WO2006022430A1 - Fiber structure containing phospholipid - Google Patents

Fiber structure containing phospholipid Download PDF

Info

Publication number
WO2006022430A1
WO2006022430A1 PCT/JP2005/015958 JP2005015958W WO2006022430A1 WO 2006022430 A1 WO2006022430 A1 WO 2006022430A1 JP 2005015958 W JP2005015958 W JP 2005015958W WO 2006022430 A1 WO2006022430 A1 WO 2006022430A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber structure
weight
solution
parts
phospholipid
Prior art date
Application number
PCT/JP2005/015958
Other languages
French (fr)
Japanese (ja)
Inventor
Yukako Fukuhira
Eiichi Kitazono
Hiroaki Kaneko
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to JP2006532769A priority Critical patent/JP4354996B2/en
Publication of WO2006022430A1 publication Critical patent/WO2006022430A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning

Definitions

  • the present invention relates to a cocoon structure containing a phospholipid. More preferably, the present invention relates to a fiber structure having a hole on the fiber surface and serving as a base material suitable for cell culture.
  • a porous material is used as a base material for culturing cells.
  • porous body a foam and a fiber structure obtained by freeze-drying are known. These porous bodies are required to have affinity with cells, biodegradability and safety.
  • Polylactic acid is available at a relatively low cost among these materials that are known for biodegradability and safety.
  • polylactic acid mainly composed of L-lactic acid component has been produced in large quantities recently.
  • an electrostatic spinning method As a method for producing a fiber structure having a small fiber diameter, an electrostatic spinning method is known (see, for example, JP-A-63-145465 and JP-A-2002-249966).
  • the electrospinning method includes a step of introducing a liquid, for example, a solution containing a fiber-forming substance into an electric field, thereby causing the liquid to flow toward an electrode to form a fibrous substance.
  • Normally, hard-to-form substances are cured while being squeezed out of solution. Curing is performed, for example, by cooling (for example, when the spinning liquid is a solid at room temperature), chemical curing (for example, treatment with curing steam), or evaporation of the solvent.
  • the resulting fibrous material is collected on an appropriately placed receptor and can be peeled off if necessary.
  • the electrospinning method can directly obtain a nonwoven fabric-like material, it is not necessary to form a structure once the fibers are produced once, and the operation is simple.
  • a structure obtained by an electrospinning method as a substrate for culturing cells.
  • a fiber structure made of polylactic acid is formed by electrostatic spinning, and smooth muscle cells are cultured on the fiber structure.
  • An object of the present invention is to provide a substrate suitable for cell culture in the field of regenerative medicine.
  • the present invention contains 0.01 to: 100 parts by weight of phospholipid with respect to 100 parts by weight of aliphatic polyester, and the average fiber diameter is 0.05 to 50 ⁇ m. It relates to a structure characterized by this. More preferably, the present invention relates to a fiber structure in which the average porosity of the fiber surface of the H! Structure is 3% to 90%.
  • FIG. 1 shows an example of an apparatus for use in an electrostatic spinning method in which a spinning solution is discharged into an electrostatic field in the production method of the present invention.
  • FIG. 2 shows an example of an apparatus used in the electrospinning method in which fine droplets of a spinning solution are introduced into an electrostatic field in the production method of the present invention.
  • FIG. 9 shows Alamarblue measurement results of Example 6 and Comparative Example 2.
  • the present invention is a fiber structure containing 0.001 to 100 parts by weight of phospholipid with respect to 100 parts by weight of aliphatic polyester.
  • the content of phospholipid with respect to 100 parts by weight of aliphatic polyester is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight. If the phospholipid content is 100 parts by weight or more, the fiber may lack stability.
  • the average diameter of the fiber structure used in the present invention is preferably 0.05 to 50 ⁇ .
  • An average fiber diameter of less than 0.05 zm is not preferable because degradation is too rapid during cell culture or transplanted in vivo after cell culture. Further, if the average diameter is larger than 50 ⁇ m, it is not preferable because a sufficient surface area for cell culture cannot be obtained.
  • the average fiber diameter is 0.:! ⁇ 20 ⁇ is more preferable.
  • the average porosity of the structure used in the present invention is preferably 3 to 90%, more preferably 11 to 90%, and still more preferably 30 to 90%.
  • the average porosity ratio here means the ratio of the pore area to the entire mi surface area. Scanning electron micrographs of the fiber structure using a scanning electron micrograph (image processing software (next New Qube)) are used. This is the result of binarization processing.
  • the average porosity is 3 to 11%, a sufficient cell adhesion effect may not be obtained. Therefore, by providing unevenness on the surface, a sufficient cell adhesion effect can be preferably provided. Even in the case where the average porosity is 11% or more, it is preferable that the surface further has irregularities because a further excellent cell adhesion effect can be obtained.
  • the average porosity is greater than 30%, a better cell adhesion effect can be obtained. Further, if the average porosity is more than 90%, the strength as a film may not be maintained.
  • Examples of the aliphatic polyester used in the present invention include polylactic acid, polydaricholic acid, polystrength prolacton, polybutylene succinate, polyethylene succinate, and copolymers thereof.
  • polylactic acid, polyglycol monooleic acid, lactic acid monoglycolic acid copolymer, polycaplatatotone, and lactic acid monostrength prolactone copolymer are preferable. Force prolacton is preferred.
  • the weight average molecular weight of the aliphatic polyester is preferably 20,000 to 100,000. More preferably, the weight average molecular weight is 50,000 to 500,000.
  • the phospholipid used in the present invention can be used regardless of its origin, whether it is extracted from animal tissue or artificially synthesized.
  • a phospholipid selected from the group consisting of phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglyceride and derivatives thereof.
  • Preferred is phosphatidylethanolamine or phosphatidylcholine. More preferred is L-one phosphatidylethanolamine dioleo oil or L-one phosphatidinorecorin dioleoyl.
  • the fiber structure used in the present invention refers to a three-dimensional structure in which one or more kinds of ⁇ are laminated and formed by weaving, knitting, or other methods. It shall also include multiple collected yarns. Specific examples of the form of the fiber structure preferably include a nonwoven fabric, a woven fabric, a knitted fabric, a tube, a mesh, and the like. A more preferable form is a nonwoven fabric. Also included are composites of fibers containing phospholipids and fibers not containing phospholipids.
  • the average apparent density of the fiber structure is preferably 10 to 3500 kg / m 3 .
  • the average apparent density means the density calculated from the area, average thickness, and mass of the structure. If the average apparent density is greater than 3500 kg Zm 3 , the solution containing nutrients may not sufficiently penetrate into the fiber structure during cell culture, and the cells may be cultured only on the fiber structure surface. If the average apparent density is less than 10 kg Zm 3 , the mechanical strength required during cell culture may not be maintained.
  • the preferred average apparent density is 1 0 to 2 5 0 kg Roh m 3.
  • Examples of methods for producing the structure include an electrostatic spinning method, a spunbond method, a melt blow method, and a flash spinning method.
  • the electrostatic spinning method is preferable from the viewpoint of operability and simplicity.
  • the method for producing by the electrospinning method will be described in detail below.
  • a solution in which aliphatic polyester is dissolved in a volatile solvent is discharged into an electrostatic field formed between electrodes, and the solution is spun toward the electrodes to form a »form
  • a fiber structure can be obtained by accumulating substances on the collection substrate.
  • the fibrous substance indicates not only a state in which the solvent of the solution has been completely distilled off to form a structure, but also a state in which the solvent of the solution is still contained.
  • any metal, inorganic, or organic material only needs to exhibit conductivity.
  • a conductive metal, inorganic, or organic thin film may be provided over the insulator.
  • the electrostatic field in the present invention is formed between a pair or a plurality of electrodes, and even if a high voltage is applied to the electrodes that are misaligned. This includes, for example, the use of two high voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to earth, or a number exceeding three. This includes the use of other electrodes.
  • the first step is to produce a solution consisting of aliphatic polyester, phospholipid, and volatile solvent.
  • the concentration of the aliphatic polyester in the solution in the production method of the present invention is preferably 1 to 30% by weight. If the concentration of the aliphatic polyester is less than 1% by weight, it is not preferable because the concentration is too low, making it difficult to form a structure. On the other hand, if it exceeds 30% by weight, the viscosity of the solution increases. This is not preferable because a high voltage needs to be applied between the electrodes.
  • the concentration of the aliphatic polyester is more preferably 2 to 25% by weight.
  • the volatile solvent of the present invention is not particularly limited as long as the aliphatic polyester can be dissolved.
  • volatile solvents include non-water soluble halogen-containing hydrocarbons such as methylene chloride, black mouth form, and carbon tetrachloride, and acetone, methanol, ethanol, propanol, which can dissolve water in any proportion. Isopropanol, Toluene, Tetrahydrofuran, 1, 1, 1, 3, 3, 3_Hexafluoroisopropanol, Water, 1,4-Dioxane, Cyclohexane, Cyclohexanone, N, N-Dimethyl For example, formamide and acetonitrile.
  • methylene chloride, chloroform, acetone, and tetrahydrofuran which are particularly highly volatile, are particularly preferred for promoting the surface porosity.
  • solvents may be used alone, or a plurality of solvents may be combined. Further, other solvents may be used in combination as long as the object of the present invention is not impaired.
  • any method can be used to discharge the solution into the electrostatic field.
  • any method can be used to discharge the solution into the electrostatic field.
  • an appropriate device can be used, for example, an injection needle-like solution ejection nozzle in which a voltage is applied by an appropriate means, for example, a high voltage generator 6 to the tip of the cylindrical solution holding tank 3 of the syringe. Place 1 and guide the solution to its tip.
  • the tip of the ejection nozzle 1 is placed at an appropriate distance from the grounded fibrous material collection electrode 5, and when the solution 2 exits the tip of the ejection nozzle 1, this tip and the H t-like substance collection electrode 5 A fibrous material is formed between them.
  • the distance between the electrodes depends on the charge amount, nozzle dimensions, spinning fluid flow rate, spinning fluid concentration, etc., but a distance of 5 to 20 cm was appropriate when it was about 10 kV.
  • the applied electrostatic potential is generally 3 to 100 kV, preferably 5 to 50 kV, and more preferably 5 to 30 kV.
  • the desired potential can be generated by any appropriate method.
  • the electrode also serves as a collection substrate, but by installing an object that can be a collection substrate between the electrodes, a collection substrate is provided separately from the electrode, and the structure can be collected there. I can do it.
  • a collection substrate is provided separately from the electrode, and the structure can be collected there. I can do it.
  • continuous production becomes possible.
  • the relative humidity between the nozzle and the collection substrate is maintained at 20% or more, it is preferable because the fiber having the surface structure can be easily obtained.
  • a more preferable relative humidity is 25 to 95%.
  • the step of obtaining the fiber laminate accumulated on the collection substrate will be described.
  • the solvent evaporates depending on the conditions to form a soot-like substance.
  • the solvent completely evaporates until it is collected on the collection substrate, but if the solvent evaporation is insufficient, it may be spun under reduced pressure.
  • the temperature at which the spinning is performed depends on the evaporation behavior of the solvent and the viscosity of the spinning solution. Usually, it is 0 to 50 ° C.
  • the fiber structure of the present invention may be composed of the fiber structure alone, but may be combined with other members. Further, the cell culture substrate of the present invention may be combined with proteins such as cell growth factor and cell growth factor, extracellular matrix such as collagen, etc., as long as the characteristics are not impaired.
  • Polylactic acid (Shimadzu Corporation: trade name “La cty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylethanolamine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight Special grade) 899. Dissolved in 5 parts by weight at room temperature (29 ° C) to prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes. The inner diameter of the ejection nozzle 1 was 0.8 mm, ® was 12 kV, the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 20 cm, and the relative humidity was 39%.
  • Polylactic acid (Shimadzu Corporation: trade name “La cty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylcholine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight of methylene chloride (Wako Pure Chemical Industries, special grade) 899 Dissolved in 5 parts by weight at room temperature (29 ° C) to prepare a solution.
  • the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes.
  • the inner diameter of the ejection nozzle 1 was 0.8 mm
  • the voltage was 12 kV
  • the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 20 cm
  • the relative humidity was 39%.
  • Polylactic acid (Shimadzu Corporation: trade name “L acty 9031”, weight average molecular weight 1 68, 000) 100 parts by weight and phosphatidylethanolamine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight Special grade) 449.75 parts by weight, N, N-dimethylformamide 449.75 parts by weight was dissolved at room temperature (29 ° C) to prepare a solution.
  • the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes.
  • the inner diameter of the ejection nozzle 1 was 0.8 mm
  • the voltage was 12 kV
  • the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 10 cm
  • the relative humidity was 39%.
  • the obtained fiber structure was measured with a scanning electron microscope (Hitachi S-240 0).
  • the average fiber diameter was 0.7 ⁇ 111, the average porosity was 3%, and the average pore diameter was 0.032 1 ⁇
  • the apparent density was 210 kg / m 3 .
  • Figure 6 shows a scanning electron micrograph.
  • Example 2 The fiber structure obtained in Example 1 was cut into a circle with a diameter of 12 mm, immersed in a 70% ethanol aqueous solution (Wako Pure Chemical Industries) for air sterilization, air-dried, and then 0.25 in a cell culture vessel.
  • PAE pig aorta-derived vascular endothelial cells
  • Cell proliferation ability was measured on Alamarblue on day 1 and day 4. In the measurement, fluorescence 590 nm that appeared using excitation light with a wavelength of 530 nm was detected. The results are shown in Fig. 9, Comparative Example 2.
  • Example 6 The same operation as in Example 6 was performed except that the fiber structure of Comparative Example 1 was used. The results are shown in Fig. 9.
  • Example 6 As a result of performing a significant difference test using two specimens, one day after culturing, Example 6 was statistically significant at a risk rate of 0.0 0 1% between the two specimens of Comparative Example 2. As a result, it was found that adhesion and proliferation were good. After 4 days of culturing, the results of Example 6 were good in adhesion and proliferation with a statistically significant difference between the two specimens of Comparative Example 2 and that of Comparative Example 2 with a risk factor of 0.001%.

Abstract

Disclosed is a fiber structure characterized by containing 0.01-100 parts by weight of a phospholipid per 100 parts by weight of an aliphatic polyester and having an average fiber diameter of 0.05-50 μm. Preferably, the fiber structure has pores in the fiber surface and is suitably used as a base for cell cultivation.

Description

リン脂質を含有する繊維構造体  Fiber structure containing phospholipids
技術分野 Technical field
本発明はリン脂質を含有する ΙΙϋ構造体に関する。 さらに好ましくは繊維表面 に孔を有し細胞培養に適した基材となる繊維構造体に関する。 明  The present invention relates to a cocoon structure containing a phospholipid. More preferably, the present invention relates to a fiber structure having a hole on the fiber surface and serving as a base material suitable for cell culture. Light
背景技術 Background art
再生医療分野においては、 細胞を培養する際に基材として多孔体が用いられる 書  In the field of regenerative medicine, a porous material is used as a base material for culturing cells.
ことがある。 多孔体としては凍結乾燥による発泡体や繊維構造体が知られている。 これら多孔体は細胞との親和性や生体内分解性、 安全性などが必要とされる。 ポリ乳酸は、 これら生体内分解性や安全性が知られている材料の中でも比較的 安価に入手可能である。 特に、 L—乳酸成分を主とするポリ乳酸は、 最近大量に 製造されている。 Sometimes. As the porous body, a foam and a fiber structure obtained by freeze-drying are known. These porous bodies are required to have affinity with cells, biodegradability and safety. Polylactic acid is available at a relatively low cost among these materials that are known for biodegradability and safety. In particular, polylactic acid mainly composed of L-lactic acid component has been produced in large quantities recently.
例えば、 生体内分解性、 安全性が知られているポリ乳酸の多孔体を細胞培養基 材に用いることが検討されている (例えば大野典也、 相澤益男監訳代表 「再生医 学」 株式会社ェヌ 'ティ一 'エス、 2002年 1月 31日、 262頁参照。)。 しかしながら、 これら方法は、 細胞が接着できる面積は不十分であり、 より表 面積の大きい多孔体が望まれており、 その一つとして Ht径の小さい «構造体 が検討されてきた。  For example, the use of a polylactic acid porous material, which is known for biodegradability and safety, as a cell culture substrate (for example, Noya Ohno and Ms. Aizawa, “Regenerative Medicine” (See “Tiichi” S, January 31, 2002, page 262.) However, in these methods, the area to which cells can adhere is insufficient, and a porous body having a larger surface area is desired. As one of them, a structure having a small Ht diameter has been studied.
繊維径の小さい繊維構造体を製造する方法として、 静電紡糸法が知られている (例えば、 特開昭 63— 145465号公報および特開 2002— 249966 号公報参照)。 静電紡糸法は、 液体、 例えば繊維形成物質を含有する溶液等を電 場内に導入し、 これにより液体を電極に向かって曳カせ、 繊維状物質を形成させ る工程を包含する。 普通、 難形成物質は溶液から曳き出される間に硬化させる。 硬化は、 例えば冷却 (例えば、 紡糸液体が室温で固体である場合)、 化学的硬化 (例えば、 硬化用蒸気による処理)、 または溶媒の蒸発などにより行われる。 ま た、 得られる繊維状物質は、 適宜に配置した受容体上に捕集され、 必要ならばそ こから剥離することも出来る。 また、 静電紡糸法は不織布状の «状物質を直接 得ることが出来るため、 一旦繊維を製糸した後、 さらに 構造体を形成する必 要がなく、 操作が簡便である。 As a method for producing a fiber structure having a small fiber diameter, an electrostatic spinning method is known (see, for example, JP-A-63-145465 and JP-A-2002-249966). The electrospinning method includes a step of introducing a liquid, for example, a solution containing a fiber-forming substance into an electric field, thereby causing the liquid to flow toward an electrode to form a fibrous substance. Normally, hard-to-form substances are cured while being squeezed out of solution. Curing is performed, for example, by cooling (for example, when the spinning liquid is a solid at room temperature), chemical curing (for example, treatment with curing steam), or evaporation of the solvent. Ma The resulting fibrous material is collected on an appropriately placed receptor and can be peeled off if necessary. In addition, since the electrospinning method can directly obtain a nonwoven fabric-like material, it is not necessary to form a structure once the fibers are produced once, and the operation is simple.
静電紡糸法によって得られる 構造体を、 細胞を培養する基材に用いること も知られている。 例えばポリ乳酸よりなる繊維構造体を静電紡糸法により形成し、 この上で平滑筋細胞を培養することにより血管の再生が検討されている (例えば  It is also known to use a structure obtained by an electrospinning method as a substrate for culturing cells. For example, a fiber structure made of polylactic acid is formed by electrostatic spinning, and smooth muscle cells are cultured on the fiber structure.
Joel D. Stitzel, Kristin J. Pawlowski, Gary E. Wnek, David G. Simpson, Gary L. Bowl in 著、 Journal of Biomaterials Appl ications 2 0 0 1 , 1 6 , 2 2 - 3 3参照)。 Joel D. Stitzel, Kristin J. Pawlowski, Gary E. Wnek, David G. Simpson, Gary L. Bowl in, Journal of Biomaterials Applications 2 0 0 1, 1 6, 2 2-3 3).
しかしながら、 これまでの報告ではまだ要求を満たすほどの細胞接着効果は得 られていない。  However, previous reports have not yet obtained a cell adhesion effect that satisfies the requirements.
発明の開示 Disclosure of the invention
本発明の課題は、 再生医療分野において細胞培養に適した基材を提供すること にある。  An object of the present invention is to provide a substrate suitable for cell culture in the field of regenerative medicine.
すなわち、 本発明は、 脂肪族ポリエステル 1 0 0重量部に対して、 リン脂質を 0 . 0 1〜: I 0 0重量部含有し、 平均繊維径が 0 . 0 5 〜 5 0 μ mであること を特徴とした 構造体に関するものである。 本発明はさらに好ましくは H !構 造体の繊維表面の平均多孔化率が 3 %〜 9 0 %である繊維構造体に関するもので ある。  That is, the present invention contains 0.01 to: 100 parts by weight of phospholipid with respect to 100 parts by weight of aliphatic polyester, and the average fiber diameter is 0.05 to 50 μm. It relates to a structure characterized by this. More preferably, the present invention relates to a fiber structure in which the average porosity of the fiber surface of the H! Structure is 3% to 90%.
発明の効果 The invention's effect
本発明のリン脂質を含有する繊維構造体により、 細胞接着性が向上した繊維構 造体を提供することができ、 再生医療分野においてとくに有効である。 図面の簡単な説明 図 1 本発明の製造方法のなかで、 紡糸液を静電場中に吐出する静電紡糸法 で用レ、る装置の一例である。 The fiber structure containing the phospholipid of the present invention can provide a fiber structure with improved cell adhesion, and is particularly effective in the field of regenerative medicine. Brief Description of Drawings FIG. 1 shows an example of an apparatus for use in an electrostatic spinning method in which a spinning solution is discharged into an electrostatic field in the production method of the present invention.
図 2 本発明の製造方法のなかで、 紡糸液の微細滴を静電場中に導入する静 電紡糸法で用いる装置の一例である。  FIG. 2 shows an example of an apparatus used in the electrospinning method in which fine droplets of a spinning solution are introduced into an electrostatic field in the production method of the present invention.
図 3 実施例 1で得られた繊維構造体の走査型電子顕微鏡写真  Fig. 3 Scanning electron micrograph of the fiber structure obtained in Example 1
図 4 実施例 2で得られた繊維構造体の走査型電子顕微鏡写真  Fig. 4 Scanning electron micrograph of the fiber structure obtained in Example 2
図 5 実施例 3で得られた繊維構造体の走査型電子顕微鏡写真  Fig. 5 Scanning electron micrograph of the fiber structure obtained in Example 3
図 6 実施例 4で得られた繊維構造体の走査型電子顕微鏡写真  Fig. 6 Scanning electron micrograph of the fiber structure obtained in Example 4
図 7 実施例 5で得られた 構造体の走査型電子顕微鏡写真  Figure 7 Scanning electron micrograph of the structure obtained in Example 5
図 8 比較例 1で得られた繊維構造体の走査型電子顕微鏡写真  Fig. 8 Scanning electron micrograph of the fiber structure obtained in Comparative Example 1
図 9 実施例 6と比較例 2の Alamarblueの測定の結果である。  FIG. 9 shows Alamarblue measurement results of Example 6 and Comparative Example 2.
符号の説明 Explanation of symbols
1. ノズル  1. Nozzle
2. 紡糸液  2. Spinning fluid
3. 紡糸液保持槽  3. Spinning fluid holding tank
4. 電極  4. Electrode
5. Ht状物質捕集電極  5. Ht-like material collection electrode
6. 高 発生器  6. High generator
7. ノズル  7. Nozzle
8. 紡糸液  8. Spinning fluid
9. 紡糸液保持槽  9. Spinning fluid holding tank
1 0. 電極  1 0. Electrode
1 1. 纖锥状物質捕集電極  1 1. Sacrificial material collection electrode
1 2. 高 発生器 発明の好ましい実施形態 以下、 本発明について詳述する。 なお、 これらの実施例等および説明は本発明 を例示するものであり、 本発明の範囲を制限するものではない。 本発明の趣旨に 合致する限り他の実施形態も本発明の範疇に属し得ることは言うまでもない。 本発明は、 脂肪族ポリエステル 1 00重量部に対して、 リン脂質を 0. 0 1〜 1 00重量部含有した繊維構造体である。 脂肪族ポリエステル 1 00重量部に対 してリン脂質の含有量は、 好ましくは 0. 1〜20重量部、 さらに好ましくは 0. 1〜 1 0重量部である。 リン脂質の含有量が 1 0 0重量部以上であると、 繊維の 安定性に欠ける場合がある。 1 2. High generator Preferred embodiment of the invention Hereinafter, the present invention will be described in detail. In addition, these Examples etc. and description illustrate this invention, and do not restrict | limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they meet the spirit of the present invention. The present invention is a fiber structure containing 0.001 to 100 parts by weight of phospholipid with respect to 100 parts by weight of aliphatic polyester. The content of phospholipid with respect to 100 parts by weight of aliphatic polyester is preferably 0.1 to 20 parts by weight, more preferably 0.1 to 10 parts by weight. If the phospholipid content is 100 parts by weight or more, the fiber may lack stability.
本発明に用いる繊維構造体の平均^ I径は 0. 0 5〜5 0 μπιであることが好 ましい。 平均繊維径が 0. 0 5 zmより小さいと、 細胞培養時や細胞培養後生体 内に移植した際の分解が速すぎるため好ましくない。 また、 平均^ t径が 5 0 μ mより大きいと、 細胞培養に十分な表面積を得ることができず、 好ましくない。 平均繊維径は 0. :!〜 2 0 μπιがより好ましレ、。  The average diameter of the fiber structure used in the present invention is preferably 0.05 to 50 μπι. An average fiber diameter of less than 0.05 zm is not preferable because degradation is too rapid during cell culture or transplanted in vivo after cell culture. Further, if the average diameter is larger than 50 μm, it is not preferable because a sufficient surface area for cell culture cannot be obtained. The average fiber diameter is 0.:!~20 μπι is more preferable.
本発明に用いる «構造体の平均多孔化率は 3〜 90 %が好ましく、 より好ま しくは 1 1〜90%であり、 さらに好ましくは 3 0〜 9 0%である。  The average porosity of the structure used in the present invention is preferably 3 to 90%, more preferably 11 to 90%, and still more preferably 30 to 90%.
ここでいう平均多孔ィヒ率とは、 mi表面全体の面積に対する細孔面積の割合を 意味し、 繊維構造体の 2万倍の走査型電子顕微鏡写真を画像処理ソフト (next New Qube) を用いて 2値化処理を行い、 求めたものをいう。  The average porosity ratio here means the ratio of the pore area to the entire mi surface area. Scanning electron micrographs of the fiber structure using a scanning electron micrograph (image processing software (next New Qube)) are used. This is the result of binarization processing.
平均多孔化率が 3〜1 1 %の場合は、 十分な細胞接着効果が得られない場合が あるので、 さらに表面に凹凸を持たせることで、 好ましく十分な細胞接着効果を 提供できる。 平均多孔化率が 1 1 %以上の場合も、 さらに表面に凹凸を有すると さらに優れた細胞接着効果が得られ好ましい。  When the average porosity is 3 to 11%, a sufficient cell adhesion effect may not be obtained. Therefore, by providing unevenness on the surface, a sufficient cell adhesion effect can be preferably provided. Even in the case where the average porosity is 11% or more, it is preferable that the surface further has irregularities because a further excellent cell adhesion effect can be obtained.
平均多孔化率が 3 0%より大きいと、 より優れた細胞接着効果が得られる。 また平均多孔化率が 9 0%より大きいと、 «としての強度を保つことができな いことがある。  When the average porosity is greater than 30%, a better cell adhesion effect can be obtained. Further, if the average porosity is more than 90%, the strength as a film may not be maintained.
繊維構造体表面の凹み部の平均孔径 (直径) は 0. 00 1〜: 1 0 mである ことが好ましい。 より好ましくは、 0. 0 0 5〜5 111、 より好ましくは 0. 0 l〜l /i mである。 凹み部の平均孔径は走査型電子顕微鏡写真を撮影し、 その写 真から n = 2 0にて、 凹み部の直径を ½J定した平均値を算出することにより求め ることができる。 The average pore diameter (diameter) of the dents on the surface of the fiber structure is preferably 0.001 to: 10 m. More preferably, it is 0.0 5 to 5 111, and more preferably 0.0 l to l / im. Scanning electron micrographs were taken for the average pore size of the dents, and the photo It can be determined by calculating an average value where the diameter of the dent is ½ J at true n = 20.
本発明に用いる脂肪族ポリエステルとしては、 ポリ乳酸、 ポリダリコール酸、 ポリ力プロラク トン、 ポリブチレンサクシネート、 ポリエチレンサクシネート、 およびこれらの共重合体などが挙げられる。 これらのうち、 脂肪族ポリステルと しては、 ポリ乳酸、 ポリグリコ一ノレ酸、 乳酸一グリコ一ル酸共重合体、 ポリカプ 口ラタトン、 乳酸一力プロラクトン共重合体が好ましく、 特にポリ乳酸、 ポリ力 プロラク トンが好ましい。  Examples of the aliphatic polyester used in the present invention include polylactic acid, polydaricholic acid, polystrength prolacton, polybutylene succinate, polyethylene succinate, and copolymers thereof. Among these, as the aliphatic polyester, polylactic acid, polyglycol monooleic acid, lactic acid monoglycolic acid copolymer, polycaplatatotone, and lactic acid monostrength prolactone copolymer are preferable. Force prolacton is preferred.
脂肪族ポリエステルの重量平均分子量は 2万〜 1 0 0万であることが好ましレ、。 より好ましくは重量平均分子量は 5万〜 5 0万である。  The weight average molecular weight of the aliphatic polyester is preferably 20,000 to 100,000. More preferably, the weight average molecular weight is 50,000 to 500,000.
本発明に用いるリン脂質は、 動物組織から抽出したものでも、 また人工的に合 成して製造したものでもその起源を問うことなく使用できる。 リン脂質としては ホスファチジルエタノールァミン、 ホスファチジルコリン、 ホスファチジルセリ ン、 ホスファチジルグリセ口ールぉよびそれらの誘導体からなる群から選択され てなるものを利用することが望ましい。 好ましくはホスファチジルエタノールァ ミンまたはホスファチジルコリンである。 さらに好ましくは L一ひ一ホスファチ ジルエタノールアミンジォレオイル、 または L—ひ一ホスファチジノレコリンジォ レオイルである。  The phospholipid used in the present invention can be used regardless of its origin, whether it is extracted from animal tissue or artificially synthesized. As the phospholipid, it is desirable to use a phospholipid selected from the group consisting of phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylglyceride and derivatives thereof. Preferred is phosphatidylethanolamine or phosphatidylcholine. More preferred is L-one phosphatidylethanolamine dioleo oil or L-one phosphatidinorecorin dioleoyl.
本発明に用いる繊維構造体とは、 1種または複数種の βが積層され、 織り、 編まれ若しくはその他の手法により形成された 3次元の構造体を指すが、 短 « であるフィラメントおよびフィラメントを複数集めたヤーンも包含するものとす る。 具体的な繊維構造体の形態としては、 例えば不織布、 織布、 編布、 チューブ、 メッシュ、 などが好ましく挙げられる。 より好ましい形態は、 不織布である。 リン脂質を含有する繊維と、 リン脂質を含有しない繊維の複合体も含む。  The fiber structure used in the present invention refers to a three-dimensional structure in which one or more kinds of β are laminated and formed by weaving, knitting, or other methods. It shall also include multiple collected yarns. Specific examples of the form of the fiber structure preferably include a nonwoven fabric, a woven fabric, a knitted fabric, a tube, a mesh, and the like. A more preferable form is a nonwoven fabric. Also included are composites of fibers containing phospholipids and fibers not containing phospholipids.
繊維構造体の平均見掛け密度は 1 0〜3 5 0 k g /m 3であることが好ましい。 ここで平均見掛け密度とは、 «構造体の面積、 平均厚、 質量から割り出した密 度を意味する。 平均見掛け密度が 3 5 0 k g Zm3より大きいと、 細胞培養時に栄養分などを 含む溶液が繊維構造体の内部まで十分に浸透しないため繊維構造体表面にしか細 胞が培養されない場合がある。 また、 平均見掛け密度が 1 0 k g Zm3より小さ いと、 細胞培養時に必要な力学強度を保つことが出来ない場合がある。 好ましい 平均見掛け密度は 1 0〜2 5 0 k gノ m3である。 The average apparent density of the fiber structure is preferably 10 to 3500 kg / m 3 . Here, the average apparent density means the density calculated from the area, average thickness, and mass of the structure. If the average apparent density is greater than 3500 kg Zm 3 , the solution containing nutrients may not sufficiently penetrate into the fiber structure during cell culture, and the cells may be cultured only on the fiber structure surface. If the average apparent density is less than 10 kg Zm 3 , the mechanical strength required during cell culture may not be maintained. The preferred average apparent density is 1 0 to 2 5 0 kg Roh m 3.
本発明の!^!構造体を製造する方法としては、 静電紡糸法、 スパンボンド法、 メルトブロー法、 フラッシュ紡糸法等が挙げられる。 その中でも、 静電紡糸法が 操作性や簡便性から好ましい。 以下静電紡糸法により製造する方法について詳細 に説明する。  Of the present invention! ^! Examples of methods for producing the structure include an electrostatic spinning method, a spunbond method, a melt blow method, and a flash spinning method. Among them, the electrostatic spinning method is preferable from the viewpoint of operability and simplicity. The method for producing by the electrospinning method will be described in detail below.
本発明で用いる静電紡糸法では脂肪族ポリエステルを、 揮発性溶媒に溶解した 溶液を電極間に形成された静電場中に吐出し、 溶液を電極に向けて曳糸し、 形成 される »状物質を捕集基板に累積することによって繊維構造体を得ることがで きる。 繊維状物質とは既に溶液の溶媒が完全に留去されて ϋ Ι構造体となってい る状態のみならず、 いまだ溶液の溶媒を含んでレ、る状態も示している。  In the electrospinning method used in the present invention, a solution in which aliphatic polyester is dissolved in a volatile solvent is discharged into an electrostatic field formed between electrodes, and the solution is spun toward the electrodes to form a »form A fiber structure can be obtained by accumulating substances on the collection substrate. The fibrous substance indicates not only a state in which the solvent of the solution has been completely distilled off to form a structure, but also a state in which the solvent of the solution is still contained.
まず静電紡糸法で用いる装置について説明する。 本発明で用いられる電極は、 金属、 無機物、 または有機物のいかなるものでも導電性を示しさえすれば良い。 また、 絶縁物上に導電性を示す金属、 無機物、 または有機物の薄膜を持つもので あっても良い。 本発明における静電場は一対又は複数の電極間で形成されており、 レ、ずれの電極に高電圧を印加しても良レ、。 これは例えば電圧値が異なる高電圧の 電極が 2つ (例えば 1 5 k Vと 1 0 k V) と、 アースにつながった電極の合計 3 つの電極を用いる場合も含み、 または 3本を越える数の電極を使う場合も含むも のとする。  First, an apparatus used in the electrostatic spinning method will be described. As the electrode used in the present invention, any metal, inorganic, or organic material only needs to exhibit conductivity. In addition, a conductive metal, inorganic, or organic thin film may be provided over the insulator. The electrostatic field in the present invention is formed between a pair or a plurality of electrodes, and even if a high voltage is applied to the electrodes that are misaligned. This includes, for example, the use of two high voltage electrodes with different voltage values (for example, 15 kV and 10 kV) and a total of three electrodes connected to earth, or a number exceeding three. This includes the use of other electrodes.
次に静電紡糸法による本発明の繊維構造体の好ましい製造手法にっレ、て詳細に 説明する。 まず脂肪族ポリエステル、 リン脂質、 および揮発性溶媒からなる溶液 を製造する段階がある。 本発明の製造方法における溶液中の脂肪族ポリエステル の濃度は 1〜 3 0重量%であることが好ましレ、。 脂肪族ポリエステルの濃度が 1 重量%より小さいと、 濃度が低すぎるため«構造体を形成することが困難とな り好ましくない。 また、 3 0重量%より大きいと溶液の粘度が増大するために、 電極間により高電圧をかける必要が生じるため好ましくない。 より好ましい脂肪 族ポリエステルの濃度は 2〜 2 5重量%である。 Next, a preferred method for producing the fiber structure of the present invention by electrostatic spinning will be described in detail. The first step is to produce a solution consisting of aliphatic polyester, phospholipid, and volatile solvent. The concentration of the aliphatic polyester in the solution in the production method of the present invention is preferably 1 to 30% by weight. If the concentration of the aliphatic polyester is less than 1% by weight, it is not preferable because the concentration is too low, making it difficult to form a structure. On the other hand, if it exceeds 30% by weight, the viscosity of the solution increases. This is not preferable because a high voltage needs to be applied between the electrodes. The concentration of the aliphatic polyester is more preferably 2 to 25% by weight.
本発明の揮発性溶媒としては、 脂肪族ポリエステルを溶解することができれば 特に限定されない。 揮発性溶媒としては、 例えば非水溶性である塩化メチレン、 クロ口ホルム、 四塩化炭素などのハロゲン元素含有炭化水素や、 任意の割合で水 を溶解することができるアセトン、 メタノール、 エタノール、 プロパノール、 ィ ソプロパノール、 トルエン、 テトラヒ ドロフラン、 1, 1 , 1 , 3 , 3, 3 _へ キサフルォロイソプロパノール、 水、 1, 4—ジォキサン、 シクロへキサン、 シ クロへキサノン、 N, N—ジメチルホルムアミ ド、 ァセトニトリルなどが挙げら れる。 これらのうち、 表面の多孔化を促進させるには、 特に揮発性の高い塩 化メチレン、 クロ口ホルム、 アセトン、 テトラヒ ドロフランが特に好ましい。 これらの溶媒は単独で用いても良く、 複数の溶媒を組み合わせても良い。 また 本発明の目的を損なわなレ、範囲で、 他の溶媒を併用しても良い。  The volatile solvent of the present invention is not particularly limited as long as the aliphatic polyester can be dissolved. Examples of volatile solvents include non-water soluble halogen-containing hydrocarbons such as methylene chloride, black mouth form, and carbon tetrachloride, and acetone, methanol, ethanol, propanol, which can dissolve water in any proportion. Isopropanol, Toluene, Tetrahydrofuran, 1, 1, 1, 3, 3, 3_Hexafluoroisopropanol, Water, 1,4-Dioxane, Cyclohexane, Cyclohexanone, N, N-Dimethyl For example, formamide and acetonitrile. Of these, methylene chloride, chloroform, acetone, and tetrahydrofuran, which are particularly highly volatile, are particularly preferred for promoting the surface porosity. These solvents may be used alone, or a plurality of solvents may be combined. Further, other solvents may be used in combination as long as the object of the present invention is not impaired.
次に前記溶液を静電紡糸法にて紡糸する段階について説明する。 該溶液を静電 場中に吐出するには、 任意の方法を用いることが出来る。 例えば、 一例として図 1を用いて以下説明する。 溶液 2をノズルに供給することによって、 溶液を静電 場中の適切な位置に置き、 そのノズルから溶液を電界によって曳糸して繊維ィ匕さ せる。 このためには適宜な装置を用いることができ、 例えば注射器の筒状の溶液 保持槽 3の先端部に適宜の手段、 例えば高電圧発生器 6にて電圧をかけた注射針 状の溶液噴出ノズル 1を設置して、 溶液をその先端まで導く。 接地した繊維状物 質捕集電極 5から適切な距離に該噴出ノズル 1の先端を配置し、 溶液 2が該噴出 ノズノレ 1の先端を出るときにこの先端と H t状物質捕集電極 5の間にて繊維状物 質を形成させる。  Next, the step of spinning the solution by the electrostatic spinning method will be described. Any method can be used to discharge the solution into the electrostatic field. For example, an explanation will be given below with reference to FIG. By supplying solution 2 to the nozzle, the solution is placed at an appropriate position in the electrostatic field, and the solution is spun from the nozzle by an electric field to form a fiber. For this purpose, an appropriate device can be used, for example, an injection needle-like solution ejection nozzle in which a voltage is applied by an appropriate means, for example, a high voltage generator 6 to the tip of the cylindrical solution holding tank 3 of the syringe. Place 1 and guide the solution to its tip. The tip of the ejection nozzle 1 is placed at an appropriate distance from the grounded fibrous material collection electrode 5, and when the solution 2 exits the tip of the ejection nozzle 1, this tip and the H t-like substance collection electrode 5 A fibrous material is formed between them.
また当業者には自明の方法で該溶液の微細滴を静電場中に導入することもでき る。 一例として図 2を用いて以下に説明する。 その際の唯一の要件は液滴を静電 場中に置いて、 繊維化が起こりうるような距離に繊維状物質捕集電極 1 1から離 して保持することである。 例えば、 ノズノレ 7を有する溶液保持槽 9中の溶液 8に 直接、 直接賺状物質捕集電極 1 1に対抗する電極 1 0を挿入しても良い。 該溶液をノズルから静電場中に供給する場合、 数個のノズルを用いて繊維状物 質の生産速度を上げることもできる。 電極間の距離は、 帯電量、 ノズル寸法、 紡 糸液流量、 紡糸液濃度等に依存するが、 1 0 k V程度のときには 5〜2 0 c mの 距離が適当であった。 また、 印加される静電気電位は、 一般に 3〜1 0 0 k V、 好ましくは 5〜 5 0 k V、 一層好ましくは 5〜 3 0 k Vである。 所望の電位は任 意の適切な方法で作れば良レ、。 It is also possible for a person skilled in the art to introduce fine droplets of the solution into the electrostatic field in a manner that is self-evident. An example will be described below with reference to FIG. The only requirement is to place the droplet in an electrostatic field and keep it away from the fibrous material collection electrode 11 at a distance where fibrosis can occur. For example, an electrode 10 that directly opposes the rod-shaped material collecting electrode 11 may be inserted directly into the solution 8 in the solution holding tank 9 having the nozure 7. When supplying the solution into the electrostatic field from the nozzle, the production rate of the fibrous material can be increased by using several nozzles. The distance between the electrodes depends on the charge amount, nozzle dimensions, spinning fluid flow rate, spinning fluid concentration, etc., but a distance of 5 to 20 cm was appropriate when it was about 10 kV. The applied electrostatic potential is generally 3 to 100 kV, preferably 5 to 50 kV, and more preferably 5 to 30 kV. The desired potential can be generated by any appropriate method.
上記説明は、 電極が捕集基板を兼ねる場合であるが、 電極間に捕集基板となり うる物を設置することで、 電極と別に捕集基板を設け、 そこに 構造体を捕集 することが出来る。 この場合、 例えばベルト状物質を電極間に設置して、 これを 捕集基板とすることで、 連続的な生産も可能となる。  The above description is for the case where the electrode also serves as a collection substrate, but by installing an object that can be a collection substrate between the electrodes, a collection substrate is provided separately from the electrode, and the structure can be collected there. I can do it. In this case, for example, by installing a belt-like substance between the electrodes and using it as a collection substrate, continuous production becomes possible.
本発明において、 ノズルと捕集基板の間の相対湿度を 2 0 %以上に維持すると、 上記表面構造を有する繊維を簡便に得ることができ、 好ましい。 より好ましい相 対湿度は 2 5〜9 5 %である。  In the present invention, if the relative humidity between the nozzle and the collection substrate is maintained at 20% or more, it is preferable because the fiber having the surface structure can be easily obtained. A more preferable relative humidity is 25 to 95%.
最後に捕集基板に累積される繊維積層体を得る段階について説明する。 本発明 においては、 該溶液を捕集基板に向けて曳糸する間に、 条件に応じて溶媒が蒸発 して^ ϋ状物質が形成される。 通常の室温であれば捕集基板上に捕集されるまで の間に溶媒は完全に蒸発するが、 もし溶媒蒸発が不十分な場合は減圧条件下で曳 糸しても良い。 また、 曳糸する温度は溶媒の蒸発挙動や紡糸液の粘度に依存する 力 通常は、 0〜5 0 °Cである。  Finally, the step of obtaining the fiber laminate accumulated on the collection substrate will be described. In the present invention, while the solution is spun toward the collection substrate, the solvent evaporates depending on the conditions to form a soot-like substance. At normal room temperature, the solvent completely evaporates until it is collected on the collection substrate, but if the solvent evaporation is insufficient, it may be spun under reduced pressure. Further, the temperature at which the spinning is performed depends on the evaporation behavior of the solvent and the viscosity of the spinning solution. Usually, it is 0 to 50 ° C.
本発明の繊維構造体は、 上記繊維構造体単独で構成されていても良いが、 他の 部材と組み合わされていても良い。 また、 本発明の細胞培養基材は、 その特徴を 損なわない範囲であれば、 細胞成長因子や細胞増殖因子などの蛋白質や、 コラー ゲン等の細胞外マトリクス等を組み合わせても良い。  The fiber structure of the present invention may be composed of the fiber structure alone, but may be combined with other members. Further, the cell culture substrate of the present invention may be combined with proteins such as cell growth factor and cell growth factor, extracellular matrix such as collagen, etc., as long as the characteristics are not impaired.
実施例 Example
以下、 実施例により本発明の実施の形態を説明するが、 これらは本発明の発明 を制限するものではない。  Hereinafter, embodiments of the present invention will be described by way of examples, but these do not limit the present invention.
平均多孔化率は、 得られた繊維構造体の 2万倍の走査型電子顕微鏡写真を画像 処理ソフト (next New Qube) を用いて 2 ί直化処理を行い、 求めた。 繊維表面の 孔径は、 得られた繊維構造体の 2万倍の走査型電子顕微鏡写真から η = 20にて、 孔の直径を測定した平均値を算出した。 実施例 1 The average porosity was measured by scanning electron micrographs of 20,000 times the obtained fiber structure. Using the processing software (next New Qube), 2 rectification processing was performed and obtained. For the pore diameter on the fiber surface, an average value of the pore diameter measured at η = 20 was calculated from a scanning electron micrograph of the resulting fiber structure 20,000 times. Example 1
ポリ乳酸 (島津製作所:商品名 「La c t y 9031」、 重量平均分子量 1 68, 000) 100重量部とホスファチジルエタノールァミン ジォレオイル (和光純薬) 0. 5重量部を塩ィヒメチレン (和光純薬工業、 特級) 899. 5重 量部に室温 (29°C) にて溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶液を繊維状物質捕集電極 5に 15分間吐出した。 噴出ノズル 1の内径は 0. 8 mm, ®j£は 12 kV、 噴出ノズル 1から繊維状物質捕集電極 5までの距離は 20 cm, 相対湿度 39%であった。 得られた繊維構造体を走査型電子顕微鏡 (日立製作所 S _ 2400 ) で測定したところ、 平均 径は 10 μ m、 平均多 孔化率は 36. 7%、 平均孔径は 0. 52μπι、 見かけ密度は 209 kg/m3で あった。 図 3に走査型電子顕微鏡写真を示す。 実施例 2 Polylactic acid (Shimadzu Corporation: trade name “La cty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylethanolamine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight Special grade) 899. Dissolved in 5 parts by weight at room temperature (29 ° C) to prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes. The inner diameter of the ejection nozzle 1 was 0.8 mm, ® was 12 kV, the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 20 cm, and the relative humidity was 39%. The obtained fiber structure was measured with a scanning electron microscope (Hitachi S-2400). The average diameter was 10 μm, the average porosity was 36.7%, the average pore diameter was 0.52 μπι, and the apparent density. Was 209 kg / m 3 . Figure 3 shows a scanning electron micrograph. Example 2
ポリ乳酸 (島津製作所:商品名 「L a c t y 9031」、 重量平均分子量 1 68, 000) 100重量部とホスファチジルエタノールァミン ジォレオイル (和光純薬) 10重量部を塩化メチレン (和光純薬工業、 特級) 890重量部に 室温 (26°C) にて溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶 液を繊維状物質捕集電極 5に 15分間吐出した。 噴出ノズノレ 1の内径は 0. 8 m m、 電圧は 12 k V、 噴出ノズノレ 1から繊維状物質捕集電極 5までの距離は 20 cm、 相対湿度 39%であった。 得られた »構造体を走査型電子顕微鏡 (日立 製作所 S— 2400 ) で測定したところ、 平均繊維径は 10 μ m、 平均多孔化率 は 66. 1%、 平均孔径は 0. 98 μιη、 見かけ密度は 212 k gZm3であつ た。 図 4に走査型電子顕微鏡写真を示す。 実施例 3 Polylactic acid (Shimadzu: Trade name “L acty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylethanolamine dioleoyl oil (Wako Pure Chemical Industries) 10 parts by weight of methylene chloride (Wako Pure Chemical Industries, special grade) A solution was prepared by dissolving in 890 parts by weight at room temperature (26 ° C). Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes. The inner diameter of the ejected nozzle was 0.8 mm, the voltage was 12 kV, the distance from the ejected nozzle 1 to the fibrous material collecting electrode 5 was 20 cm, and the relative humidity was 39%. The obtained »structure was measured with a scanning electron microscope (Hitachi S-2400). The average fiber diameter was 10 μm, the average porosity was 66.1%, and the average pore diameter was 0.98 μιη. The density was 212 k gZm 3 . Figure 4 shows a scanning electron micrograph. Example 3
ポリ乳酸 (島津製作所:商品名 「La c t y 9031」、 重量平均分子量 1 68, 000) 100重量部とホスファチジルコリン ジォレオイル (和光純 薬) 0. 5重量部を塩化メチレン (和光純薬工業、 特級) 899. 5重量部に室 温 (29°C) にて溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶液 を繊維'状物質捕集電極 5に 1 5分間吐出した。 噴出ノズル 1の内径は 0. 8 mm、 電圧は 12 k V、 噴出ノズル 1から繊維状物質捕集電極 5までの距離は 20 c m、 相対湿度 39%であった。 得られた,構造体を走査型電子顕微鏡 (日立製作所 S-2400) で測定したところ、 平均 mi径は 8 1 m、 平均多孔化率は 25. 8%、 平均孔径は 0. l l /i m、 見かけ密度は 208 kg/m3であった。 図 5に 走査型電子顕微鏡写真を示す。 実施例 4 Polylactic acid (Shimadzu Corporation: trade name “La cty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylcholine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight of methylene chloride (Wako Pure Chemical Industries, special grade) 899 Dissolved in 5 parts by weight at room temperature (29 ° C) to prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes. The inner diameter of the ejection nozzle 1 was 0.8 mm, the voltage was 12 kV, the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 20 cm, and the relative humidity was 39%. The obtained structure was measured with a scanning electron microscope (Hitachi S-2400). The average mi diameter was 81 m, the average porosity was 25.8%, the average pore diameter was 0.1 ll / im, The apparent density was 208 kg / m 3 . Figure 5 shows a scanning electron micrograph. Example 4
ポリ乳酸 (島津製作所:商品名 「L a c t y 9031」、 重量平均分子量 1 68, 000) 100重量部とホスファチジルエタノールァミン ジォレオイル (和光純薬) 0. 5重量部を塩ィヒメチレン (和光純薬工業、 特級) 449. 75 重量部、 N, N—ジメチルホルムアミ ド 449. 75重量部に室温 (29°C) に て溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶液を繊維状物質捕 集電極 5に 15分間吐出した。 噴出ノズル 1の内径は 0. 8 mm, 電圧は 12 k V、 噴出ノズノレ 1から繊維状物質捕集電極 5までの距離は 10 c m、 相対湿度 3 9%であった。 得られた繊維構造体を走査型電子顕微鏡 (日立製作所 S— 240 0) で測定したところ、 平均繊維径は 0. 7^ 111、 平均多孔化率は 3 %、 平均孔 径は 0. 032 1^ 見かけ密度は 210 kg/m3であった。 図 6に走査型電子 顕微鏡写真を示す。 実施例 5 Polylactic acid (Shimadzu Corporation: trade name “L acty 9031”, weight average molecular weight 1 68, 000) 100 parts by weight and phosphatidylethanolamine dioleoyl oil (Wako Pure Chemical Industries) 0.5 parts by weight Special grade) 449.75 parts by weight, N, N-dimethylformamide 449.75 parts by weight was dissolved at room temperature (29 ° C) to prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 15 minutes. The inner diameter of the ejection nozzle 1 was 0.8 mm, the voltage was 12 kV, the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 10 cm, and the relative humidity was 39%. The obtained fiber structure was measured with a scanning electron microscope (Hitachi S-240 0). The average fiber diameter was 0.7 ^ 111, the average porosity was 3%, and the average pore diameter was 0.032 1 ^ The apparent density was 210 kg / m 3 . Figure 6 shows a scanning electron micrograph. Example 5
ポリ乳酸 (島津製作所:商品名 「L a c t y 9031」、 重量平均分子量 1 68, 000) 100重量部とホスファチジルエタノールァミン ジォレオイノレ (和光純薬) 0. 1重量部を塩化メチレン (和光純薬工業、 特級) 899. 9重 量部に室温 (29°C) にて溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶液を繊維状物質捕集電極 5に 1 3分間吐出した。 噴出ノズノレ 1の内径は 0. 8 mm, 電圧は 1 2 k V、 噴出ノズル 1力 ^H 状物質捕集電極 5までの距離は 20 cm, 相対湿度 33%であった。 得られた繊維構造体を走査型電子顕微鏡Polylactic acid (Shimadzu Corporation: Trade name “L acty 9031”, weight average molecular weight 1 68,000) 100 parts by weight and phosphatidylethanolamine dioleoinore (Wako Pure Chemical Industries, Ltd.) 0.1 part by weight was dissolved in methylene chloride (Wako Pure Chemical Industries, special grade) 899.9 parts by weight at room temperature (29 ° C) to prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 13 minutes. The inner diameter of erupting nozzle 1 was 0.8 mm, the voltage was 12 kV, the force of the erupting nozzle 1 force ^ H-like substance collecting electrode 5 was 20 cm, and the relative humidity was 33%. Scanning electron microscope for the obtained fiber structure
(日立製作所 S— 2400) で測定したところ、 平均 径は 8 μπ、 平均多孔 化率は 35. 4%、 平均孔径は 0. 6 3 μπι、 見かけ密度は 2 1 4 k gZm3で あった。 図 7に走査型電子顕微鏡写真を示す。 比較例 1 . Was measured by (Hitachi S- 2400), the average diameter of 8 Myupai average porosity rate is 35.4%, the average pore size 0. 6 3 μ πι, the apparent density was 2 1 4 k gZm 3 . Figure 7 shows a scanning electron micrograph. Comparative Example 1.
ポリ乳酸 (島津製作所:商品名 「L a c t y 903 1」、 重量平均分子量 1 6 8, 000) 1 0重量部を塩ィ匕メチレン (和光純薬工業、 特級) 90重量部に 室温 (22°C) にて溶解し、 溶液を作成した。 図 1にしめす装置を用いて、 該溶 液を繊維状物質捕集電極 5に 1 3分間吐出した。 噴出ノズル 1の内径は 0. 8 m m、 電圧は 1 2 k V、 噴出ノズノレ 1から繊維状物質捕集電極 5までの距離は 20 cm、 相対湿度 36%であった。 得られた繊維構造体を走査型電子顕微鏡 (日立 製作所 S— 2400 ) で測定したところ、 平均繊維径は 3 μ m、 平均多孔化率は 1 0. 5%、 見かけ密度は 2 1 5 kg/m3であった。 図 8に走査型電子顕微鏡写 真を示す。 実施例 6 :細胞培養評価 Polylactic acid (Shimadzu: Trade name “L acty 903 1”, weight average molecular weight 1 6 8,000) 10 parts by weight of salt methylene chloride (Wako Pure Chemical Industries, special grade) 90 parts by weight at room temperature (22 ° C ) To prepare a solution. Using the apparatus shown in FIG. 1, the solution was discharged to the fibrous material collecting electrode 5 for 13 minutes. The inner diameter of the ejection nozzle 1 was 0.8 mm, the voltage was 12 kV, the distance from the ejection nozzle 1 to the fibrous material collecting electrode 5 was 20 cm, and the relative humidity was 36%. The obtained fiber structure was measured with a scanning electron microscope (Hitachi S-2400). The average fiber diameter was 3 μm, the average porosity was 10.5%, and the apparent density was 2 15 kg / It was m 3. Figure 8 shows a scanning electron microscope photograph. Example 6: Cell culture evaluation
実施例 1で得られた繊維構造体を直径 1 2 mmの円形に切り出し、 滅菌のため に 70%エタノール水溶液 (和光純薬工業) に浸漬し風乾させた後、 細胞培養器 内で 0. 25 X 1 05 C e l I s/m l /wellで PAE (豚大動脈由来血管内皮細 胞) を播種し、 6ゥエルプレート内に収め、 5%C02、 37°Cの条件でインキュ ベータ一内で培養を行った。 細胞増殖能を Alamarblueにて 1日目および 4日目 に測定した。 測定は、 波長 530nmの励起光を用いて出現した蛍光 590nmを検出し た。 結果を図 9に示す, 比較例 2 The fiber structure obtained in Example 1 was cut into a circle with a diameter of 12 mm, immersed in a 70% ethanol aqueous solution (Wako Pure Chemical Industries) for air sterilization, air-dried, and then 0.25 in a cell culture vessel. PAE (pig aorta-derived vascular endothelial cells) is seeded at 10 CelIs / ml / well, placed in a 6-well plate, and cultured in an incubator at 5% C02 and 37 ° C. Went. Cell proliferation ability was measured on Alamarblue on day 1 and day 4. In the measurement, fluorescence 590 nm that appeared using excitation light with a wavelength of 530 nm was detected. The results are shown in Fig. 9, Comparative Example 2.
比較例 1の繊維構造体を使用した以外、 実施例 6と同様の操作を行った。 結果 を図 9に共に示す。  The same operation as in Example 6 was performed except that the fiber structure of Comparative Example 1 was used. The results are shown in Fig. 9.
2標本による有意差検定を行つた結果、 培養後 1日間経過では、 実施例 6は比較 例 2との 2標本間におレ、て、 0 . 0 0 1 %の危険率で統計的有意差をもつて接着 性及び増殖性がよいとの結果が得られた。 培養後 4日間経過では実施例 6は比較 例 2との 2標本間において 0 . 0 0 1 %の危険率で統計的有意差をもって接着性 及び増殖性がよいとの結果が得られた。 As a result of performing a significant difference test using two specimens, one day after culturing, Example 6 was statistically significant at a risk rate of 0.0 0 1% between the two specimens of Comparative Example 2. As a result, it was found that adhesion and proliferation were good. After 4 days of culturing, the results of Example 6 were good in adhesion and proliferation with a statistically significant difference between the two specimens of Comparative Example 2 and that of Comparative Example 2 with a risk factor of 0.001%.

Claims

請 求 の 範 囲 The scope of the claims
1. 脂肪族ポリエステル 100重量部に対して、 リン脂質を 0. 01〜100 重量部含有し、 平均 «径が 0. 05 〜50 であることを特徴とした^ t 構造体。 1. A ^ t structure characterized by containing 0.01 to 100 parts by weight of phospholipid with respect to 100 parts by weight of an aliphatic polyester and having an average diameter of 0.05 to 50.
2. 脂肪族ポリエステル 100重量部に対して、 リン脂質を 0. 01〜20 重量部含有した請求項 1に記載の繊維構造体。 2. The fiber structure according to claim 1, comprising 0.01 to 20 parts by weight of phospholipid with respect to 100 parts by weight of aliphatic polyester.
3. 前記繊維構造体の繊維表面の平均多孔化率が 3 %〜 90 %であることを 特徴とする請求項 1に記載の »構造体。 3. The »structure according to claim 1, wherein an average porosity of the fiber surface of the fiber structure is 3% to 90%.
4. 該脂肪族ポリエステルがポリ乳酸、 ポリグリコール酸、 ポリ力プロラク トン、 ポリブチレンサクシネート、 ポリエチレンサクシネート、 およびこれらの 共重合体からなる群から選択される少なくとも一つの高分子である請求項 1に記 載の繊維構造体。 4. The aliphatic polyester is at least one polymer selected from the group consisting of polylactic acid, polyglycolic acid, polystrength prolacton, polybutylene succinate, polyethylene succinate, and copolymers thereof. The fiber structure described in 1.
5. 該リン脂質がホスファチジルエタノールァミン、 ホスファチジルコリン ホスファチジノレセリン、 ホスファチジノレグリセロー Λ^、 カノレジオリピン、 ホスフ ァチジノレイノシトール、 スフインゴミエリン、 ホスファチジン酸、 プラズマロー ゲンおよびそれらの誘導体からなる群から選択されてなる請求項 1に記載の » 構造体。 5. The phospholipid is composed of phosphatidylethanolamine, phosphatidylcholine phosphatidinoserine, phosphatidinoreglycello Λ ^, canoresiolipine, phosphatidinoreinositol, sphingomyelin, phosphatidic acid, plasmalogen and their derivatives The »structure of claim 1, wherein the» structure is selected from the group.
6. 該リン脂質がホスファチジルエタノールァミンまたはホスファチジルコ リンであることを特徴とする請求項 1に記載の繊維構造体。 6. The fiber structure according to claim 1, wherein the phospholipid is phosphatidylethanolamine or phosphatidylcholine.
7 . 該リン脂質が L-ひ-ホスファチジルエタノールアミンジォレオイルまた は L—α—ホスファチジルコリンジォレオイルであることを特徴とする請求項 6 に記載の繊維構造体。 7. The fiber structure according to claim 6, wherein the phospholipid is L-s-phosphatidylethanolamine dioleoyl or L-α-phosphatidylcholine dioleoyl.
8 . 脂肪族ポリエステルおよびリン脂質を揮発性溶媒に溶解した溶液を製造 し、 該溶液を静電紡糸法にて紡糸し、 捕集基板上に累積される繊維構造体を得る 段階を含む、 請求項 1に記載の繊維構造体の製造方法。 8. The method includes the steps of producing a solution in which aliphatic polyester and phospholipid are dissolved in a volatile solvent, spinning the solution by an electrospinning method, and obtaining a fiber structure accumulated on a collection substrate. Item 2. A method for producing a fiber structure according to Item 1.
PCT/JP2005/015958 2004-08-26 2005-08-25 Fiber structure containing phospholipid WO2006022430A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006532769A JP4354996B2 (en) 2004-08-26 2005-08-25 Fiber structure containing phospholipids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004246432 2004-08-26
JP2004-246432 2004-08-26

Publications (1)

Publication Number Publication Date
WO2006022430A1 true WO2006022430A1 (en) 2006-03-02

Family

ID=35967624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015958 WO2006022430A1 (en) 2004-08-26 2005-08-25 Fiber structure containing phospholipid

Country Status (3)

Country Link
JP (1) JP4354996B2 (en)
TW (1) TW200613016A (en)
WO (1) WO2006022430A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949071A (en) * 2010-09-16 2011-01-19 扬州大学 Biodegradable composite fiber and production method thereof
WO2011059102A1 (en) 2009-11-11 2011-05-19 帝人株式会社 Molded fiber article
WO2011115281A1 (en) * 2010-03-16 2011-09-22 帝人株式会社 Fiber molded body
JP2011246524A (en) * 2010-05-24 2011-12-08 Teijin Ltd Fiber molded article
WO2012023594A1 (en) 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
WO2012029971A1 (en) * 2010-08-31 2012-03-08 帝人株式会社 Compound material of fibrin glue and fiber molding
WO2012118236A1 (en) * 2011-03-03 2012-09-07 帝人株式会社 Fiber molded body
JP2013066536A (en) * 2011-09-21 2013-04-18 Teijin Ltd Sheet-like hemostatic material excellent in hemostatic effect
JP2014004705A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retention ability, and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5542080B2 (en) * 2011-03-30 2014-07-09 帝人株式会社 Nonwoven fabric excellent in flexibility and water retention and method for producing the same
CN104372440B (en) * 2014-11-07 2016-06-22 上海科涤环保科技有限公司 A kind of bio-medical static spinning membrane and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504583A (en) * 1994-06-13 1998-05-06 モンサント・カンパニー Aliphatic polyester composition
JP2002249966A (en) * 2001-01-26 2002-09-06 Korea Inst Of Science & Technology Method for producing fine fibrous polymeric web
JP2002371174A (en) * 2001-06-13 2002-12-26 Mitsui Chemicals Inc Resin composition for containing agrochemical
US20040013873A1 (en) * 2000-08-18 2004-01-22 Wendorff Joachim H Production of polymer fibres having nanoscale morphologies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504583A (en) * 1994-06-13 1998-05-06 モンサント・カンパニー Aliphatic polyester composition
US20040013873A1 (en) * 2000-08-18 2004-01-22 Wendorff Joachim H Production of polymer fibres having nanoscale morphologies
JP2002249966A (en) * 2001-01-26 2002-09-06 Korea Inst Of Science & Technology Method for producing fine fibrous polymeric web
JP2002371174A (en) * 2001-06-13 2002-12-26 Mitsui Chemicals Inc Resin composition for containing agrochemical

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597350A (en) * 2009-11-11 2012-07-18 帝人株式会社 Molded fiber article
WO2011059102A1 (en) 2009-11-11 2011-05-19 帝人株式会社 Molded fiber article
JP5563590B2 (en) * 2009-11-11 2014-07-30 帝人株式会社 Fiber molded body
WO2011115281A1 (en) * 2010-03-16 2011-09-22 帝人株式会社 Fiber molded body
JPWO2011115281A1 (en) * 2010-03-16 2013-07-04 帝人株式会社 Fiber molded body
JP2011246524A (en) * 2010-05-24 2011-12-08 Teijin Ltd Fiber molded article
CN103025933A (en) * 2010-08-16 2013-04-03 帝人株式会社 Low-chargeable fibers and process for production thereof
WO2012023594A1 (en) 2010-08-16 2012-02-23 帝人株式会社 Low-chargeable fibers and process for production thereof
US8802756B2 (en) 2010-08-16 2014-08-12 Teijin Limited Low-charging fiber and method for producing the same
RU2557623C2 (en) * 2010-08-16 2015-07-27 Тейдзин Лимитед Low-charge fibre and method for production thereof
WO2012029971A1 (en) * 2010-08-31 2012-03-08 帝人株式会社 Compound material of fibrin glue and fiber molding
CN101949071A (en) * 2010-09-16 2011-01-19 扬州大学 Biodegradable composite fiber and production method thereof
WO2012118236A1 (en) * 2011-03-03 2012-09-07 帝人株式会社 Fiber molded body
JPWO2012118236A1 (en) * 2011-03-03 2014-07-07 帝人株式会社 Fiber molded body
JP5698339B2 (en) * 2011-03-03 2015-04-08 帝人株式会社 Fiber molded body
JP2013066536A (en) * 2011-09-21 2013-04-18 Teijin Ltd Sheet-like hemostatic material excellent in hemostatic effect
JP2014004705A (en) * 2012-06-22 2014-01-16 Teijin Ltd Nonwoven fabric excellent in flexibility and water retention ability, and method for producing the same

Also Published As

Publication number Publication date
JP4354996B2 (en) 2009-10-28
TW200613016A (en) 2006-05-01
JPWO2006022430A1 (en) 2008-05-08

Similar Documents

Publication Publication Date Title
WO2006022430A1 (en) Fiber structure containing phospholipid
JP5119144B2 (en) Scaffolding material
KR100875189B1 (en) Fibrous three-dimensional porous support for tissue regeneration using electrospinning and its preparation method
Sill et al. Electrospinning: applications in drug delivery and tissue engineering
Sun et al. Electrospun anisotropic architectures and porous structures for tissue engineering
Skotak et al. Improved cellular infiltration into nanofibrous electrospun cross-linked gelatin scaffolds templated with micrometer-sized polyethylene glycol fibers
Lannutti et al. Electrospinning for tissue engineering scaffolds
Sajeev et al. Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning
Bhardwaj et al. Electrospinning: A fascinating fiber fabrication technique
Kwon et al. Electrospun nano-to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential
Bhattarai et al. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity
Lee et al. Nanofabrication of microbial polyester by electrospinning promotes cell attachment
Karakaş Electrospinning of nanofibers and their applications
US20100047310A1 (en) Bio-acceptable conduits and method providing the same
Ndreu et al. Electrospun biodegradable nanofibrous mats for tissue engineering
Chen et al. A three-dimensional dual-layer nano/microfibrous structure of electrospun chitosan/poly (d, l-lactide) membrane for the improvement of cytocompatibility
Wang et al. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO‐microparticles to enhance cellular infiltration
WO2004087012A1 (en) Composite of support substrate and collagen, and process for producing support substrate and composite
Shalumon et al. Fabrication of three-dimensional nano, micro and micro/nano scaffolds of porous poly (lactic acid) by electrospinning and comparison of cell infiltration by Z-stacking/three-dimensional projection technique
WO2014063013A1 (en) Apparatus and method for electrospinning a nanofiber coating on surfaces of poorly conductive three-dimensional objects
Chung et al. Nanofibrous scaffolds electrospun from elastomeric biodegradable poly (L-lactide-co-ε-caprolactone) copolymer
JP4383763B2 (en) Cell culture substrate and method for producing the same
KR101816286B1 (en) A Multi-Layered Tube-type Porous Scaffold Comprising Biodegradable Polymer And Manufacturing Method Thereof
WO2004072336A1 (en) Porous fiber, porous fiber structure and method for production thereof
Stitzel et al. Electrospraying and electrospinning of polymers for biomedical applications. Poly (lactic-co-glycolic acid) and poly (ethylene-co-vinylacetate)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006532769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase