits with automatic test equipment
US6704381B1 (en) 1999-09-17 2004-03-09 Cypress Semiconductor Corp. Frequency acquisition rate control in phase lock loop circuits
JP2001094550A (en) 1999-09-17 2001-04-06 Toshiba Corp Signal processor
US6748569B1 (en) 1999-09-20 2004-06-08 David M. Brooke XML server pages language
US6701340B1 (en) 1999-09-22 2004-03-02 Lattice Semiconductor Corp. Double differential comparator and programmable analog block architecture using same
US6917661B1 (en) 1999-09-24 2005-07-12 Cypress Semiconductor Corp. Method, architecture and circuitry for controlling pulse width in a phase and/or frequency detector
US6166960A (en) 1999-09-24 2000-12-26 Microchip Technology, Incorporated Method, system and apparatus for determining that a programming voltage level is sufficient for reliably programming an eeprom
US6934674B1 (en) 1999-09-24 2005-08-23 Mentor Graphics Corporation Clock generation and distribution in an emulation system
DE19946200A1 (en) 1999-09-27 2001-05-03 Infineon Technologies Ag Phase locked loop
AT3845U1 (en) 1999-09-28 2000-08-25 Avl List Gmbh OPTOELECTRONIC MEASURING DEVICE
US6601189B1 (en) 1999-10-01 2003-07-29 Stmicroelectronics Limited System and method for communicating with an integrated circuit
US6567932B2 (en) 1999-10-01 2003-05-20 Stmicroelectronics Limited System and method for communicating with an integrated circuit
US6591369B1 (en) 1999-10-01 2003-07-08 Stmicroelectronics, Ltd. System and method for communicating with an integrated circuit
US6590419B1 (en) 1999-10-12 2003-07-08 Altera Toronto Co. Heterogeneous interconnection architecture for programmable logic devices
US6560699B1 (en) 1999-10-20 2003-05-06 Cisco Technology, Inc. Constraint-based language configuration files for updating and verifying system constraints
DE10052877B4 (en) 1999-10-21 2008-07-03 Samsung Electronics Co., Ltd., Suwon microcontroller
US6590517B1 (en) 1999-10-22 2003-07-08 Eric J. Swanson Analog to digital conversion circuitry including backup conversion circuitry
US6369660B1 (en) 1999-10-27 2002-04-09 Cypress Semiconductor Corp. Circuit and method for preventing runaway in a phase lock loop
US6678645B1 (en) 1999-10-28 2004-01-13 Advantest Corp. Method and apparatus for SoC design validation
US6263302B1 (en) 1999-10-29 2001-07-17 Vast Systems Technology Corporation Hardware and software co-simulation including simulating the cache of a target processor
US6587093B1 (en) 1999-11-04 2003-07-01 Synaptics Incorporated Capacitive mouse
US6553057B1 (en) 1999-11-09 2003-04-22 Cypress Semiconductor Corp. Circuit and method for linear control of a spread spectrum transition
US6850554B1 (en) 1999-11-09 2005-02-01 Cypress Semiconductor Corp. Circuit and method for controlling a spread spectrum transition
US6445242B2 (en) 1999-11-23 2002-09-03 Texas Instruments Incorporated Fuse selectable pinout package
US6823497B2 (en) 1999-11-30 2004-11-23 Synplicity, Inc. Method and user interface for debugging an electronic system
US6618839B1 (en) 1999-11-30 2003-09-09 Synplicity, Inc. Method and system for providing an electronic system design with enhanced debugging capabilities
US6658498B1 (en) 1999-12-08 2003-12-02 International Business Machines Corporation Method, system, program, and data structures for reconfiguring output devices in a network system
GB2357644B (en) 1999-12-20 2004-05-05 Ericsson Telefon Ab L M Low-voltage differential signal (LVDS) input circuit
US6307413B1 (en) 1999-12-23 2001-10-23 Cypress Semiconductor Corp. Reference-free clock generator and data recovery PLL
US6310521B1 (en) 1999-12-23 2001-10-30 Cypress Semiconductor Corp. Reference-free clock generation and data recovery PLL
US6611856B1 (en) 1999-12-23 2003-08-26 Intel Corporation Processing multiply-accumulate operations in a single cycle
US6683930B1 (en) 1999-12-23 2004-01-27 Cypress Semiconductor Corp. Digital phase/frequency detector, and clock generator and data recovery PLL containing the same
US6388464B1 (en) 1999-12-30 2002-05-14 Cypress Semiconductor Corp. Configurable memory for programmable logic circuits
US6864710B1 (en) 1999-12-30 2005-03-08 Cypress Semiconductor Corp. Programmable logic device
US6404445B1 (en) 1999-12-30 2002-06-11 Cybrant Corporation Method and system for modeling data
US6535946B1 (en) 2000-01-04 2003-03-18 National Semiconductor Corporation Low-latency circuit for synchronizing data transfers between clock domains derived from a common clock
US6664991B1 (en) 2000-01-06 2003-12-16 Microsoft Corporation Method and apparatus for providing context menus on a pen-based device
EP1275204A4 (en) 2000-01-11 2009-02-04 Cirque Corp Flexible touchpad sensor grid for conforming to arcuate surfaces
US7342405B2 (en) 2000-01-18 2008-03-11 Formfactor, Inc. Apparatus for reducing power supply noise in an integrated circuit
AU2001232876A1 (en) 2000-01-19 2001-07-31 Synaptics, Inc. Capacitive pointing stick
US6185127B1 (en) 2000-01-31 2001-02-06 Summit Microelectronics, Inc. Selectable analog functions on a configurable device and method employing nonvolatile memory
US6236278B1 (en) 2000-02-16 2001-05-22 National Semiconductor Corporation Apparatus and method for a fast locking phase locked loop
US6424209B1 (en) 2000-02-18 2002-07-23 Lattice Semiconductor Corporation Integrated programmable continuous time filter with programmable capacitor arrays
US6366174B1 (en) 2000-02-21 2002-04-02 Lexmark International, Inc. Method and apparatus for providing a clock generation circuit for digitally controlled frequency or spread spectrum clocking
US20020010716A1 (en) 2000-02-24 2002-01-24 Mccartney Alan F. System and method for dynamically publishing XML-compliant documents
US6594799B1 (en) 2000-02-28 2003-07-15 Cadence Design Systems, Inc. Method and system for facilitating electronic circuit and chip design using remotely located resources
US6536028B1 (en) 2000-03-14 2003-03-18 Ammocore Technologies, Inc. Standard block architecture for integrated circuit design
US6530065B1 (en) 2000-03-14 2003-03-04 Transim Technology Corporation Client-server simulator, such as an electrical circuit simulator provided by a web server over the internet
US6604179B2 (en) 2000-03-23 2003-08-05 Intel Corporation Reading a FIFO in dual clock domains
US6967960B1 (en) 2000-03-31 2005-11-22 Intel Corporation Method and apparatus for emulating a local data port
US6477691B1 (en) 2000-04-03 2002-11-05 International Business Machines Corporation Methods and arrangements for automatic synthesis of systems-on-chip
AU2001253393A1 (en) 2000-04-11 2001-10-23 Cirque Corporation Efficient entry of characters into a portable information appliance
US6574739B1 (en) 2000-04-14 2003-06-03 Compal Electronics, Inc. Dynamic power saving by monitoring CPU utilization
US6587995B1 (en) 2000-04-19 2003-07-01 Koninklijke Philips Electronics N.V. Enhanced programmable core model with integrated graphical debugging functionality
US6559685B2 (en) 2000-04-21 2003-05-06 Broadcom Corporation Regenerative signal level converter
US6404204B1 (en) 2000-05-01 2002-06-11 ARETé ASSOCIATES Sensor and sensor system for liquid conductivity, temperature and depth
US7124376B2 (en) 2000-05-02 2006-10-17 Palmchip Corporation Design tool for systems-on-a-chip
US6675310B1 (en) 2000-05-04 2004-01-06 Xilinx, Inc. Combined waveform and data entry apparatus and method for facilitating fast behavorial verification of digital hardware designs
US6711226B1 (en) 2000-05-12 2004-03-23 Cypress Semiconductor Corp. Linearized digital phase-locked loop
US6718294B1 (en) 2000-05-16 2004-04-06 Mindspeed Technologies, Inc. System and method for synchronized control of system simulators with multiple processor cores
US6880086B2 (en) 2000-05-20 2005-04-12 Ciena Corporation Signatures for facilitating hot upgrades of modular software components
EP1158303A1 (en) 2000-05-25 2001-11-28 Semiconductor Ideas to The Market (ItoM) BV A circuit for measuring absolute spread in capacitors implemented in planary technology
US6817005B2 (en) 2000-05-25 2004-11-09 Xilinx, Inc. Modular design method and system for programmable logic devices
US6738858B1 (en) 2000-05-31 2004-05-18 Silicon Labs Cp, Inc. Cross-bar matrix for connecting digital resources to I/O pins of an integrated circuit
US6631508B1 (en) 2000-06-07 2003-10-07 Xilinx, Inc. Method and apparatus for developing and placing a circuit design
US7376904B2 (en) 2000-06-13 2008-05-20 National Instruments Corporation Automatic generation of programs with GUI controls for interactively setting or viewing values
US6799198B1 (en) 2000-06-23 2004-09-28 Nortel Networks Limited Method and apparatus for providing user specific web-based help in a distributed system environment
US6594796B1 (en) 2000-06-30 2003-07-15 Oak Technology, Inc. Simultaneous processing for error detection and P-parity and Q-parity ECC encoding
US6782068B1 (en) 2000-06-30 2004-08-24 Cypress Semiconductor Corp. PLL lockout watchdog
US20020066088A1 (en) 2000-07-03 2002-05-30 Cadence Design Systems, Inc. System and method for software code optimization
EP1170671A1 (en) 2000-07-04 2002-01-09 STMicroelectronics S.r.l. Programmable analog array circuit
FR2811782B1 (en) 2000-07-12 2003-09-26 Jaxo Europ DOCUMENT CONVERSION SYSTEM WITH TREE STRUCTURE BY SELECTIVE PATHWAY OF SAID STRUCTURE
US6499134B1 (en) 2000-07-13 2002-12-24 International Business Machines Corporation Method of assigning integrated circuit I/O signals in an integrated circuit package
US6614260B1 (en) 2000-07-28 2003-09-02 Agilent Technologies, Inc. System and method for dynamic modification of integrated circuit functionality
US6542844B1 (en) 2000-08-02 2003-04-01 International Business Machines Corporation Method and apparatus for tracing hardware states using dynamically reconfigurable test circuits
US6681359B1 (en) 2000-08-07 2004-01-20 Cypress Semiconductor Corp. Semiconductor memory self-test controllable at board level using standard interface
US6697754B1 (en) 2000-08-09 2004-02-24 Agilent Technologies, Inc. Generation and execution of instrument control macro files for controlling a signal measurement system
KR100819680B1 (en) * 2000-08-15 2008-04-04 아크조 노벨 엔.브이. Novel trioxepan compounds
US7171455B1 (en) 2000-08-22 2007-01-30 International Business Machines Corporation Object oriented based, business class methodology for generating quasi-static web pages at periodic intervals
US20040054821A1 (en) 2000-08-22 2004-03-18 Warren Christopher E. Multifunctional network interface node
US6371878B1 (en) 2000-08-22 2002-04-16 New Venture Gear, Inc. Electric continuously variable transmission
US6711731B2 (en) 2000-08-23 2004-03-23 Pri Automation, Inc. Web based tool control in a semiconductor fabrication facility
US6539534B1 (en) 2000-08-25 2003-03-25 Xilinx, Inc. Apparatus and method for automatically generating circuit designs that meet user output requirements
US6673308B2 (en) 2000-08-30 2004-01-06 Kabushiki Kaisha Toshiba Nickel-base single-crystal superalloys, method of manufacturing same and gas turbine high temperature parts made thereof
JP4148639B2 (en) 2000-08-31 2008-09-10 独立行政法人物質・材料研究機構 How to use steel members and how to set them
US20020065646A1 (en) 2000-09-11 2002-05-30 Waldie Arthur H. Embedded debug system using an auxiliary instruction queue
AU2001294555A1 (en) 2000-09-14 2002-03-26 Bea Systems Inc. Xml-based graphical user interface application development toolkit
US6504433B1 (en) 2000-09-15 2003-01-07 Atheros Communications, Inc. CMOS transceiver having an integrated power amplifier
US6438738B1 (en) 2000-09-19 2002-08-20 Xilinx, Inc. System and method for configuring a programmable logic device
US6750889B1 (en) 2000-09-21 2004-06-15 Hewlett-Packard Development Company, L.P. User interface apparatus for displaying a range indicator for setting a plurality of target objects
JP4407031B2 (en) 2000-09-21 2010-02-03 ソニー株式会社 Phase-locked loop circuit and delay-locked loop circuit
ES2180391B1 (en) 2000-09-25 2003-12-16 Telesincro S A INTEGRATED CIRCUIT.
JP2004511053A (en) 2000-10-06 2004-04-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ An integrated circuit that supplies upscaled clocks to memory and creates parallel waves
US20020129334A1 (en) 2000-10-13 2002-09-12 Dane Mark W.P. Interface based design using a tabular paradigm
US6396687B1 (en) 2000-10-13 2002-05-28 Dell Products, L.P. Rotating portable computer docking station
US6825689B1 (en) 2000-10-26 2004-11-30 Cypress Semiconductor Corporation Configurable input/output interface for a microcontroller
US7127630B1 (en) 2000-10-26 2006-10-24 Cypress Semiconductor Corp. Method for entering circuit test mode
US6859884B1 (en) 2000-10-26 2005-02-22 Cypress Semiconductor Corporation Method and circuit for allowing a microprocessor to change its operating frequency on-the-fly
US7005933B1 (en) 2000-10-26 2006-02-28 Cypress Semiconductor Corporation Dual mode relaxation oscillator generating a clock signal operating at a frequency substantially same in both first and second power modes
US7092980B1 (en) 2000-10-26 2006-08-15 Cypress Semiconductor Corporation Programming architecture for a programmable analog system
US7076420B1 (en) 2000-10-26 2006-07-11 Cypress Semiconductor Corp. Emulator chip/board architecture and interface
US6798299B1 (en) 2000-10-26 2004-09-28 Cypress Semiconductor Corporation Crystal-less oscillator circuit with trimmable analog current control for increased stability
US6611220B1 (en) 2000-10-26 2003-08-26 Cypress Semiconductor Corporation Architecture for decimation algorithm
US7185162B1 (en) 2000-10-26 2007-02-27 Cypress Semiconductor Corporation Method and apparatus for programming a flash memory
US6563391B1 (en) 2000-10-26 2003-05-13 Cypress Semiconductor Corporation Precision crystal oscillator circuit used in microcontroller
US6603330B1 (en) 2000-10-26 2003-08-05 Cypress Semiconductor Corporation Configuring digital functions in a digital configurable macro architecture
US6868500B1 (en) 2000-10-26 2005-03-15 Cypress Semiconductor Corporation Power on reset circuit for a microcontroller
US6941336B1 (en) 2000-10-26 2005-09-06 Cypress Semiconductor Corporation Programmable analog system architecture
US6967511B1 (en) 2000-10-26 2005-11-22 Cypress Semiconductor Corporation Method for synchronizing and resetting clock signals supplied to multiple programmable analog blocks
US7180342B1 (en) 2000-10-26 2007-02-20 Cypress Semiconductor Corporation Frequency doubler circuit with trimmable current control
US6981090B1 (en) 2000-10-26 2005-12-27 Cypress Semiconductor Corporation Multiple use of microcontroller pad
US6957242B1 (en) 2000-10-26 2005-10-18 Cypress Semiconductor Corp. Noninterfering multiply-MAC (multiply accumulate) circuit
US7149316B1 (en) 2000-10-26 2006-12-12 Cypress Semiconductor Corporation Microcontroller having an on-chip high gain amplifier
US6724220B1 (en) 2000-10-26 2004-04-20 Cyress Semiconductor Corporation Programmable microcontroller architecture (mixed analog/digital)
US6608472B1 (en) 2000-10-26 2003-08-19 Cypress Semiconductor Corporation Band-gap reference circuit for providing an accurate reference voltage compensated for process state, process variations and temperature
US6614320B1 (en) 2000-10-26 2003-09-02 Cypress Semiconductor Corporation System and method of providing a programmable clock architecture for an advanced microcontroller
US7023257B1 (en) 2000-10-26 2006-04-04 Cypress Semiconductor Corp. Architecture for synchronizing and resetting clock signals supplied to multiple programmable analog blocks
US6950954B1 (en) 2000-10-26 2005-09-27 Cypress Semiconductor Corporation Method and circuit for synchronizing a write operation between an on-chip microprocessor and an on-chip programmable analog device operating at different frequencies
US6525593B1 (en) 2000-10-26 2003-02-25 Cypress Semiconductor Corporation Method and apparatus for local and global power management in a programmable analog circuit
US6507214B1 (en) 2000-10-26 2003-01-14 Cypress Semiconductor Corporation Digital configurable macro architecture
US6892322B1 (en) 2000-10-26 2005-05-10 Cypress Semiconductor Corporation Method for applying instructions to microprocessor in test mode
US6542025B1 (en) 2000-10-26 2003-04-01 Cypress Semiconductor Corporation Power supply pump circuit for a microcontroller
US7206733B1 (en) 2000-10-26 2007-04-17 Cypress Semiconductor Corporation Host to FPGA interface in an in-circuit emulation system
US8149048B1 (en) 2000-10-26 2012-04-03 Cypress Semiconductor Corporation Apparatus and method for programmable power management in a programmable analog circuit block
US6952778B1 (en) 2000-10-26 2005-10-04 Cypress Semiconductor Corporation Protecting access to microcontroller memory blocks
US7188063B1 (en) 2000-10-26 2007-03-06 Cypress Semiconductor Corporation Capturing test/emulation and enabling real-time debugging using an FPGA for in-circuit emulation
US6910126B1 (en) 2000-10-26 2005-06-21 Cypress Microsystems, Inc. Programming methodology and architecture for a programmable analog system
US6892310B1 (en) 2000-10-26 2005-05-10 Cypress Semiconductor Corporation Method for efficient supply of power to a microcontroller
JP2002134619A (en) 2000-10-26 2002-05-10 Sony Corp Method for designing integrated circuit, system for designing it, and recording medium
US6823282B1 (en) 2000-10-26 2004-11-23 Cypress Semiconductor Corporation Test architecture for microcontroller providing for a serial communication interface
KR100392569B1 (en) 2000-10-28 2003-07-23 (주)다이나릿시스템 Apparatus for emulating a logic function of a semiconductor chip and method thereof
US6854067B1 (en) 2000-10-30 2005-02-08 Cypress Semiconductor Corporation Method and system for interaction between a processor and a power on reset circuit to dynamically control power states in a microcontroller
EP1205848A1 (en) 2000-11-13 2002-05-15 Telefonaktiebolaget Lm Ericsson Embedded microcontroller bound-out chip as preprocessor for a logic analyser
US6829728B2 (en) 2000-11-13 2004-12-07 Wu-Tung Cheng Full-speed BIST controller for testing embedded synchronous memories
US6445211B1 (en) 2000-11-20 2002-09-03 Cypress Semiconductor Corporation Circuit technique for improved current matching in charge pump PLLS
JP2002168893A (en) 2000-11-30 2002-06-14 Agilent Technologies Japan Ltd High accuracy capacity measurement device and method
WO2002048866A2 (en) 2000-12-11 2002-06-20 Microsoft Corporation Method and system for management of multiple network resources
US6686860B2 (en) 2000-12-12 2004-02-03 Massachusetts Institute Of Technology Reconfigurable analog-to-digital converter
US20020122060A1 (en) 2000-12-18 2002-09-05 Markel Steven O. Wizard generating HTML web pages using XML and XSL
US7913170B2 (en) 2000-12-20 2011-03-22 National Instruments Corporation System and method for performing type checking for hardware device nodes in a graphical program
US6975123B1 (en) 2000-12-20 2005-12-13 Maxtor Corporation Method and apparatus for calibrating piezoelectric driver in dual actuator disk drive
US6611952B1 (en) 2000-12-21 2003-08-26 Shiv Prakash Interactive memory allocation in a behavioral synthesis tool
US6934785B2 (en) 2000-12-22 2005-08-23 Micron Technology, Inc. High speed interface with looped bus
US7222291B2 (en) 2000-12-29 2007-05-22 International Business Machines Corporation Method and system for importing HTML forms
US6483343B1 (en) 2000-12-29 2002-11-19 Quicklogic Corporation Configurable computational unit embedded in a programmable device
AU2002239817A1 (en) 2001-01-04 2002-07-16 Cirque Corporation Connector and support system for a touchpad keyboard for use with portable electronic appliances
US7266768B2 (en) 2001-01-09 2007-09-04 Sharp Laboratories Of America, Inc. Systems and methods for manipulating electronic information using a three-dimensional iconic representation
US6829727B1 (en) 2001-01-12 2004-12-07 Metalink Corp. In-circuit emulation of single chip microcontrollers
US6859196B2 (en) 2001-01-12 2005-02-22 Logitech Europe S.A. Pointing device with hand detection
US6597824B2 (en) 2001-01-28 2003-07-22 Raytheon Company Opto-electronic distributed crossbar switch
US6677932B1 (en) 2001-01-28 2004-01-13 Finger Works, Inc. System and method for recognizing touch typing under limited tactile feedback conditions
US20030105620A1 (en) 2001-01-29 2003-06-05 Matt Bowen System, method and article of manufacture for interface constructs in a programming language capable of programming hardware architetures
US6691301B2 (en) * 2001-01-29 2004-02-10 Celoxica Ltd. System, method and article of manufacture for signal constructs in a programming language capable of programming hardware architectures
US7367017B2 (en) 2001-01-31 2008-04-29 Hewlett-Packard Development Company, L.P. Method and apparatus for analyzing machine control sequences
TW571201B (en) 2001-02-02 2004-01-11 Wistron Corp Conversion method and system for contents format of document file
US6624640B2 (en) 2001-02-07 2003-09-23 Fluke Corporation Capacitance measurement
US6570557B1 (en) 2001-02-10 2003-05-27 Finger Works, Inc. Multi-touch system and method for emulating modifier keys via fingertip chords
US6380811B1 (en) 2001-02-16 2002-04-30 Motorola, Inc. Signal generator, and method
CA2337117A1 (en) * 2001-02-16 2002-08-16 Homeproject.Com Inc. Method and system for web application builder
US20020133794A1 (en) 2001-02-24 2002-09-19 Ruban Kanapathippillai Method and apparatus for integrated circuit debugging
CA2338458A1 (en) 2001-02-27 2001-08-14 Ioan Dancea Method and vlsi circuits allowing to change dynamically the logical behaviour
US20020161802A1 (en) 2001-02-27 2002-10-31 Gabrick Kurt A. Web presentation management system
US6472747B2 (en) 2001-03-02 2002-10-29 Qualcomm Incorporated Mixed analog and digital integrated circuits
JP2002267721A (en) 2001-03-09 2002-09-18 Mitsubishi Electric Corp Device and method for testing lsi mixed with ram built in cpu
US6988231B2 (en) 2001-03-16 2006-01-17 Emosyn America, Inc. On-chip method and apparatus for testing semiconductor circuits
US7971138B2 (en) 2001-03-23 2011-06-28 Oracle International Corporation Common design for web pages through employment of master specifications
US6496969B2 (en) 2001-03-27 2002-12-17 Lattice Semiconductor Corporation Programming programmable logic devices using hidden switches
US7246328B2 (en) 2001-03-29 2007-07-17 The Boeing Company Method, computer program product, and system for performing automated linking between sheets of a drawing set
US6566961B2 (en) 2001-03-30 2003-05-20 Institute Of Microelectronics Wide-band single-ended to differential converter in CMOS technology
US6557149B2 (en) 2001-04-04 2003-04-29 Intel Corporation Algorithm for finding vectors to stimulate all paths and arcs through an LVS gate
US6580329B2 (en) 2001-04-11 2003-06-17 Tropian, Inc. PLL bandwidth switching
US6505327B2 (en) 2001-04-13 2003-01-07 Numerical Technologies, Inc. Generating an instance-based representation of a design hierarchy
US6507215B1 (en) 2001-04-18 2003-01-14 Cygnal Integrated Products, Inc. Programmable driver for an I/O pin of an integrated circuit
US6509758B2 (en) 2001-04-18 2003-01-21 Cygnal Integrated Products, Inc. IC with digital and analog circuits and mixed signal I/O pins
US6968346B2 (en) 2001-04-23 2005-11-22 International Business Machines Corporation XML-based system and method for collaborative web-based design and verification of system-on-a-chip
US20020156885A1 (en) 2001-04-23 2002-10-24 Thakkar Bina Kunal Protocol emulator
US7480860B2 (en) 2001-04-23 2009-01-20 Versata Computer Industry Solutions, Inc. Data document generator to generate multiple documents from a common document using multiple transforms
US6732347B1 (en) 2001-04-26 2004-05-04 Xilinx, Inc. Clock template for configuring a programmable gate array
US6516452B2 (en) 2001-05-01 2003-02-04 Chipdata, Inc. Method and apparatus for verifying design data
US6466078B1 (en) 2001-05-04 2002-10-15 Cypress Semiconductor Corp. Reduced static phase error CMOS PLL charge pump
MXPA03010226A (en) 2001-05-07 2005-07-01 Touchsensor Tech Llc Control system input apparatus and method.
US7017145B2 (en) * 2001-05-09 2006-03-21 Sun Microsystems, Inc. Method, system, and program for generating a user interface
US6754765B1 (en) 2001-05-14 2004-06-22 Integrated Memory Logic, Inc. Flash memory controller with updateable microcode
US7730401B2 (en) 2001-05-16 2010-06-01 Synaptics Incorporated Touch screen with user interface enhancement
US20050024341A1 (en) 2001-05-16 2005-02-03 Synaptics, Inc. Touch screen with user interface enhancement
US7103108B1 (en) 2001-05-17 2006-09-05 Cypress Semiconductor Corp. Digital signal processor transceiver
US20020174134A1 (en) 2001-05-21 2002-11-21 Gene Goykhman Computer-user activity tracking system and method
US6806771B1 (en) 2001-06-01 2004-10-19 Lattice Semiconductor Corp. Multimode output stage converting differential to single-ended signals using current-mode input signals
US6904570B2 (en) 2001-06-07 2005-06-07 Synaptics, Inc. Method and apparatus for controlling a display of data on a display screen
US6578174B2 (en) 2001-06-08 2003-06-10 Cadence Design Systems, Inc. Method and system for chip design using remotely located resources
US6757882B2 (en) 2001-06-16 2004-06-29 Michael Y. Chen Self-describing IP package for enhanced platform based SOC design
US6888453B2 (en) 2001-06-22 2005-05-03 Pentagon Technologies Group, Inc. Environmental monitoring system
US6690224B1 (en) 2001-06-27 2004-02-10 Cypress Semiconductor Corp. Architecture of a PLL with dynamic frequency control on a PLD
US6499359B1 (en) 2001-07-09 2002-12-31 Nartron Corporation Compressible capacitance sensor for determining the presence of an object
US7620911B2 (en) 2001-07-12 2009-11-17 Autodesk, Inc. Collapsible dialog window
US20030097640A1 (en) 2001-07-25 2003-05-22 International Business Machines Corporation System and method for creating and editing documents
US7055035B2 (en) 2001-07-31 2006-05-30 Hewlett-Packard Development Company, L.P. Method for generating a read only memory image
EP1282234A1 (en) 2001-07-31 2003-02-05 Texas Instruments Incorporated Loop filter architecture
US6768362B1 (en) 2001-08-13 2004-07-27 Cypress Semiconductor Corp. Fail-safe zero delay buffer with automatic internal reference
US6954904B2 (en) 2001-08-15 2005-10-11 National Instruments Corporation Creating a graphical program to configure one or more switch devices
US6678877B1 (en) 2001-08-15 2004-01-13 National Semiconductor Corporation Creating a PC board (PCB) layout for a circuit in which the components of the circuit are placed in the determined PCB landing areas
US20040205553A1 (en) 2001-08-15 2004-10-14 Hall David M. Page layout markup language
EP1286279A1 (en) 2001-08-21 2003-02-26 Alcatel Configuration tool
JP2003058426A (en) 2001-08-21 2003-02-28 Sony Corp Integrated circuit, and its circuit constituting method and program
US6744323B1 (en) 2001-08-30 2004-06-01 Cypress Semiconductor Corp. Method for phase locking in a phase lock loop
US6714817B2 (en) 2001-08-31 2004-03-30 Medtronic Physio-Control Manufacturing Corp. Hard paddle for an external defibrillator
US6661410B2 (en) 2001-09-07 2003-12-09 Microsoft Corporation Capacitive sensing and data input device power management
US20030056071A1 (en) 2001-09-18 2003-03-20 Triece Joseph W. Adaptable boot loader
US7733509B2 (en) 2001-09-26 2010-06-08 Infoprint Solutions Company, Llc Method and apparatus for printing XML directly using a formatting template
US6536014B1 (en) 2001-09-26 2003-03-18 International Business Machines Corporation Reusable configuration tool
US6457479B1 (en) 2001-09-26 2002-10-01 Sharp Laboratories Of America, Inc. Method of metal oxide thin film cleaning
JP3553535B2 (en) 2001-09-28 2004-08-11 ユーディナデバイス株式会社 Capacitive element and method of manufacturing the same
HUP0104057A2 (en) 2001-10-02 2003-06-28 MTA Műszaki Fizikai és Anyagtudományi Kutatóintézet Measuring arrangement and method for the fast quantitative topographical examination of semi-conductor slices and other mirror-like surfaces
US6658633B2 (en) 2001-10-03 2003-12-02 International Business Machines Corporation Automated system-on-chip integrated circuit design verification system
US6670852B1 (en) 2001-10-17 2003-12-30 Cypress Semiconductor Corp. Oscillator tuning method
US7406674B1 (en) 2001-10-24 2008-07-29 Cypress Semiconductor Corporation Method and apparatus for generating microcontroller configuration information
US6792584B1 (en) 2001-10-30 2004-09-14 Lsi Logic Corporation System and method for designing an integrated circuit
JP4035418B2 (en) 2001-10-31 2008-01-23 株式会社本田電子技研 Proximity switch and object detection device
US20040205617A1 (en) 2001-11-06 2004-10-14 Ncr Corporation Custom report generation using XML and XSL
US6957180B1 (en) 2001-11-15 2005-10-18 Cypress Semiconductor Corp. System and a method for communication between an ICE and a production microcontroller while in a halt state
DE10156027B4 (en) 2001-11-15 2012-02-09 Globalfoundries Inc. Adjustable filter circuit
US6922821B1 (en) 2001-11-15 2005-07-26 Cypress Semiconductor Corp. System and a method for checking lock step consistency between an in circuit emulation and a microcontroller while debugging process is in progress
US6637015B1 (en) 2001-11-19 2003-10-21 Cypress Semiconductor Corporation System and method for decoupling and iterating resources associated with a module
US6715132B1 (en) 2001-11-19 2004-03-30 Cypress Semiconductor Corporation Datasheet browsing and creation with data-driven datasheet tabs within a microcontroller design tool
US6785881B1 (en) 2001-11-19 2004-08-31 Cypress Semiconductor Corporation Data driven method and system for monitoring hardware resource usage for programming an electronic device
US7086014B1 (en) 2001-11-19 2006-08-01 Cypress Semiconductor Corporation Automatic generation of application program interfaces, source code, interrupts, and datasheets for microcontroller programming
US6701508B1 (en) 2001-11-19 2004-03-02 Cypress Semiconductor Corporation Method and system for using a graphics user interface for programming an electronic device
US6898703B1 (en) 2001-11-19 2005-05-24 Cypress Semiconductor Corporation System and method for creating a boot file utilizing a boot template
US6701487B1 (en) 2001-11-19 2004-03-02 Cypress Semiconductor Corporation User defined names for registers in memory banks derived from configurations
US6901563B1 (en) 2001-11-19 2005-05-31 Cypress Semiconductor Corporation Storing of global parameter defaults and using them over two or more design projects
US6897390B2 (en) 2001-11-20 2005-05-24 Touchsensor Technologies, Llc Molded/integrated touch switch/control panel assembly and method for making same
US7361860B2 (en) 2001-11-20 2008-04-22 Touchsensor Technologies, Llc Integrated touch sensor and light apparatus
US7139530B2 (en) 2001-12-07 2006-11-21 Kyocera Wireless Corp. Method and apparatus for calibrating a reference oscillator
US7161936B1 (en) 2001-12-28 2007-01-09 Cisco Technology, Inc. Method and system for distributing data communications utilizing a crossbar switch
US6617888B2 (en) 2002-01-02 2003-09-09 Intel Corporation Low supply voltage differential signal driver
US7298124B2 (en) 2004-12-01 2007-11-20 Semiconductor Components Industries, L.L.C. PWM regulator with discontinuous mode and method therefor
US6613119B2 (en) 2002-01-10 2003-09-02 Pechiney Electrometallurgie Inoculant pellet for late inoculation of cast iron
US20030135842A1 (en) * 2002-01-16 2003-07-17 Jan-Erik Frey Software development tool for embedded computer systems
US6677814B2 (en) 2002-01-17 2004-01-13 Microtune (San Diego), Inc. Method and apparatus for filter tuning
US6717474B2 (en) 2002-01-28 2004-04-06 Integrated Programmable Communications, Inc. High-speed differential to single-ended converter
US7134115B2 (en) 2002-02-07 2006-11-07 Matsushita Electric Industrial Co., Ltd. Apparatus, method, and program for breakpoint setting
US6661288B2 (en) 2002-02-09 2003-12-09 Texas Instruments Incorporated Apparatus for effecting high speed switching of a communication signal
US6988192B2 (en) 2002-02-11 2006-01-17 Hewlett-Packard Development Company, L.P. Method and apparatus for compiling source code to configure hardware
JP2003249077A (en) 2002-02-21 2003-09-05 Elpida Memory Inc Semiconductor memory device and its control method
US7058921B1 (en) 2002-02-22 2006-06-06 Xilinx, Inc. Method and system for resource allocation in FPGA-based system-on-chip (SoC)
US6680632B1 (en) 2002-02-26 2004-01-20 Cypress Semiconductor Corp. Method/architecture for a low gain PLL with wide frequency range
US6686787B2 (en) 2002-02-28 2004-02-03 Kuok Ling High-speed fully balanced differential flip-flop with reset
US6597212B1 (en) 2002-03-12 2003-07-22 Neoaxiom Corporation Divide-by-N differential phase interpolator
US6771127B2 (en) 2002-03-26 2004-08-03 Broadcom Corporation Single-ended-to-differential converter with common-mode voltage control
US6590422B1 (en) 2002-03-27 2003-07-08 Analog Devices, Inc. Low voltage differential signaling (LVDS) drivers and systems
JP4024572B2 (en) 2002-03-28 2007-12-19 ユーディナデバイス株式会社 Device with interdigital capacitor
JP4014432B2 (en) 2002-03-28 2007-11-28 ユーディナデバイス株式会社 Interdigital capacitor and method for adjusting capacitance thereof
US7185321B1 (en) 2002-03-29 2007-02-27 Cypress Semiconductor Corporation Method and system for debugging through supervisory operating codes and self modifying codes
US7099818B1 (en) 2002-03-29 2006-08-29 Cypress Semiconductor Corporation System and method for automatically matching components in a debugging system
US7150002B1 (en) 2002-03-29 2006-12-12 Cypress Semiconductor Corp. Graphical user interface with logic unifying functions
EP1351389A1 (en) 2002-04-02 2003-10-08 Dialog Semiconductor GmbH Method and circuit for compensating mosfet capacitance variations in integrated circuits
US7466307B2 (en) 2002-04-11 2008-12-16 Synaptics Incorporated Closed-loop sensor on a solid-state object position detector
US6603348B1 (en) 2002-04-18 2003-08-05 International Business Machines Corporation Center tap level control for current mode differential driver
WO2003091914A1 (en) 2002-04-25 2003-11-06 Arc International Apparatus and method for managing integrated circuit designs
US6809275B1 (en) 2002-05-13 2004-10-26 Synaptics, Inc. Rotary and push type input device
US7073158B2 (en) 2002-05-17 2006-07-04 Pixel Velocity, Inc. Automated system for designing and developing field programmable gate arrays
JP4029138B2 (en) 2002-05-20 2008-01-09 富士通株式会社 Frequency synthesizer circuit
JP4025776B2 (en) 2002-05-22 2007-12-26 松下電器産業株式会社 Low-pass filter circuit, phase locked loop circuit and semiconductor integrated circuit for PLL
US7283151B2 (en) 2002-05-27 2007-10-16 Ricoh Company, Ltd. Pixel clock generation device causing state transition of pixel clock according to detected state transition and phase data indicating phase shift amount
US6949984B2 (en) 2002-06-06 2005-09-27 Texas Instruments Incorporated Voltage controlled oscillator having control current compensation
ATE309640T1 (en) 2002-06-07 2005-11-15 Cit Alcatel LVSD DRIVER IN BIPOLAR AND MOS TECHNOLOGY
US7024654B2 (en) 2002-06-11 2006-04-04 Anadigm, Inc. System and method for configuring analog elements in a configurable hardware device
JP4212309B2 (en) 2002-07-01 2009-01-21 株式会社ルネサステクノロジ Semiconductor integrated circuit
US6788116B1 (en) 2002-07-26 2004-09-07 National Semiconductor Corporation Low voltage differential swing (LVDS) signal driver circuit with low PVT sensitivity
US6600346B1 (en) 2002-07-30 2003-07-29 National Semiconductor Corporation Low voltage differential swing (LVDS) signal driver circuit with low PVT and load sensitivity
US6865504B2 (en) 2002-08-05 2005-03-08 Texas Instruments Incorporated Apparatus and method for a reconfigurable pod interface for use with an emulator unit
US6842710B1 (en) 2002-08-22 2005-01-11 Cypress Semiconductor Corporation Calibration of integrated circuit time constants
JP4496328B2 (en) 2002-09-10 2010-07-07 独立行政法人物質・材料研究機構 Hologram recording medium and hologram recording / reproducing apparatus
US6667642B1 (en) 2002-09-18 2003-12-23 Cypress Semicondutor Corporation Method and circuit for reducing the power up time of a phase lock loop
US7042301B2 (en) 2002-10-15 2006-05-09 Marvell International Ltd. Crystal oscillator emulator
US6900663B1 (en) 2002-11-04 2005-05-31 Cypress Semiconductor Corporation Low voltage differential signal driver circuit and method
US6781456B2 (en) 2002-11-12 2004-08-24 Fairchild Semiconductor Corporation Failsafe differential amplifier circuit
US6768352B1 (en) 2002-11-13 2004-07-27 Cypress Semiconductor Corp. Low voltage receiver circuit and method for shifting the differential input signals of the receiver depending on a common mode voltage of the input signals
US7024636B2 (en) 2002-11-20 2006-04-04 Lsi Logic Corporation Chip management system
US6911857B1 (en) 2002-11-26 2005-06-28 Cypress Semiconductor Corporation Current controlled delay circuit
KR100456021B1 (en) 2002-12-12 2004-11-08 삼성전자주식회사 apparatus for detecting a synchronizing signal
TW569539B (en) 2002-12-12 2004-01-01 Via Tech Inc Low voltage differential signal transmission device
US6836169B2 (en) 2002-12-20 2004-12-28 Cypress Semiconductor Corporation Single ended clock signal generator having a differential output
US6903613B1 (en) 2002-12-20 2005-06-07 Cypress Semiconductor Corporation Voltage controlled oscillator
US7132835B1 (en) 2003-02-07 2006-11-07 Pericom Semiconductor Corp. PLL with built-in filter-capacitor leakage-tester with current pump and comparator
KR100541053B1 (en) 2003-02-11 2006-01-10 삼성전자주식회사 Multi-process a/d converter in which output synchronization among the processes is corrected
WO2004075414A1 (en) 2003-02-14 2004-09-02 Mcdonald James J Iii Circuitry to reduce pll lock acquisition time
US6893724B2 (en) 2003-03-11 2005-05-17 Grand Tek Advance Material Science Co., Ltd. Silicone-polyester-polysilicate hybrid compositions for thermal resistance coating
US6819142B2 (en) 2003-03-13 2004-11-16 Infineon Technologies Ag Circuit for transforming a differential mode signal into a single ended signal with reduced standby current consumption
US6769622B1 (en) 2003-03-14 2004-08-03 Stmicroelectronics, Inc. System and method for simulating universal serial bus smart card device connected to USB host
US6969978B2 (en) 2003-03-17 2005-11-29 Rf Micro Devices, Inc. DC-DC converter with reduced electromagnetic interference
US7023215B2 (en) 2003-04-22 2006-04-04 Touchsensor Technologies Llc Field effect sensor two wire interconnect method and apparatus
US7026861B2 (en) 2003-04-22 2006-04-11 Touchsensor Technologies Llc Electronic door latch system with water rejection filtering
US7017409B2 (en) 2003-04-22 2006-03-28 Touchsensor Technologies, Llc Proximity sensor for level sensing
US6937075B2 (en) 2003-05-29 2005-08-30 Intel Corporation Method and apparatus for reducing lock time in dual charge-pump phase-locked loops
US7088166B1 (en) 2003-06-19 2006-08-08 Cypress Semiconductor Corporation LVDS input circuit with extended common mode range
FR2856475B1 (en) 2003-06-20 2005-10-14 Commissariat Energie Atomique CAPACITIVE MEASUREMENT SENSOR AND MEASUREMENT METHOD THEREOF
US6847203B1 (en) 2003-07-02 2005-01-25 International Business Machines Corporation Applying parametric test patterns for high pin count ASICs on low pin count testers
GB0317370D0 (en) 2003-07-24 2003-08-27 Synaptics Uk Ltd Magnetic calibration array
US6809566B1 (en) 2003-07-30 2004-10-26 National Semiconductor Corporation Low power differential-to-single-ended converter with good duty cycle performance
DE60314415T2 (en) 2003-08-29 2008-02-21 Texas Instruments Inc., Dallas Phase locked loop with a charge pump and interference suppression improvement of the power supply
US6924668B2 (en) 2003-09-25 2005-08-02 Infineon Technologies Ag Differential to single-ended logic converter
EP1678464A2 (en) 2003-10-07 2006-07-12 Quantum Applied Science and Research, Inc. Sensor system for measurement of one or more vector components of an electric field
US6973400B2 (en) 2003-10-10 2005-12-06 Itron, Inc. System and method for oscillator self-calibration using AC line frequency
US6873203B1 (en) 2003-10-20 2005-03-29 Tyco Electronics Corporation Integrated device providing current-regulated charge pump driver with capacitor-proportional current
US6980060B2 (en) 2003-10-23 2005-12-27 International Business Machines Corporation Adaptive method and apparatus to control loop bandwidth of a phase lock loop
US7015735B2 (en) 2003-12-19 2006-03-21 Renesas Technology Corp. Semiconductor integrated circuit having built-in PLL circuit
US7138841B1 (en) 2003-12-23 2006-11-21 Cypress Semiconductor Corp. Programmable phase shift and duty cycle correction circuit and method
DE60311851D1 (en) 2003-12-29 2007-03-29 St Microelectronics Srl Apparatus and method for oscillator frequency calibration and phase locked loop using this.
US7295049B1 (en) 2004-03-25 2007-11-13 Cypress Semiconductor Corporation Method and circuit for rapid alignment of signals
US7256588B2 (en) 2004-04-16 2007-08-14 General Electric Company Capacitive sensor and method for non-contacting gap and dielectric medium measurement
US7861177B2 (en) * 2004-04-21 2010-12-28 Sap Aktiengesellschaft Software configuration program for software applications
JP4437699B2 (en) 2004-05-14 2010-03-24 富士通マイクロエレクトロニクス株式会社 Sensor
US7250825B2 (en) 2004-06-04 2007-07-31 Silicon Labs Cp Inc. Method and apparatus for calibration of a low frequency oscillator in a processor based system
US7265633B1 (en) 2004-06-14 2007-09-04 Cypress Semiconductor Corporation Open loop bandwidth test architecture and method for phase locked loop (PLL)
TWI233265B (en) 2004-06-18 2005-05-21 Via Tech Inc Phase locked loop circuit
US7138868B2 (en) 2004-08-11 2006-11-21 Texas Instruments Incorporated Method and circuit for trimming a current source in a package
ATE553429T1 (en) 2004-08-16 2012-04-15 Apple Inc METHOD FOR INCREASING THE SPATIAL RESOLUTION OF TOUCH-SENSITIVE DEVICES
US7119602B2 (en) 2004-09-30 2006-10-10 Koninklijke Philips Electronics N.V. Low-skew single-ended to differential converter
US7323879B2 (en) 2004-09-30 2008-01-29 United Microelectronics Corp. Method and circuit for measuring capacitance and capacitance mismatch
TWI273367B (en) 2004-10-01 2007-02-11 Fortune Semiconductor Corp Method and device for calibrating monitor clocks
US7282905B2 (en) 2004-12-10 2007-10-16 Texas Instruments Incorporated System and method for IDDQ measurement in system on a chip (SOC) design
US7288977B2 (en) 2005-01-21 2007-10-30 Freescale Semiconductor, Inc. High resolution pulse width modulator
US7154294B2 (en) 2005-02-23 2006-12-26 Via Technologies Inc. Comparators capable of output offset calibration
US7421251B2 (en) 2005-03-31 2008-09-02 Silicon Laboratories Inc. Precise frequency generation for low duty cycle transceivers using a single crystal oscillator
US7400183B1 (en) 2005-05-05 2008-07-15 Cypress Semiconductor Corporation Voltage controlled oscillator delay cell and method
US7542533B2 (en) 2005-07-07 2009-06-02 Agere Systems Inc. Apparatus and method for calibrating the frequency of a clock and data recovery circuit
US7307485B1 (en) 2005-11-14 2007-12-11 Cypress Semiconductor Corporation Capacitance sensor using relaxation oscillators
US20070139074A1 (en) 2005-12-19 2007-06-21 M2000 Configurable circuits with microcontrollers
US7312616B2 (en) 2006-01-20 2007-12-25 Cypress Semiconductor Corporation Successive approximate capacitance measurement circuit
US8407658B2 (en) 2007-02-01 2013-03-26 International Business Machines Corporation Methods, systems, and computer program products for using direct memory access to initialize a programmable logic device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996799B1 (en) * 2000-08-08 2006-02-07 Mobilygen Corporation Automatic code generation for integrated circuit design

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7904878B2 (en) 2006-12-26 2011-03-08 Vayavya Technologies Private Limited Simplifying generation of device drivers for different user systems to facilitate communication with a hardware device

Also Published As

Publication number Publication date
US20060037007A1 (en) 2006-02-16
WO2006020948A8 (en) 2007-05-03
US8069436B2 (en) 2011-11-29

Similar Documents

Publication Publication Date Title
US8069436B2 (en) Providing hardware independence to automate code generation of processing device firmware
US8661401B1 (en) Interactive graphical pin assignment
US8539398B2 (en) Model for a hardware device-independent method of defining embedded firmware for programmable systems
Mednieks Programming android
US7844945B2 (en) Software and firmware adaptation for unanticipated/changing hardware environments
US20070168935A1 (en) Multivariable transfer functions
US20160342397A1 (en) Adaptive selection of programming language versions for compilation of software programs
US8683358B2 (en) Application element group operations allowing duplication while preserving interdependent logic
JP2008509483A5 (en)
TW521210B (en) Modular computer system and related method
US10466977B2 (en) Data driven embedded application building and configuration
US8555217B1 (en) Integrated circuit design software with cross probing between tool graphical user interfaces (GUIs)
US8813021B1 (en) Global resource conflict management for an embedded application design
JP2009059351A (en) System, method, and computer program product for recording operation performed to computer source code
US8387019B1 (en) Graphical user assignable register map
JP2003535415A (en) A software development system that presents a logical view of project components before compilation, facilitates selection, and indicates missing links
US7503019B2 (en) Point and click expression builder
Troelsen Pro C# With. Net 3.0
Kousen Gradle Recipes for Android: Master the New Build System for Android
Mamone Practical Mono
US20230259474A1 (en) Method, system, and device for software and hardware component configuration and content generation
EP1059593A2 (en) Deterministic level model and method
CN116594606A (en) Method, system and apparatus for software and hardware component configuration and content generation
Demeter Graphical User Interface development using Embedded Wizard and Yocto Project for an IVD device
Pang et al. Hello World!

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase